

搭载ARM Cortex-M4/M0和16位ADC的混合信号双核控制处理器

ADSP-CM411F/412F/413F/416F/417F/418F/419F

系统特性

高达240 MHz ARM Cortex-M4,搭载浮点单元、高达160KB零等待状态ECC SRAM

基于安全的独立双核概念

高达1 MB高性能ECC FLASH,可以近SRAM速度执行指令

极高的精度、低延迟31通道模拟前端

100 MHz ARM Cortex-M0监控器内核,带32KB零等待状态 ECC SRAM

3.3 V单电源供电

静态存储控制器(SMC)具有异步存储器接口,支持8位和16位 存储器

增强的24通道精密PWM单元

4个3阶或4阶SINC滤波器,可无缝连接Σ-Δ型调制器

基于硬件的谐波分析引擎

逻辑模块阵列(LBA)

FFT信号频谱监控器

MATH功能模块

2个CAN 2.0B接口和最多5个UART

2个串行外设接口(SPI兼容)端口

4个编码器接口,其中2个带分频功能

封装选项:

176引脚(24 mm×24 mm)LQFP封装

210引脚(15 mm×15 mm)BGA封装

模拟前端

16位模数转换器,带24个多路复用输入,支持6路同步采样和 6通道转换(1.4 μs)

独立、14位、7通道辅助模数转换器,带7个输入 ADC控制器(ADCC0/ADCC1)和DAC控制器(DACC0) 12位DAC 最多3个2.5 V精密基准电压源输入

(详情请参见64页上的ADC/DAC/基准电压源/比较器规格。)

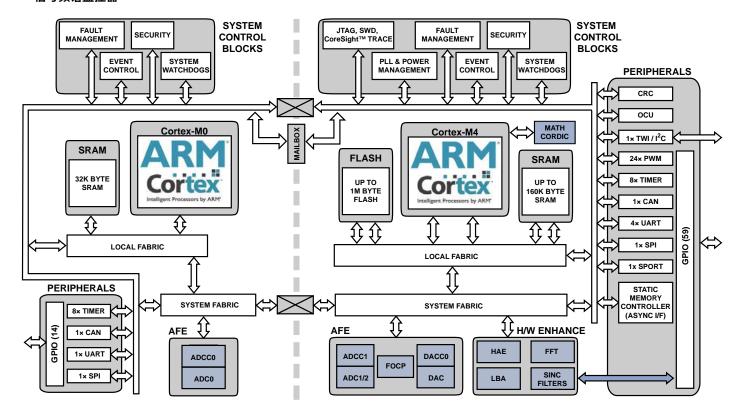


图1. ADSP-CM41xF功能框图

Rev. PrB

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

目录

概述3
模拟前端4
双核系统架构10
EmbeddedICE
处理器基础结构13
存储器架构17
系统加速19
安全特性19
功能安全特性19
处理器外设21
时钟和电源管理24
系统调试26
开发工具26
其它信息26
相关信号链27
安全特性免责声明27
ADSP-CM41xF详细信号描述28
ADSP-CM412F/CM413F/CM416F/
CM417F 176引脚LQFP信号描述31
ADSP-CM412F/CM413F/CM416F/
CM417F 176引脚LQFP GPIO多路复用38
ADSP-CM411F/CM418F/
CM419F 210引脚BGA信号描述41
修订历史
2/16—修订版PrA至修订版PrB
更新系统特性1
更新模拟前端1
更新表1、产品特性3
修改模拟前端中的图例4
增加模拟前端图例4
增加时序规格72

ADSF-CM411F/CM410F/	
CM419F 210引脚BGA GPIO多路复用	47
ADSP-CM41xF设计器快速参考	50
技术规格	60
工作条件	60
电气特性	62
ADC/DAC/基准电压源/比较器规格	64
闪存规格	70
绝对最大额定值	71
ESD灵敏度	71
封装信息	71
时序规格	72
环境条件	103
ADSP-CM41xF 176引脚LQFP引脚分配	104
按引脚编号顺序	104
按引脚名称顺序	106
ADSP-CM41xF 210引脚BGA引脚分配	108
按引脚编号顺序	108
按引脚名称顺序	110
外形尺寸	
新 发布产品	115

概述

ADSP-CM41xF系列混合信号控制处理器基于ARM® Cortex-M4TM处理器内核,浮点单元工作频率高达240 MHz, ARM® Cortex-M0TM处理器内核工作频率高达100 MHz。处理器集成搭载ECC的最高160KB SRAM存储器、集成ECC的1 MB內存,以及专门针对电机控制和光伏(PV)逆变器控制应用而优化的加速器和外设以及由两个16位SAR型ADC、一个14位M0 ADC和一个12位DAC组成的模拟模块。ADSP-CM41xF系列采用单电源供电,用内部稳压器和一个外部调整管自行生成内部电压源。

ADSP-CM41xF混合信号控制处理器集成了许多业界领先的系统外设和丰富的存储器(如表1所示),在一个集成封装中提供RISC式编程能力和先进的信号处理能力,堪称新一代应用的首选平台。这些应用涵盖众多功率转换市场领域,包括太阳能PV逆变器、电机/功率控制和电池充电/控制应用。

表1列出了各型号的产品特性。

表1.产品特性

通用		SP- 111F)SP- 412F		SP- 413F		SP- 416F		SP- 41 <i>7</i> F		SP- 118F		SP- 419F
封装类型	210引	脚 BGA			1	76引脚	LQFP					210引	脚 BGA	
工作温度范围(T _{AMBIENT})			•				-40°C至	+105°0	-					
处理器														
处理器类型		单核	: ARN	/I Corte	k-M4			双核:	ARM C	Cortex-N	M4、AR	M Cort	ex-M0	
M4处理器特性码	Α	В	Α	В	В	C	В	C	C	D	В	C	C	D
M4 L1 SRAM (KB)	128	128	128	128	128	160	128	160	160	160	128	160	160	160
M4 Flash (KB)	256	256	256	256	256	512	256	512	512	1024	256	512	512	1024
M4内核时钟(MHz)	180	240	180	240	240	240	240	240	240	240	240	240	240	240
M0内核时钟(MHz) ¹	不适	不适	不适	不适	不适	不适	100	100	100	100	100	100	100	100
	用	用	用	用	用	用								
模拟功能											-			
16位ADC同步采样			-		3路 (2.	7 Msps)			-		6	5路 (4.3	Msps)	
16位ADC输入	2	24	:	24	2	24	2	24	2	4	2	4	2	4
16位ADC ENOB	1	1+	1	1+	1	3+	1	1+	13	3+	1	1+	1.	3+
14位ADC输入		7		7		7		7		7	7	7		7
DAC输出		1		1		1		1		1		1		1
FOCP(快速过流保护)		3		3		3		3		3	3	3		3
数字功能														
GPIO(通用I/O)	7	'3	7	73	7	73	7	'3	7	' 3	7	'3	7	73
PWM(脉宽调制器输出)	2	24] :	24	2	24	2	24	2	4	2	4	2	4
HAE(谐波分析引擎)	()		0		1		1		1		1		1
CORDIC		1		1		1		1		1		1		1
FFT电弧检测	()		0		0		1		1		1		1
SINC3或SINC4滤波器输入	4	4		4		4		4		4	4	4		4
CAN		2		2		2	;	2		2	2	2		2
UART		3		3		5		5		5	į	5		5
SPI		2		2		2	:	2] :	2	:	2		2
I^2C		1		1		1		1		1		1		1
GP定时器(通用)		8		8		8	1	6	1	6	1	6	1	16
SPORT(串行端口)		1		1		1		1		1		1		1
16位EBIU		1		1		1		1		1		1		1

¹ NA = 不适用

模拟前端

处理器集成一个附属于M0内核的ADC,以及附属于M4内核的两个ADC和一个DAC。两个强大的片内模数转换控制器(ADCC)和一个数模转换控制器(DACC)简化了对这些数据转换器的控制。ADCC和DACC无缝集成到软件编程模型中,而且可以高效地管理ADC和DAC的配置和实时运行。

(技术详情请参见64页上的ADC/DAC/基准电压源/比较器规格。)

M4内核的ADCC提供了对ADC上的模拟采样事件时序和执行进行精确控制的机制。ADCC支持最多6通道同步采样(ADC1、ADC2各3通道),可在1.4 μs内向存储器提供6通道同步采样ADC数据,或者在3.0 μs内向存储器提供16通道同步采样对。来自ADC的转换数据既可以通过DMA路由至存储器,也可以通过处理器路由至一个目标寄存器,或者不通过处理器干预而直接写入任何目标寄存器(比如写入FFT)。ADCC可以配置为,使两个ADC同时或不同时对两个模拟输入端进行采样和转换,并且支持异步或同步工作模式。在同步模式下可取得全时匹配性能。

类似地,DACC连接一个外部连接的DAC和两个内部连接 的阈值DAC,其作用是管理这些DAC。以DAC为目标的转 换数据既可能是借道DMA、来自存储器,也可能借道处理 器、来自一个源寄存器。

有关ADCC和DACC的运行和编程情况,详见《搭载ARM Cortex-M4的ADSP-CM41x混合信号控制处理器硬件参考手册》。

ADC和DAC的特性和性能规格因处理器型号而异。 ADCC、DACC以及ADC和DAC的简化框图如图2、图3和图4所示。

获得最佳转换器性能的考虑因素

如同任何高性能模拟/数字电路,为了获得最佳性能,应当遵循良好的电路设计和电路板布局实践。电源及其噪声旁路(去耦),接地返回路径和引脚连接,以及模拟/数字路由通道路径和信号屏蔽,这些都是首要考虑因素。有关最佳设计实践的应用提示,请参见图5和图6,以及《搭载ARM Cortex-M4/M0的ADSP-CM41x混合信号控制处理器硬件参考手册》通常情况下不会有硬件参考手册的中文版,所以附上英文标题。有关VREG电路的更多信息,请参见第26页的图18:内部稳压器电路。

快速过流保护(FOCP)

对于特定输入,若要满足采样速率要求,则需要使用FOCP模块。FOCP提供三个比较器。每个比较器的输入均内部连接A0、B0和C0的输入。比较器具有公共的上限阈值(LIMIT_U)和公共的下限阈值(LIMIT_L),通过内部8位DAC设置。COMP_OUT_A/B/C输出为用户可访问。如果一个或多个比较器正在指示"LIMT"—越界(通过可用的COM-P_OUT_A/B/C),则AFE向处理器置位一次中断。

模拟前端(AFE)模块

ADC模块包含两个主ADC(ADC1和ADC2),每一个ADC都有三个多路复用采样保持(T/H)单元,每个T/H均可采样最多8个模拟输入。此外,ADC模块还集成完全独立的监控器ADC(ADC0),前置一个7通道输入多路复用器。有关性能规格的详情,请参见第64页的ADC规格——ADC0、ADC1、ADC2。

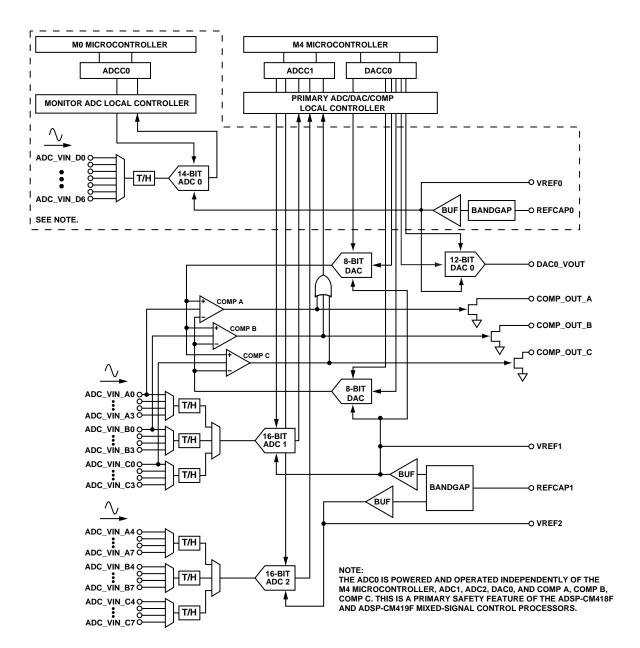


图2. 模拟前端功能框图(ADSP-CM418F/CM419F双核, 6路采样)

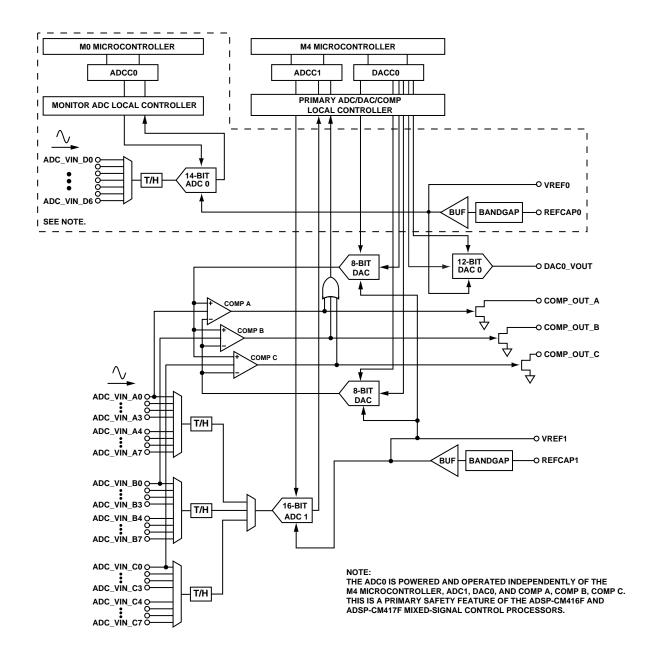


图3. 模拟前端功能框图(ADSP-CM416F/CM417F双核, 3路采样)

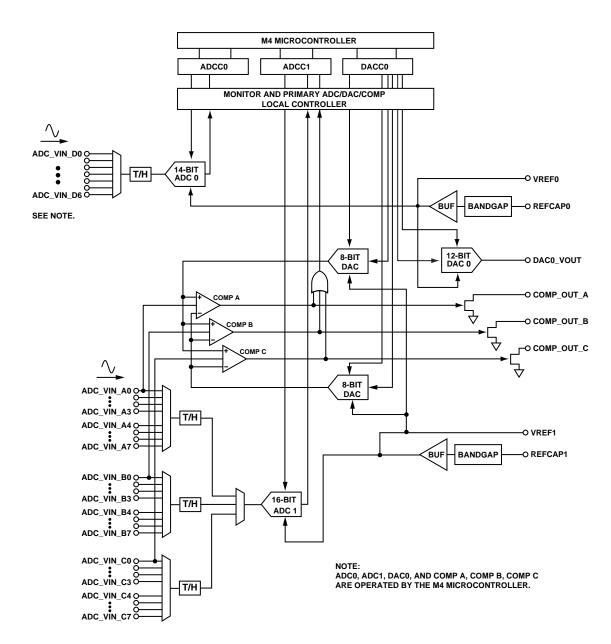


图4. 模拟前端功能框图(ADSP-CM411F/CM412F/CM413F单核, 3路采样)

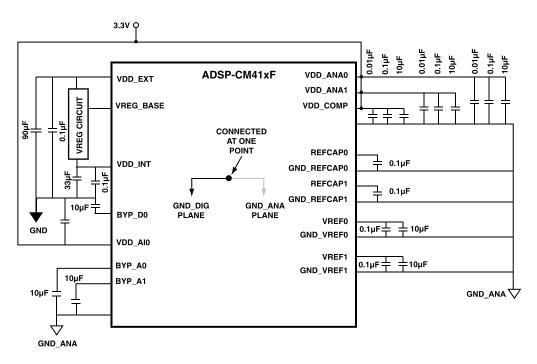


图5. 典型电源配置(ADSP-CM411F、ADSP-CM412F、ADSP-CM413F、ADSP-CM416F、ADSP-CM417F)

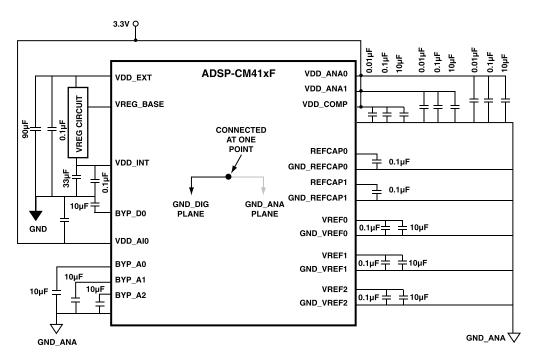


图6. 典型电源配置(ADSP-CM418F、ADSP-CM419F)

模拟输入的电压输入范围要求为0 V至3.0 V。所有模拟输入都采用相同的单端设计。就如所有单端输入一样,来自高阻抗源的信号是最难控制的,而且根据电气环境的不同,可能需要一个外部缓冲电路来进行信号调理(图7)。集成预充电缓冲器,协助外部缓冲器进行25 pF输入电容充电。可以通过软件禁用预充电特性。

DAC模块

DAC采用12位、低功耗串式DAC设计。DAC的输出进行了缓冲,可以将R/C负载驱动至地或 V_{DD_ANA} 。有关性能规格,详见第66页"DAC规格"部分。

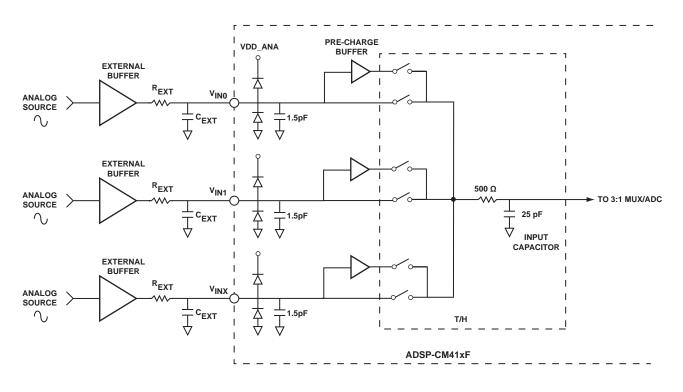
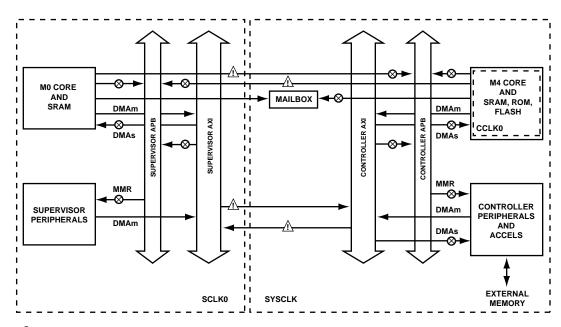


图7. 等效单端输入(简化)

双核系统架构

ADSP-CM41xF产品可能集成一个ARM Cortex-M4内核,也可能集成两个ARM Cortex内核——一个M4和一个M0。在双核产品中,系统架构在功能上进行划分,以便每个内核能够可靠、独立地工作(图8)。通过系统保护资源(SPU和SMPU),编程器可以在两个处理器之间分段任意控制系统资源,并可向下直达单个外设和存储器区域。针对DMA从机的访问可以进行类似的调节。可编程总线超时保护保证了内核域之间的确定性访问完成时间,哪怕一个域中存在硬件故障。

每一个处理器均配备了基本的基础设施:本地SRAM、一组通信外设(每个外设至少有一个UART、CAN和SPI)、触发路由单元(TRU)、看门狗定时器(WDT)、系统事件控制器(SEC)、ADC控制器(ADCC)和AFE上的独立ADC,以及本地APB和AXI总线结构。邮箱存储器在两个子系统之间提供共享存储器桥,用于令牌和消息。在子系统之间有多个通用中断和触发,支持选择性通信。


主系统AXI结构提供两个子系统之间的通用存储器互连,显示含有全部系统资源(内部或紧密耦合至ARM内核除外)的两个处理器的统一存储器映射。

ARM Cortex-M0内核

ARM Cortex-M0为32位超低门数精简指令集计算机(RISC)。 指令和数据使用32位总线。数据的长度可以是8位、16位或 32位。指令字的长度为16位或32位。

M0子系统(图9)由M0内核(图10)、本地M0P平台SRAM及其通信外设(SPI、UART、CAN)、仪表(ADCC)和基础设施(SEC、TRU、WDT)构成。M0子系统以高达100 MHz的速度工作在其SCLK0时钟域内。本地AXI结构支持本地外设和M0P SRAM之间的DMA,并通过紧密耦合存储器AHB总线矩阵独立于M0处理器的SRAM连接。M0P SRAM由SEC_DED ECC通过硬件提供保护。SRAM的多模块条状结构支持无模块冲突时的并发内核和DMA访问。M0子系统APB和AXI结构连接ADSP-CM41x系统,支持输入APB和DMA传输(作为DMA从机)以及输出DMA传输(作为DMA主机)。DMA访问延迟受限于固定延迟优先移位机制。多个通用触发和中断信号还可在两个方向上跨越边界。

ARM Cortex-M0控制器特性参见第12页上的章节描述。

⚠ TIMEOUT PROTECTION

图8. ADSP-CM41xF双核ARM架构

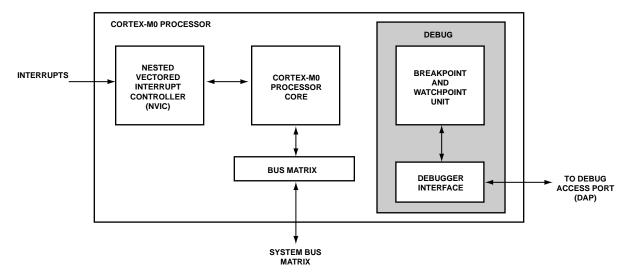


图9. ARM Cortex-M0内核

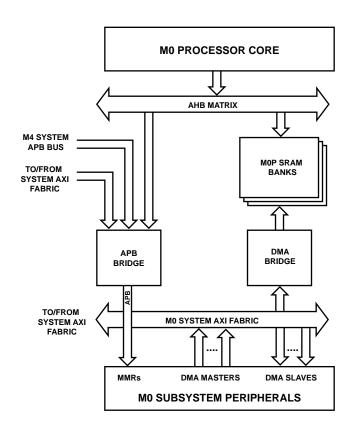


图10. ADSP-CM41xF ARM Cortex-M0内核存储器子系统(SCLK0时钟域)

Cortex-M0架构

- Thumb-2 ISA技术
- 向上兼容其余的Cortex系列
- 32周期乘法器,针对低电平区域优化设计
- NVIC中断控制器(32个中断和4个优先级)支持75个中 断源,并带有辅助多路复用
- CoreSight™调试、断点、观察点和交叉触发

微架构

- 3级流水线,带分支预测
- 低延迟中断处理
- 冯诺依曼架构

ARM Cortex-M4内核

ARM Cortex-M4内核(图11)为32位精简指令集计算机(RISC)。 指令和数据使用32位总线。数据的长度可以是8位、16位或 32位。指令字的长度为16位或32位。

M4F内核存储器子系统(图12)由M4内核(图11)、主存储器组、MATH/CORDIC协处理器和M4P子系统控制/状态寄存器组成。M4F子系统以高达240 MHz的速度工作在其CCLK0时钟域内。主存储器组由ECC保护、20路主SRAM组、引导ROM和两组ECC保护Flash存储器组成。主存储器支持

M4任意三个AHB总线(ICODE、DCODE和SYS)的同时访问,并支持通过系统AXI结构进行DMA从机访问,除非发生模块访问冲突。(然而,系统DMA无法访问引导ROM。) DMA访问延迟受限于可编程优先移位机制。M4F子系统还集成MATH/CORDIC协处理器,能够加速IEEE单精度浮点超越函数。子系统通过APB总线桥接ADSP-CM41x系统外设和基础设施,实现MMR访问;并通过AXI总线桥接实现ADSP-CM41x从机存储器空间(SMC、FFT、HAE和M0P)的访问。

ARM Cortex-M4控制器特性在下节中描述。

Cortex-M4架构

- Thumb-2 ISA技术
- DSP和SIMD扩展
- 单周期MAC(最多32×32+64=>64)
- 硬件除法指令
- 单精度FPU
- NVIC中断控制器(129个中断和16个优先级)
- 存储器保护单元(MPU)
- 全面的CoreSight调试、跟踪、断点、观察点和交叉触发

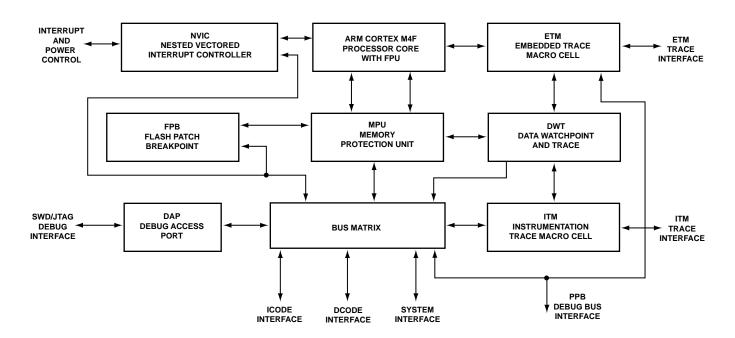


图11. ARM Cortex-M4内核

微架构

- 3级流水线,带分支推测
- 低延迟中断处理, 带尾链

可配置以支持超低功耗模式

- 深度睡眠模式, 动态电源管理
- 可编程时钟发生器单元

EmbeddedICE

EmbeddedICE[®]支持内核片內调试。EmbeddedICE模块包含 断点和观察点寄存器,在调试时这些寄存器可使代码中止 执行。这些寄存器可以通过JTAG和SWD测试端口来控制。

当遇到一个断点或观察点时,处理器中断,并进入调试状态。一旦进入调试状态,就可以检查处理器寄存器、Flash/EE、SRAM和存储器映射寄存器的状态。

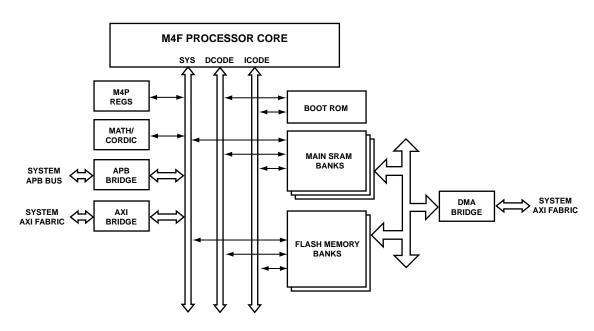


图12. ADSP-CM41xF ARM Cortex-M4内核存储器子系统(CCLK0时钟域)

处理器基础结构

ADSP-CM41xF处理器基础设施支持两种类型的DMA连接: 通用DMA和优化DMA。以下部分说明有关ADSP-CM41xF处理器基本组成的信息。

通用DMA控制器(DDE)

处理器包含12个外设DMA通道,每通道使用一个DDE引擎,外加一个存储器间(MDMA)流,带两个DDE控制器和CRC。DDE通道0-3(图13)用于M0子系统中的外设DMA,通道4-11用于M4子系统中的外设DMA,DDE通道12-13用于MDMA(图14)。

DMA基础设施支持DMA主机(外设、内核)针对从机存储器空间(主/M0 SRAM、片外SMC SDRAM,以及加速器内嵌存储器)以完全矩阵的方式进行同步访问(图13、图14)。DMA结构并发支持每个从机存储器空间每次系统时钟周期的无冲突单次访问。

14个DDE引擎每一个都集成独立的数据FIFO。外设DDE中,每个FIFO的一端直接连接外设,另一端独立连接系统结构。这样可以最大程度提升实时外设性能,因为外设至FIFO连接不消耗系统总线带宽即可接受或提供外设数据。

CRC引擎连接MDMA DDE,可在传输时或有数据存在时验证数据缓冲器内容(比如验证Flash存储器)。

为了反映用户的外设引脚多路复用选择,单个DDE可在最多3个外设之间进行相似的多路复用(图14)。这便允许以较少数量的DDE高效支持较大数量的外设DMA端点,同时保证通过引脚多路复用连接引脚的任何外设组都始终有DDE的支持。

所有ADSP-CM41xF处理器DDE均支持一组强大的寻址和控制选项:

- 以32位递增进行32位寻址
- 以独立的X、Y计数和失调进行1-D或2-D寻址
- · X_row或XY-阵列传输完成时可选择中断

- 系统存储器中通过阵列或描述符链路列表控制描述符 (分散/聚集)DMA模式
- 自动缓冲模式一旦开始便可在无需处理器介入的情况 下连续传输数据
- 根据任意硬件或软件TRU事件触发从机模式进而开启 DMA
- 触发主机模式,可根据X-行或XY-阵列的完成情况发出TRU触发

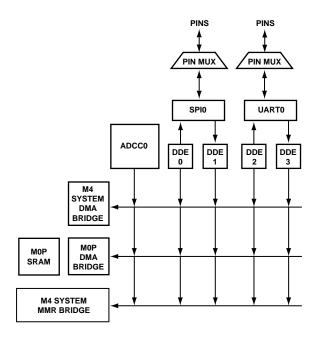


图13. ADSP-CM41xF ARM Cortex-M0 DMA

优化DMA控制器

高性能系统外设和加速器具有不同的存储器处理需求,而中心化的万用DMA控制器无法满足要求。在ADSP-CM41xF处理器中,下列系统元件集成了DMA能力,并根据处理器单元的特定功能进行了定制:

- ADCC: ADC控制器在每一个定时器的多样本帧时将数据结构写入存储器,用户可以任意设计帧内样本布局。可以在循环缓冲器内安排两个或多个样本帧,每N个帧一次中断,或者生成不受限的样本帧输出缓冲器阵列,后跟完成时的一次中断。
- SINC: 类似地,SINC单元为每一个定时器将数据结构写入存储器——每一个均含有滤波器输出样本,用于一个至四个Σ-Δ输入流。这些帧能以循环或线性方式排列,每一个数据帧均有中断。

- FFT: FFT加速度计不仅接受来自系统任意存储器主机(包括ADCC)的输入时域数据,还可在加速度计每一次完成操作时输出频谱数据至M4、M0或SMC存储器。
- DACC: DAC控制器含有DMA控制器,能以线性或循环缓冲器的方式从存储器读出16位或32位步长的数据。可以开启每个数据样本的中断。

DMA并发

在处理器架构中,M4和M0存储器和系统结构的设计能够确保高并发操作。SRAM存储器分割为最多20个独立的阵列组,采用4路LSB地址带和最多5路MSB地址带相结合的方式。这表示针对SRAM的寻址可以最多有4路并发进行而不会产生任何停顿,包括M4的一个系统DMA和三个AHB总线,前提是不存在两个寻址操作同时访问一个物理阵列组的情况。MSB地址带意味着对不同的32 KB范围进行寻址永远不会产生停顿。LSB地址带意味着针对这些范围内的并发访问几乎不会互相冲突(例如ICODE与DCODE访问。)

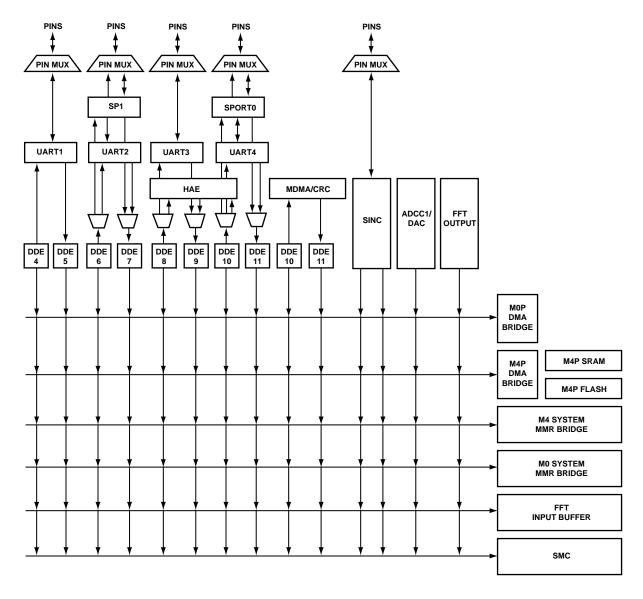


图14. ADSP-CM41xF ARM Cortex-M4 DMA

另外,DMA通常与内核活动有所不同,哪怕出现结构访问冲突也是如此,但采用时间受限的方式。在几乎所有ARM-Mx代码应用中,DMA可在请求的一个或两个周期内完成,不会出现处理器停顿的现象——这是因为部署了存储器组分区。然而,如果一种罕见的Mx应用的访问模式影响DMA的时间超过了可编程阈值,则DMA会使处理器停顿,以便系统内的DMA实时最大延迟能够得到绝对限制。

