### **COMPANY OVERVIEW** Diodes Incorporated is a leading global provider of Discrete, Analog, and Logic semiconductors. Its global footprint includes sales offices in five countries and manufacturing locations in China, Europe and the USA. A focus on product innovation, cost reduction, acquisitions and customer service has made Diodes Incorporated an industry leader. Combining leading silicon and packaging technologies, Diodes provides a broad portfolio of Discrete semiconductors comprising Bipolar Transistors, MOSFETs, Schottky diodes, SBR®, switching diodes and functional specific arrays to enable our customers' next generation designs. The Diodes' Analog IC portfolio consists of six main areas: Power Management ICs, Standard Linear, Lighting, Sensors, Direct Broadcast by Satellite and Application-Specific Standard Products. Diodes IC portfolio also includes Standard Logic products. ### SOLUTIONS FOR LED LIGHTING APPLICATIONS Diodes Incorporated's LED lighting solutions are not only recognized for their high efficiency and simplicity, but also for their flexibility and versatility. The best Analog ICs provide circuit designers with the most advantageous combination of efficiency, functionality and package size. Diodes has a wide variety of types of LED drivers: high voltage offline, DC-DC switching, charge pump and linear LED drivers that are well suited for a wide range of applications. - General lighting - Signage and display - Portable lighting - Automotive Diodes provides a wide range of tools to aid the design-in of our LED drivers; these include Excel component value calculators as well as evaluation modules—both general-purpose and application-specific—see page 18 for a list. ### This selection guide covers Diodes' line of LED drivers and their markets/application areas: Diodes' family of LED drivers provides high-efficiency constant current drive for high-brightness LEDs—both high and low current. When driving multiple LEDs in a single string, efficiencies greater than 95% may be attained together with very accurate LED current matching. Diodes' offline LED drivers provide a simple cost-effective solution for offline lamps, which includes retrofit lamps as well as T5/T8/T10/T12 replacements. Diodes' medium voltage DC-DC high-brightness LED drivers combine a small footprint and high-power density with operating voltage up to 60V. Integrated switch LED drivers are capable of delivering LED currents up to 1.5A. Device topologies include buck, boost and buck-boost. Diodes' low voltage DC-DC high-brightness LED drivers are targeted at battery-powered systems for general illumination applications. Diodes provides small screen display illumination with high-efficiency charge pump multi-channel LED drivers and inductive boost LED drivers. High-efficiency and high-switching frequencies make them well suited to modern portable consumer equipment. Diodes' linear LED drivers provide a simple cost-effective solution to driving low-current, high-brightness LEDs. ### INDEX | Offline LED Drivers | 4 | |--------------------------------------|------| | Offline LED Driver Applications | 4 | | E14/B10 Lamps | 4 | | A19/E27 Lamps | 5 | | T5/T8/T10/T12 Lamps | 5 | | Medium Voltage DC-DC LED Drivers | 6 | | Medium Voltage Applications | 7–9 | | General Illumination | | | LED Lamp Solution for Refrigerators | 7 | | MR16 LED Lamp Solution | 8 | | High-Power MR16 Lamps | 8 | | LED Lamp Solution for Street Lights | 9 | | LED Lamp Solution for Wall Washers | 9 | | Low Voltage DC-DC LED Drivers | 10 | | 3 11 | 1–12 | | Portable Lighting | | | 2-Cell Flashlight | 11 | | Portable LED Projector | 11 | | Signage and Display | | | Single-Cell Emergency Lighting | 12 | | General Illumination | | | Simple Solar Exterior Lights | 12 | | Linear LED Drivers | 13 | | Linear LED Driver Applications | 13 | | Signs | 13 | | Automotive LED Drivers | 14 | | Automotive Lighting Applications 1 | 4–15 | | Interior Lamps | 14 | | Door Lighting | 15 | | Daytime Running Lights | 15 | | Backlighting ICs and Bias Generators | 16 | | LED Backlight Drivers | 16 | | LCD and OLED Bias Generators | 16 | | Small Screen Display Applications | 17 | | 5" PND Screen | 17 | | 3" Mobile Screen | 17 | | LED Driver Evaluation Boards | 18 | | Drivers for Industry-Standard LEDs | 19 | ### Offline LED Drivers | Part | Minimum<br>Input<br>Voltage | Maximum<br>Input<br>Voltage | V <sub>DD</sub> | Output<br>Current | LED Current | Accuracy | Switching<br>Frequency | Efficiency | i | Dimming | OTP<br>Temperature | Supply<br>Current | Temperature<br>Range | Available | |----------|-----------------------------|-----------------------------|-----------------|-------------------|-------------------|----------|------------------------|------------|-----|---------|--------------------|-------------------|----------------------|-----------| | Number | V | V | V | mA | Α | % | kHz | % | PWM | Analog | ۰C | mA | °C | Packages | | AL9910 | 15 | 500 | 7.5 | 10 | External MOSFET | 10 | 300 | 90 | V | V | 150 | 0.5 | -40 to +85 | SO-8 | | ALSSIO | 13 | 300 | 7.5 | 10 | Externativiosi Ei | 10 | 300 | 90 | | ' | 130 | 0.5 | -40 to +105 | SO-8EP | | AL9910-5 | 15 | 500 | 7.5 | 10 | External MOSFET | 5 | 300 | 90 | V | | 150 | 0.5 | -40 to +85 | SO-8 | | AL9910-3 | 13 | 300 | 7.5 | 10 | Externar WOSI ET | ٦ | 300 | 90 | | ' | 130 | 0.5 | -40 to +105 | SO-8EP | | AL9910A | 20 | 500 | 10 | 10 | External MOSFET | 10 | 300 | 90 | V | | 150 | 0.65 | -40 to +85 | SO-8 | | ALSSION | 20 | 300 | 10 | 10 | External WOSI ET | 10 | 300 | 90 | ' | ' | 130 | 0.03 | -40 to +105 | SO-8EP | ### AL9910 Benefits - Exposed pad SO-8 and standard SO-8 Improved power dissipation reduces temperature rise Improved reliability over standard solutions - Over-temperature protection Increases reliability of lamps - 500V maximum input voltage Exceeds requirements for 277V<sub>AC</sub> main voltages - Internal regulator with two output voltage variants Removes need for start-up bleed resistor AL9910: 7.5V $V_{DD} \rightarrow MOSFETs$ with $V_{GS(MAX)} < 12V$ AL9910A: 10V $V_{DD} \rightarrow MOSFETs$ with $V_{GS(MAX)} < 20V$ ■ Separate linear and PWM dimming inputs LD Pin → dimming, thermal