
《DSP原理及应用》

Lecture7 ePWM

增强型脉宽调制器(ePWM)外设广泛用于数字电机控制系统、开关电源控制系统、不间断电源(UPS)系统、其他形式的功率控制和电源转换系统。

PWM事件就是几个特别的时刻

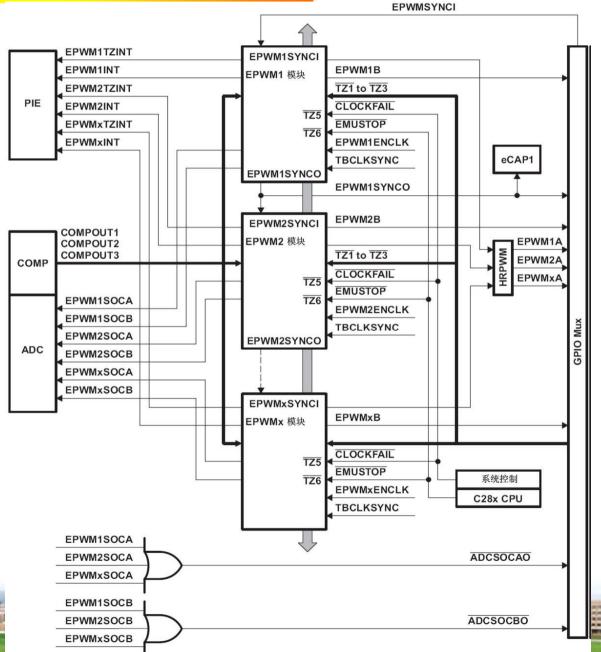
- (1) 0时刻
- (2) 周期时刻
- (3) 比较点时刻

PWM动作(类似GPIO引脚的输出)

- (1) 没反应,Do nothing
- (2) 置低电平,Clear low
- (3) 置高电平, Set High
- (4) 电平翻转,Toggle

TMS320F2802x每个ePWM特性:

- > 专用的16位时基计数器
- ➤ 具有两路PWM输出引脚(EPWMxA/EPWMxB) 两个独立的、单边沿操作的PWM输出 两个独立的、双边沿对称操作的PWM输出 一个独立的、双边沿非对称操作的PWM输出
- ➤ 通过软件<mark>异步</mark>控制PWM信号
- > 可编程的相位控制,配置不同ePWM模块的相位差
- 周期性地硬件锁定(同步)相位关系

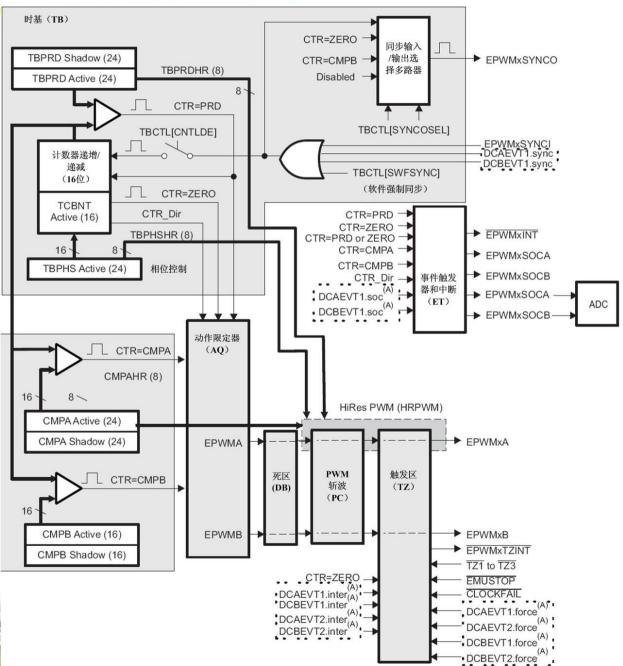

TMS320F2802x每个ePWM特性:

- ▶ 具有死区发生器,带独立的上升沿和下降沿延迟控制
- ▶ 可编程触发区配置,故障时周期性触发或单次触发
- ➤ 故障时PWM输出可强制为高、低或高阻状态
- ➤ 比较器模块输出和触发区输入可以产生事件、滤波(filtered)事件或故障触发条件
- ➤ 所有事件都可以触发CPU中断和ADC开始转换(SOC)
- ➤ 事件预分频因子可编程,使得中断的CPU开销最少

> PWM被<mark>高频载波</mark>信号斩波,脉冲变压器门极驱动有用

ePWM 模块方框图

ePWM模块8个子模块:



ePWM模块信号:

- ▶ PWM输出信号(EPWMxA和EPWMxB),与GPIO复用。
- ▶ 触发区信号(TZ1到TZ6)。模块外部出现故障条件,TZ1到TZ3可配置为GPIO外设异步输入。TZ4与EQEP1模块相连。TZ5与系统时钟失效逻辑单元相连,TZ6与来自CPU的EMUSTOP输出相连。
- ▶ 时基同步输入(EPWMxSYNCI)和输出(EPWMxSYNCO)信号,可通过ePWM1管脚输出,在内部将所有ePWM模块相连。。
 EPWM1SYNCO与eCAP1的SYNCI连接。
- ➤ ADC开始转换信号(EPWMxSOCA和EPWMxSOCB)。
- ▶ 比较器输出信号(COMPxOUT),与触发区信号产生数字比较事件。
- ▶ 外设总线,32位宽,可以对ePWM寄存器执行16位和32位写操作。

8个子模块信号连接

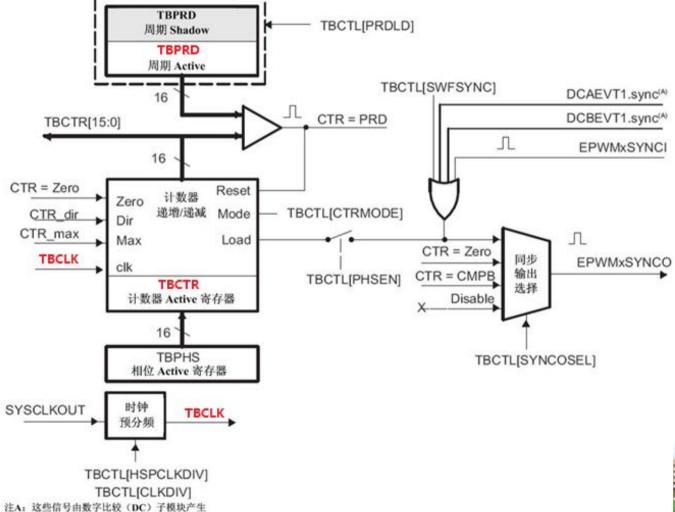
名称	大小	EALLOW	描述
			时基子模块寄存器
TBCTL	1		时基控制寄存器
TBSTS	1		时基状态寄存器
TBPHSHR*	1		时基相位高分辨率寄存器
TBPHS	1		时基相位寄存器
TBCTR	1		时基计数器寄存器
TBPRD	1		时基周期寄存器
TBPRDHR*	1		时基周期高分辨率寄存器
			计数器-比较子模块寄存器
CMPCTL	1		计数器-比较控制寄存器
CMPAHR*	1		计数器-比较A高分辨率寄存器
CMPA	1		计数器-比较A寄存器
СМРВ	1		计数器-比较B寄存器

名称	大小	EALLOW	描述
			事件触发器子模块寄存器
ETSEL	1		事件触发器选择寄存器
ETPS	1		事件触发器预分频寄存器
ETFLG	1		事件触发器标志寄存器
ETCLR	1		事件触发器清零寄存器
ETFRC	1		事件触发器强制寄存器
			死区发生器子模块寄存器
DBCTL	1		死区发生器控制寄存器
DBRED	1		死区发生器上升沿延迟计数寄存器
DBFED	1		死区发生器下降沿延迟计数寄存器

名称	大小	EALLOW	描述
			触发区子模块寄存器
TZSEL	1	是	触发区选择寄存器
TZDCSEL	1	是	触发区数字比较选择寄存器
TZCTL	1	是	触发区控制寄存器
TZEINT	1	是	触发区使能中断寄存器
TZFLG	1	是	触发区标志寄存器
TZCLR	1	是	触发区清零寄存器
TZFRC	1	是	触发区强制寄存器
			动作限定器子模块寄存器
AQCTLA	1		EPWMxA动作限定器控制寄存器
AQCTLB	1		EPWMxB动作限定器控制寄存器
AQSFRC	1		动作限定器软件强制寄存器
AQCSFRC	1		动作限定器连续S/W强制寄存器组

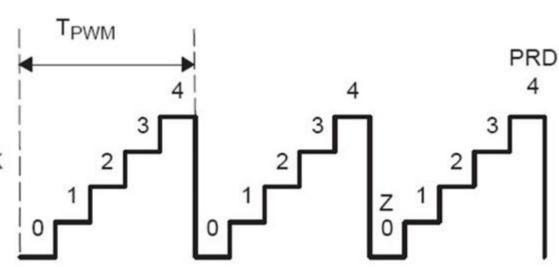
名称	大小	EALLOW	描述				
			PWM斩波子模块寄存器				
PCCTL	1		PWM斩波控制寄存器				
高分辨率脉宽调制器(HRPWM)扩展寄							
HRCNFG*	1	是	HRPWM配置寄存器				
HRPWR*	1	是	HRPWM功率寄存器				
HRMSTEP*	1	是	HRPWM MEP步进寄存器				
HRPCTL*	1	是	高分辨率周期控制寄存器				
TBPRDHRM*	1		时基周期高分辨率镜像寄存器				
TBPRDM	1		时基周期镜像寄存器				
CMPAHRM*	1		比较A高分辨率镜像寄存器				
CMPAM	1		比较A镜像寄存器				

名称	大小	EALLOW	描述
			数字比较事件寄存器
DCTRIPSEL	1	是	数字比较触发选择寄存器
DCACTL	1	是	数字比较A控制寄存器
DCBCTL	1	是	数字比较B控制寄存器
DCFCTL	1	是	数字比较滤波控制寄存器
DCCAPCTL	1	是	数字比较捕获控制寄存器
DCFOFFSET	1		数字比较滤波偏移量寄存器
DCFOFFSETCNT	1		数字比较滤波偏移量计数器寄存器
DCFWINDOW	1		数字比较滤波窗寄存器
DCFWINDOWCNT	1		数字比较滤波窗计数器寄存器
DCCAP	1		数字比较计数器捕获寄存器


- 三、ePWM子模块功能和配置 -- 时基(TB)
- 1、时基(TB)模块的功能
- 根据系统时钟(SYSCLKOUT)调节时基时钟(TBCLK)
- 配置PWM时基计数器(TBCTR)的频率或周期
- 设置时基计数器的计数模式:
 - 一递增计数模式:用于非对称PWM
 - 一递减计数模式:用于非对称PWM
 - 一"先递增后递减"计数模式:用于对称PWM
- 配置相对于另一个ePWM模块的时基相位
- 通过硬件或软件将各模块之间的时基计数器同步

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 1、时基(TB)模块的功能
- 配置发生同步事件后时基计数器的计数方向(递增或递减)
- 配置器件被仿真器异常终止时时基计数器的行为
- 指定ePWM模块同步输出的源:
 - 一同步输入信号
 - 一时基计数器的计数值等于0
 - 一时基计数器的计数值等于计数器-比较B(CMPB)的值
 - 一没有产生输出同步信号

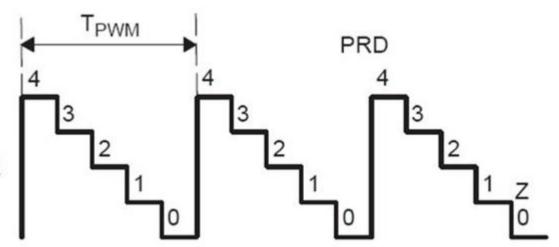
2、时基(TB)模块的组成



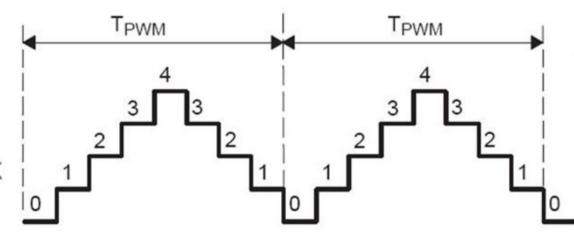
3、计算PWM的周期或频率

PWM的周期或频率由时基周期(TBPRD)寄存器和时基计数器的计数模式控制。

递增计数模式:


 $T_{PWM} = (TBPRD + 1) \times T_{TBCLK}$ $F_{PWM} = 1/(T_{PWM})$

3、计算PWM的周期或频率


递减计数模式:

$$T_{PWM} = (TBPRD + 1) \times T_{TBCLK}$$

 $F_{PWM} = 1/(T_{PWM})$

先递增后递减 计数模式:

$$T_{PWM} = 2 \times TBPRD \times T_{TBCLK}$$

 $F_{PWM} = 1 / (T_{PWM})$

4、时基(TB)周期寄存器(TBPRD)

shadow周期寄存器的存储器地址与active寄存器相同。哪个寄存器被写或被读由TBCTL. PRDLD位决定

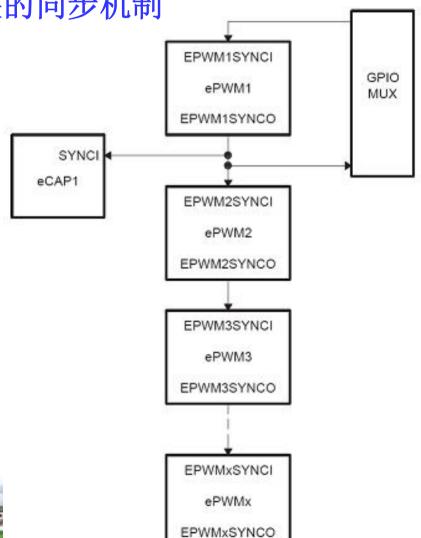
TBCTL. PRDLD=0: TBPRD指向shadow寄存器。当时基计数器 TBCTR=0时, shadow寄存器内容送到active寄存器。

TBCTL. PRDLD=1: TBPRD指向active寄存器。

5、时基(TB)模块的同步机制

适用于:

280x

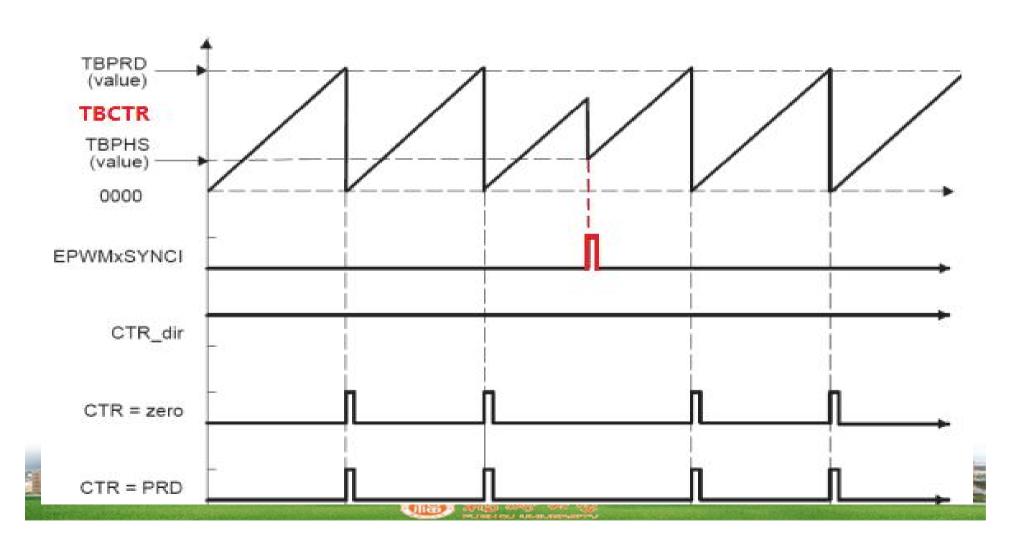

2801x

2802x

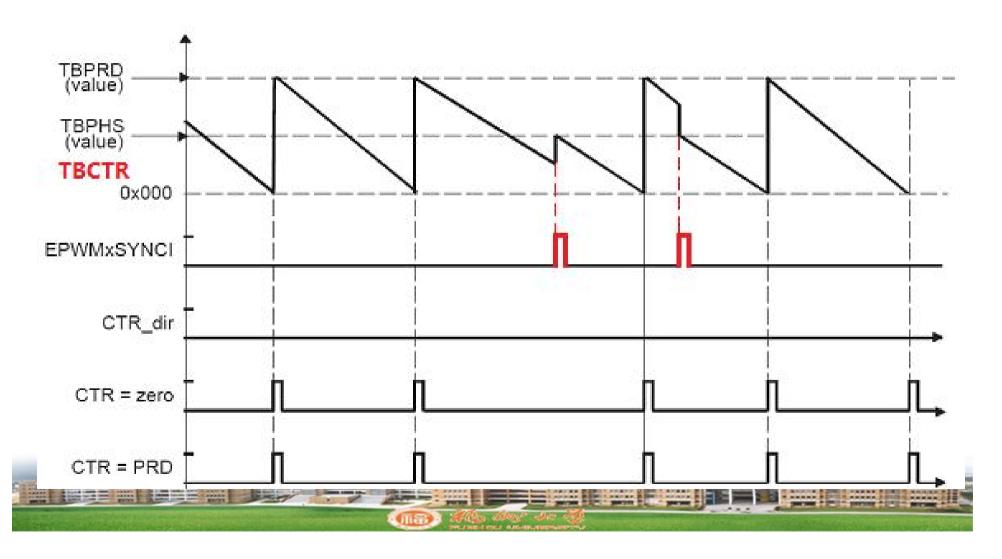
2803x

2804x兼容模式

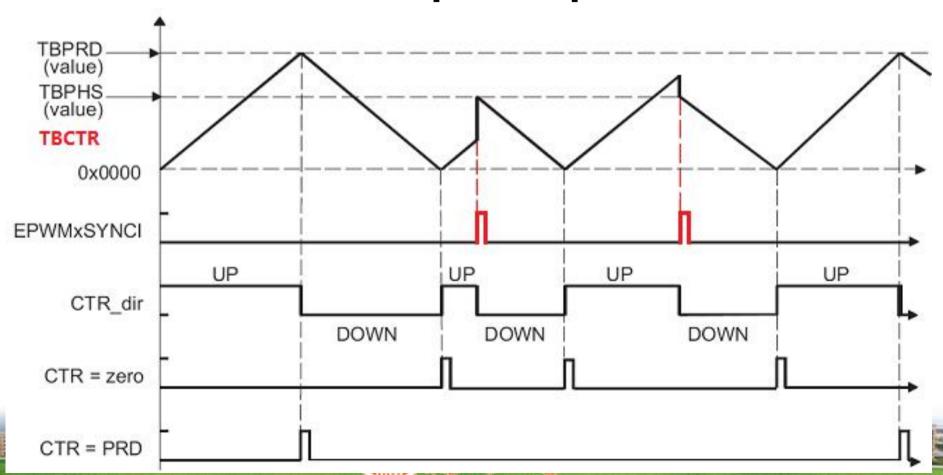
- 三、ePWM子模块功能和配置 -- 时基(TB)
- 5、时基(TB)模块的同步机制


若TBCTL.PHSEN=1, 出现以下脉冲时, TBCTR=TBPHS:

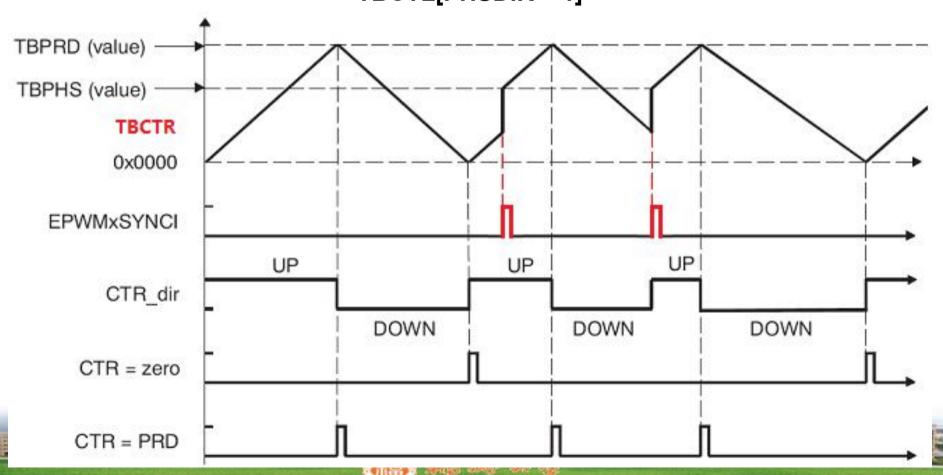
- ➤ EPWMxSYNCI: 同步输入脉冲:
- ➤ 软件强制同步脉冲: 向TBCTRL.SWFSYNC位写1
- ➤ 数字比较事件同步脉冲: DCAEVT1和DCBEVT1数字比较事件。
- 若TBCTL.PHSEN=0,忽略同步信号。但是EPWMxSYNCO可以流过,用于同步其他ePWM模块。


- 三、ePWM子模块功能和配置 -- 时基(TB)
- 6、多个ePWM模块时基时钟同步步骤
- (1) 使能单独的ePWM模块时钟。PCLKCR1的3-0位
- (2) 设置TBCLKSYNC=0(PCLKCR0.2位),所有被使能ePWM模块的时基时钟都将停止运行。
- (3) 配置预分频器的值以及期望的ePWM模式。要得到完全同步的TBCLK,使能ePWM模块预分频必须相同。
- (4) 设置TBCLKSYNC=1。同时启动使能的ePWM时钟。

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 7、时基(TB)模块的时序波形 递增


7、时基(TB)模块的时序波形 - 递减

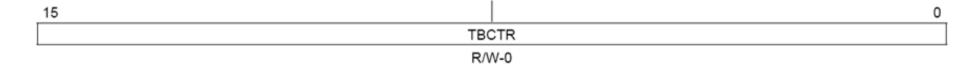
7、时基(TB)模块的时序波形 - 先递增后递减


TBCTL[PHSDIR = 0]

7、时基(TB)模块的时序波形 - 先递增后递减

TBCTL[PHSDIR = 1]

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 8、时基(TB)模块的寄存器 -- TBPRD


15 TBPRD R/W-0

➤ BIT15-0: 时基周期值。0000-FFFFh
若TBCTL.PRDLD = 0, TBPRD=shadowREG
若TBCTL.PRDLD = 1, TBPRD=activeREG

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 8、时基(TB)模块的寄存器 -- TBCTR

➤ BIT15-0: 时基计数器的当前值。0000 - FFFFh

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 8、时基(TB)模块的寄存器 -- TBPHS

15 0 TBPHS R/W-0

➤ BIT15-0: 时基相位值。0000 - FFFFh

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8	
FREE,	SOFT	PHSDIR		CLKDIV		CLKDIV HSPCLKDIV		LKDIV
R/V	V-0	R/W-0		R/W-0		R/W-0,0,1		
7	6	5	4	3	2	1	0	
HSPCLKDIV	SWFSYNC	SYNCOSEL		PRDLD	PHSEN	CTRMODE		
R/W-0,0,1	R/W-0	R/V	R/W-0		R/W-0	R/W-11		

➤ BIT15-14: 仿真模式位。

- 00-在下一次时基计数器递增或递减之后停止。
- 01-在计数器完成一个完整周期后停止。
- 1x-自由运行。

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR	DIR CLKDIV		HSPCLKDIV		
R/	W-0	R/W-0	R/W-0		R/W-0,0,1		
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNCOSEL		PRDLD	PHSEN	CTRMODE	
R/W-0,0,1	R/W-0	R/W-0		R/W-0	R/W-0	R/W-11	

- ➤ BIT13: 相位方向位。该位仅在 "先递增后递减"模式有效。
 - 0-在同步事件后递减计数。
 - 1-在同步事件后递增计数。

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8	
FREE,	, SOFT	PHSDIR	PHSDIR CLKDIV		CLKDIV HSPCLKDIV		LKDIV	
R/\	N-0	R/W-0		R/W-0			R/W-0,0,1	
7	6	5	4	3	2	1	0	
HSPCLKDIV	SWFSYNC	SYNCOSEL		PRDLD	PHSEN	CTRMODE		
R/W-0,0,1	R/W-0	R/W-0		R/W-0	R/W-0	R/W	/-11	

➤ BIT12-10: 时基时钟预分频位。

000 - CLKDIV=1 (默认) 001 - CLKDIV=2

010 - CLKDIV=4 011 - CLKDIV=8

100 - CLKDIV=16 101 - CLKDIV=32

110 - CLKDIV=64 111 - CLKDIV=128

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR CLKDIV			HSPCLKDIV		
R/	W-0	R/W-0	R/W-0		R/W-0,0,1		
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNCOSEL		PRDLD	PHSEN	CTRMODE	
R/W-0,0,1	R/W-0	R/W-0		R/W-0	R/W-0	R/W-11	

➤ BIT9-7: 高速时基时钟预分频位。

000-HSPCLKDIV=1 001-HSPCLKDIV=2 (默认)

010 – HSPCLKDIV=4 011 - HSPCLKDIV=6

100 – HSPCLKDIV=8 101 - HSPCLKDIV=10

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8	
FREE	, SOFT	PHSDIR	PHSDIR CLKDIV		CLKDIV HSPCLKDIV		LKDIV	
R/\	W-0	R/W-0		R/W-0		R/W-0 R/W-0,0,1		0,0,1
7	6	5	4	3	2	1	0	
HSPCLKDIV	SWFSYNC	SYNCOSEL		PRDLD	PHSEN	CTRMODE		
R/W-0,0,1	R/W-0	R/\	V-0	R/W-0	R/W-0	R/W	/-11	

TBCLK = SYSCLKOUT / (HSPCLKDIV × CLKDIV)

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR CLKDIV			HSPCLKDIV		
R/	W-0	R/W-0	R/W-0		R/W-0,0,1		
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNCOSEL		PRDLD	PHSEN	CTRMODE	
R/W-0,0,1	R/W-0	R/W-0		R/W-0	R/W-0	R/W-11	

➤ BIT6: 软件强制同步脉冲位。写0无影响,读取时返回0写1强制产生一个一次(one-time)同步脉冲该位仅在EPWMxSYNCI被SYNCOSEL = 00选中时有效

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR		CLKDIV		HSPC	LKDIV
R/	W-0	R/W-0		R/W-0		R/W-	0,0,1
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNC	OSEL	PRDLD	PHSEN	CTRN	MODE
R/W-0,0,1	R/W-0	RΛ	V-0	R/W-0	R/W-0	R/W	/-11

➤ BIT5-4: 同步输出选择位。选择EPWMxSYNCO信号的源。

00 - EPWMxSYNC

01 - CTR = 0: TBCTR = 0×00000

10 - CTR = CMPB: TBCTR = CMPB

11 - 禁用EPWMxSYNCO信号

8、时基(TB)模块的寄存器 -- TBCTL

15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR		CLKDIV		HSPC	LKDIV
R/	W-0	R/W-0		R/W-0		R/W-	-0,0,1
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNC	OSEL	PRDLD	PHSEN	CTRI	MODE
R/W-0,0,1	R/W-0	RΛ	V-0	R/W-0	R/W-0	R/V	V-11

➤ BIT3: 周期寄存器加载位。

写0 - shadow寄存器有效。(TBPRD=shadowREG)

写1 – shadow寄存器无效。(TBPRD=activeREG)

8、时基(TB)模块的寄存器 -- TBCTL

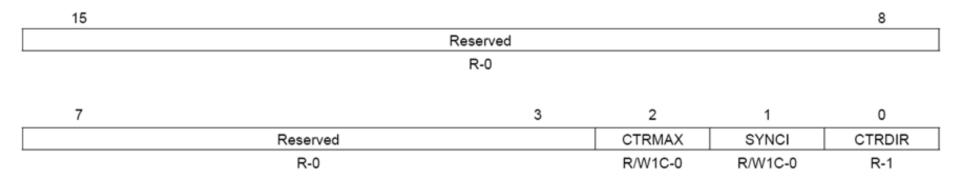
15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR		CLKDIV		HSPC	LKDIV
R/	W-0	R/W-0		R/W-0		R/W-	-0,0,1
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNC	OSEL	PRDLD	PHSEN	CTRI	MODE
R/W-0,0,1	R/W-0	RΛ	V-0	R/W-0	R/W-0	R/V	V-11

➤ BIT2: 相位控制使能位。

写0-禁止相位控制,同步功能忽略。

写1-使能相位控制。有同步信号是TBCTR=TBPHS。

8、时基(TB)模块的寄存器 -- TBCTL

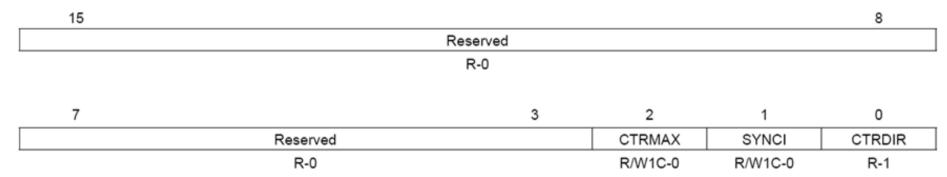

15	14	13	12		10	9	8
FREE	, SOFT	PHSDIR		CLKDIV		HSPC	LKDIV
R/	N-0	R/W-0		R/W-0		R/W-	-0,0,1
7	6	5	4	3	2	1	0
HSPCLKDIV	SWFSYNC	SYNC	OSEL	PRDLD	PHSEN	CTRI	MODE
R/W-0,0,1	R/W-0	R/V	V-0	R/W-0	R/W-0	R/V	V-11

➤ BIT1-0: 计数模式选择位。

- 00 -递增计数模式。
- 01 递减计数模式。
- 10 先递增后递减。
- 11 -停止-停顿模式(复位时的默认值)

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 8、时基(TB)模块的寄存器 -- TBSTS

➤ BIT2: 时基计数器最大值锁存状态位。

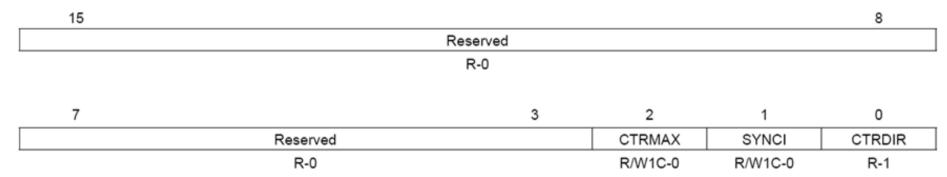

为0: TBCTR从没到达过最大值。写0无反应。

为1: TBCTR到达最大值0xFFFF。写1会清除0。

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 8、时基(TB)模块的寄存器 -- TBSTS

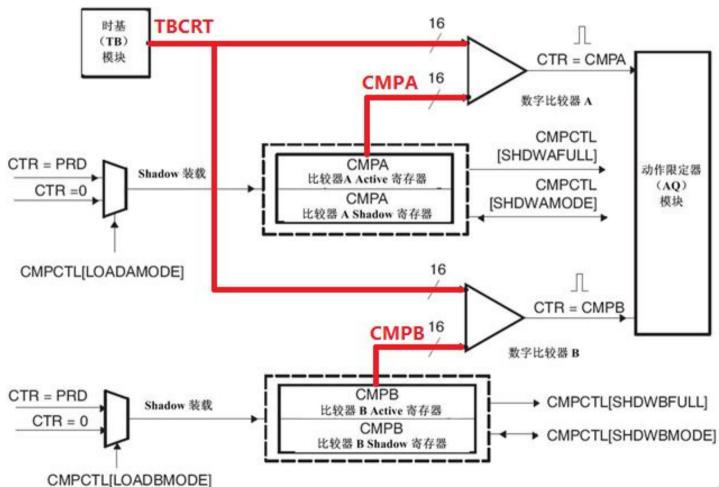
➤ BIT1: 输入同步锁存状态位。

写0没有作用。写1会清除已被锁存事件。


读为0时,表示没有发生外部同步事件。

读为1时,表示发生了一个外部同步事件。

- 三、ePWM子模块功能和配置 -- 时基(TB)
- 8、时基(TB)模块的寄存器 -- TBSTS


- ➤ BIT0: 时基计数器方向状态位。只读位。
 - 0-当前正在递减。
 - 1-当前正在递增。

- 四、ePWM子模块功能和配置 -- 计数器-比较(CC)
- 1、计数器-比较(CC)的功能
- 指定ePWMxA和/或ePWMxB输出信号的PWM占空比
- ●指定ePWMxA或ePWMxB输出信号上发生事件开关的时间

