

Electronic
Components for
Mobile & Tablet
Applications

YAGEO Phícomp

About Yageo

Table of Contents

Introduction	3
Passive Components for Smartphone	4
Passive Components for Notebook/Tablet PCs	5
Recommended Products	6
Product Information - Chip Resistors	9
Product Information - MLCCs	13

Founded in 1977, the Yageo Corporation has become a world-class provider of passive component services with capabilities on a global scale, including production and sales facilities in Asia, Europe and the Americas.

Yageo currently ranks as the world No.I in chip-resistors, No. 3 in MLCCs and No. 4 in ferrite products, with a strong global presence: 2I sales offices in 15 countries, 9 production sites, 8 JIT logistic hubs, and 2 R&D centers worldwide. Ferroxcube and Vitrohm, who produce ferrites and leaded resistors, are also a part of the Yageo group.

We support our customers with extensive literature including datasheets, brochures and application notes, which are also available electronically on our website at: www.yageo.com

Introduction

Anytime, Anywhere, Any Content, Any Device

Tablet PCs and smart phones have significantly refined personalized communication experiences. In addition to storing important data and documents, they can instantly access information, audio, video, and voice through continuous connectivity, no matter whether you are at your workspace, on the road, or at home. Now, wearable devices have entered the consumer electronics family and are becoming one of the next big things in technology. Major application segments for these technologies are consumer, healthcare and enterprise markets. According to IHS/IMS Research, new product areas where wearable technology will have a strong impact include smart watches, smart glasses, sleep sensors, industrial and military heads-up displays, and hand-worn terminals.

Yageo has developed ultra-compact components to meet the requirements of miniaturization and mobility. The lowloss, battery-friendly electronic components, thermal counter measure components, and wireless antennas provide connectivity with low power consumption.

Requirements for Personal Mobile and Smart Devices

- Smoothing of Input-output Current of Various Power Supply Circuits, and **Backup Use Over the Load Change of CPU Circumstances**
- · Reduction of the Number of Parts, or **Reduction of Substrate Area**

- ESD protection
- Connectivity and Expansion
- Long Hours of Mobility
- Over Voltage Protection

Passive Components for Smartphones

As trends in diverse functionality of high performance digital devices such as smartphones and tablet PCs continue to develop, demand increases for more functions to be packed into their compact and thin housing. In these devices, high value capacitors used for power circuit decoupling are required to assure the reliable operation of high performance ICs.

What's more, MLCCs generally feature a lower ESR, and superior frequency characteristics when compared with tantalum electrolytic capacitors and aluminum electrolytic capacitors. Because of this, MLCCs are indispensable in the role of effectively eliminating noise as a decoupling capacitor for power circuits.

Passive Components for Notebook/Tablet PCs

We can separate Notebook/Tablet PC design into two parts - power management and the hardware device. Power management includes CPU power, battery charger, VGA power source, and adaptor. It requires overload protection, high surge capability, high power, a low profile, and current sensing.

Hardware devices include USB ports, remote controls, touchpads, SD cards and wireless transmission systems. Their priorities include a small footprint, an EMI filter with ESD protection, high efficiency (low power loss), high reliability, and a narrow TCR.

I CPU / Chipset		5 I/O & Protection	n
MLCC		Chip Resistor Array	A 100
2 Memory		6 Power Supply	
Chip Resistor	[282] [22] [10] [44] [45]	Chip Resistor	[282] [222] [1112] [42] [42]
MLCC		MLCC	
3 HDD / SSD		7 Display Panel	
Polymer E-Cap	66	MLCC	
4 Interface / Wir	eless	8 Main Board	
Balun	M 4 4 6 40	Chip Inductor	66000
Chip Antenna		Chip Bead	\$ 60°°°
Filter		Chip Resistor	[7820] [222] [780] [20] [20] [20]

Recommended Products

Ultra Compact Chip Resistors - RC0100

Yageo's ultra-compact 01005-sized resistors contribute to greater miniaturization, it reduces mounting area and volume by 56% and 75%, respectively, compared with the 0201-sized RC series. The miniature size effectively improves the utilization of production materials, while reducing the impact of waste on the environment.

