f; AN4296
’ ife.augmented Application note

Overview and tips for using STM32F303/328/334/358xx CCM RAM
with IAR EWARM, Keil MDK-ARM and GNU-based toolchains

Introduction

The purpose of this application note is to give a presentation of the core coupled memory
(CCM) RAM available on STM32F303xB/xC and STM32F358xC microcontrollers and
describe what is required to execute part of the application code from this memory region
using different toolchains.

This application note is divided into four sections: the first section gives an overview of the
STM32F3 CCM RAM, while the next sections describe the steps required to execute part of
the application code from CCM RAM using the following toolchains:

. IAR EWARM
e KEIL MDK-ARM™
. RIDE and Atollic GNU based toolchain

The procedures described throughout the document are applicable to other RAM regions
such as the CCM data RAM of some F4 devices, or external SRAM.

Refer to Table 1 for the list microcontrollers embedding CCM RAM.

Table 1. Applicable products

Product family Part numbers or product categories

STM32F303xB, STM32F303xC, STM32F358xC

Microcontrollers STM32F303x6/x8, STM32F328x8, STM32F334x4/x6/x8

September 2014 DoclD024590 Rev 3 1/25

www.st.com

http://www.st.com

Contents AN4296

Contents
1 Overview of STM32F303xB/C and STM32F358xC CCM RAM 5
1.1 PUMPOSE . .. e 5
1.2 STM32F303xB/C and STM32F358xC CCM RAM features 6
1.21 CCMRAM MApPING - .« oot e e 6
1.2.2 CCM RAM remapping e e 6
1.2.3 CCM RAM write protection 6
1.2.4 CCMRAMparitycheck i 7
2 Execute application code from CCM RAM
using the IAR EWARM toolchaint 8
21 Executing a simple code from CCM RAM (except for interrupt handler) .. 8
211 Executing a source file from CCMRAM 9
21.2 Executing one or more functions from CCMRAM 10
2.2 Executing an interrupt handler from CCMRAM 11
221 Updating the linker file (licf) 11
222 Updating the startupfile 13
223 Place the interrupt handlerin CCMRAM 13
224 Remap the vectortable to CCMRAM 13
2.3 Executing a library (.@) from CCMRAM 14
3 Execute application code from CCM RAM
using the KEIL MDK-ARM toolchain 16
3.1 Executing a function or an interrupt handler from CCM RAM 16
3.2 Executing a source file fromCCMRAM 18
3.3 Executing a library or a library module from CCMRAM 18
4 Execute application code from CCM RAM
using a GNU-based toolchain 19
4.1 Executing a function or an interrupt handler from CCM RAM 19
4.2 Executinga file from CCMRAM i, 22
4.3 Executing a library from CCMRAM i, 23
5 Revision history i i ittt e ennnns 24

2/25 DocID024590 Rev 3 ‘Yl

AN4296 List of tables

List of tables

Table 1. Applicable products 1
Table 2. CCM RAM organization e e 6
Table 3. Document revision history 24
Kys DoclD024590 Rev 3 3/25

List of figures AN4296

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

4/25

STM32F303xB/xC and STM32F358xC system architecture 6
EWARM IlinKerupdate e 9
EWARM file placement. 10
EWARM function placement. e 10
EWARM linker update forinterrupthandler 12
EWARM startup file update for interrupthandler 13
CCMRAM area definition. 14
EWARM section initialization 14
EWARM library placement 14
EWARM library module placement. 15
MDK-ARM scatter file 16
MDK-ARM OptionsS MeNUt e e 17
MDK-ARM function placement e 17
MDK-ARM target memory 18
MDK-ARM file placement 18
MDK-ARM library placement e 18
GNU linkerupdate 19
GNU linker section definition 20
GNU function placement. 21
GNUfile placement. 22
GNU library placement 23

3

DocID024590 Rev 3

AN4296

Overview of STM32F303xB/C and STM32F358xC CCM RAM

1.1

Note:

3

Overview of STM32F303xB/C and STM32F358xC CCM
RAM

Purpose

The STM32F303xB/C and STM32F358xC CCM RAM is tightly coupled with the Cortex™
core. it is primarily intended to execute code at maximum system clock frequency (72 MHz)
without any wait state penalty. It thus allows to significantly decrease critical task execution
time, compared to code execution from Flash memory.

