Accurate Point－of－Load Voltage Regulation Using Simple Adaptive Loop Feedback

By Maurizio Salato Principal Engineer，V•／Chip Applications Engineering

Contents

	Page
Introduction	1
Adaptive Loop Regulation Concept	1
PRM－AL Block Diagram	2
DC Set Point Calculation	4
Considerations	8
Adaptive Loop with	
Half－Chip VTMs	9
Design Example with V•I Chip	
Boards Customer	
Conclusion	13

Figure 1 Adaptive loop regulation conceptual diagram

Introduction

Accurate point－of－load（POL）voltage control is essential for highly dynamic electronic loads． ＇Adaptive loop＇is a technique for efficient，feed－forward compensation of isolated power management systems based on PRM ${ }^{\text {TM }}$ Regulator and $\mathrm{VTM}^{\text {TM }}$ Voltage Transformer combinations． This application note describes the design methodology for optimal DC set point compensation of PRM and VTM combinations ${ }^{[a]}$ ，including small arrays of two identical VTMs driven by one PRM．

For your reference，an automated spreadsheet version of the following procedure is available at http：／／cdn．vicorpower．com／documents／calculators／dcaldesign．xls．

Adaptive Loop Regulation Concept

Adaptive loop is a model－based，positive－feedback compensation technique that can easily complement negative feedback，voltage mode regulation．Figure 1 shows the conceptual block diagram．

While the local voltage feedback loop maintains regulation at the PRM output，the adaptive loop （AL）provides compensation for the voltage drops that occur from the PRM output to the actual load．As stated before，AL is based on a model that requires VTM temperature and factorized bus current as inputs．The resistive behavior of power lines（factorized bus and output line）as well as the VTM，enables accurate modeling of their voltage drops．
［a］The calculations represented in this application note apply to $24 \mathrm{~V}, 36 \mathrm{~V}$ and 48 V input PRMs．Though the same methodology applies to 28 V input MIL－COTS PRMs， care should be taken to apply the correct values．For further assistance，please contact a Field Applications Engineer via your local Technical Support Center．
ajor benefits of this approach are：
－No signals need to be transmitted across VTM＇s isolation barrier
－Simpler circuit，lower component count
Regulation accuracy is affected by the accuracy of this model；this application note explains how to optimize the model for a given system，and how to estimate the obtained accuracy．

Standard regulation techniques are based on direct observation and integral error compensation of POL voltage，and the steady state error（compared to the reference）is therefore forced to be zero． AL only asymptotically approaches the zero error state，therefore widening the total distribution of the POL voltage．

PRM－AL Block Diagram

Figure 2 shows the functional block diagram for a full－chip PRM－AL regulator（e．g P045F048T32AL）．The OS and SC pins provide for local voltage feedback loop setting，while the VC and CD pins provide for settings and connections of the downstream system model．

Figure 2 PRM－AL functional block diagram

In summary：
－Local voltage feedback loop：
－$V_{\text {REF }}$ ，through R18，provides a reference voltage source on the SC pin．This is routed to the non－inverting input of the error amplifier，through the gain stage G1．
－The factorized bus（＋OUT）voltage is fed back to the inverting input of the error amplifier through R16．
－SC and OS provide for the connection of the external resistor dividers．

Equation 1

Figure 3 Factorized Power Architecture（FPA ${ }^{T M}$ ） system with adaptive loop control block diagram
－Adaptive loop circuit：
－The voltage controlled current source has variable gain，controlled by the resistance connected between CD and signal ground（SG）pins．The current injected on the VC line by the variable gain transconductance amplifier is：
－directly proportional to the voltage across the sense resistor R_{S}
－inversely proportional to the resistor connected between CD and SG according to the following relationship：

$$
I_{A L}=\frac{V_{-O U T}}{R_{C D}}=\frac{R_{S} I_{F}}{R_{C D}}
$$

where I_{F} is the factorized bus（PRM output）current and $V_{\text {－out }}$ is the voltage drop across R_{S} ．
－The VC pin voltage is added to the reference pin voltage SC through the gain stage G_{2} ．
A PRM and VTM system is considered，as shown in the block diagram in Figure 3．The system PCB adds further voltage drops from the PRM output to the load：the factorized bus resistance，R_{F} ，and the output line resistance， R_{O} ，which are assumed to be constant and equally divided on the positive and negative trace／wire．In order to account for them，these resistances must be estimated or measured．