Features & Benefits

Size: 01005 inch (0402 mm)
Resistance range: I Ω to I MΩ

Rated power: I/32 W
Rated voltage: I5V
Tolerance: ± 1%, ± 5%

• TCR: $I\Omega \le R < I0\Omega$: -200~600 ppm/°C

 $10\Omega \le R \le 1M\Omega: \pm 250 \text{ ppm/°C}$ • Operating temperature: -55°C to +125°C

Chip Resistor Array - YC Series

Features & Benefits

- Integrated discrete chip resistors from 2 to 4 pcs
- Low assembly costs
- · Reduced size of final equipment
- · Higher component and equipment reliability

Low-Ohmic Current Sensing Chip Resistors - PE/PR/PA Series

Features & Benefits

- · Low TCR and high precision
- Ultra low ohmic down to 0.001Ω
- High power rating
- PE Size: 0402, 0603, 0805, 1206, 2010, 2512, 4527
 Wide terminal: 0306, 0508, 0612, 0815, 0830, 1225

PR Size: 1206, 2010PA Size: 2512

· Low thermal EMF

MLCC Array - CA Series

Features & Benefits

- · Board space saving
- · Increased throughput, by time saved in mounting
- 0508 (4x0402) / 0612 (4x0603) capacitors per array

Yageo's ultra-small MLCC achieved high reliability during high-speed mounting, by satisfying severe dimensional tolerances. It also contributes to the reduction of the mounting area and is ideal for compact mobile devices and high frequency circuits.

Features & Benefits

- Size: 01005 inch (0402 mm)
- · Materials: NP0 and X5R
- · Capacitance range from I0pF ~ I0nF
- · Tape & reel for surface mount assembly
- Rated working voltage from 6.3V 16V

High Capacitance MLCCs ($\geq I\mu F$)

Features & Benefits

- · Materials: X5R, X7R and Y5V
- Sizes: 0201 1812
- · Highly reliable tolerance and high speed automatic chip placement
- Capacitance range from IμF 100μF
- · Highly resistant termination metal
- · Tape & reel for surface mount assembly
- Rated working voltage from 6.3V 50V

Mid Voltage MLCCs

Features & Benefits

- Materials: NP0 and X7R
- · Sizes: 0402 1812
- · Voltage from I00V 630V

Low Inductance MLCC - CL Series

Features & Benefits

- Materials: X7R
- Sizes: 0306, 0508, 0612
- · Low ESL for high frequency applications

Recommended Products

Multi Layer Varistor (MLV)

Features & Benefits

- · Excellent clamping voltage & energy dissipation capability
- Quick response time (< I n sec.)
- · Adjustable capacitance values
- · High transient current capability
- · Symmetrical voltage-current characteristics
- ESD protection

Chip Antenna

Features & Benefits

- · Embedded antenna with moderate gain and efficiency performance
- · Ultra compact available in different sizes for various applications
- · Surface mount, to meet the compact and low-profile requirements
- · Omni directional radiation, suitable for short-range wireless applications
- Integrated GPS patch antenna with LNA

RF Components

Features & Benefits

- Low temperature co-fired ceramic (LTCC) technology high frequency material/ process/ design component and customized substrate
- 3D design with integrated passives embedded HF capacitor, inductor and transmission line to reduce component count and required PCB space
- High Q and low loss high performance conductor and dielectric materials

Polymer Electrolytic Capacitor - CG/CP Series

Features & Benefits

- · Low impedance and low E.S.R. at high frequency
- · High ripple current capability
- Excellent temperature characteristics from -55°C to +105°C
- Reflow soldering method available (260°C, 10 sec)
- Excellent endurance characteristics

Note: * For Electrolytic Capacitors and Chip Antennas, please refer to www.yageo.com for detailed information.