CCM RAM is typically used for real-time and computation intensive routines, such as:
e Digital power conversion control loops (switch mode power supplies, lighting)

e Field-oriented 3-phase motor control

e Real-time DSP tasks

When code is located in CCM RAM and data stored in the regular SRAM, the Cortex-M4
core is in the optimum Harvard configuration. A dedicated zero-wait state memory is
connected to each of its |- and D-bus (refer to Figure 1: STM32F303xB/xC and
STM32F358xC system architecture) and can thus perform at 1.25DMIPS/MHz up to

72 MHz, with a deterministic performance of 90 DMIPS. This also guarantees a minimal
latency if interrupt service routines are placed in the CCM RAM.

Example

A benchmark between the STM32F103xx and STM32F303xx microcontrollers using
STMicroelectronics MC library V3.4 shows that in case of single motor control using 3 shunt
algorithm, the FOC total execution time for STM32F303xx is 16.97 us compared to 21.3 us
in STMF103xx (see note below); with FOC core and sensorless core loops running from
CCM RAM for STM32F303xx. This means that the STM32F303xx is 20.33 % faster than the
STM32F103xx thanks to the CCM RAM.

FOC routines are programmed in structured C, so the values provided above do not
represent the fastest possible execution both for STM32F103xx and STM32F303xx. In
addition, the execution time is also function of the compiler used and of its version.

When the CCM RAM is not used for code, it can hold data like an extra SRAM memory.
However it cannot be accessed through DMA. It is not recommended to place both code
and data together in the CCM, since the Cortex core will have to fetch code and data from
the same memory with the risk of collisions. The core would then be in the Von Neuman
configuration, and its performance would drop from 1.25DMIPS/MHz to below
1DMIPS/MHz.

DocID024590 Rev 3 5/25

Overview of STM32F303xB/C and STM32F358xC CCM RAM

AN4296

Figure 1. STM32F303xB/xC and STM32F358xC system architecture

BusMatrix-S
I-bus (L
ARM 3 > (J)—<|>
CORTEX-M4
D-bus [S
S-bus
& C O—O—O—
GPDMA1 DMA b ¢
GPDMA2 DMA &
MO M1 M2 M3 M4 M5
—
_ .| AHB dedicated
FLASH 256 K ICODE to GPIO ports
64 bits @&—»| FLTIF D DCODE
" > P .| ADC1 & ADC2
N | ADC3 & ADC4
P »| RCC, TSC, CRC and
SRAMA40KB |« AHB to APB1 and APB2
> 8 KB
CCM RAM

MS19455V2

1.2

1.2.1

CCM RAM mapping

STM32F303xB/C and STM32F358xC CCM RAM features

The CCM RAM is available on the STM32F303xB/C and STM32F358xC devices, starting
from 0x1000 0000 address.

1.2.2

CCM RAM remapping

Unlike regular SRAM, the CCM RAM cannot be remapped at address 0x0000 0000.

1.2.3

CCM RAM write protection

The CCM RAM can be protected against unwanted write operations with a page granularity
of 1 Kbyte. Refer to Table 2 for a description of CCM RAM organization.

Table 2. CCM RAM organization

Page number Start address End address
Page 0 0x1000 0000 0x1000 O3FF
Page 1 0x1000 0400 0x1000 O7FF
Page 2 0x1000 0800 0x1000 OBFF
Page 3 0x1000 0C00 0x1000 OFFF

6/25

DocID024590 Rev 3

3

AN4296

Overview of STM32F303xB/C and STM32F358xC CCM RAM

1.24

3

The write protection is enabled through the SYSCFG CCM SRAM protection register
(SYSCFG_RCR). This is a write '1' once mechanism, which means that once the write
protection is enabled on a given CCM RAM page by programming the corresponding bit to
‘1°, it can be cleared only through a system reset. For more details refer to the product
reference manual.

CCM RAM parity check

A parity check is implemented on STM32F303xB/C and STM32F358xC microcontrollers. It
is disabled by default and can be enabled by the user when needed through an option bit
(SRAM_PE bit). When this option bit is cleared, the parity check is enabled for the first

16 Kbytes of SRAM and for the 8-Kbyte CCM RAM.

DocID024590 Rev 3 7/25

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

2

2.1

Note:

8/25

Execute application code from CCM RAM
using the IAR EWARM toolchain

Executing a simple code from CCM RAM (except for interrupt
handler)

A simple code can be composed of one or more functions that are not referenced from an
interrupt handler. If the code is referenced from an interrupt handler, follow the steps
described in Section 2.2: Executing an interrupt handler from CCM RAM.