control, better accuracy PWM\_D is TTL compatible → better resolution ### Offline LED Driver Applications ### E14/B10 High PF Retrofit LED Lamps For retrofit E14/B10 replacement lamps a smallfootprint, high-power factor solution is required. The AL9910 provides a versatile cost-effective solution to these non-dimmable lamps. ### AL9910 Benefits - Integrated high-voltage regulator Removes high-power, start-up resistor - Uses LD pin to increase power factor Reduces size of bulk capacitor - Exposed pad SO-8 reduces junction temperature Better reliability - 500V maximum input voltage improves robustness from transients at 277V<sub>AC</sub> ### Offline LED Driver Applications ### A19/E27 Triac Dimmable Retrofit LED Lamps For retrofit A19/E27 replacement lamps a small footprint high-power factor solution that is triac dimmable is required. The AL9910 provides a versatile, cost-effective solution to these dimmable lamps. ### AL9910 Benefits THE **DIODES** ADVANTAG - Integrated high-voltage regulator Removes high-power start-up resistor - Uses LD pin to increase power factor Reduces size of bulk capacitor - Exposed pad SO-8 reduces junction temperature Better reliability - 500V maximum input voltage improves robustness from transients at 277V<sub>AC</sub> - Triac dimmable solutions Simple triac dimming using standard low-cost external components ### T5/T8/T10/T12 Lamps The LED fluorescent replacements require instant starting, high-efficiency energy saving, long life span, flexible voltage (110~277V<sub>AC</sub>), flicker-free lighting and low to moderate LED power. For high LED count systems, AL9910/-5/A permit a greater flexibility of LED string composition, at lower cost implementation to expand to multiple strings. ### AL9910-5 Benefits - Simple, multi-channel non-isolated LED driving Uses low-cost standard component to drive multiple low-current LED chains ideally suited to T5/T8/T10/T12 LED lamps - Exposed pad SO-8 and standard SO-8 Improved power dissipation reduces temperature rise Improved reliability over standard solutions - Over-temperature protection Increases reliability of lamps - 500V maximum input voltage Exceeds requirements for 277V<sub>AC</sub> main voltages - 5% V<sub>cs</sub> tolerance Improves LED current accuracy providing better inter-lamp matching ### Medium Voltage DC-DC LED Drivers | | To | polog | jies | | | je | | | | | | | | a) | | | |----------|------|-------|------------|--------------------------|--------------------------|---------------------------|------------------------|-------------------------|-----|------------|-----------------------------------|------------|-----------------------------------|---------------|----------------|--------------------------------| | Part | × | ost | Buck-Boost | Minimum<br>Input Voltage | Maximum<br>Input Voltage | Maximum<br>Output Voltage | Maximum<br>LED Current | LED Current<br>Accuracy | č | | Maximum<br>Switching<br>Frequency | Efficiency | Operating<br>Temperature<br>Range | Sense Voltage | AEC-Q100 Grade | Available | | Number | Buck | Boost | Buc | V | V | V | Α | % | PWM | Analog | kHz | % | ℃ | mV | AEC | Packages | | ZXLD1370 | Y | Y | Υ | 6.5 | 60 | Ext M | OSFET | 2 | Y | Υ | 1000 | 97 | -40 to +125 | 225 | 1 | TSSOP-16EP | | ZXLD1371 | Υ | Υ | Υ | 5 | 60 | Ext M | OSFET | 2 | Υ | Y | 1000 | 97 | -40 to +125 | 225 | 1 | TSSOP-16EP | | ZXLD1374 | Υ | Υ | Υ | 6.5 | 60 | 60 | 1.5 | 2 | Y | Y | 1000 | 97 | -40 to +125 | 225 | 1 | TSSOP-20EP | | | | | | | | | | | | | | | | | 1 | TSOT25 | | ZXLD1366 | Y | - | _ | 6 | 60 | 60 | 1 | 2.5 | Y | Υ | 500 | 95 | -40 to +125 | 200 | _ | DFN3030-6 | | | | | | | | | | | | | | | | | 1 | SO-8EP | | AP8802H | Υ | _ | _ | 8 | 60 | 60 | 1 | 5 | Y | Υ | 600 | 95 | -40 to +125 | 200 | _ | SO-8EP | | ZXLD1362 | Υ | _ | _ | 6 | 60 | 60 | 1 | 5 | Y | Y | 1000 | 95 | -40 to +125 | 100 | 1 | TSOT25 | | ZXLD1356 | Υ | _ | _ | 6 | 60 | 60 | 0.55 | 2.5 | Υ | Υ | 1000 | 97 | -40 to +125 | 200 | 1 | TSOT25 | | | · | | | Ů | | | 0.55 | 2.5 | · | · | | , | 10 10 1125 | 200 | _ | DFN3030-6 | | AP8802 | Υ | _ | _ | 8 | 48 | 48 | 1 | 8 | Y | Y | 500 | 92 | -40 to +105 | 200 | _ | SO-8,<br>SO-8EP,<br>DFN3030-10 | | AP8801 | Υ | _ | _ | 8 | 48 | 48 | 0.5 | 8 | Y | Υ | 500 | 92 | -40 to +105 | 200 | _ | SO-8,<br>MSOP-8 | | AL8806 | Υ | - | _ | 6 | 36 | 36 | 1.5 | 5 | Υ | Υ | 1000 | 98 | -40 to +125 | 100 | 1 | MSOP-8EP | | AL8805 | Υ | _ | _ | 6 | 36 | 36 | 1 | 5 | Y | Y | 1000 | 98 | -40 to +125 | 100 | _ | SOT25 | | AL8807 | Υ | | _ | 6 | 36 | 36 | 1 | 5 | Υ | Υ | 1000 | 98 | -40 to +125 | 100 | | SOT25 | | 7.2007 | · | | | | 30 | 30 | 1.3 | | · | · | | ,,, | 10 10 1 125 | | | MSOP-8EP | | AL8807A | Υ | _ | _ | 6 | 36 | 36 | 1 | 5 | N | Y<br>>10:1 | 700 | 98 | -40 to +125 | 100 | _ | SOT25 (4Q12) | | | | | | | | | 1.3 | | | | | | | | | MSOP-8EP | | ZXLD1360 | Υ | _ | _ | 7 | 30 | 30 | 1 | 5 | Y | Υ | 1000 | 95 | -40 to +125 | 100 | 1 | TSOT25 | | ZXLD1350 | Υ | _ | _ | 7 | 30 | 30 | 0.38 | 5 | Y | Y | 1000 | 95 | -40 to +105 | 100 | 2 | TSOT25 | | ZXLD1352 | Υ | _ | _ | 7 | 30 | 30 | 0.38 | 5 | Υ | Y | 1000 | 97 | -40 to +105 | 100 | 2 | TSOT25 | | AP8800A | Υ | _ | _ | 8 | 28 | 28 | 0.37 | 5 | Y | Y | 600 | 92 | -40 to +105 | 100 | | TSOT25 | | AP8800 | Υ | _ | _ | 8 | 28 | 28 | 0.35 | 7 | Y | Y | 600 | 92 | -40 to +85 | 100 | _ | SO-8,<br>MSOP-8,<br>DFN3030-10 | ### Medium Voltage DC-DC LED Drivers ### **Product Benefits** HE DIODES ADVANTAGE Simple solutions for driving multiple 1W and 3W LEDs in a variety of lighting applications - Equal ripple output current (hysteretic) Very simple design—only four external components required Good stability—requires no external compensation - PWM and Analog dimming Versatile dimming; Analog for thermal and PWM for brightness control - ZXLD135x/6x in common footprint High-power density, small footprint solution 1W LEDs: ZXLD135x 3W LEDs: ZXLD136x AEC-Q100 qualified - AP/AL880x range provides cost-effective solutions in standard packages SO-8/EP, MSOP-8/EP, SOT25, DFN3030-10 - ZXLD137x multi-topology hysteretic LED drivers Supports high-performance buck, boost and buck-boost LED driver solutions ### Medium Voltage Applications: General Illumination ### LED Lamp Solution