Product Information - Chip Resistors

Electrical characte	eristics									
Туре	Series	Size	Power rating	Voltage range	Operating temp. range	Resistance range	Tol.	T.C.R.		
RC0100xR-07xxxxL	RC	01005	1/32W	15 V	-55°C to 125°C	$I\Omega \le R \le IM\Omega$ Jumper < $50m\Omega$	±1% ±5%	$I\Omega \le R < I0\Omega$ -200~600 ppm/°C $I0\Omega \le R \le IM\Omega$ ±250 ppm/°C		
PE0402xRx47xxxxxx		0402	I/4W		-55°C to 155°C	$10 m\Omega \leq R \leq 50 m\Omega$		±100 ppm/°C		
PE0603xRx57xxxxxx		0603	1/2W			$5m\Omega \leq R \leq 100m\Omega$				
PE0805xRx47xxxxxx		0805	1/2W		$4m\Omega \leq R \leq 100m\Omega$					
PE1206xxx47xxxxxx	PE	1206	IW	(PxR)^1/2	-55°C to 170°C	$4m\Omega \leq R \leq 100m\Omega$	±1% ±5%	±50 ppm/°C ±75 ppm/°C		
PE2010xKx7Wxxxxxx		2010	IW		-33 C to 170 C	$5m\Omega \leq R \leq 100m\Omega$	_5/0	±73 ppm/ C ±100 ppm/°C		
PE2512xKx7Wxxxxxx		2512	2W			$6m\Omega \leq R \leq 100m\Omega$				
PE4527xKx7Wxxxxxx		4527	3W			$5m\Omega \leq R < 910m\Omega$				
PA2512xKF7TxxxxL	PA	2512	3W	(PxR)^1/2	–55°C to 155°C	$Im\Omega \le R \le 5m\Omega$	±1% ±5%	±100 ppm/°C		
PR1206xKx47xxxxxx	DD.	1206	IW	(D. D.) A I /O	FF0C 1700C	$Im\Omega \le R \le 4m\Omega$	±1%	. 50 /00		
PR2010xKx7Wxxxxxx	PR	2010	IW	(PXK)^1/2	-55°C to 170°C	$Im\Omega \le R \le 4m\Omega$	±5%	±50 ppm/°C		
YC102-xR-07xxxxL		2*0201	1/32W	15V	-55°C to 125°C	$10\Omega \le R \le 1M\Omega$.200 (86		
YC104-xR-07xxxxL		4*0201	1/32W	12.5V	-55°C to 125°C	Jumper < $50m\Omega$		±200 ppm/°C		
YCI22-xR-07xxxxL		2*0402	1/16W	50V		$I\Omega \le R \le IM\Omega$ Jumper < $50m\Omega$		$I\Omega \le R < I0\Omega$ ±250 ppm/°C		
YC124-xR-07xxxxL	YC	4*0402	1/16W	25V	-55°C to 155°C	lumper < 50mO	±1% ±5%	10Ω ≤R≤ 1MΩ ±200 ppm/°C		
YC162-xR-07xxxxL		2*0603	1/16W	50V	-55 € 10 155 €	$10\Omega \le R \le 1M\Omega$ Jumper < $50m\Omega$		±200 ppm/°C		
YCI64-xR-07xxxxL		4*0603	1/16W	50V		$I\Omega \le R \le IM\Omega$ Jumper < $50m\Omega$				
Wide terminal										
Туре	Series	Size	Power rating	Voltage range	Operating temp. range	Resistance range	Tol.	T.C.R.		
PE0306xRM07xxxxZ		0306	IW			$5m\Omega \le R \le 100m\Omega$				
PE0508xRM07xxxxZ		0508	1.2W			$3m\Omega \le R \le 100m\Omega$				
PE0612xKM7WxxxxZ	DE	0612	2W	(D. D)A1/2	FF°C . 170°C	ImΩ≤ R ≤ 300mΩ		±75 ppm/°C		
PE0815xKM7WxxxxZ	PE	0815	IW	(PxR)^1/2	-55°C to 170°C			±100 ppm/°C		
PE0830xKx7Wxxxxxx		0830	3W			$Im\Omega \le R \le I00m\Omega$				
PE1225xKM7WxxxxZ		1225	3W			$Im\Omega \le R \le I00m\Omega$				