EWARM provides the possibility to place one or more functions or a whole source file in
CCM RAM.

This operation requires a new section to be defined in the linker file (.icf) to host the code to
be placed in CCM RAM. This section is copied to CCM RAM at startup. The required steps
are the following:

1. Define the address area for the CCM RAM by indicating the start and end addresses.

2. Tell the linker to copy at startup the section named .ccmram from Flash memory to
CCM RAM.

3. Indicate to the linker that the code section .ccmram should be placed in the CCM RAM
region.

Refer to Figure 2: EWARM linker update for an example of code implementing these
operations.

This procedure is not valid for interrupt handlers.

3

DocID024590 Rev 3

AN4296 Execute application code from CCM RAM using the IAR EWARM toolchain

Figure 2. EWARM linker update

/*#44ICF4#44 Section handled by ICF editor, don't touch! ****/

/*-Editor annotation file-*/

f* IcfEditorFile="sTOOLKEIT DIRS‘\confighide\IcfEditor\cortex wl_O.xml™ */
[*-Specials-*/

define symbol _ ICFEDIT intvec_start_ = 0x08000000;

f*-Memory Regions-*/

define symbol _ ICFEDIT region ROM start = O0x02000000;
define symbol _ ICFEDIT_region ROM end = Ox0803FFFF;
define symbol _ ICFEDIT region REM start = 0x20000000;
define symbol _ ICFEDIT region RAM end = = O0xZ0009FFE;
f*-Sizes-*/

define symbol _ ICFEDIT size_cstack_ = 0x400;

define symbol _ ICFEDIT size_heap = 0x200;

f**** Fnd of ICF editor section. #3#ICF##d#*/

define memory mem with size = 4G;

define region ROM_region = mem:[from _ ICFEDIT region ROM start_ to _ ICFEDIT region ROM end]:
define region RAM region = mem: [from _ ICFEDIT_region RAM start to _ ICFEDIT_regionm RAM end];
1 | define region CCMREM region = mem: [from 0x10000000 to Ox10001FFF]: Define address zone for
CCM memory
define block CSTACK with alignment = &, size = _ ICFEDIT size cstack i}
define block HERP with alignment = &, size = _ ICFEDIT_size_heap {1

2 |initialize by copy [readwrite, section .ccmram b e e . R
[B ' "initialize by copy" tells the linker to copy

this section at start up time.

do not initialize { section .noinit };

place at address mem:_ ICFEDIT_ intvec start | readonly section .intvec };

place in ROM region { readonly }:

3 [placE in Place section .ccmram at CCM RAM defined above.

CCMRAM region [section .ccmram];

place in REM region { readwrite,
block CSTACK, block HEAP };

211 Executing a source file from CCM RAM

Executing a source file from CCM RAM means that all functions declared in this file will be

executed from this memory area.

To place and execute a source file from CCM RAM, use the EWARM file Options window:

1. Add the section .ccmram (for example) in the linker file as defined in Section 2.1.
Right click the file name from the workspace window.

3. Select options from the displayed menu.
4. Check override inherited settings from the displayed window
5. Select the output tab, and type the name of the section already defined in the linker file

(‘.ccmram’ in this example) in the Code section name field (see Figure 3: EWARM file
placement).

3

DoclD024590 Rev 3 9/25

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

Figure 3. EWARM file placement

|:| Exclude from build ‘__,._-——-———-\

Category: Owverride inherited settings l Factary Settings
o]
Custom Build
| Language 1 | Languageﬂl Code | Optimizations KOUTPUTJList | Preproce; * | *
Generate debug information
Code section name:
< .comram >
Ok] ’ Cancel
21.2 Executing one or more functions from CCM RAM

The steps required to execute a function from CCM RAM are the following:
1. Add the section .ccmram in the linker file as described in Section 2.1.

2. Using the key word pragma location, specify the function to be executed from CCM
RAM (see Figure 4: EWARM function placement).

Figure 4. EWARM function placement

B /%=
ghyrief Inserts a delay time.