系统事件控制器(SEC)

SEC通过其集成故障管理单元对系统故障源的使能和路由 进行管理。

每一个处理器内核都有独立的SEC(M0有SEC0, M4有SEC1),允许每一个内核保持对所有相关中断和故障源的硬件自主监控。

SEC允许每一个内核使能每一个故障源的通知并对其进行优先级分配,以识别最高优先级有源故障,以及对每一次内核事件进行连贯标记。可编程延迟过后,可以选择非处理事件以使SYS_FAULT输出置位,以及/或者通过TRU触发通知其它内核发生了事件处理故障。

故障/事件处理机制还可以扩展至片外源,方法是使用双向 开漏SYS_FAULT引脚。若使能,则当此引脚外部拉低时, 某一个或全部两个内核都可以被通知到。

触发路由单元(TRU)

TRU提供系统级序列控制,无需内核干预。TRU将触发主机(触发产生者)映射到触发从机(触发接收者)。从机端点可以通过多种方式响应触发。触发事件还可作为通用触发脉冲(GTP)从一个TRU路由至另一个。TRU支持的常见应用包括:

- 在每一个PWM周期或根据外部事件周期性启动ADC 采样
- 控制功能安全机制
- 一个DMA通道的序列完成后,自动触发另一个DMA 序列开始
- 软件触发
- 同时发生的活动的同步

触发时序单元(TTU)

TTU提供了分割、延迟和生成周期性TRU触发模式的灵活机制。8个TRU输出可以关联任意4个触发组,TRU触发输入可以让其工作。触发组可以配置为单次模式,每一个分配的触发输出具有包含SYSCLK分辨率的独立延迟。或者,可以将任意触发组配置为周期性工作,每一个分配的触发输出具有独立的正延迟或负延迟,可超前或滞后于基准定时器。

TTU的一种常见用法是用来精确控制多个外设活动的相对时间。例如,TTU能够以精确的时间偏移获取ADC样本,可用来同步多个PWM单元的周期性操作。

引脚中断(PINT)

处理器的每个端口引脚都可以通过边沿敏感或电平敏感方式请求中断,极性可编程。中断功能与GPIO操作分离。6个系统级中断通道(PINT0-5)专门用于此目的。每个中断通道最多可以管理32个中断引脚。中断的引脚分配不是在单个引脚基础上进行,而是以8个引脚为一组(半个端口),灵活地分配给中断通道。

每个引脚中断通道都有一组特殊的32位存储器映射寄存器,用于支持半端口分配和中断管理,包括请求的屏蔽、识别和清除。通过这些寄存器还可以访问相应引脚的状态,并使用中断锁存器,无论中断屏蔽与否。多数控制寄存器具有多个MMR地址条目,以便"写1设置"或"写1清除"。

诵用I/O (GPIO)

每个通用端口引脚都可以通过操纵端口控制、状态和中断 寄存器进行控制:

- GPIO方向控制寄存器 指定各GPIO引脚的方向:输入或输出。
- GPIO控制和状态寄存器 "写1修改"机制支持通过 单一指令来修改GPIO引脚的任意组合,而不会影响 其它GPIO引脚的电平。
- GPIO中断屏蔽寄存器 允许各GPIO引脚用作处理器的中断。定义为输入的GPIO引脚可以用来产生硬件中断,输出引脚则可以由软件中断触发。
- GPIO中断敏感性寄存器——指定各引脚是对电平敏感还是对边沿敏感;如果是对边沿敏感,则还要指定仅信号的上升沿有意义还是上升沿和下降沿均有意义。
- GPIO上拉使能引擎——使能独立引脚的弱上拉。

GPIO可编程驱动强度

所选GPIO(包括PWM引脚)支持可编程二级驱动强度能力, 能够进而支持光隔离接口器件的无缝驱动。

引脚复用

处理器支持灵活的复用方案,各种外设可以复用GPIO引脚。 最多5个外设加上GPIO功能可以共享一个GPIO引脚。所有 GPIO引脚都有旁路特性——也就是说,当一个GPIO引脚 的输出使能和输入使能均有效时,引脚驱动器之前的数据 信号会被回送到该GPIO引脚的接收路径。

更多信息请参见:

- ADSP-CM411F/CM418F/CM419F 210引脚BGA GPIO 多路复用(第47页)。
- ADSP-CM412F/CM413F/CM416F/CM417F 176引脚LQFP GPIO多路复用(第38页)。

GPIO引脚安全状态序列

每一个ADSP-CM41xF GPIO支持检测到一系列故障之后的故障安全机制,引脚可以编程驱动预选的0、1或Z等安全状态。该安全状态事件可以进一步编程为立即或延迟,全局延迟编程设置为大约以1 μs为单位,并以片上RC振荡器定时。这样可以支持任意引脚状态的二步序列故障响应,并以1 μs至15 μs为间隔。故障响应完全独立于处理器、处理器时钟(PLL和晶振),甚至独立于VDDINT电源,仅需3 V VDDEXT电源。

可以选择触发引脚安全状态响应的系列故障包括: VDDINT或VDDEXT上的VMU检测电源故障;系统 SYS_CLKIN0输入的OSCWDOG检测主要故障(丢失或错误 的谐波码);

系统时钟或PLL故障的OCU检测精确细节故障,以及触发路由单元路由的任意硬件检测故障或软件引起的事件。

由于这些类型的故障可能会影响一个或两个处理器内核的正常工作,因此它们被称为不可恢复故障,只能通过 SYS_HWRST硬复位引脚置位清除。

存储器架构

ADSP-CM41xF处理器的内外存储器如图15所示,以下各节将对其进行说明。

ARM Cortex-M4存储器子系统

ADSP-CM41xF系列的存储器映射是以ARM出品的Cortex-M4型号为基础的。若保留标准化存储器映射,则可为M4平台上的端口应用提供方便。该型号与其他供应商产品的唯一区别是其内部存储器的物理实现方式。

ADSP-CM41xF应用开发一般是以跨越CODE/SRAM和外部存储器区域的存储器模块为基础的。通过内部SRAM和内部闪存提供了充足的内置存储器。额外的外部存储器件可以通过SMC异步存储器端口连接,也可通过SPI0串行存储器接口连接。

代码区域

该区域(0x0000_0000至0x1FFF_FFFF)中的访问操作由内核 在其ICODE和DCODE两个接口上执行,其访问对象是 Cortex-M4F平台集成器件中的存储器资源。

- **引导ROM**。在系统复位时执行的一个8K字节引导 ROM。本空间仅支持M4F内核的只读访问。注意, 用户无法修改ROM存储器内容。
- 内部SRAM代码区域。该存储器空间含有必须实时执行的应用指令和文字(常数)数据。支持M4F内核进行读/写访问,支持系统器件进行读/写DMA访问。内部SRAM可以按32K字节块在CODE和DATA(M4空间中的SRAM区域)之间划分。对该区域的访问速率为内核时钟速率,无等待状态。
- 集成闪存。该存储器空间包括高达1 M字节的Flash存储器,可保存用户程序和常数数据。初始向量表和复位引导向量位于Flash存储器的基址。

对该区域的读取最高能以内核时钟速度进行,并由强大的Flash预取单元优化。(参见:待定)

Flash存储器还包括最多两个4K字节模块,称为信息模块。信息模块中的预定义地址可能含有用户的安全密钥,用来锁定针对器件的调试访问以及控制器件的引导时间初始化。

Flash存储器能够以每页4 KB为单位擦除,或者执行批量擦除操作。存储器为ECC保护,支持以64位(8字节)为单位写入。

SRAM区域

该区域(0x2000_0000至0x3FFF_FFFF)中的访问操作由ARM Cortex-M4F内核在其SYS接口上执行。另外,内核的SRAM 区域可以充当应用的数据区。

• 内部SRAM数据区域。此空间可以包含读/写数据。内部SRAM可以按32K字节块在CODE和DATA(M4空间中的SRAM区域)之间划分。对该区域的访问速率为内核时钟速率,无等待状态。支持M4F内核进行读/写访问,支持系统器件进行读/写DMA访问。通过Cortex-M4F平台中的全局独占访问监控器可以支持独占存储器访问。同时提供位段支持。

系统存储器空间

 系统MMR。该区域中驻留着各种系统MMR。为 MMR提供了位段支持。

外部异步并行闪存/RAM

• L2异步存储器。可以选择性地将最多32M字节×4组外部存储器连接至异步存储器端口(SMC)。同时也可以进行直接R/W数据访问。

系统区域

该区域(0xE000_0000至0xF7FF_FFFF)中的访问操作由ARM Cortex-M4F内核在其SYS接口上执行,并在Cortex-M4F平台内部进行处理。可以对MPU进行编程,将对该空间的访问限制为仅优先模式。

- CoreSight ROM。ROM表条目指向处理器的调试器件。
- ARM PPB外设。该空间由ARM定义,占据着SYS区域 末端的256K字节(0xE000_0000至0xE004_0000)。该空 间支持M4F内核对ARM内核的内部外设(MPU、ITM、 DWT、FPB、SCS、TPIU、ETM)和CoreSight ROM进 行读/写访问。系统DMA无法访问。
- 平台控制寄存器。该空间拥有Cortex-M4F平台集成器件中的寄存器,这些寄存器控制着ARM内核、其存储器和Flash存储器控制器。M4F内核可以通过其SYS端口进行访问(但系统DMA无法进行访问)。

静态存储控制器(SMC)

SMC可以用来控制最多4组外部存储器或存储器映射设备, 其时序参数非常灵活。在ADSP-CM41xF处理器上,每一组 都占用32M字节区段,与所用器件的大小无关。

图15. ADSP-CM41xF ARM Cortex-M4存储器映射

引류

复位后,处理器可以通过两种机制自动加载内部和外部存储器。引导模式由专用SYS_BMODE输入引脚决定。有两种引导模式,即从Flash存储器引导或从UART串行端口加载Flash。

由于M0子系统没有ROM, M4必须将M0应用程序载入M0 SRAM, 才能启动M0。M0应用程序可以方便地保存在 Flash存储器中,也可以从ADSP-CM41x系统中任何目标源 或通信接口载入。

引导模式如表2所示。这些模式由RCU_CTL寄存器的 SYS_BMODE位实现,在上电复位和软件启动的复位期间 采样。

表2. 引导模式

SYS_BMODE[0] 设置	描述
0	从集成Flash存储器直接执行代码
1	基于UART的Flash固件更新

系统加速

下节内容说明ADSP-CM41xF处理器的系统加速度模块。

谐波分析引擎(HAE)

谐波分析引擎(HAE)模块从两个源信号接收8 kHz输入样本, 这两个源信号的频率在45 Hz和65 Hz之间。然后, HAE将处 理输入采样, 并生成输出结果。输出结果由对基波进行的 电能质量测量值和最多12个额外谐波构成。

FFTB信号频谱监控器

FFTB信号频谱监控器加速度计提供背景输入信号频谱分析,内置针对各种传感器输入格式的数据转换、频谱均值、平方幅度计算以及频段功率限幅检测。FFTB单元可为存储器或DMA的输入信号数据提供高达512点16位FFT,并具有可选输入格式转换、梳状滤波、窗口、可编程FFT尺寸、平方幅度计算、频谱平均和频谱限幅检查。

FFTB单元可以配置为直接接受来自信号源的数据——比如 ADC或SINC滤波器,而无需处理器的干预,并且无需 DMA输入/输出SRAM。FFT能直接将结果写入任意存储器 空间,包括M0或M4上的SRAM。

SINC滤波器单元

SINC模块处理4个位流,为每个位流使用一对可配置的 SINC滤波器。每对初级SINC滤波器用来产生该对的滤波和 抽取输出。输出的抽取速率可以是比输入速率低8至256倍 的任意整数速率。抽取越高,就越能消除噪声,因而 ENOB也越高。

还可在SINC模块之外选用额外的滤波装置来进一步增加 ENOB。主SINC滤波器输出可通过借道DMA传输至处理器 存储器或传输至另一外设的方式进行访问。

四个通道中的每一个都有一个低延迟辅助滤波器,其中含有可编程的正、负超量程检测电容。这些限值检测事件可以用于使内核中断,生成触发信号,或者指示系统故障。

安全特性

处理器提供了软硬件相结合的多种保护机制,可在安全模式下阻止对器件的访问,在开放模式下允许访问。这些机制包括密码保护的UART Flash加载器,以及密码保护的JTAG/SWD调试接口。

本产品内置安全特性,可保护嵌入式非易失存储器内容并防止执行未经授权的代码。当订购方或后续接收方使能该器件的安全特性后,ADI公司对退回器件执行故障分析的能力会受到限制。关于该器件的故障分析限制详情,请联系ADI公司。

功能安全特性

处理器提供了以下特性,可以增强或者帮助实现一定程度 的系统安全性和可靠性。虽然安全性水平主要由系统考虑 因素决定,但下列特性有助于增强鲁棒性。

电压监控单元(VMU)

电压监控单元是一个片上集成式电源监控模块,用来检测 VDD_EXT以及 VDD_INT电源上的欠压和过压。 VMU负责控制 GPIO引脚安全状态机制及其时序。 VMU还负责在检测到电源故障时将 Flash置于安全状态。

振荡器比较器单元(OCU)

处理器还集成振荡比较器单元,用于检测SYSCLK时钟线路上的故障。它使用外部辅助时钟或晶振输入SYS_CLKIN1来检测各种条件,比如时钟死区和违反时钟频率限值。它能生成数个事件,通知处理器有关违反情况。检测到故障事件时,可以配置时钟不良信号(CLKNG),将芯片置于复位状态。它还能初始化GPIO引脚安全状态机制。

ECC保护L1存储器

M4和M0处理器L1 SRAM、Flash存储器和邮箱存储器均采用 零等待状态SEC-DED ECC加以保护,并原生保护32位存储 器元件。在适当的地方写入8位或16位数据可导致自动背 景读取-修改-写入ECC更新,通常不存在可观察到的处理 器停顿。刷新辅助硬件可周期性处理单个位错误。多位错 误检测还可用来表示中断和/或故障。

循环冗余校验(CRC)

CRC是用来计算数据块CRC的硬件模块。它基于CRC32引擎,可计算传递给它的32b数据字的CRC值。若数据字尺寸小于32b,则内核/外部源有责任将数据装入32b数据单元中。

特别地,可以使用CRC单元来验证Flash存储器内容,即 SRAM中常数数据块(文字或代码)。CRC外设的主要特性 如下:

- 存储器扫描模式
- 存储器传输模式
- 数据验证模式
- 数据填充模式
- 32b CRC多项式(可编程多项式)
- 位/字节镜像选项
- 故障/错误中断机制

Cortex-M4 MPU

MPU将存储器映射分为几个区域,允许系统程序员定义每个区域的位置、大小、访问权限和存储器属性。支持为每个区域配置独立的属性设置,还支持重叠区域,以及将存储器属性导出到系统等。

更多信息,请参考ARM信息中心网页。

系统保护单元(SPU)

所有系统资源和L2存储器组都可以由处理器内核、存储器到存储器DMA或调试单元控制。系统保护单元(SPU)支持对锁定到给定主机的特定资源进行写入访问。

提供两个SPU单元来管理外设组以及相关APB总线。SPU0管理M0的本地外设,SPU1管理M4系统外设。

提供三个SMPU单元,每个存储器空间一个: M4 SRAM、M0 SRAM、片外L2。

SPU和SPMU可以编程检测访问超时,并返回控制,初始化主机。这样可以保护系统免于无限停顿故障。

通过全局锁定概念——大部分系统关键模块均提供——某些模块支持更小粒度的系统保护。一组外设初始化之后,每一个所需外设都可通过写入其LOCK位而标记为保护。然后,当SPU设置了全局锁定后,整个配置都会受到保护。那些之前已设置了LOCK位的外设可以受到保护,免于一切写操作,直至全局SPU锁定再次解锁。

观察点保护

观察点和硬件断点主要用于仿真器。使能时,只要访问用户定义的系统资源或者内核从用户定义的地址执行操作,这些点就会通知仿真器。可以配置看门狗事件,以便把这些事件告知处理器或SEC。

看门狗定时器(WDOG)

每个内核关联一个32位定时器,可用来部署软件看门狗功能。软件看门狗可以提高系统可用性,如果定时器在软件复位之前超时,它将通过产生通用中断迫使处理器进入已知状态。编程人员初始化定时器计数值,使能适当中断,然后使能定时器。此后,在计数器从编程值计数到0之前,软件必须重新加载计数器。这样在软件(正常情况下会复位定时器)由于外部噪声条件或软件错误而停止运行时,可以防止系统一直处于未知状态。或者,故障管理单元(FMU)可在看门狗超时事件时,直接启动处理器复位。

信号看门狗

8个通用定时器可以通过两种模式来监控片外信号。看门 狗周期模式监控外部信号是否以预期范围内的周期切换。 看门狗宽度模式监控外部信号的脉冲宽度是否在预期范围 内。两种模式均有助于检测系统级信号的错误/不需要的切 换(或缺少系统信号)。

振荡器看门狗

振荡器看门狗监控外部时钟振荡器,可以检测到时钟缺失和谐波振荡错误。振荡器看门狗检测信号被路由至系统事件控制器的故障管理部分,同时还被路由至GPIO pin_safe_state 机制。

低延迟Sinc滤波器超量程检测

SINC滤波器单元为每个输入通道提供一个搭载可编程正、 负限幅检测器的低延迟辅助滤波器。这些滤波器可以用于 监控隔离ADC位流中的超量程或欠量程条件,对于10 MHz 的位流,滤波器组延迟低至0.7 μs。辅助SINC滤波器事件可 以用来中断内核,借助触发路由单元(TRU)直接在硬件中 触发其他事件,或者指示系统故障的故障管理单元。

升/降计数不匹配检测

GP计数器可以监控外部信号对,如请求/授权选通等。如果边沿计数不匹配超过预期范围,升/降计数器可以将此信息告知处理器或SEC。

故障管理

故障管理单元是系统事件控制器(SEC)的一部分。多数系统事件都可以定义为故障。如果如此定义,SEC将把事件转送到其故障管理单元,它可能会自动复位整个器件以重新启动,或者仅切换SYS_FAULT输出引脚以告知片外硬件。此外,故障管理单元可以通过键控序列延迟所采取的操作,为内核提供最后一个机会来解决危机,防止采取故障操作。

处理器外设

ADSP-CM41xF处理器包含丰富的外设集,用来将外部系统与处理器相连,提供实时检测(ADC、GPIO、CNT)、控制(定时器、LBA、MATH、MBOX)、执行(PWM、GPIO)以及与外部器件的通信(CAN、SPI、SPORT、UART和TWI)。这些外设通过多条并行高带宽总线连接内核,提供灵活的系统配置和出色的整体系统性能(参见第1页的框图)。

处理器基础设施含有高速串行和并行端口、用于灵活管理 片内外设或外部来源中断事件的中断控制器,以及根据不 同应用情况调整处理器和系统的性能与功耗特性的电源管 理控制功能。

定时器

处理器包括多个定时器, 以下部分将说明这些定时器。

通用定时器

ADSP-CM41xF处理器提供两组8个通用定时器,每组主要与每一个处理器内核相连。每个定时器具有外部引脚,可以将其配置为脉宽调制器(PWM)、定时器输出、定时器的时钟输入或用于测量脉宽和外部事件周期的机制。这些定时器可以与TM0_ACLKx引脚上的外部时钟输入、TM0_CLK输入引脚上的外部信号或内部SCLK同步。

定时器单元可以与UART和CAN控制器一起使用,测量数据流的脉冲宽度,为相应的串行通道提供软件自动波特率检测功能。

该定时器可以产生处理器内核中断,提供用于与系统时钟或外部信号同步的周期性事件。定时器事件也可以通过TRU触发其他外设(例如产生故障信号)。

脉宽调制器单元(PWM)

脉冲宽度调制器(PWM)单元提供分辨率为一个系统时钟周期(SCLK)的占空比和相位控制能力。处理器提供24个PWM输出,组成三个PWM单元,每一个单元具有4个PWM输出对。

增强精度PWM (HPPWM)模块将其分辨率提高了几位,从 而增强了各PWM单元的性能,结果导致更高的精度水平。 其他特性包括:

- · 以中心为基准的16位PWM发生单元
- 可编程PWM脉冲宽度
- 单倍/双倍更新模式
- 可编程死区时间和开关频率
- 二进制补码实现方案支持平滑过渡到全开和全关状态
- 专用异步PWM关断信号

各PWM模块集成了一个灵活且可编程的三相PWM波形发生器,可用来产生所需的开关信号,以驱动用于交流感应电机(ACIM)或永磁同步电机(PMSM)控制的三相电压源逆变器。此外,PWM模块具有特殊功能,可大幅简化用于控制电子换向电机(ECM)或无刷直流电机(BDCM)所需PWM开关信号的产生。利用软件可以实现开关磁阻电机(SRM)的特殊模式。

8个PWM输出信号(每个PWM单元一个)包括4个高端驱动信号和4个低端驱动信号。产生的PWM信号极性可通过软件设置,从而产生有源HI或有源LO PWM图案。

多种PWM断路(TRIP)机制中的任意一种都可立即关断PWM单元。同步软件断路寄存器可同时关断任意PWM输出组合。同步TRU触发机制支持任意片上TRU主机以可编程序列方式关断所选PWM输出,以支持多级逆变器拓扑。可将3个异步通用PWM_TRIP输入(低电平有效)路由至3个PWM模块的任意组合,并立即导致PWM关断任意选中的PWM输出。类似地,3个FOCP模拟比较器可以连接任意PWM_TRIP输入组合。

最后,使用GPIO引脚安全状态机制——包括时钟或电压监控单元、振荡器看门狗和振荡器比较器单元的故障检测——一组内部异步监控器同样可以导致PWM输出关断。

去抖单元

所选GPIO信号和来自AFE的异步内部芯片信号连接可编程 去抖单元的独立通道。这样可以消除外部硬件,并可对关 键信号的高频毛刺干扰进行过滤。连接去抖通道的信号包 括:三个PWM_TRIP信号、FOCP比较器检测信号以及 AFE_OK状态信号。

串行端口(SPORT)

利用同步串行端口,处理器可以低成本地连接到各种数字和混合信号外设,如ADI公司的音频编解码器、ADC和DAC。这些串行端口由两条数据线、一条时钟线和一条帧同步线组成。数据线可以编程为发送或接收数据,各数据线有一个专用DMA通道。

串行端口数据可以通过专用DMA通道自动写入和读取片内存储器/外部存储器。对于全双工操作,可以采用两个半SPORT与时钟和帧同步信号一同使用;这些信号通过SPMUX模块在内部共享。某些工作模式下,SPORT支持栅极时钟。

串行端口有六种工作模式:

- 标准DSP串行模式
- 多通道(TDM)模式
- I²S模式
- · 包装I2S模式
- 左对齐模式
- 右对齐模式

通用计数器(CNT)

该32位计数器可以在通用升/降计数模式下工作,检测通常由工业驱动器或手动拇指滚轮发送的2位正交或二进制码。 计数方向由电平敏感型输入引脚或两个边沿检测器控制。

第三个计数器可以提供灵活的零标记支持,或者也可以用 于输入拇指滚轮的按钮信号。所有三个引脚都具有可编程 去抖电路。

通用计数器还支持在正交编码模式下,以可编程M/N频率 方式将CNT_CUD和CNT_CDG引脚缩放到输出引脚上。

转送到各通用定时器的内部信号可以使能这些定时器来测量计数事件之间的时间间隔。边界寄存器支持自动调零操作,或者在超过可编程的计数值时通过中断发出简单的系统警告。

串行外设接口(SPI)端口

提供两个SPI兼容端口,每一个端口都主要关联一个处理器, 允许处理器与多个SPI兼容器件通信。 在最简单的模式中,SPI接口使用三个引脚传输数据:2个数据引脚(主机输出-从机输入和主机输入-从机输出,即SPI_MOSI和SPI_MISO)和1个时钟引脚(即SPI_CLK)。其它SPI器件利用一个SPI片选输入引脚(SPI_SS)选择处理器,处理器利用三个SPI片选输出引脚(SPI_SELn)选择其它SPI器件。SPI选择引脚是重新配置的通用I/O引脚。利用这些引脚,SPI提供一个全双工、同步串行接口,支持主机模式、从机模式和多主机环境。

在一个多主机或多从机SPI系统中,MOSI和MISO数据输出引脚可配置为开漏输出(使用ODM位),可防止冲突,以及可能对引脚驱动器造成的损坏。选择此选项时,MOSI和MISO引脚各需要一个外部上拉电阻。

若ODM置位且SPI配置为主机时,则当MOSI上的驱动数据输出为逻辑高电平时,MOSI引脚为三态。当驱动数据为逻辑低电平时,MOSI引脚为非三态。类似地,若ODM置位且SPI配置为从机时,则当MISO上的驱动数据输出为逻辑高电平时,MISO引脚为三态。

SPI端口的波特率和时钟相位/极性是可编程的,而且它集成了DMA通道,支持发送和接收数据流。

通用异步接收器/发送器端口(UART)

ADSP-CM41xF处理器提供五个全双工通用异步接收器/发送器(UART)端口,四个主要与M4关联,一个主要与M0关联,完全兼容PC标准UART。每个UART端口提供一个简化的UART接口用于连接其他外设或主机,支持全双工、DMA、异步串行数据传输。UART端口支持5到8个数据位,不支持奇偶校验。在多分支总线(MDB)系统中,可以传输一个额外的地址位,以便仅中断寻址的节点。帧由一个、一个半、两个或两个半停止位终止。

UART端口通过允许发送(CTS)输入和请求发送(RTS)输出支持自动硬件流程控制,并提供可编程的置位FIFO级。

为了帮助支持本地互连网络(LIN)协议,可以使用一个特殊命令让发送器将一个位长可编程的中断命令排队输入发送缓冲器。同样,停止位的数量可以由可编程的帧间空间扩展。

UART还支持红外数据协会(IrDA®)串行红外物理层链路规范(SIR)协议。

TWI控制器接口(TWI)

处理器包括一个双线接口(TWI)模块,用于在多个器件之间进行简单的控制数据交换。

TWI模块兼容广泛使用的I²C总线标准。TWI模块能够同时以主机和从机工作,支持7位寻址和多媒体数据仲裁。TWI接口利用两个引脚传输时钟(TWI_SCL)和数据(TWI_SDA),支持最高速度为400 kb/s的协议。TWI接口引脚兼容5 V逻辑电平。

此外,TWI模块完全兼容串行相机控制总线(SCCB)功能,可轻松控制各种CMOS相机传感器。

控制器区域网络(CAN)

ADSP-CM41xF处理器具有两个CAN控制器,一个主要与M4有关,另一个主要与M0有关。每一个CAN控制器都部署了CAN 2.0B(有源)协议。此协议是异步通信协议,用于工业和汽车控制系统。CAN协议能够可靠地通过网络通信,非常适合控制应用,这是因为该协议具有CRC校验、消息错误跟踪和故障节点限制等机制。

CAN控制器提供如下特性:

- 32个邮箱(8个仅用于接收,8个仅用于发射,16个可配置为接收或发射)
- 每个邮箱具有专用接受屏蔽
- 对前两个字节的补充数据滤波
- 支持标准(11位)和扩展(29位)识别符(ID)消息格式
- 支持远程帧
- 支持有源或无源网络
- 中断,包括: TX完成、RX完成、错误和全局

不需要额外晶振来提供CAN时钟,因为CAN时钟是通过可 编程分频器从系统时钟获得。

逻辑模块阵列(LBA)

逻辑模块阵列包含多个逻辑模块,可编程执行各种逻辑或算术功能。可以在查找表(LUT)模式或乘法项模式下定义逻辑或算术功能。每一个逻辑模块能够产生一个输出,该输出是多达8路或16路输入的函数,具体取决于所选模式。确切的函数通过编程8个32位函数寄存器定义,它们映射至处理器寄存器空间。总共有8个独立逻辑模块,它们组成逻辑模块阵列。LBA有如下特性:

- 各输出可配置为LUT或PTA模式
- LUT(查找表)模式允许任意8路输入组合逻辑函数
- PTA(乘法项阵列)模式支持8个乘法项,最多16路输入
- 通常可扩展至8个独立输出

- 系统输入可连接系统专用信号(比如定时器输出、 TRU从机)
- 系统输出可连接系统专用信号(比如TRU主机、内核中断)

数学单元

数学功能单元是一个加速器,通过单个MMR接口执行一般超越函数的高度精确的单精度浮点计算。这些函数包括: 三角函数、反三角函数、双曲线函数、指数函数、对数函数、平方根函数和互反函数。

数学单元支持矩形和极坐标函数的单操作数和双操作数转换。函数的精度在IEEE-754单精度格式的23.50位误差内。 该紧密耦合加速器的大部分操作可在每个函数的设定内核 时钟周期数内完成,相比那些Cortex-M4软件库提供的更 具有竞争力。

邮箱(MBOX)

MBOX(邮箱)模块是共享系统资源,用来在Cortex-M4和Cortex-M0处理器域之间建立通信。MBOX模块有两个访问端口。每个访问端口均连接一个系统主机模块。MBOX存储器大小为4 KB。为了协助部署内部处理器令牌,MBOX存储器支持M4端口的原生独占式存储器操作,并可仿真执行来自M0的独占式操作。MBOX存储器还支持M4位绑定操作。MBOX包含解码逻辑,可以在两个处理器之间切换。访问端口在同一个时钟域内。

在ADSP-CM41xF处理器中, MBOX的目标用途如下:

- PORT1连接Cortex-M4
- PORT0连接Cortex-M0

有两个寄存器模块。PORT1寄存器模块包含:

- PORT1、自动刷新逻辑和ECC测试逻辑的控制寄存器
- PORT1和自动刷新逻辑的状态寄存器

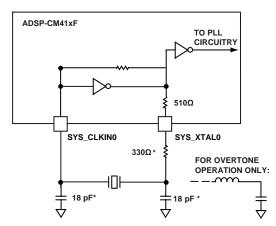
PORT0寄存器模块包含:

- PORT0控制字段
- PORT0状态寄存器

每一个端口只能访问自己的寄存器模块。

时钟和电源管理

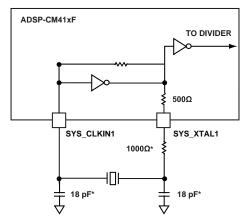
处理器提供三种工作模式,各种模式具有不同的性能/功耗特征。控制各处理器外设的时钟也可以降低功耗。表3总结了各种模式的电源设置。


表3. 电源设置

模式	CGU PLL	CGU PLL 旁路	f _{CCLK}	f _{SCLK}	内核 电源
全开	使能	否	使能	使能	开
有效	使能	是	使能	使能	开
	禁用	是	使能	使能	开
深度休眠	禁用	不适用	禁用	禁用	开

¹ NA = 不适用

晶振(SYS_XTALO/1)


处理器的时钟可以来自外部晶振(图16)、正弦波输入或源于外部时钟振荡器的缓冲整形时钟。如果使用外部时钟,它应为TTL兼容信号,而且在正常工作期间不得暂停、改变或以低于额定频率的频率工作。 此信号连接到处理器的 SYS_CLKIN0引脚。使用外部时钟时,SYS_XTAL0引脚保持断开。此外,由于处理器含有片内振荡器电路,因此也可以使用外部晶振。

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18pF SHOULD BE TREATED AS A MAXIMUM, AND THE SUGGESTED RESISTOR VALUE SHOULD BE REDUCED TO 0 Ω .

图16. CLKIN0外部晶振连接

出于功能安全性目的,可将辅助时钟输入(图17)连接至 SYS_CLKIN1和SYS_XTAL1。其频率可用来监控OCU单元的 主SYS_CLKIN0频率。如果未使用,则必须将SYS_CLKIN1 接地,并将SYS_XTAL1保持在未连接状态。

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. FOR FREQUENCIES ABOVE 22 MHz, THE SUGGESTED RESISTOR VALUE SHOULD BE REDUCED (~450 Ω).