for Refrigerators LED lamps are good solutions for commercial refrigerators because they provide uniform illumination, can operate from safe low voltages, and do not have start-up issues at low temperatures. The AP8802H provides a small footprint solution for commercial refrigeration—requiring a minimum of four external components while driving 12 LEDs in series from a 48V rail. The device CTRL pin provides lamp dimming for advanced illumination options. ### ### AP8802H Benefits The AP8802H provides a simple, cost-effective solution for commercial refrigeration applications - Operating voltage range up to 60V with -40°C $\leq$ T<sub>A</sub> $\leq$ +125°C Up to fifteen LEDs can be connected in series; higher power can be delivered without reduction in lumens at low temperature - LED current can be up to 1A Drives both 1W and 3W LED systems - Up to 700kHz switching frequency Small, cost-effective inductor and capacitor can be used - 5% initial average LED current accuracy Meets accuracy requirements of most lighting applications at a cost-effective price and improves inter-channel matching ### Medium Voltage Applications: General Illumination ### MR16 LED Lamp Solution MR16 lamps require a high-reliability, smallfootprint solution. These lamps frequently use different combinations of LEDs, ranging from three 1W LED to one 3W LED. The AL8807W5 provides a cost-effective solution for driving multiple 1W and 3W LEDs in $12V_{AC}$ and $24V_{AC}$ powered lamps. # AL8807W5 Benefits The AL8807W5 provi illumination LED lam 36V 1A LED drive of Drives multiple 1W solutions for MR16 5% initial average Cost-effective solutions and in High switching free Small inductance of Small inductance of Small inductance of the state of the small inductance sm The AL8807W5 provides a simple, cost-effective solution for general illumination LED lamps - 36V 1A LED drive capability Drives multiple 1W and 3W LED in series, providing cost-effective solutions for MR16 - 5% initial average LED current accuracy Cost-effective solution meets accuracy requirements of most lighting applications and improves inter-channel matching - High switching frequency up to 1MHz Small inductance value and size reduces solution size - Small footprint SOT25 uses only four external components High power density, small PCB footprint solution ### High-Power MR16 Lamps High-power MR16s are stretching the power density capability of the MR16 form factor and its ability to get heat out. The AL8806 (1.5A) and AL8807MP (1.3A) with their 36V capability provide cost-effective solutions for high power MR16 lamps from $12V_{AC/DC}$ and $24V_{AC/DC}$ supplies. ### ### AL8807MP Benefits **DIODES** ADVANTAGE - 36V 1.3A LED drive capability Drives up to eight SxP connected LED → cost effective solution for 12V<sub>AC/DC</sub> systems - Small footprint MSOP-8EP package Delivers the power - 5% initial average LED current accuracy Meets most lighting requirements - Simple PWM and Analog dimming on CTRL pin Provides flexible scheme to users with different dimming methods - High-switching frequency up to 1MHz Small inductance value reduces solution size ### Medium Voltage Applications: General Illumination ### **LED Lamp Solution for Street Lights** Many high-power lamps utilize multiple serial channels of LEDs in parallel. The ZXLD1366EN8 offers 2.5% accuracy, providing a simple solution for these high-power lamps by maintaining close matching between the parallel serial chains. ### THE DIODES ADVANTAGE ZXLD1366 Benefits The ZXLD1366EN8 provides a simple, cost-effective solution for streetlight and high bay lighting applications - Operating voltage range up to 60V and +125°C Up to fifteen LEDs can be connected in series so that higher output power can be delivered without reduction in lumens at low temperature - 2.5% initial average LED current accuracy Meets accuracy requirement of most lighting applications and improves inter-channel matching - Supports up to 1A LED current Good match for 3W LED systems - Low thermal impedance exposed pad SO-8EP package Reduces junction temperature for increased long-term reliability ### **LED Lamp Solution for Wall Washers** Drive long chains of low-current, high-brightness LEDs in series. The ZXLD1370 LED driver-controller in boost mode offers simple, single-sense resistor brightness control with simple Analog and PWM dimming. ### **ZXLD1370 Benefits** ZXLD1370 boost LED driver-controller provides a simple, cost-effective solution to wall washers - 6V to 60V input voltage range Operates from standard 12, 24 and 48V rails - ZXLD1370 boost LED driver-controller External FET determines LED chain length → increased versatility - 2% LED current setting accuracy Improved matching between channels - Single-sense resistor brightness control in boost mode Simple LED current control ### Low Voltage DC-DC LED Drivers | | To | opologie | es | | | | | | | | | | Ħ | | |----------|------|------------|-------|--------------------------|--------------------------|---------------------------|------------------------|------------------------|--------------------------|--------|------------|-----------------------------------|-------------------|------------| | | k | Buck-Boost | st | Minimum<br>Input Voltage | Maximum<br>Input Voltage | Maximum<br>Output Voltage | Maximum<br>LED Current | Switching<br>Frequency | Current Sense<br>Voltage | Enable | Efficiency | Operating<br>Temperature<br>Range | Quiescent Current | Available | | Device | Buck | Buc | Boost | V | V | V | Α | kHz | mV | Pin | % | °C | mA | Packages | | ZXSC100 | _ | _ | Y | 0.93 | 3.5 | Ext BJT | Ext BJT | 200 | 730 | N | 82 | -40 to +85 | 0.15 | SO-8 | | ZXSC300 | _ | _ | Y | 0.8 | 8 | Ext BJT | Ext BJT | _ | 19 | N | 94 | -40 to +85 | 0.2 | SOT25 | | ZXSC310 | _ | _ | Y | 0.8 | 8 | Ext BJT | Ext BJT | _ | 19 | Y | 94 | -40 to +85 | 0.2 | SOT25 | | ZXSC380 | _ | _ | Y | 0.8 | 6 | 20 | 0.08 | 160 | _ | N | 80 | -40 to +85 | _ | SOT23 | | ZXSC400 | _ | _ | Y | 1.8 | 8 | Ext BJT | Ext BJT | 200 | 300 | Υ | 85 | -40 to +85 | 0.22 | SOT26 | | ZXSC410 | _ | _ | Y | 1.8 | 8 | Ext BJT | Ext BJT | 200 | 300 | Υ | 85 | -40 to +85 | 0.22 | SOT26 | | ZXSC420 | _ | _ | Y | 1.8 | 8 | Ext BJT | Ext BJT | 200 | 300 | N | 85 | -40 to +85 | 0.22 | SOT26 | | ZXSC440 | _ | _ | Υ | 1.8 | 8 | Ext BJT | Ext BJT | 200 | 300 | Υ | 85 | -40 to +85 | 0.22 | MSOP-8 | | ZXLD1320 | Y | _ | _ | 5 | 20 | 20 | 1.5 | 600 | 100 | Υ | 85 | -40 to +85 | 1.5 | DFN4030-14 | | ZXLD1321 | _ | _ | Y | 1.2 | 12 | 20 | 1 | 600 | 100 | Υ | 85 | -40 to +85 | 1.5 | DFN4030-14 | | ZXLD1322 | _ | Υ | _ | 2.5 | 15 | 20 | 0.7 | 600 | 100 | Υ | 85 | -40 to +85 | 1.5 | DFN4030-14 | | ZXLD381 | _ | _ | Υ | 0.9 | 2.2 | 20 | 0.32 | 350 | _ | N | 85 | -40 to +85 | _ | SOT23 | | ZXLD383 | _ | _ | Y | 0.9 | 3.3 | 20 | 0.05 | 330 | _ | Y | 85 | -40 to +85 | 4 | TSOT25 | ### **Product Benefits** Simple, low-voltage LED drivers capable of operating from as low as 0.8V $\,$ - Boost controllers External transistor sets maximum LED current and chain voltage for increased versatility - Boost drivers Targeted for small footprint, low-current LED solutions - 0.8V minimum input voltage Operates over whole life of 1-cell, maximizing LED lamp run time - ZXLD132x buck, boost and buck-boost LED drivers Integrated 2A switch in a small footprint DFN4030 package ### Low Voltage Applications: Portable Lighting ### 2-Cell Flashlight Due to the cost-sensitive nature of flashlights, a simple low-cost solution with long running time is beneficial. The ZXSC310 low-voltage boost controller provides such a solution. It operates with constant off-time and peak current switching topology. This reduces the average LED current automatically as the battery voltage is reduced, extending the flashlight run-time with only a small change in brightness. ## ZXSC310 Benefits Simple solutions for Operates throug LED current set LED current is relamp run-time Simple solutions for 1- and 2-cell flashlights increase operating life - 0.9V minimum operating voltage Operates through whole life of 1- and 2-cell flashlights - LED current set by input voltage and current through R1 LED current is reduced as the battery voltage decreases, increasing lamp run-time ### Portable LED Projector High-efficacy LEDs enable long operating life in portable projectors. Common-anode connected RGB LEDs are used to reduce wiring and ensure low thermal impedances for the LED. This requires the use of four high-efficiency, low-voltage LED drivers. The ZXLD1320 LED driver can supply 1.5A in common anode configuration, offering a small footprint, high power-density solution to RGB common-anode portable projectors. ### ZXLD1320 Benefits Simple, small-footprint solution for Li-Ion powered 4W LED lit portable LED projectors - 5V to 20V input voltage range Operates from two to three Li-lon cells - 1.5A output current Drives 4W LEDs - High-efficiency buck LED driver Drives one 4W LED from one Li-lon cell or two 4W LEDs from two Li-lon cells - High power dissipation DFN4030-14 package Maintains high LED drive at higher ambient temperatures ### Low Voltage Applications: Signage and Display ### Single-Cell Emergency Lighting Emergency lighting applications require long run times from rechargeable batteries. The ZXLD1321 boost LED driver with its low operating voltage range allows it to operate from single and multi-cell lead-acid/NiCd/Li-Ion batteries. Its 1A drive capability supports 1W and 3W LED applications. ### HE DIODES ADVANTAGE ZXLD1321 Benefits Small-footprint solution for safety-critical applications - 1.2V to 12V input voltage range Operates from a single rechargeable cell - 1A load current Drives 3W LEDs - **Boost topology** Drives multiple 3W LEDs from one rechargeable cell - High power dissipation DFN4030-14 package Maintains high LED drive at higher ambient temperatures ### Low Voltage Applications: General Illumination ### Simple Solar Exterior Lights Cost and run-time are important factors for solar powered exterior lamps. The ZXLD383 has been developed to meet these requirements. Its 0.9V minimum operating voltage coupled with its 85% efficiency extends system operating life. The ZXLD383 offers a simple and elegant solution requiring only the LED, inductor and a solar cell, eliminating one diode from the system. ### ZXLD383 Benefits Simple boost and buck-boost LED driver solution requiring only one external component plus LEDs - Single-cell operation (0.9V minimum) - 85% efficiency Increased operating time at night - Simple flexible LED driving Requires only the inductor and LED - Low saturation voltage-switching transistor Improved efficiency - **Dual function enable input** Inhibits operation and prevents discharging the rechargeable solar cell during darkness ### Linear LED Drivers | Part<br>Number | Topology | Minimum<br>< Supply<br>Voltage | Maximum<br>< Supply<br>Voltage | < MaxVout | LED Current < Sense Voltage | a Output<br>V Current | B LED Current | % Accuracy | r Frequency | % Efficiency | Dimming | م Temperatue<br>A Range | Available<br>Packages | |----------------|-------------------|--------------------------------|--------------------------------|-----------|-----------------------------|-----------------------|------------------------|------------|-------------|--------------|---------|-------------------------|-------------------------| | AL8400 | Linear Controller | 2.2 | 18 | 18 | 0.2 | 15 | external<br>transistor | 3 | _ | _ | _ | -40~to +125 | SOT353 | | DLD101 | Linear Driver | _ | 50 | 100 | 0.65 | 1000 | 1000 | _ | _ | _ | _ | -40~to +85 | DFN3030D-8 | | AL5801 | Linear Driver | 4.5 | 50 | 100 | 0.65 | 350 | 350 | _ | _ | _ | _ | -40~to +85 | SOT26 | | AL5802 | Linear Driver | 4.5 | 30 | 30 | 0.65 | 120 | 120 | _ | _ | _ | PWM | -40~to +125 | SOT26 | | AL5811* | Linear Driver | 3.5 | 60 | 60 | 0.5 | 75 | 75 | 3 | _ | _ | _ | -40~to +125 | MSOP-8EP<br>U-DFN3030-6 | | AL5812 | Linear Driver | 3.5 | 60 | 60 | 0.5 | 150 | 150 | 3 | _ | _ | _ | -40~to +125 | MSOP-8EP<br>U-DFN3030-6 | ### **Diodes Linear LED Driver Benefits** - Small footprint packages High power density, small PCB footprint solution - AL8400—200mV sense voltage Reduces voltage overheads → more LED driven off any rail and reduces power dissipation - AL5811, AL5812, AL8400—3% initial average LED current accuracy Meets accuracy requirements at cost-effective price - Simple