* fparam nTime: specifies the delay time length, in milliseconds.
*# fretval None

L g'x
-
#pragma location = ".ccmram” Pragma key word to precise the
p T—
void Delay(_ IO uint32_t nTime) function placement
=

TimingDelay = nTime;

while (TimingDelay '= 0);
-1

3

10/25 DoclD024590 Rev 3

AN4296

Execute application code from CCM RAM using the IAR EWARM toolchain

Note:

2.2

2.21

3

To execute more than one function from CCM RAM, the pragma location keyword should
be placed above each function declaration.

Executing an interrupt handler from CCM RAM

The vector table is implemented as an array named __ vector_table and referenced in the
startup code.

EWARM linker protects the sections that are referenced from the startup code from being
affected by an 'initialize by copy' directive. So, you should not use the symbol
__vector_table to allow copying interrupt handler sections via the 'initialize by copy'
directive.

As a consequence, you should make a second vector table and place it in CCM RAM.

The steps required to execute an interrupt handler from CCM RAM are the following:
1. Update the linker file (.icf).

2. Update the startup file.

3. Place the interrupt handler in CCM RAM.

4. Remap the vector table to CCM RAM.

Updating the linker file (.icf)

To update the linker file:
1. Define the address where the second vector table will be located: 0x1000 0000.

2. Define the memory address area for the CCM RAM by specifying the start and end
addresses.

3. Tell the linker to copy at startup the section named .ccmram and the second vector
table section “.intvec_ CCMRAM’ from Flash memory to CCM RAM.

4. Tell the linker that the second vector table should be placed in the intvec_ CCMRAM
section.

5. Indicate that the .ccmram code section should be placed in CCM RAM.

DocID024590 Rev 3 11/25

Execute application code from CCM RAM using the IAR EWARM toolchain

AN4296

Figure 5. EWARM linker update for interrupt handler

/*-Editor annotation file-*/
/*-Specials-*/

f*-Memory Regions-*/

/*-Sizes-*/

define aymbol _ ICFEDIT size catack = O0x1000;
define symbol _ ICFEDIT size heap = 0x0000;
f***%* Fnd of ICF editor section. #4#ICF###*/

1Idefine aymbol CCMERM intvec start = 0x10000000;

/*##$ICE### Section handled by ICF editor, don't touch!

****IIF

/* IcfEditorFile="$TOOLKIT DIR$\config\ide\IcfEditor\cortex vl O.xml™ */

define symbol _ ICFEDIT intvec start = 0x08000000;

define symbol _ ICFEDIT region ROM start = Ox08000000;
define aymbol _ ICFEDIT region ROM end = Ox0803FFFF;
define symbol _ ICFEDIT region RRM start = O0x20000000;
define aymbol _ ICFEDIT region RAM end = Ox20008FFF;

define memory mem with size = 4G;
define region ROM region = mem: [from _ ICFEDIT_regqion ROM start_ to _ ICFEDIT region ROM end];
define region RAM region = mem: [from _ ICFEDIT region RRM start to _ ICFEDIT region RBM end]:
2 Idefine region CCMRAM region = mem: [from 0x10000000 to 0x10001FFF] :|
define block CSTACK with alignment = &, size = _ ICFEDIT size_cstack { }:
define block HEAP with alignment = &, size = _ ICFEDIT_size_heap Lo
3|initialize by copy { readwrite, section .intwec C {, section .ccmram, ro object stm32f30_it.o }.'I

do not initialize | section .noinit 15

place at address mem:_ ICFEDIT_intvec start_ |{ readonly section .intvec };

4Iplac:e at address mem: CCMRAM intwvec start { section .intwvec CCMERAM }.'I
5Iplac:e in CCMRAM region | section .ccmram }.'I

place in ROM regiomn { readonly 1;

place in REM region { readwrite,

block CS5TACK, block HERP };

12/25

DocID024590 Rev 3

3

AN4296

Execute application code from CCM RAM using the IAR EWARM toolchain

2.2.2

Updating the startup file

To update the startup file:

1. Make a second vector table to be stored in CCM RAM. The startup_stm32f30x.s file
should be modified by removing all entries except for sfe(CSTACK) and Reset_Handler
from the original vector table *__vector_table’.

2. Add a second vector table to be placed in CCM RAM. It should contain all entries. As
an example you can call it *__vector_table CCMRAM’. This vector table must be
placed in the intvec_ CCMRAM section defined in the linker file.