It is important to correctly identify the total voltage drop parameters，which are $R_{F}, R_{\text {out }}$ and R_{O} in this specific case．Their compensation model must therefore be resistive，and temperature dependent．

Such a model is easy to implement，thanks to：
－The PTC resistor embedded in the VTM module，which will change its value according to the VTM temperature．
－RVC resistor，which allows precise match of $\mathrm{R}_{\text {PTC }}$ to VTM R R

The parallel of $R_{V C}$ and $R_{P T C}$ resistors，in series with $R_{F} / 2$ and R_{S} resistors constitutes the voltage drop model．The AL circuitry forces a scaled version of the PRM output current（ I_{AL} ）in the VC line， which then merges with the factorized bus current I_{F} on its return path（as shown in Figure 4）．

Figure 4
Voltage drop model for the considered system

The voltage obtained on the VC pin，with some scale factor，is the model of the total voltage drop in the system．

DC Set Point Calculation

The necessary inputs to the procedure are shown in Table 1.

Table 1
Adaptive loop calculation procedure inputs

Standard Full－Chip VTM Characteristics	Power System Characteristics
－Rout＿25： $25^{\circ} \mathrm{C}$ output resistance －Rout＿100： $100^{\circ} \mathrm{C}$ output resistance －K：transformer ratio －RPTC＿25：PTC resistance at $25^{\circ} \mathrm{C}$ －RPTC＿100：PTC resistance at $100^{\circ} \mathrm{C}$ －$P_{\text {NL }}$ ：no load power dissipation at nominal input voltage	－ $\mathrm{V}_{\text {F＿Nom：}}$ nominal factorized bus voltage at no load －Iout：maximum system（VTM）output current －R_{F} ：factorized bus（PRM to VTM）total resistance －Ro：output bus（VTM to point of load） total resistance

Table 2 Standard full－chip VTM data

 required（typical）Equation 2

Equation 3

Equation 4

Equation 5

Equation 6

Table 2 summarizes the data for standard full－chip VTM transformers．It is important to note that the internal resistors in the PRM have 1\％tolerance．

VTM Part Number	Output Resistance			Temperature Sensor		
	Rout＿25	ROUT＿100	Tolerance	RPTC＿25	$\begin{gathered} \text { Temp. } \\ \text { Coeff.(TCR) } \end{gathered}$	Tolerance
	［m Ω ］	［m Ω ］	［\％］	［ Ω ］	［\％／${ }^{\circ} \mathrm{C}$ ］	［\％］
V048F015T100	0.99	1.17	11	3000		
V048F020T080	1.31	1.56	10	2000		
V048F030T070	1.61	1.97	10	1000	0.39	5
V048F040T050	2.76	3.29	8			
V048F060T040	5.76	6.73	5			
V048F080T030	7.54	8.76	8	560		
V048F096T025	9.84	11.97	10			
V048F120T025	10.85	13.39	6	510		
V048F160T015	29.76	32.80	7			
V048F240T012	48.11	57.17	4			
V048F320T009	79.48	96.10	6			
V048F480T006	177.44	215.63	5			

With reference to Figure 3：
A．Calculate the maximum voltage drop（at $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ ）due to VTM output resistance Rout．

$$
\Delta V_{\text {ROUT_ }^{25}}=R_{\text {OUT_ }^{25}} \cdot I_{\text {OUT }}
$$

$$
\Delta V_{\text {ROUT_ }^{100}}=R_{\text {OUT_ } 100} \cdot I_{\text {OUT }}
$$

B．Calculate the maximum current flowing on the factorized bus．

$$
I_{F}=K \cdot I_{O U T}+\frac{P_{N L}}{V_{F_{-} N O M}}
$$

Although the no load power（ P_{NL} ）required by the VTM is input voltage dependent，the variation has only a minor influence on the AL compensation，and will therefore be neglected in the following steps．