图17. CLKIN1外部晶振连接

欲以基频工作,请为每一个连接的晶振使用图16所示的电路。一个并行谐振、基频、微处理器级晶振连接在SYS_CLKIN和XTAL引脚上。SYS_CLKIN引脚与XTAL引脚之间的片内电阻在500 kΩ范围内。通常情况下,建议不要使用其它并联电阻。

图16所示的两个电容和串联电阻用于精调正弦频率输入的相位和幅度。图16所示的电容和电阻值仅为典型值。电容值取决于晶振制造商的负载电容建议和PCB物理布局。电阻值取决于晶振制造商规定的驱动电平。用户应在整个温度范围内细致考察多个器件,验证所用的元件值是否合适。

针对25 MHz以上的频率,可以使用三次谐波晶体振荡器。此时需要修改图16所示电路,增加一个调谐电感电路,确保晶振仅在第三泛音工作。第三泛音工作的设计程序详见应用笔记(EE-168): "三次谐波晶体振荡器用于ADSP-218x DSP"(www.analog.com/ee-168)。

振荡器看门狗

提供了一个可编程振荡器看门狗单元,以便对外部晶振的 正确启动和谐波模式进行验证。允许用户指定预期振荡频 率,并启用对非振荡和振荡错误故障的检测。这些事件可 以路由至SYS_FAULT输出引脚和/或使器件复位。

时钟产生(CGU)

时钟发生单元(CGU)产生所有片内时钟和同步信号。乘法系数写入PLL以定义PLLCLK频率。

可编程值将PLLCLK频率分频,产生内核时钟(CCLK)、系统时钟(SCLK)和输出时钟(OCLK),如第61页的图19所示。

写入CGU控制寄存器不会立即影响PLL的行为。寄存器首 先写入新值,然后PLL逻辑执行变更,以便从当前状态平 稳过渡到新状态。

VDD_EXT引脚通电时, SYS_CLKIN开始振荡。所有电压源都在额定范围内(参见第60页的工作条件), 并且SYS_CLKIN振荡稳定后,便可以施加SYS_HWRST的上升沿。

时钟输出/外部时钟

SYS_CLKOUT输出引脚具有可编程选项,可以输出片内时钟的分频版本。SYS_CLKOUT引脚可编程驱动时钟输入的缓冲版本,或者驱动ADSP-CM41x系统中的任意一组可用时钟。默认情况下,SYS_CLKOUT驱动至低电平。时钟产生故障(例如PLL未锁定)可能会触发硬件复位。

SYS_CLKOUT可以用于输出处理器上使用的几种不同时钟中的一种。表4所示的时钟可以从SYS_CLKOUT输出。

表4. SYS_CLKOUT源和分频器选项

以				
时钟源	分频器			
GND	逻辑低电平			
CLKBUF0	缓冲SYS_CLKIN0			
CLKBUF1	缓冲SYS_CLKIN1			
CCLK0	M4控制器时钟,4分频			
SCLK0	M0监控器时钟,2分频			
SYSCLK	系统时钟,2分频			
DCLK	CGU DCLK输出用作AFE FOCP时钟			
	生成,位于FOCP_DIV分频器之前			
FOCP_CLK	AFE FOCP时钟,位于FOCP_DIV分			
	频器之后			
OUTCLK	可编程			
MORST	缓冲M0监控器复位			
SYSRST	缓冲系统从RCU复位			

电源管理

如第8页的表5和图5所示,处理器支持三个不同的电源域,即VDD_INT、VDD_EXT和VDD_ANA。通过将处理器的内部逻辑与其他I/O隔离并划入其自己的电源域,处理器便可以利用动态电源管理,而不会影响其他I/O器件。所有电源域都必须按照处理器"工作条件"中的相应技术规格表来通电,即使不使用某一特性/外设。

处理器的动态电源管理功能可以动态控制处理器的内核时钟频率(\mathbf{f}_{CLK})。

表5. 电源域

电源域	引脚
所有内部逻辑	V_{DD_INT}
数字I/O	V_{DD_EXT}
模拟	V_{DD_ANA}

处理器的功耗在很大程度上与其时钟频率和工作电压的平方成比例。例如,工作频率降低25%,动态功耗也会降低25%。有关电源引脚的更多信息,请参见第60页"工作条件"部分。

全开工作模式--最高性能

在全开模式下,PLL使能且未被旁路,能够以最高频率工作。这是可以实现最高性能的执行状态。处理器内核和所有使能的外设以全速工作。

有关PLL控制的更多信息,请参见《搭载ARM Cortex-M4/M0的ADSP-CM41x混合信号控制处理器硬件参考手册》的"动态电源管理"一章。

深度睡眠工作模式—最大动态省电

深度睡眠模式通过禁用处理器内核的时钟和所有同步外设 的时钟来最大程度地降低动态功耗。异步外设仍然可以运 行,但不能访问内部资源或外部存储器。

VDD INT电压调节

输入ADSP-CM41xF处理器的内部电压VDD_INT可通过片内稳压器产生,也可通过外部稳压器产生。

VDD_INT电源可以通过外部I/O电源VDD_EXT产生。图18显示可正常工作的电源管理系统所需的外部元件。有关元件选择的更多信息,请参阅应用笔记(EE-TBD)"ADSP-CM41x电源晶体管选型指南"(www.analog.com/ee-TBD)。

可旁路内部稳压器,并使用外部调节器提供VDD_INT。 使用外部调节器时,VREG_BASE必须接地,以便最大程度 降低功耗。

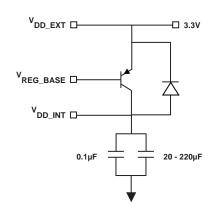


图18. 内部稳压器电路

复位控制单元(RCU)

复位是整个处理器或内核的初始状态,并且是硬件或软件触发事件的结果。在此状态下,所有控制寄存器都设为默认值,功能单元空闲。要退出某一内核复位,此内核必须准备就绪以执行引导。

复位控制单元(RCU)控制所有功能单元如何进入和退出复位状态。功能要求和时钟约束条件的不同决定了复位信号的产生方式。程序必须保证任何复位功能都不会将系统置于不明状态或引起资源停转。

从系统角度来看,复位由复位目标和复位源定义,如下 所示。

目标定义:

- 硬件复位——所有功能单元都复位到默认状态,无一 例外。历史记录丢失。
- 系统复位——除RCU以外的所有功能单元都复位到默 认状态。

来源定义:

- 硬件复位——SYS_HWRST输入信号置位有效(下拉)。
- 系统复位——可以由软件(写入RCU_CTL寄存器)或另一功能单元触发,例如动态电源管理(DPM)单元、任一系统事件控制器(SEC)、触发路由单元(TRU)或仿真器输入。
- 触发请求(外设)。

系统调试

处理器包括多种用于简化系统调试的特性,下面说明这些 特性。

JTAG调试和串行线调试端口(SWJ-DP)

SWJ-DP是JTAG-DP与SW-DP的结合,通过它可以将串行线调试(SWD)或JTAG探针连接到目标。SWD信号与JTAG共

用相同的引脚。有一种自动检测机制,可在JTAG-DP和SW-DP之间切换,具体取决于仿真器Pod传输至JTAG引脚时使用的是哪个特殊数据序列。当收到正常JTAG序列时,SWJ-DP表现为一个JTAG目标,如果发送的是SW_DP序列,则表现为一个单线目标。

嵌入式跟踪宏单元(ETM)和仪表跟踪宏单元(ITM)

ADSP-CM41xF处理器支持嵌入式跟踪宏单元(ETM)和仪表跟踪宏单元(ITM)。这两种宏单元都提供了一个可选调试器件,可以记录CPU内核中的实时指令和数据流。这些数据通过具有跟踪功能的特殊调试器Pod读取。ITM是一种单数据引脚特性,ETM则是一种4数据引脚特性。

系统观察点单元(SWU)

系统观察点单元(SWU)是单一模块,连接到单条系统总线以监控处理。进入各系统从机的总线都连有一个SWU。SWU为所有系统总线地址通道信号提供端口。每个SWU包含4组匹配的寄存器和相关硬件。这四个SWU匹配组独立工作,但共享事件(中断和触发)输出。

闪存补丁和断点单元(FPB)

FPB部署了硬件断点,并通过将特定代码或文字地址重定向至 R/W系统存储器位置而实现块代码和数据。ADSP-CM41xF处理器部署了完整的FPB,具有8个比较器(6个代码/断点和2个文字数据)。

开发工具

与ADSP-CM41xF处理器配套的是一组高度完善、易于使用的嵌入式应用开发工具。有关更多信息,请访问ADI公司网站。

其它信息

下列描述ADSP-CM41xF处理器(及其相关处理器)的文件可以通过ADI公司办事处订购,或者查看ADI公司网站上的电子版本:

- 搭载ARM Cortex-M4/M0的ADSP-CM41x混合信号控制 处理器硬件参考手册
- 搭载ARM Cortex-M4/M0的ADSP-CM41x混合信号控制 处理器异常表

本数据手册描述ADSP-CM41xF处理器的ARM Cortex-M4和ARM Cortex-M0内核和存储器架构,但不提供ARM处理器的详细编程信息。有关ARM处理器编程的更多信息,请访问ARM信息中心网页:

与编程ARM Cor-tex-M4处理器相关的文档有:

- Cortex®-M0器件通用用户指南
- CoreSight™ETMTM-M0技术参考手册
- Cortex®-M0技术参考手册
- Cortex®-M4器件通用用户指南
- CoreSight[™]ETM[™]-M4技术参考手册
- Cortex®M4技术参考手册

相关信号链

信号链指一系列信号调理电子器件,它们相继接收输入(通过采样实时现象获得的数据或存储的数据),信号链一部分的输出作为下一部分的输入。信号处理应用常常使用信号链来采集和处理数据,或者根据对实时现象的分析应用系统控制。

ADI公司提供能够完美配合工作的信号处理器件来简化信号处理系统的开发。ADI公司网站www.analog.com提供了一款工具,用于显示特定应用与相关器件之间的关系。

参考电路Circuits from the Lab[®]网站(http:\\www.analog.com\-circuits)的应用信号链页面提供如下内容:

- 各种电路类型和应用的信号链电路图
- 各信号链中的器件均有选型指南和应用信息链接
- 采用最佳设计技术的参考设计

安全特性免责声明

据我们所知,当按照数据手册和硬件参考手册的规定使用时,安全特性能够提供安全的代码和数据保护实现方法。然而,ADI公司不保证该技术绝对安全。因此,ADI公司特此声明,ADI公司并未明示或默示保证安保特性无法被破坏、削弱或以其它方式绕过,对于数据、信息、财产、知识产权的损失、毁坏或泄漏,ADI公司概不负责。

ADSP-CM41xF详细信号描述

该表提供各引脚的详细说明。

表6. ADSP-CM41xF详细信号描述

表6. ADSP-CM41xF详约 信号名称	方向	描述
ADC_VIN_A[n]	カロ 输入输出	ADC通道n单端模拟输入
ADC_VIN_B[n]	十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	ADC通道n单端模拟输入
ADC_VIN_C[n]	十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	ADC通道n单端模拟输入
ADC_VIN_D[n]	十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	ADC通道n单端模拟输入
BYP_A2	十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	ADC通道 草圳侯]城桐八 用于ADC的片内模拟电源调节旁路滤波器节点
BYP_A[n]	十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	用于ADC的片内模拟电源调节旁路滤波器节点
BYP_D0	输入输出	用于ADC的片内模拟电源调节旁路滤波器节点
CAN_RX	输入	接收。通常是外部CAN收发器的RX输出。
CAN_TX	输出	发送。通常是外部CAN收发器的TX输入。
CNT_DG	输入	递减计数和门控 。取决于工作模式,该输入用作递减计数信号或栅极信号。 递减计数:该输入导致GP计数器递减。 栅极:停止GP计数器递增或递减。
CNT_OUTA	输入输出	输出分频器A
CNT_OUTB	输入输出	输出分频器B
CNT_UD	输入	递增计数和方向。 取决于工作模式,该输入用作递增计数信号或方向信号。 递增计数:该输入导致GP计数器递增。 方向:选择GP计数器递增或递减。
CNT_ZM	输入	零计数标记。连接零标记的输入将输出旋转器件信号,或检测按钮动作。
COMP_OUT_A	输入输出	快速过流保护比较器A输出
COMP_OUT_B	输入输出	快速过流保护比较器B输出
COMP_OUT_C	输入输出	快速过流保护比较器C输出
CPTMR_IN[n]	输入	输入
DAC0_VOUT	输入输出	模拟电压输出n
GND_ANA4_COMP	输入输出	比较器模拟地
GND_ANA5_DAC	输入输出	DAC模拟地
GND_ANA[n]	输入输出	VDD_ANA[n]模拟地返回
GND_REFCAP0	输入输出	REF_INOUT0模拟地返回
GND_REFCAP1	输入输出	VREF旁路电容
GND_VREF2	输入输出	模拟VREF接地
JTG_TCK	输入	JTAG时钟。 JTAG测试访问端口时钟。
JTG_TDI	输入	JTAG串行数据输入。JTAG测试访问端口数据输入。
JTG_TDO	输出	JTAG串行数据输出。JTAG测试访问端口数据输出。
JTG_TMS	输入输出	JTAG模式选择。JTAG测试访问端口模式选择。
JTG_TRST	输入	JTAG复位。JTAG测试访问端口复位。
LBA_PIN[n]	输入输出	LBA数据输入或逻辑输出
PWM_AH	输出	通道A高端。高端驱动信号。
PWM_AL	输出	通道A低端。低端驱动信号。
PWM_BH	输出	通道B高端。 高端驱动信号。
PWM_BL	输出	通道B低端。 低端驱动信号。
PWM_CH	输出	通道C高端。 高端驱动信号。
PWM_CL	输出	通道C低端。 低端驱动信号。

表6. ADSP-CM41xF详细信号描述(续)

信号名称	方向	描述
PWM_DH	输出	通道D高端。 高端驱动信号。
PWM_DL	输出	通道D低端。 低端驱动信号。
PWM_SYNC	输入输出	同步信号。此输入用于外部产生的同步信号。如果同步信号由内部产生,则无需连接。
PWM_TRIPA	输入	多路复用PWM断路A中断
PWM_TRIPB	输入	多路复用PWM断路B中断
PWM_TRIPC	输入	多路复用PWM断路C中断
P_[nn]	输入输出	位置n。通用输入/输出。有关编程信息,参见硬件参考手册中的通用端口章节。
REFCAP0	输入输出	带隙发生器滤波器节点输出。
REFCAP1	输入输出	带隙发生器滤波器节点输出。
REF_BUFOUT[n]	输入输出	基准电压源缓冲输出
SINC_CLK0	输入输出	时钟0
SINC_D0	输入输出	数据0
SINC_D1	输入输出	数据1
SINC_D2	输入输出	数据2
SINC_D3	输入输出	数据3
SMC_ABE[n]	输出	字节使能n。指示访问存储器的低位字节或是高位字节。针对16位存储器执行高位字节异步写入时,SMC_ABE1b=0且SMC_ABE0b=1。针对16位存储器执行低位字节异步写入时,SMC_ABE1b=1且SMC_ABE0b=0。
SMC_AMS[n]	输出	存储器选择n。通常连接存储器件的片选信号。
SMC_AOE	输出	输出使能。在读访问的建立周期起始时置位。
SMC_ARDY	输入	异步就绪。存储器件使用的流量控制信号,用来向SMC指示何时进行下一步处理。
SMC_ARE	输出	读取使能。 读访问起始时置位。
SMC_AWE	输出	写入使能 。写访问周期期间置位。
SMC_A[nn]	输出	地址n。地址总线。
SMC_D[nn]	输入输出	数据n。双向数据总线。
SPI_CLK	输入输出	时钟。从机模式下为输入,主机模式下为输出。
SPI_D2	输入输出	数据2。用于四通道模式下的串行数据传输。ODM模式使能时为开漏。
SPI_D3	输入输出	数据3。用于四通道模式下的串行数据传输。ODM模式使能时为开漏。
SPI_MISO	输入输出	主机输入,从机输出。 用于传输串行数据。工作方向与双通道和四通道模式下的SPI_MOSI相同。ODM模式使能时为开漏。
SPI_MOSI	输入输出	主机输出,从机输入。 用于传输串行数据。工作方向与双通道和四通道模式下的SPI_MISO相同。ODM模式使能时为开漏。
SPI_RDY	输入输出	就绪。可选流信号。从机模式下为输出,主机模式下为输入。
SPI_SEL[n]	输出	从机选择输出n。用于主机模式,使能所需从机。
SPI_SS	输入	从机选择输入。 从机模式: 用作从机选择输入。主机模式: 可选,用作多主机时的SPI错误检测输入。
SPT_ACLK	输入输出	通道A时钟。 数据和帧同步相对于此时钟驱动/采样。该信号可以由内部或外部产生。
SPT_AD0	输入输出	通道A数据0。 主要双向数据I/O。该信号可配置为输出以发送串行数据,或者配置为输入以接收串行数据。
SPT_AD1	输入输出	通道A数据1。 辅助双向数据I/O。该信号可配置为输出以发送串行数据,或者配置为输入以接收串行数据。
SPT_AFS	输入输出	通道A帧同步。 帧同步脉冲启动串行数据移位。该信号可以由内部或外部产生。

表6. ADSP-CM41xF详细信号描述(续)

信号名称	方向	描述
SPT_ATDV	输出	通道A发送数据有效。 该信号为可选,且仅当SPORT配置为多通道发送模式时激活。它在已使能的时隙间置位。
SPT_BCLK	输入输出	通道B时钟。数据和帧同步相对于此时钟驱动/采样。该信号可以由内部或外部产生。
SPT_BD0	输入输出	通道B数据0 。主要双向数据I/O。该信号可配置为输出以发送串行数据,或者配置为输入以接收串行数据。
SPT_BD1	输入输出	通道B数据1。 辅助双向数据I/O。该信号可配置为输出以发送串行数据,或者配置为输入以接收串行数据。
SPT_BFS	输入输出	通道B帧同步。帧同步脉冲启动串行数据移位。该信号可以由内部或外部产生。
SPT_BTDV	输出	通道B发送数据有效。 该信号为可选,且仅当SPORT配置为多通道发送模式时激活。它在已使能的时隙间置位。
SYS_BMODE0	输入	引导模式控制n。选择处理器的引导模式。
SYS_CLKIN0	输入	时钟/晶振输入
SYS_CLKIN1	输入	时钟/晶振输入
SYS_CLKOUT	输出	处理器时钟输出。 输出内部时钟。可对时钟进行分频。详情参见硬件参考手册中的CGU部分。
SYS_DSWAKE[n]	输入输出	深度休眠唤醒n
SYS_FAULT	输入输出	高电平有效故障输出。 指示内部故障或检测外部故障,取决于工作模式。
SYS_HWRST	输入	处理器硬件复位控制。 置位时,复位器件。
SYS_NMI	输入	不可屏蔽的中断。 更多详情请参见硬件和编程参考手册。
SYS_RESOUT	输出	复位输出。 表示器件处于复位状态。
SYS_XTAL0	输出	晶振输出
SYS_XTAL1	输出	晶振输出
TM_ACI[n]	输入	备选捕捉输入n。 在WIDCAP、WATCHDOG和PININT模式下提供额外输入。
TM_ACLK[n]	输入	备选时钟n。 提供额外的时基,用于独立定时器。
TM_CLK	输入	时钟。提供额外的全局时基,用于所有通用定时器。
TM_TMR[n]	输入输出	定时器n。各定时器的主输入/输出信号。
TRACE_CLK	输出	跟踪时钟。 时钟输出。
TRACE_D[nn]	输出	跟踪数据n 。单向数据总线。
TWI_SCL	输入输出	串行时钟。 主机时为时钟输出,从机时为时钟输入。
TWI_SDA	输入输出	串行数据。 接收或发送数据。
UART_CTS	输入	清除发送。 流控制信号。
UART_RTS	输出	发送请求位。 流控制信号。
UART_RX	输入	接收。接收输入。通常连接至满足通信器件电气要求的收发器。
UART_TX	输出	发送。发送输出。通常连接至满足通信器件电气要求的收发器。
VDD_ANA[n]	输入输出	模拟电源电压
VDD_COMP	输入输出	过流比较器电源
VDD_EXT	输入输出	外部电压域

ADSP-CM412F/CM413F/CM416F/CM417F 176引脚LQFP信号描述

处理器引脚定义如表所示。该表中的列提供下列信息:

- 信号名称: 表中的"信号名称"列包含各引脚的信号 名称,以及每一个引脚的GPIO多路复用引脚功能(如 适用)。
- 描述: 表中的"描述"列提供信号的详细(描述性) 名称。
- 通用端口: 表中的"端口"列显示信号是否与其他信号多路复用至通用I/O端口引脚。
- 引脚名称: 表中的"引脚名称"列表示封装引脚(上电复位时)的名称,信号位于这些引脚上(单功能引脚)或多路复用(通用I/O引脚)。

信号名称	描述	端口	引脚名称
ADC_VIN_A0	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A0
ADC_VIN_A1	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A1
ADC_VIN_A2	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A2
ADC_VIN_A3	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A3
ADC_VIN_A4	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A4
ADC_VIN_A5	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A5
ADC_VIN_A6	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A6
ADC_VIN_A7	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A7
ADC_VIN_B0	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B0
ADC_VIN_B1	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B1
ADC_VIN_B2	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B2
ADC_VIN_B3	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B3
ADC_VIN_B4	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B4
ADC_VIN_B5	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B5
ADC_VIN_B6	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B6
ADC_VIN_B7	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B7
ADC_VIN_C0	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C0
ADC_VIN_C1	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C1
ADC_VIN_C2	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C2
ADC_VIN_C3	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C3
ADC_VIN_C4	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C4
ADC_VIN_C5	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C5
ADC_VIN_C6	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C6
ADC_VIN_C7	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C7
ADC_VIN_D0	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D0
ADC_VIN_D1	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D1
ADC_VIN_D2	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D2
ADC_VIN_D3	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D3
ADC_VIN_D4	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D4
ADC_VIN_D5	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D5
ADC_VIN_D6	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D6
BYP_A0	用于ADC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_A0
BYP_A1	用于ADC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_A1
BYP_D0	用于DAC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_D0
CAN0_RX	CAN0接收	Α	PA_06
CAN0_TX	CAN0发送	Α	PA_07

信号名称	描述	端口	引脚名称
CAN1_RX	CAN1接收	E	PE_12
CAN1_TX	CAN1发送	E	PE_13
CNT0_DG	CNTO递减计数和栅极	С	PC_13
CNT0_OUTA	CNTO输出分频器A	В	PB_08
CNT0_OUTB	CNTO输出分频器B	В	PB_10
CNT0_UD	CNT0递增计数和方向	В	PB_09
CNT0_ZM	CNT0零标记	c	PC_14
COMP_OUT_A	快速过流保护比较器A输出	未多路复用	COMP_OUT_A
COMP_OUT_B	快速过流保护比较器B输出	未多路复用	COMP_OUT_B
COMP_OUT_C	快速过流保护比较器C输出	未多路复用	COMP_OUT_C
CPTMR0_IN0	CPTMRO输入	E	PE_02
_ CPTMR0_IN1	CPTMRO输入	E	PE_04
CPTMR0_IN2	CPTMRO输入	F	PF_06
DAC0_VOUT	模拟电压输出n	未多路复用	DAC0_VOUT
GND_ANA0	VDD_ANA[n]模拟地返回	未多路复用	GND_ANA0
GND_ANA1	VDD_ANA[n]模拟地返回	未多路复用	GND_ANA1
GND_ANA2	VDD_ANA[n]模拟地返回	未多路复用	GND_ANA2
GND_ANA3	VDD_ANA[n]模拟地返回	未多路复用	GND_ANA3
GND_ANA4_COMP	AFE_GND_COMP_ANA4	未多路复用	GND_ANA4_COMF
GND_ANA5_DAC	AFE_GND_DAC_ANA5	未多路复用	GND_ANA5_DAC
GND_REFCAP0	REF_INOUTO模拟地返回	未多路复用	GND_REFCAP0
GND_REFCAP1	GND_REFCAP1	未多路复用	GND_REFCAP1
GND_VREF0	REF_BUFOUT[n]接地返回	未多路复用	GND_VREF0
GND_VREF1	REF_BUFOUT[n]接地返回	未多路复用	GND_VREF1
JTG_TCK	JTAG时钟	未多路复用	JTG_TCK/SWCLK
JTG_TDI	JTAG串行数据输入	未多路复用	JTG_TDI
JTG_TDO	JTAG串行数据输出	未多路复用	JTG_TDO/SWO
JTG_TMS	JTAG模式选择	未多路复用	JTG_TMS/SWDIO
JTG_TMS JTG_TRST	JTAG复位	未多路复用	JTG_TRST
		不多斑及用 F	PF_03
LBAO_PINO	LBAOLBA数据输入或逻辑输出	F	PF_04
LBAO_PIN1	LBAOLBA牧村林人工型相输出		
LBAO_PIN2	LBA0 LBA数据输入或逻辑输出	F r	PF_05
LBAO_PIN3	LBA0 LBA数据输入或逻辑输出		PF_06
LBAO_PIN4	LBAO LBA数据输入或逻辑输出	F	PF_07
LBAO_PIN5	LBAO LBA数据输入或逻辑输出	F	PF_08
LBA0_PIN6	LBAO LBA数据输入或逻辑输出	C	PC_02
LBA0_PIN7	LBAO LBA数据输入或逻辑输出	C	PC_04
PWM0_AH	PWM0通道A高端	В	PB_00
PWM0_AL	PWM0通道A低端	В	PB_01
PWM0_BH	PWM0通道B高端	В	PB_02
PWM0_BL	PWMO通道B低端	В	PB_03
PWM0_CH	PWMO通道C高端	В	PB_04
PWM0_CL	PWM0通道C低端	В	PB_05
PWM0_DH	PWM0通道D高端	В	PB_06
PWM0_DL	PWM0通道D低端	В	PB_07
PWM0_SYNC	PWM0 同步信号	D	PD_00

信号名称	描述	端口	引脚名称
PWM1_AH	PWM1通道A高端	В	PB_08
PWM1_AL	PWM1通道A低端	В	PB_09
PWM1_BH	PWM1通道B高端	В	PB_10
PWM1_BL	PWM1通道B低端	В	PB_11
PWM1_CH	PWM1通道C高端	В	PB_12
PWM1_CL	PWM1通道C低端	В	PB_13
PWM1_DH	PWM1通道D高端	В	PB_14
PWM1_DL	PWM1通道D低端	В	PB_15
PWM1_SYNC	PWM1 同步信号	E	PE_09
PWM2_AH	PWM2通道A高端	E	PE_00
PWM2_AL	PWM2通道A低端	Е	PE_01
PWM2_BH	PWM2通道B高端	Е	PE_02
PWM2_BL	PWM2通道B低端	Е	PE_03
PWM2_CH	PWM2通道C高端	Е	PE_04
PWM2_CL	PWM2通道C低端	E	PE_05
PWM2_DH	PWM2通道D高端	E	PE_06
PWM2_DL	PWM2通道D低端	Е	PE_07
PWM2_SYNC	PWM2 同步信号同步信号	Е	PE_08
PWM_TRIPA	多路复用PWM断路A信号	D	PD_01
PWM_TRIPB	多路复用PWM断路B信号	E	PE_10
PWM_TRIPC	多路复用PWM断路C信号	Е	PE_11
REFCAP0	带隙发生器滤波器节点输出。	未多路复用	REFCAP0
REFCAP1	带隙发生器滤波器节点输出。	未多路复用	REFCAP1
REF_BUFOUT0	基准电压源ADC0和DAC0	未多路复用	VREF0
REF_BUFOUT1	基准电压源ADC1和过流比较器DAC	未多路复用	VREF1
SINC0_CLK0	SINCO时钟0	С	PC_15
SINC0_D0	SINC0数据0	С	PC_05
SINC0_D1	SINC0数据1	С	PC_06
SINC0_D2	SINC0数据2	F	PF_00
SINC0_D3	SINC0数据3	F	PF_01
SMC0_A01	SMC0地址n	В	PB_13
SMC0_A02	SMC0地址n	В	PB_15
SMC0_A03	SMC0地址n	D	PD_00
SMC0_A04	SMC0地址n	D	PD_01
SMC0_A05	SMC0地址n	E	PE_14
SMC0_A06	SMC0地址n	F	PF_00
SMC0_A07	SMC0地址n	F	PF_01
SMC0_A08	SMC0地址n	F	PF_02
SMC0_A09	SMC0地址n	F	PF_03
SMC0_A10	SMC0地址n	E	PE_15
SMC0_A11	SMC0地址n	E	PE_06
SMC0_A12	SMC0地址n	E	PE_07
SMC0_A13	SMC0地址n	F	PF_04
SMC0_A14	SMC0地址n	E	PE_05
SMC0_A15	SMC0地址n	E	PE_03
SMC0_A16	SMC0地址n	Е	PE_11

信号名称	描述	端口	引脚名称
SMC0_ABE0	SMC0字节使能n	Е	PE_13
SMC0_ABE1	SMC0字节使能n	E	PE_12
SMC0_AMS0	SMC0存储器选择n	В	PB_04
SMC0_AMS1	SMC0存储器选择n	E	PE_01
SMC0_AMS2	SMC0存储器选择n	E	PE_02
SMC0_AMS3	SMC0存储器选择n	E	PE_08
SMC0_AOE	SMC0输出使能	В	PB_02
SMC0_ARDY	SMC0异步就绪	В	PB_00
SMC0_ARE	SMC0读取使能	В	PB_03
SMC0_AWE	SMC0写入使能	В	PB_01
SMC0_D00	SMC0数据n	В	PB_05
SMC0_D01	SMCO数据n	В	PB_06
SMC0_D02	SMC0数据n	В	PB_07
SMC0_D03	SMC0数据n	В	PB_08
SMC0_D04	SMC0数据n	В	PB_09
SMC0_D05	SMC0数据n	В	PB_10
SMC0_D06	SMC0数据n	В	PB_11
SMC0_D07	SMC0数据n	В	PB_12
SMC0_D08	SMC0数据n	С	PC_09
SMC0_D09	SMCO数据n	С	PC_10
SMC0_D10	SMC0数据n	С	PC_11
SMC0_D11	SMC0数据n	С	PC_12
SMC0_D12	SMC0数据n	С	PC_13
SMC0_D13	SMC0数据n	С	PC_14
SMC0_D14	SMC0数据n	С	PC_05
SMC0_D15	SMC0数据n	С	PC_06
SPIO_CLK	SPIO时钟	Α	PA_08
SPI0_D2	SPIO数据2	Α	PA_02
SPI0_D3	SPIO数据3	Α	PA_03
SPI0_MISO	SPIO主机输入、从机输出	Α	PA_10
SPI0_MOSI	SPIO主机输出、从机输入	Α	PA_09
SPI0_RDY	SPIO就绪	A	PA_01
SPI0_SEL1	SPIO从机选择输出n	Α	PA_11
SPI0_SEL2	SPIO从机选择输出n	Α	PA_00
SPI0_SEL3	SPIO从机选择输出n	Α	PA_01
SPI0_SEL4	SPIO从机选择输出n	Α	PA_06
SPI0_SEL5	SPIO从机选择输出n	Α	PA_07
SPI0_SEL6	SPIO从机选择输出n	Α	PA_02
SPI0_SEL7	SPIO从机选择输出n	Α	PA_03
SPI0_SS	SPIO从机选择输入	Α	PA_00
SPI1_CLK	SPI1时钟	С	PC_09
SPI1_D2	SPI1数据2	F	PF_06
SPI1_D3	SPI1数据3	F	PF_07
SPI1_MISO	SPI1主机输入、从机输出	С	PC_10
SPI1_MOSI	SPI1主机输出、从机输入	С	PC_11
SPI1_RDY	SPI1就绪	С	PC_14