Figure 6. EWARM startup file update for interrupt handler

49
50
51
52
53
54
55
56
57
58
59

62
63
G4
65
66
67
68

71
7z
73
74
75
76
77
78
79
&0

;o Forward declaration of sectioms.
SECTION CASTACK:DATR:NOROOT(3)

SECTION .intwec:CODE:NOROOT(Z)
EXTERH _ iar program Start
EXTERH Systenlnit

PFUBLIC _ wector tahle

DATA

_ wector_tahle
DCD sfe (CSTACK)
nco Feset Handler ; Reset Hamdler

SECTION .intwec_CCMEAM: CODE:ROOT(Z)
PFUBLIC _ wector tahle CCMEAM
DATA

_ wector_tahle CCHMRAM
DCD afe (CSTACKE)
nco Feset Handler ; Reset Hamdler
nco NMI_Handler ; MMI Handler
nco HardFault_Handler ; Hard Fault Handler
nco MemManage_Handler ; MPU Fault Handler
nco BusFault_Handler ; Bus Fault Handler
DCh TaageFault Handler ; Usage Fault Handler
nco a ; Reserved
nco a ; Reserved
ncn i ; Resertved

2.2.3

2.24

3

Place the interrupt handler in CCM RAM

Place the interrupt handler to be executed in CCM RAM as described in Section 2.1.2 or
the whole stm32f_it.c file as described in Section 2.1.1.

Remap the vector table to CCM RAM

In SystemlInit function, remap the vector table to CCM RAM by modifying the VTOR register
as following:

SCB->VTOR = 0x10000000 | VECT_TAB_OFFSET;

DocID024590 Rev 3 13/25

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

2.3 Executing a library (.a) from CCM RAM

EWARM allows executing a library or a library module from CCM RAM. The actions to be
executed are the following:

1. Define the memory address area corresponding to the CCM RAM by specifying the
start and end addresses.

Figure 7. CCM RAM area definition

define memory mem with zize = 4G:
define region ROM region = mem: [from ICFEDIT_region ROM start to ICFEDIT _region ROM end]:

define region REM region = mem: [from _ ICFEDIT region RAM start to _ ICFEDIT region RZM end];

| define region CCMRAM region = mem: [from 0x10000000 to Ox10001FFE]; Define address zone for
CCM memory

define block CSTACK with alignment , 8ize = _ ICFEDIT_size catack__ i
define block HERP with alignment ize = _ ICFEDIT s3ize_heap {1

[==l=)

2. Update the linker to copy at startup the library or the library module in CCM RAM using
the “initialize by copy” directive.

Example:

Figure 8. EWARM section initialization

| initialize by copy { readwrite,ro object iar cortexM4lf math.a }; I

do not initialize | section .nolnit };

3. Indicate to the linker that the library should be placed in CCM RAM:

Figure 9. EWARM library placement

place in ROM region I readonly }:

E}lac‘.e in CCMRIM region [section .text object iar_c:c:rtexli=11:'_math.a};|

To execute a library module from CCM RAM, follow steps 1, 2 and 3 using the library
module name.

3

14/25 DoclD024590 Rev 3

AN4296 Execute application code from CCM RAM using the IAR EWARM toolchain
The example below shows how to place arm_abs_f32.0 (a module of iar_cortexM4l_math.a
library) in CCM RAM:

Figure 10. EWARM library module placement

S*#3#ICF#44 Section handled by ICF editor, don't touch! ##*#s

/*-Editor annctation file-*/

/* IcfEditorFile="5TOOLKIT_DIRS\confighide\IcfEditorh\cortex v1_0.xml"™ */

/*-Specials-*/

define symbol _ ICFEDIT intvec start_ = 0x08000000;

f*-Memory Regionas-*/

define symbol _ ICFEDIT region ROM start = 0x08000000;

define symbol _ ICFEDIT region ROM end = Ox0803FFFE;

define symbol _ ICFEDIT region RAM start = 0x20000000;

define symbol _ ICFEDIT_region REM end = Ox20009FFF;