V<sub>BE</sub> LED current reference voltage DLD101, AL5801 and AL5802 provide constant current LED drive, which automatically reduces LED current at high temperatures ### **Linear LED Lighting Applications** ### Signs Letter signs using LEDs provide a more efficient, reliable and longer lifetime alternative to traditional neon letters. The ability to drive long lines of low current LEDs at a low solution cost is essential The AL8400 provides a versatile cost-effective solution to LED letter signs by allowing the LED driving transistor to be optimized for the current and voltage required. ## AL8400 VCC OUT RB LED letters CIN STATE OF THE PROPERTY TH ### AL8400 Benefits - Small footprint SOT353 package High power density, small PCB footprint solution - 200mV sense voltage Reduces voltage overheads → more LED driven off any rail and reduces power dissipation - 3% initial average LED current accuracy Meets accuracy requirements at cost-effective price - Open-collector output drives transistor/MOSFET Allows best choice of pass transistor for LED drive - LED chain voltage and current set by external transistor/MOSFET Best pass transistor for LED chain voltage/current LED chains longer than 18V can be driven with zener clamp on V<sub>CC</sub> pin ### **Automotive LED Drivers** | | AEC-Q100 Grade | ck | Boost | Buck-Boost | Minimum<br>Input Voltage | Maximum<br>Input Voltage | Maximum<br>Output Voltage | Maximum<br>LED Current | LED Current<br>Accuracy | | | Maximum<br>Switching<br>Frequency | Efficiency | Operating<br>Temperature<br>Range | Quiescent<br>Current | Standby<br>Current | Available | |---------------|----------------|------|-------|------------|--------------------------|--------------------------|---------------------------|------------------------|-------------------------|-----|--------|-----------------------------------|------------|-----------------------------------|----------------------|--------------------|------------| | Part Number | AE | Buck | Bo | Bu | V | V | V | Α | % | PWM | Analog | kHz | % | ۰C | mA | μA | Packages | | AL8400SE | 1 | Υ | _ | _ | 2 | 18 | 18 | Ext. | 3 | N | N | _ | _ | -40 to +125 | _ | _ | SOT353 | | ZXLD1350ET5 | 2 | Υ | _ | _ | 7 | 30 | 30 | 0.35 | 5 | Υ | Υ | 1000 | 95 | -40 to +105 | 0.25 | 15 | TSOT25 | | ZXLD1352ET5 | 2 | Υ | _ | _ | 7 | 30 | 30 | 0.35 | 5 | Υ | Υ | 1000 | 97 | -40 to +105 | 0.25 | 20 | TSOT25 | | ZXLD1356ET5 | 1 | Υ | _ | _ | 6 | 60 | 60 | 0.35 | 3 | Υ | Υ | 1000 | 97 | -40 to +125 | 1.6 | 65 | TSOT25 | | ZXLD1360ET5 | 1 | Υ | - | _ | 7 | 30 | 30 | 1 | 5 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.8 | 20 | TSOT25 | | ZXLD1362ET5 | 1 | Υ | _ | _ | 6 | 60 | 60 | 1 | 5 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.8 | 65 | TSOT25 | | ZXLD1366EN8 | 1 | Υ | _ | _ | 6 | 60 | 60 | 1 | 2.5 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.6 | 65 | SO-8-EP | | ZXLD1366ET5 | 1 | Υ | _ | _ | 6 | 60 | 60 | 1 | 2.5 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.6 | 65 | TSOT25 | | ZXLD1370EST16 | 1 | Υ | Υ | Υ | 6.5 | 60 | Ext. MOS | Ext. MOS | 2 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.65 | 91 | TSSOP-16EP | | ZXLD1371EST16 | 1 | Υ | Υ | Υ | 6.5 | 60 | Ext. MOS | Ext. MOS | 2 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.65 | 91 | TSSOP-16EP | | ZXLD1374EST20 | 1 | Υ | Υ | Υ | 6.5 | 60 | 60 | 1.5 | 2 | Υ | Υ | 1000 | 95 | -40 to +125 | 1.65 | 91 | TSSOP-20EP | | ZXLD1615 | 3 | _ | _ | Υ | 2.7 | 5.5 | 28 | NA | NA | N | N | 1000 | 85 | -40 to +85 | 0.06 | 1 | TSOT25 | ### **Automotive Lighting Applications** Applications include: Daytime running lights, interior illumination, brake lights, fog lamps, door safety lights, auxiliary lighting, headlights and license plates. ### **Interior Lamps** LED lamps are increasingly being used due to their superior reliability and energy saving properties. Typical LED currents range from 50mA to 150mA, so linear solutions are normally used. The lamp operates directly off the battery, requiring the driver to withstand load dump as well as meeting AEC-Q100 automotive quality requirements. The AL8400 is qualified to AEC-Q100 grade 1. It is a controller which allows the external transistor to be optimized for the LED current/power dissipation providing a cost-effective solution. Its wide supply voltage range allows it to work below 9V and can withstand load dump conditions with the addition of a zener clamp diode. ### AL8400 Benefits - Qualified to AEC-Q100 grade 1 - Ambient temperature range up to +125°C - Drives external transistor Increases versatility → LED current and power dissipation set by external transistor - Simple cost-effective solution ### **Automotive Lighting Applications** ### **Door Lighting** Door safety lamps usually use just one high-brightness LED so a simple buck converter is typically used. The lamp operates directly off the battery, requiring the driver to withstand load dump as well as meeting AEC-Q100 automotive quality requirements. The ZXLD1362 is qualified to AEC-Q100 grade 1. Its 1A capability allows it to drive 3W LEDs while the device's 60V operating voltage withstands most load dump conditions. ### ZXLD1362ET5 Benefits ZXLD1362ET5 delivers a simple, small-footprint solution for automotive safety lighting - 60V 1A LED drive capability Drives multiple 3W and 1W LEDs and withstands load dump - 5% initial average LED current accuracy Meets accuracy requirements at a cost-effective price - AEC-Q100 grade 1 with 60V capability Suitable for wide range of automotive applications - Small footprint TSOT25 package requires only four external components High power density, small PCB footprint solution ### **Daytime Running Lights** Due to the variation in battery voltage and the number of LEDs used, buck-boost configurations are commonly used in daytime running lights. The ZXLD1371 LED driver used in buck-boost mode can deliver the accuracy, reliability and power drive needed for the large number of LEDs used in daytime running lights. ### **ZXLD1371 Benefits** The ZXLD1371 provides a simple, high-reliability solution for driving LED daytime running lights - High accuracy LED control: 1% reference tolerance Better brightness control and