www.onsemi.com

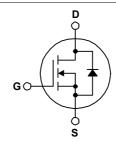
ON Semiconductor®

FCD260N65S3

N-Channel SuperFET $^{\circledR}$ III MOSFET 650 V, 12 A, 260 $m\Omega$

Features

- 700 V @ T_J = 150 °C
- Typ. $R_{DS(on)}$ = 222 m Ω
- Ultra Low Gate Charge (Typ. Q_g = 24 nC)
- Low Effective Output Capacitance (Typ. $C_{oss(eff.)} = 248 pF$)
- 100% Avalanche Tested
- · RoHS Compliant


Applications

- · Computing / Display Power Supplies
- Telecom / Server Power Supplies
- · Industrial Power Supplies

Description

SuperFET[®] III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate. Consequently, SuperFET III MOSFET is very suitable for various power system for miniaturization and higher efficiency.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FCD260N65S3	Unit
V _{DSS}	Drain to Source Voltage			650	V
V	Gate to Source Voltage	- DC		±30	V
V_{GSS}	Gate to Source voltage	- AC	(f > 1 Hz)	±30	V
I _D	Drain Current	- Continuous (T _C = 25°C)		12	۸
	Drain Current	- Continuous (T _C = 100°C)		7.6	- A
I _{DM}	Drain Current	- Pulsed	(Note 1)	30	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			57	mJ
I _{AS}	Avalanche Current		(Note 1)	2.3	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	0.9	mJ
dv/dt	MOSFET dv/dt			100	V/ns
uv/ut	Peak Diode Recovery dv/dt		(Note 3)	20	V/115
D	Power Dissipation	(T _C = 25°C)		90	W
P_{D}	- Derate Above 25°C			0.72	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
T _L	Maximum Lead Temperature	for Soldering, 1/8" from Case for 5 S	econds	300	°C

Thermal Characteristics

Symbol	Parameter	FCD260N65S3	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.39	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	100	*C/VV

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCD260N65S3	FCD260N65S3	D-PAK	Tape and Reel	330 mm	16 mm	2500 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	lest Conditions	win.	тур.	wax.	Unit
Off Chara	cteristics					
BV _{DSS} Drai	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	650	-	-	V
	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$	700	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C	-	0.66	-	V/°C
1	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V	-	-	1	μА
DSS		$V_{DS} = 520 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	0.77	-	μΑ
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 1.2 \text{ mA}$	2.5	-	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$		222	260	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 20 \text{ V}, I_{D} = 6 \text{ A}$	-	7.4	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V,	-	1010	-	pF
C _{oss}	Output Capacitance	f = 1 MHz	-	25	-	pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	248	-	pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	33	-	pF
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 400 V, I _D = 6 A,	-	24	-	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	-	6.1	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note 4)	-	9.7	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	8.7	-	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time			-	18	-	ns
t _r	Turn-On Rise Time	$V_{DD} = 400 \text{ V}, I_{D} = 6 \text{ A},$		-	18	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$		-	49	-	ns
t _f	Turn-Off Fall Time		(Note 4)	-	12	-	ns

Source-Drain Diode Characteristics

I _S	Maximum Continuous Source to Drain Diode Forward Current		-	-	12	Α
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current		-	-	30	Α
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 6 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 6 A,	-	251	-	ns
Q_{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	3.4	-	μС

Notes

^{1.} Repetitive rating: pulse-width limited by maximum junction temperature.

^{2.} I_{AS} = 2.3 A, R_G = 25 Ω , starting T_J = 25°C.

^{3.} I $_{SD} \leq 6$ A, di/dt ≤ 200 A/µs, V $_{DD} \leq 400$ V, starting T $_{J}$ = 25°C.

^{4.} Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

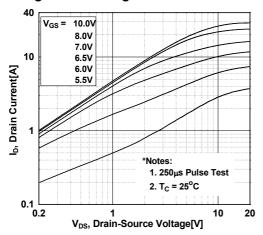


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

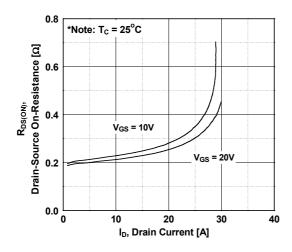


Figure 5. Capacitance Characteristics

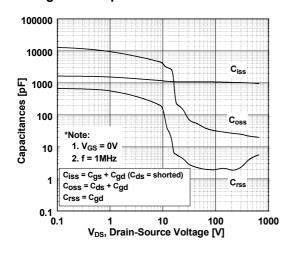


Figure 2. Transfer Characteristics

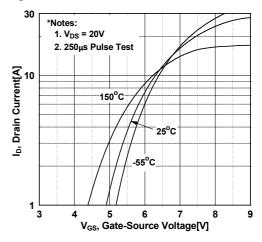


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

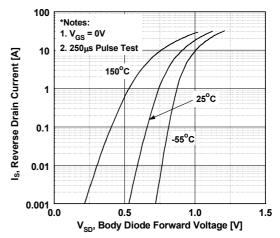
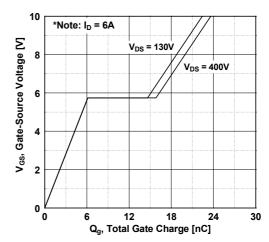