C．Calculate the total PRM output voltage increase that will compensate all the drops （factorized bus resistance，VTM output resistance and output bus resistance）．

$$
\Delta V_{F_{-} 25}=\frac{\Delta V_{\text {ROUT_25 }}+R_{O} I_{\text {OUT }}}{K}+\left(R_{F}+R_{S}\right) \cdot I_{F}
$$

$$
\Delta V_{F_{-} 100}=\frac{\Delta V_{\text {ROUT_100 }}+R_{O} I_{O U T}}{K}+\left(R_{F}+R_{S}\right) \cdot I_{F}
$$

D．Calculate the total temperature coefficient of the power circuit and the R_{Vc} resistor needed to match it．

The PTC resistor and the VTM Rout resistance are subject to the same temperature，but they have different rates of change，as shown in Figure 5.

Figure 5

Rout and RPTC vs．VTM internal temperature

In order for the model to precisely match the voltage drop over temperature，its slope must match the system slope．The Rvc resistor in parallel to Rptc can be calculated in order to meet this condition．

$$
\Delta R_{T O T}=\frac{\Delta V_{F_{-} 100}}{\Delta V_{F_{-} 25}}=\frac{\frac{R_{V C} \cdot R_{P T C_{-} 100}}{R_{V C}+R_{P T C_{-} 100}}}{\frac{R_{V C} \cdot R_{P T C_{-} 25}}{R_{V C}+R_{P T C_{-} 25}}} \Rightarrow
$$

Equation 7

$$
R_{V C}=\left(1-\Delta R_{T O T}\right) \frac{R_{P T C_{_} 25} \cdot R_{P T C_{_} 100}}{\Delta R_{T O T} \cdot R_{P T C_{-} 25}-R_{P T C_{-} 100}}
$$

There is an important reason for choosing a parallel rather than a series resistor to match the system temperature coefficient．At start－up，the PRM issues a 14 V ， 10 ms pulse on the VC line to synchronously start the VTM．A series resistor would cause significant amplitude change on this signal，avoided by the parallel arrangement．However，the designer should exercise judgment and avoid extreme cases，where the temperature dependency might be so low as to cause the Rvc value to fall below 200Ω（which would cause overload during the $14 \mathrm{~V}, 10 \mathrm{~ms}$ startup pulse）．

E．Calculate the maximum VC pin voltage for the given system at $25^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{C}\right.$ should provide the same value，given the temperature dependency has been taken care of through R ${ }_{\mathrm{vc}}$, ［7］）：

$$
V_{C_{-} M A X_{-} 25}=I_{A L} \cdot \frac{R_{P T C_{_} 25} \cdot R_{V C}}{R_{P T C_{-} 25}+R_{V C}}+\left(I_{F}+I_{A L}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)=
$$

Equation 8

$$
=R_{S} \frac{I_{F}}{R_{C D_{_} M I N}} \cdot \frac{R_{P T C_{_} 25} \cdot R_{V C}}{R_{P T C_{_} 25}+R_{V C}}+\left(I_{F}+R_{S} \frac{I_{F}}{R_{C D_{-} M I N}}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)
$$

Equation 9

Equation 10

Equation 11

Minimum allowable $R_{C D}$ value for current products is 20Ω.
F. Calculate the needed (if any) $V_{S C}$ trim that allows enough $A L$ dynamic range under the worst case: $V_{C_{C} M A X _25}$ and $\Delta V_{F_{-} 100}$ (this will allow enough design margin).

