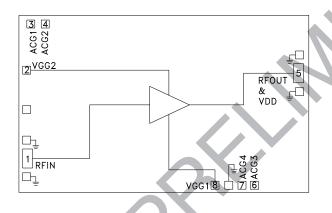


01 1215


GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 0.1 - 22 GHz

Typical Applications

The HMC998A is ideal for:

- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics

Functional Diagram

Features

High P1dB Output Power: +31 dBm High Psat Output Power: +33 dBm

High Gain: 12 dB

High Output IP3: +41 dBm

Supply Voltage: Vdd = +10V to +15V @ 500 mA

50 Ohm Matched Input/Output Die Size: 2.99 x 1.84 x 0.1 mm

General Description

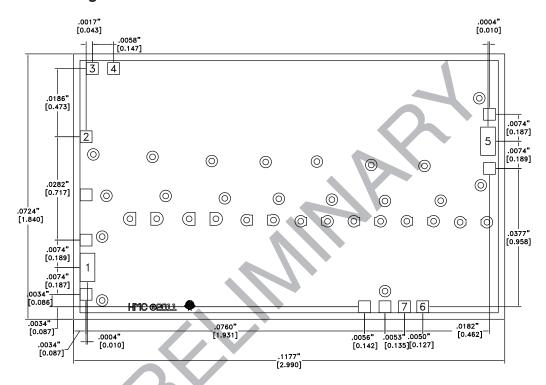
The HMC998A is a GaAs MMIC PHEMT Distributed Power Amplifier die which operates between 0.1 and 22 GHz. The amplifier provides 12 dB of gain, +41 dBm output IP3 and +31 dBm of output power at 1 dB gain compression while requiring 500 mA from a +15V supply. This versatile PA exhibits a positive gain slope from 1 to 18 GHz making it ideal for EW, ECM, Radar and test equipment applications. The HMC998A amplifier I/Os are internally matched to 50 Ohms facilitating integration into mutli-chipmodules (MCMs). All data is taken with the chip connected via two 0.025mm (1 mil) wire bonds of minimal length 0.31 mm (12 mils).

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +15V, Vgg2 = +9.5V, Idd = 500 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	0.1 - 2		2 - 18			18 - 22			GHz	
Gain	9.5	11.5		10.5	12.5		10.5	12.5		dB
Gain Flatness		±0.1			±0.7			±0.6		dB
Gain Variation Over Temperature		0.006			0.11			0.016		dB/ °C
Input Return Loss		-20			-20			-15		dB
Output Return Loss		-7			-20			-20		dB
Output Power for 1 dB Compression (P1dB)	29	31		29	31.5		27	30		dBm
Saturated Output Power (Psat)		33			33.5			33		dBm
Output Third Order Intercept (IP3)		41			41			40		dBm
Noise Figure		10			4			5		dB
Supply Current (Idd) (Vdd= 15V, Vgg1= -0.7V Typ.)		500			500			500		mA

^{*} Adjust Vgg1 between -2 to 0V to achieve Idd = 500mA typical.

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 0.1 - 22 GHz


Pad Descriptions

Pad Number	Function	Description	Interface Schematic
1	RFIN	This pad is DC coupled and matched to 50 Ohms. Blocking capacitor is required.	RFIN O
2	VGG2	Gate control 2 for amplifier. Attach bypass capacitor per application circuit herein. For nominal operation +9.5V should be applied to Vgg2.	VGG20
4, 7	ACG2, ACG4	Low frequency termination. Attach bypass capacitor per application circuit herein.	
3	ACG1	Low frequency termination. Attach bypass capacitor per application circuit herein.	ACG1 O-VV- RFOUT
5	RFOUT & VDD	RF output for amplifier. Connect DC bias (Vdd) network to provide drain current (ldd). See application circuit herein.	& VDD
6	ACG3	Low frequency termination. Attach bypass capacitor per application circuit herein.	IN O ACG3
8	VGG1	Gate control 1 for amplifier. Attach bypass capacitor per application circuit herein. Please follow "MMIC Amplifier Biasing Procedure" application note.	VGG10
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	

GaAs pHEMT MMIC 2 WATT POWER AMPLIFIER, 0.1 - 22 GHz

Outline Drawing

Die Packaging Information [1]

Standard	Alternate
GP-1 (Gel Pack)	[2]

[1] For more information refer to the "Packaging Information" Document in the Product Support Section of our website.

[2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES [MM]
- 2. DIE THICKNESS IS 0.004"
- 3. TYPICAL BOND PAD IS 0.004" SQUARE
- 4. BOND PAD METALIZATION: GOLD
- 5. BACKSIDE METALIZATION: GOLD
- 6. BACKSIDE METAL IS GROUND
- 7. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS
- 8. OVERALL DIE SIZE ±0.002"