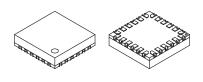
Three-Phase Direct PWM Brushless Motor Driver

Overview

The LB11620GP is a direct PWM drive pre-driver IC that is optimal for three-phase power brushless motors. A motor driver circuit with the desired output capability (voltage and current) can be implemented by adding discrete transistors or other power devices to the outputs of this IC. Since the LB11620GP is provided in a miniature package, it is also appropriate for use with miniature motors as well.

Features


- Three-phase bipolar drive
- Direct PWM drive (input of either a control voltage or a variable-duty PWM signal)
- Built-in forward/reverse switching circuit
- 5V regulator output (VREG pin)
- Built-in current limiter circuit (0.25V (typical) reference voltage)
- Built-in under voltage protection circuit
- Built-in automatic recovery type constraint protection circuit (ON: OFF=1: 18) with protection operating state discrimination output (RD pin)
- Hall signal pulse outputs

Typical Applications

- Server
- Home appliance

ON Semiconductor® www.onsemi.com

VCT24 (3.5×3.5)

GENERIC MARKING DIAGRAM*

XXXXXX YMDDD
0

XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

ORDERING INFORMATION

Ordering Code: LB11620GP-TE-L-H

Package VCT24 (Pb-Free / Halogen Free)

Shipping (Qty / packing) 2000 / Tape & Reel

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

Specifications

MAXIMUM RATINGS / $Ta = 25^{\circ}C$ (Note 1)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} max	V _{CC} pin	18	V
Output current	I _O max	UL, VL, WL, UH, VH, WH pins	30	mA
Allowable power dissipation	Pd max	*Mounted on a circuit board.	1.0	W
Operating temperature	Topr		-30 to +100	°C
Storage temperature	Tstg		-55 to +150	°C

1. Stresses exceeding those listed in the Absolute Maximum Rating table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Mounted on a circuit board: 40.0mm×50.0mm×0.8mm, glass epoxy board.

RECOMMENDED OPERATING RANGES at Ta = 25°C (Note 3)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range 1-1	V _{CC} 1-1	V _{CC} pin	8 to 17	V
Supply voltage range 1-2	V _{CC} 1-2	V_{CC} pin, with V_{CC} shorted to VREG	4.5 to 5.5	V
Output current	IO	UL, VL, WL, UH, VH, WH pins	25	mA
5 V constant voltage output current	IREG		-30	mA
HP pin voltage	VHP		0 to 17	V
HP pin output current	IHP		0 to 15	mA
RD pin voltage	VRD		0 to 17	V
RD pin output current	IRD		0 to 15	mA

3. Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS at $Ta = 25^{\circ}C$, $V_{CC} = 12V$ (Note 4)

Devenueles	Querra had	Operativitana		Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage 1	I _{CC} 1			12	16	mA
5V constant voltage output (VREG pin)						
Output voltage	VREG		4.7	5.0	5.3	V
Line regulation	∆VREG1	V _{CC} = 8 to 17V		40	100	mV
Load regulation	∆VREG2	I _O = -5 to -20mA		10	30	mV
Temperature coefficient	∆VREG3	Design target		0		mV/°C
Low-voltage protection circuit	(VREG pin)					
Operating voltage	VSDL		3.5	3.7	3.9	V
Clear voltage	VSDH		3.95	4.15	4.35	V
Hysteresis	ΔVSD		0.3	0.45	0.6	V
Output Block						
Output voltage 1-1	VOUT1-1	Low level I _O = 400µA		0.2	0.5	V
Output voltage 1-2	V _{OUT} 1-2	Low level I _O = 10mA		0.9	1.2	V
Output voltage 2	V _{OUT} 2	High level I _O = -20mA	V _{CC} -1.1	V _{CC} -0.9		V
Output leakage current	l _O leak				10	μA