The voltage on $V C$, through the gain stage G_{2}, is summed to the reference voltage $S C$ in order to compensate for the voltage drop $\Delta \mathrm{V}_{\mathrm{F}}$. Because the VC voltage dynamic range is set, V_{SC} might be reduced in order to match the relative changes of factorized bus and adaptive loop compensation.

$$
\frac{\Delta V_{F_{-} 100}}{V_{F_{-} \text {NOM }}} \leq \frac{G_{2} \cdot V_{C_{-} M A X-25}}{G_{1} \cdot V_{S C}} \Rightarrow V_{S C} \leq \frac{G_{2} \cdot V_{C_{C} M A X _25}}{G_{1} \frac{\Delta V_{F_{-1} 100}}{V_{F_{-} \text {NOM }}}}
$$

G_{1} and G_{2} gains are 0.961 and 0.0386 respectively.
If $\mathrm{V}_{\mathrm{SC}} \leq \mathrm{V}_{\text {ref }}=1.24 \mathrm{~V}$, the external resistor to be connected on SC will be easily calculated as following:

$$
R_{S C}=R_{18} \frac{V_{S C}}{V_{r e f}-V_{S C}}
$$

The absolute minimum value for V_{SC} is 0.25 V , because of the characteristic of the internal error amplifier. The minimum resistance value for $R_{s c}$ is therefore 2550Ω.
G. Calculate the voltage feedback divider resistor needed to set the nominal output voltage.

Ros defines the gain on the voltage feedback, which accommodates for the chosen reference voltage V_{Sc}. It is recommended to calculate its value using the V_{SC} voltage obtained with a standardized value resistor as $R_{s c}$. Moreover, if a standard value resistor is not available to match (within 0.2%) the calculated Ros value, it is strongly recommended to use a parallel configuration.
H. Calculate the $R_{C D}$ resistor that allows AL to compensate for the drops $\left(25^{\circ} \mathrm{C}\right.$ or $100^{\circ} \mathrm{C}$ will give the same result, because of $R_{v c}$).

Equation 12

Equation 13

First，substitute the VC line voltage at full I_{F} current（room temperature）：

$$
V_{C_{-} 25}=\frac{R_{S} \cdot I_{F}}{R_{C D}} \cdot \frac{R_{P T C_{-} 25} \cdot R_{V C}}{R_{P T C_{-} 25}+R_{V C}}+\left(\frac{R_{S} \cdot I_{F}}{R_{C D}}+I_{F}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)
$$

into the expression for the related factorized bus increase：

$$
\begin{aligned}
\Delta V_{F_{-} 25} & =G_{2} \cdot V_{C_{-} 25} \frac{R_{16}+R_{O S}}{R_{O S}}= \\
& =G_{2} \cdot \frac{R_{S} \cdot I_{F}}{R_{C D}} \cdot \frac{R_{P T C_{_} 25} \cdot R_{V C}}{R_{P T C_{-} 25}+R_{V C}}+\left(\frac{R_{S} \cdot I_{F}}{R_{C D}}+I_{F}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right) \frac{R_{16}+R_{O S}}{R_{O S}}
\end{aligned}
$$

Then solve for $R_{C D}$ ：

$$
R_{C D}=\frac{G_{2} \frac{R_{16}+R_{O S}}{R_{O S}} R_{S} I_{F}\left(\frac{R_{P T C_{-}-25} \cdot R_{V C}}{R_{P T C_{-} 25}+R_{V C}}+\frac{R_{F}}{2}+R_{S}\right)}{\Delta V_{F_{-} 25}-G_{2} \frac{R_{16}+R_{O S}}{R_{O S}}\left(\frac{R_{F}}{2}+R_{S}\right) I_{F}}
$$

Considerations

In order to improve regulation accuracy，the following guidelines should be followed：
－Discrepancy between the model and the system will directly affect regulation accuracy．System characterization is strongly recommended during the design phase，specifically factorized bus $\left(R_{F}\right)$ and output line（ R_{0} ）resistances．
－Statistical distribution of components values plays also a key role on accuracy distribution． To this end，＇Monte Carlo＇（or similar）analysis and optimization is strongly encouraged． It should include all the components directly affecting regulation，i．e．setting resistors，model resistors and component characteristics．Any extra component designed in the system， i．e．filter inductors，connectors，etc．，should also be included if affected by variability．
－While the impact of R_{S} and R_{F} on VC voltage may be neglected in a few cases，it normally affects accuracy distribution．In order to evaluate it，both resistors should be included in the analysis．

Adaptive Loop with Half－Chip VTMs

The major difference between full－and half－chip VTMs is the absence of temperature feedback． While the full－chip VTMs implement a PTC resistor，the half－chip modules use a simple precision resistor，as shown in Figure 6.