[f#-Sizes-*/

define symbol _ ICFEDIT size_cstack = 0x400;

define symbol _ ICFEDIT size_heap = 0x200;

f**** End of ICF editor section. ###ICF###*/

define memcry mem with zize = 4G;

define region ROM region = mem: [from _ ICFEDIT region ROM start to _ ICFEDIT region ROM end]:

define region RREM region = mem: [from _ ICFEDIT_region RIM start to _ ICFEDIT_region REM end_]:
1| define region CCMREM region = mem: [from 0x10000000 to O0x10001FFF]; I

define block C3TACK with alignment = &, size = _ ICFEDIT_size catack {1}z

define block HEAP with alignment = 8, 3ize = _ ICFEDIT_size_heap {}:
2| initialize by copy [readwrite, ro object arm abs_f32.o0 }; I

do not initialize { secticn .neoinit };

place at address mem:_ ICFEDIT intwec_start_ { readonly section .intwvec };

place in ROM region { readonly };
3|p1ace in CCMERM region {section .text object arm abs_f3Z2.o0 }; I

place in REM region { readwrite,

block CSTACE, block HEAP };

3

DoclD024590 Rev 3

15/25

Execute application code from CCM RAM using the KEIL MDK-ARM toolchain AN4296

3

Execute application code from CCM RAM
using the KEIL MDK-ARM toolchain

MDK-ARM features make it possible to execute simple functions or interrupt handlers from
CCM RAM. The following sections explain how to use these features to execute code from

CCM RAM.

3.1 Executing a function or an interrupt handler from CCM RAM
The steps required to execute a function or an interrupt handler from CCM RAM are the
following:

1. Define a new region (ccmram) in the scatter file by indicating the start and end
addresses of the CCM RAM area.
2. Indicate to the linker that the sections with ccmram attribute must be placed in the CCM
RAM region.
Figure 11. MDK-ARM scatter file

1] iject.sct [#] system_stm32f30x.c 3] stm32f0«_it.c] startup_stm32f30x.s] main.c
i o o o B o

2 #*% Zeatter-Loading Description File generated by uVision %%

3 o o o B o

2

5 LR _IROM1 0Ox05000000 Ox00040000 ¢ load region size region

£ ER TROM1 0x08000000 0x00040000 { ; load address = execution address
7 *.0 [RESET, +First)

g * [InFoot§i3ections)

a LANY (4RO

10 i

11 RW TRAM1 0Ox20000000 Ox0000ACO0 { ; RW data

12 =AM Rl A DefineCCM RAM mermary

4 as execution region

14 RW TRAMZ 0x10002Z000 Ox00001000

i5 LANY (+RW +ZI)

16 i

17

18@@10000000 0%00002000 ; load address = execution addresg
25@ .— Place code in

CCIIFaLm sectmn
23
24
16/25 DoclD024590 Rev 3 Kys

AN4296 Execute application code from CCM RAM using the KEIL MDK-ARM toolchain

3. Refer to the modified scatter file for the project options (see Figure 11):

Figure 12. MDK-ARM Options menu

V. Options for Target 'STM32303C-EVAL’

Device | Target| Dutput| Listing | User | C/C++ | Asm Linker | Debug | Utiities |

@se tdemory Layout from Target Dialog
[~ Make R Sections Pasition Independent R/0 Base: |IJ:-:DEIDDDUDU
[Make RO Sections Position Independent
" Don't Search Standard Libraries

R/ Base lnnzooonam

dizable Wamings:]

¥ Report ‘might fail' Conditions as Errors

Sca!Ft'leer- MSTM32303C-EVALProject sct
i

Misc
controls

Linker |-cpu Cortex-M4.Ip “ o
control |-library_type=microlib --strict -scatter " \STM32303C-EVAL \Project sct'*
shring

< |2

oK] | Cancel Il Defaults I

4. Place the part of code to be executed from CCM RAM in the ccmram section defined
above. This is done by adding the attribute key word above the function declaration.

Figure 13. MDK-ARM function placement

/*k*k
* @brief This function handles SysTick Handler.
* @param None

* @retval None
* /

|_attribute_((section ("ccmram™))) I

void SysTick Handler (void)

{
T TimingDelay Decrement () ;
}

Note: To execute more than one function from CCM RAM, the attribute keyword should be placed
above each function declaration:

3

DoclD024590 Rev 3 17/25

Execute application code from CCM RAM using the KEIL MDK-ARM toolchain AN4296

3.2

3.3

18/25

Executing a source file from CCM RAM

Executing a source file from CCM RAM means that all functions declared in this file will be
executed from the CCM RAM region.