Product Information - Chip Resistors

Type	Dimensions	;						
Type Resitance range L W H I I I I I I I I I I I I I I I I I I				Wide terminal	→/ 1,/ -	/I₁/ -		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- - - - - - - - -						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Туре	Resistance range	L	W	н	I _I	l ₂	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RC0100	$10\Omega \le R \le 1M\Omega$	0.40 ± 0.02	0.20 ± 0.02	0.13 ± 0.02	0.10 ± 0.03	0.10 ± 0.03	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE0402	$10 \text{m}\Omega \leq R \leq 50 \text{m}\Omega$	1.00 ± 0.30	0.50 ± 0.20			0.25 ± 0.10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE0603	5mΩ ≤ R ≤ 100m	1.60 ± 0.25	0.80 ± 0.25	0.60 ± 0.25		0.30 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4mΩ	2.00 ± 0.25	1.25 ± 0.25			0.70 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5mΩ	2.00 ± 0.25	1.25 ± 0.25	0.60 ± 0.25		0.63 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE0805	$6m\Omega \le R \le 7m\Omega$	2.00 ± 0.25				0.55 ± 0.25	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$8m\Omega \le R \le 100m\Omega$	2.00 ± 0.25	1.25 ± 0.25	0.60 ± 0.25		0.40 ± 0.25	
$\begin{array}{c} 9m\Omega \le R \le 100m\Omega \\ 5m\Omega \le R \le 9m\Omega \\ 10m\Omega \le R \le 100m\Omega \\ 10m\Omega \le R \le 100m\Omega \\ 6m\Omega \le R \le 9m\Omega \\ 6m\Omega \le R \le 00m\Omega \\ 6m\Omega \le 00m\Omega \\ $		4mΩ	3.20 ± 0.25	1.60 ± 0.25	0.60 ± 0.25		1.20 ± 0.25	
$\begin{array}{c} 9m\Omega \le R \le 100m\Omega \\ 5m\Omega \le R \le 9m\Omega \\ 10m\Omega \le R \le 100m\Omega \\ 10m\Omega \le R \le 100m\Omega \\ 6m\Omega \le R \le 9m\Omega \\ 6m\Omega \le R \le 00m\Omega \\ 6m\Omega \le 00m\Omega \\ $	PE1206	$5m\Omega \le R \le 8m\Omega$	3.20 ± 0.25	1.60 ± 0.25	0.60 ± 0.25		1.15 ± 0.25	
$\begin{array}{c} \text{PE2010} \\ & 10 \text{m} \Omega \leq \text{R} \leq 100 \text{m} \Omega \\ & 6 \text{m} \Omega \leq \text{R} \leq 8 \text{m} \Omega \\ & 6.30 \pm 0.25 \\ & 2.50 \pm 0.25 \\ & 3.10 \pm 0.25 \\ & 0.60 \pm 0.25 \\ & \\ & 1.90 \pm 0.25 \\ & \\ & 1.90 \pm 0.25 \\ & \\ & 1.90 \pm 0.25 \\ & \\ & 0.95 \pm 0.25 \\ & \\ & 0.60 \pm 0.25 \\ & 0.6$		$9m\Omega \le R \le 100m\Omega$	3.20 ± 0.25		0.60 ± 0.25			
$\begin{array}{c} 10 \text{m} \Omega \leq \text{R} \leq 100 \text{m} \Omega \\ 6 \text{m} \Omega \leq \text{R} \leq 8 \text{m} \Omega \\ 6 \text{m} \Omega \leq \text{R} \leq 8 \text{m} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 8 \text{m} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 8 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 8 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 9 \text{d} \Omega \\ 6 \text{d} \Omega \leq \text{R} \leq 10 \Omega \\ 6 d$		$5m\Omega \le R \le 9m\Omega$	5.00 ± 0.25	2.50 ± 0.25	0.60 ± 0.25		1.50 ± 0.25	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PE2010	$10m\Omega \le R \le 100m\Omega$	5.00 ± 0.25	2.50 ± 0.25	0.60 ± 0.25		0.60 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$6m\Omega \le R \le 8m\Omega$	6.30 ± 0.25	3.10 ± 0.25	0.60 ± 0.25		1.90 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE2512	$9m\Omega \le R \le 99m\Omega$	6.30 ± 0.25	3.10 ± 0.25	0.60 ± 0.25		0.95 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		100mΩ	6.45 ± 0.25	3.25 ± 0.25	0.70 ± 0.25		0.60 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5mΩ	11.50 ± 0.25	7.00 ± 0.25	0.60 ± 0.25		2.90 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE452/	$6m\Omega \le R < I\Omega$	11.50 ± 0.25	7.00 ± 0.25	0.60 ± 0.25		2.60 ± 0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PA2512	$Im\Omega \le R \le 5m\Omega$	6.50 ± 0.20	3.20 ± 0.20	0.65 ± 0.15	0.90 ± 0.20	0.90 ± 0.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PR I 206	$Im\Omega \le R \le 4m\Omega$	3.20 ± 0.25	1.60 ± 0.25	0.64 ± 0.25	0.50 ± 0.25	0.50 ± 0.25	