2、计数器-比较(CC)的组成

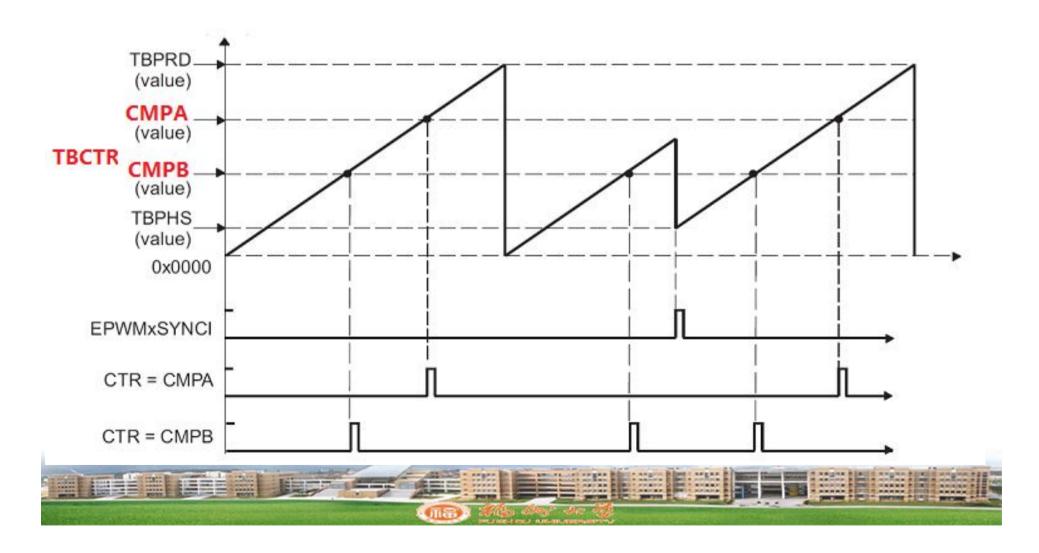
3、计数器-比较(CC)的主要信号

信号	描述
CTR = CMPA	TBCTR = CMPA
	时基计数器的计数值等于计数器-比较A active寄存器的值
CTR = CMPB	TBCTR = CMPA
	时基计数器的计数值等于计数器-比较B active寄存器的值
CTR = PRD	TBCTR = TBPRD: 用于从shadow寄存器那里装载active计
	数器-比较A和B寄存器
CTR = ZERO	TBCTR = 0x0000: 用于从shadow寄存器那里装载active计
	数器-比较A和B寄存器

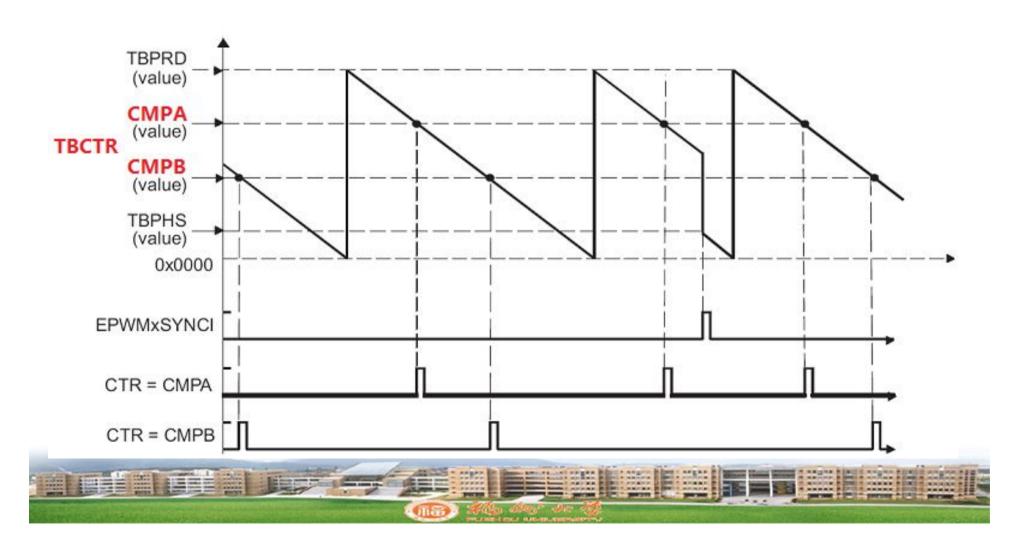
4、计数器-比较(CC)的shadow寄存器

使能: CMPCTL.SHDWAMODE=1 和 CMPCTL.SHDWBMODE=1 发生以下事件时, shadow寄存器的值送到active寄存器:

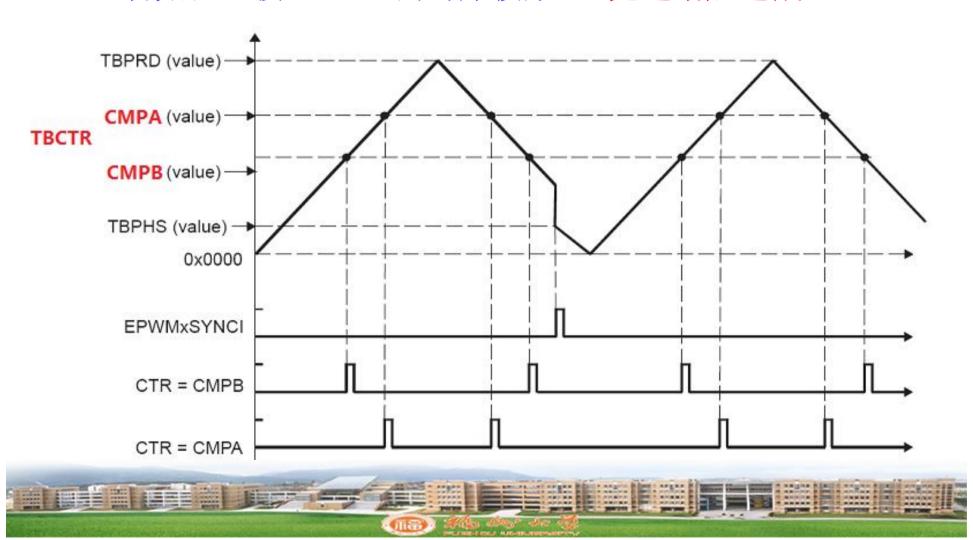
- -- CTR = PRD
- -- CTR = ZERO
- -- CTR = PRD 和 CTR = ZERO


通过CMPCTL.LOADAMODE和CMPCTL.LOADBMODE设置

禁止: CMPCTL.SHDWAMODE=0 和 CMPCTL.SHDWBMODE=0 CMPA/CMPB直接指向active寄存器。



5、计数器-比较(CC)的时序波形 -- 递增



5、计数器-比较(CC)的时序波形 -- 递减

5、计数器-比较(CC)的时序波形 -- 先递增后递减

6、计数器-比较(CC)的寄存器 --CMPA

15 0 CMPA R/W-0

➤ BIT15-0: 比较值A。0000 – FFFFh

若CMPCTL.SHDWAMODE = 0, CMPA=shadow

若CMPCTL.SHDWAMODE = 1, CMPA=active

6、计数器-比较(CC)的寄存器 --CMPB

15 0 CMPB R/W-0

➤ BIT15-0: 比较值B。0000 – FFFFh

若CMPCTL.SHDWBMODE = 0, CMPB=shadow

若CMPCTL.SHDWBMODE = 1, CMPB=active

6、计数器-比较(CC)的寄存器 --CMPCTL

15					10	9	8
Reserved							SHDWAFULL
R-0							R-0
7	6	5	4	3	2	1	0
Reserved	SHDWBMODE	Reserved	SHDWAMODE	LOADBMODE		LOADA	AMODE
R-0	R/W-0	R-0	R/W-0	R/W-0		RΛ	N-0

➤ BIT9: (CMPB) shadow寄存器满状态标志。(只读)

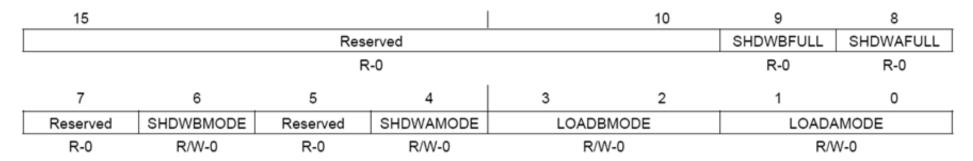
有新值送到shadow时,该位置1。

shadow值送到active时,该位清零。

➤ BIT8: (CMPA) shadow寄存器满状态标志。(只读)

有新值送到shadow时,该位置1。

shadow值送到active时,该位清零。


6、计数器-比较(CC)的寄存器 --CMPCTL

15					10	9	8
	Reserved						SHDWAFULL
		R-0	R-0				
7	6	5	4	3	2	1	0
Reserv	ed SHDWBMODE	Reserved	SHDWAMODE	LOADBMODE		LOADA	AMODE
R-0	R/W-0	R-0	R/W-0	R/W-0		RΛ	N-0

- ➤ BIT6: (CMPB) shadow寄存器模式位。
 - 0 -- 使能shadow。
 - 1 -- 禁止shadow。
- ➤ BIT4: (CMPA) shadow寄存器模式位。
 - 0 -- 使能shadow。
 - 1 -- 禁止shadow。

6、计数器-比较(CC)的寄存器 --CMPCTL

➤ BIT3-2: (CMPB) active从shadow装载的模式选择位。

00 -- CTR=0时装载

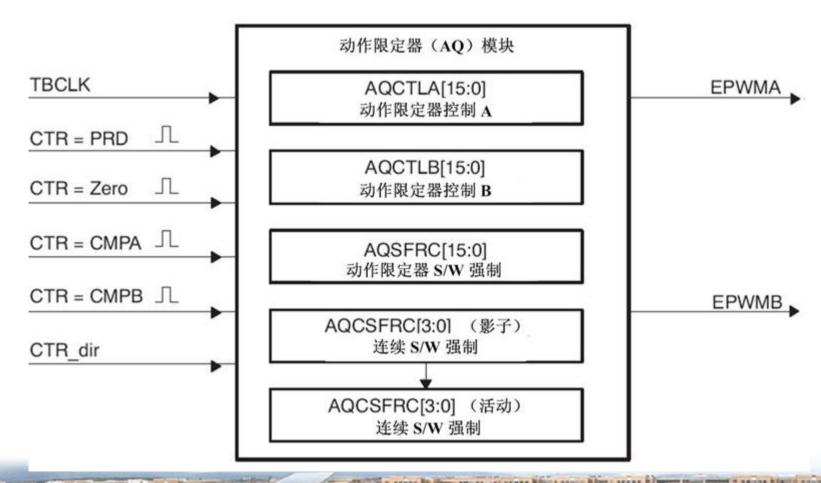
01 -- CTR=PRD时装载

10 -- CTR=0 和PRD时装载 11 -- 不装载

➤ BIT1-0: (CMPA) active从shadow装载的模式选择位。

00 -- CTR=0时装载

01 -- CTR=PRD时装载


10 -- CTR=0 和PRD时装载 11 -- 不装载

- 五、ePWM子模块功能和配置 -- 动作限定器(AQ)
- 1、动作限定器(AQ)的功能
- 指定在发生时基和比较事件时PWM输出引脚的动作:
 - 一不采取任何动作
 - 一EPWMxA和/或EPWMxB输出信号变为高电平
 - 一EPWMxA和/或EPWMxB输出信号变为低电平
 - 一EPWMxA和/或EPWMxB输出信号来回切换(toggle)
- 通过软件控制强制改变PWM输出信号的状态
- 通过软件来配置和控制PWM死区

2、动作限定器(AQ)的组成

3、动作限定器(AQ)的信号

信号	描述
CTR = PRD	TBCTR = TBPRD时基计数器的计数值等于周
	期值
CTR = ZERO	TBCTR = 0x0000时基计数器的计数值等于零
CTR = CMPA	TBCTR = CMPA时基计数器的计数值等于计
	数器-比较A
CTR = CMPB	TBCTR = CMPB时基计数器的计数值等于计
	数器-比较B
软件强制事件	由软件发起的异步事件

以上信号都可以改变PWM输出引脚的状态。

4、动作限定器(AQ)的动作

EPWMxA和EPWMxB输出信号上的动作有:

▶ 置 1 (高电平): 输出信号设置成高电平

▶ 清零(低电平): 输出信号设为低电平

➤ 切换(Toggle):输出信号取反

➤ Do Nothing(不动作):输出信号保持为当前设置值。 但Do Nothing事件仍然可以触发中断和ADC开始转换。

5、动作限定器(AQ)的优先级

原则:事件越后发生优先级越高,软件强制事件优先级最高。

	递增计数模式		递减计数模式
优先级	事件	优先级	事件
1(高)	S/W	1(高)	S/W
2	CTR=TBPRD	2	CTR=0
3	CTR=CMPB(CBU)	3	CTR=CMPB(CBD)
4	CTR=CMPA(CAU)	4	CTR=CMPA(CAD)
5(低)	CTR=0	5(低)	CTR=TBPRD

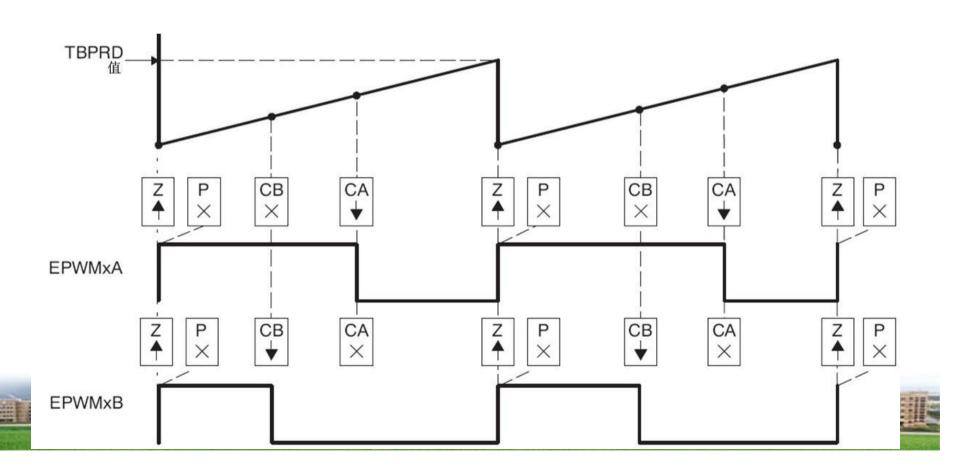
5、动作限定器(AQ)的优先级

原则:事件越后发生优先级越高,软件强制事件优先级最高。

	先递增后递减计数模式						
优先级	CTR=0到TBPRD-1	CTR=TBPRD到1					
1(高)	S/W	S/W					
2	CTR=CMPB (CBU)	CTR=CMPB (CBD)					
3	CTR=CMPA (CAU)	CTR=CMPA (CAD)					
4(低)	CTR=0	CTR= (TBPRD)					

6、CMPA/CMPB大于TBPRD时的行为

计数器模式	递增过程: CAU/CBU	递减过程: CAD/CBD
	若 CMPA/CMPB≤TBPRD,可	
递增	发生该事件。	永不发生
计数模式	若CMPA/CMPB>TBPRD,不	
	发生该事件。	
		若 CMPA/CMPB <tbprd ,="" th="" 可<=""></tbprd>
递减	永不发生	发生该事件。
计数模式		若 CMPA/CMPB≥TBPRD,该
		事件在CTR=TBPRD时发生。
	若CMPA/CMPB <tbprd,该< th=""><th>若CMPA/CMPB<tbprd,该< th=""></tbprd,该<></th></tbprd,该<>	若CMPA/CMPB <tbprd,该< th=""></tbprd,该<>
先递增后递	事件在CTR=CMPA/B时发生。	事件在CTR=CMP/B时发生。
减计数模式	若CMPA/CMPB≥TBPRD,该	若 CMPA/CMPB≥TBPRD, 该
	事件在CTR = TBPRD时发生。	事件在CTR=TBPRD时发生。