信号名称	描述	端口	引脚名称
SPI1_SEL1	SPI1从机选择输出n	С	PC_12
SPI1_SEL2	SPI1从机选择输出n	C	PC_13
SPI1_SEL3	SPI1从机选择输出n	C	PC_14
SPI1_SEL4	SPI1从机选择输出n	F	PF_02
SPI1_SEL5	SPI1从机选择输出n	F	PF_05
SPI1_SEL6	SPI1从机选择输出n	F	PF_03
SPI1_SEL7	SPI1从机选择输出n	F	PF_08
SPI1_SS	SPI1从机选择输入	c	PC_12
SPT0_ACLK	SPORTO通道A时钟	C	PC_09
SPT0_AD0	SPORTO通道A数据0	В	PB_09
SPT0_AD1	SPORTO通道A数据1	C	PC_06
SPTO_AFS	SPORTO通道A帧同步	C	PC_11
SPT0_ATDV	SPORTO通道A发送数据有效	C	PC_15
SPTO_BCLK	SPORTO通道A及达数路有效 SPORTO通道B时钟	C	PC_13
SPT0_BCEK SPT0_BD0		C	PC_14
SPT0_BD0 SPT0_BD1	SPORT0通道B数据0 SPORT0通道B数据1	C	PC_14 PC_10
		C	
SPTO_BFS	SPORTO通道B帧同步		PC_13
SPT0_BTDV	SPORTO通道B发送数据有效	C	PC_05
SYS_BMODE0	引导模式控制n	未多路复用	SYS_BMODE0
SYS_CLKIN0	时钟/晶振输入	未多路复用	SYS_CLKIN0
SYS_CLKIN1	时钟/晶振输入	未多路复用	SYS_CLKIN1
SYS_CLKOUT	处理器时钟输出	未多路复用	SYS_CLKOUT
SYS_DSWAKE0	深度休眠唤醒n	C	PC_05
SYS_DSWAKE1	深度休眠唤醒n	D	PD_00
SYS_DSWAKE2	深度休眠唤醒n	F	PF_08
SYS_DSWAKE3	深度休眠唤醒n	A	PA_11
SYS_FAULT	故障输出	未多路复用	SYS_FAULT
SYS_HWRST	处理器硬件复位控制	未多路复用	SYS_HWRST
SYS_NMI	不可屏蔽的中断	未多路复用	SYS_NMI
SYS_RESOUT	复位输出	未多路复用	SYS_RESOUT
SYS_XTAL0	晶振输出	未多路复用	SYS_XTAL0
SYS_XTAL1	晶振输出	未多路复用	SYS_XTAL1
TM0_ACI0	TIMERO备选捕获输入n	A	PA_04
ΓM0_ACI1	TIMERO备选捕获输入n	A	PA_06
TM0_ACI2	TIMERO备选捕获输入n	A	PA_01
ΓM0_ACI3	TIMERO备选捕获输入n	A	PA_02
TM0_ACI4	TIMERO备选捕获输入n	A	PA_03
TM0_ACLK0	TIMERO备选时钟n	A	PA_09
TM0_ACLK1	TIMERO备选时钟n	A	PA_10
TM0_ACLK2	TIMERO备选时钟n	A	PA_07
TM0_ACLK3	TIMERO备选时钟n	A	PA_08
_ TM0_ACLK4	TIMERO备选时钟n	A	PA_05
TM0_CLK	TIMERO时钟	A	PA_00
TM0_TMR0	TIMERO定时器n	A	PA_12
TM0_TMR1	TIMERO定时器n	A	PA_13
гмэ_тмит ГМ1_ACI0	TIMER1备选捕获输入n	E	PE_12

信号名称	描述	端口	引脚名称
TM1_ACI2	TIMER1备选捕获输入n	С	PC_08
TM1_ACI4	TIMER1备选捕获输入n	C	PC_09
TM1_ACI5	TIMER1备选捕获输入n	E	PE_09
TM1_ACI6	TIMER1备选捕获输入n	F	PF_05
TM1_ACLK3	TIMER1备选时钟n	c	PC_15
TM1_ACLK4	TIMER1备选时钟n	С	PC_00
TM1_ACLK5	TIMER1备选时钟n	E	PE_08
TM1_CLK	TIMER1时钟	C	PC_06
TM1_TMR0	TIMER1定时器n	E	PE_14
TM1_TMR0	TIMER1定时器n	В	PB_14
TM1_TMR1	TIMER1定时器n	В	PB_15
		E	PE_15
TM1_TMR1	TIMER1定时器n		
TM1_TMR2	TIMER1定时器n	В	PB_13
TM1_TMR3	TIMER1定时器n	C	PC_10
TM1_TMR4	TIMER1定时器n	E	PE_04
TM1_TMR5	TIMER1定时器n	F _	PF_06
TM1_TMR6	TIMER1定时器n	E	PE_02
TM1_TMR7	TIMER1定时器n	C	PC_12
TRACEO_CLK	TRACE0跟踪时钟	C	PC_00
TRACEO_D00	TRACE0跟踪数据n	C	PC_03
TRACE0_D01	TRACEO跟踪数据n	C	PC_01
TRACE0_D02	TRACEO跟踪数据n	C	PC_04
TRACE0_D03	TRACEO跟踪数据n	C	PC_02
TWI0_SCL	TWI0串行时钟	未多路复用	TWI0_SCL
TWI0_SDA	TWI0串行数据	未多路复用	TWI0_SDA
UARTO_CTS	UART0允许发送	A	PA_03
UARTO_RTS	UARTO请求发送	A	PA_02
UARTO_RX	UART0接收	A	PA_04
UARTO_TX	UART0发送	A	PA_05
UART1_CTS	UART1允许发送	c	PC_05
UART1_RTS	UART1请求发送	c	PC_15
UART1_RX	UART1接收	E	PE_09
UART1_TX	UART1发送	E	PE_10
UART2_CTS	UART2允许发送	C	PC_06
UART2_RTS	UART2请求发送	В	PB_09
UART2_RX	UART2接收	C	PC_09
UART2_TX	UART2发送	C	PC_11
	UART3允许发送		PB_07
UART3_CTS		В	
UART3_RTS	UART3请求发送	E	PE_08
UART3_RX	UART3接收	C	PC_08
UART3_TX	UART3发送	C	PC_07
UART4_CTS	UART4允许发送	E _	PE_03
UART4_RTS	UART4请求发送	E	PE_01
UART4_RX	UART4接收	F	PF_05
UART4_TX	UART4发送	F	PF_04
VDD_ANA0	模拟电源电压	未多路复用	VDD_ANA0

表7. ADSP-CM412F/CM413F/CM416F/CM417F 176引脚LQFP信号描述(续)

信号名称	描述	端口	引脚名称
VDD_ANA1	模拟电源电压	未多路复用	VDD_ANA1
VDD_COMP	过流比较器电源	未多路复用	VDD_COMP
VDD_EXT	外部电压域	未多路复用	VDD_EXT

ADSP-CM412F/CM413F/CM416F/CM417F 176引脚LQFP GPIO多路复用

表8至表13列出了多路复用至176引脚LQFP封装上通用I/O引脚的引脚功能。

表8. 端口A信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PA_00	SPI0_SEL2	TM0_CLK			SPIO_SS
PA_01	SPI0_SEL3	SPI0_RDY			TM0_ACI2
PA_02	SPI0_D2	UARTO_RTS	SPIO_SEL6		TM0_ACI3
PA_03	SPI0_D3	UARTO_CTS	SPI0_SEL7		TM0_ACI4
PA_04	UARTO_RX				TM0_ACI0
PA_05	UARTO_TX				TM0_ACLK4
PA_06	CAN0_RX	SPI0_SEL4			TM0_ACI1
PA_07	CAN0_TX	SPI0_SEL5			TM0_ACLK2
PA_08	SPI0_CLK				TM0_ACLK3
PA_09	SPI0_MOSI				TM0_ACLK0
PA_10	SPI0_MISO				TM0_ACLK1
PA_11	SPI0_SEL1				SYS_DSWAKE3
PA_12	TM0_TMR0				
PA_13	TM0_TMR1				

表9. 端口B信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PB_00	PWM0_AH		SMC0_ARDY		
PB_01	PWM0_AL		SMC0_AWE		
PB_02	PWM0_BH		SMC0_AOE		
PB_03	PWM0_BL		SMC0_ARE		
PB_04	PWM0_CH		SMC0_AMS0		
PB_05	PWM0_CL		SMC0_D00		
PB_06	PWM0_DH		SMC0_D01		
PB_07	PWM0_DL	UART3_CTS	SMC0_D02		
PB_08	PWM1_AH	CNT0_OUTA	SMC0_D03		
PB_09	PWM1_AL	UART2_RTS	SMC0_D04	SPT0_AD0	CNT0_UD
PB_10	PWM1_BH	CNT0_OUTB	SMC0_D05		
PB_11	PWM1_BL		SMC0_D06		
PB_12	PWM1_CH		SMC0_D07		
PB_13	PWM1_CL	TM1_TMR2	SMC0_A01		
PB_14	PWM1_DH			TM1_TMR0	
PB_15	PWM1_DL		SMC0_A02	TM1_TMR1	

表10. 端口C信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PC_00	TRACEO_CLK				TM1_ACLK4
PC_01	TRACE0_D01				
PC_02	TRACE0_D03			LBA0_PIN6	
PC_03	TRACE0_D00				
PC_04	TRACE0_D02			LBA0_PIN7	
PC_05	SINC0_D0	UART1_CTS	SMC0_D14	SPT0_BTDV	SYS_DSWAKE0
PC_06	SINC0_D1	UART2_CTS	SMC0_D15	SPT0_AD1	TM1_CLK
PC_07	UART3_TX				
PC_08	UART3_RX				TM1_ACI2
PC_09	SPI1_CLK	UART2_RX	SMC0_D08	SPT0_ACLK	TM1_ACI4
PC_10	SPI1_MISO	TM1_TMR3	SMC0_D09	SPT0_BD1	
PC_11	SPI1_MOSI	UART2_TX	SMC0_D10	SPT0_AFS	
PC_12	SPI1_SEL1	TM1_TMR7	SMC0_D11	SPT0_BCLK	SPI1_SS
PC_13	SPI1_SEL2		SMC0_D12	SPT0_BFS	CNT0_DG
PC_14	SPI1_SEL3	SPI1_RDY	SMC0_D13	SPT0_BD0	CNT0_ZM
PC_15	SINC0_CLK0	UART1_RTS		SPT0_ATDV	TM1_ACLK3

表11. 端口D信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PD_00	PWM0_SYNC		SMC0_A03		SYS_DSWAKE1
PD_01	PWM_TRIPA		SMC0_A04		

表12. 端口E信号多路复用

					多路复用功能输入
信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	抽头
PE_00	PWM2_AH				
PE_01	PWM2_AL	UART4_RTS	SMC0_AMS1		
PE_02	PWM2_BH	TM1_TMR6	SMC0_AMS2		CPTMR0_IN0
PE_03	PWM2_BL	UART4_CTS	SMC0_A15		
PE_04	PWM2_CH	TM1_TMR4			CPTMR0_IN1
PE_05	PWM2_CL		SMC0_A14		
PE_06	PWM2_DH		SMC0_A11		
PE_07	PWM2_DL		SMC0_A12		
PE_08	PWM2_SYNC	UART3_RTS	SMC0_AMS3		TM1_ACLK5
PE_09	PWM1_SYNC	UART1_RX			TM1_ACI5
PE_10	PWM_TRIPB	UART1_TX			
PE_11	PWM_TRIPC		SMC0_A16		
PE_12	CAN1_RX		SMC0_ABE1		TM1_ACI0
PE_13	CAN1_TX		SMC0_ABE0		
PE_14	TM1_TMR0		SMC0_A05		

表12. 端口E信号多路复用(续)

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能输入 抽头
PE_15	TM1_TMR1		SMC0_A10	

表13.端口F信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PF_00	SINC0_D2		SMC0_A06		
PF_01	SINC0_D3		SMC0_A07		
PF_02	SPI1_SEL4		SMC0_A08		
PF_03	SPI1_SEL6		SMC0_A09	LBA0_PIN0	
PF_04	UART4_TX		SMC0_A13	LBA0_PIN1	
PF_05	UART4_RX	SPI1_SEL5		LBA0_PIN2	TM1_ACI6
PF_06	SPI1_D2	TM1_TMR5		LBA0_PIN3	CPTMR0_IN2
PF_07	SPI1_D3			LBA0_PIN4	
PF_08	SPI1_SEL7			LBA0_PIN5	SYS_DSWAKE2

ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述

处理器引脚定义如表所示。该表中的列提供下列信息:

- 信号名称: 表中的"信号名称"列包含各引脚的信号 名称,以及每一个引脚的GPIO多路复用引脚功能(如 适用)。
- 描述:表中的"描述"列提供信号的详细(描述性) 名称。
- 通用端口: 表中的"端口"列显示信号是否与其他信号多路复用至通用I/O端口引脚。
- 引脚名称:表中的"引脚名称"列表示封装引脚(上电复位时)的名称,信号位于这些引脚上(单功能引脚)或多路复用(通用I/O引脚)。

表14. ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述

信号名称	描述	端口	引脚名称
ADC_VIN_A0	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A0
ADC_VIN_A1	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A1
ADC_VIN_A2	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A2
ADC_VIN_A3	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_A3
ADC_VIN_A4	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A4
ADC_VIN_A5	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A5
ADC_VIN_A6	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A6
ADC_VIN_A7	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_A7
ADC_VIN_B0	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B0
ADC_VIN_B1	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B1
ADC_VIN_B2	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B2
ADC_VIN_B3	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_B3
ADC_VIN_B4	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B4
ADC_VIN_B5	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B5
ADC_VIN_B6	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B6
ADC_VIN_B7	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_B7
ADC_VIN_C0	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C0
ADC_VIN_C1	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C1
ADC_VIN_C2	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C2
ADC_VIN_C3	ADC1通道n单端模拟输入	未多路复用	ADC_VIN_C3
ADC_VIN_C4	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C4
ADC_VIN_C5	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C5
ADC_VIN_C6	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C6
ADC_VIN_C7	ADC2通道n单端模拟输入	未多路复用	ADC_VIN_C7
ADC_VIN_D0	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D0
ADC_VIN_D1	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D1
ADC_VIN_D2	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D2
ADC_VIN_D3	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D3
ADC_VIN_D4	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D4
ADC_VIN_D5	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D5
ADC_VIN_D6	ADC0通道n单端模拟输入	未多路复用	ADC_VIN_D6
BYP_A0	用于ADC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_A0
BYP_A1	用于ADC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_A1
BYP_A2	用于ADC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_A2
BYP_D0	用于DAC的片内模拟电源调节旁路滤波器节点	未多路复用	BYP_D0
CAN0_RX	CAN0接收	Α	PA_06

表14. ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述(续)

信号名称	描述	端口	引脚名称
CAN0_TX	CAN0发送	A	PA_07
CAN1_RX	CAN1接收	E	PE_12
CAN1_TX	CAN1发送	E	PE_13
CNT0_DG	CNTO递减计数和栅极	c	PC_13
CNT0_OUTA	CNTO输出分频器A	В	PB_08
CNT0_OUTB	CNTO输出分频器B	В	PB_10
CNT0_UD	CNTO递增计数和方向	В	PB_09
CNT0_ZM	CNTO零标记	c	PC_14
COMP_OUT_A	快速过流保护比较器A输出	未多路复用	COMP_OUT_A
COMP_OUT_B	快速过流保护比较器B输出	未多路复用	COMP_OUT_B
COMP_OUT_C	快速过流保护比较器C输出	未多路复用	COMP_OUT_C
CPTMR0_IN0	CPTMRO输入	下夕时及川 E	PE_02
CPTMRO_IN1	CPTMRO输入	E	PE_04
		F	PF_06
CPTMR0_IN2	CPTMRO输入		
DACO_VOUT	模拟电压输出n	未多路复用	DACO_VOUT
GND_REFCAP0	REF_INOUTO模拟地返回	未多路复用	GND_REFCAP0
GND_REFCAP1	GND_REFCAP1	未多路复用	GND_REFCAP1
GND_VREF0	REF_BUFOUT[n]接地返回	未多路复用	GND_VREF0
GND_VREF1	REF_BUFOUT[n]接地返回	未多路复用	GND_VREF1
GND_VREF2	GND_VREF2	未多路复用	GND_VREF2
ITG_TCK	JTAG时钟	未多路复用	JTG_TCK/SWCLK
JTG_TDI	JTAG串行数据输入	未多路复用	JTG_TDI
JTG_TDO	JTAG串行数据输出	未多路复用	JTG_TDO/SWO
JTG_TMS_	JTAG模式选择	未多路复用	JTG_TMS/SWDIO
JTG_TRST	JTAG复位	未多路复用	JTG_TRST
LBA0_PIN0	LBA0 LBA数据输入或逻辑输出	F	PF_03
LBA0_PIN1	LBA0 LBA数据输入或逻辑输出	F	PF_04
LBA0_PIN2	LBA0 LBA数据输入或逻辑输出	F	PF_05
LBA0_PIN3	LBA0 LBA数据输入或逻辑输出	F	PF_06
LBA0_PIN4	LBA0 LBA数据输入或逻辑输出	F	PF_07
LBA0_PIN5	LBA0 LBA数据输入或逻辑输出	F	PF_08
LBA0_PIN6	LBA0 LBA数据输入或逻辑输出	C	PC_02
LBA0_PIN7	LBA0 LBA数据输入或逻辑输出	C	PC_04
PWM0_AH	PWM0通道A高端	В	PB_00
PWM0_AL	PWM0通道A低端	В	PB_01
PWM0_BH	PWM0通道B高端	В	PB_02
PWM0_BL	PWM0通道B低端	В	PB_03
PWM0_CH	PWM0通道C高端	В	PB_04
PWM0_CL	PWM0通道C低端	В	PB_05
PWM0_DH	PWM0通道D高端	В	PB_06
PWM0_DL	PWM0通道D低端	В	PB_07
PWM0_SYNC	PWM0 同步信号同步信号	D	PD_00
PWM1_AH	PWM1通道A高端	В	PB_08
PWM1_AL	PWM1通道A低端	В	PB_09
PWM1_BH	PWM1通道B高端	В	PB_10
PWM1_BL	PWM1通道B低端	В	PB_11

表14. ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述(续)

信号名称	描述	端口	引脚名称
PWM1_CH	PWM1通道C高端	В	PB_12
PWM1_CL	PWM1通道C低端	В	PB_13
PWM1_DH	PWM1通道D高端	В	PB_14
PWM1_DL	PWM1通道D低端	В	PB_15
PWM1_SYNC	PWM1 同步信号同步信号	Е	PE_09
PWM2_AH	PWM2通道A高端	E	PE_00
PWM2_AL	PWM2通道A低端	Е	PE_01
PWM2_BH	PWM2通道B高端	Е	PE_02
PWM2_BL	PWM2通道B低端	Е	PE_03
PWM2_CH	PWM2通道C高端	E	PE_04
PWM2_CL	PWM2通道C低端	E	PE_05
PWM2_DH	PWM2通道D高端	E	PE_06
PWM2_DL	PWM2通道D低端	E	PE_07
PWM2_SYNC		E	PE_08
	PWM2 同步信号同步信号		
PWM_TRIPA	多路复用PWM断路A信号	D E	PD_01
PWM_TRIPB	多路复用PWM断路B信号		PE_10
PWM_TRIPC	多路复用PWM断路C信号	E	PE_11
REFCAP0	带隙发生器滤波器节点输出。	未多路复用	REFCAP0
REFCAP1	带隙发生器滤波器节点输出。	未多路复用	REFCAP1
REF_BUFOUT0	基准电压源ADCO和DACO	未多路复用	VREF0
REF_BUFOUT1	基准电压源ADC1和过流比较器DAC	未多路复用	VREF1
SINC0_CLK0	SINC0时钟0	C	PC_15
SINC0_D0	SINC0数据0	С	PC_05
SINC0_D1	SINC0数据1	С	PC_06
SINC0_D2	SINC0数据2	F	PF_00
SINC0_D3	SINC0数据3	F	PF_01
SMC0_A01	SMC0地址n	В	PB_13
SMC0_A02	SMC0地址n	В	PB_15
SMC0_A03	SMC0地址n	D	PD_00
SMC0_A04	SMC0地址n	D	PD_01
SMC0_A05	SMC0地址n	Е	PE_14
SMC0_A06	SMC0地址n	F	PF_00
SMC0_A07	SMC0地址n	F	PF_01
SMC0_A08	SMC0地址n	F	PF_02
SMC0_A09	SMC0地址n	F	PF_03
SMC0_A10	SMC0地址n	E	PE_15
SMC0_A11	SMC0地址n	E	PE_06
SMC0_A12	SMC0地址n	Е	PE_07
SMC0_A13	SMC0地址n	F	PF_04
SMC0_A14	SMC0地址n	E	PE_05
SMC0_A15	SMC0地址n	E	PE_03
SMC0_A16	SMCO地址n	E	PE_11
SMC0_ATO	SMCO字节使能n	E	PE_13
SMC0_ABE1	SMCO字节使能n	E	PE_12
SMC0_ABE1 SMC0_AMS0		В	PB_04
	SMCO存储器选择n	E	
SMC0_AMS1	SMC0存储器选择n	-	PE_01

表14. ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述(续)

信号名称	描述	端口	引脚名称
SMC0_AMS2	SMC0存储器选择n	E	PE_02
SMC0_AMS3	SMC0存储器选择n	E	PE_08
SMC0_AOE	SMC0输出使能	В	PB_02
SMC0_ARDY	SMC0异步就绪	В	PB_00
SMC0_ARE	SMC0读取使能	В	PB_03
SMC0_AWE	SMC0写入使能	В	PB_01
SMC0_D00	SMC0数据n	В	PB_05
SMC0_D01	SMC0数据n	В	PB_06
SMC0_D02	SMC0数据n	В	PB_07
SMC0_D03	SMC0数据n	В	PB_08
SMC0_D04	SMC0数据n	В	PB_09
SMC0_D05	SMC0数据n	В	PB_10
SMC0_D06	SMC0数据n	В	PB_11
SMC0_D07	SMC0数据n	В	PB_12
SMC0_D08	SMCO数据n	С	PC_09
SMC0_D09	SMC0数据n	С	PC_10
SMC0_D10	SMC0数据n	С	PC_11
SMC0_D11	SMC0数据n	С	PC_12
SMC0_D12	SMC0数据n	c	PC_13
SMC0_D13	SMC0数据n	c	PC_14
SMC0_D14	SMC0数据n	С	PC_05
SMC0_D15	SMC0数据n	c	PC_06
SPI0_CLK	SPIO时钟	A	PA_08
SPI0_D2	SPI0数据2	A	PA_02
SPI0_D3	SPI0数据3	A	PA_03
SPI0_MISO	SPIO主机输入、从机输出	A	PA_10
SPI0_MOSI	SPIO主机输出、从机输入	A	PA_09
SPI0_RDY	SPIO就绪	A	PA_01
SPI0_SEL1	SPIO从机选择输出n	A	PA_11
SPI0_SEL2	SPIO从机选择输出n	A	PA_00
SPI0_SEL3	SPIO从机选择输出n	A	PA_01
SPI0_SEL4	SPIO从机选择输出n	A	PA_06
SPI0_SEL5	SPIO从机选择输出n	A	PA_07
SPI0_SEL6	SPIO从机选择输出n	A	PA_02
SPI0_SEL7	SPIO从机选择输出n	A	PA_03
SPIO_SS	SPIO从机选择输入	A	PA_00
SPI1_CLK	SPI1时钟	С	PC_09
SPI1_D2	SPI1数据2	F	PF_06
SPI1_D3	SPI1数据3	F	PF_07
SPI1_MISO	SPI1主机输入、从机输出	C	PC_10
SPI1_MOSI	SPI1主机输出、从机输入	С	PC_11
SPI1_RDY	SPI1就绪	C	PC_14
SPI1_SEL1	SPI1从机选择输出n	С	PC_12
SPI1_SEL2	SPI1从机选择输出n	С	PC_13
SPI1_SEL3	SPI1从机选择输出n	C	PC_14
SPI1_SEL4	SPI1从机选择输出n	F	PF_02

表14. ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述(续)

信号名称	描述	端口	引脚名称
SPI1_SEL5	SPI1从机选择输出n	F	PF_05
SPI1_SEL6	SPI1从机选择输出n	F	PF_03
SPI1_SEL7	SPI1从机选择输出n	F	PF_08
SPI1_SS	SPI1从机选择输入	c	PC_12
SPT0_ACLK	SPORTO通道A时钟	c	PC_09
SPT0_AD0	SPORTO通道A数据0	В	PB_09
SPT0_AD1	SPORTO通道A数据1	С	PC_06
SPTO_AFS	SPORTO通道A帧同步	c	PC_11
SPT0_ATDV	SPORT0通道A发送数据有效	С	PC_15
SPT0_BCLK	SPORT0通道B时钟	С	PC_12
SPT0_BD0	SPORTO通道B数据0	С	PC_14
SPT0_BD1	SPORTO通道B数据1	С	PC_10
SPTO_BFS	SPORTO通道B帧同步	С	PC_13
SPT0_BTDV	SPORT0通道B发送数据有效	С	PC_05
SYS_BMODE0	引导模式控制n	未多路复用	SYS_BMODE0
SYS_CLKIN0	时钟/晶振输入	未多路复用	SYS_CLKIN0
SYS_CLKIN1	时钟/晶振输入	未多路复用	SYS_CLKIN1
SYS_CLKOUT	处理器时钟输出	未多路复用	SYS_CLKOUT
SYS_DSWAKE0	深度休眠唤醒n	C	PC_05
SYS_DSWAKE1	深度休眠唤醒n	D	PD_00
SYS_DSWAKE2	深度休眠唤醒n	F	PF_08
SYS_DSWAKE3	深度休眠唤醒n	A	PA_11
SYS_FAULT	故障输出	未多路复用	SYS_FAULT
SYS_HWRST	处理器硬件复位控制	未多路复用	SYS_HWRST
SYS_NMI	不可屏蔽的中断	未多路复用	SYS_NMI
SYS_RESOUT	复位输出	未多路复用	SYS_RESOUT
SYS_XTAL0	晶振输出	未多路复用	SYS_XTAL0
SYS_XTAL1	晶振输出	未多路复用	SYS_XTAL1
TM0_ACI0	TIMERO备选捕获输入n	A	PA_04
TM0_ACI1	TIMERO备选捕获输入n	A	PA_06
TM0_ACI2	TIMERO备选捕获输入n	A	PA_01
TM0_ACI3	TIMERO备选捕获输入n	A	PA_02
TM0_ACI4	TIMERO备选捕获输入n	A	PA_03
TM0_ACLK0	TIMERO备选时钟n	A	PA_09
TM0_ACLK1	TIMERO备选时钟n	A	PA_10
TM0_ACLK2	TIMERO备选时钟n	A	PA_07
TM0_ACLK3	TIMERO备选时钟n	A	PA_08
_ TM0_ACLK4	TIMERO备选时钟n	A	PA_05
TM0_CLK	TIMERO时钟	A	PA_00
TM0_TMR0	TIMER0定时器n	A	PA_12
TM0_TMR1	TIMER0定时器n	A	PA_13
TM1_ACI0	TIMER1备选捕获输入n	E	PE_12
TM1_ACI2	TIMER1备选捕获输入n	С	PC_08
TM1_ACI4	TIMER1备选捕获输入n	С	PC_09
TM1_ACI5	TIMER1备选捕获输入n	E	PE_09
TM1_ACI6	TIMER1备选捕获输入n	F	PF_05

表14. ADSP-CM411F/CM418F/CM419F 210引脚BGA信号描述(续)

信号名称	描述	端口	引脚名称
TM1_ACLK3	TIMER1备选时钟n	С	PC_15
ΓM1_ACLK4	TIMER1备选时钟n	c	PC_00
TM1_ACLK5	TIMER1备选时钟n	E	PE_08
ΓM1_CLK	TIMER1时钟	С	PC_06
ΓM1_TMR0	TIMER1定时器n	E	PE_14
ΓM1_TMR0	TIMER1定时器n	В	PB_14
ΓM1_TMR1	TIMER1定时器n	В	PB_15
TM1_TMR1	TIMER1定时器n	E	PE_15
ΓM1_TMR2	TIMER1定时器n	В	PB_13
		C	
TM1_TMR3	TIMER1定时器n		PC_10
ΓM1_TMR4	TIMER1定时器n	E	PE_04
ΓM1_TMR5	TIMER1定时器n	F _	PF_06
ΓM1_TMR6	TIMER1定时器n	E	PE_02
ΓM1_TMR7	TIMER1定时器n	С	PC_12
TRACEO_CLK	TRACE0跟踪时钟	С	PC_00
TRACE0_D00	TRACEO跟踪数据n	C	PC_03
TRACE0_D01	TRACEO跟踪数据n	C	PC_01
TRACE0_D02	TRACEO跟踪数据n	C	PC_04
TRACE0_D03	TRACEO跟踪数据n	C	PC_02
ΓWI0_SCL	TWI0串行时钟	未多路复用	TWI0_SCL
TWI0_SDA	TWI0串行数据	未多路复用	TWI0_SDA
JART0_CTS	UARTO允许发送	A	PA_03
JARTO_RTS	UARTO请求发送	A	PA_02
JARTO_RX	UARTO接收	A	PA_04
JARTO_TX	UARTO发送	A	PA_05
JART1_CTS	UART1允许发送	C	PC_05
JART1_RTS	UART1请求发送	C	PC_15
		E	PE_09
JART1_RX	UART1接收		
JART1_TX	UART1发送	E	PE_10
JART2_CTS	UART2允许发送	C	PC_06
JART2_RTS	UART2请求发送	В	PB_09
JART2_RX	UART2接收	С	PC_09
JART2_TX	UART2发送	С	PC_11
JART3_CTS	UART3允许发送	В	PB_07
JART3_RTS	UART3请求发送	E	PE_08
JART3_RX	UART3接收	C	PC_08
JART3_TX	UART3发送	C	PC_07
JART4_CTS	UART4允许发送	E	PE_03
JART4_RTS	UART4请求发送	E	PE_01
JART4_RX	UART4接收	F	PF_05
_ JART4_TX	UART4发送	F	PF_04
/DD_ANA0	模拟电源电压	未多路复用	VDD_ANA0
/DD_ANA1	模拟电源电压	未多路复用	VDD_ANA1
/DD_ANAT	过流比较器电源	未多路复用	VDD_COMP
/DD_COMP /DD_EXT		本多路复用 未多路复用	VDD_EXT
	外部电压域		
/REF2	ADC2基准电压源	未多路复用	VREF2

ADSP-CM411F/CM418F/CM419F 210引脚BGA GPIO多路复用

表15至表20列出了多路复用至210引脚BGA封装上通用I/O引脚的引脚功能。

表15. 端口A信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PA_00	SPI0_SEL2	TM0_CLK			SPIO_SS
PA_01	SPI0_SEL3	SPI0_RDY			TM0_ACI2
PA_02	SPI0_D2	UARTO_RTS	SPI0_SEL6		TM0_ACI3
PA_03	SPI0_D3	UARTO_CTS	SPI0_SEL7		TM0_ACI4
PA_04	UARTO_RX				TM0_ACI0
PA_05	UARTO_TX				TM0_ACLK4
PA_06	CAN0_RX	SPI0_SEL4			TM0_ACI1
PA_07	CAN0_TX	SPI0_SEL5			TM0_ACLK2
PA_08	SPI0_CLK				TM0_ACLK3
PA_09	SPI0_MOSI				TM0_ACLK0
PA_10	SPI0_MISO				TM0_ACLK1
PA_11	SPI0_SEL1				SYS_DSWAKE3
PA_12	TM0_TMR0				
PA_13	TM0_TMR1				

表16. 端口B信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PB_00	PWM0_AH		SMC0_ARDY		
PB_01	PWM0_AL		SMC0_AWE		
PB_02	PWM0_BH		SMC0_AOE		
PB_03	PWM0_BL		SMC0_ARE		
PB_04	PWM0_CH		SMC0_AMS0		
PB_05	PWM0_CL		SMC0_D00		
PB_06	PWM0_DH		SMC0_D01		
PB_07	PWM0_DL	UART3_CTS	SMC0_D02		
PB_08	PWM1_AH	CNT0_OUTA	SMC0_D03		
PB_09	PWM1_AL	UART2_RTS	SMC0_D04	SPT0_AD0	CNT0_UD
PB_10	PWM1_BH	CNT0_OUTB	SMC0_D05		
PB_11	PWM1_BL		SMC0_D06		
PB_12	PWM1_CH		SMC0_D07		
PB_13	PWM1_CL	TM1_TMR2	SMC0_A01		
PB_14	PWM1_DH			TM1_TMR0	
PB_15	PWM1_DL		SMC0_A02	TM1_TMR1	