matching between lamps - LED thermal management via external thermistor Improves reliability of LED lamps - Separate 1000:1 PWM dimming capability Improves dynamic range of dimming at lower light levels - 5V minimum input voltage Supports DRL operation even during engine starting with new start/stop technology - Two-pin diagnostic feedback pins Reports back to the system the status of the LED driver and load, increasing overall system reliability THE DIODES ADVANTAGE ### **Backlighting ICs and Bias Generators** ### **LED Backlight Drivers** | Part | | Minimum<br>Input<br>Voltage | Maximum<br>Input<br>Voltage | Maximum<br>Output<br>Voltage | Number of<br>Channels | Switching<br>Frequency | Efficiency | Quiescent<br>Current | Standby<br>Current | SW R <sub>DS</sub> (on) | | 0 | Soft Start | V <sub>FB</sub> | Operating<br>Temperature<br>Range | Available | |---------|----------------|-----------------------------|-----------------------------|------------------------------|-----------------------|------------------------|------------|----------------------|--------------------|-------------------------|---------|-----|------------|-----------------|-----------------------------------|-------------------------------| | Number | Туре | V | V | V | Nur | MHz | % | mA | μΑ | Ω | Dimming | OVP | Sof | V | °C | Packages | | AP3154A | Charge<br>pump | 2.7 | 5.5 | _ | 4 | 0.6/ 1.2/ 1.8 | 88 | 1.2 | 1 | _ | SDI | Υ | Υ | _ | -40 to +85 | DFN3030-12 | | AP3156 | Charge<br>pump | 2.7 | 5.5 | _ | 6 | 0.5/ 1.0/ 2.0 | 88 | 1.5 | 1 | _ | SDI | Υ | Υ | _ | -40 to +85 | QFN4040-16 | | AL3157 | Charge<br>pump | 2.7 | 5.5 | _ | 3 + 1 | 1.2 | 93 | _ | 1 | 0.5 | PWM | Υ | Υ | _ | -40 to +85 | U-DFN3030-12 | | AL3158 | Charge<br>pump | 2.7 | 5.5 | _ | 3 x 3<br>RGB | 1.2 | 93 | _ | 1 | 0.5 | PWM | Υ | Υ | _ | -40 to +85 | QFN3030-20 | | AL3159 | Charge<br>pump | 2.7 | 5.5 | _ | 9 | 1.2 | 93 | _ | 1 | 0.5 | PWM | Υ | Υ | _ | -40 to +85 | QFN3030-20 | | AP5724 | Boost | 2.7 | 5.5 | 26 | 7 | 1.2 | 84 | 2 | 1 | 0.75 | PWM | Υ | Υ | 0.1 | -40 to +85 | DFN2020C-6<br>SOT26<br>TSOT26 | | AP5725 | Boost | 2.7 | 5.5 | 26 | 7 | 1.2 | 84 | 2 | 1 | 0.75 | PWM | Υ | Υ | 0.25 | -40 to +85 | DFN2020C-6<br>SOT26<br>TSOT26 | | AP5726 | Boost | 2.7 | 5.5 | 26 | 7 | 1.2 | 84 | 2 | 1 | 0.75 | PWM | Υ | Υ | 0.31 | -40 to +85 | DFN2020C-6<br>SOT26<br>TSOT26 | # DODES CHOPS APS72X ### The Diodes Advantage Simple, small-footprint solutions for small screen backlighting and biasing - High efficiency: up to 93% typical Longer battery life - Fast 1.2MHz switching frequency Smaller inductor and capacitor size - Inductive boost converters and multi-channel charge pumps High-efficiency, cost-effective solutions - Built-in soft-start, OVP, current limit and UVLO protection Extra protection for safe operation - Small footprint and low profile (as low as 0.4mm) packages Reduces PCB area and meets height constraints ### LCD and OLED Bias Generators | Part | | Minimum<br>Input<br>Voltage | Maximum<br>Input<br>Voltage | Maximum<br>Output<br>Voltage | nber of LED | Frequency | Efficiency | Quiescent<br>Current | Standby<br>Current | SW R <sub>DS</sub> (oN) | | Ь | t Start | V <sub>FB</sub> | Operating<br>Temperature<br>Range | Available | |----------|-------|-----------------------------|-----------------------------|------------------------------|-------------|-----------|------------|----------------------|--------------------|-------------------------|---------|-----|---------|-----------------|-----------------------------------|-----------| | Number | Туре | V | V | V | Num | MHz | % | μΑ | μΑ | Ω | Dimming | IVO | Soft | ٧ | °C | Packages | | AP5727 | Boost | 2.7 | 5.5 | 30 | 1 | 1.2 | 84 | 500 | 0.1 | 0.95 | N | N | Υ | 1.25 | -40 to +85 | SOT25 | | ZXLD1615 | Boost | 2.7 | 5.5 | 28 | - | 1 | 85 | 60 | 1 | 1.75 | N | N | N | 1.25 | -40 to +85 | TSOT25 | ### **Small Screen Display Applications** ### 5" PND Screen Larger portable navigation device (PND) screens require more LEDs to maintain display quality in variable background light conditions. The AL3159, with its current matching accuracy, is well-suited for this requirement. The high-efficiency linear and charge-pump functionality extends the device operating life when powered from the PND's internal Li-Ion battery. ### AL3159 Benefits HE **DIODES** ADVANTAGE The AL3159 provides a simple, cost-effective solution for small LED backlit LCD screens - Up to 93% max power efficiency Increases battery life—improving talk time - 1% current matching accuracy between channels Improves consistency of backlight for enhanced screen image - Drives up to nine channels of LEDs Versatile solution for portable consumer electronics equipment - Versatile 3-wire logic decoding of LED current control Simplifies driving and illumination of small LCD screens - Thin QFN3030-20 packages requiring only three small low-profile capacitors Small, thin solution reduces size of portable LED backlighting ### 3" Mobile Phone Screen Large screen (>2.8") mobile phones frequently use six LED to ensure uniform brightness across AP5724/5/6 boost LED drivers provide a high-efficiency solution for this application. The series connection of the LED ensures uniform brightness from the LEDs. The TSOT23-6 packaged versions offer industry-standard pinouts and are thinner than 1mm. ### AP5724/5/6 Benefits Simple, small-footprint solutions for small screen backlighting - High efficiency: 84% typical Longer battery life - Fast 1.2MHz switching frequency Smaller inductor and capacitor size - Built-in OVP, current limit and UVLO protection Extra protection for safe operation - Three choices of V<sub>FB</sub> (0.1, 0.25 and 0.31V) Offers extra design flexibility - Low profile (<1mm) packages: TSOT23-6 and DFN2020C-6 (0.6mm) Meets height constraints of modern, thin, portable equipment ### **LED Driver Evaluation Boards** | Device | Board Number | Description of Assembly | Package<br>used | |----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------| | AL3157 | AL3157F-EVM Rev.1 | 3-channel backlight + 1-channel flashlight white LED charge pump LED driver | U-DFN3030-12 | | AL3158 | AL3158FSG-EV-RGB | 3 x 3-channel RGB backlight LED charge