$ \begin{array}{ c c c c c c } \hline \text{Wide terminal} \\ \hline \textbf{Type} & \textbf{Resistance range} & \textbf{L} & \textbf{W} & \textbf{H} & \textbf{I}_{\textbf{I}} & \textbf{I}_{\textbf{2}} \\ \hline \textbf{PE0306} & 5m\Omega \leq R \leq 100m\Omega & 0.90\pm0.20 & 1.70\pm0.20 & 0.65\pm0.20 & & 0.25\pm0.15 \\ \hline \textbf{PE0508} & 3m\Omega \leq R \leq 100m\Omega & 1.35\pm0.20 & 2.10\pm0.20 & 0.65\pm0.20 & & 0.43\pm0.15 \\ \hline \textbf{I} m\Omega & 1.60\pm0.20 & 3.20\pm0.20 & 0.60\pm0.15 & & 0.55\pm0.20 \\ \hline \textbf{PE0612} & 2m\Omega \leq R \leq 4m\Omega & 1.60\pm0.20 & 3.20\pm0.20 & 0.60\pm0.15 & & 0.40\pm0.20 \\ \hline \textbf{5m}\Omega \leq R \leq 300m\Omega & 1.60\pm0.20 & 3.20\pm0.20 & 0.60\pm0.15 & & 0.30\pm0.20 \\ \hline \textbf{PE0815} & 2m\Omega & 2.50\pm0.20 & 3.70\pm0.20 & 0.60\pm0.15 & & 0.95\pm0.20 \\ \hline \textbf{PE0815} & 2m\Omega & 2.50\pm0.20 & 3.70\pm0.20 & 0.60\pm0.15 & & 0.75\pm0.20 \\ \hline \textbf{3m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 3.70\pm0.20 & 0.60\pm0.15 & & 0.60\pm0.20 \\ \hline \textbf{6 / 8 / 10m}\Omega & 2.00\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{PE0830} & 1m\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.58\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.58\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.58\pm0.15 \\ \hline \textbf{1m}\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & -$	PD 2010	$Im\Omega \le R \le 3m\Omega$	5.10 ± 0.25	2.54 ± 0.25	0.80 ± 0.25	1.30 ± 0.25	1.30 ± 0.25	
$ \begin{array}{ c c c c c c } \hline \textbf{Type} & \textbf{Resistance range} & \textbf{L} & \textbf{W} & \textbf{H} & \textbf{I}_1 & \textbf{I}_2 \\ \hline PE0306 & 5m\Omega \leq R \leq 100m\Omega & 0.90\pm0.20 & 1.70\pm0.20 & 0.65\pm0.20 & & 0.25\pm0.15 \\ \hline PE0508 & 3m\Omega \leq R \leq 100m\Omega & 1.35\pm0.20 & 2.10\pm0.20 & 0.65\pm0.20 & & 0.43\pm0.15 \\ \hline & Im\Omega & 1.60\pm0.20 & 3.20\pm0.20 & 0.60\pm0.15 & & 0.55\pm0.20 \\ \hline PE0612 & 2m\Omega \leq R \leq 4m\Omega & 1.60\pm0.20 & 3.20\pm0.20 & 0.60\pm0.15 & & 0.40\pm0.20 \\ \hline & 5m\Omega \leq R \leq 300m\Omega & 1.60\pm0.20 & 3.20\pm0.20 & 0.60\pm0.15 & & 0.30\pm0.20 \\ \hline & Im\Omega & 2.50\pm0.20 & 3.70\pm0.20 & 0.60\pm0.15 & & 0.95\pm0.20 \\ \hline PE0815 & 2m\Omega & 2.50\pm0.20 & 3.70\pm0.20 & 0.60\pm0.15 & & 0.75\pm0.20 \\ \hline & 3m\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 3.70\pm0.20 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline & 1m\Omega \leq R \leq 100m\Omega & 2.00\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline & Im\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline & Im\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline & Im\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.60\pm0.15 \\ \hline & Im\Omega \leq R \leq 100m\Omega & 2.50\pm0.20 & 7.50\pm0.30 & 0.60\pm0.15 & & 0.58\pm0.15 \\ \hline \end{array}$	PR2010	4mΩ	5.10 ± 0.25	2.54 ± 0.25	0.64 ± 0.25	0.80 ± 0.25	0.80 ± 0.25	