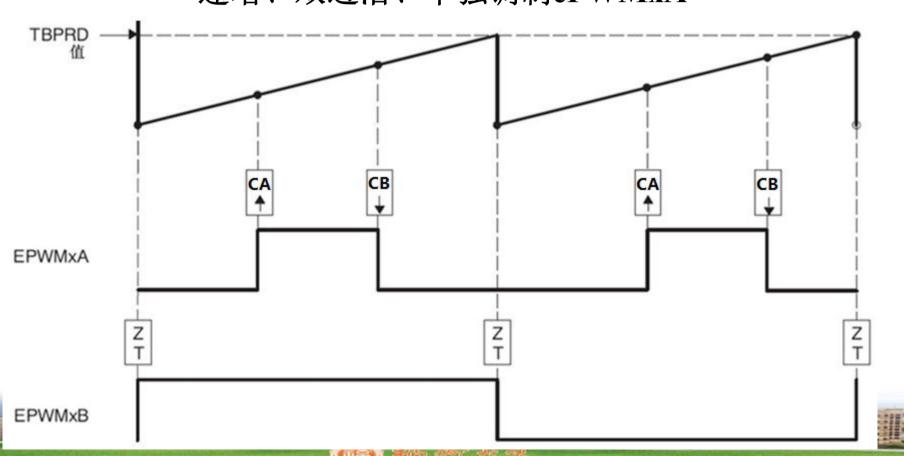


- 五、ePWM子模块功能和配置 -- 动作限定器(AQ)
- 7、PWM波形产生原理
- ➤ 使用递增计数模式产生一个非对称的PWM
- ➤ 使用递减计数模式产生一个非对称的PWM
- ➤ 使用"先递增后递减"计数模式产生一个对称的PWM

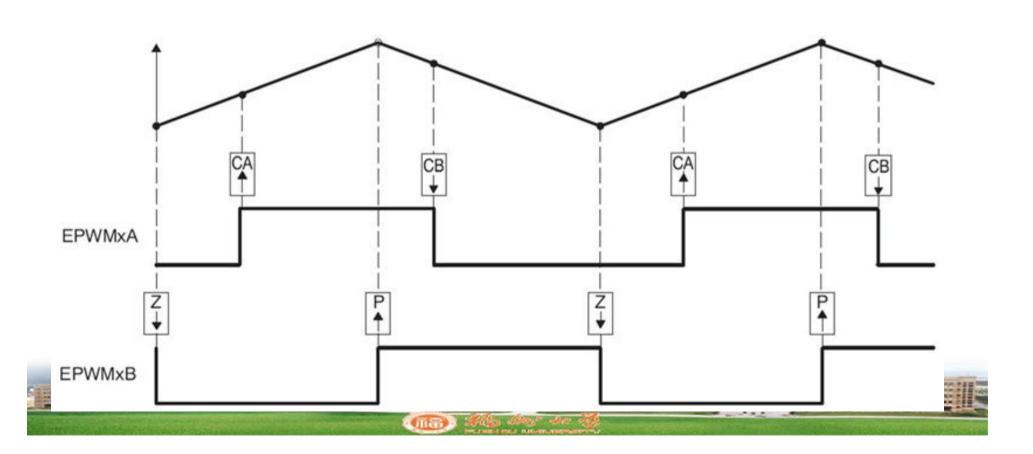
7、PWM波形产生原理 -- 非对称PWM

递增、单边沿、单独调制、高有效

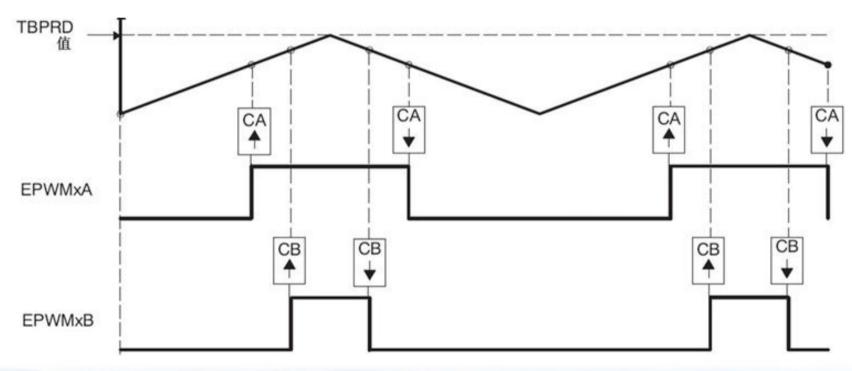
7、PWM波形产生原理 -- 非对称PWM


递增、单边沿、单独调制、低有效

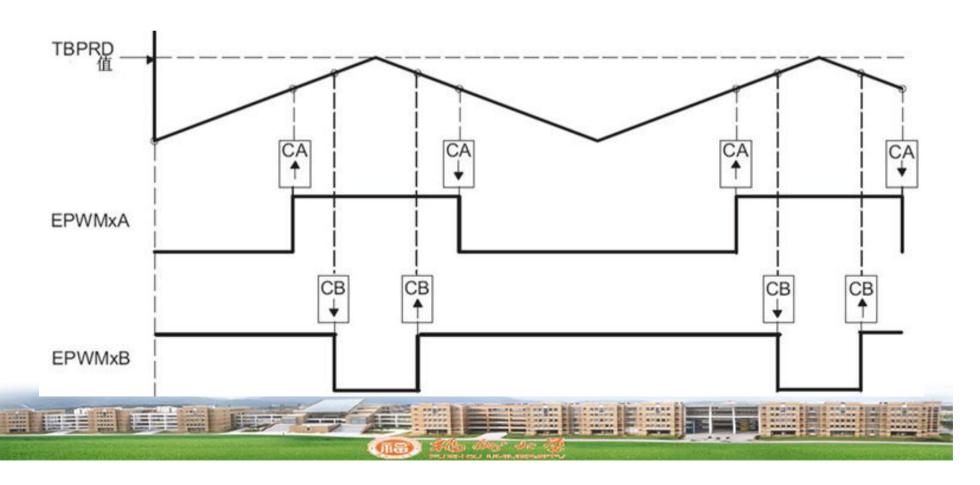
7、PWM波形产生原理 -- 非对称PWM

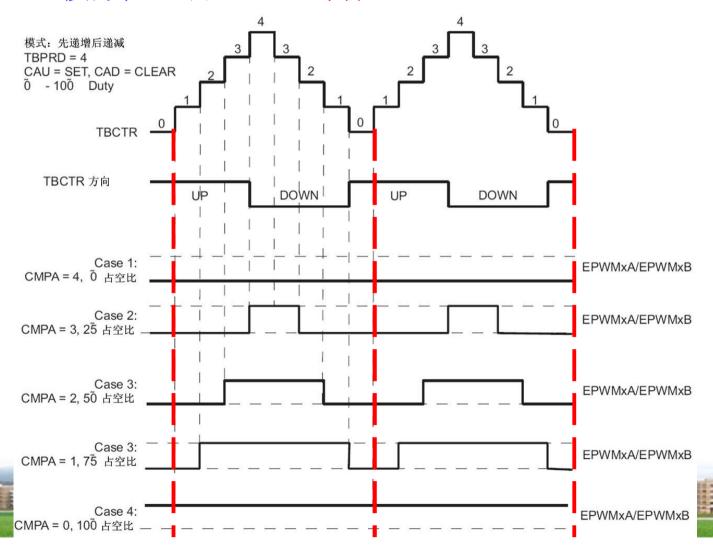

递增、双边沿、单独调制ePWMxA

7、PWM波形产生原理 -- 非对称PWM


先递增后递减、双边沿非对称、单独调制、低电平有效

7、PWM波形产生原理 -- 对称PWM


先递增后递减、双边沿、单独调制、低电平有效


7、PWM波形产生原理 -- 对称PWM

先递增后递减、双边沿、互补、低电平有效

7、PWM波形产生原理 -- 对称PWM

8、动作限定器(AQ)的寄存器 -- AQCTLA

15			12	11	10	9	8
	Reserved			CBD		CBU	
	R-0			R/W-0		R/W-0	
7	6	5	4	3	2	1	0
CA	CAD		CAU		RD	ZRO	
R/V	V-0	R/\	W-0	R/V	V-0	R/V	V-0

➤ ePWMxA引脚输出电平动作(ZRO、PRD、CAU、CAD、

CBU, CBD):

- 00-NoThing (不动作)
- 01 -- 清零
- 10 -- 置位
- 11 -- 切换

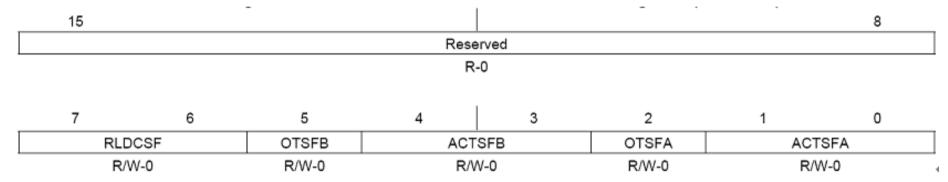
8、动作限定器(AQ)的寄存器 -- AQCTLB

15			12	11	10	9	8
Reserved				CBD		CBU	
R-0				R/W-0		R/W-0	
7	6	5	4	3	2	1	0
CAD		CAU		PRD		ZRO	
R/W-0		R/W-0		R/W-0		R/W-0	

➤ ePWMxB引脚输出电平动作(ZRO、PRD、CAU、CAD、

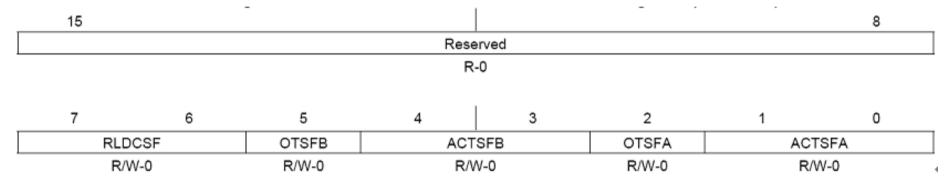
CBU, CBD):

00-NoThing(不动作)


01 -- 清零

10 --置位

11 -- 切换


8、动作限定器(AQ)的寄存器 -- AQSFRC

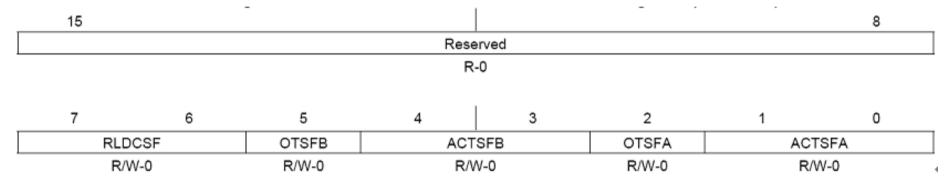
- ➤ BIT7-6: AQCSFRC从shadow寄存器重载选择位。
 - 00 -- 在事件计数器等于0时装载
 - 01 --在事件计数器等于周期时装载
 - 10 --在事件计数器等于0或周期时装载
 - 11 --立即装载

8、动作限定器(AQ)的寄存器 -- AQSFRC

➤ BIT5: ePWMxB上的"单次软件(S/W)强制事件"。

写0无效,读总是为0。

写1启动一个单次软件强制事件。


➤ BIT4-3: ePWMxB单次软件强制事件发生时的动作

00-NoThing(不动作) 01-清零

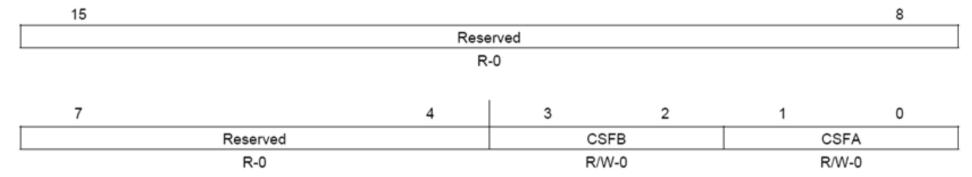
10 -- 置位 11 -- 切换

8、动作限定器(AQ)的寄存器 -- AQSFRC

➤ BIT2: ePWMxA上的"单次软件(S/W)强制事件"。

写0无效,读总是为0。

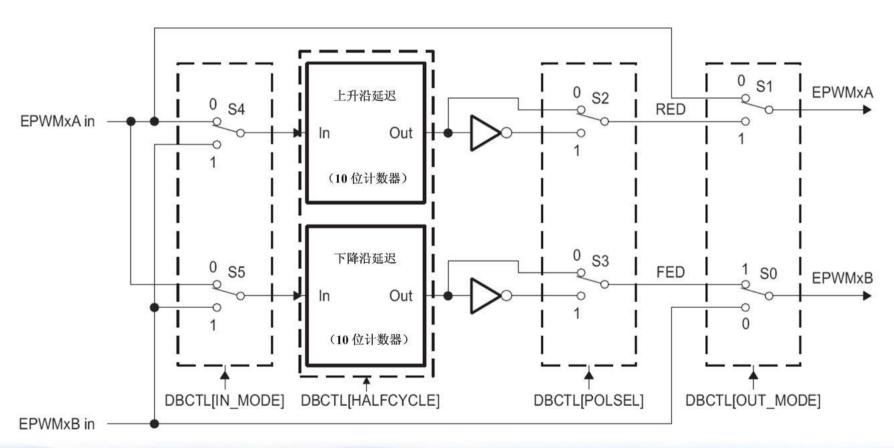
写1启动一个单次软件强制事件。


➤ BIT1-0: ePWMxA单次软件强制事件发生时的动作

00-NoThing(不动作) 01-清零

10 -- 置位 11 -- 切换

8、动作限定器(AQ)的寄存器 -- AQCSFRC


- ➤ BIT3-2: ePWMxB连续软件强制位。
- ➤ BIT1-0: ePWMxA连续软件强制位。
 - 00 强制禁止,即无效
 - 01 -连续将ePWMxA/B输出信号强制变为低电平
 - 10 -连续将ePWMxA/B输出信号强制变为高电平
 - 11 -软件强制禁止无效

- 1、死区(DB)的功能
- > 控制上端开关和下端开关之间传统的死区互补关系
- > 指定输出的上升沿延迟值
- > 指定输出的下降沿延迟值
- ➤ 完全旁路死区模块。这样,PWM波形将无需修改直接通过
- ▶ 使能半周期计时方式,以便获得双倍分辨率

2、死区(DB)的组成

- 3、死区(DB)的操作要点
- > 输入源选择:

输入模式	上升沿延迟信号源	下降沿延迟信号源
00 (默认)	EPWMxA In	EPWMxA In
01	EPWMxA In	EPWMxB In
10	EPWMxB In	EPWMxA In
11	EPWMxB In	EPWMxB In

- 3、死区(DB)的操作要点
- ▶ 半周期计时:

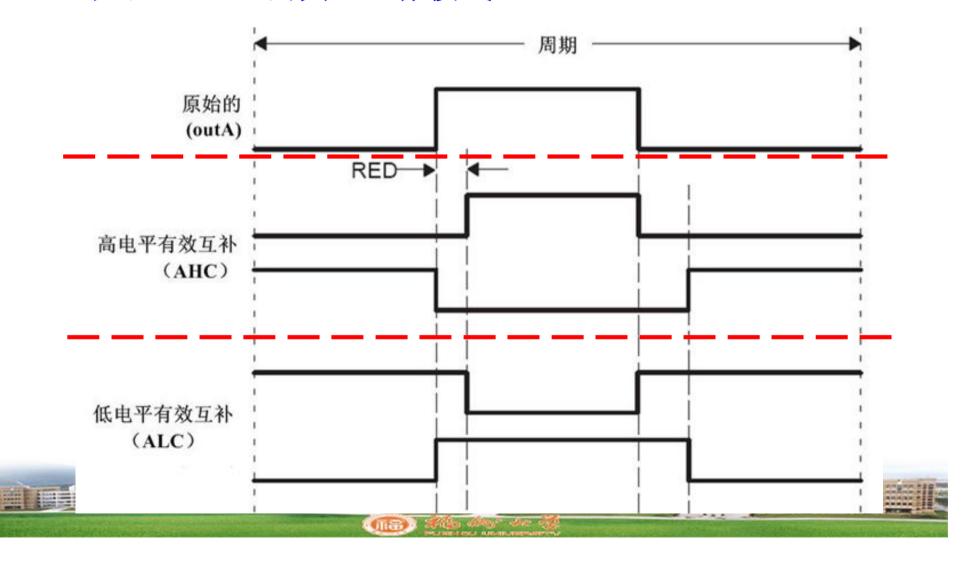
分辨率翻倍。(即计数器以"2×TBCLK"计时)

> 输出模式控制:

输出模式:上升沿延迟、下降沿延迟、下降沿与上升沿两种延迟、旁路。(DBCTL.OUT_MODE位配置)