Continued on next page

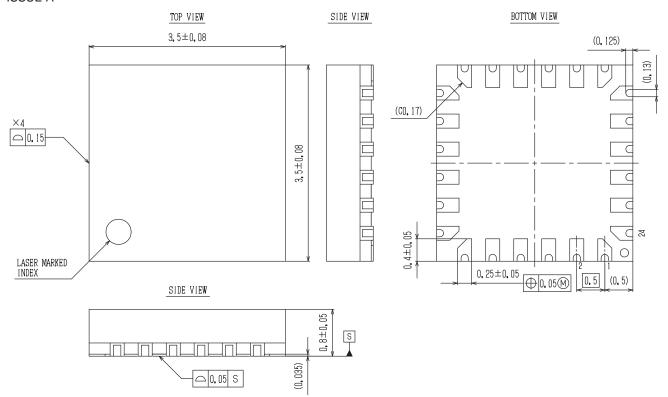
Continued from preceding page.

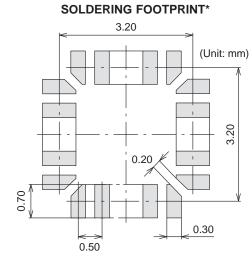
Parameter	Symbol	Conditions		Ratings		Unit
			min	typ	max	
Hall Amplifier Block						
Input bias current	IHB (HA)		-2	-0.5		μΑ
Common-mode input voltage range 1	VICM1	When a Hall effect sensor is used	0.5		V _{CC} -2.0	V
Common-mode input voltage range 2	VICM2	For single-sided input bias (Hall IC application)	0		Vcc	V
Hall input sensitivity			80			mVp-p
Hysteresis	∆V _{IN} (HA)		15	24	40	mV
Input voltage low \rightarrow high	VSLH (HA)		5	12	20	mV
Input voltage high \rightarrow low	VSHL (HA)		-20	-12	-5	mV
PWM Oscillator (PWM pin)						
High-level output voltage	V _{OH} (PWM)		2.75	3.0	3.25	V
Low-level output voltage	V _{OL} (PWM)		1.2	1.35	1.5	V
External capacitor charge current	ICHG	VPWM = 2.1V	-120	-90	-65	μA
Oscillator frequency	f (PWM)	C = 2000pF		22		kHz
Amplitude	V (PWM)		1.4	1.6	1.9	Vp-p
El+ pin						
Input bias current	IB (CTL)		-1		1	μA
Common-mode input voltage range	VICM		0		VREG-1.7	V
Input voltage 1	VCTL1	Output duty 100%		3.0		V
Input voltage 2	VCTL2	Output duty 0%		1.35		V
Input voltage 1L	VCTL1L	Design target value. When VREG = 4.7V, 100%		2.82		V
Input voltage 2L	VCTL2L	Design target value. When VREG = 4.7V, 0%		1.29		V
Input voltage 1H	VCTL1H	Design target value. When VREG = 5.3V, 100%		3.18		V
Input voltage 2H	VCTL2H	Design target value. When VREG = 5.3V, 0%		1.44		V
HP pin	•					
Output saturation voltage	VHPL	I _O = 10mA		0.2	0.5	V
Output leakage current	IHPleak	V _O = 18V			10	μA
CSD oscillator (CSD pin)		-				
High-level output voltage	V _{OH} (CSD)		2.7	3.0	3.3	V
Low-level output voltage	V _{OL} (CSD)		0.7	1.0	1.3	V
External capacitor charge current	ICHG1	VCSD = 2V	-3.15	-2.5	-1.85	μA
External capacitor discharge current	ICHG2	VCSD = 2V	0.1	0.14	0.18	μA
Charge/discharge current ratio	RCSD	Charge current /discharge current	15	18	21	Times
RD pin		1				
Low-level output voltage	VRDL	I _O = 10mA		0.2	0.5	V
Output leakage current	IL (RD)	V _O = 18V			10	μA
Current limiter circuit (RF pin)		•	I		. <u> </u>	
Limiter voltage	VRF	RF-GND	0.225	0.25	0.275	V
PWMIN pin			I		•I	
Input frequency	f (PI)				60	kHz
High-level input voltage	V _{IH} (PI)		2.0		VREG	V
Low-level input voltage	V _{IL} (PI)		0		1.0	V
Input open voltage	V _{IO} (PI)		VREG-0.5		VREG	V
Hysteresis	V _{IS} (PI)		0.2	0.25	0.4	V
High-level input current	I _{IH} (PI)	VPWMIN = VREG	-10	0	10	μA
Low-level input current	I _{IL} (PI)	VPWMIN = 0V	-130	-90		μA

Continued on next page

Continued from preceding page.