$\begin{array}{c} \text{PE0306} & 5 \text{m} \Omega \leq \text{R} \leq 100 \text{m} \Omega \\ \text{PE0508} & 3 \text{m} \Omega \leq \text{R} \leq 100 \text{m} \Omega \\ \text{Im} \Omega & 1.35 \pm 0.20 & 2.10 \pm 0.20 & 0.65 \pm 0.20 & & 0.43 \pm 0.15 \\ \text{Im} \Omega & 1.60 \pm 0.20 & 3.20 \pm 0.20 & 0.60 \pm 0.15 & & 0.55 \pm 0.20 \\ \text{PE0612} & 2 \text{m} \Omega \leq \text{R} \leq 4 \text{m} \Omega & 1.60 \pm 0.20 & 3.20 \pm 0.20 & 0.60 \pm 0.15 & & 0.40 \pm 0.20 \\ \hline 5 \text{m} \Omega \leq \text{R} \leq 300 \text{m} \Omega & 1.60 \pm 0.20 & 3.20 \pm 0.20 & 0.60 \pm 0.15 & & 0.30 \pm 0.20 \\ \hline 5 \text{m} \Omega \leq \text{R} \leq 300 \text{m} \Omega & 1.60 \pm 0.20 & 3.20 \pm 0.20 & 0.60 \pm 0.15 & & 0.30 \pm 0.20 \\ \hline \text{PE0815} & 2 \text{m} \Omega & 2.50 \pm 0.20 & 3.70 \pm 0.20 & 0.60 \pm 0.15 & & 0.75 \pm 0.20 \\ \hline 3 \text{m} \Omega \leq \text{R} \leq 100 \text{m} \Omega & 2.50 \pm 0.20 & 3.70 \pm 0.20 & 0.60 \pm 0.15 & & 0.60 \pm 0.20 \\ \hline 6 / 8 / 10 \text{m} \Omega & 2.00 \pm 0.20 & 7.50 \pm 0.30 & 0.60 \pm 0.15 & & 0.60 \pm 0.15 \\ \hline \text{PE0830} & \text{Im} \Omega \leq \text{R} \leq 100 \text{m} \Omega & 2.50 \pm 0.20 & 7.50 \pm 0.30 & 0.60 \pm 0.15 & & 0.58 \pm 0.15 \\ \hline \end{array}$	Wide termii	nal		·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Туре	Resistance range	L	w	н	I ₁	I ₂	
$ \begin{array}{c} Im\Omega \\ PE0612 \\ \hline \\ PE0612 \\ \hline \\ PE0815 \\ \hline \\ PE0830 \\ \hline \\ \\ Im\Omega \\ \hline \\ Im\Omega \\ \\ Im\Omega \\ \hline \\ $	PE0306	$5m\Omega \le R \le 100m\Omega$	0.90±0.20	1.70±0.20	0.65±0.20		0.25±0.15	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PE0508	$3m\Omega \le R \le 100m\Omega$	1.35±0.20	2.10±0.20	0.65±0.20		0.43±0.15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ImΩ	1.60 ±0.20	3.20 ±0.20	0.60 ±0.15		0.55 ±0.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PE0612	$2m\Omega \le R \le 4m\Omega$	1.60 ±0.20	3.20 ±0.20	0.60 ±0.15		0.40 ±0.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$5m\Omega \le R \le 300m\Omega$	1.60 ±0.20	3.20 ±0.20	0.60 ±0.15		0.30 ±0.20	
$3m\Omega \le R \le 100m\Omega \qquad 2.50 \pm 0.20 \qquad 3.70 \pm 0.20 \qquad 0.60 \pm 0.15 \qquad \qquad 0.60 \pm 0.20$ $6 / 8 / 10m\Omega \qquad 2.00 \pm 0.20 \qquad 7.50 \pm 0.30 \qquad 0.60 \pm 0.15 \qquad \qquad 0.60 \pm 0.15$ $Im\Omega \le R \le 100m\Omega \\ (except 6/8/10m\Omega) \qquad 2.50 \pm 0.20 \qquad 7.50 \pm 0.30 \qquad 0.60 \pm 0.15 \qquad \qquad 0.58 \pm 0.15$		ImΩ	2.50 ±0.20	3.70 ±0.20	0.60 ±0.15		0.95 ±0.20	
PE0830	PE0815	2mΩ	2.50 ±0.20	3.70 ±0.20	0.60 ±0.15		0.75 ±0.20	
PE0830 $ ImΩ \le R \le 100mΩ (except 6/8/10mΩ) 2.50 ±0.20 7.50 ±0.30 0.60 ±0.15 0.58 ±0.15 $		$3m\Omega \le R \le 100m\Omega$	2.50 ±0.20	3.70 ±0.20	0.60 ±0.15		0.60 ±0.20	
(except $6/8/10 \text{m}\Omega$) 2.50 ± 0.20 7.50 ± 0.30 0.60 ± 0.15 0.58 ± 0.15		6 / 8 / 10mΩ	2.00 ±0.20	7.50 ±0.30	0.60 ±0.15		0.60 ±0.15	
ImO 3 10+0 20 6 30+0 20 0 60+0 15 1 15+0 20	PE0830		2.50 ±0.20	7.50 ±0.30	0.60 ±0.15		0.58 ±0.15	
DE 100E	DELIZZE	ImΩ	3.10±0.20	6.30±0.20	0.60±0.15		1.15±0.20	
PE1225 $2m\Omega \le R \le 100m\Omega$ 3.10±0.20 6.30±0.20 0.60±0.15 0.50±0.20	PE1225	$2m\Omega \le R \le 100m\Omega$	3.10±0.20	6.30±0.20	0.60±0.15		0.50±0.20	