Figure 6 Adaptive loop regulation concept without temperature feedback

The absence of temperature feedback slightly degrades the regulation accuracy；however，the half－chip units have tighter parameter distributions，which partially compensate for the reduced model accuracy．The control configuration in this case is shown in Figure 7.

Figure 7
Adaptive loop control with half－chip VTM

The voltage drop model also differs with the one for the full－chip version（Figure 3），resulting in the simpler one shown in Figure 8.

Figure 8
Voltage drop model in systems with half－chip VTMs

Having explained the differences，it is now possible to revise the design procedure in this specific case．Table 3 shows the necessary inputs．

Table 3
Adaptive loop calculation procedure inputs for half－chip VTMs

Half－Chip VTM Characteristics	Power System Characteristics
－Rout＿25： $25^{\circ} \mathrm{C}$ output resistance －Rout＿100： $100^{\circ} \mathrm{C}$ output resistance －K：transformer ratio －RVc：VTM VC pin internal resistance －$P_{\text {NL }}$ ：no load power dissipation at nominal input voltage	－ $\mathrm{V}_{\text {＿＿Nom：}}$ nominal factorized bus voltage at no load －Iout：maximum system（VTM）output current －R_{F} ：factorized bus（PRM to VTM）total resistance － R_{O} ：output bus（VTM to point of load） total resistance

Table 4 summarizes the data for the half－chip VTMs．

Table 4
Half－chip VTM data required （typical）

VTM Part Number	Output Resistance			ID Resistor	
	Rout＿25	ROUT＿100	Tolerance	Rvc	Tolerance
	［m Ω ］	［m Ω ］	［\％］	［ Ω ］	［\％］
VIV0102THJ	2.72	3.22	8	1430	1.0
VIV0103THJ	3.03	3.78	11	9310	
VIV0104THJ	6.86	8.07	8	8870	
VIV0105THJ	13.80	16.24	7	4640	
VIV0101THJ	44.32	57.65	6	2050	

For sake of clarity，only the steps that differ from the procedure already explained for the full－chip VTMs are reported．

Step（s）
A．，B．，C．：unchanged
D．Calculate the total temperature coefficient of the power circuit at the estimated VTM working temperature．

The VTM R Rut resistance is temperature dependent，as shown in Figure 9.

Figure 9
Half－chip VTM Rout vs． module internal temperature

Equation 14

Equation 15

In order for the model to match the system voltage drop better，the VTM operating temperature should be estimated．In cases where temperature is unknown，a conservative approach would be to assume the module will operate at half of its temperature range，for example $75^{\circ} \mathrm{C}$ ：

$$
\Delta V_{F_{-} 75}=\Delta V_{F_{-} 25}+\frac{\Delta V_{F_{-} 100}-\Delta V_{F_{-} 25}}{75} \cdot 50
$$

Linear interpolation used in［14］is acceptable in this case，as Rout temperature dependency is linear．

E．Calculate the maximum VC pin voltage for the given system．

$$
V_{C_{-} M A X}=I_{A L} \cdot R_{V C}+\left(I_{F}+I_{A L}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)=
$$

$$
=R_{S} \frac{I_{F}}{R_{C D_{-} M I N}} \cdot R_{V C}+\left(I_{F}+R_{S} \frac{I_{F}}{R_{C D_{-} M I N}}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)
$$

F．，G．：unchanged

H．Calculate the $R_{C D}$ resistor that allows $A L$ to compensate for the drops．
First，substitute the VC line voltage at full I_{F} current（ambient temperature）：

$$
V_{C}=\frac{R_{S} \cdot I_{F}}{R_{C D}} \cdot R_{V C}+\left(\frac{R_{S} \cdot I_{F}}{R_{C D}}+I_{F}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)
$$

into the expression for the related factorized bus increase：

$$
\begin{aligned}
\Delta V_{F_{-} 75} & =G_{2} \cdot V_{C} \frac{R_{16}+R_{O S}}{R_{O S}}= \\
& =G_{2} \cdot \frac{R_{S} \cdot I_{F}}{R_{C D}} \cdot R_{V C}+\left(\frac{R_{S} \cdot I_{F}}{R_{C D}}+I_{F}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right) \frac{R_{16}+R_{O S}}{R_{O S}}
\end{aligned}
$$

