ESD7M5.0DT5G

ESD Protection Diode

Ultra-Low Capacitance

The ESD7M5.0DT5G is designed to protect voltage sensitive components from damage due to ESD in applications that require ultra low capacitance to preserve signal integrity. Excellent clamping capability, low leakage and fast response time are combined with an ultra low diode capacitance of 2.5 pF to provide best in class protection from IC damage due to ESD. The ultra small SOT-723 package is ideal for designs where board space is at a premium. The ESD7M5.0DT5G can be used to protect two uni-directional lines or one bi-directional line. When used to protect one bi-directional line, the effective capacitance is 1.25 pF . Because of its low capacitance, it is well suited for protecting high frequency signal lines such as USB2.0 high speed and antenna line applications.

Specification Features:

- Low Capacitance 2.5 pF Max
- Low Clamping Voltage
- Small Body Outline Dimensions: 0.047 " x $0.047 "(1.20 \mathrm{~mm} \times 1.20 \mathrm{~mm})$
- Low Body Height: $0.020^{\prime \prime}$ (0.5 mm)
- Stand-off Voltage: 5 V
- Low Leakage
- Response Time is Typically $<1.0 \mathrm{~ns}$
- IEC61000-4-2 Level 4 ESD Protection
- AEC-Q101 Qualified and PPAP Capable
- This is a $\mathrm{Pb}-$ Free Device

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic
Epoxy Meets UL 94 V-0
LEAD FINISH: 100\% Matte Sn (Tin)
MOUNTING POSITION: Any
QUALIFIED MAX REFLOW TEMPERATURE: $260^{\circ} \mathrm{C}$
Device Meets MSL 1 Requirements
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Contact		± 10	kV
Total Power Dissipation on FR-5 Board (Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	150	mW
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-55 to +125	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature - Maximum (10 Second Duration)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.62 \mathrm{in}$.

See Application Note AND8308/D for further description of survivability specs.

ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter
$I_{P P}$	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage @ I_{T}
I_{T}	Test Current
I_{F}	Forward Current
V_{F}	Forward Voltage $@ \mathrm{I}_{\mathrm{F}}$
P_{pk}	Peak Power Dissipation
C	Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1.0 \mathrm{MHz}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=1.1 \mathrm{~V}$ Max. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ for all types $)$

		$\mathrm{V}_{\mathrm{RWM}}$ (V)	$\begin{gathered} \mathrm{I}_{\mathrm{R}}(\mu \mathrm{~A}) \\ @ \mathrm{~V}_{\mathrm{RWM}} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{BR}}(\mathrm{~V}) \\ @ I_{\mathrm{T}} \\ (\text { Note 2) } \end{gathered}$	${ }^{\prime}$	C (pF), uni-directional (Note 3)	C (pF), bi-directional (Note 4)	$\begin{gathered} \mathrm{V}_{\mathrm{C}}(\mathrm{~V}) \\ @ \mathrm{IPP}_{\mathrm{PP}}=1 \mathrm{~A} \\ (\text { Note 5) } \end{gathered}$	V_{c}
Device	Device Marking	Max	Max	Min	mA	Max	Max	Max	$\begin{gathered} \hline \text { Per } \\ \text { IEC61000- } \\ 4-2 \\ \text { (Note 6) } \end{gathered}$
ESD7M5.0DT5G	L7	5.0	1.0	5.4	1.0	2.5	1.25	10.4	Figures 1 and 2

2. $V_{B R}$ is measured with a pulse test current I_{T} at an ambient temperature of $25^{\circ} \mathrm{C}$.
3. Uni-directional capacitance at $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (pin1 to pin 3; pin 2 to pin 3).
4. Bi-directional capacitance at $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (pin1 to pin 2).
5. Surge current waveform per Figure 5.
6. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV contact per IEC 61000-4-2

Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV contact per IEC 61000-4-2

IEC 61000-4-2 Spec.

Level	Test Voltage $(\mathbf{k V})$	First Peak Current (A)	Current at $\mathbf{3 0} \mathbf{n s}(\mathbf{A})$	Current at $\mathbf{6 0}$ ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 3. IEC61000-4-2 Spec

Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D - Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger
systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

Figure 5. $8 \times 20 \boldsymbol{\mu s}$ Pulse Waveform

PACKAGE DIMENSIONS

SOT-723
CASE 631AA
ISSUE D

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns tne rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