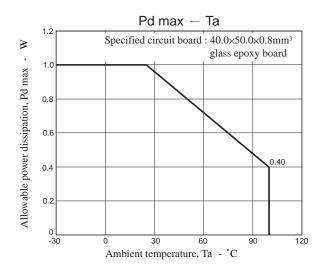
Deveryoter	Querra ha a l	Ornalitions		Ratings		11-14
Parameter	Symbol	Conditions	min	typ	max	Unit
F/R pin						
High-level input voltage	V _{IH} (FR)		2.0		VREG	V
Low-level input voltage	V _{IL} (FR)		0		1.0	V
Input open voltage	V _{IO} (FR)		VREG-0.5		VREG	V
Hysteresis	V _{IS} (FR)		0.2	0.25	0.4	V
High-level input current	I _{IH} (FR)		-10	0	10	μA
Low-level input current	I _{IL} (FR)		-130	-90		μA
N1 pin						
High-level input voltage	V _{IH} (N1)		2.0		VREG	V
Low-level input voltage	V _{IL} (N1)		0		1.0	V
Input open voltage	V _{IO} (N1)		VREG-0.5		VREG	V
High-level input current	I _{IH} (N1)	VN1 = VREG	-10	0	10	μΑ
Low-level input current	I _{IL} (N1)	VN1 = 0V	-130	-100		μA

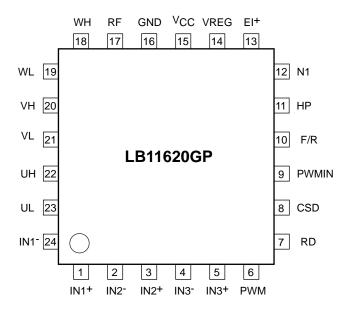

4. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Package Dimensions

unit : mm (typ)

VCT24 3.5x3.5, 0.5P


CASE 601AD ISSUE A



NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Pin Assignment

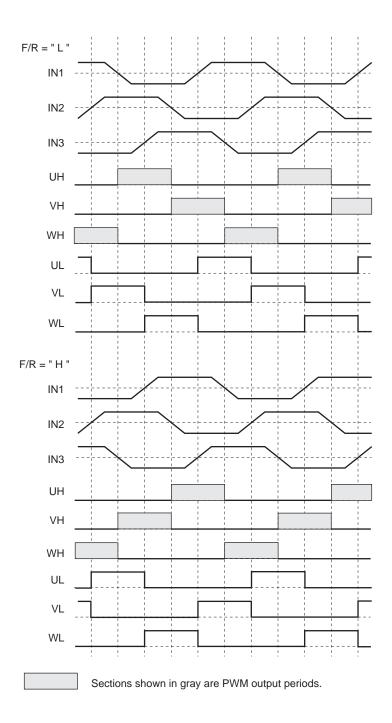
							0.1	4m : :4
		F/R = "L"			F/R="H"		Ou	tput
	IN1	IN2	IN3	IN1	IN2	IN3	PWM	
1	Н	L	Н	L	Н	L	VH	UL
2	Н	L	L	L	Н	Н	WH	UL
3	Н	Н	L	L	L	Н	WH	VL
4	L	Н	L	Н	L	Н	UH	VL
5	L	Н	Н	Н	L	L	UH	WL
6	L	L	Н	Н	Н	L	VH	WL

• Three-Phase Logic Truth Table (IN = "H" indicates the state where $IN^+ > IN^-$)