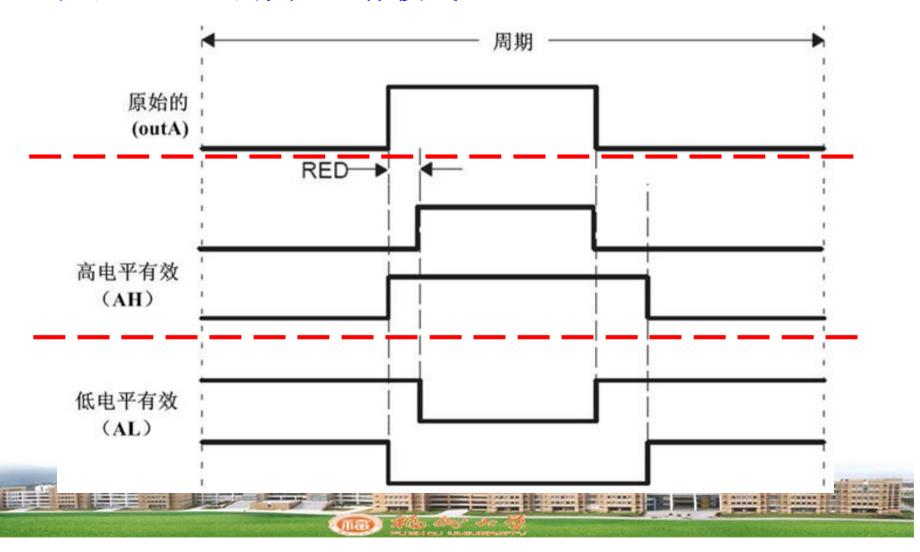
> 极性控制

输出是否反相。(DBCTL.POLSEL位配置)



4、死区(DB)的典型工作模式

模式	模式描述	DBCTL				
	澳八畑处	S 3	S2	S1	S0	
1	EPWMxA/B无延迟	×	×	0	0	
2	高电平有效互补(AHC)	1	0	1	1	
3	低电平有效互补 (ALC)	0	1	1	1	
4	高电平有效(AH)	0	0	1	1	
5	低电平有效(AL)	1	1	1	1	
6	EPWMxA无延迟	0或1	0或1	0	4	
0	EPWMxB下降沿延迟	U以I	U以I	U		
7	EPWMxA上升沿延迟	0或1	0 = 1	1		
/	EPWMxB无延迟	U以 I	0或1		U	



4、死区(DB)的典型工作模式

4、死区(DB)的典型工作模式

5、死区(DB)的延迟时间值

上升沿延迟时间: RED = DBRED×T_{TBCLK}/k

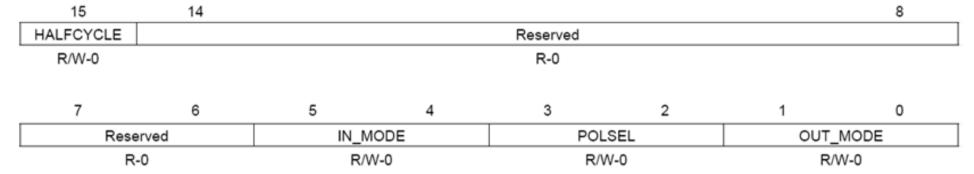
下降沿延迟时间: FED = DBFED×T_{TBCLK}/k

DBRED、DBFED是10位寄存器: 0~1023

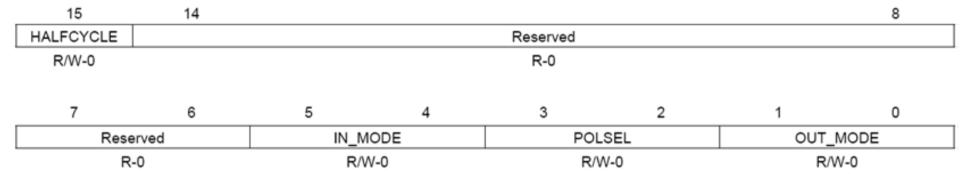
使能半周期计时: k=2, 否则k=1。

6、死区(DB)的寄存器 -- DBCTL

15	14						8		
HALFCYC	HALFCYCLE Reserved								
R/W-0	R-0								
7	6	5	4	3	2	1	0		
	Reserved	IN_MODE POLSEL OUT_MODE							
	R-0	R/\	V-0	R/\	V-0	R/V	V-0		


- ➤ BIT15: 半周期计时使能位。0-半周期禁止,1-半周期使能。
- ➤ BIT5-4: 输入模式控制位。位5控制S5, 位4控制S4。

输入模式	上升沿延迟信号源	下降沿延迟信号源
00 (默认)	EPWMxA In	EPWMxA In
01	EPWMxA In	EPWMxB In
10	EPWMxB In	EPWMxA In
11	EPWMxB In	EPWMxB In


6、死区(DB)的寄存器 -- DBCTL

- ➤ BIT3-2: 输出极性选择位。位3控制S3,位2控制S2。
 - 00 AH模式。EPWMxA/B都不反相(缺省)
 - 01 ALC模式。EPWMxA反相
 - 10 AHC模式。EPWMxB反相
 - 11 AL模式。EPWMxA/B都反相

6、死区(DB)的寄存器 -- DBCTL

- ➤ BIT1-0: 输出模式选择位。位1控制S1, 位0控制S0。
 - 00 EPWMxA/B都旁路
 - 01 EPWMxA旁路, EPWMxB输出下降沿延迟
 - 10 EPWMxA输出上升沿延迟, EPWMxB旁路
 - 11 EPWMxA输出上升沿延迟,EPWMxB输出下降沿延迟

6、死区(DB)的寄存器 -- DBRED

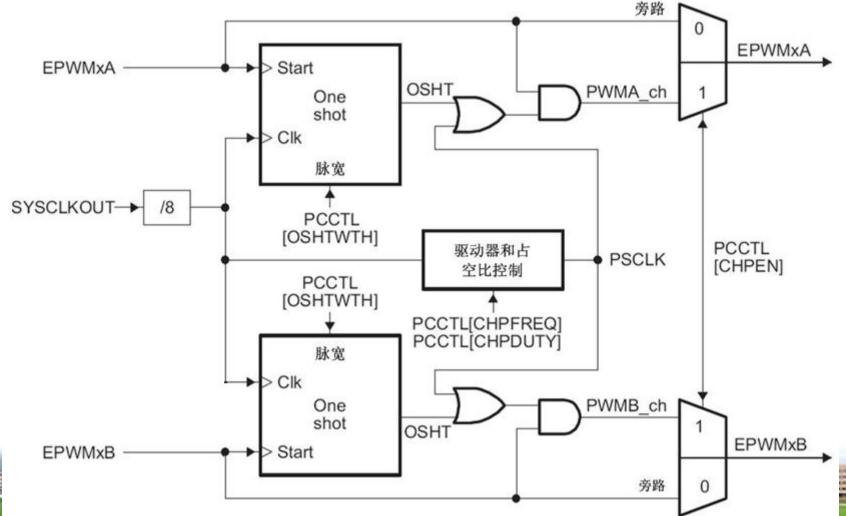
15		10	9	8
Reserved			DEL	
	R-0			
7				0
	DEL			
	R/W-0			

➤ BIT9-0: 上升沿延迟计数值。DEL=0~1023

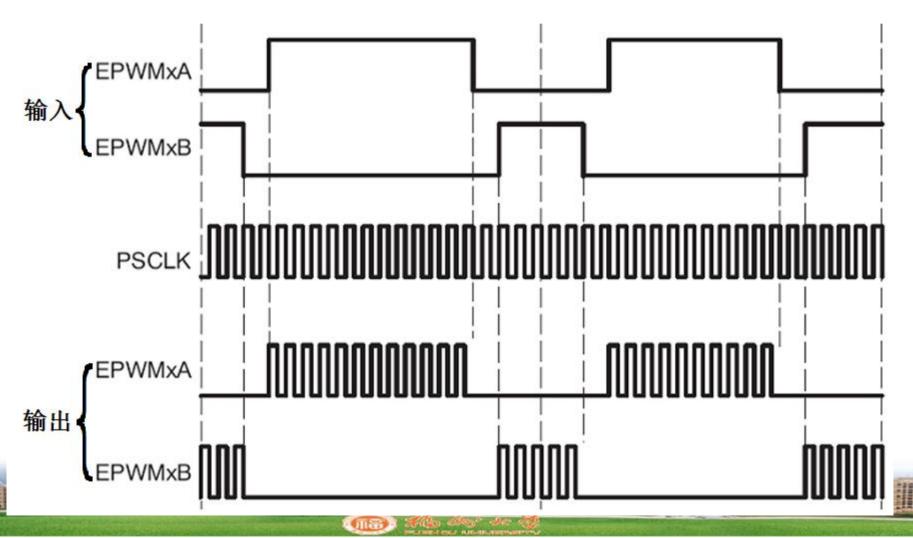
6、死区(DB)的寄存器 -- DBFED

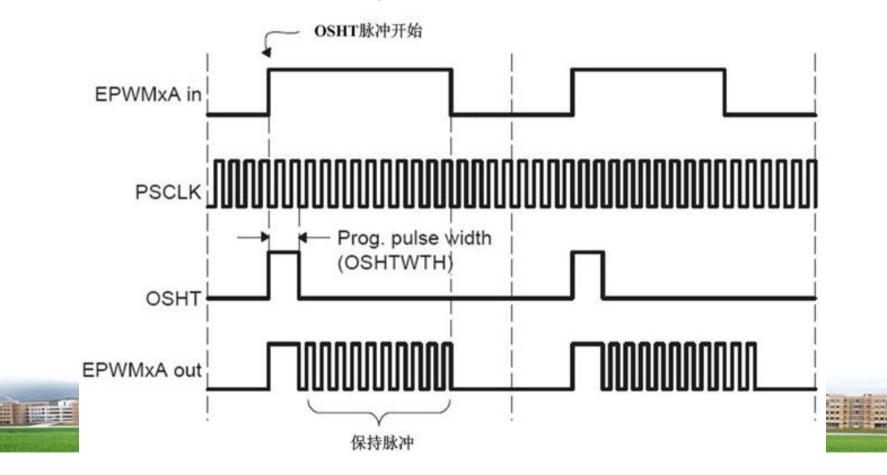
15		10	9	8
Reserved				L
R-0				V-0
7				0
	DEL			
	R/W-0			

➤ BIT9-0: 下降沿延迟计数值。0~1023



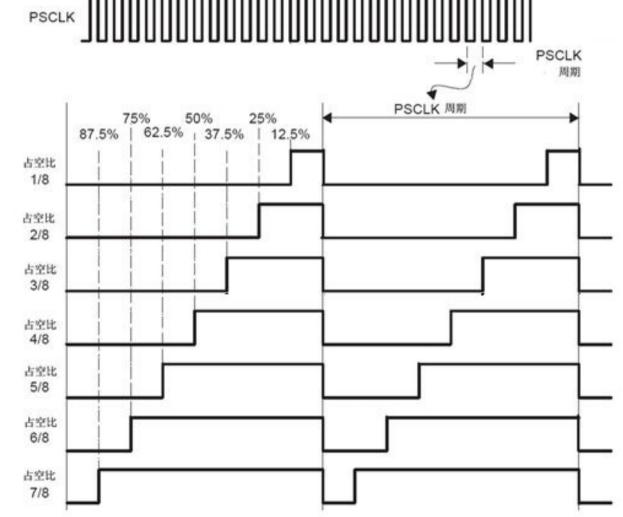
- 1、PWM斩波(PC)的功能
- 创建一个斩波(载波)频率
- 被斩脉冲串中第一个脉冲的脉宽
- 第一个以后的脉冲的占空比
- ●完全<mark>旁路PWM</mark>斩波模块。这样,PWM波形将无需修改直接通过


2、PWM斩波(PC)的组成


3、PWM斩波(PC)的原理

4、PWM斩波(PC)的one-shot脉冲

第一个脉冲的周期: T_{1stpulse} = T_{SYSCLKOUT}×8×OSHTWTH



5、PWM斩波(PC)的占空比

通过CHPDUTY位

选择7个占空比

12.5%~87.5%

6、PWM斩波 (PC) 的寄存器 -- PCCTL

15			11	10		8
	Reserved			CHI	PDUTY	
	R-0			R	/W-0	
7	5	4			1	0
	CHPFREQ		OSH	WTH		CHPEN
	R/W-0		R/\	V-0		R/W-0

➤ BIT7-6: 斩波时钟频率(CHPDUTY)。

000 - 占空比= 1/8(12.5%) 001 - 占空比=2/8(25.0%)

010 - 占空比=3/8(37.5.0%) 011 - 占空比=4/8(50.0%)

100 - 占空比=5/8(62.5%) 101 - 占空比=6/8(75.0%)

110 - 占空比=7/8(87.5%) 111 - 保留

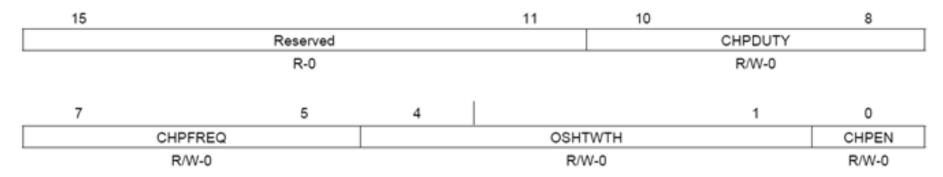
6、PWM斩波 (PC) 的寄存器 -- PCCTL

15			11	10	8
	Reserved			CHPDUTY	
	R-0			R/W-0	
7	5	4		1	0
	CHPFREQ		OSH	TWTH	CHPEN
	R/W-0		R/\	V-0	R/W-0

➤ BIT10-8: 斩波时钟频率(CHPFREQ)。

000 - 不分频 001 - 2分频

010 – 3分频 011 – 4分频


100-5分频 101-6分频

110-7分频 111-8分频

$$\mathbf{F_{PS}} = \frac{\mathbf{SYSCLKOUT}}{\mathbf{8} \times \mathbf{CHPFREQ}}$$

6、PWM斩波 (PC) 的寄存器 -- PCCTL

➤ BIT4-1: 第一个脉冲的宽度(OSHTWTH)。

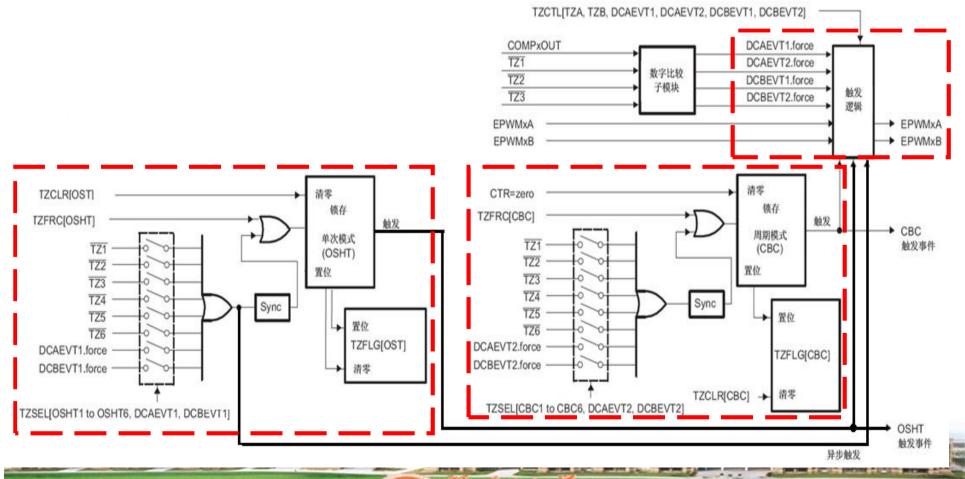
第一个脉冲的周期: T1stpulse = TSYSCLKOUT×8×OSHTWTH

- ➤ BITO: PWM斩波使能位。
 - 0-斩波禁止(旁路)

1-斩波使能

- 1、触发区(TZ)的功能
- ●输入触发信号(TZ1-TZ6)被灵活地映射到任意ePWM模块
- 设置故障时ePWM引脚动作:置高、置低、高阻、不动作
- 配置ePWM对每个触发区信号作出反应的频率:
 - —One-shot(单次)(如用于短路或过流保护)
 - 一Cycle-by-cycle (周期) (如用于限流保护)

- 让触发区发起一个中断
- 支持软件强制触发
- 完全旁路触发区模块



2、触发区(TZ)的逻辑

2、触发区(TZ)的逻辑

- 3、触发区(TZ)的主要信号
- 1) $\sqrt{TZ1} \overline{TZ6}$
- ➤ 低电平有效的输入信号。其中一个变低,表示发生了错误 触发事件(trip event)。
- ➤ TZ1 TZ3由GPIO复用引脚外部输入。TZ4由那些含EQEP1模块的器件上的EQEP1ERR反相信号提供。TZ5与系统时钟失效(clock fail)逻辑电路连接,TZ6由CPU的EMUSTOP输出提供。