pump LED driver | QFN3030-20 | | AL3159 | AL3159FSG-EVM Rev.1 | 9-channel backlight white LED charge pump LED driver | QFN3030-20 | | AL5802 | AL5802EV1 | 30V, adjustable current sink linear LED driver, preset for 20, 50 or 100mA LED current | SOT26 | | AL8400 | AL8400EV1 | 18V simple LED driver-controller evaluation board | SOT353 | | AL8805 | AL8805EV1 | 36V, 1A buck LED driver, 660mA, control input, no onboard LEDs | SOT25 | | AL8805 | AL8805EV2 | MR16 replacement, external 3W LED, V <sub>IN</sub> = 12V <sub>AC</sub> 50/60Hz or 12V <sub>DC</sub> 660mA | SOT25 | | AL8806 | AL8806EV4 | 36V, 1.5A buck LED driver, 1.5A LED current, control input, no onboard LEDs | MSOP-8EP | | AL8806 | AL8806EV6 | MR16 replacement, external LED, V <sub>IN</sub> = 12V <sub>AC</sub> 50/60Hz or 12V <sub>DC</sub> 1.1A LED current | MSOP-8EP | | AL8807 | AL8807EV2 | MR16 replacement, external LED, V <sub>IN</sub> = 12V <sub>AC</sub> 50/60Hz or 12V <sub>DC</sub> 660mA LED current | SOT25 | | AL8807 | AL8807EV3 | 36V, 1.3A buck, LED driver, 1.3A LED current control input, no onboard LEDs | MSOP-8EP | | AL8807 | AL8807EV4 | MR16 replacement, external LED, V <sub>IN</sub> = 12V <sub>AC</sub> 50/60Hz or 12V <sub>DC</sub> 1.1A LED current | MSOP-8EP | | AL9910 | AL9910EV4 | Non-isolated universal AC supply driving 14 to 18 LEDs at 180mA (PLED ~ 7 to 10W) | SO-8 | | AL9910 | AL9910EV5 | Non-isolated universal AC supply driving 14 to 18 LEDs at 240mA (PLED ~ 10 to 13W) | SO-8 | | AL9910 | AL9910EV6 | 110V <sub>AC</sub> isolated supply LED driver | SO-8EP | | AL9910A | AL9910EV7 | Triac dimmable, E27/A19, 110V <sub>AC</sub> evaluation board | SO-8 | | AL9910 | AL9910EV8 | Non-dimmable, E27/A19, 110V <sub>AC</sub> evaluation board | SO-8 | | AL9910A | AL9910EV9 | Triac dimmable, E27/A19, 230V <sub>AC</sub> evaluation board | SO-8 | | AL9910 | AL9910EV12 | Non-dimmable, E14/B10, 85 to 230V <sub>AC</sub> evaluation board | SO-8EP | | AP3156 | AP3156FVG-EV | 6-channel backlight LED driver, charge pump, V <sub>IN</sub> =2.7V to 5.5V | DFN4040-16 | | AP5724 | AP5724-EV | Boost backlight LED driver 1.2MHz, 2.7V to 5.5V input, 100mV feedback | SOT26 | | AP5727 | AP5727-EV | Boost LCD and OLED bias generator 1.2MHz, 2.7V to 5.5V input, 1.25V feedback | SOT25 | | AP8800 | AP8800EV2 | Buck LED driver, V <sub>IN</sub> = 8V to 28V, 300mA, control input, no onboard LEDs | MSOP-8 | | AP8801 | AP8801EV2 | Buck LED driver, V <sub>IN</sub> = 8V to 48V, 460mA, control input, no onboard LEDs | MSOP-8 | | AP8802 | AP8802EV2 | Buck LED driver, V <sub>IN</sub> = 8V to 48V, 1A, control input, no onboard LEDs | SO-8 | | AP8802H | AP8802HEV2 | Buck LED driver, V <sub>IN</sub> = 8V to 60V, 1A, control input, no onboard LEDs | SO-8EP | | DLD101 | DLD101EV1 | High-voltage linear LED driver | DFN3030D-8 | | ZXLD1320 | ZXLD1320EV1 | Buck LED driver, 500kHz PFM, V <sub>IN</sub> = 5V to 18V, 1.5A output, + ext. thermistor | DFN4030-14 | | ZXLD1321 | ZXLD1321EV1 | Boost LED driver, 550kHz PFM, V <sub>IN</sub> = 1.2V to 12V, 1A output, + ext. thermistor | DFN4030-14 | | ZXLD1322 | ZXLD1322EV1 | Buck-boost LED driver, 550kHz PFM, V <sub>IN</sub> = 2.5V to 15V, 0.7A output, + ext. thermistor | DFN4030-14 | | ZXLD1350 | ZXLD1350EV3 | Buck LED driver, V <sub>IN</sub> = 12V to 30V, 3 Cree LEDs at 300mA, + adjust input | TSOT25 | | ZXLD1350 | ZXLD1350EV4 | Buck LED Driver, V <sub>IN</sub> = 12V to 30V, 3 Osram LEDs at 300mA, + adjust input | TSOT25 | | ZXLD1350 | ZXLD1350EV7 | Buck LED Driver, V <sub>IN</sub> = 12V to 30V, 3 Lumiled LEDs at 300mA + adjust input | TSOT25 | | ZXLD1356 | ZXLD1356EV1 | LED driver, buck, V <sub>IN</sub> = 7V to 60V, external LED, 0.55A output FR4 PCB TSOT | TSOT25 | | ZXLD1360 | ZXLD1360EV13 | MR16 replacement, external 3W LED, V <sub>IN</sub> = 12V <sub>AC</sub> or 12V <sub>DC</sub> nominal, 660mA | TSOT25 | | ZXLD1362 | ZXLD1362EV3 | LED driver, buck, V <sub>IN</sub> = 7V to 60V, external LED, 700mA output aluminium PCB | TSOT25 | | ZXLD1366 | ZXLD1366EV3 | LED driver, buck, V <sub>IN</sub> = 6V to 47V, external LED, 1A output FR4 PCB | SO-8EP | | ZXLD1370 | ZXLD1370EV2 | Buck-boost and boost LED driver-controller, V <sub>IN</sub> = 6.5V to 60V, flag, status outputs | TSSOP-16EP | | ZXLD1370 | ZXLD1370EV3 | Buck LED driver-controller, $V_{IN} = 6.5V$ to 60V, high current, FR4 PCB flag, status outputs | TSSOP-16EP | | ZXLD1370 | ZXLD1371EV4 | Buck LED driver-controller, $V_{IN} = 0.50 \text{ to 60V}$ , fight current, first ten hag, status outputs | TSSOP-16EP | | ZXLD1371 | ZXLD1371EV5 | Buck-boost LED driver-controller, $V_{IN} = 5.0V$ to 60V, flag, status outputs | TSSOP-16EP | | ZXLD1371 | ZXLD1371EV6 | Boost LED driver-controller, V <sub>IN</sub> = 5.0V to 60V, flag, status outputs | TSSOP-16EP | | ZXLD1371<br>ZXLD1374 | ZXLD1371EV0<br>ZXLD1374EV1 | Buck LED driver, $V_{IN} = 6V$ to $60V$ , $1.5A$ output FR4 PCB, flag, status outputs | TSSOP-20EP | | ZXLD1374<br>ZXLD1374 | ZXLD1374EV1 | Buck-boost and boost LED driver, V <sub>IN</sub> = 6V to 60V, 350mA output. flag, status outputs | TSSOP-20EP | | ZXLD1615 | ZXLD1374EV2<br>ZXLD1615EV1 | Boost LCD and OLED Bias Generator, V <sub>IN</sub> = 2.5V to 5.5V, V <sub>OUT</sub> = 12V, 80mA | TSOT25 | | ZXLD1613<br>ZXLD381 | | | SOT23 | | | ZXLD381EV1 | Single or multi-cell boost LED driver, V <sub>IN</sub> = 0.9V <sub>MIN</sub> | | | ZXLD383 | ZXLD383EV1 | Boost LED driver for garden lights V <sub>IN</sub> = 0.9V <sub>MIN</sub> solar cell connection | SOT25 | | ZXSC310 | ZXSC310EV(1) | Boost LED driver, V <sub>IN</sub> = 3.3V to 5V, 4 white LEDs | SOT25 | | ZXSC380 | ZXSC380EV1 | Boost LED driver, V <sub>IN</sub> = 1V to 3V (single cell), white LED at 18mA, rectangular board | SOT23 | | ZXSC400 | ZXSC400EV1 | LED driver, boost, V <sub>IN</sub> = 2.5V to 4.2V, 3 LEDs Nichia NSCW215, at 20mA | SOT26 | For further information and to get an Evaluation Board visit www.diodes.com or contact a Diodes' Sales Office ### Drivers for Industry-Standard LEDs | | | | | | Cree | 2 | | | | E | ver | ligh | t | | | L | umil | LED | s | | | | Osr | am | | | Sec | oul S | emi | icon | duc | tor | | | | Sha | arp | | | | |--------------------|----------------|------|------------|------------|------------|------------|------------|---------------|-----------|------|------|------------------|------|------|----------------|--------------|----------|----------|----------|----------|----------------|-----------------|-------|-------|--------------------|--------|----------|-------|------|-------|------|-------|-----|--------|---------------|--------------|---------------|------------------|----------|--------| | Diodes<br>Products | LEDs | | XLamp MT-G | XLamp XP-E | XLamp XR-E | XLamp XR-C | XLamp XP-C | XLamp MPL-EZW | HV Sarias | | Yi | Chilen and Chile | | A09K | LUXEON Altilon | LUXEON Rebel | LUXEON S | LUXEON A | LUXEON C | LUXEON H | Diamond Dragon | Platinum Dragon | OSTAR | OSLON | Golden Dragon Plus | TopLED | Top View | Z2 | Z5 | P3-II | Z7 | P9 | SAE | D.Dome | Mora Zoninata | Mega-Zemgara | Mini Zenigata | Willin Zelingara | 7eninata | | | | | ۸9 | 36V | 3.2V | 3.5V | 3.6V | 3.4V | 25V | 50V | 1001 | 7.8V | 4.05V | 3.5V | 3.5V | 7.5/14.5V | 3V | 27V | 2.88V | 2.95V | 50V | 3.4V | 3.45V | 3.2V | 3.2V | 3.2V | 3.4V | 3.2V | 10V | 3.3V | 3.5V | 3.3V | 3.65V | 3V | 3.05V | 712.0 | 3/7 | 19.6V | 13.1V | VC 01 | ١٥.٠ ٧ | | Nomina<br>current | | 1100 | 185 | 700 | 700 | 500 | 350 | 150 | 20 | 20 | 700 | 700 | 350 | 150 | 1000 | 700 | 200 | 200 | 350 | 30 | 1400 | 700 | 350 | 350 | 350 | 30 | 60/100 | 350 | 350 | 350 | 1400 | 150 | 20 | 220 | 200 | 400 | 480 | 520 | 360 | 640 | | LED Driver | Max<br>Current | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | AL8805 | 1000 | | | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | Υ | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | Υ | Υ | Υ | Υ | | AP8806 | 1500 | Υ | | | | | | | | | Υ | Υ | Υ | Υ | | | | Υ | | | Υ | Υ | | | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | | | | | Υ | Υ | Υ | Υ | | AP8807 | 1000 | | | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | | | Υ | | | | Υ | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | | | Υ | Υ | Υ | Υ | | AP9910 | Ext MOS | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | | Υ | Υ | | | Υ | Υ | | | | | | | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | | | | Υ | | | | | | AP8800A | 370 | | | | | | Υ | | | | | | Υ | Υ | | | | | Υ | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | | | | | Υ | | | AP8801 | 500 | | Υ | | | Υ | Υ | | | | | | Υ | Υ | | | Υ | | Υ | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | | | Υ | Υ | Υ | | | AP8802 | 1000 | | Υ | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | | | | Υ | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | Υ | Υ | Υ | Υ | Υ | Υ | | AP8802H | 1000 | | Υ | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | | Υ | | Υ | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | Υ | Υ | Υ | Υ | Υ | Υ | | AP8803 | 1000 | | | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | Υ | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | Υ | Υ | Υ | Υ | | DLD101 | 1000 | | Υ | | | | | Υ | | | | | | | | Υ | | | | | | Υ | | | Υ | | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | | | | | | | | ZXLD381 | | | | | | | | Υ | Υ | | | | | | | | | | | | | | | | | Υ | Υ | | | | | | Υ | | | | | | | | | ZXLD383 | | | | | | | | Υ | | | | | | | | | | | | | | | | | | Υ | Υ | | | | | | | | | | | | | | | ZXLD1320 | 1500 | Υ | | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | Υ | Υ | | | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | | | | | | Υ | Υ | Υ | | ZXLD1321 | 700 | | | | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | | | | Υ | Υ | Υ | | ZXLD1322 | 700 | | | | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | | | | | | | | ZXLD1350 | 380 | | | | | | Υ | | | | | | Υ | Υ | | | | | Υ | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | | Υ | | | ZXLD1352 | 380 | | | | | | Υ | | | | | | Υ | Υ | | | | | Υ | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | | Υ | | | ZXLD1356 | 550 | | | | | | Υ | | | | | | Υ | Υ | | | Υ | Υ | Υ | Υ | | | | | Υ | | Υ | Υ | Υ | Υ | | | | | | Υ | Υ | | Υ | | | ZXLD1360 | 1000 | | Υ | | | Υ | Υ | | | | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | | | | Υ | | | | | Υ | Υ | Υ | Υ | | | | Υ | | | Υ | Υ | Υ | Υ | | ZXLD1362 | 1000 | | | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | | Υ | Υ | Υ | Υ | | | | | Υ | Υ | Υ | Υ | Υ | Υ | | ZXLD1366 | 1000 | | Υ | Υ | Υ | Υ | Υ | | | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | | Υ | | | | | Υ | Υ | Υ | Υ | | | | | Υ | Υ | Υ | Υ | Υ | Υ | | ZXLD1370 | Ext MOS | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | | | | | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | ZXLD1371 | Ext MOS | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | | | | | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | ZXLD1374 | 1500 | Υ | Υ | Υ | Υ | Υ | Υ | | Υ | | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | | | Υ | Υ | | | | | Υ | Υ | Υ | Υ | Υ | Υ | | | Υ | Υ | Υ | Υ | Υ | Υ | | ZXSC310 | Ext BJT | | | | | | | Υ | | | | Υ | Υ | Υ | | | | | | | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | | | | | | | ZXSC380 | 80 | | | | | | | Υ | | | | | | | | | | | | | | | | | | Υ | Υ | | | | | | Υ | | | | | | | | | ZXSC400 | Ext BJT | | | | | Υ | Υ | Υ | | | | Υ | Υ | Υ | | | Υ | | Υ | | | | | | | Υ | | Υ | Υ | Υ | Υ | | Υ | | | | | | | | ### **CORPORATE HEADQUARTERS AND AMERICAS SALES OFFICE** 4949 Hedgcoxe Road Suite 200 Plano, Texas 75024 972-987-3900 USA E-mail: inquiries@diodes.com ### **EUROPE SALES OFFICE** Kustermann-Park Balanstrasse 59,8th Floor D-81541 Munchen, Germany Tel: (+49) 89 45 49 49 0 E-mail: inquiries-europe@diodes.com ### **ASIA SALES OFFICES** Email: inquiries-asia@diodes.com **DIODES-TAIWAN** 7F, No. 50, Min-Chuan Road Hsin-Tien District, New Taipei City 23141, Taiwan, R.O.C. Tel: 011-886-2-8914-6000 ### **SHANGHAI OFFICE** Room 3001-3002, International Corporate City, No. 3000 Zhongshan North Road, Shanghai 200063, China Tel: 86 21-5241-4882 ### **SHENZHEN OFFICE** Room A1103-04, ANLIAN Plaza, #4018 Jintian Road, Futian CBD, Shenzhen, China Tel: 86 755-88284988 ### **DIODES-KOREA** 1601 ho, ParkView Tower Jeongja 1 dong, Bundang-gu Seongnam-si, Gyeonggi-do, Korea 463-811 Tel: 82-31-786-0434 For information or literature, please visit www.diodes.com/contacts