Then solve for $R_{C D}$ ：

$$
R_{C D}=\frac{G_{2} \frac{R_{16}+R_{O S}}{R_{O S}} R_{S} I_{F}\left(R_{V C}+\frac{R_{F}}{2}+R_{S}\right)}{\Delta V_{F_{-} 75}-G_{2} \frac{R_{16}+R_{O S}}{R_{O S}}\left(\frac{R_{F}}{2}+R_{S}\right) I_{F}}
$$

Design Example with V•I Chip Customer Boards

System requirements：
Input：36－75 V
Output： 5 V， 36 A， 180 W
$\mathrm{V} \cdot \mathrm{l}$ Chip selection：
PRM：P048F048T24AL（due to the wide range input voltage and the power level）．
VTM：V048F060T040（due to output voltage and current requirements）．
Corresponding customer boards are P048F048T24AL－CB and V048F060T040－CB respectively．They come with a connector which routes factorized bus and VC line，as explained in the User Guide UG：003．Figure 10 shows the two selected boards once connected．

Figure 10
PRM and VTM customer boards

First，collect the characteristics from the VTM＇s data sheet and from Table 2：
－Rout＿25： $5.76 \mathrm{~m} \Omega$
－Rout＿100： $6.73 \mathrm{~m} \Omega$
－K： $1 / 8$
－RptC＿25： 1000Ω
－Rptc＿100： $1000 \cdot(1+0.0039 \cdot 75)=1293 \Omega$
－ $\mathrm{P}_{\mathrm{NL}}: 2.7 \mathrm{~W}$

Second, calculate or measure the power system characteristics:

- $V_{\text {F_Nom }}: V_{\text {OUT }} / K=40 \mathrm{~V}$
- Iout: 36 A
- R_{F} and R_{0} : these values are strictly related to the board traces or cables used to route power. A convenient way to obtain these values is to identify the current paths of interest, as shown in Figure 11.

Figure 11 Factorized bus current path
(long-dash red) and output current path (short-dash blue)

Then, a simple DC impedance measurement from terminal to terminal will provide R_{F} and R_{O} values. In this particular case:
$\Rightarrow R_{F}=10 \mathrm{~m} \Omega$
$\Rightarrow R_{0}=80 u \Omega$
It is now possible to apply the proposed procedure.
A. Calculate the maximum voltage drop (at $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$) due to VTM output resistance, Rout.

$$
\begin{gathered}
\Delta V_{\text {ROUT_2 }^{25}}=R_{\text {OUT_ }_{2} 25} \cdot I_{\text {OUT }}=0.00576 \cdot 36=0.207 \mathrm{~V} \\
\Delta V_{\text {ROUT_100 }}=R_{\text {OUT_100 }} \cdot I_{\text {OUT }}=0.00673 \cdot 36=0.242 \mathrm{~V}
\end{gathered}
$$

B. Calculate the maximum current flowing on the factorized bus.

$$
I_{F}=K \cdot I_{\text {OUT }}+\frac{P_{N L}}{V_{F_{-} \text {NOM }}}=\frac{1}{8} \cdot 36+\frac{2.7}{40}=4.568 \mathrm{~A}
$$

Page 14 of 18

C．Calculate the total PRM output voltage increase that will compensate all the drops （factorized bus resistance，VTM output resistance and output bus resistance）．

$$
\begin{gathered}
\Delta V_{F_{-} 25}=\frac{\Delta V_{\text {ROUT_25 }}+R_{O} I_{\text {OUT }}}{K}+\left(R_{F}+R_{S}\right) \cdot I_{F}=\frac{0.207+80 \mu \cdot 36}{1 / 8}+(10 \mathrm{~m}+10 \mathrm{~m}) \cdot 4.568=1.77 \mathrm{~V} \\
\Delta V_{F_{-} 100}=\frac{\Delta V_{\text {ROUT_100 }}+R_{O} I_{\text {OUT }}}{K}+\left(R_{F}+R_{S}\right) \cdot I_{F}=\frac{0.242+80 \mu \cdot 36}{1 / 8}+(10 \mathrm{~m}+10 \mathrm{~m}) \cdot 4.568=2.05 \mathrm{~V}
\end{gathered}
$$