- 八、ePWM子模块功能和配置 -- 触发区(TZ)
- 3、触发区(TZ)的主要信号
- 1) $\sqrt{TZ1} \overline{TZ6}$
- ▶ 输入最短脉宽为 "3*TBCLK"的低电平脉冲。
- ▶ TZ1 TZ3可以在GPIO MUX内被数字滤波。
- ▶ 异步触发保证,输入有效事件在时钟失效时仍可触发。

3、触发区(TZ)的主要信号

2) 数字比较A/B事件

输入: DCAEVT1、DCAEVT2、DCBEVT1、DCBEVT2

3) PWMxA, PWMxB

输入:来自PWM斩波器(PC)

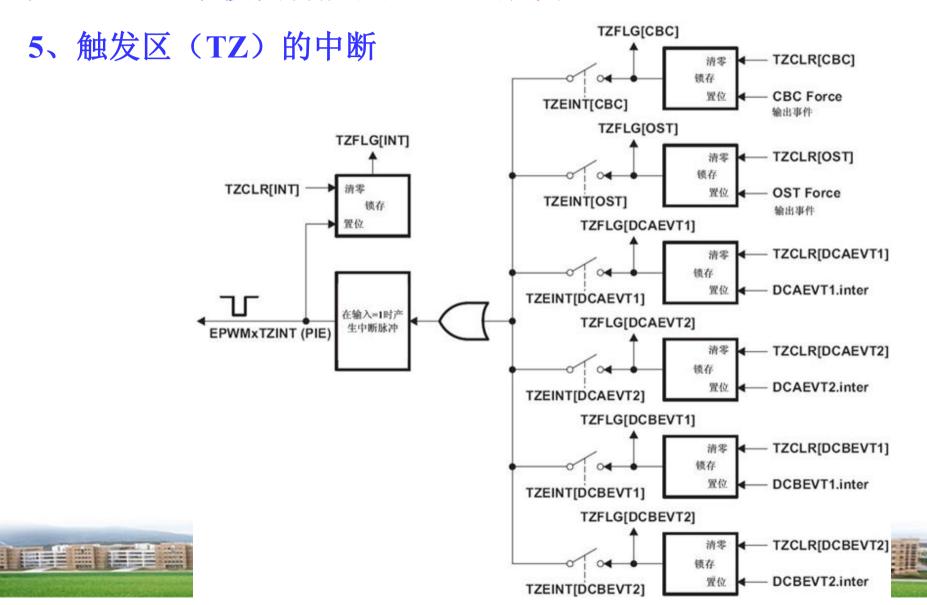
输出:送到GPIO复用引脚输出波形

- 4、触发区(TZ)的触发模式
- 1)、周期性触发(CBC):
 - > 当发生周期性触发事件时,EPWMxA/B按设置动作。
 - ➤ 周期性触发事件标志置位(TZFLG.CBC=1)。
 - ➤ 若使能,则产生EPWMx_TZINT中断信号。
 - ➤ CTR = 0时,若触发事件不再存在,那么EPWMxA/B 的故障触发条件自动清零。
 - ➤ TZFLG.CBC必须手动清零。

- 八、ePWM子模块功能和配置 -- 触发区(TZ)
- 4、触发区(TZ)的触发模式
- 2)、单次触发(OSHT):
 - > 发生单次触发事件时,,EPWMxA/B按设置动作。
 - ➤ 单次触发事件标志置位(TZFLG.OST=1)
 - ➤ 若使能,则产生EPWMx_TZINT中断信号。
 - ➤ EPWMxA/B上单次故障触发条件必须通过手动清除(写TZCLR.OST位),否则一直保持。

5、触发区(TZ)的优先级

TZCTL寄存器上其冲突动作的优先级如下:


输出EPWMxA:

TZA(最高)→DCAEVT1→DCAEVT2(最低)

输出EPWMxB:

TZB(最高)→DCBEVT1→DCBEVT2(最低)

5、触发区(TZ)的中断

	INTx. 8	INTx. 7	INTx. 6	INTx. 5	INTx. 4	INTx. 3	INTx. 2	INTx. 1
INT1	WAKEINT	TINTO	ADCINT9	XINT2	XINT1		ADCINT2	ADCINT1
INT2					EPWM4_TZINT	EPWM3_TZINT	EPWM2_TZINT	EPWM1_TZINT
INT3					EPWM4_INT	EPWM3_INT	EPWM2_INT	EPWM1_INT
INT4								ECAP1_INT
INT5								
INT6							SPITXINTA	SPIRXINTA
INT7								
INT8							12CINT2A	I2CINT1A
INT9							SCITXINTA	SCIRXINTA
INT10	ADCINT8	ADCINT7	ADCINT6	ADCINT5	ADCINT4	ADCINT3	ADCINT2	ADCINT1
INT11								
INT12								XINT3

15	14	13	12	11	10	9	8
DCBEVT1	DCAEVT1	OSHT6	OSHT5	OSHT4	OSHT3	OSHT2	OSHT1
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7	6	5	4	3	2	1	0
DCBEVT2	DCAEVT2	CBC6	CBC5	CBC4	CBC3	CBC2	CBC1
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT15: 数字比较输出B事件1单次触发选择位。
 - 0-禁止将DCBEVT1作为ePWM模块的单次触发源
 - 1 将DCBEVT1作为ePWM模块的单次触发源
- ➤ BIT14: 数字比较输出A事件1单次触发选择位。
 - 0 禁止将DCAEVT1作为ePWM模块的单次触发源
 - 1-将DCAEVT1作为ePWM模块的单次触发源

15	14	13	12	11	10	9	8
DCBEVT1	DCAEVT1	OSHT6	OSHT5	OSHT4	OSHT3	OSHT2	OSHT1
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7	6	5	4	3	2	1	0
DCBEVT2	DCAEVT2	CBC6	CBC5	CBC4	CBC3	CBC2	CBC1
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT13-8: 触发器 (TZ6-TZ1) 单次触发选择位。
 - 0-禁止将触发器x作为ePWM模块的单次触发源
 - 1-将触发器x作为ePWM模块的单次触发源

15	14	13	12	11	10	9	8
DCBEVT1	DCAEVT1	OSHT6	OSHT5	OSHT4	OSHT3	OSHT2	OSHT1
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7	6	5	4	3	2	1	0
DCBEVT2	DCAEVT2	CBC6	CBC5	CBC4	CBC3	CBC2	CBC1
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT7: 数字比较输出B事件2周期性触发选择位。
 - 0-禁止将DCBEVT2作为ePWM模块的周期性触发源
 - 1 将DCBEVT2作为ePWM模块的周期性触发源
- ➤ BIT6: 数字比较输出A事件2周期性触发选择位。
 - 0 禁止将DCAEVT2作为ePWM模块的周期性触发源
 - 1-将DCAEVT2作为ePWM模块的周期性触发源

15	14	13	12	11	10	9	8
DCBEVT1	DCAEVT1	OSHT6	OSHT5	OSHT4	OSHT3	OSHT2	OSHT1
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7	6	5	4	3	2	1	0
DCBEVT2	DCAEVT2	CBC6	CBC5	CBC4	CBC3	CBC2	CBC1
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT5-0: 触发器 (TZ6-TZ1) 周期性触发选择位。
 - 0-禁止将触发器x作为ePWM模块的周期性触发源
 - 1-将触发器x作为ePWM模块的周期性触发源

6、触发区(TZ)的寄存器 -- TZCTL

15			12	11	10	9	8
Reserved				DCB	EVT2	DCBEVT1	
R-0			R/W-0		R/W-0		
7	6	5	4	3	2	1	0
DCA	DCAEVT2 DCAEV		EVT1	TZB		TZA	
R/\	R/W-0 R/W-0		W-0	R/W-0		R/W-0	

➤ BIT11-10: 数字比较输出B事件2在EPWMxB上的动作。

00 - 高阻 01 - 强制高

10 - 强制低 11 - 不动作

➤ BIT9-8: 数字比较输出B事件1在EPWMxB上的动作。

00 - 高阻 01 - 强制高

10 - 强制低 11 - 不动作

6、触发区(TZ)的寄存器 -- TZCTL

15			12	11	10	9	8
	Reserved				EVT2	DCB	EVT1
R-0			R/W-0		R/W-0		
7	6	5	4	3	2	1	0
DCA	DCAEVT2 DCAEV		EVT1	TZB		TZA	
R/W-0 R/W-		W-0	R/W-0		R/W-0		

➤ BIT11-10: 数字比较输出A事件2在EPWMxA上的动作。

00 - 高阻 01 - 强制高

10 - 强制低 11 - 不动作

➤ BIT9-8: 数字比较输出A事件1在EPWMxA上的动作。

00 - 高阻 01 - 强制高

10 - 强制低 11 - 不动作

6、触发区(TZ)的寄存器 -- TZCTL

15			12	11	10	9	8
Reserved				DCB	EVT2	DCBEVT1	
R-0			R/W-0		R/W-0		
7	6	5	4	3	2	1	0
DCA	DCAEVT2 DCAEV		EVT1	TZB		TZA	
R/\	R/W-0 R/W-0		W-0	R/W-0		R/W-0	

➤ BIT3-2: 触发器 (TZ6-TZ1) 在EPWMxB上的动作。

00 - 高阻 01 - 强制高

10 - 强制低 11 - 不动作

➤ BIT1-0: 触发器 (TZ6-TZ1) 在EPWMxA上的动作。

00 - 高阻

01 - 强制高

10 - 强制低

11 – 不动作

6、触发区(TZ)的寄存器 -- TZEINT

15		да да			•		8
			Rese	rved			
			R	-0			
7	6	5	4	3	2	1	0
Reserved	DCBEVT2	DCBEVT1	DCAEVT2	DCAEVT1	OST	CBC	Reserved
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0
			所使能位。 所使能位。		0 -禁止		使能。 使能。
> BIT4	: DCAF	EVT2中世	听使能位	0	0 -禁止	1-	使能。
> BIT3	: DCAF	EVT1中國	折使能位	o	0 -禁止	1-	使能。
> BIT2	: OST中	一断使能	位。		0 -禁止	1-	使能。
> BIT1	: CBC	卜断使能	位。		0 -禁止	1-	使能。

6、触发区(TZ)的寄存器 -- TZFLG

15 8 Reserved R-0 3 0 DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 OST CBC Reserved INT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

- ➤ BIT6: DCBEVT2锁存状态标志位。 0 无触发; 1-有触发。 均为只读位。
- ➤ BIT5: DCBEVT1锁存状态标志位。 0 无触发; 1-有触发。
- ➤ BIT4: DCAEVT2锁存状态标志位。 0 无触发; 1-有触发。
- ➤ BIT3: DCAEVT1锁存状态标志位。 0 无触发; 1-有触发。

6、触发区(TZ)的寄存器 -- TZFLG

15 8 Reserved R-0 0 DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 OST CBC Reserved INT R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

- ➤ BIT2: OST锁存状态标志位。 0 无触发; 1-有触发。 只读位,通过TZCLR寄存器可以清零。
- ➤ BIT1: CBC锁存状态标志位。 0 无触发; 1-有触发。
- ➤ BIT0: 触发中断状态标志位。 0 无中断; 1-有中断。 该位可通过向TZCLR寄存器写入合适值来清零。

6、触发区(TZ)的寄存器 -- TZCLR

15							8				
Reserved											
R-0											
7	6	5	4	3	2	1	0				
Reserved	DCBEVT2	DCBEVT1	DCAEVT2	DCAEVT1	OST	CBC	INT				
R-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W-0	R/W-0	R/W-0				

➤ BIT6: DCBEVT2清零标志位。

读总为0;写0-无效;写1-清除DCBEVT2事件故障触发条件。 以下3位功能相同。

▶ BIT5: DCBEVT1清零标志位。 0 – 无触发; 1-有触发。

▶ BIT4: DCAEVT2清零标志位。 0 – 无触发; 1-有触发。

▶ BIT3: DCAEVT1清零标志位。 0 – 无触发; 1-有触发。

6、触发区(TZ)的寄存器 -- TZCLR

15 8 Reserved R-0 3 0 DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1 OST Reserved CBC INT R-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W-0 R/W-0 R/W-0

▶ BIT2: OST锁存清零标志位。 读总为0;

写0-无效;写1-清除OST事件故障触发条件。

➤ BIT1: CBC锁存清零标志位。读总为0;

写0-无效;写1-清除OST事件故障触发条件。

➤ BIT0: 触发中断清零标志位。读总为0;

写0-无效;写1-清除触发中断标志。

6、触发区(TZ)的寄存器 -- TZFRC

15					8				
Reserved									
		R-0							
7		3	2	1	0				
	Reserved		OST	CBC	Reserved				
	R-0		R/W-0	R/W-0	R- 0				

➤ BIT2: OST软件强制位。 读总为0;

写0-无效;写1-强制发生OST事件并TZFLG.OST=1。

▶ BIT1: CBC软件强制位。读总为0;

写0-无效;写1-强制发生CBC事件并TZFLG.CBC=1。

6、触发区(TZ)的寄存器 -- TZDCSEL

15	12	11	9	8	6	5	3	2	0
Reserved		DCBE\	/T2	DCB	EVT1	DCA	EVT2	DCA	AEVT1
R-0		R/W-	0	R/V	V-0	R/\	V-0	R	W-0

> 数字比较事件输出选择位。 各个位域值代表如下:

000 - 禁用

001 - DCBH =低电平,DCBL = 任意值

010 - DCBH =高电平,DCBL = 任意值

011 - DCBL =低电平, DCBH = 任意值

100 - DCBL =高电平, DCBH = 任意值

101 - DCBL = 高电平, DCBH = 低电平

11x - 保留

7、触发区(TZ)的实例

实例一: TZ1上的一个单次触发事件要求将EPWM1A、EPWM1B置低电平,将EPWM2A、EPWM2B置高电平。

•ePWM1寄存器配置如下:

TZSEL[OSHT1]=1: 将TZ1作为ePWM1的一个单次触发事件源

TZCTL[TZA] = 2: 在发生触发事件时EPWM1A将被强制变低

TZCTL[TZB] = 2: 在发生触发事件时EPWM1B将被强制变低

•ePWM2寄存器配置如下:

TZSEL[OSHT1] = 1: 将TZ1作为ePWM2的一个单次触发事件源

TZCTL[TZA] = 1: 在发生触发事件时EPWM2A将被强制变高

TZCTL[TZB] = 1: 在发生触发事件时EPWM2B将被强制变高

7、触发区(TZ)的实例

实例二: TZ5上的一个周期性触发事件会将EPWM1A、EPWM1B拉低。 TZ1或TZ6上的一个单次触发事件会将EPWM2A变为高阻状态。 • ePWM1寄存器配置如下:

TZSEL[CBC5] = 1: 将TZ5作为ePWM1的一个周期性触发事件源

TZCTL[TZA] = 2: 在发生触发事件时EPWM1A将被强制变低

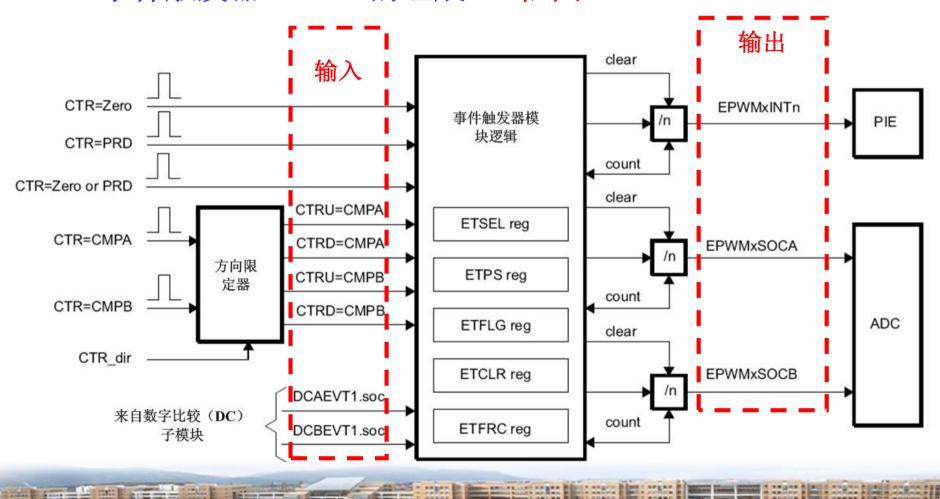
TZCTL[TZB] = 2: 在发生触发事件时EPWM1B将被强制变低

•ePWM2寄存器配置如下:

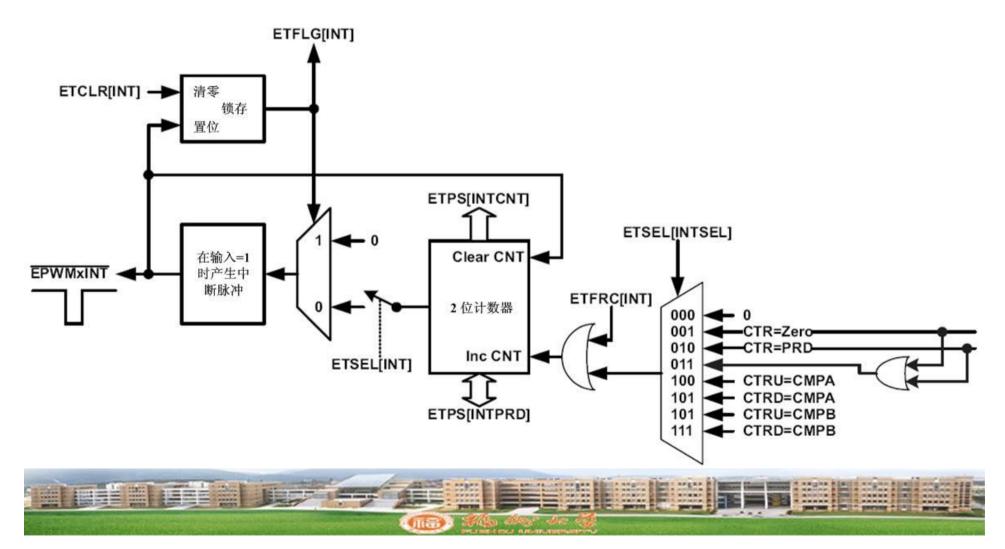
TZSEL[OSHT1]=1: 将TZ1作为ePWM2的一个单次触发事件源

TZSEL[OSHT6] = 1: 将TZ6作为ePWM1的一个单次触发事件源

TZCTL[TZA] = 0: 在发生触发事件时EPWM2A将变为高阻状态


TZCTL[TZB]=3: EPWM2B将忽略触发事件

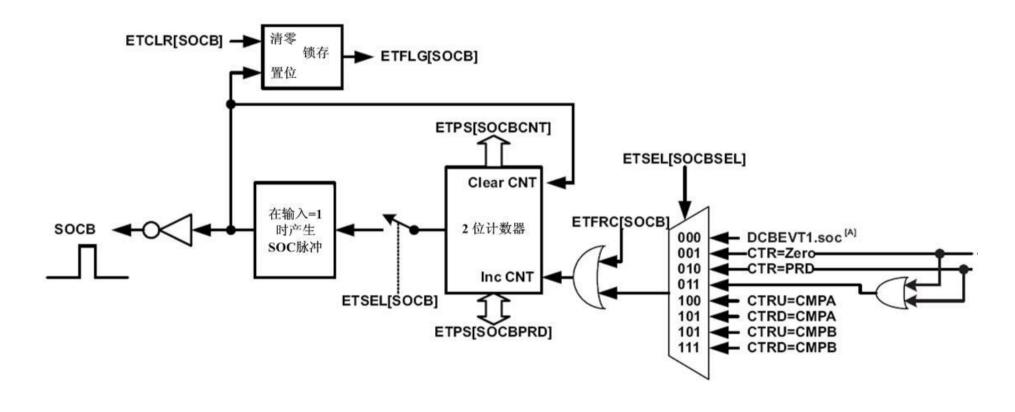
- 九、ePWM子模块功能和配置 -- 事件触发器(ET)
- 1、事件触发器(ET)的功能
- 接收BT、CC和DC子模块产生的事件输入
- 使用时基方向限定递增(up)/递减(down)事件
- 经预分频逻辑电路发出中断请求和ADC开始转换
 - -- 每个事件
 - -- 每两个事件(每隔一个事件)
 - -- 每三个事件(每隔两个事件)
- 通过事件计数器和标志将事件的产生过程变成完全可视
- 允许软件强制进行中断和ADC开始转换



2、事件触发器(ET)的组成 -- 框图



2、事件触发器 (ET) 的组成 -- 中断发生器



2、事件触发器(ET)的组成 -- SOCA发生器

2、事件触发器(ET)的组成 -- SOCB发生器

3、事件触发器(ET)的寄存器 -- ETSEL

15	14	12	11	10		8
SOCBEN	SOCBSEL		SOCAEN		SOCASEL	
R/W-0	R/W-0		R/W-0		R/W-0	
7		4	3	2		0
	Reserved		INTEN		INTSEL	
	R-0		R/W-0		R/W-0	

▶ BIT15: EPWMxSOCB使能位。 0 – 禁止 1 – 使能

➤ BIT14-12: EPWMxSOCB选项位。决定何时产生SOCB

000 - DCBEVT1.soc事件

001 - CTR=0

010 - CTR=PRD

011 - CTR=0或PRD

100 - CAU

101 - CAD

110 - CBU

111 - CBD

3、事件触发器(ET)的寄存器 -- ETSEL

15	14	12	11	10		8
SOCBEN	SOCBSEL		SOCAEN		SOCASEL	
R/W-0	R/W-0		R/W-0		R/W-0	
7		4	3	2		0
	Reserved		INTEN		INTSEL	
	R-0		R/W-0		R/W-0	

➢ BIT11: EPWMxSOCA使能位。 0 – 禁止 1 – 使能

➤ BIT14-12: EPWMxSOCA选项位。决定何时产生SOCA

000 - DCAEVT1.soc事件

001 - CTR=0

010 - CTR=PRD

011 - CTR=0或PRD

100 - CAU

101 - CAD

110 - CBU

111 - CBD

3、事件触发器(ET)的寄存器 -- ETSEL

15	14	12	11	10		8
SOCBEN	SOCBSEL		SOCAEN		SOCASEL	
R/W-0	R/W-0		R/W-0		R/W-0	
7		4	3	2		0
	Reserved		INTEN		INTSEL	
	R-0		R/W-0		R/W-0	

➤ BIT3: EPWMx_INT中断使能位。

0-禁止 1-使能

➤ BIT2-0: EPWMx_INT中断选项位。

000 - 保留 001 - CTR=0

100 - CAU 101 - CAD

110 - CBU 111 - CBD

3、事件触发器(ET)的寄存器 -- ETPS

15	14	13	12	11	10	9	8
SOCE	BCNT	soc	BPRD	SOC	ACNT	SOC	APRD
R-	R-0 R/W-0		W-0	R-0		R/W-0	
7			4	3	2	1	0
	Rese	erved		INT	CNT	INT	PRD
	R	-0		R-0		R/W-0	

➤ BIT15-14: EPWMxSOCB计数器寄存器。

10 -发生了2个事件 11 -发生了3个事件

➤ BIT13-12: EPWMxSOCB产生周期。

00 - 不产生EPWMxSOCB 01 - 第一个事件产生

10 - 第二个事件产生

11 - 第三个事件产生

3、事件触发器(ET)的寄存器 -- ETPS

15	14	13	12	11	10	9	8
SOCE	BCNT	soc	BPRD	SOC	ACNT	SOC	APRD
R	R-0 R/W-0		W-0	R-0		R/W-0	
7			4	3	2	1	0
Reserved			INTCNT		INTPRD		
R-0			R-0		R/W-0		

➤ BIT11-10: EPWMxSOCA计数器寄存器。

10 -发生了2个事件 11 -发生了3个事件

➤ BIT9-8: EPWMxSOCA产生周期。

00 – 不产生EPWMxSOCA 01 – 第一个事件产生

10 - 第二个事件产生

11 - 第三个事件产生

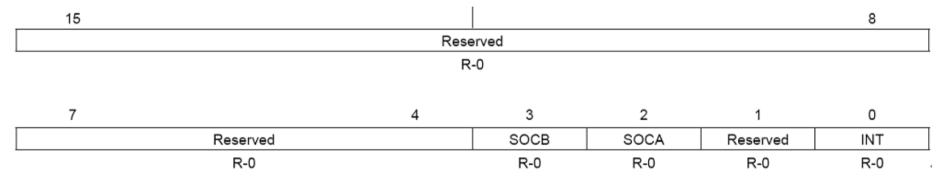
3、事件触发器(ET)的寄存器 -- ETPS

15	14	13	12	11	10	9	8
SOCE	BCNT	soc	BPRD	SOC	ACNT	SOC	APRD
R	R-0 R/W-0		W-0	R-0		R/W-0	
7			4	3	2	1	0
	Rese	rved		INT	CNT	INT	PRD
	R-	0		R-0		R/W-0	

➤ BIT3-2: EPWMx INT计数器寄存器。

10 -发生了2个事件 11 -发生了3个事件

➤ BIT1-2: EPWMx INT产生周期。


00 - 不产生中断

01 - 第一个事件产生

10 - 第二个事件产生 11 - 第三个事件产生

3、事件触发器(ET)的寄存器 -- ETFLG

- ➤ BIT3: EPWMxSOCB的状态标志位。
 - **0** 没有**SOCB**事件发生 **1** –有**SOCB**事件发生
- ➤ BIT2: EPWMxSOCA的状态标志位。
 - 0 没有SOCA事件发生 1 –有SOCA事件发生
- ➤ BIT0: EPWMx INT的中断标志位。
 - 0-没有中断事件发生
- 1 有中断事件发生

3、事件触发器(ET)的寄存器 -- ETCLR

15						8
		Res	erved			
		R	= 0			
7		4	3	2	1	0
	Reserved		SOCB	SOCA	Reserved	INT
	R-0		R/W-0	R/W-0	R-0	R/W-0

➤ BIT3: EPWMxSOCB的标志清零位。读总为0。

写0 – 无效 写1 – 清SOCB标志位

➤ BIT2: EPWMxSOCA的标志清零位。读总为0。

写0 – 无效 写1 – 清SOCA标志位

➤ BIT0: EPWMx_INT的标志清零位。读总为0。

写0 – 无效 写1 – 清EPWMx_INT标志位

3、事件触发器(ET)的寄存器 -- ETFRC

15					8
	Re	served			
	(4)	R-0			
7	4	3	2	1	0
Reserve	d	SOCB	SOCA	Reserved	INT
R-0		R/W-0	R/W-0	R-0	R/W-0

➤ BIT3: EPWMxSOCB的强制位。读总为0。

写0-无效写1-产生一个SOCB且SOCBFLG置位

➤ BIT2: EPWMxSOCA的强制位。读总为0。

写0 – 无效 写1 –产生一个SOCA且SOCAFLG置位

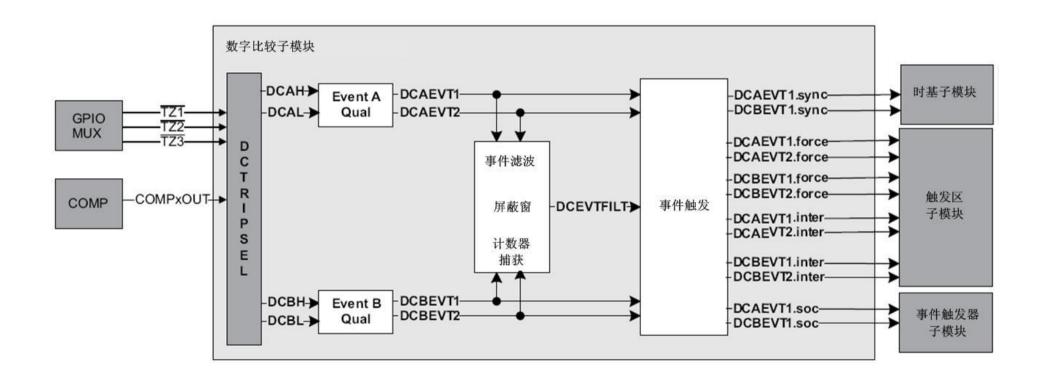
➤ BIT0: EPWMx INT的强制位。读总为0。

写0-无效 写1-产生一个INT且INTFLG置位

4、正确产生EPWMx_INT的初始化步骤

当ePWM外设时钟使能时,由于ePWM寄存器没有正确初始化可能会导致 伪事件(spurious event),进而使得中断标志可能置位。ePWM外设正确初 始化的顺序如下:

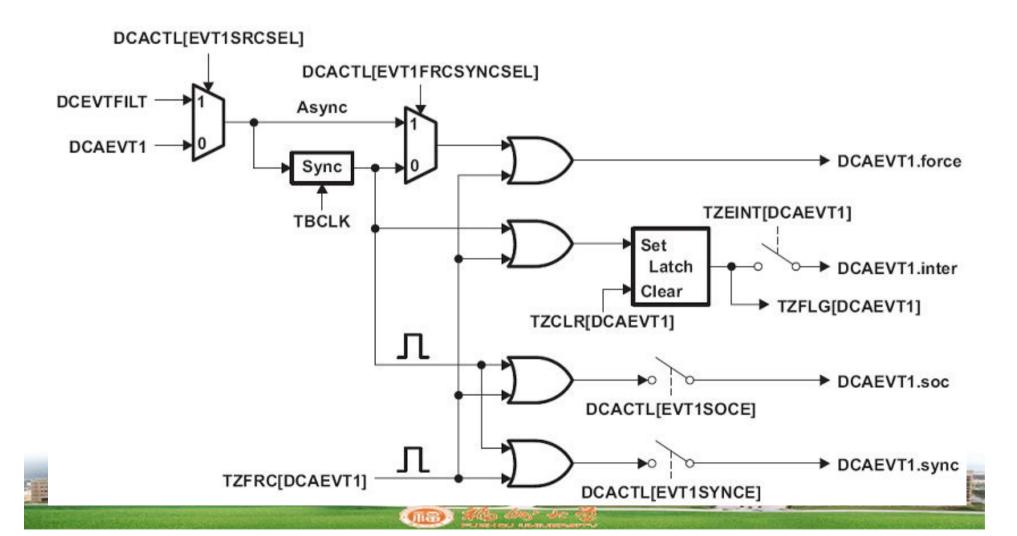
- 1. Disable global interrupts (CPU INTM flag)
- 2. Disable ePWM interrupts
- 3. Set TBCLKSYNC=0
- 4. Initialize peripheral registers
- 5. Set TBCLKSYNC=1
- 6. Clear any spurious ePWM flags (including PIEIFR)
- 7. Enable ePWM interrupts
- 8. Enable global interrupts



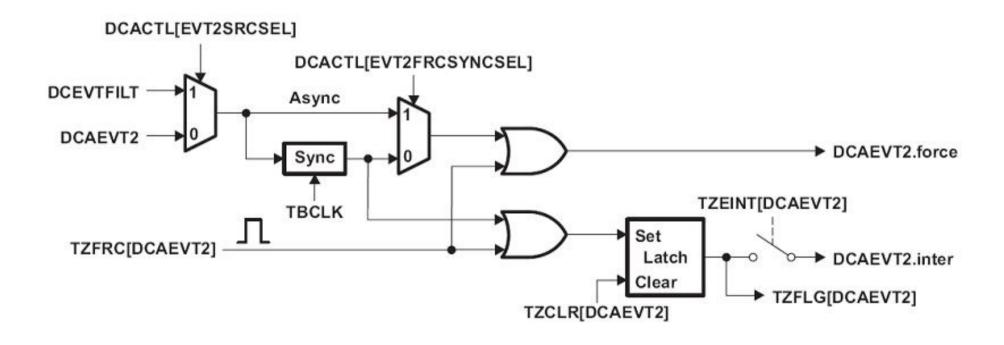
- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 1、数字比较(DC)的功能
- 比较器(COMP)输出和触发区信号输入(TZ1~TZ3)创建事件与滤波事件(filtered event)
- 比较事件要不被滤波要不就被直接送到触发区、事件触发器和时基子模块
- 滤波产生屏蔽(blank)事件,捕获触发事件的TBCTR值

十、ePWM子模块功能和配置 -- 数字比较(DC)