表17. 端口C信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PC_00	TRACEO_CLK				TM1_ACLK4
PC_01	TRACE0_D01				
PC_02	TRACE0_D03			LBA0_PIN6	
PC_03	TRACE0_D00				
PC_04	TRACE0_D02			LBA0_PIN7	
PC_05	SINC0_D0	UART1_CTS	SMC0_D14	SPT0_BTDV	SYS_DSWAKE0
PC_06	SINC0_D1	UART2_CTS	SMC0_D15	SPT0_AD1	TM1_CLK
PC_07	UART3_TX				
PC_08	UART3_RX				TM1_ACI2
PC_09	SPI1_CLK	UART2_RX	SMC0_D08	SPT0_ACLK	TM1_ACI4
PC_10	SPI1_MISO	TM1_TMR3	SMC0_D09	SPT0_BD1	
PC_11	SPI1_MOSI	UART2_TX	SMC0_D10	SPT0_AFS	
PC_12	SPI1_SEL1	TM1_TMR7	SMC0_D11	SPT0_BCLK	SPI1_SS
PC_13	SPI1_SEL2		SMC0_D12	SPT0_BFS	CNT0_DG
PC_14	SPI1_SEL3	SPI1_RDY	SMC0_D13	SPT0_BD0	CNT0_ZM
PC_15	SINC0_CLK0	UART1_RTS		SPT0_ATDV	TM1_ACLK3

表18. 端口D信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PD_00	PWM0_SYNC		SMC0_A03		SYS_DSWAKE1
PD_01	PWM_TRIPA		SMC0_A04		

表19. 端口E信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PE_00	PWM2_AH				
PE_01	PWM2_AL	UART4_RTS	SMC0_AMS1		
PE_02	PWM2_BH	TM1_TMR6	SMC0_AMS2		CPTMR0_IN0
PE_03	PWM2_BL	UART4_CTS	SMC0_A15		
PE_04	PWM2_CH	TM1_TMR4			CPTMR0_IN1
PE_05	PWM2_CL		SMC0_A14		
PE_06	PWM2_DH		SMC0_A11		
PE_07	PWM2_DL		SMC0_A12		
PE_08	PWM2_SYNC	UART3_RTS	SMC0_AMS3		TM1_ACLK5
PE_09	PWM1_SYNC	UART1_RX			TM1_ACI5
PE_10	PWM_TRIPB	UART1_TX			
PE_11	PWM_TRIPC		SMC0_A16		
PE_12	CAN1_RX		SMC0_ABE1		TM1_ACI0
PE_13	CAN1_TX		SMC0_ABE0		
PE_14	TM1_TMR0		SMC0_A05		

表19. 端口E信号多路复用(续)

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能输入 抽头
PE_15	TM1_TMR1		SMC0_A10	

表20. 端口F信号多路复用

信号名称	多路复用功能0	多路复用功能1	多路复用功能2	多路复用功能3	多路复用功能输入 抽头
PF_00	SINC0_D2		SMC0_A06		
PF_01	SINC0_D3		SMC0_A07		
PF_02	SPI1_SEL4		SMC0_A08		
PF_03	SPI1_SEL6		SMC0_A09	LBA0_PIN0	
PF_04	UART4_TX		SMC0_A13	LBA0_PIN1	
PF_05	UART4_RX	SPI1_SEL5		LBA0_PIN2	TM1_ACI6
PF_06	SPI1_D2	TM1_TMR5		LBA0_PIN3	CPTMR0_IN2
PF_07	SPI1_D3			LBA0_PIN4	
PF_08	SPI1_SEL7			LBA0_PIN5	SYS_DSWAKE2

ADSP-CM41xF设计器快速参考

表21提供电路板设计中引脚相关的快速参考汇总信息。该 表中的列提供下列信息:

- 信号名称: 表中的"信号名称"列包含各引脚的信号 名称,以及每一个引脚的GPIO多路复用引脚功能(如 适用)。
- 引脚类型:表中的"引脚类型"列表示引脚的I/O类型或电源类型。本列中使用的缩写为:na(无)、I/O(输入/输出)、a(模拟)、s(电源)和g(接地)。
- 驱动器类型:表中的"驱动器类型"列表示此引脚使用的驱动器类型。驱动器类型定义见本数据手册中的输出驱动电流部分。
- 内部端接:表中的"内部端接"列表示处理器未处于复位状态时存在的端接。本列中使用的缩写为:wk(弱监护,微弱保持引脚上之前的驱动值)、pu(上拉)或pd(下拉)。

- 复位端接:表中的"复位端接"列表示处理器处于复位状态时存在的端接。本列中使用的缩写为:wk(弱监护,微弱保持引脚上之前的驱动值)、pu(上拉)或pd(下拉)。
- 复位驱动: 表中的"复位驱动"列表示处理器处于复位状态时信号的有效驱动。
- 电源域: 表中的"电源域"列表示信号所在的电源域。
- 描述和注释:表中的"描述和注释"列表示信号的任何特殊要求或特性。如果没有列出特殊要求,信号不用时可以不连接。此外,对于多路复用通用I/O引脚,该列还表示此引脚上的可用功能。

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
ADC_VIN_A0	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入 注释:
ADC_VIN_A1	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入 注释:
ADC_VIN_A2	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入 注释:
ADC_VIN_A3	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入 注释:
ADC_VIN_A4	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
ADC_VIN_A5	a	na	无	无	无	VDD_ANA	注释: 描述: ADC2通道n单端模拟输入
ADC_VIN_A6	a	na	无	无	无	VDD_ANA	注释: 描述: ADC2通道n单端模拟输入
ADC_VIN_A7	a	na	无	无	无	VDD_ANA	注释: 描述: ADC2通道n单端模拟输入
ADC_VIN_B0	a	na	无	无	无	VDD_ANA	注释: 描述: ADC1通道n单端模拟输入
ADC_VIN_B1	a	na	无	无	无	VDD_ANA	注释: 描述: ADC1通道n单端模拟输入
ADC_VIN_B2	a	na	无	无	无	VDD_ANA	注释: 描述: ADC1通道n单端模拟输入
ADC_VIN_B3	a	na	无	无	无	VDD_ANA	注释: 描述: ADC1通道n单端模拟输入
ADC_VIN_B4	a	na	无	无	无	VDD_ANA	注释: 描述: ADC2通道n单端模拟输入 注释:

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
ADC_VIN_B5	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
							注释:
ADC_VIN_B6	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
ADC VIN DZ			_	_	_	\\DD	注释:
ADC_VIN_B7	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
ADC_VIN_C0	a	na	无	无	无	VDD_ANA	注释: 描述: ADC1通道n单端模拟输入
/\be__e0	ŭ	110	/ .			755_71171	注释:
ADC_VIN_C1	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入
							注释:
ADC_VIN_C2	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入
							注释:
ADC_VIN_C3	a	na	无	无	无	VDD_ANA	描述: ADC1通道n单端模拟输入
ADC_VIN_C4	a	na	无	无	无	VDD_ANA	注释: 描述: ADC2通道n单端模拟输入
ADC_VIIV_C4	a	IIa	1)L	VDD_ANA	注释:
ADC_VIN_C5	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
							注释:
ADC_VIN_C6	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
							注释:
ADC_VIN_C7	a	na	无	无	无	VDD_ANA	描述: ADC2通道n单端模拟输入
ADC_VIN_D0		20	T :	无	±.	VDD_ANA	注释:
ADC_VIN_DO	а	na	无		无	VDD_ANA	描述: ADC0通道n单端模拟输入 注释:
ADC_VIN_D1	a	na	无	无	无	VDD_ANA	描述: ADCO通道n单端模拟输入
							注释:
ADC_VIN_D2	a	na	无	无	无	VDD_ANA	描述: ADC0通道n单端模拟输入
							注释:
ADC_VIN_D3	a	na	无	无	无	VDD_ANA	描述: ADC0通道n单端模拟输入
ADC VIN DA		20	T	T .	T :	NDD VNV	注释:
ADC_VIN_D4	а	na	无	无	无	VDD_ANA	描述: ADC0通道n单端模拟输入 注释:
ADC_VIN_D5	a	na	无	无	无	VDD_ANA	描述: ADCO通道n单端模拟输入
							注释:
ADC_VIN_D6	a	na	无	无	无	VDD_ANA	描述: ADC0通道n单端模拟输入
							注释:
BYP_A0	a	na	无	无	无	VDD_ANA	描述:用于ADC的片内模拟电源调节旁路滤波器节点
DVD A1				_	_	\\DD	注释:
BYP_A1	а	na	无	无	无	VDD_ANA	描述:用于ADC的片内模拟电源调节旁路滤波器节点注释:
BYP_A2	a	na	无	无	无	VDD_ANA	社程: 描述:用于ADC的片内模拟电源调节旁路滤波器节点
J.1 _/\Z	ď	l I I				VDD_ANA	注释:
BYP_D0	a	na	无	无	无	VDD_EXT	描述:用于DAC的片内模拟电源调节旁路滤波器节点
							注释:

表21. ADSP-CM41xF设计器快速参考(续)

信号名称	类型	驱动器 类型		复位 端接	复位 驱动	电源域	描述和注释
COMP_OUT_A	a	OUT	无	无	无	VDD_ANA	描述:快速过流保护比较器A输出
COMP_OUT_B	a	OUT	无	无	无	VDD_ANA	注释: 描述: 快速过流保护比较器B输出
COMI _OO1_B	a	001)L		VDD_ANA	注释:
COMP_OUT_C	a	OUT	无	无	无	VDD_ANA	描述:快速过流保护比较器C输出
DACO VOLIT			-	_	_	\/DD	注释:
DAC0_VOUT	а	na	无	无	无	VDD_ANA	描述:模拟电压输出n 注释:
DNC	输入输出	na	无	无	无		描述:不连接
							注释:
DNC	输入输出	na	无	无	无		描述:不连接 注释:
DNC	输入输出	na	无	无	无		描述:不连接
							注释:
DNC	输入输出	na	无	无	无		描述: 不连接
DNC	输入输出	na	无	无	无		注释: 描述: 不连接
2.1.0	189/ 189 111	""					注释:
DNC	输入输出	na	无	无	无		描述: 不连接
DNC	#A \ #A III	2	T :	T .	<i>T</i> :		注释:
DINC	输入输出	na	无	无	无		描述:不连接 注释:
DNC	输入输出	na	无	无	无		描述:不连接
DNC	111 A4 7 A4			_	_		注释:
DNC	输入输出	na	无	无	无		描述:不连接 注释:
GND	g	na	无	无	无	VDD_EXT	描述:数字地
							注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地 注释:
GND_ANA	g	na	无	无	无	VDD_ANA	在件: 描述: 模拟地
							注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地
GND_ANA	g	na	无	无	无	VDD_ANA	注释: 描述:模拟地
			, -				注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述: 模拟地
GND_ANA	g	na	无	无	无	VDD_ANA	注释: 描述:模拟地
GND_/N//	9	l III				700_71171	注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述: 模拟地
GND_ANA		na	无	无	<i>T</i> :	VDD_ANA	注释:
GIND_AINA	g	lia	儿	儿	无	VDD_AINA	描述:模拟地 注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述: 模拟地
CND ANA			_	_		VDD ****	注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地 注释:
GND_ANA	g	na	无	无	无	VDD_ANA	在特: 描述:模拟地
							注释:

表21. ADSP-CM41xF设计器快速参考(续)

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地
GND_ANA	g	na	无	无	无	VDD_ANA	注释: 描述:模拟地
CND ANA		2	<i>T</i> :		<i>-</i>	V/DD ANIA	注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地
GND_ANA	g	na	无	无	无	VDD_ANA	注释: 描述: 模拟地
GIVD_/III/I	9	l lu				VDD_ANA	注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地注释:
GND_ANA	g	na	无	无	无	VDD_ANA	描述:模拟地
GND_ANA	g	na	无	无	无	VDD_ANA	注释: 描述:模拟地
GIVD_/III/I	9	l lu				VDD_ANA	注释:
GND_ANA0	g	na	无	无	无	VDD_ANA	描述: VDD_ANA[n]模拟地返回 注释:
GND_ANA1	g	na	无	无	无	VDD_ANA	描述: VDD_ANA[n]模拟地返回
GND_ANA2	g	na	无	无	无	VDD_ANA	注释: 描述: VDD_ANA[n]模拟地返回
G. (10_, (1, 1), (2	9	110				VDD_/(IV/	注释:
GND_ANA3	g	na	无	无	无	VDD_ANA	描述: VDD_ANA[n]模拟地返回 注释:
GND_ANA4_COMP	g	na	无	无	无	VDD_ANA	描述: GND_COMP_ANA4
GND_ANA5_DAC	g	na	无	无	无	VDD_ANA	注释: 描述: GND_DAC_ANA5
G. (5_7 ii ii i5_5 / (5							注释:
GND_REFCAP0	g	na	无	无	无	VDD_ANA	描述: REF_INOUTO模拟地返回 注释:
GND_REFCAP1	g	na	无	无	无	VDD_ANA	描述: REFCAP1
GND_VREF0	g	na	无	无	无	VDD_ANA	注释: 描述: REF_BUFOUT[n]接地返回
							注释:
GND_VREF1	g	na	无	无	无	VDD_ANA	描述: REF_BUFOUT[n]接地返回 注释:
GND_VREF2	g	na	无	无	无	VDD_ANA	描述: GND_VREF2
JTG_TCK/SWCLK	输入	Ю	pd	pd	无	VDD_EXT	注释: 描述: JTAG时钟
							注释:
JTG_TDI	输入	IN	pu	pu	无	VDD_EXT	描述: JTAG串行数据输入 注释:
JTG_TDO/SWO	输出	Ю	pu	pu	无	VDD_EXT	描述: JTAG串行数据输出
							注释:

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
JTG_TMS/SWDIO	输入	Ю	pu	pu	无	VDD_EXT	描述: JTAG模式选择
							注释:
JTG_TRST	输入	IN	pu	pu	无	VDD_EXT	描述:JTAG复位
PA_00	输入输出	GPIO	pu或无	nu	无	VDD_EXT	注释: 描述: PORTA位置n SPIO从机选择输出n TIMERO时
171_00	和八和 山	di io	pust	Pu	70	VDD_EXT	钟 SPIO从机选择输入
							注释:
PA_01	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n SPIO就绪 SPIO从机选择输出n
							TIMER0备选捕捉输入n
							注释:
PA_02	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n SPIO数据2 SPIO从机选择输出n
							UARTO请求发送 TIMERO备选捕捉输入n 注释:
PA_03	输入输出	GPIO	pu或无	nu	无	VDD_EXT	在样: 描述: PORTA位置n SPI0数据3 SPI0从机选择输出n
.,	1107 (110 111	0.10	Pusyl	Pu	/0	V00_EXT	UARTO允许发送 TIMERO备选捕捉输入n
							注释:
PA_04	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n UART0接收 TIMER0备选捕捉输
							入n
DA 05			b				注释:
PA_05	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n UART0发送 TIMER0备选时钟n
PA_06	输入输出	GPIO	pu或无	nu	无	VDD_EXT	注释: 描述: PORTA位置n CANO接收 SPI0从机选择输出n
171_00	110/~110 111	Gi io	Pust	Pu	70	VDD_EXT	TIMERO备选捕捉输入n
							注释:
PA_07	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n CAN0发送 SPI0从机选择输出n
							TIMERO备选时钟n
					_		注释:
PA_08	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n SPIO时钟 TIMERO备选时钟n
PA_09	输入输出	GPIO	pu或无	nu	无	VDD_EXT	注释: 描述: PORTA位置n SPIO主机输出,从机输入 TIMERO
171_05	110/110 111	Gi io	Pust	Pu	<i>)</i> L	VDD_EXT	备选时钟n
							注释:
PA_10	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n SPIO主机输入,从机输出 TIMERO
							备选时钟n
					_		注释:
PA_11	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n SPIO从机选择输出n 深度休眠
							唤醒n 注释:
PA_12	输入输出	GPIO	pu或无	pu	无	VDD_EXT	在样: 描述: PORTA位置n TIMERO定时器n
_	104 > +104 171						注释:
PA_13	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTA位置n TIMER0定时器n
							注释:
PB_00	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道A高端 SMC0异步就绪
							注释:

表21. ADSP-CM4	ストタリ部分			I		1	
信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
PB_01	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道A低端 SMC0写入使能
PB_02	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTB位置n PWM0通道B高端 SMC0输出使能 注释:
PB_03	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道B低端 SMC0读取使能注释:
PB_04	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道C高端 SMC0存储器选择n 注释:
PB_05	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道C低端 SMC0数据n 注释:
PB_06	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道D高端 SMC0数据n 注释:
PB_07	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM0通道D低端 SMC0数据n UART3允许发送 注释:
PB_08	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述:PORTB位置n CNTO输出分频器A PWM1通道A高端 SMC0数据n
PB_09	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTB位置n PWM1通道A低端 SMC0数据n SPORTO通道A数据0 UART2请求发送 CNT0递增计数和 方向
PB_10	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTB位置n CNTO输出分频器B PWM1通道B高端 SMCO数据n 注释:
PB_11	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM1通道B低端 SMC0数据n 注释:
PB_12	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTB位置n PWM1通道C高端 SMC0数据n 注释:
PB_13	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述:PORTB位置n PWM1通道C低端 SMC0地址n TIMER1定时器n
PB_14	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTB位置n PWM1通道D高端 TIMER1定时器n 注释:
PB_15	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述:PORTB位置n PWM1通道D低端 SMC0地址n TIMER1定时器n
PC_00	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTC位置n TRACEO跟踪时钟 TIMER1备选时钟n 注释:

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
PC_01	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n TRACEO跟踪数据n
							注释:
PC_02	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n LBA LBA数据输入或逻辑输出
							TRACEO跟踪数据n
PC_03	输入输出	GPIO	pu或无	n.,	无	VDD_EXT	注释: 描述: PORTC位置n TRACEO跟踪数据n
PC_03		GFIO	pu蚁儿	μu		VDD_EXT	注释:
PC_04	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n LBA LBA数据输入或逻辑
	1119 2 4 1119 1221		1		, ,		输出 TRACEO跟踪数据n
							注释:
PC_05	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SINC0数据0 SMC0数据n SPORT0
							通道B发送数据有效 UART1允许发送 深度休眠唤醒n
							注释:
PC_06	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SINCO数据1 SMCO数据n SPORTO
							通道A数据1 UART2允许发送 TIMER1时钟
PC_07	输入输出	GPIO	pu或无	nu	无	VDD_EXT	注释: 描述: PORTC位置n UART3发送
. 6_0/	1111 / 1 111 LLI	GITO	pussel	Pu		VDD_EXT	注释:
PC_08	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n UART3接收 TIMER1备选捕捉输入n
							注释:
PC_09	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SMC0数据n SPI1时钟 SPORT0通
							道A时钟 UART2接收 TIMER1备选捕捉输入n
DC 10	±∆ \ ±∆ ılı	GPIO			无	VDD EVT	注释:
PC_10	输入输出	GPIO	pu或无	pu	元	VDD_EXT	描述: PORTC位置n SMCO数据n SPI1主机输入,从机输出 SPORTO通道B数据1 TIMER1定时器n
							注释:
PC_11	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SMC0数据n SPI1主机输出,从机
							输入 SPORTO通道A帧同步 UART2发送
							注释:
PC_12	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SMC0数据n SPI1从机选择输出n
							SPORTO通道B时钟 TIMER1定时器n SPI1从机选择输入
DC 13	11 44 7 44	CDIO	4			VDD EVT	注释:
PC_13	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SMCO数据n SPI1从机选择输出n SPORTO通道B帧同步 CNTO递减计数和门控
							注释:
PC_14	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SMC0数据n SPI1就绪 SPI1从机选
_				[择输出n SPORTO通道B数据0 CNTO零计数标记
							注释:
PC_15	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTC位置n SINCO时钟0 SPORTO通道A发送数
							据有效 UART1请求发送 TIMER1备选时钟n
							注释:

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
PD_00	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTD位置n PWM0 同步信号同步信号 SMC0 地址n 深度休眠唤醒n
PD_01	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述:PORTD位置n SMCO地址n 多路复用PWM断路 A信号
PE_00	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n PWM2通道A高端 注释:
PE_01	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述:PORTE位置n PWM2通道A低端 SMC0存储器 选择n UART4请求发送
PE_02	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n PWM2通道B高端 SMC0存储器选择n TIMER1定时器n CPTMR0输入
PE_03	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n PWM2通道B低端 SMC0地址n UART4允许发送
PE_04	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述:PORTE位置n PWM2通道C高端 TIMER1定时器 n CPTMR0输入
PE_05	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n PWM2通道C低端 SMC0地址n 注释:
PE_06	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTE位置n PWM2通道D高端 SMC0地址n 注释:
PE_07	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTE位置n PWM2通道D低端 SMC0地址n 注释:
PE_08	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述:PORTE位置n PWM2 同步信号同步信号 SMC0 存储器选择n UART3请求发送 TIMER1备选时钟n
PE_09	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n PWM1 同步信号同步信号 UART1接 收 TIMER1备选捕捉输入n
PE_10	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n 多路复用PWM断路B信号 UART1 发送
PE_11	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n SMCO地址n 多路复用PWM断路 C信号
PE_12	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述:PORTE位置n CAN1接收 SMC0字节使能n TIMER1 备选捕捉输入n
PE_13	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n CAN1发送 SMC0字节使能n
PE_14	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTE位置n SMCO地址n TIMER1定时器n 注释:

表21. ADSP-CM41xF设计器快速参考(续)

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
PE_15	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTE位置n SMCO地址n TIMER1定时器n 注释:
PF_00	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTF位置n SINCO数据2 SMCO地址n 注释:
PF_01	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTF位置n SINCO数据3 SMCO地址n 注释:
PF_02	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTF位置n SMCO地址n SPI1从机选择输出n 注释:
PF_03	输入输出	GPIO	pu或无	pu	无	VDD_EXT	描述: PORTF位置n LBA LBA数据输入或逻辑输出 SMCO地址n SPI1从机选择输出n
PF_04	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTF位置n LBA LBA数据输入或逻辑输出 SMC0地址n UART4发送
PF_05	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTF位置n LBA LBA数据输入或逻辑输出 SPI1从机选择输出n UART4接收 TIMER1备选捕捉输入r
PF_06	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTF位置n LBA LBA数据输入或逻辑输出 SPI1数据2 TIMER1定时器n CPTMR0输入
PF_07	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTF位置n LBA LBA数据输入或逻辑输出 SPI1数据3
PF_08	输入输出	GPIO	pu或无	pu	无	VDD_EXT	注释: 描述: PORTF位置n LBA LBA数据输入或逻辑输出 SPI1从机选择输出n 深度休眠唤醒n
REFCAP0	a	na	无	无	无	VDD_EXT	注释: 描述: 带隙发生器滤波器节点输出。 注释:
REFCAP1	a	na	无	无	无	VDD_EXT	描述: 带隙发生器滤波器节点输出。 注释:
	输入	IN	无	无	无	VDD_EXT	描述:引导模式控制n
SYS_BMODE0	输入	AIN	无	无	无	VDD_EXT	注释: 描述: 时钟/晶振输入
SYS_CLKIN0	输入	AIN	无	无	无	VDD_EXT	注释: 描述: 时钟/晶振输入
SYS_CLKIN1	输出	OUT	无	无	L	VDD_EXT	注释: 描述:处理器时钟输出
SYS_CLKOUT							注释:
SYS_FAULT	输出	Ю	无	无	无	VDD_EXT	描述:故障输出注释:
SVC LINARST	输入	IN	无	无	无	VDD_EXT	描述:处理器硬件复位控制
SYS_HWRST	输入	IN	无	无	无	VDD_EXT	注释: 描述:不可屏蔽的中断
SYS_NMI							注释:
SYS_RESOUT	输出	Ю	无	无	L	VDD_EXT	描述: 复位输出注释:

信号名称	类型	驱动器 类型	内部 端接	复位 端接	复位 驱动	电源域	描述和注释
SYS_XTAL0	输入	AOUT	无	无	无	VDD_EXT	描述: 晶振输出
							注释:
SYS_XTAL1	输入	AOUT	无	无	无	VDD_EXT	描述: 晶振输出
							注释:
TWI0_SCL	输入输出	TWI	无	无	无	VDD_EXT	描述: TWI0串行时钟
							注释:
TWI0_SDA	输入输出	TWI	无	无	无	VDD_EXT	描述: TWI0串行数据
							注释:
VDD_ANA0	a	na	无	无	无	na	描述:模拟电源电压
							注释:
VDD_ANA1	a	na	无	无	无	na	描述:模拟电源电压
							注释:
VDD_COMP	a	na	无	无	无	na	描述: 过流比较器电源
							注释:
VDD_EXT	S	na	无	无	无	na	描述:外部电压域
							注释:
VDD_INT	S	na	无	无	无	na	描述:内部电压域
							注释:
VREF0	S	na	无	无	无	na	描述:基准电压源ADCO和DACO
							注释:
VREF1	S	na	无	无	无	na	描述:基准电压源ADC1和过流比较器DAC
							注释:
VREF2	S	na	无	无	无	na	描述: ADC2基准电压源
							注释:
VREG_BASE	S	na	无	无	无	na	描述:稳压器基节点
		<u> </u>					注释:

技术规格

有关产品规格的信息,请联系ADI公司代表。

工作条件

参数		测试条件/注释	最小值	标称值	最大值	单位
V _{DD_INT} ¹	数字内部电源电压	f _{CCLK} ≤ TBD MHz	待定	待定	待定	V
$V_{DD_EXT}^2$	数字外部电源电压		待定	3.3	待定	V
V_{DD_ANA0} , V_{DD_ANA1} , $V_{DD_COMP}^2$	模拟电源电压		待定	3.3	待定	V
V_{IH}^{3}	高电平输入电压	V _{DD_EXT} = 最大电压	待定			V
V _{IHTWI} ^{4, 5}	高电平输入电压	V _{DD EXT} = 最大电压	待定		$V_{_{\rm BUSTWI}}$	V
V_{IL}^{3}	低电平输入电压	V _{DD_EXT} = 最小电压			待定	V
V _{ILTWI} ^{4, 5}	低电平输入电压	V _{DD EXT} = 最小电压			待定	V
T _J	结温	T _{AMBIENT} = TBD℃至待定℃	-40		+125	°C

¹ 预期标称值为1.21 V ± 3%。 客户初始设计应提供一个选项,利用外部可编程稳压器,在1.0 V到1.4 V范围内以50 mV步进进行调整。

表22. TWI_VSEL选择和V_{DD EXT}/V_{RUSTWI}

TWI_DT设置	V _{DD_EXT} 标称值	3 _{BUSTWI} 最小值	3 _{BUSTWI} 标称值	V _{BUSTWI} 最大值	单位
TWI000 ¹	3.30	3.13	3.30	3.47	V
TWI100	3.30	4.75	5.00	5.25	V

 $^{^1}$ 为使复位期间的JTAG边界扫描操作正常进行,设计必须符合默认TWI_DT设置要求的V $_{
m DD_EXT}$ 和V $_{
m BUSTWI}$ 电压。

时钟相关工作条件

表23说明了内核时钟、系统时钟和外设时钟的时序要求。除非另有明确说明,表中的数据适用于所有速度等级(参见预发布产品)。图19显示了各个时钟及其可用的乘法器或分频器值。

² 必须保持通电(即便不使用相关的功能)。

³ 参数值适用于TWI信号以外的所有输入和双向信号。

⁴ 参数适用于TWI_SDA和TWI_SCL。

⁵ TWI信号拉高至V_{BUSTWI}。参见表22。

表23. 时钟相关工作条件

参数		限制	最小值	典型值	最大值	单位
f_{PLLCLK}	PLL时钟频率		待定		待定	MHz
f_{CCLK}	内核时钟频率	$f_{CCLK} \ge f_{SYSCLK}$			待定	MHz
f_{SYSCLK}	系统时钟频率				待定	MHz
f_{SCLK}	M0子系统时钟频率				待定	MHz
f_{OCLK}	输出时钟频率				50	MHz
f_{TCK}	JTG_TCK频率	$f_{TCK} \le f_{SYSCLK}/2$			50	MHz
$f_{FOCPCLK}$	快速过流保护时钟		待定	10	待定	MHz
f _{sys_clkoutj}	SYS_CLKOUT周期抖动 ^{1,2}			±待定		%
f_ADCC0_ADC0_CLK_PROG	编程ADCC0 ADC0时钟				50	MHz
f_ADCC1_ADC1_CLK_PROG	编程ADCC1 ADC1时钟				50	MHz
f _{ADCC1_ADC2_CLK_PROG}	编程ADCC1 ADC2时钟				50	MHz
f_DACCO_DACO_CLK_PROG	编程DACC0 DAC0时钟				50	MHz
f _{SPTCLKPROG}	发送数据和帧同步时的已编程SPT时钟				50	MHz
$f_{SPTCLKPROG}$	接收数据和帧同步时的已编程SPT时钟				50	MHz
f _{SPTCLKEXT}	发送数据和帧同步时的外部SPT时钟 ^{3,4}	$f_{SPTCLKEXT} \leq f_{SYSCLK}$			50	MHz
f _{sptclkext}	接收数据和帧同步时的外部SPT时钟 ^{3,4}	$f_{SPTCLKEXT} \leq f_{SYSCLK}$			50	MHz
f _{SPICLKPROG}	发送数据时的已编程SPI时钟 ^{3,4}				50	MHz
f _{SPICLKPROG}	接收数据时的已编程SPI时钟				50	MHz
$f_{SPICLKEXT}$	发送数据时的外部SPI时钟 ^{3,4}	$f_{SPICLKEXT} \leq f_{SYSCLK}$			50	MHz
$f_{SPICLKEXT}$	接收数据时的外部SPI时钟 ^{3,4}	$f_{SPICLKEXT} \leq f_{SYSCLK}$			50	MHz
f _{TMRCLKEXT}	外部TMR时钟	$f_{\text{TMRCLKEXT}} \leq f_{\text{SYSCLK}}/4$			25	MHz
$f_{\text{SINCLKPROG}}$	已编程SINC时钟	$f_{SINCLKPROG} \le f_{SYSCLK}/4$			20	MHz

¹ SYS_CLKOUT抖动与应用系统设计有关,包括引脚开关活动、电路板布局和SYS_CLKIN源的抖动特性。由于取决于这些因素,各终端应用中测得的抖动值可能比 该规格更高或更低。