Follow the steps below to execute a file from CCM RAM:

1. Define the CCM RAM as a memory area in the project option window
(Project>option>target):

Figure 14. MDK-ARM target memory

on-chip
W IRAMI: |sznnnnnnn |D:¢-’-\DDD P

¥ IR&M2: (010000000 |sznnn

2. Right click the file to place it in CCM RAM and select options
3. Select the CCM RAM region in the memory assignment menu:

Figure 15. MDK-ARM file placement

Memom dzsignment;

S RPRARR -1 2 (01 0000000-0x1 0001FFF

Zera |nitialized Data; |<defau|t>

]
Other Data: |<dEfEIU|t> j

Executing a library or a library module from CCM RAM

Follow the steps below to execute a library or a library module from CCM RAM:

1. Define the CCM RAM as a memory area as shown in Figure 16: MDK-ARM library
placement.

2. Right click the library from the workspace and select options.
3. You can either place the complete library or a module from a library in CCM RAM.

Figure 16. MDK-ARM library placement

TR S e v Select Modules
Code A Const; 0,:10000000-01 0007 FFF R I R e E2E —=
Zero Initiglized D1ata; |<defau|t> L]
Other Data: |<defau|t> j

3

DoclD024590 Rev 3

AN4296 Execute application code from CCM RAM using a GNU-based toolchain

4 Execute application code from CCM RAM
using a GNU-based toolchain

GNU-based toolchains allow executing simple functions or interrupt handlers from CCM
RAM. The following sections explain how to use these features to execute code from CCM
RAM.

4.1 Executing a function or an interrupt handler from CCM RAM

The steps required to execute a function or an interrupt handler from CCM RAM are the
following:

1. Define a new region (ccmram) in the linker file (.Id) by defining the start address and
the size of CCM RAM region (see Figure 17: GNU linker update)

Figure 17. GNU linker update

/* Entry Point */
ENTRY(Reset_Handler)

/* Highest address of the user mode stack */
_estack = 0x2000a000; /* end of 40K RAM on AHB bus*/

/* Generate a link error if heap and stack don't fit into RAM */
_Min_Heap_Size = 0; /* required amount of heap */
_Min_Stack_Size = 0x400; /* required amount of stack */

/* Specify the memory areas */

MEMORY

{
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 256K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 40K
MEMORY_B1 (rx) : ORIGIN = 0x60000000, LENGTH = 0K

sk_]

Define address zone for CCM
RAM region

2. Tell the linker that code sections with ccmram attribute must be placed in CCM RAM
(see Figure 18: GNU linker section definition).

0x10000000, LENGTH

[[comram (xrw) : ORIGIN
¥

3

DocID024590 Rev 3 19/25

Execute application code from CCM RAM using a GNU-based toolchain

AN4296

Figure 18. GNU linker section definition

{.data) / .data sections */
{.data) /* .data* sectionz */
= LALIGH (4] :
_edata = .: /% define a global synbol at data end */

} *RAM AT> FLAZH

_Siccmrem = LOADADDR {.ccmram) ;

A% CCM-BAM =section
+*

* IMNPORTANT NOTE!
* If initialized wariables will be placed in this section,

* | . Ccomratn)
* | .ocmratm®)

= ALIGM(4):

b »CCHMRAM AT- FLASH

* the startup code needs to be modified to copy the init-wvalues.

*
L CCWEST G
i
= ALIGM(4):;
_scowratn = L /% create a glohal sywhol at ccwram start &/

_ecomram = . f* preate a global synbol at comrsam end +F

/% Uninitialized data section */
= ALIGM(4):

hss o

r

3. Modify the startup file to initialize data to place in CCM RAM at startup time (see code

lines in red):
.section .text.Reset_Handler
.weak Reset_Handler
.type Reset_Handler, %$function

Reset_Handler:

/* Copy the data segment initializers from flash to SRAM and CCMRAM */

movs rl, #0
b LoopCopyDatalInit
CopyDatalInit:
1ldr r3, =_sidata
ldr 3, [r3, rl]
str r3, [r0, rl]
adds rl, rl, #4