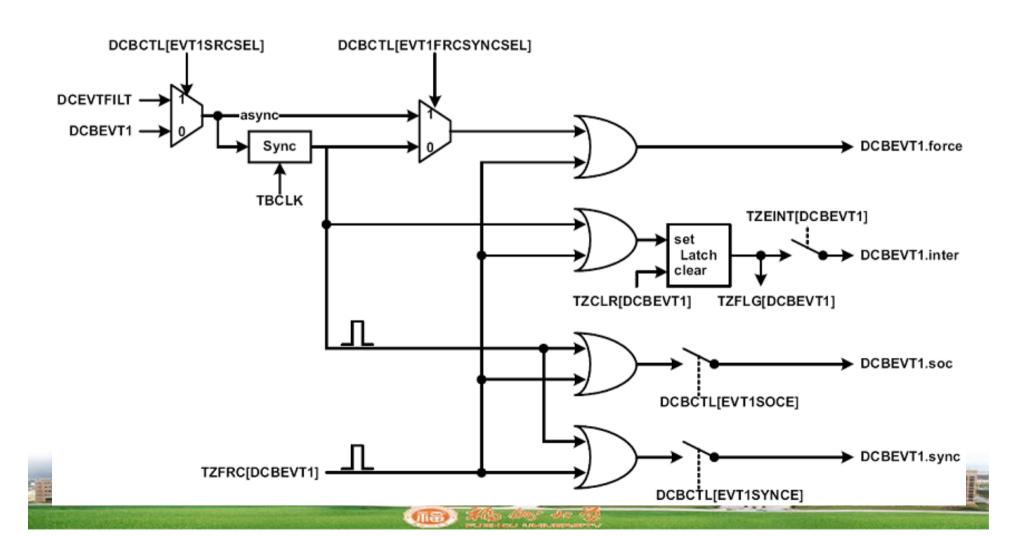
2、数字比较(DC)的组成



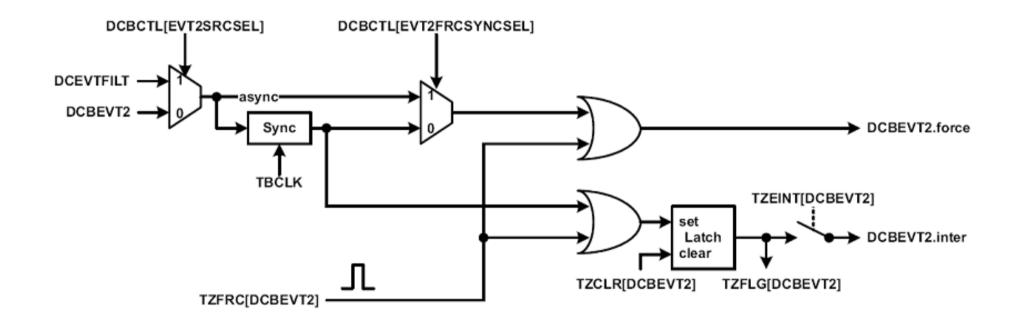
- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 3、数字比较(DC)的输出信号
- ➤ 强制(force)信号→TZ: 影响EPWMxA/B引脚上的输出状态(通过配置) 被选作单次触发或周期性触发源
- ▶ 中断 (inter) 信号→TZ→PIE:
 通过TZEINT寄存器使能,通过TZCLR可清除中断
 触发一个EPWMxTZINT中断
- ➤ 开始转换(soc)信号→ET → ADC:
 通过ETSEL配置产生SOC信号(A/B两路)
- ▶ 同步 (sync) 信号→TB:



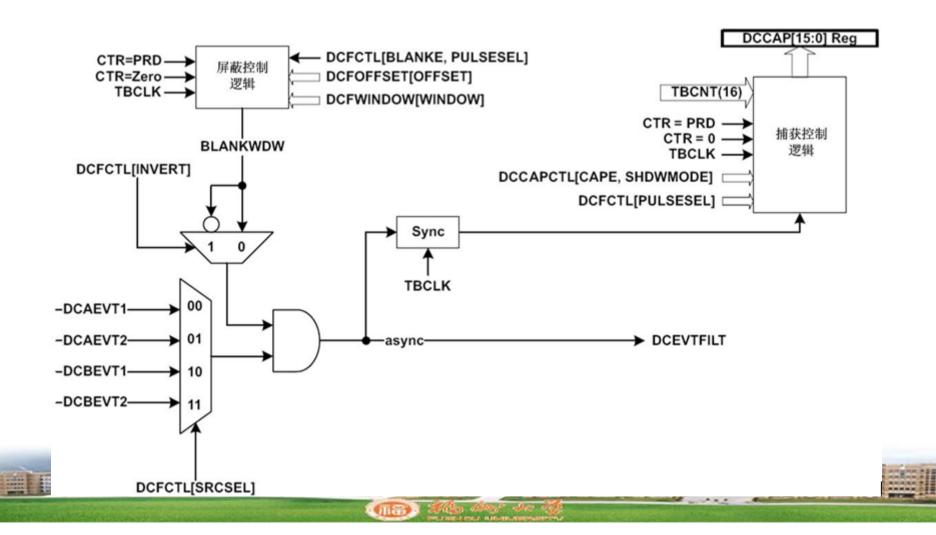
- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 4、数字比较(DC)的输出逻辑 -- DCAEVT1



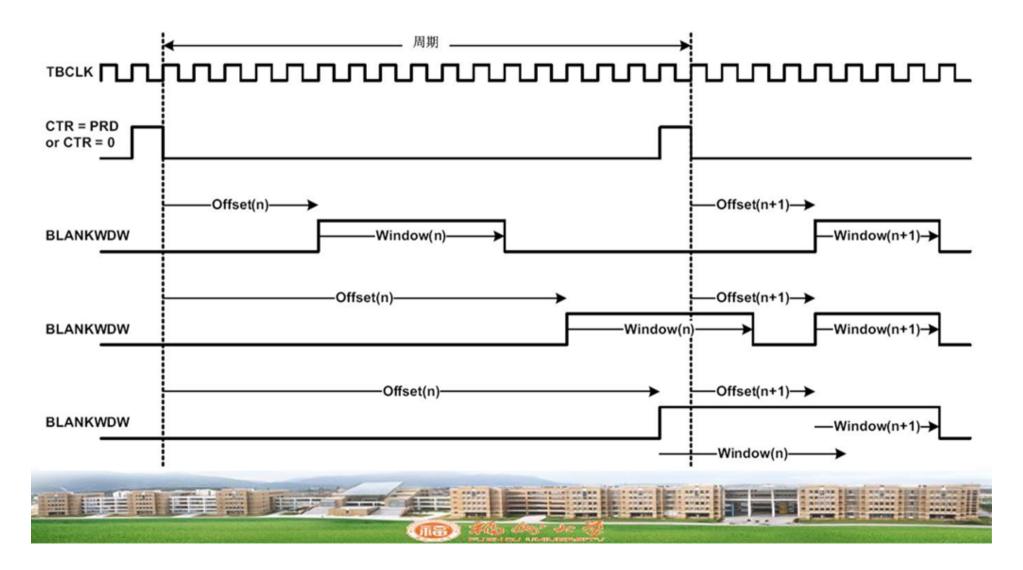
- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 4、数字比较(DC)的输出逻辑 -- DCAEVT2



- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 4、数字比较(DC)的输出逻辑 -- DCBEVT1



- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 4、数字比较(DC)的输出逻辑 -- DCBEVT2



- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 4、数字比较(DC)的输出逻辑 -- DCEVTFILT

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 4、数字比较(DC)的输出逻辑 -- 屏蔽窗时序

5、数字比较(DC)的寄存器 -- DCTRIPSEL

15		12	11		8
	DCBLCOMPSEL			DCBHCOMPSEL	
	R/W-0			R/W-0	
7		4	3		0
	DCALCOMPSEL			DCAHCOMPSEL	
	R/W-0			R/W-0	

➤ 数字比较输入选择位: DCBL、DCBH、DCAL、DCAH

0000 - TZ1输入

0001 - TZ2输入

0010 - TZ3输入

1000 - COMP10UT输入

1001 – COMP2OUT输入

1010 - COMP3OUT输入

其他值 - 保留

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCACTL

15				10	9	8
	Re	served			EVT2FRC SYNCSEL	EVT2SRCSEL
		R-0			R/W-0	R/W-0
7		4	3	2	1	0
	Reserved		EVT1SYNCE	EVT1SOCE	EVT1FRC SYNCSEL	EVT1SRCSEL
	R-0		R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT9: DCAEVT2强制同步信号选择位。
 - 0 -源是同步信号

- 1-源是异步信号
- ➤ BIT8: DCAEVT2源信号选择位。

 - 0 源是DCAEVT2信号 1 源是DCEVTFILT信号
- ➤ BIT3: DCAEVT1 SYNC使能/禁能位。
 - 0 —禁止产生SYNC信号 1 —可以产生SYNC信号

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCACTL

15				10	9	8
	Re	served			EVT2FRC SYNCSEL	EVT2SRCSEL
		R-0			R/W-0	R/W-0
7		4	3	2	1	0
	Reserved		EVT1SYNCE	EVT1SOCE	EVT1FRC SYNCSEL	EVT1SRCSEL
	R-0		R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT2: DCAEVT1 SOC使能/禁能位。
 - 0 -禁止产生SOC信号 1 -可以产生SOC信号
- ➤ BIT1: DCAEVT1强制同步信号选择位。
 - 0 源是同步信号

- 1-源是异步信号
- ➤ BITO: DCAEVT1源信号选择位。
 - **0** –源是DCAEVT1信号 **1** –源是DCEVTFILT信号

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCBCTL

15				10	9	8
	R	eserved			EVT2FRC SYNCSEL	EVT2SRCSEL
		R-0			R/W-0	R/W-0
7		4	3	2	1	0
	Reserved		EVT1SYNCE	EVT1SOCE	EVT1FRC SYNCSEL	EVT1SRCSEL
	R-0		R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT9: DCBEVT2强制同步信号选择位。
 - 0 源是同步信号

- 1-源是异步信号
- ➤ BIT8: DCBEVT2源信号选择位。

 - 0 源是DCBEVT2信号 1 源是DCEVTFILT信号
- ➤ BIT3: DCBEVT1 SYNC使能/禁能位。
 - 0 —禁止产生SYNC信号 1 —可以产生SYNC信号

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCACTL

15				10	9	8
	Re	served			EVT2FRC SYNCSEL	EVT2SRCSEL
		R-0			R/W-0	R/W-0
7		4	3	2	1	0
	Reserved		EVT1SYNCE	EVT1SOCE	EVT1FRC SYNCSEL	EVT1SRCSEL
	R-0		R/W-0	R/W-0	R/W-0	R/W-0

- ➤ BIT2: DCBEVT1 SOC使能/禁能位。
 - 0 -禁止产生SOC信号 1 -可以产生SOC信号
- ➤ BIT1: DCBEVT1强制同步信号选择位。
 - 0 源是同步信号

- 1-源是异步信号
- ➤ BITO: DCBEVT1源信号选择位。

 - **0** –源是DCBEVT1信号 **1** –源是DCEVTFILT信号

5、数字比较(DC)的寄存器 -- DCFCTL

15		13	12				8
	Reserved		Reserved				
	R-0				R-0		
7	6	5	4	3	2	1	0
Reserved	Reserved	PULS	ESEL	BLANKINV	BLANKE	SRC	SEL
R-0	R-0	R/V	V-0	R/W-0	R/W-0	R/V	V-0

➤ BIT5-4: 屏蔽&捕获参照的脉冲选择位。

00 - TBCTR = TBPRD 01 - TBCTR = 0x0000

1x - 保留

➤ BIT2: 屏蔽窗反相位。

0-不反相 1-反相

5、数字比较(DC)的寄存器 -- DCFCTL

15		13	12				8	
	Reserved		Reserved					
	R-0				R-0			
7	6	5	4	3	2	1	0	
Reserved	Reserved	PULS	SESEL	BLANKINV	BLANKE	SRC	SEL	
R-0	R-0	R/\	N-0	R/W-0	R/W-0	RΛ	V-0	

➤ BIT2: 屏蔽窗使能位。

0-禁止 1-使能

➤ BIT1-0: 滤波模块的信号源选择位。

00 - 源是DCAEVT1信号

01 - 源是DCAEVT2信号

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCCAPCTL

15				8
	Reserved			
	R-0			
7		2	1	0
	Reserved		SHDWMODE	CAPE
	R-0		R/W-0	R/W-0

- ➤ BIT2: DCCAP的shadow模式选择位。
 - 0 使能DCCAP=shadow 1 禁止DCCAP=active

- ➤ BIT1-0: DCCAP使能位。
 - 0-禁止

1-使能

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCCAP

15 DCCAP

R-0

➤ BIT15-0: 数字比较时基计数器捕获值。0000-FFFFh

使能时基计数器捕获(DCCAPCLT.CAPE=1):

捕捉时基计数器 (TBCTR) 在滤波事件 (DCEVTFLT)

从低到高跳变时的值。另外,捕获事件被被忽略,直到下一周期或0(由DCFCTL.PULSESEL位选择)。

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCOFFSET

15 DCOFFSET

R-0

➤ BIT15-0: 屏蔽窗偏移量。0000-FFFFh

该寄存器具有shadow寄存器。

该值指定从屏蔽窗参考点距离屏蔽窗开始的TBCLK周期数。

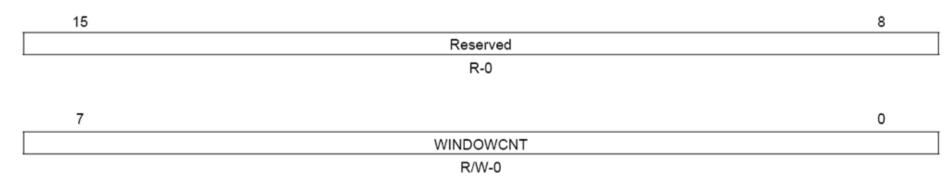
- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCFOFFSETCNT

15 OFFSETCNT

R-0

➤ BIT15-0: 屏蔽窗偏移量计数器。0000-FFFFh

5、数字比较(DC)的寄存器 -- DCFWINDOW


15		8
	Reserved	
	R-0	
7		0
	WINDOW	
	R/W-0	

➤ BIT7-0: 屏蔽窗宽度。00-FFh

- 十、ePWM子模块功能和配置 -- 数字比较(DC)
- 5、数字比较(DC)的寄存器 -- DCFWINDOWCNT

➤ BIT15-0: 屏蔽窗宽度计数器。00-FFh

1、DSP2802x_EPWM.h寄存器定义

EPwm1Regs.寄存器名.bit.位名

EPwm2Regs.寄存器名.bit.位名

EPwm3Regs.寄存器名.bit.位名

EPwm4Regs.寄存器名.bit.位名

2、DSP2802x_EPwm.c函数子程序

InitEPwmGpio(); 引脚复用设置、禁止内部上拉。

InitEPwm1Gpio(); 引脚复用设置、禁止内部上拉。

InitEPwm2Gpio(); 引脚复用设置、禁止内部上拉。

InitEPwm3Gpio(); 引脚复用设置、禁止内部上拉。

InitEPwm4Gpio(); 引脚复用设置、禁止内部上拉。

InitEPwmSyncGpio(); EPWMSYNCI、EPWMSYNCO引脚复用设置、

使能内部上拉。GPIO2\GPIO32\GPIO33

InitTzGpio(); TZ1、TZ2、TZ3引脚复用设置、禁止上拉、异步

- 3、EPWM初始化流程
- ➤ 使能外设时钟(PCLKCR1.0-3位置1、PCLKCR0.2位清0【同步】)
- ➤ GPIO引脚复用设置(ePWMxA/B、EPWMSYNCI、EPWMSYNCO、TZ1、TZ2、TZ3)
- ➤ 初始化中断 (参考PIE章节)
- ➤ 时基(TB)设置(分频、周期值、计数模式、同步)
- ➤ 计数器-比较(CC)设置(占空比)
- ➤ 动作限定器(AQ)设置(6个时刻PWM引脚动作)

- 3、EPWM初始化流程
- ➤ 死区(DB)设置(死区宽度、模式)
- ➤ 斩波(PC)设置(载波频率、占空比、第一个脉宽)
- ➤ 触发区(TZ)设置(触发选择、动作、中断)
- ➤ 事件触发器(ET)设置(中断使能、SOC使能、事件频率、)
- ➤ 数字比较(DC)设置(输入、使能信号force\inter\soc\sync、屏蔽窗)
- ➤ 使能同步时钟 (PCLKCR0.2位置1【同步】)
- > 编写中断服务子程序(ISR)(修改占空比)

Thank You & Question?