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

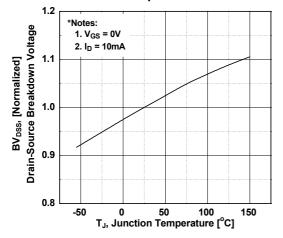


Figure 9. Maximum Safe Operating Area

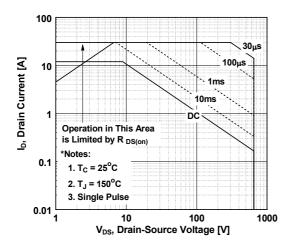


Figure 11. Eoss vs. Drain to Source Voltage

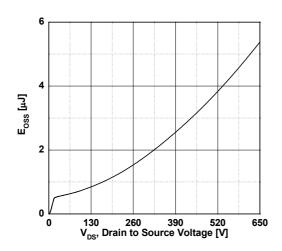


Figure 8. On-Resistance Variation vs. Temperature

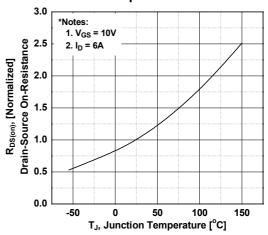
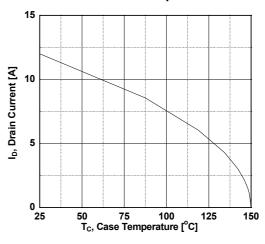
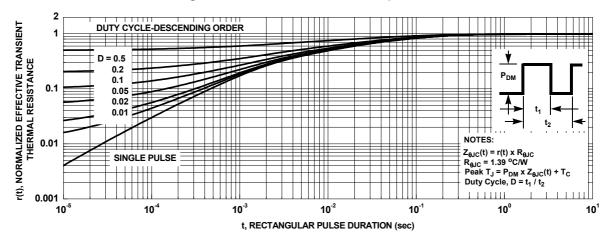




Figure 10. Maximum Drain Current vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 12. Transient Thermal Response Curve

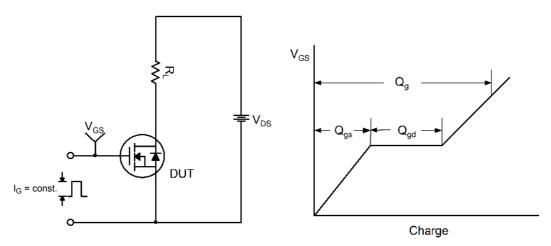


Figure 13. Gate Charge Test Circuit & Waveform

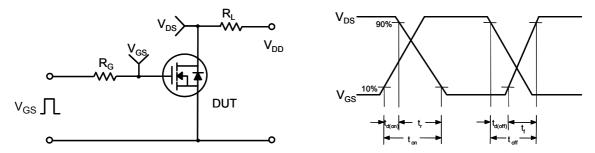


Figure 14. Resistive Switching Test Circuit & Waveforms

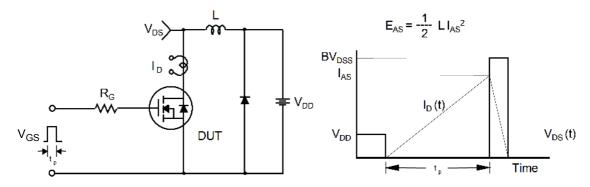


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

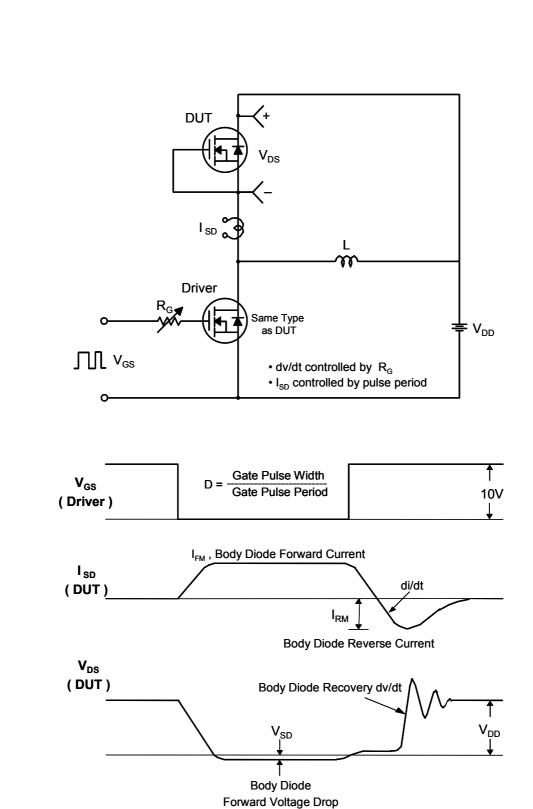
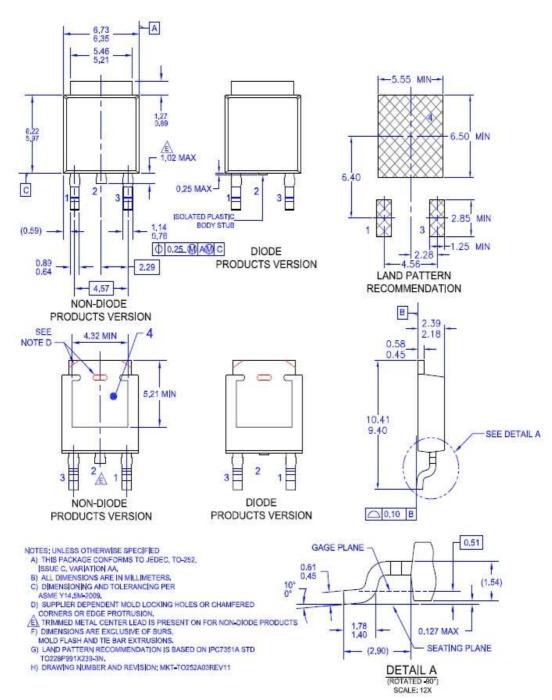



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by

support or applications information provided by

ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.