PWMIN pin

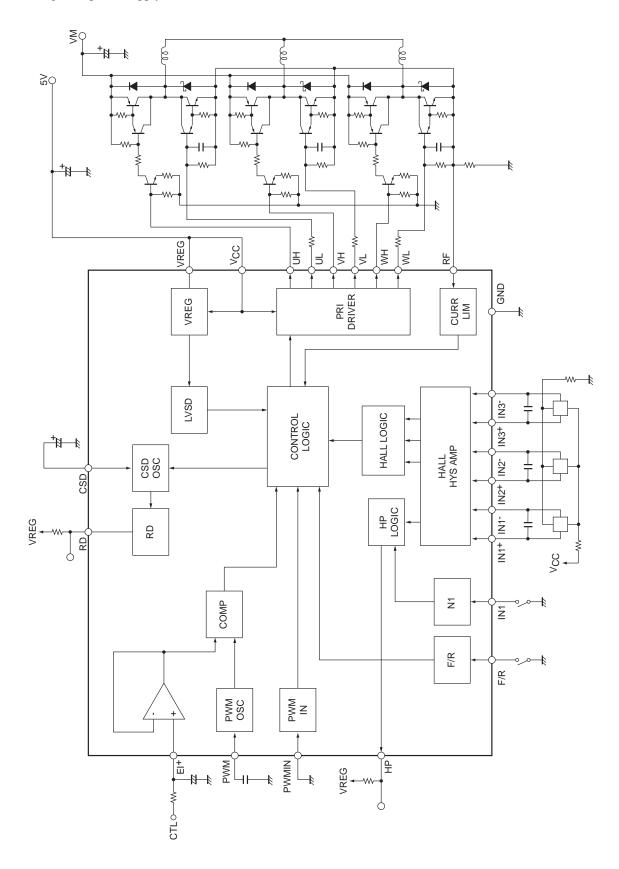
Input state	State
High or open	Output off
Low	Output on

If the PWM pin is not used, the input must be held at the low level.

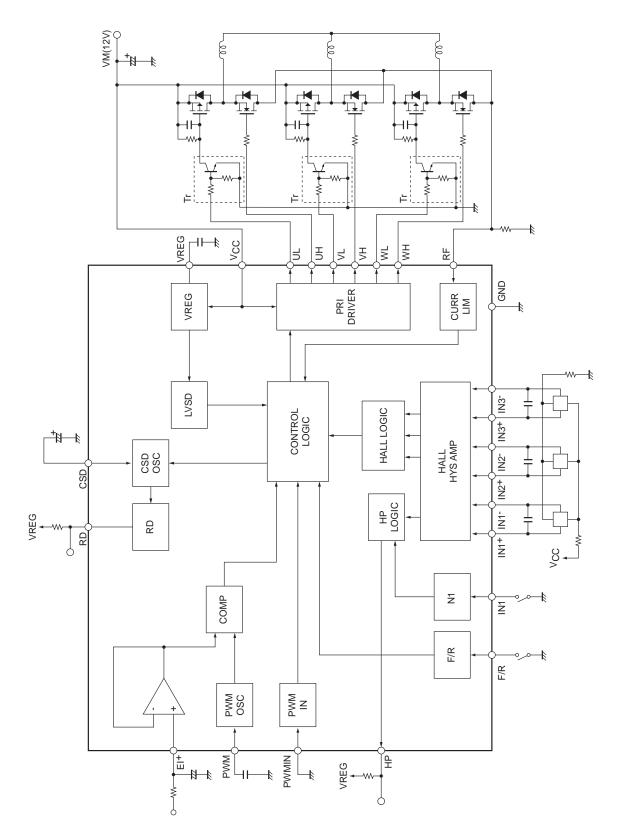

• N1 pin

Input state	HP output
High or open	Three Hall sensor synthesized output
Low	Single Hall sensor output