⁴ 外设的外部时钟频率还必须小于或等于为外设提供时钟的f_{sysclk}。

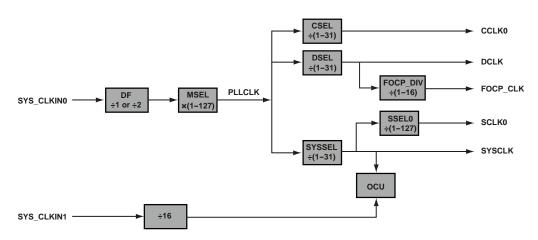


图19. 时钟关系和分频器值

² "典型值"一栏的数值为SYS_CLKOUT周期的百分比。

³ 外部时钟模式下,任何外设可达到的最高频率取决于能否满足该外设交流时序规格中的建立和保持时间。

电气特性

参数		测试条件/注释	最小值	典型值	最大值	单位
V _{OH}	高电平输出电压	V _{DD EXT} = 最小电压,I _{OH} = −0.5 mA	待定			٧
V _{OL}	低电平输出电压	V _{DD EXT} = 最小电压,I _{OL} = 2.0 mA			待定	٧
V _{OH_PWM} ¹	高电平输出电压	V _{DD_EXT} = 最小电压,I _{OH} = 10 mA			待定	V
V _{OL_PWM} ¹	低电平输出电压	V _{DD EXT} = 最小电压,I _{OL} = 10 mA			待定	V
V _{OLTWI} ²	低电平输出电压	V _{DD EXT} = 最小电压,I _{OL} = 2.0 mA			待定	٧
V _{LVDEXT}	V _{DD_EXT} 上的低压检测阈值	待定	待定	2.95	待定	٧
V_{LVDINT}	V _{DD_INT} 上的低压检测阈值	待定	待定	1.12	待定	V
V_{LVREXT}	V _{DD_EXT} 上的低压复位阈值	待定	待定	2.5	待定	V
V _{LVRINT}	V _{DD_INT} 上的低压复位阈值	待定	待定	1.08	待定	٧
I _{IH} ³	高电平输入电流	V _{DD_EXT} = 最大电压,V _{IN} = V _{DD_EXT} V			待定	μΑ
I _{IL} ³	低电平输入电流	V _{DD_EXT} = 最大电压,V _{IN} = 0 V			待定	μΑ
I _{IH_PD} ⁴	高电平输入电流	V _{DD_EXT} = 最大电压,V _{IN} = V _{DD_EXT} V			待定	μΑ
I _{IL_PU} 5	低电平输入电流	V _{DD_EXT} = 最大电压,V _{IN} = 0 V			待定	μΑ
l _{OZH} ⁶	三态漏电流	V _{DD_EXT} = 最大电压,V _{IN} = V _{DD_EXT} V			待定	μΑ
l _{OZHTWI} ²	三态漏电流	V _{DD_EXT} = 最大电压, V _{IN} = V _{BUSTWI(MAX)} V			待定	μΑ
I _{OZL} ⁶	三态漏电流	V _{DD_EXT} = 最大电压,V _{IN} = 0 V			待定	μΑ
C _{IN} ⁷	输入电容	T _J = 25°C		待定	待定	pF
C _{IN_TWI} ⁸	输入电容	T _J = 25°C		待定	待定	pF
I _{DD_DEEPSLEEP} 9	深度休眠模式下的V _{DD_INT} 电流	$f_{CCLK} = 0 \text{ MHz}$ $f_{SCLK} = 0 \text{MHz}$		待定		mA
I _{DD_IDLE}	空闲时的V _{DD_INT} 电流	待定		待定		mA
I _{DD_TYP}	V _{DD_INT} 电流	待定		待定		mA
I _{DD_INT}	V _{DD_INT} 电流	$f_{CCLK} > 0 \text{ MHz}$ $f_{SCLK} \ge 0 \text{ MHz}$			待定	mA
I _{DD_EXT}	V _{DD_EXT} 电流				待定	mA
I _{DD_ANA0}	V _{DD_ANAO} 电流	待定		待定	待定	mA
I _{VDD_ANA1}	V _{DD_ANA1} 电流,BGA封装	待定		待定	待定	mA
I _{VDD_ANA1}	V _{DD_ANA1} 电流,LQFP封装	待定		待定	待定	mA
I _{VDD_COMP}	V _{DD_COMP} 电流	待定		待定	待定	mA

¹ 仅适用于PWM输出引脚。

² 适用于双向引脚TWI_SCL和TWI_SDA。

³ 适用于输入引脚。

⁴ 适用于信号JTG_TCK。

⁵ 适用于信号JTG_TMS、JTG_TRST和JTAG_TDI。

⁶ 适用于三态引脚。

⁷ 适用于TWI信号以外的所有信号。

⁸ 适用于所有TWI信号。

⁹ 有关深度休眠工作模式的定义,请参见搭载ARM Cortex-M4/M0的ADSP-CM41x混合信号控制处理器硬件参考手册。

总功耗(PD)

总功耗等于每个Vpp域的功耗之和,如下式所示。

$$\boldsymbol{P}_{\!\scriptscriptstyle D} = \boldsymbol{P}_{\!\scriptscriptstyle D_INT} + \boldsymbol{P}_{\!\scriptscriptstyle D_ANA} + \boldsymbol{P}_{\!\scriptscriptstyle D_EXT}$$

其中.

$$P_{DANA} = V_{DDANA} \times I_{DDANA} - 模拟3.3 V$$
电压域功耗

$$P_{_{D_EXT}} = V_{_{DD_EXT}} \times I_{_{DD_EXT}}$$
 —数字3.3 V电压域功耗

外部总功耗(IDD EXT)

有三个因素影响数字

3.3 V电源功耗: IO开关、Flash子系统和模拟子系统(数字部分),如下式所示。

$$I_{\text{ddext tot}} = I_{\text{ddext io}} + I_{\text{ddext flash}} + I_{\text{ddext ana}}$$

其中:

$$I_{\tiny DDEXT_IO/ANA}\left(mA\right) = \Sigma\left\{V_{\tiny DDEXT}\times C_{\tiny L}\,f/2\times (O\times TR)\times U\right\} - IO开关 电流$$

IO开关电流等于所有已使能外设的开关电流之和。对于每个外设,需考虑每个引脚的容性负载,单位 $F(C_L)$,工作频率,单位MHz (f),输出引脚数(O),每个引脚的切换比(TR),以及外设利用率(U)。

 $I_{DDEXT FLASH}(mA) = TBD$

处理器内部总功耗(IDD_INT)

处理器子系统的内部总功耗包括两个分量:

- 1. 静态功耗,包括漏电流
- 2. 动态功耗, 由每个时钟域的晶体管开关特性引起

许多工作条件也可能影响功耗,包括温度、电压、工作频 率和处理器活动等。下式描述内部功耗。

$$I_{\text{DDINT_TOT}} = I_{\text{DDINT_CCLK_DYN}} + I_{\text{DDINT_SCLK_DYN}} + I_{\text{DDINT_DMA_DR_DYN}} + \\ I_{\text{DDINT STATIC}}$$

I_{DDINT_DEEPSLEEP}是静态功耗分量中仅存的项。I_{DDINT_STATIC}是温度的函数(参见图20)。

有四个因素影响动态功耗。这些因素可大致分为三类:取决于应用的电流、时钟电流和数据传输电流。

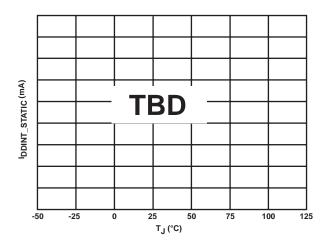


图20. 静态电流 - I_{DD DEEPSLEEP} (mA)

取决于应用的电流

取决于应用的电流包括内核时钟域中的动态电流。

内核时钟(CCLK)与活动比例因子(ASF)有关,它代表处理器内核和L1存储器上运行的应用程序代码(表24)。ASF与CCLK频率共同来计算这一部分功耗。

 $I_{DDINT CCLK DYN}$ (mA) = 待定 × f_{CCLK} (MHz) × ASF

表24. 活动比例因子(ASF)

I _{DD_INT} 电源矢量	ASF
I _{DD-PEAK}	待定
I _{DD-COREMARK} (典型)	待定
I _{DD-IDLE}	待定

时钟电流

动态时钟电流提供所有晶体管在时钟路径上开关的总功耗。各时钟域的功耗取决于工作频率和独特的比例因子。

$$I_{DDINT SCLK DYN}$$
 (mA) = TBD × f_{SCLK} (MHz)

数据传输电流

数据传输电流表示发送数据时的功耗。此电流以数据速率表示。将每个DMA与访问外设和L2/外部存储器的内核驱动数据速率(MB/s)相加,执行计算。然后,将此数值乘以系数。下式提供所有数据传输电流的估算值。

I_{DDINT DMA DR DYN} (mA) = 待定×数据速率(MB/s)

ADC/DAC/基准电压源/比较器规格 ADC规格 -ADC0、ADC1、ADC2

典型值假定 $V_{\text{DD_ANA0}}$ 、 $V_{\text{DD_ANA1}}$ 、 $V_{\text{DD_COMP}} = 3.3 \text{ V}$, $V_{\text{REF}} = 2.5 \text{ V}$, $T_{\text{J}} = 25 ^{\circ}\text{C}$ 。

参数	最小值	典型值	最大值	单位	测试条件/注释
模拟输入					ADC_VIN_XX(7 + 24路模拟输入)
要求					
单端输入电压范围	0		3.0	V	
特性					
直流漏电流		±0.01	±1	μΑ	
输入电阻		100 K		Ω	
输入电容		待定		pF	条件1=采样
		待定		pF	条件2=保持

ADC规格 -ADC1、ADC2

典型值假定 V_{DD_ANA0} 、 V_{DD_ANA1} 、 $V_{DD_COMP} = 3.3~V$ 、 $V_{REF} = 2.5~V$ 、 $T_J = 25^{\circ}C_{\circ}$

参数	最小值	典型值	最大值	单位	测试条件/注释
动态性能					ADC1、ADC2 – ADC_VIN_AX、BX、CX (24路模拟输入)
吞吐速率			6/2.2	样本/μs	LQFP封装
吞吐速率			6/1.4	样本/µs	BGA封装
交流精度					ADC1、ADC2 - ADC_VIN_AX、BX、CX (24路模拟输入)
特性					
信噪比(SNR)		81		dB	
信纳比(SINAD)		80.5		dB	
总谐波失真(THD)		-94		dB	
无杂散动态范围(SFDR)		待定		dB	
动态范围		81		dB	
有效位数(ENOB)		13		位	
通道间隔离		-95		dB	指向相同ADC的任意通道对。
					选定通道 = 1 kHz,
					未选定通道 = 10 kHz
交调失真(IMD)					$f_{IN1} = 1 \text{ kHz}, f_{IN2} = 10 \text{ kHz}$
二阶项		待定		dB	
三阶项		待定		dB	
静态性能					
直流精度					ADC1、ADC2 – ADC_VIN_AX、BX、CX (24路模拟输入)
特性					
分辨率		16		位	无失码,自然二进制编码
差分非线性(DNL)	-0.99		+1.0	LSB	
积分非线性(INL)		±4		LSB	
失调误差		待定		LSB	
失调误差匹配		待定		LSB	
失调温漂		待定		ppm/°C	

参数	最小值	典型值	最大值	单位	测试条件/注释
增益误差		待定		LSB	
增益误差匹配		待定		LSB	
增益温漂		待定		ppm/°C	

ADC规格 -ADC0

典型值假定 $V_{\text{DD_ANA0}}$ 、 $V_{\text{DD_ANA1}}$ 、 $V_{\text{DD_COMP}} = 3.3 \text{ V}$ 、 $V_{\text{REF}} = 2.5 \text{ V}$ 、 $T_{\text{J}} = 25 ^{\circ}\text{C}$ 。

参数	最小值	典型值	最大值	单位	测试条件/注释
动态性能					ADC0 - ADC_VIN_DX(7路模拟输入)
吞吐速率					
转换速率			2	MSPS	
交流精度					ADC0 - ADC_VIN_DX(7路模拟输入)
特性					
信噪比(SNR)		69		dB	
信纳比(SINAD)		68.5		dB	
总谐波失真(THD)		-82		dB	
无杂散动态范围(SFDR)		83		dB	
动态范围		待定		dB	$V_{IN} = V_{REF}/2 (DC)$
有效位数(ENOB)		9.8		位	
通道间隔离		-95		dB	指向相同ADC的任意通道对。
					选定通道 = 1 kHz,
					未选定通道 = 10 kHz
交调失真(IMD)					$f_{IN1} = 1 \text{ kHz}, f_{IN2} = 10 \text{ kHz}$
二阶项		待定		dB	
三阶项		待定		dB	
静态性能					
直流精度					ADC0 - ADC_VIN_DX(7路模拟输入)
特性					
分辨率		14		位	无失码,自然二进制编码
差分非线性(DNL)	-0.99		+1.0	LSB	
积分非线性(INL)		待定		LSB	
失调误差		待定		LSB	
失调误差匹配		待定		LSB	通道间,一个ADC内
失调温漂		待定		ppm/°C	
增益误差		待定		LSB	
增益误差匹配		待定		LSB	
增益温漂		待定		ppm/°C	

DAC技术规格

典型值假定 $V_{\text{DD_ANA0}}$ 、 $V_{\text{DD_ANA1}}$ 、 $V_{\text{DD_COMP}} = 3.3 \text{ V}$, $V_{\text{REF}} = 2.5 \text{ V}$, $T_{\text{J}} = 25 ^{\circ}\text{C}$ 。

参数	最小值	典型值	最大值	单位	测试条件/注释
模拟输出					ADC0 - ADC_VIN_DX(7路模拟输入)
特性					
输出电压范围		0至3.0		V	
输出阻抗		待定		Ω	正常工作
		待定		Ω	DAC(满量程)
		待定		Ω	DAC(零电平)
更新速率			待定	kHz	
至GND的短路电流		30		mA	DAC(满量程)
至V _{DD} 的短路电流		待定		mA	DAC(零电平)
静态性能					
直流精度					$RL = 500 \Omega$, $CL = 100 pF$
特性					
分辨率		12		位	
差分非线性(DNL)		±0.99		LSB	保证单调性
积分非线性(INL)		±2		LSB	
失调误差		待定		mV	代码(待定)处测量
失调误差匹配		待定		% FSR	满量程的%,代码0xFFF处测量

基准电压源规格

典型值假定 $V_{\text{DD_ANA0}}$ 、 $V_{\text{DD_ANA1}}$ 、 $V_{\text{DD_COMP}}$ = 3.3 V , V_{REF} = 2.5 V , T_{J} = 25°C 。

参数	最小值	典型值	最大值	单位	测试条件/注释
基准电压源(输出模式)					V_{REF0} , V_{REF1} , V_{REF2}
特性					
输出电压		2.5		V	
输出阻抗		0.5	1.0	Ω	
温度系数		15		ppm/°C	T _{JUNCTION} = −40°C至+125°C

比较器规格

典型值假定 $V_{\text{DD_ANA0}}$ 、 $V_{\text{DD_ANA1}}$ 、 $V_{\text{DD_COMP}} = 3.3 \text{ V}$ 、 $V_{\text{REF}} = 2.5 \text{ V}$ 、 $T_{\text{J}} = 25 ^{\circ}\text{C}$ 。

参数	最小值	典型值	最大值	单位	测试条件/注释
比较器输入					ADC_VIN_A0, ADC_VIN_B0, ADC_VIN_C0
要求					
输入范围	0		3	V	0.075 V以下的信号视作始终高于最低阈值,2.925 V以上的信号视作始终低于最高阈值。该特性支持通过将阈值分别编程至0V或3V,从而选择性禁用比较器。
特性					
传播延迟			200	ns	
低电压输出			0.4	V	I _{oL} = 5 mA(开漏)
比较器间匹配			14	mV	COMP_OUTA, B, C
迟滞		0.3%		%	
失调			TBD	mV	

ADC典型性能参数

除非另有说明, V_{DD_ANA} = 3.3 V, V_{REF} = 2.5 V, $T_{JUNCTION}$ = 25°C。1

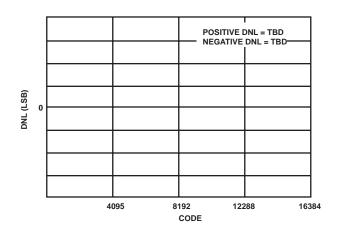


图21. DNL与代码的关系

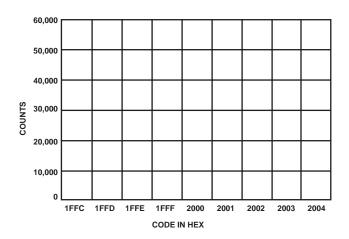


图22. 直流输入直方图(码中心、内部基准源)

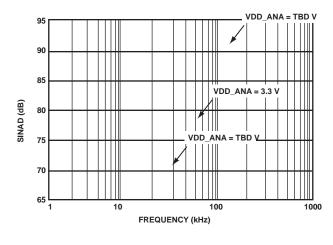


图23. SINAD与频率的关系(0 V至2.5 V)

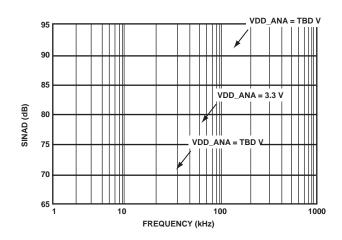


图24. SINAD与频率的关系(0 V至1.25 V)

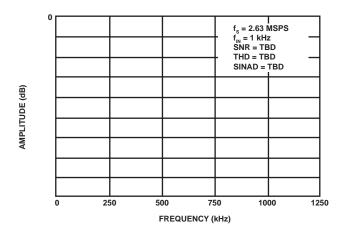


图25. FFT曲线(内部基准源)

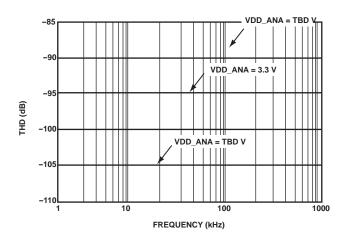


图26. THD与频率的关系(0 V至2.5 V)

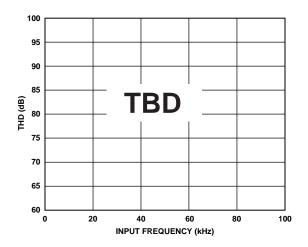


图27. THD与频率的关系(0 V至1.25 V)

DAC典型性能参数

除非另有说明, V_{DD_ANA} = 3.3 V, V_{REF} = 2.5 V, $T_{JUNCTION}$ = 25°C。

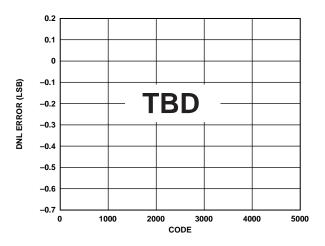


图28. DAC DNL误差与代码的关系

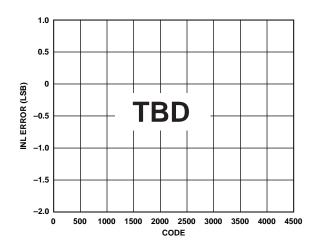


图29. DAC INL误差与代码的关系

闪存规格

待定

绝对最大额定值

超出表中所列值可能会导致器件永久性损坏。这只是额定最值,不表示在这些条件下或者在任何其他超出本技术规范操作章节中所示规格的条件下,器件能够正常工作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

参数	额定值
内部电源电压(V _{DD_INT})	-0.33 V至+1.32 V
外部(I/O)电源电压(V _{DD_EXT}) ¹	-0.33 V至+3.63 V
外部(I/O)电源电压(V _{DD_EXT}) ²	V _{DD_INT} -0.5 V至+3.63 V
模拟电源电压(V _{DD_ANA})	-0.33 V至+3.63 V
数字输入电压 ³	-0.33 V至+3.63 V
TWI数字输入电压 ^{3,4}	-0.33 V至+5.50 V
数字输出电压摆幅	-0.33 V至V _{DD_EXT} + 0.5V
模拟输入电压 ⁵	-0.33 V至+3.63 V
IOH/IOL各信号电流 ⁶	待定
存储温度范围	-65°C至+150°C
偏置时的结温	+125° C

¹ V_{DD_INT} = 0 V时适用。

ESD灵敏度

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高 能量ESD时,器件可能会损坏。因此,应当采取适当 的ESD防范措施,以避免器件性能下降或功能丧失。

封装信息

图30和表25所示的信息提供了封装标识的详情。产品供货的完整列表请参阅第115页的预发布产品。

表25. 封装标识信息

标识码	温度范围
ADSP-CM41xF	产品名称1
t	温度范围
рр	封装类型
Z	符合RoHS标准
СС	参见订购指南
VVVVV.X	组装批次代码
n	产品版本
yyww	日期代码

¹ 有关已供货产品,参见第115页的预发布产品。

图30. 产品封装信息1

² V_{DD_INT} > 0 V时适用。

 $^{^3}$ 仅当 V_{DD_EXT} 在规格范围内时适用。当 V_{DD_EXT} 超出规格要求时,该范围为 $V_{DD_EXT}\pm0.2\,V_o$

⁴ 适用于引脚TWI_SCL和TWI_SDA。

 $^{^5}$ 仅当 V_{DD_ANA} 在规格范围内时适用。当 V_{DD_ANA} 超出规格要求时,该范围为 V_{DD_ANA} ± 0.2 V_{DD_ANA}

⁶ 限值仅适用于恒流负载。 瞬态开关电流允许超过此数值。

¹ 具体标识取决于封装类型。

时序规格

规格可能更改, 恕不另行通知。

时钟和复位时序

表26、表27和图31显示了与时钟产生单元(CGU)和复位控制单元(RCU)相关的时钟和复位操作。根据表23 "时钟相关工作条件"中的CCLK、SCLK和OCLK时序规格,SYS_CLKIN与时钟乘法器的组合不得选择超过处理器最大指令速率的时钟速率。

表26. 时钟和复位时序(SYS_CLKINO)

所有规格均基于仿真数据,如有更改,恕不另行通知。

*** 13**** 11 *** 2				
参数		最小值	最大值	单位
时序要求				
f_{CKIN0}	SYS_CLKINO频率(使用晶振) ^{1,2,3}	20	50	MHz
f_{CKIN0}	SYS_CLKINO频率(使用晶振) ^{1,2,3}	20	60	MHz
t _{CKINLO}	SYS_CLKIN0低电平脉冲 ¹	TBD		ns
t _{CKINH0}	SYS_CLKINO高电平脉冲 ¹	TBD		ns
t _{WRST}	SYS_HWRST 置位低电平脉冲宽度4	$11 \times t_{CKIN}$		ns

¹ 适用于PLL旁路模式和PLL非旁路模式。

⁴上电序列完成之后应用。上电复位时序参见表28和图32。

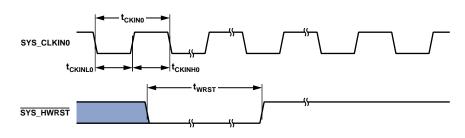


图31. 时钟和复位时序

表27. 时钟和复位时序(SYS_CLKIN1)

所有规格均基于仿真数据,如有更改,恕不另行通知。							
参数		最小值	最大值	单位			
时序要求							
f _{CKIN1}	SYS_CLKIN1频率(使用晶振)	12	30	MHz			

² t_{CKINO}周期等于1/f_{CKINO}(见图31)。

³ 如果CGU_CTL.DF位置1,则fCKIN0最小值规格为40 MHz。

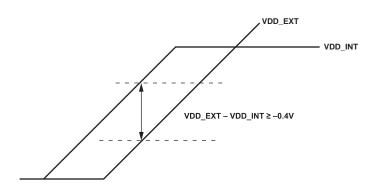
上电复位时序

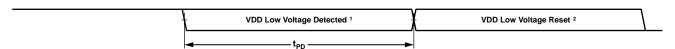
表28和图32显示了与时钟产生单元(CGU)和复位控制单元(RCU)相关的电源启动与处理器复位时序之间的关系。图32中, $V_{DD_SUPPLIES}$ 为 V_{DD_INT} 、 V_{DD_EXT} 、 V_{DD_ANA0} 和 V_{DD_ANA1} 。

表28. 上电复位时序

所有规格均基于仿真数据,如有更改,恕不另行通知。			
参数	最小值	最大值	单位
时序要求			
t _{RST_IN_PWR} SYS_HWRST和JTG_TRST在V _{DD_INT} 、V _{DD_EXT} 、V _{DD_ANA0} 、V _{DD_ANA1} 和SYS_CLKIN稳定且处于规格范围内之后解除置位	11 × t _{CKIN}		ns

图32. 上电复位时序




图33. 上电时序

关断时序

关断时序的要求确保Flash模块可正确关断。电压监控单元(VMU)可在 V_{DD_EXT} 或 V_{DD_INT} 到达低压检测阈值时开始Flash关断。一旦触发低电压检测, V_{DD_EXT} 和 V_{DD_INT} 电源就都必须保持在低压复位阈值以上并持续一段时间,以便Flash完成关断过程。

表29. 掉电复位时序

所有规格均	9基于仿真数据,如有更改,恕不另行通知。			_
参数		最小值	最大值	单位
时序要求				
t_{PD}	低压检测和低压复位之间的掉电时间	22		μs

¹The VDD Low Voltage Detected state is entered when one of the two Low Voltage Detection thresholds is triggered: (a) if VDD_EXT drops below VLVDEXT or (b) if VDD_INT drops below VLVDINT. ²The VDD Low Voltage Reset state is entered when one of the two Low Voltage Reset thresholds

图34. 掉电时序

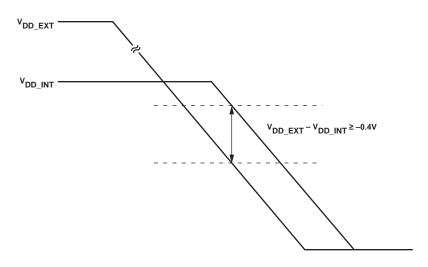


图35. 掉电 V_{DD_EXT} 和 V_{DD_INT} 关系

The VDD Low Voltage Reset state is entered when one of the two Low Voltage Reset thresholds is triggered: (a) if VDD_EXT drops below VLVREXT or (b) if VDD_INT drops below VLVRINT.

异步读取

表30和图36显示了与静态存储器控制器(SMC)相关的异步存储器读取时序。

表30. 异步存储器读取(BxMODE = b#00)

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
时序要求				
t _{SDATARE}	SMC0_ARE高电平之前数据建立时间	10.8		ns
t _{HDATARE}	SMC0_ARE高电平之后数据保持时间	0		ns
t _{DARDYARE}	SMC0_ARE低电平之后SMC0_ARDY有效时间 ^{1,2}		$(RAT-2.5)\times t_{SCLK}-17.5$	ns
开关特性				
t _{ADDRARE}	SMC0_AMSx低电平之前SMC0_Ax/SMC0_ARE 置位时间 ³	$(PREST + RST + PREAT) \times t_{SCLK} - 3$		ns
t _{AOEARE}	SMC0_ARE 低电平之前的SMC0_ARE置位时间	$(RST + PREAT) \times t_{SCLK} - 3$		ns
t _{HARE}	SMC0_ARE高电平5之后输出4保持时间	$RHT \times t_{SCLK} - 2$		ns
t _{WARE}	SMC0_ARE 有效低电平宽度 ⁶	$RAT \times t_{SCLK} - 2$		ns
t _{DAREARDY}	SMCO_ARDY置位之后的 SMCO_ARE高电平延迟时间 ¹	$2.5 \times t_{SCLK}$	$3.5 \times t_{SCLK} + 17.5$	ns

¹ SMC0_BxCTL.ARDYEN位 = 1。

⁶ SMC0_BxCTL.ARDYEN位 = 0。

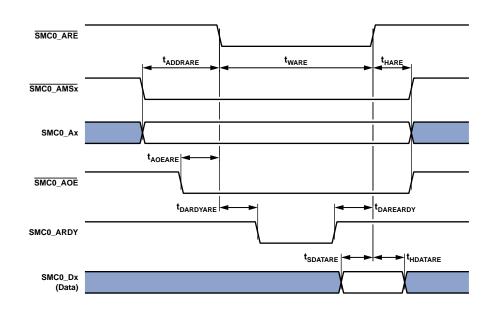


图36. 异步读操作

² RAT值用SMC_BxTIM.RAT位设置。

³ PREST、RST和PREAT值用SMC_BxETIM.PREST位、SMC_BxTIM.RST位和SMC_BxETIM.PREAT位设置。

⁴ 输出信号为SMC0_Ax、SMC0_AMS、SMC0_AOE。

⁵ RHT值用SMC_BxTIM.RHT位设置。

异步闪存读取

 $t_{\text{WARE}}^{\phantom{\text{E}}6}$

表31和图37显示了与静态存储器控制器(SMC)相关的异步闪存读取时序。

SMC0_ARE 有效低电平宽度⁷

表31. 异步闪存读取

所有规格均	所有规格均基于仿真数据,如有更改,恕不另行通知。				
参数		最小值	最大值	单位	
开关特性					
t _{AMSADV}	SMC0_AMSx低电平之前SMC0_Ax(地址)/SMC0_AOE置位时间 ¹	$PREST \times t_{SCLK} - 2$		ns	
t_{WADV}	SMC0_AOE 有效低电平宽度 ²	$RST \times t_{SCLK} - 3$		ns	
t _{DADVARE}	SMC0_ARE 从SMC0_AOE高电平到低电平的延迟时间3	$PREAT \times t_{SCLK} - 3$		ns	
t _{HARE}	SMC0_ARE高电平⁵之后输出⁴保持时间	$RHT \times t_{SCLK} - 2$		ns	

 $RAT \times t_{SCLK} - 2$

ns

⁷ RAT值用SMC_BxTIM.RAT位设置。

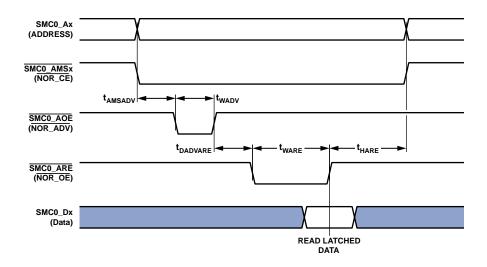


图37. 异步闪存读取

¹ PREST值用SMC_BxETIM.PREST位设置。

² RST值用SMC_BxTIM.RST位设置。

³ PREAT值用SMC_BxETIM.PREAT位设置。

⁴ 输出信号为SMC0_Ax、SMC0_AMSx。

⁵ RHT值用SMC_BxTIM.RHT位设置。

⁶ SMC0_BxCTL.ARDYEN位 = 0。

异步页面模式读取

表32和图38显示了与静态存储器控制器(SMC)相关的异步存储器页面模式读取时序。

表32. 异步页面模式读操作

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
开关特息	性			
t _{AV}	第一个地址最小宽度的SMC0_Ax(地址)有效时间 ¹	$(PREST + RST + PREAT + RAT) \times t_{SCLK} - 2$		ns
t _{AV1}	后续SMC0_Ax(地址)最小宽度的SMC0_Ax(地址) 有效时间	PGWS \times t _{SCLK} – 2		ns
t _{WADV}	SMC0_AOE 有效低电平宽度 ²	$RST \times t_{SCLK} - 3$		ns
t _{HARE}	SMC0_ARE高电平4之后输出3保持时间	$RHT \times t_{SCLK} - 2$		ns
t _{ware} 5	SMCO_ARE 有效低电平宽度 ⁶	$RAT \times t_{SCLK} - 2$		ns

¹ PREST、RST、PREAT和RAT值用SMC_BxETIM.PREST位、SMC_BxTIM.RST位、SMC_BxETIM.PREAT位和SMC_BxTIM.RAT位设置。

⁶ RAT值用SMC_BxTIM.RAT位设置。

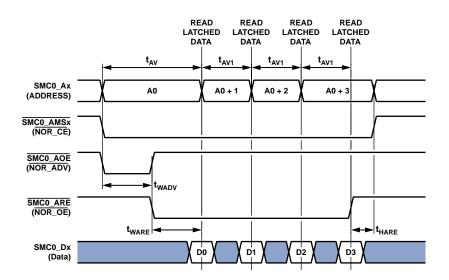


图38. 异步页面模式读操作

² RST值用SMC_BxTIM.RST位设置。

³ 输出信号为SMC0_Ax、SMC0_AMSx。

⁴ RHT值用SMC_BxTIM.RHT位设置。

⁵ SMC_BxCTL.ARDYEN位 = 0。

异步写入

表33和图39显示了与静态存储器控制器(SMC)相关的异步存储器写入时序。

表33. 异步存储器写入(BxMODE = b#00)

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
时序要求				
t _{DARDYAWE} 1	SMC0_AWE低电平之后SMC0_ARDY有效时间 ²		$(WAT - 2.5) \times t_{SCLK} - 17.5$	ns
开关特性				
t_{ENDAT}	SMC0_AMSx置位之后数据使能时间	-3		ns
t_{DDAT}	SMC0_AMSx解除置位之后数据禁用时间		4	ns
t _{AMSAWE}	SMC0_AMSx低电平之前SMC0_Ax/SMC0_AWE置位 时间 ³	$(PREST + WST + PREAT) \times t_{SCLK} - 6.4$		ns
t _{HAWE}	MC0_AWE高电平⁵之后的输出⁴保持时间	WHT \times t _{SCLK} $-$ 2		ns
t _{WAWE} ⁶	SMC0_AWE 有效低电平宽度 ²	WAT \times t _{SCLK} $-$ 2		ns
t_{DAWEARDY}^{1}	SMC0_AWE SMC0_ARDY置位之后高电平延迟时间	2.5×t _{SCLK}	$3.5 \times t_{SCLK} + 17.5$	ns