D．Calculate the total temperature coefficient of the power circuit and the R_{vc} resistor needed to match it．

$$
\begin{gathered}
\Delta R_{T O T}=\frac{\Delta V_{F_{-} 100}}{\Delta V_{F_{-} 25}}=\frac{2.05}{1.77}=1.158 \Rightarrow \\
R_{V C}=\left(1-\Delta R_{T O T}\right) \frac{R_{P T C_{-} 25} \cdot R_{P T C_{-} 100}}{\Delta R_{T O T} \cdot R_{P T C_{-} 25}-R_{P T C_{-} 100}}=(1-1.158) \frac{1000 \cdot 1293}{1.158 \cdot 1000-1293}=1513 \Omega
\end{gathered}
$$

The R ${ }_{\text {Vc }}$ value is greater than 200Ω ，therefore valid．The nearest available 1% resistor value chosen for $R_{v c}$ is 1500Ω ．

E．Calculate the maximum VC pin voltage for the given system at $25^{\circ} \mathrm{C}$ ．From the PRM－AL data sheet，$R_{\text {CD＿MIN }}=20 \Omega$ ：

$$
\begin{aligned}
V_{C_{-} M A X X_{-} 25} & =R_{S} \frac{I_{F}}{R_{C D_{-} M I N}} \cdot \frac{R_{P T C_{-} 25} \cdot R_{V C}}{R_{P T C_{-} 25}+R_{V C}}+\left(I_{F}+R_{S} \frac{I_{F}}{R_{C D_{-} M I N}}\right) \cdot\left(\frac{R_{F}}{2}+R_{S}\right)= \\
& =10 m \frac{4.568}{20} \cdot \frac{1000 \cdot 1500}{1000+1500}+\left(4.568+10 \mathrm{~m} \frac{4.568}{20}\right) \cdot\left(\frac{10 \mathrm{~m}}{2}+10 \mathrm{~m}\right)=1.44 \mathrm{~V}
\end{aligned}
$$

F．Calculate the needed（if any）$V_{S C}$ trim that allows enough $A L$ dynamic range under the worst case： $\mathrm{V}_{\mathrm{C}_{\text {＿MAX＿2 }}}$ and $\Delta \mathrm{V}_{\mathrm{F}_{-} 100}$ ．

$$
V_{S C} \leq \frac{G_{2} \cdot V_{C_{-} M A X_{-} 25}}{G_{1} \frac{\Delta V_{F_{-} 100}}{V_{F_{-} N O M}}}=\frac{0.0386 \cdot 1.44}{0.961 \frac{2.05}{40}}=1.12 \mathrm{~V}
$$

As $\mathrm{V}_{\mathrm{SC}} \leq \mathrm{V}_{\text {ref }}=1.24 \mathrm{~V}, \mathrm{R}_{\mathrm{SC}}$ must be installed：

$$
R_{S C}=R_{18} \frac{V_{S C}}{V_{\text {ref }}-V_{S C}}=10 \mathrm{k} \frac{1.12}{1.24-1.12}=93.3 \mathrm{k} \Omega
$$

$R_{s C}$ is greater than 2550Ω ，therefore acceptable．The closest 1% tolerance value is chosen， $R_{S C}=93.1 \mathrm{k} \Omega$ ，which provides for an obtained $\mathrm{V}_{\mathrm{SC}}=1.12 \mathrm{~V}$

G．Calculate the voltage feedback divider resistor needed to set the nominal output voltage．

$$
R_{O S}=G_{1} \cdot R_{16} \frac{V_{S C}}{V_{F_{-} N O M}-G_{1} \cdot V_{S C}}=0.961 \cdot 93.1 k \frac{1.12}{40-0.961 \cdot 1.12}=2574 \Omega
$$