Explanation of Pin Functions

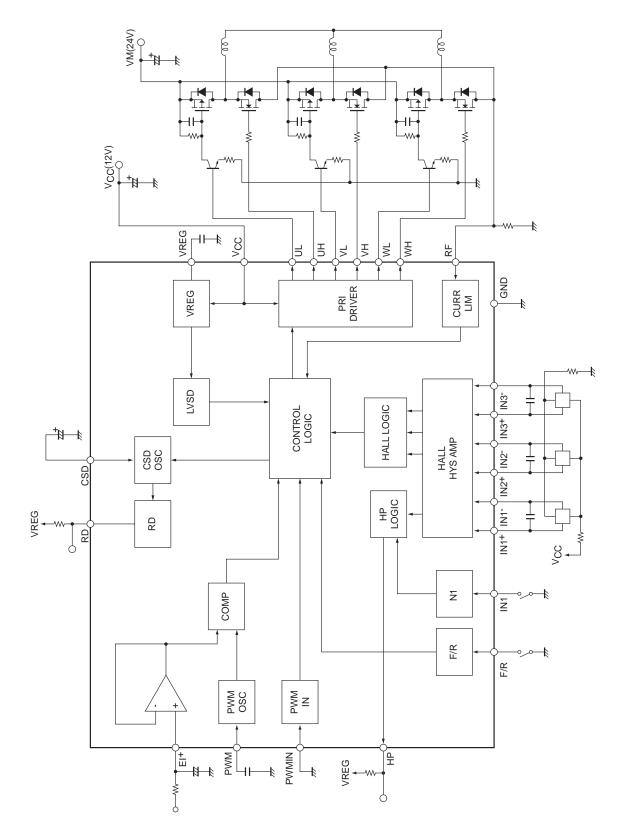

Pin No.	Pin	Description			
1, 24	IN1+, IN1-	Hall sensor inputs from each motor phase.			
3, 2	IN2+, IN2-	The logic high state indicates that $IN^+ > IN^-$.			
5, 4	IN3+, IN3-	If inputs are provided by a Hall effect sensor IC, the common-mode input range is expanded by biasing either the + or -			
		input.			
6	PWM	Functions as both the PWM oscillator frequency setting pin and the initial reset pulse setting pin. Connect a capacitor			
		between this pin and ground.			
7	RD	Lock (motor constrained) detection state output. This output is turned on when the motor is turning and off when the lock			
		protection function detects that the motor has been stopped. This is an open collector output.			
8	CSD	Sets the operating time for the lock protection circuit.			
		Connect a capacitor between this pin and ground. Connect this pin to ground if the lock protection function is not used.			
9	PWMIN	PWM pulse signal input. The output goes to the drive state when this pin is low and to the off state when this pin is high			
		or open. To use this pin for control, a CTL amplifier input such that the TOC pin voltage goes to the 100% duty state			
		must be provided.			
10	F/R	Forward/reverse control input			
11	HP	Hall signal output (HP output). This provides either a single Hall sensor output or a synthesized 3-sensor output.			
12	N1	Hall signal output (HP output) selection			
13	El+	CTL amplifier + (no inverting) input. The PWMIN pin must be held at the low level to use this input for motor control			
14	VREG	5V regulator output (Used as the control circuit power supply. A low-voltage protection circuit is built in.)			
		Connect a capacitor between this pin and ground for stabilization.			
15	V _{CC}	Power supply. Connect a capacitor between this pin and ground to prevent noise and other disturbances from affecting			
		this IC.			
16	GND	Ground			
17	RF	Output current detection. The current detection resistor (Rf) voltage is sensed by the RF pin to implement current			
		detection.			
		The maximum output current is set by RF to be IOUT = 0.25/Rf.			
22	UH	Outputs (PWM outputs).			
20	VH	These are push-pull outputs.			
18	WH				
23	UL	Outputs			
21	VL	These are push-pull outputs.			
19	WL				