¹ SMC_BxCTL.ARDYEN位 = 1。

⁶ SMC_BxCTL.ARDYEN位 = 0。

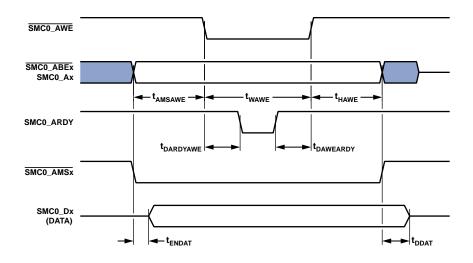


图39. 异步写操作

² WAT值用SMC_BxTIM.WAT位设置。

³ PREST、WST、PREAT值用SMC_BxETIM.PREST位、SMC_BxTIM.WST位、SMC_BxETIM.PREAT位和SMC_BxTIM.RAT位设置。

⁴ 输出信号为DATA、SMC0_Ax、SMC0_AMSx、SMC0_ABEx。

⁵ WHT值用SMC_BxTIM.WHT位设置。

单位

异步闪存写入

表34和图40显示了与静态存储器控制器(SMC)相关的异步闪存写入时序。

表34. 异步闪存写入

<u>所有规格均基于仿具数据,如有更</u> 改,恕不另行通知。		
参数	最小值	最大值
开关特性		•

开关特性			
t_{AMSADV}	SMC0_AMSx低电平之前SMC0_Ax/SMC0_AOE置位时间 ¹	$PREST \times t_{SCLK} - 2$	ns
t _{DADVAWE}	从SMC0_AOE高电平开始的SMC0_AWE低电平延迟时间2	$PREAT \times t_{SCLK} - 6.2$	ns
t_{WADV}	SMC0_AOE 有效低电平宽度 ³	WST \times t _{SCLK} $-$ 3	ns
t_{HAWE}	SMC0_AWE高电平5之后输出4保持时间	WHT \times t _{SCLK} -2	ns
t _{WAWE} ⁶		WAT \times t _{SCLK} $-$ 2	ns

- ¹ PREST值用SMC_BxETIM.PREST位设置。
- ² PREAT值用SMC_BxETIM.PREAT位设置。
- ³ WST值用SMC_BxTIM.WST位设置。
- ⁴ 输出信号为DATA、SMC0_Ax、SMC0_AMSx。
- ⁵ WHT值用SMC_BxTIM.WHT位设置。
- 6 SMC_BxCTL.ARDYEN位 = 0_{\circ}
- ⁷ WAT值用SMC_BxTIM.WAT位设置。

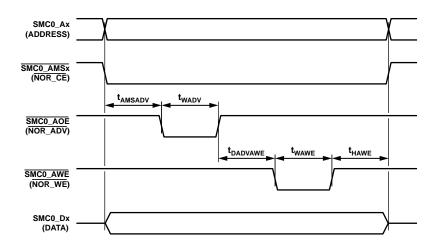


图40. 异步闪存写入

所有访问

表35给出的时序适用于与静态存储器控制器(SMC)相关的所有存储器访问。

表35. 所有访问

所有规格均基于	·仿真数据,如有更改,恕不另行通知。			
参数		最小值	最大值	单位
开关特性				
t _{TURN}	SMC0_AMSx 无效宽度	$(IT + TT) \times t_{SCLK} - 2$		ns

串行端口

为确定在时钟速度n时两个器件之间的串行端口(SPORT)通信是否可行,必须确认以下规格:1)帧同步延迟和帧同步建立/保持;2)数据延迟和数据建立与保持;3)串行时钟(SPT_CLK)宽度。在图41中,SPT_CLK的上升沿或下降沿(外部或内部)可用作有效采样沿。

若通过外部产生,则SPORT时钟称为f_{sptClkEXT}:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

若通过内部产生,则编程SPORT时钟(f_{SPTCLKPROG})频率(单位:MHz)由下式确定;其中,CLKDIV是SPORT_DIV寄存器中的字段,设置范围为0至65,535:

$$f_{SPTCLKPROG} = \frac{f_{SCLK1}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

表36. 串行端口—外部时钟

所有规格均基于仿真数据,如有更改,恕不另行通知

参数		最小值	最大值	单位
时序要求				
t_{SFSE}	SPT_CLK之前帧同步建立时间	2		ns
	(发送或接收模式下外部产生的帧同步)1			
t _{HFSE}	SPT_CLK之后帧同步保持时间	2.7		ns
	(发送或接收模式下外部产生的帧同步)1			
t _{SDRE}	接收SPT_CLK之前接收数据建立时间 ¹	2		ns
t _{HDRE}	SPT_CLK之后接收数据保持时间 ¹	2.7		ns
t _{SCLKW}	SPT_CLK宽度 ²	$0.5 \times t_{SPTCLKEXT} - 1$		ns
t _{SPTCLK}	SPT_CLK周期 ²	t _{SPTCLKEXT} – 1		ns
开关特性				
t _{DFSE}	SPT_CLK之后帧同步延迟时间		14.5	ns
	(发送或接收模式下内部产生的帧同步)3			
t _{HOFSE}	SPT_CLK之后帧同步保持时间	2		ns
	(发送或接收模式下内部产生的帧同步)3			
t _{DDTE}	发送SPT_CLK之后发送数据延迟时间 ³		15	ns
t _{HDTE}	发送SPT_CLK之后发送数据保持时间 ³	2		ns

¹以采样沿为基准。

 $^{^2}$ 本规格表示容许外部SPT_CLK上占空比变化或抖动所导致的最小瞬时宽度或周期。对于外部SPT_CLK的最大频率,参见表23"时钟相关工作条件"中的 $f_{ ext{SPT(LIEXT)}}$ 规格部分。

³ 以驱动沿为基准。

表37. 串行端口一内部时钟

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
时序要求				
t _{SFSI}	SPT_CLK之前帧同步建立时间	14		ns
	(发送或接收模式下外部产生的帧同步)1			
t _{HFSI}	SPT_CLK之后帧同步保持时间	-0.5		ns
	(发送或接收模式下外部产生的帧同步)1			
t _{SDRI}	SPT_CLK之前接收数据建立时间 ¹	4		ns
t _{HDRI}	SPT_CLK之后接收数据保持时间 ¹	1.5		ns
开关特性				
t _{DFSI}	SPT_CLK之后帧同步延迟时间(内部生成的帧同步为发送		3.5	ns
	或接收模式)2			
t _{HOFSI}	SPT_CLK之后帧同步保持时间(内部生成的帧同步为发送	-1.5		ns
	或接收模式)2			
t _{DDTI}	SPT_CLK之后发送数据延迟时间 ²		3.5	ns
t _{HDTI}	SPT_CLK之后发送数据保持时间 ²	-1.5		ns
t _{SCLKIW}	SPT_CLK宽度 ³	$0.5 \times t_{SPTCLKPROG} - 1$		ns
t _{SPTCLK}	SPT_CLK周期 ³	t _{SPTCLKPROG} – 1		ns

¹ 以采样沿为基准。

² 以驱动沿为基准。

 $^{^3}$ 可供 $f_{\text{SPTCLKPROG}}$ 编程的最小周期详细情况,参见表23"时钟相关工作条件"。

表38. 串行端口—使能和三态

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
开关特性				
t _{DDTEN}	自外部发送SPT_CLK起的数据使能时间 ¹	1		ns
t _{DDTTE}	自外部发送SPT_CLK起的数据禁用时间 ¹		14	ns
t _{DDTIN}	自内部发送SPT_CLK起的数据使能时间 ¹	-1		ns
t _{DDTTI}	自内部发送SPT_CLK起的数据禁用时间 ¹		2.8	ns

¹ 以驱动沿为基准。

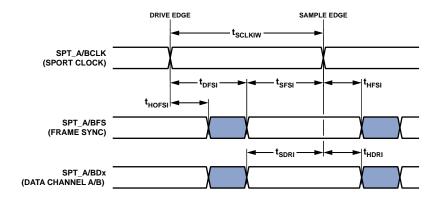


图41. 串行端口-数据接收/内部时钟

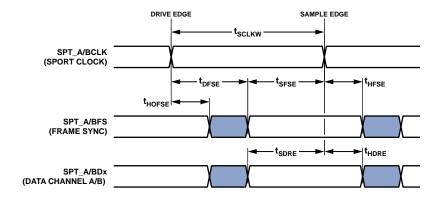


图42. 串行端口—数据接收/外部时钟

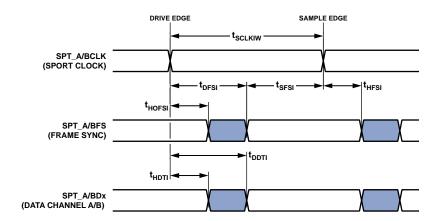


图43. 串行端口-数据发送/内部时钟

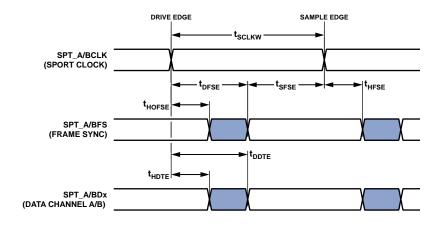


图44. 串行端口-数据发送/外部时钟

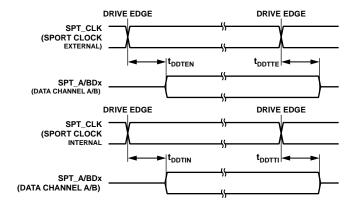


图45. 串行端口—使能和三态

SPT_TDV输出信号在SPORT多通道模式下有效。在发送时隙(通过活动通道选择寄存器使能),SPT_TDV置位以便与外部器件通信。

表39. 串行端口—发送数据有效(TDV)

所有规格均基于仿真数据,	加有更改	如不另行通知
刀 百岁:15岁本 1 刀鼻或垢,		がふりフコーレサムロ。

111 E 2010 - 20	仍且然们为至于历典数据,对自义表,心中为自造地。				
参数		最小值	最大值	单位	
开关特性					
t_{DRDVEN}	自外部时钟驱动沿起的数据有效使能延迟时间1	1		ns	
t_{DFDVEN}	自外部时钟驱动沿起的数据有效禁用延迟时间 ¹		14	ns	
t _{DRDVIN}	自内部时钟驱动沿起的数据有效使能延迟时间1	-1		ns	
t _{DFDVIN}	自内部时钟驱动沿起的数据有效禁用延迟时间1		3.5	ns	

¹ 以驱动沿为基准。

表40. 串行端口一外部晚帧同步

所有规格均基	所有规格均基于仿真数据,如有更改,恕不另行通知。				
参数		最小值	最大值	单位	
开关特性					
t _{DDTLFSE}	自晚外部发送帧同步或外部接收帧同步(MCE = 1、MFD = 0)起的数据和数据有效使能延迟 ¹		15	ns	
t _{DDTENFS}	数据使能时间(MCE = 1、MFD = 0) ¹	0.5		ns	

 $^{^{1}}$ t_{DDTLFSE} 和 t_{DDTENES} 参数适用于左对齐和标准串行模式,而且MCE = 1、MFD = 0。

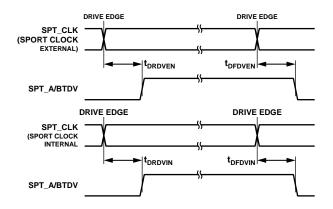


图46. 串行端口-发送数据有效的内部和外部时钟

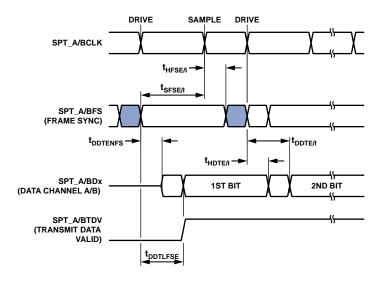


图47. 外部晚帧同步

串行外设接口(SPI)端口一主机时序

表41和图48描述串行外设接口(SPI)端口主机操作。若通过内部产生,则已编程SPI时钟(f_{SPICLKPROG})频率(单位:MHz)由下式确定;其中,BAUD是SPI_CLK寄存器中的字段,设置范围为0至65,535:

$$f_{SPICLKPROG} = \frac{f_{SCLK}}{(BAUD+1)}$$

$$t_{SPICLKPROG} = \frac{1}{f_{SPICLKPROG}}$$

请注意:

- · 在双通道模式数据发送下, SPI_MISO信号也是输出。
- 在四通道模式数据发送下, SPI_MISO、SPI_D2和SPI_D3信号也是输出。
- 在双通道模式数据接收下, SPI_MOSI信号也是输入。
- 在四通道模式数据接收下, SPI_MOSI、SPI_D2和SPI_D3信号也是输入。

表41. 串行外设接口(SPI)端口—主机时序

所有规格均基	所有规格均基于仿真数据,如有更改,恕不另行通知。				
参数		最小值	最大值	单位	
时序要求					
t _{SSPIDM}	数据输入有效到SPI_CLK边沿(数据输入建立)	3.75		ns	
t _{HSPIDM}	SPI_CLK采样沿到数据输入无效	1.3		ns	
开关特性					
t_{SDSCIM}	SPI_SEL 低电平到第一个SPI_CLK边沿(CPHA = 1)1	[t _{SCLK} - 2或[18]		ns	
	SPI_SEL 低电平到第一个SPI_CLK边沿(CPHA = 0)1	[1.5×t _{SCLK} -2或[13]		ns	
t _{SPICHM}	SPI_CLK高电平周期 ²	$0.5 \times t_{SPICLKPROG} - 1$		ns	
t _{SPICLM}	SPI_CLK低电平周期 ²	$0.5 \times t_{SPICLKPROG} - 1$		ns	
t _{SPICLK}	SPI_CLK周期 ²	t _{SPICLKPROG} – 1		ns	
t_{HDSM}	最后一个SPI_CLK边沿到SPI_SEL高电平(CPHA = 1)1	[1.5×t _{SCLK} -2]或[13]		ns	
	最后一个SPI_CLK边沿到SPI_SEL高电平(CPHA = 0)1	[t _{SCLK} -2]或[18]		ns	
t _{SPITDM}	顺序传输延迟 ^{1,3}	[t _{SCLK} - 1]或[19]		ns	
t _{DDSPIDM}	SPI_CLK边沿到数据输出有效(数据输出延迟)		2.6	ns	
t _{HDSPIDM}	SPI_CLK边沿到数据输出无效(数据输出保持)	-1.5		ns	

¹以其中较大者为准。

 $^{^2}$ 针对 $t_{ ext{\tiny SPICLKPROG}}$ 可编程的最小周期详细情况,参见表23"时钟相关工作条件"。

³ 适用于STOP≥1的顺序模式。

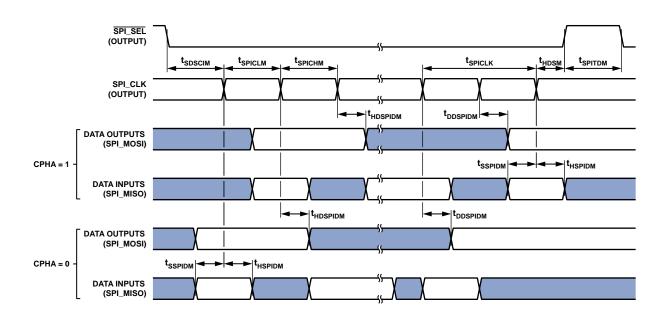


图48. 串行外设接口(SPI)端口-主机时序

串行外设接口(SPI)端口—从机时序

表42和图49描述串行外设接口(SPI)端口从机操作。请注意:

- 在双通道模式数据发送下, SPI_MOSI信号也是输出。
- 在四通道模式数据发送下, SPI_MOSI、SPI_D2和SPI_D3信号也是输出。
- · 在双通道模式数据接收下, SPI_MISO信号也是输入。
- 在四通道模式数据接收下, SPI_MISO、SPI_D2和SPI_D3信号也是输入。
- 在SPI从机模式下,从外部提供SPI时钟,称为f_{SPICLKEXT}:

$$t_{SPICLKEXT} = \frac{1}{f_{SPICLKEXT}}$$

表42. 串行外设接口(SPI)端口—从机时序

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
时序要求	₹			
t _{SPICHS}	SPI_CLK高电平周期 ¹	$0.5 \times t_{SPICLKEXT} - 1$		ns
t _{SPICLS}	SPI_CLK低电平周期 ¹	$0.5 \times t_{SPICLKEXT} - 1$		ns
t _{SPICLK}	SPI_CLK周期 ¹	t _{SPICLKEXT} – 1		ns
t _{HDS}	最后一个SPI_CLK边沿到SPI_SS未置位	5		ns
t _{SPITDS}	顺序传输延迟时间	t _{SPICLK} – 1		ns
t _{sDSCI}	SPI_SS 置位到第一个SPI_CLK边沿	10.5		ns
t _{SSPID}	数据输入有效到SPI_CLK边沿(数据输入建立)	2		ns
t _{HSPID}	SPI_CLK采样沿到数据输入无效	2		ns
开关特性	ŧ			
t _{DSOE}	SPI_SS 置位至数据输出有效	0	14	ns
t _{DSDHI}	SPI_SS 解除置位到数据高阻态	0	12.5	ns
t _{DDSPID}	SPI_CLK边沿到数据输出有效(数据输出延迟)		14	ns
t _{HDSPID}	SPI_CLK边沿到数据输出无效(数据输出保持)	0		ns

¹本规格表示外部SPI_CLK上容许占空比变化或抖动所导致的最小瞬时宽度或周期。对于外部SPI_CLK的最大频率,参见表23"时钟相关工作条件"中的 t_{SPICLKEXT}规格部分。

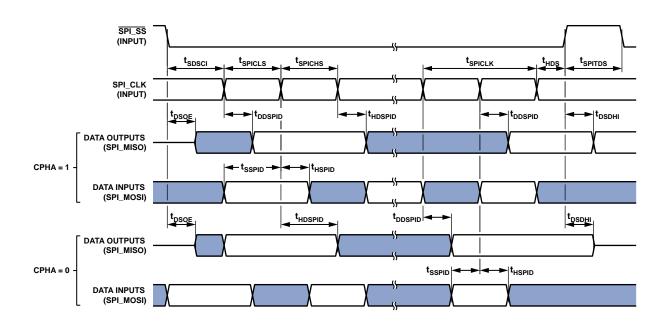


图49. 串行外设接口(SPI)端口--从机时序

串行外设接口(SPI)端口——SPI_RDY从机时序

表43. SPI端口——SPI_RDY从机时序

所有规格均	基于仿真数据,如有更改,恕不另行通知。			
参数		最小值	最大值	单位
开关特性				
t _{DSPISCKRDYSR}	自从机模式接收下最后输入SPI_CLK边沿起的SPI_RDY解除置位时间	$3 \times t_{SCLK}$	$4 \times t_{SCLK} + 10$	ns
t _{DSPISCKRDYST}	自从机模式发送下最后输入SPI_CLK边沿起的SPI_RDY解除置位时间	$4 \times t_{SCLK}$	$5 \times t_{SCLK} + 10$	ns

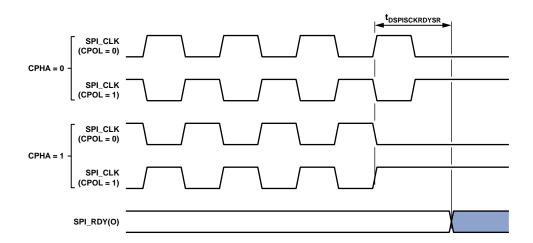


图50. 自从机模式接收下有效输入SPI_CLK边沿起的SPI_RDY解除置位时间(FCCH = 0)

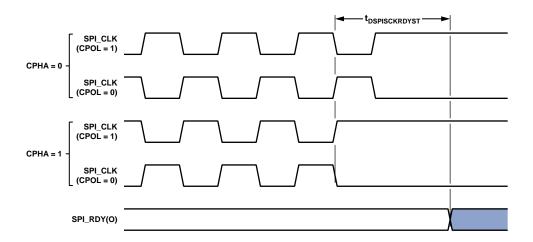


图51. 自从机模式发送下有效输入SPI_CLK边沿起的SPI_RDY解除置位时间(FCCH = 1)

串行外设接口(SPI)端口——开漏模式(ODM)时序

在图52和图53中,输出可能是SPI_MOSI SPI_MISO、SPI_D2和/或SPI_D3,具体取决于工作模式。

表44. SPI Port—ODM主机模式

所有规格均基于仿真数据,如有更改,恕不另行通知。				
参数		最小值	最大值	单位
开关特性				
$t_{\text{HDSPIODMM}}$	SPI_CLK边沿到高阻抗(从数据输出有效起)	-3		ns
t _{DDSPIODMM}	SPI_CLK边沿到数据输出有效(从高阻抗起)		6	ns

表45. SPI Port—ODM从机模式

所有规格均基于仿真数据,	如有更改.	恕不另行诵知

参数		最小值	最大值	单位
时序要求				
$t_{\text{HDSPIODMS}}$	SPI_CLK边沿到高阻抗(从数据输出有效起)	0		ns
t _{DDSPIODMS}	SPI_CLK边沿到数据输出有效(从高阻抗起)		11	ns

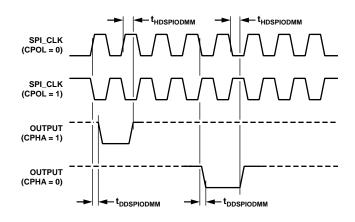


图52. ODM主机

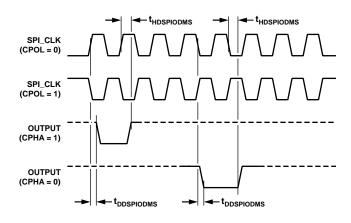


图53. ODM从机

串行外设接口(SPI)端口—SPI_RDY主机时序

SPI_RDY用来提供流量控制。CPOL和CPHA位在SPI_CTL中设置,而LEADX、LAGX和STOP在SPI_DLY中设置。

表46. SPI端口——SPI_RDY主机时序

所有规格均基于仿真数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
时序要求				
t _{SRDYSCKM0}	主机模式下SPI_RDY解除置位的最小建立时间从有效数据传输最后一个SPI_CLK边沿到模块后续传输的模式,其中,CPHA=0	$(2 + 2 \times BAUD^1) \times t_{SCLK} + 10$)	ns
t _{SRDYSCKM1}	主机模式下SPI_RDY解除置位的最小建立时间从有效数据传输最后一个SPI_CLK边沿到模块后续传输的模式,其中,CPHA=1	$(2 + 2 \times BAUD^1) \times t_{SCLK} + 10$)	ns
开关特性				
t _{SRDYSCKM}	从机置位SPI_RDY与新SPI传输第一个边沿之间的时间, 其中,CPHA/CPOL=0且BAUD=0(STOP,LEAD,LAG=0)	$4.5 \times t_{SCLK}$	$5.5 \times t_{SCLK} + 10$	ns
	从机置位SPI_RDY与新SPI传输第一个边沿之间的时间, 其中,CPHA/CPOL=1且BAUD=0(STOP,LEAD,LAG=0)	$4 \times t_{SCLK}$	$5 \times t_{SCLK} + 10$	ns
	从机置位SPI_RDY与新SPI传输第一个边沿之间的时间, 其中,CPHA/CPOL=0且BAUD≥1(STOP,LEAD,LAG=0)	$(1 + 1.5 \times BAUD^1) \times t_{SCLK}$	$(2+2.5\times BAUD^1)\times t_{SCLK}+10$	ns
	从机置位SPI_RDY与新SPI传输第一个边沿之间的时间, 其中,CPHA/CPOL=1且BAUD≥1(STOP, LEAD, LAG=0)	$(1 + 1 \times BAUD^1) \times t_{SCLK}$	$(2 + 2 \times BAUD^1) \times t_{SCLK} + 10$	ns

¹ BAUD值用SPI_CLK.BAUD位设置。BAUD值 = SPI_CLK.BAUD位 + 1。

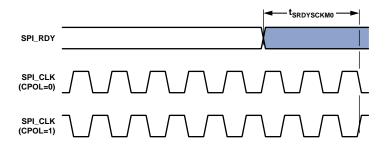


图54. SPI_CLK之前的SPI_RDY建立时间(CPHA = 0)

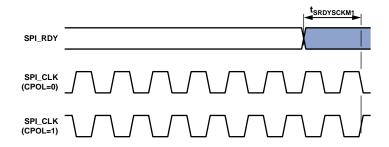


图55. SPI_CLK之前的SPI_RDY建立时间(CPHA = 1)

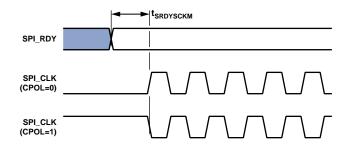


图56. SPI_RDY置位之后的SPI_CLK开关图(CPHA = x)

通用I/O端口时序

表47和图57描述与通用端口(PORT)相关的I/O时序。

表47. 通用I/O端口时序

所有规格均基干仿直数据.	加有更改	如不另行通知
川有观怜均本下17.具数据。	如14 史以.	烈小力1TI用划。

参数		最小值	最大值	单位
时序要求				
t _{WFI}	通用I/O端口引脚输入脉冲宽度	$2 \times t_{SCLK}$		ns

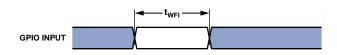


图57. 通用端口时序

GPIO定时器周期时序

表48、表49和图58描述与通用定时器(TIMER)相关的定时器过期操作。输入信号在宽度捕捉模式和外部时钟模式下是异步的,并具有(f_{SCLK}/4) MHz的绝对最大输入频率。宽度值为在TMx_TMRn_WIDTH寄存器中指定的定时器周期,范围为1至2³² – 1。 注意,若通过外部产生,则TMR时钟称为f_{TMRCLKEXT}:

$$t_{TMRCLKEXT} = \frac{1}{f_{TMRCLKEXT}}$$

表48. 定时器周期时序(内部模式)

所有规格均基于仿直数据,如有更改,恕不另行通知。

参数		最小值	最大值	单位
时序要求				
t_WL	定时器脉冲宽度输入低电平(用SCLK周期衡量) ¹	$2 \times t_{SCLK}$		ns
t_WH	定时器脉冲宽度输入高电平(用SCLK周期衡量) ¹	$2 \times t_{SCLK}$		ns
开关特性				
t _{HTO}	定时器脉冲宽度输出(测量单位为SCLK周期) ²	$t_{SCLK} \times WIDTH - 1.5$	$t_{SCLK} \times WIDTH + 1.5$	ns

¹最小脉冲宽度适用于宽度捕捉和外部时钟模式下的TMx信号。

² WIDTH指代TMRx_WIDTH寄存器中的值(可在1至2³² – 1范围内变化)。

表49. 定时器周期时序(外部模式)

所有规格均基于仿真数据,如有更改,恕不另行通知。 最小值 最大值 单位 时序要求 定时器脉冲宽度输入低电平(用EXT_CLK周期衡量)1 $2\times t_{\text{EXT_CLK}}$ ns t_WL 定时器脉冲宽度输入高电平(用EXT_CLK周期衡量)1 $2\times t_{\text{EXT_CLK}}$ ns t_{WH} 定时器外部时钟周期2 ns $t_{\text{EXT_CLK}}$ $t_{\text{TMRCLKEXT}}$ 开关特性 t_{HTO} 定时器脉冲宽度输出(测量单位为EXT_CLK周期)3 $t_{EXT_CLK} \times WIDTH - 1.5$ $t_{EXT_CLK} \times WIDTH + 1.5$ ns

- ¹ 最小脉冲宽度适用于宽度捕捉和外部时钟模式下的TMx信号。
- 2 本规格表示外部TMR_CLK上容许占空比变化或抖动所导致的最小瞬时宽度或周期。对于外部TMR_CLK的最大频率,参见表23"时钟相关工作条件"中的 $f_{\text{Tabelited}}$ 规格部分。
- ³ WIDTH指代TMRx_WIDTH寄存器中的值(可在1至232-1范围内变化)。

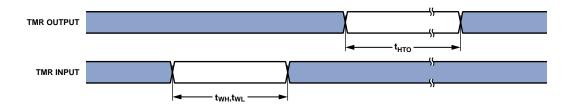


图58. 定时器周期时序

逻辑模块阵列(LBA)

LBA包含多个逻辑模块,可编程执行各种逻辑或算术功能。

表50. 逻辑模块阵列时序

所有规格均基于仿真数据,如有更改,恕不另行通知。					
参数		最小值	最大值	单位	
时序要求					
t _{WLBAI} (t宽度LBA In)	LBA输入脉冲宽度	待定(至少2×t _{SCLK})		ns	
开关特性					
t _{DLBAR} (t延迟LBA寄存模式)	输入转换后的输出延迟	待定	待定	ns	

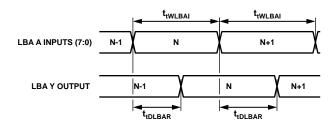


图59. 逻辑模块阵列寄存器输出模式

升/降计数器/旋转编码器时序

表51和图60描述与通用计数器(CNT)相关的时序。

表51. 升/降计数器/旋转编码器时序

所有规格均基干仿直数据.	加有更改	如不另行通知
川有双桁划苯丁川县数据.	with the following the first terms of terms of the first terms of	かなイトフフィールサスロ。

参数		最小值	最大值	单位
时序要求				
t _{WCOUNT}	升/降计数器/旋转编码器输入脉冲宽度	$2 \times t_{SCLK}$		ns

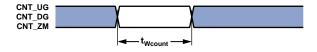


图60. 升/降计数器/旋转编码器时序

脉冲宽度调制器(PWM)时序

表52和图61描述与脉冲宽度调制器(PWM)相关的时序。

表52. PWM时序

所有规格	所有规格均基于仿真数据,如有更改,恕不另行通知。				
参数		最小值	最大值	单位	
时序要求					
t_{ES}	外部同步脉冲宽度	$2 \times t_{SCLK}$		ns	
开关特性	Ė				
t_{DODIS}	触发输入之后输出无效(关闭)时间1		17	ns	
t_DOE	外部同步之后的输出延迟 ^{1,2}	$2 \times t_{SCLK} + 5.5$	$5 \times t_{SCLK} + 14$	ns	

¹ PWM输出为: PWMx_AH、PWMx_AL、PWMx_BH、PWMx_BL、PWMx_CH、PWMx_DH、PWMx_DL和PWMx_CL。

² 当外部同步信号与外设时钟同步时,相对于外部同步信号与外设时钟异步时,输出出现所需要的时钟周期更少。有关更多信息,请参阅《ADSP-CM41x 微控制器硬件参考手册》。

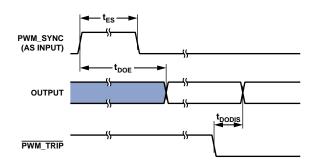


图61. PWM时序

脉冲宽度调制器(PWM)—增强精度模式时序

表53、表54和图62、图63描述增强精度脉冲宽度调制器(PWM)操作。

表53. PWM—增强精度模式,输出脉冲

所有规格均基于仿真数据,如有更改,恕不另行通知。				
参数 最小值 最大值 单位				
开关特性				
t _{HPWMW} HP-PWM输出脉冲宽度 ^{1,2}	待定	待定	ns	

¹ N是占空比寄存器的DUTY位域(粗调占空比)。m是HP占空比寄存器的ENHDIV(增强精度分频器位)值。

表54. PWM—增强精度模式,输出偏斜

所有规格均基于仿真数据,如有更改,恕不另行通知。			
参数	最小值	最大值	单位
开关特性			
t _{HPWMS} HP-PWM输出偏斜 ¹		待定	ns

¹ 同一个PWM单元(一个单元是PWMx,其中x=0、1、2)中,增强精度边沿放置的任意两个PWM通道(AH、AL、BH、BL、CH、CL、DH和DL)之间的输出边沿差。