The closest standard value would be 2550Ω ，which is almost 1% off the target．In order to gain accuracy，the highest standard value is chosen， 2610Ω ，and a parallel resistor is used in order to closely match the required value：

$$
\mathrm{R}_{\mathrm{OS} 1}=2610 \Omega \text { and } \mathrm{R}_{\mathrm{OS} 2}=187 \mathrm{k} \Omega
$$

H．Calculate $R_{C D}$ resistor that allows AL to compensate for the drops．

$$
\begin{aligned}
R_{C D} & =\frac{G_{2} \frac{R_{16}+R_{O S}}{R_{O S}} R_{S} I_{F}\left(\frac{R_{P T C_{-} 25} \cdot R_{V C}}{R_{P T C _25}+R_{V C}}+\frac{R_{F}}{2}+R_{S}\right)}{\Delta V_{F_{-} 25}-G_{2} \frac{R_{16}+R_{O S}}{R_{O S}}\left(\frac{R_{F}}{2}+R_{S}\right) I_{F}}= \\
& =\frac{0.0386 \frac{93.1 k+2574}{2574} 10 \mathrm{~m} \cdot 4.568\left(\frac{1 k \cdot 1.5 k}{1 k+1.5 k}+\frac{10 \mathrm{~m}}{2}+10 \mathrm{~m}\right)}{1.77-0.0386 \frac{93.1 k+2574}{2574}\left(\frac{10 m}{2}+10 \mathrm{~m}\right) \cdot 4.568}=23.5 \Omega
\end{aligned}
$$

The nearest standard value is chosen， $\mathrm{R}_{\mathrm{CD}}=23.7 \Omega$ ．
The design is now complete，the calculated resistors：
$R_{S C}=93.1 \mathrm{k} \Omega, R_{O S 1}=2610 \Omega, R_{\text {OS } 2}=187 \mathrm{k} \Omega, R_{V C}=1500 \Omega$ and $R_{C D}=23.7 \Omega$ can be implemented in the two customer boards and regulation accuracy verified．

Conclusion

This procedure highlights the adaptive loop regulation concept and the design procedure to achieve good voltage regulation for a simple PRMNTM combination．

Monte Carlo analysis shows that 1% regulation accuracy over line，load and temperature can be statistically achieved 82%（or greater）of the time．Figure 12 shows accuracy distribution for the design example previously illustrated．

Figure 12 Accuracy distribution over line，load and temperature for the design example

The same design concepts are directly applicable to arrays of V ．I Chips if proper modeling applied．It is recommended to contact V．I Chip Application Engineering for any array involving 2 or more PRMs and 3 or more VTMs．The automated spreadsheet version of the procedure is available at http：／／cdn．vicorpower．com／documents／calculators／dcaldesign．xls．

Appendix A－Changes applicable to MIL－COTS versions of VI Chips．
MIL－COTS VTMs：parameters and modeling of MIL－COTS VTMs are identical to the commercial counterparts with the same K factor．The AL design procedure can be applied directly．

MIL－COTS PRM：parameters and modeling of MP028F036M12AL are identical to the commercial parts as with the only exception of R16 which changes to $69.8 \mathrm{k} \Omega$ ，as shown in Figure XX ．

Appendix A

Changes applicable to MIL－COTS versions of VI Chips．
MIL－COTS VTMs：parameters and modeling of MIL－COTS VTMs are identical to the commercial counterparts with the same K factor．The AL design procedure can be applied directly．

MIL－COTS PRM：parameters and modeling of MP028F036M12AL are identical to the commercial parts as with the only exception of R16 which changes to $69.8 \mathrm{k} \Omega$ ，as shown in the figure below．

The automated spreadsheet version of the procedure for MIL－COTS products is available at http：／／cdn．vicorpower．com／documents／calculators／mil al design procedure．xls

Information furnished by Vicor is believed to be accurate and reliable．However，no responsibility is assumed by Vicor for its use．Vicor components are not designed to be used in applications，such as life support systems，wherein a failure or malfunction could result in injury or death．All sales are subject to Vicor＇s Terms and Conditions of Sale，which are available upon request．
Specifications are subject to change without notice．