0.20 ±0.15

0.30 ±0.10

0.30 ±0.15

 0.50 ± 0.05

 0.80 ± 0.05

0.80 ±0.05

2.00 ±0.10

1.60 ±0.10

3.20 ±0.15

0.45 ±0.10

0.40 ±0.10

0.60 ±0.10

0.30 ±0.15

0.30 ±0.10

0.30 ±0.15

1.00 ±0.10

1.60 ±0.10

1.60 ±0.15

Note: Please contact sales offices, distributors and representatives in your region before ordering

H:0.45 ±0.05

H₁:0.30 ±0.05

H:0.30 ±0.10

H:0.65 ±0.05

H₁:0.50 ±0.15

YCI24

YC162

YC164

Product Information - Chip Resistors

Product Information - MLCCs

Electrical characteristics									
Туре	тс	Operating Temp range	Capacitace range	Voltage range	Tolerance				
CC0100	NPO	-55°C to 125°C	10pF ~ 100pF	10V ~ 16V	±0.25pF, ±0.5pF, ±5%				
CC0100	X5R	-55°C to 85°C	100pF ~ 10nF	4V ~ 6.3V	±10%, ±20%				
CC0201	X5R	-55°C to 85°C	IuF	6.3V	±20%				
	NPO	-55°C to 125°C	10pF ~ 100pF	100 V	±0.25pF, ±0.5pF, ±2%, ±5%, ±10%				
CC0402	X5R	-55°C to 85°C	IuF ~I0uF	6.3V ~ 50 V	±10%, ±20%				
	Y5V	-55°C to 85°C	luF	6.3V ~ IOV	+80% ~ -20%				
	NPO	-55°C to 125°C	10pF ~ 4.7nF	100 V ~ 250V	±0.25pF, ±0.5pF, ±2%, ±5%, ±10%				
CC0603	X5R	-55°C to 85°C	100pF ~ 22uF	6.3V ~ 50 V	±10%, ±20%				
CC0603	X7R	-55°C to 125°C	I uF ~ 4.7uF	6.3V ~ 50 V	±10%				
	Y5V	-55°C to 85°C	I uF ~ 4.7uF	6.3V ~ 50 V	+80% ~ -20%				
	NPO	-55°C to 125°C	10pF ~ 4.7nF	100 V ~ 630V	±0.25pF, ±0.5pF, ±2%, ±5%, ±10%				
CC0805	X5R	-55°C to 85°C	IuF ∼ 47uF	6.3V ~ 50 V	±10%, ±20%				
CC0803	X7R	-55°C to 125°C	220pF ~ 10uF	6.3V ~ 630 V	±10%				
	Y5V	-55°C to 85°C	IuF ~ 22uF	6.3V ~ 50 V	+80% ~ -20%				
	NPO	-55°C to 125°C	10pF ~ 10nF	100 V ~ 630V	±0.25pF, ±0.5pF, ±2%, ±5%, ±10%				
CC1206	X5R	-55°C to 85°C	IuF ~ I00uF	6.3V ~ 50 V	±10%, ±20%				
CC1206	Y5V	-55°C to 85°C	IuF ∼ 22uF	10V ~ 50 V	+80% ~ -20%				
	X7R	-55°C to 125°C	220pF ~ 22uF	6.3V ~ 630 V	±10%				
	NPO	-55°C to 125°C	47pF ~ 10nF	100 V ~ 630V	±0.25pF, ±0.5pF, ±2%, ±5%, ±10%				
CC1210	X5R	-55°C to 85°C	IuF ~ I00uF	6.3V ~ 50 V	±10%, ±20%				
CC1210	Y5V	-55°C to 85°C	10uF ~ 47uF	6.3V ~ 25 V	+80% ~ -20%				
	X7R	-55°C to 125°C	2.2nF ~ 47uF	6.3V ~ 630 V	±10%				
CC1812	NPO	-55°C to 125°C	10pF ~ 5.6nF	100 V ~ 630 V	±0.25pF, ±0.5pF, ±2%, ±5%, ±10%				
CC1612	X7R	-55°C to 125°C	1000pF ~ 1uF	50V ~ 630V	±10%				
CA0508	NP0	-55°C to 125°C	10pF ~ 220pF	50V	±5%, ±10%				
CA0508	X7R	-55°C to 125°C	InF ~ 100nF	16V~50V	±10%				
	NP0	-55°C to 125°C	10pF ~ 470pF	50V	±5%, ±10%				
CA0612	X7R	-55°C to 125°C	180pF ~ 100nF	16V~50V	±10%				
	Y5V	-55°C to 85°C	10nF ~ 100nF	25V	+80% ~ -20%				
CL0306	X7R	-55°C to 125°C	100nF ~ 220nF	10V	±10%				
CL0508	X7R	-55°C to 125°C	10nF ~ 220nF	16V~25V	±10%				
CL0612	X7R	-55°C to 125°C	10nF ~ 100nF	50V	±10%				

Dimensions							unit: mm
	Inch-based Metric	Metric	Metric L ₁ (mm)	W (mm)	L ₂ / L ₃	L₄ (mm)	
	men-based	men-based Fredric	- ₁ ()	** ()	min.	max.	min.
	0100	0402M	0.4 ±0.02	0.2 ±0.02	0.07	0.14	0.13
	0201	0603M	0.6 ±0.03	0.3 ±0.03	0.1	0.2	0.2
	0402	1005M	1.0 ±0.05	0.5 ±0.05	0.15	0.3	0.4
	0603	1608M	1.6 ±0.10	0.8 ±0.10	0.2	0.6	0.4
	0805	2012M	2.0 ±0.10	1.25 ±0.10	0.25	0.75	0.55
		201211	2.0 ±0.20	1.25 ±0.20	0.25	0.75	
L2 L4	1206 3216	2217M	3.2 ±0.15	1.6 ±0.15	0.25	0.75	1.4
,		321611	3.2 ±0.30	1.6 ±0.20	0.25	0.75	1.4
	1210	3225M	3.2 ±0.20	2.5 ±0.20	0.25	0.75	1.4
	1210	322511	3.2 ±0.40	2.5 ±0.30	0.25	0.75	1.4
	1812	4532M	4.5 ±0.20	3.2 ±0.20	0.25	0.75	2.2