图62. PWM增强精度模式时序,输出脉冲

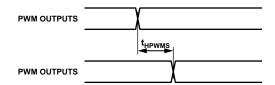


图63. PWM增强精度模式时序,输出偏斜

² 适用于50%占空比的个别PWM通道。同一单元内的其他PWM通道同时切换。没有其他GPIO引脚会切换。

通用异步接收器-发送器(UART)端口一接收和发送时序

通用异步接收器-发送器(UART)端口接收和发送操作详见《搭载ARM Cortex-M4的ADSP-CM41x混合信号控制处理器硬件参考手册》。

控制器区域网络(CAN)接口

控制器区域网络(CAN)接口时序详见《搭载ARM Cortex-M4的ADSP-CM41x混合信号控制处理器硬件参考手册》。

SINC滤波器时序

已编程SINC滤波器时钟(f_{SINCLKPROG})频率(单位:MHz)由下式确定;其中,MDIV是CLK控制寄存器中的字段,设置范围为4至63:

$$f_{SINCLKPROG} = \frac{f_{SCLK}}{MDIV}$$

$$t_{SINCLKPROG} = \frac{1}{f_{SINCLKPROG}}$$

表55. SINC滤波器时序

所有规格均基于仿直数据,如有更改,恕不另行诵知

参数		最小值	最大值	单位
时序要求				
t _{SSINC}	SINCO_CLKx上升前SINCO_Dx的建立时间	10		ns
t _{HSINC}	SINCO_CLKx上升后SINCO_Dx的保持时间	0		ns
开关特性				
t _{SINCLK}	SINC0_CLKx周期 ¹	t _{SINCLKPROG} – 2.5		ns
t _{SINCLKW}	SINCO_CLKx宽度 ¹	$0.5 \times t_{SINCLKPROG} - 2.5$		ns

 $^{^1}$ 针对 $t_{\text{SINCLKPROG}}$ 可编程的最小周期详细情况,参见表23"时钟相关工作条件"。

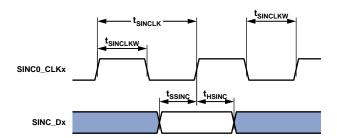


图64. SINC滤波器时序

跟踪时序

表56. 跟踪时序

所有规格均基于	于仿真数据,如有更改,恕不另行通知。			
参数		最小值	最大值	单位
开关特性				
t _{DDTRACE}	TRACE_CLK之后的数据延迟时间		$0.5 \times t_{SCLK} + 2$	ns
t _{HDTRACE}	TRACE_CLK之后的数据保持时间	$0.5 \times t_{SCLK} - 2$		ns

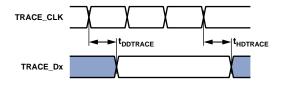


图65. 跟踪时序

串行线调试(SWD)时序

表57和图66描述串行线调试(SWD)操作。

表57. 串行线调试(SWD)时序

所有规格均基于	F仿真数据,如有更改,恕不另行通知。			
参数		最小值	最大值	单位
时序要求				
t _{SWCLK}	SWCLK周期	20		ns
t _{SSWDIO}	SWCLK高电平之前SWDIO建立时间	6		ns
t _{HSWDIO}	SWCLK高电平之后SWDIO保持时间	4		ns
开关特性				
t _{DSWDIO}	SWCLK高电平之后SWDIO延迟时间		17	ns
t _{HOSWDIO}	SWCLK高电平之后SWDIO保持时间	3.5		ns

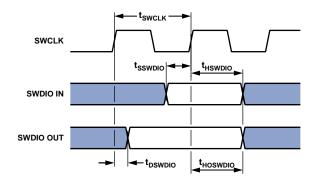


图66. 串行线调试(SWD)时序

调试接口(JTAG仿真端口)时序

表58和图67描述与调试接口(JTAG仿真器端口)相关的I/O时序。

表58. JTAG仿真端口时序

所有规格均基于仿真数据,如有更改,恕不另行通知。 最小值 最大值 单位 时序要求 JTG_TCK周期 20 ns t_{TCK} JTG_TCK高电平之前的JTG_TDI、JTG_TMS建立时间 6 ns t_{STAP} JTG_TCK高电平之后的JTG_TDI、JTG_TMS保持时间 4 ns t_{HTAP} 12 JTG_TCK高电平之前系统输入建立时间¹ ns t_{SSYS} JTG_TCK高电平之后系统输入保持时间¹ 5 ns t_{HSYS} 4 JTG_TRST 脉冲宽度(测量单位为JTG_TCK周期)2 t_{TRSTW} t_{TCK} 开关特性 自JTG_TCK低电平起的JTG_TDO延迟时间 16.5 ns $t_{\text{DTDO}} \\$ JTG_TCK低电平之后系统输出延迟时间³ 19.5 ns t_{DSYS}

³ 系统输出 = PA_xx、PB_xx、PC_xx、PD_xx、PE_xx、PF_xx、SMC0_AMS0、SMC0_ARE、SMC0_AWE、SYS_CLKOUT、SYS_FAULT、SYS_RESOUT。

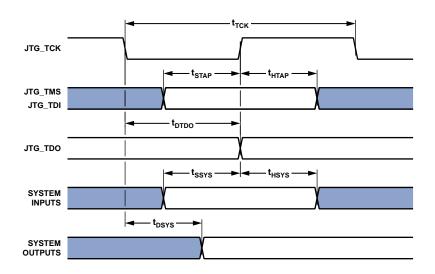


图67. JTAG仿真端口时序

¹ 系统输入 = PA_xx、PB_xx、PC_xx、PD_xx、PE_xx、PF_xx、SYS_BMODEx、SYS_HWRST、SYS_FAULT、SYS_NMI、TWI0_SCL、TWI0_SDA。

² 50 MHz最大值。

环境条件

应用印刷电路板上的结温计算公式如下:

$$T_I = T_{CASE} + (\Psi_{IT} \times P_D)$$

其中:

 T_I = 结温(°C)

 T_{CASE} = 壳温(°C),由用户在封装的顶部中央测得。

 Ψ_{IT} = 参见表59和表60

 P_D = 功耗(计算 P_D 的方法参见第63页的总功耗PD)

表59. 热特性(176引脚 LQFP)

参数	条件	典型值	单位
θ_{JA}	0线性m/s气流TBD	待定	°C/W
θ_{JA}	1线性m/s气流TBD	待定	°C/W
θ_{JA}	2线性m/s气流TBD	待定	°C/W
θ_{JC}		待定	°C/W
Ψ_{JT}	0线性m/s气流TBD	待定	°C/W
Ψ_{JT}	1线性m/s气流TBD	待定	°C/W
$\Psi_{ extsf{JT}}$	2线性m/s气流TBD	待定	°C/W

表60. 热特性(210引脚 BGA)

参数	条件	典型值	单位
θ_{JA}	0线性m/s气流TBD	待定	°C/W
θ_{JA}	1线性m/s气流TBD	待定	°C/W
θ_{JA}	2线性m/s气流TBD	待定	°C/W
θ_{JC}		待定	°C/W
$\Psi_{ extsf{JT}}$	0线性m/s气流TBD	待定	°C/W
$\Psi_{ extsf{JT}}$	1线性m/s气流TBD	待定	°C/W
$\Psi_{ extsf{JT}}$	2线性m/s气流TBD	待定	°C/W

 θ_{JA} 值供封装比较和印刷电路板设计考虑时使用。 θ_{JA} 可用在下式中对 T_i 进行一阶估算:

$$T_I = T_A + (\theta_{IA} \times P_D)$$

其中:

 $T_{A} = 环境温度(^{\circ}C)$

 θ_{IC} 值是在需要外部散热器时,供封装比较和印刷电路板设计考虑时使用。

在表59中, 气流测量符合JEDEC标准JESD51-2和JESD51-6, 结至壳测量符合MIL-STD-883标准(方法1012.1)。所有测量均使用2S2P JEDEC测试板。

ADSP-CM41xF 176引脚LQFP引脚分配

ADSP-CM41xF 176引脚LQFP引脚分配(按引脚编号顺序)按引脚编号列出了176引脚LQFP封装。

ADSP-CM41xF176引脚LQFP引脚分配(按引脚名称顺序)按引脚名称列出了176引脚LQFP封装。

ADSP-CM41XF 176引脚LQFP引脚分配(按引脚编号顺序)

编号	引脚名称	编号	引脚名称	编号	引脚名称	编号	引脚名称
1	PD_00	41	SYS_XTAL1	81	PA_13	121	ADC_VIN_B6
2	PD_01	42	TWI0_SCL	82	VDD_EXT	122	ADC_VIN_B7
3	PB_00	43	TWI0_SDA	83	VDD_ANA0	123	ADC_VIN_A0
4	PB_01	44	GND	84	GND_ANA0	124	ADC_VIN_A1
5	PE_00	45	JTG_TDI	85	BYP_A0	125	ADC_VIN_A2
6	PE_01	46	JTG_TCK/SWCLK	86	DAC0_VOUT	126	ADC_VIN_A3
7	VDD_EXT	47	JTG_TDO/SWO	87	GND_ANA5_DAC	127	ADC_VIN_A4
8	PB_02	48	JTG_TMS/SWDIO	88	GND_ANA3	128	ADC_VIN_A5
9	PB_03	49	JTG_TRST	89	GND_ANA1	129	ADC_VIN_A6
10	PE_02	50	PE_08	90	BYP_A1	130	ADC_VIN_A7
11	PE_03	51	PE_09	91	VDD_ANA1	131	GND_ANA2
12	VDD_EXT	52	PE_10	92	GND_REFCAP0	132	GND_ANA4_COMP
13	PB_04	53	PE_11	93	REFCAP0	133	VDD_COMP
14	PB_05	54	PB_12	94	VREF0	134	COMP_OUT_A
15	PE_04	55	PB_13	95	GND_VREF0	135	COMP_OUT_B
16	PE_05	56	VDD_EXT	96	ADC_VIN_D6	136	COMP_OUT_C
17	VDD_EXT	57	PB_14	97	ADC_VIN_D5	137	VDD_EXT
18	PB_06	58	PB_15	98	ADC_VIN_D4	138	BYP_D0
19	PB_07	59	PE_12	99	ADC_VIN_D3	139	VDD_EXT
20	PE_06	60	PE_13	100	ADC_VIN_D2	140	VDD_EXT
21	PE_07	61	PE_14	101	ADC_VIN_D1	141	SYS_NMI
22	VDD_EXT	62	PE_15	102	ADC_VIN_D0	142	VDD_EXT
23	SYS_RESOUT	63	VDD_EXT	103	GND_REFCAP1	143	VDD_EXT
24	SYS_FAULT	64	VDD_INT	104	REFCAP1	144	PC_00
25	SYS_HWRST	65	VDD_INT	105	VREF1	145	PC_01
26	VDD_INT	66	PA_00	106	GND_VREF1	146	PC_02
27	VDD_INT	67	PA_01	107	ADC_VIN_C7	147	PC_03
28	PB_08	68	PA_02	108	ADC_VIN_C6	148	PF_00
29	PB_09	69	PA_03	109	ADC_VIN_C5	149	PF_01
30	PB_10	70	VDD_EXT	110	ADC_VIN_C4	150	VDD_EXT
31	PB_11	71	PA_04	111	ADC_VIN_C3	151	PC_04
32	VDD_INT	72	PA_05	112	ADC_VIN_C2	152	PC_05
33	VDD_INT	73	PA_06	113	ADC_VIN_C1	153	PC_06
34	VDD_EXT	74	PA_07	114	ADC_VIN_C0	154	PC_07
35	VDD_EXT	75	VDD_EXT	115	ADC_VIN_B0	155	PF_02
36	SYS_CLKIN0	76	PA_08	116	ADC_VIN_B1	156	PF_03
37	SYS_XTAL0	77	PA_09	117	ADC_VIN_B2	157	VDD_INT
38	VDD_EXT	78	PA_10	118	ADC_VIN_B3	158	VDD_INT
39	VREG_BASE	79	PA_11	119	ADC_VIN_B4	159	VDD_EXT
40	SYS_CLKIN1	80	PA_12	120	ADC_VIN_B5	160	PC_08

编号	引脚名称
161	PC_09
162	PC_10
163	PC_11
164	PF_04
165	PF_05
166	VDD_EXT
167	PC_12
168	PC_13
169	PC_14
170	PC_15
171	PF_06
172	PF_07
173	VDD_EXT
174	PF_08
175	SYS_CLKOUT
176	SYS_BMODE0
177 ¹	GND

¹ 引脚编号177是处理器的GND电源(参见图69);此焊盘必须连接GND。

ADSP-CM41XF 176引脚LQFP引脚分配(按引脚名称顺序)

引脚名称	编号	引脚名称	编号	引脚名称	编号	引脚名称	编号
ADC_VIN_A0	123	GND_ANA5_DAC	87	PC_05	152	SYS_HWRST	25
ADC_VIN_A1	124	GND_REFCAP0	92	PC_06	153	SYS_NMI	141
ADC_VIN_A2	125	GND_REFCAP1	103	PC_07	154	SYS_RESOUT	23
ADC_VIN_A3	126	GND_VREF0	95	PC_08	160	SYS_XTAL0	37
ADC_VIN_A4	127	GND_VREF1	106	PC_09	161	SYS_XTAL1	41
ADC_VIN_A5	128	JTG_TCK/SWCLK	46	PC_10	162	TWI0_SCL	42
ADC_VIN_A6	129	JTG_TDI	45	PC_11	163	TWI0_SDA	43
ADC_VIN_A7	130	JTG_TDO/SWO	47	PC_12	167	VDD_ANA0	83
ADC_VIN_B0	115	JTG_TMS/SWDIO	48	PC_13	168	VDD_ANA1	91
ADC_VIN_B1	116	JTG_TRST	49	PC_14	169	VDD_COMP	133
ADC_VIN_B2	117	PA_00	66	PC_15	170	VDD_EXT	7
ADC_VIN_B3	118	PA_01	67	PD_00	1	VDD_EXT	12
ADC_VIN_B4	119	PA_02	68	PD_01	2	VDD_EXT	17
ADC_VIN_B5	120	PA_03	69	PE_00	5	VDD_EXT	22
ADC_VIN_B6	121	PA_04	71	PE_01	6	VDD_EXT	34
ADC_VIN_B7	122	PA_05	72	PE_02	10	VDD_EXT	35
ADC_VIN_C0	114	PA_06	73	PE_03	11	VDD_EXT	38
ADC_VIN_C1	113	PA_07	74	PE_04	15	VDD_EXT	56
ADC_VIN_C2	112	PA_08	76	PE_05	16	VDD_EXT	63
ADC_VIN_C3	111	PA_09	77	PE_06	20	VDD_EXT	70
ADC_VIN_C4	110	PA_10	78	PE_07	21	VDD_EXT	75
ADC_VIN_C5	109	PA_11	79	PE_08	50	VDD_EXT	82
ADC_VIN_C6	108	PA_12	80	PE_09	51	VDD_EXT	137
ADC_VIN_C7	107	PA_13	81	PE_10	52	VDD_EXT	139
ADC_VIN_D0	102	PB_00	3	PE_11	53	VDD_EXT	140
ADC_VIN_D1	101	PB_01	4	PE_12	59	VDD_EXT	142
ADC_VIN_D2	100	PB_02	8	PE_13	60	VDD_EXT	143
ADC_VIN_D3	99	PB_03	9	PE_14	61	VDD_EXT	150
ADC_VIN_D4	98	PB_04	13	PE_15	62	VDD_EXT	159
ADC_VIN_D5	97	PB_05	14	PF_00	148	VDD_EXT	166
ADC_VIN_D6	96	PB_06	18	PF_01	149	VDD_EXT	173
BYP_A0	85	PB_07	19	PF_02	155	VDD_INT	26
BYP_A1	90	PB_08	28	PF_03	156	VDD_INT	27
BYP_D0	138	PB_09	29	PF_04	164	VDD_INT	32
COMP_OUT_A	134	PB_10	30	PF_05	165	VDD_INT	33
COMP_OUT_B	135	PB_11	31	PF_06	171	VDD_INT	64
COMP_OUT_C	136	PB_12	54	PF_07	172	VDD_INT	65
DAC0_VOUT	86	PB_13	55	PF_08	174	VDD_INT	157
GND	44	PB_14	57	REFCAP0	93	VDD_INT	158
GND	177 ¹	PB_15	58	REFCAP1	104	VREF0	94
GND_ANA0	84	PC_00	144	SYS_BMODE0	176	VREF1	105
GND_ANA1	89	PC_01	145	SYS_CLKIN0	36	VREG_BASE	39
GND_ANA2	131	PC_02	146	SYS_CLKIN1	40	1 引脚编号177是处理器的	的GND电源(参
GND_ANA3	88	PC_03	147	SYS_CLKOUT	175	见图69);此焊盘必须运	
GND_ANA4_COMP	132	PC_04	151	SYS_FAULT	24	J	

图68所示为176引脚LQFP封装引脚配置的顶视图,图69展示的则是176引脚LQFP封装引脚配置的底视图。

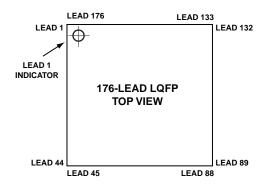


图68.176引脚LQFP封装引脚配置(顶视图)

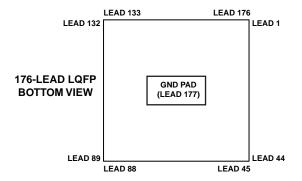


图69.176引脚LQFP封装引脚配置(底视图)

ADSP-CM41xF 210引脚BGA引脚分配

ADSP-CM41xF210引脚BGA引脚分配(按引脚编号顺序)按引脚编号列出了210引脚BGA封装。

ADSP-CM41xF 210引脚BGA引脚分配(按引脚名称顺序)按引脚名称列出了210引脚BGA封装。

ADSP-CM41XF 210引脚BGA引脚分配(按引脚编号顺序)

引脚编号	引脚名称	引脚编号	引脚名称	引脚编号	引脚名称	引脚编号	引脚名称
A01	GND	C06	PC_12	G18	ADC_VIN_B5	L12	GND_ANA
A02	SYS_BMODE0	C07	PC_11	H01	PB_07	L16	REFCAP1
A03	SYS_CLKOUT	C08	PC_09	H02	PB_06	L17	ADC_VIN_C0
A04	PF_06	C09	PC_07	H03	VDD_EXT	L18	ADC_VIN_C2
A05	PC_14	C10	PC_05	H07	GND	M01	PB_10
A06	PF_04	C11	PC_02	H08	GND	M02	PB_11
A07	PC_08	C12	VDD_EXT	H09	GND	M03	VDD_EXT
A08	PF_03	C13	GND_ANA	H11	GND_ANA	M16	GND_REFCAP1
A09	PC_04	C14	VDD_EXT	H12	GND_ANA	M17	ADC_VIN_C4
A10	PF_00	C15	VDD_COMP	H16	GND_VREF1	M18	ADC_VIN_C3
A11	PC_00	C16	GND_ANA	H17	ADC_VIN_B4	N01	SYS_CLKIN0
A12	PC_01	C17	ADC_VIN_A7	H18	ADC_VIN_B3	N02	TWI0_SCL
A13	DNC	C18	ADC_VIN_A4	J01	PE_06	N03	VREG_BASE
A14	GND_ANA	D01	PB_02	J02	PE_07	N16	DNC
A15	COMP_OUT_C	D02	PB_03	J03	VDD_INT	N17	ADC_VIN_C5
A16	COMP_OUT_B	D03	PF_07	J07	GND	N18	ADC_VIN_C6
A17	DNC	D07	VDD_INT	J08	GND	P01	SYS_XTAL0
A18	GND_ANA	D08	VDD_EXT	J09	GND	P02	TWI0_SDA
B01	PD_01	D09	VDD_EXT	J11	GND_ANA	P03	JTG_TCK/SWCLK
B02	GND	D10	VDD_EXT	J12	GND_ANA	P16	VREF0
B03	PF_08	D11	VDD_EXT	J16	VREF1	P17	ADC_VIN_D2
B04	PC_15	D16	BYP_A2	J17	ADC_VIN_B0	P18	ADC_VIN_C7
B05	PC_13	D17	ADC_VIN_A6	J18	ADC_VIN_B2	R01	SYS_CLKIN1
B06	PF_05	D18	ADC_VIN_A3	K01	SYS_FAULT	R02	JTG_TDI
B07	PC_10	E01	PB_05	K02	SYS_HWRST	R03	JTG_TRST
B08	PF_02	E02	PE_00	K03	VDD_INT	R07	VDD_INT
B09	PC_06	E03	PD_00	K07	GND	R08	VDD_EXT
B10	PF_01	E16	GND_VREF2	K08	GND	R09	VDD_EXT
B11	PC_03	E17	ADC_VIN_A2	K09	GND	R10	VDD_EXT
B12	SYS_NMI	E18	ADC_VIN_A1	K11	GND_ANA	R11	VDD_EXT
B13	DNC	F01	PB_04	K12	GND_ANA	R16	GND_VREF0
B14	GND_ANA	F02	PE_03	K16	DNC	R17	ADC_VIN_D3
B15	BYP_D0	F03	PE_01	K17	ADC_VIN_C1	R18	ADC_VIN_D0
B16	COMP_OUT_A	F16	VREF2	K18	ADC_VIN_B1	T01	SYS_XTAL1
B17	GND_ANA	F17	ADC_VIN_A0	L01	PB_08	T02	JTG_TMS/SWDIO
B18	ADC_VIN_A5	F18	ADC_VIN_B6	L02	PB_09	T03	GND
C01	PB_01	G01	PE_05	L03	SYS_RESOUT	T04	GND
C02	PB_00	G02	PE_04	L07	GND	T05	VDD_EXT
C03	GND	G03	PE_02	L08	GND	T06	PE_13
C04	VDD_INT	G16	DNC	L09	GND	T07	PA_00
C05	VDD_EXT	G17	ADC_VIN_B7	L11	GND_ANA	T08	PA_01

引脚编号	引脚夕称
T09	PA_05
T10	PA 09
T11	PA_13
T12	DNC
T13	GND ANA
T14	VDD ANA0
T15	VDD_ANA1
1	GND_ANA
	ADC VIN D4
T18	ADC_VIN_D1
U01	JTG_TDO/SWO
U02	GND
U03	PE_09
U04	PE 11
U05	_ PB_13
U06	PE 12
U07	_ PE_15
U08	PA_03
U09	PA_07
U10	PA_06
U11	PA_10
U12	DNC
U13	GND_ANA
U14	REFCAP0
U15	GND_REFCAP0
U16	GND_ANA
U17	ADC_VIN_D6
U18	ADC_VIN_D5
V01	GND
V02	PE_08
V03	PE_10
V04	PB_12
V05	PB_14
V06	PB_15
V07	PE_14
V08	PA_02
V09	PA_04
V10	PA_08
V11	PA_11
V12	PA_12
V13	GND_ANA
V14	BYP_A0
V15	DACO_VOUT
V16	BYP_A1
V17	GND_ANA
V18	GND_ANA

ADSP-CM41XF 210引脚BGA引脚分配(按引脚名称顺序)

引脚名称	引脚编号	引脚名称	引脚编号	引脚名称	引脚编号	引脚名称	引脚编号
ADC_VIN_A0	F17	DNC	U12	JTG_TCK/SWCLK	P03	PC_11	C07
ADC_VIN_A1	E18	GND	A01	JTG_TDI	R02	PC_12	C06
ADC_VIN_A2	E17	GND	B02	JTG_TDO/SWO	U01	PC_13	B05
ADC_VIN_A3	D18	GND	C03	JTG_TMS/SWDIO	T02	PC_14	A05
ADC_VIN_A4	C18	GND	H07	JTG_TRST	R03	PC_15	B04
ADC_VIN_A5	B18	GND	H08	PA_00	T07	PD_00	E03
ADC_VIN_A6	D17	GND	H09	PA_01	T08	PD_01	B01
ADC_VIN_A7	C17	GND	J07	PA_02	V08	PE_00	E02
ADC_VIN_B0	J17	GND	J08	PA_03	U08	PE_01	F03
ADC_VIN_B1	K18	GND	J09	PA_04	V09	PE_02	G03
ADC_VIN_B2	J18	GND	K07	PA_05	T09	PE_03	F02
ADC_VIN_B3	H18	GND	K08	PA_06	U10	PE_04	G02
ADC_VIN_B4	H17	GND	K09	PA_07	U09	PE_05	G01
ADC_VIN_B5	G18	GND	L07	PA_08	V10	PE_06	J01
ADC_VIN_B6	F18	GND	L08	PA_09	T10	PE_07	J02
ADC_VIN_B7	G17	GND	L09	PA_10	U11	PE_08	V02
ADC_VIN_C0	L17	GND	T03	PA_11	V11	PE_09	U03
ADC_VIN_C1	K17	GND	T04	PA_12	V12	PE_10	V03
ADC_VIN_C2	L18	GND	U02	PA_13	T11	PE_11	U04
ADC_VIN_C3	M18	GND	V01	PB_00	C02	PE_12	U06
ADC_VIN_C4	M17	GND_ANA	A14	PB_01	C01	PE_13	T06
ADC_VIN_C5	N17	GND_ANA	A18	PB_02	D01	PE_14	V07
ADC_VIN_C6	N18	GND_ANA	B14	PB_03	D02	PE_15	U07
ADC_VIN_C7	P18	GND_ANA	B17	PB_04	F01	PF_00	A10
ADC_VIN_D0	R18	GND_ANA	C13	PB_05	E01	PF_01	B10
ADC_VIN_D1	T18	GND_ANA	C16	PB_06	H02	PF_02	B08
ADC_VIN_D2	P17	GND_ANA	H11	PB_07	H01	PF_03	A08
ADC_VIN_D3	R17	GND_ANA	H12	PB_08	L01	PF_04	A06
ADC_VIN_D4	T17	GND_ANA	J11	PB_09	L02	PF_05	B06
ADC_VIN_D5	U18	GND_ANA	J12	PB_10	M01	PF_06	A04
ADC_VIN_D6	U17	GND_ANA	K11	PB_11	M02	PF_07	D03
BYP_A0	V14	GND_ANA	K12	PB_12	V04	PF_08	B03
BYP_A1	V16	GND_ANA	L11	PB_13	U05	REFCAP0	U14
BYP_A2	D16	GND_ANA	L12	PB_14	V05	REFCAP1	L16
BYP_D0	B15	GND_ANA	T13	PB_15	V06	SYS_BMODE0	A02
COMP_OUT_A	B16	GND_ANA	T16	PC_00	A11	SYS_CLKIN0	N01
COMP_OUT_B	A16	GND_ANA	U13	PC_01	A12	SYS_CLKIN1	R01
COMP_OUT_C	A15	GND_ANA	U16	PC_02	C11	SYS_CLKOUT	A03
DAC0_VOUT	V15	GND_ANA	V13	PC_03	B11	SYS_FAULT	K01
DNC	A13	GND_ANA	V17	PC_04	A09	SYS_HWRST	K02
DNC	A17	GND_ANA	V18	PC_05	C10	SYS_NMI	B12
DNC	B13	GND_REFCAP0	U15	PC_06	B09	SYS_RESOUT	L03
DNC	G16	GND_REFCAP1	M16	PC_07	C09	SYS_XTAL0	P01
DNC	K16	GND_VREF0	R16	PC_08	A07	SYS_XTAL1	T01
DNC	N16	GND_VREF1	H16	PC_09	C08	TWI0_SCL	N02
DNC	T12	GND_VREF2	E16	PC_10	B07	TWI0_SDA	P02

引脚名称	引脚编号
VDD_ANA0	T14
VDD_ANA1	T15
VDD_COMP	C15
VDD_EXT	C05
VDD_EXT	C12
VDD_EXT	C14
VDD_EXT	D08
VDD_EXT	D09
VDD_EXT	D10
VDD_EXT	D11
VDD_EXT	H03
VDD_EXT	M03
VDD_EXT	R08
VDD_EXT	R09
VDD_EXT	R10
VDD_EXT	R11
VDD_EXT	T05
VDD_INT	C04
VDD_INT	D07
VDD_INT	J03
VDD_INT	K03
VDD_INT	R07
VREF0	P16
VREF1	J16
VREF2	F16
VREG_BASE	N03

图70是210引脚CSP BGA封装的信号位置概览。

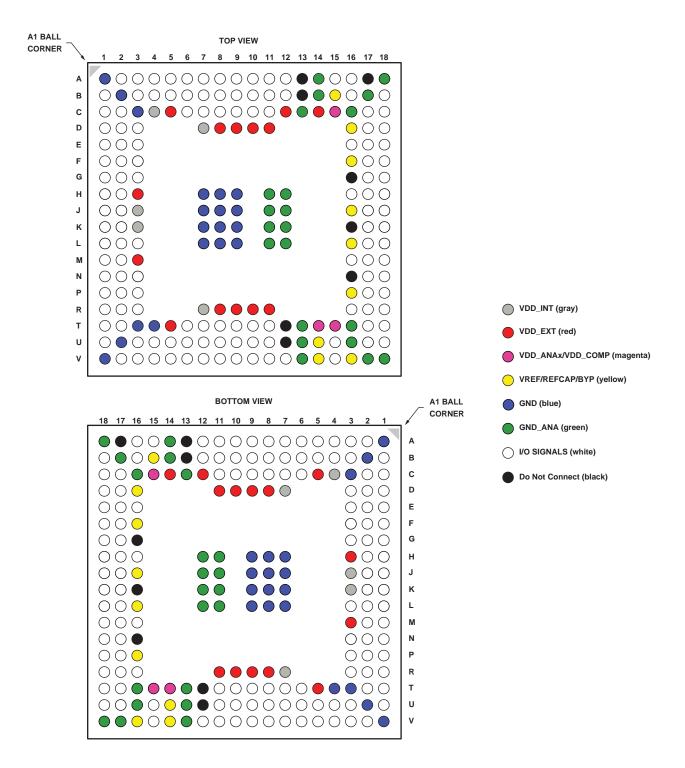
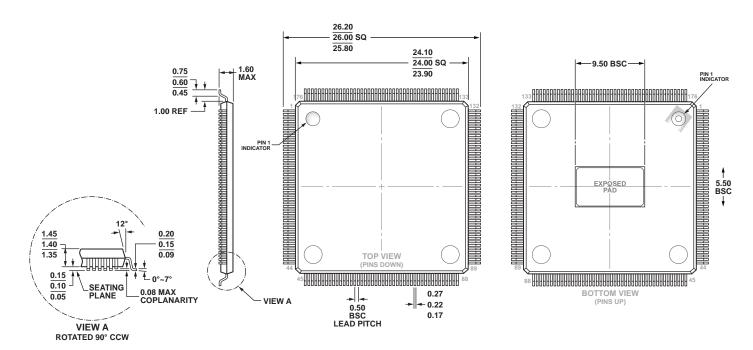
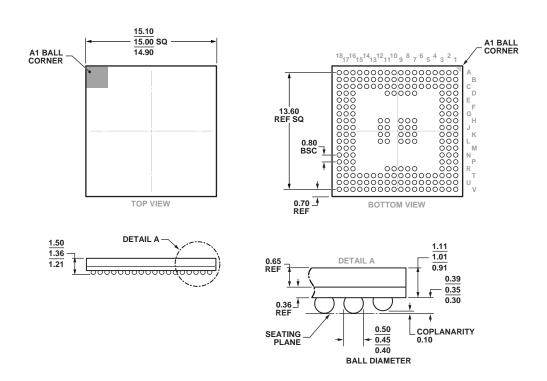



图70.210引脚CSP_BGA封装引脚配置

外形尺寸


图71(176引脚LQFP封装)和图72(210引脚BGA封装)中的尺寸单位为毫米。

COMPLIANT TO JEDEC STANDARDS MS-026-BGA-HD

图71. 176引脚裸露焊盘薄型四方扁平封装[LQFP_EP]¹ (SW-176-4) 图示尺寸单位: mm

¹ 有关SW-176-4封装裸露焊盘的信息,请参见第104页"ADSP-CM41xF 176引脚LQFP封装引脚分配"部分表格尾注。

COMPLIANT TO JEDEC STANDARDS MO-275-KKAB-2

图72. 210引脚CSP_BGA封装(BC-210-1) 尺寸单位: mm

预发布产品

型 당	温度范围 ^{1, 2}	封装描述	封装选项	处理器指令速率 (最大值)
ADSP-CM417F-SWZENG	NA	176引脚超薄四方扁平封装 (裸露焊盘)	SW-176-4	TBD MHz
ADSP-CM419F-BCZENG	NA	210引脚芯片级封装 (球栅阵列)	BC-210-1	TBD MHz

² 这些器件已试生产。详情参见ENG级协议。