Hall Sensor Signal Input/Output Timing Chart

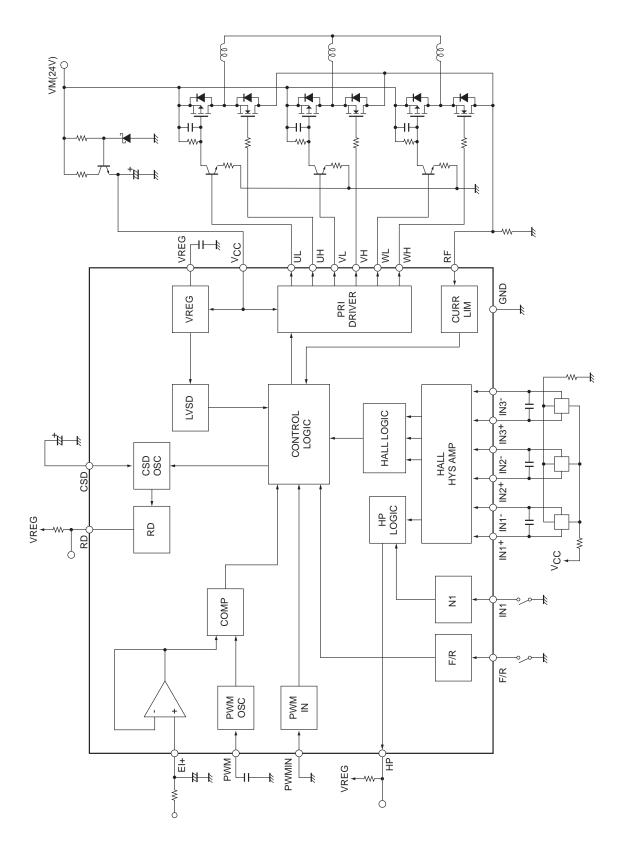


Block Diagram and Application Example 1

Bipolar transistor drive (high side PWM) Using a 5V power supply



Application Example 2 54 MOS transistor drive (low side PWM) Using a 12V single-voltage power supply


Application Example 3 MOS transistor drive (low side PWM)

MOS transistor drive (low side PWM) Using a $V_{CC} = 12V$, VM = 24V power supply system

Application Example 4

MOS transistor drive (low side PWM) Using a 24V single-voltage power supply

Pin Functions

PIN No.	PIN name	Function	Equivalent circuit
24 1 2 3 4 5	IN1- IN1+ IN2- IN2+ IN3- IN3+	Hall input pin. IN+ > IN- to "H", $IN+ < IN-$ to "L". Connect the capacitor between IN+ and IN- when the noise of the hall signal becomes a problem.	
6	PWM	Functions as both the PWM oscillator frequency setting pin and the initial reset pulse setting pin. Connect a capacitor between this pin and ground. It is possible to set it to about 22kHz with C=2000pF.	VREG
7	RD	Lock (motor constrained) detection state output. This output is turned on when the motor is turning and off when the lock protection function detects that the motor has been stopped. Hall signal output pin.	
8	CSD	Two kinds of outputs can be selected by setting the N1 pin. Sets the operating time for the lock protection circuit. Connect a capacitor between this pin and ground. Connect this pin to ground if the lock protection function is not used.	VREG VREG WREG WREG B WREG B B B B B B B B B B B B B B B B B B B
9	PWMIN	PWM pulse signal input. The output goes to the drive state when this pin is low and to the off state when this pin is high or open. To use this pin for control, a CTL amplifier input such that the TOC pin voltage goes to the 100% duty state must be provided.	
10	F/R	Forward/reverse control input.	

Continued on next page

Continued from p		_	
PIN No.	PIN name	Function	Equivalent circuit
10	F/R	Forward/reverse control input.	
12	N1	Hall signal output (HP output) selection.	VREG
13	El+	CTL amplifier + (no inverting) input. The PWMIN pin must be held at the low level to use this input for motor control.	
14	VREG	Stabilizing supply output pin. (5V output) Connect a capacitor between this pin and ground for stabilization. (about 0.1µF level)	
15	VCC	Power supply. Connect a capacitor between this pin and ground to prevent noise and other disturbances from affecting this IC.	
16	GND	Ground	
17	RF	Output current sensing pin. The low resistance is connected between RF and GND. It sets it by output maximum current IOUT=0.25/Rf.	VREG
18 19 20 21 22 23	WH WL VH VL UH UL	Output pin. (Driving external TR output) The duty is controlled on UH, VH, and WH side.	V _{CC} 50kΩ (1) 20 (21) 22 23

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, dir