Product Information - MLCCs

4C arrays									
B	Inch-based	Metric	L	W	T _{min}	T _{max}	A	В	Р
The second secon	0508	1220M	2.0 ±0.15	1.25 ±0.15	0.50	0.70	0.28 ±0.	0.2 ±0.10	0.5 ±0.10
→ A ← ← P →	0413	LCCOM	22.10.15	1.40.10.15	0.70 (1)	0.90 ^(I)	04.01	0 03 1030	00.10.10
T	0612	1632M	3.2 ±0.15	1.60 ±0.15	0.50 (2)	0.70 (2)	0.4 ±0.10	0 0.3 ±0.20	0.8 ±0.10
Discrete capacitors - Lo	w inductanc	e types o	only						
	Inch-based	Metric	L	W	Т	L ₂ /	L _{3 min}	L ₂ / L _{3 max}	L _{4 min}
$\begin{array}{c c} & & & & \\ \hline \downarrow & & & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow & & \\ \hline \downarrow & & \\ \downarrow$	0306	0816M	0.8 ±0.15	1.6 ±0.20	0.50 ±0.1	0 0	0.10	0.30	0.20
	0508	1220M	1.25 ±0.20	2.0 ±0.20	0.85 ±0.1	0 0).13	0.46	0.38
! 4	0612	1632M	1.6 ±0.20	3.2 ±0.20	0.85 ±0.1	0 0).13	0.46	0.50

Customer Support & Distribution Network

We bring to the market a proven innovative tradition and a commitment to service second to none.

Yageo sales representatives are available to visit you to discuss the technical and commercial issues appropriate to your project or requirement. Customer service can initiate new orders, change orders, request air shipments or drop shipments, product samples, and generally support your business on a day to day basis.

Our sales/services offices are strategically located to serve our customers worldwide and our international distributor network improves our product availability, delivery lead time and our service anywhere in the world.

Please see the back cover for contact details of your local Yageo organization.

We support our customers with extensive literature including datasheets, brochures and application notes, which are also available electronically on our website at: www.yageo.com

In addition, our field application engineers constantly strive wherever possible, to work closely with customers to aid them with design-in and provide them with the support they need to remain competitive in their markets.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") are subject to change without notice.

All Information given herein is believed to be accurate and reliable, but is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute -and we specifically disclaim-any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Although we design and manufacture our products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

YAGEO - A GLOBAL COMPANY

НО

Taipei, Taiwan Tel. +886 2 6629 9999 Fax. +886 2 6628 8886 Mail: sales_tw@yageo.com

China and ASIA

Suzhou, China

Tel. +86 512 6825 5568 Fax. +86 512 6825 5386 Mail: sales_sz@yageo.com

Qingdao, China

Tel. +86 532 8797 0533 Fax. +86 532 8797 0533 Mail: sales sz@yageo.com

Dongguan, China

Tel. +86 769 8772 0275 Fax. +86 769 8791 0053 Mail: sales_dg@yageo.com

Tokyo, Japan

Tel. +81 3 6809 3972 Fax. +81 3 6809 3982 Mail: sales_yj@yageo.com

Seongnam, Korea

Tel. +82 31 712 4797 Fax. +82 31 712 5866 Mail: sales_yk@yageo.com

Singapore

Tel. +65 6244 7800 Fax. +65 6244 4943 Mail: sales ysa@yageo.com

Kuala Lumpur, Malaysia

Tel. +60 3 8063 8864 Fax. +60 3 8063 7376 Mail: sales_ysa@yageo.com

Penang, Malaysia

Tel. +60 4 3973049 Fax. +60 4 3973050 Mail: sales_ysa@yageo.com

EUROPE

Munich, Germany

Tel. +49 8990 7784 380 Fax. +49 8990 7784 379 Mail: sales ye@yageo.com

Milan, Italy

Tel. +39 02 6129 1017 Fax. +39 02 6601 7490 Mail: sales_ye@yageo.com

Roermond, Benelux

Tel. +31 475 385 555 Fax. +31 475 385 589 Mail: sales_ye@yageo.com

Szombathely, Hungary

Tel. +36 94 517 702 Fax. +36 94 517 701 Mail: sales_ye@yageo.com

Moscow, Russian Federation

Tel. +7 965 408 1811 Fax. +7 498 610 0707 Mail: sales_ye@yageo.com

NORTH AMERICA

San Iose, U.S.A.

Tel. +1 408 240 6200 Fax. +1 408 240 6201 Mail: sales ya@yageo.com

Mexico

Tel. +52 33 31330631 Fax. +1 408 240 6201 Mail: sales_ya@yageo.com

For a complete listing of all Yageo sales offices, distributors, and representatives please visit "contact us" at www.yageo.com

© YAGEO Corporation

All rights are reserved. Reproduction in whole or in part is prohibite without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

No liability will be accepted by the publisher for any consequence of its use Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.