LoopCopyDataInit:
ldr r0, =_sdata
ldr r3, =_edata

adds r2, r0, ril
cmp r2, r3
bcec CopyDatalInit

movs rl, #0

20/25 DocID024590 Rev 3

3

AN4296 Execute application code from CCM RAM using a GNU-based toolchain

b LoopCopyDataInitl
CopyDataInitl:

1dr r3, =_siccmram
ldr 3, [r3, rl]

str r3, [r0, rl]
adds rl, rl, #4
LoopCopyDataInitl:
ldr r0, =_sccmram
ldr r3, =_eccmram

adds r2, r0, rl

cmp r2, r3

bcc CopyDataInitl

ldr r2, =_sbss

b LoopFillZerobss

/* Zero fill the bss segment. */
FillZerobss:

movs r3, #0

str r3, [r2], #4

LoopFillZerobss:

ldr r3, = _ebss

cmp r2, r3

bcc FillZerobss

/* Call the clock system intitialization function.*/
bl SystemInit

/* Call the application's entry point.*/
bl main

bx 1r

4. Place the part of code to be executed from CCM RAM in the .ccmram section by
adding the attribute key word in the function prototype:

Figure 19. GNU function placement

woid NMI_ Handler (void):

vold HardFault Handler (woid);
vold MemManage Handler (woid):
woid BusFault Handler (void):
wvoid UsageFault Handler (void);
woid 5VC_Handler (void) ;

woid DebugMon Handler (void) ;
wvoid Pend3V _Handler (void);

wvold 3y3Tick_Handler(woid) _ attribute (({3ection (".ccmram™))): I

3

DoclD024590 Rev 3 21/25

Execute application code from CCM RAM using a GNU-based toolchain AN4296

4.2 Executing a file from CCM RAM

Executing a source file from CCM RAM means that all functions declared in this file will be
executed from CCM RAM.

To execute a file from CCM RAM, follow the sequence below:
1. Add the .ccmram section in the linker file as defined in Section 4.1.
2. Place your file in CCM RAM as shown below:

Figure 20. GNU file placement

_Sicemrsm = LOADADDR(.ccmrsam) ;

£ ¥ CCM-RAM section

k3

* IMPORTANT NOTE!

* If initialized wvariables will be placed in this section,

% the startup code heeds to be wodified o copy the init-wvalues.

w/
LCCHEa
i
. = ALIGN(4);
_Sccmram = L /% preate a global sywbhol at cowmram start *F

¥ | L ocmEan)
¥ | .ocmEam®)

StwI2L30x it.o(*)

. = ALIGMN(4):
_eccmram = L) A% preate a global sywbol at comram end

P »CCHMRAM AT> FLASH

3

22/25 DocID024590 Rev 3

AN4296 Execute application code from CCM RAM using a GNU-based toolchain

4.3 Executing a library from CCM RAM

Follow the steps below to execute a library from CCM RAM:
1. Add the .ccmram section in the linker file as defined in Section 4.1.
2. Place your libray in CCM RAM as shown below:

Figure 21. GNU library placement

/* CCM-RAM section
+*

* IMPORTANT MNOTE!
* If initiali=zed wariables will bhe placed in this section,
* the startup code needs to he modified to copy the init-wvalues.

*

L CCIEatn -
{
. = ALIGN(4):
_Socwram = L /% oreate a globhal symbol at comram start

L ComEam)
T .oomEsm®)

. = ALTIGH (4] :
_ecomram = .7 /% preate a global symwbol at cowmram end */

} >CCHEAM AT> FLASH

3

DocID024590 Rev 3 23/25

Revision history

AN4296

5

24/25

Revision history

Table 3. Document revision history

Date Revision Changes
23-Jul-2013 1 Initial release.
Changed STM32F313xC into STM32F358xC.
25-Mar-2014 2 Reworked Section 1: Overview of STM32F303xB/C and
STM32F358xC CCM RAM.
Added STM32F303x6/x8, STM32F328x8,
STM32F334x4/x6/x8 in Table 1: Applicable products.
Updated step 2 in Section 2.1: Executing a simple code
02-Sep-2014 3 from CCM RAM (except for interrupt handler), step 3 in

Section 2.2.1: Updating the linker file (.icf) and updated
Figure 5: EWARM linker update for interrupt handler.

Updated Figure 11: MDK-ARM scatter file.

DocID024590 Rev 3

3

AN4296

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics — All rights reserved

3

DocID024590 Rev 3 25/25

	Table 1. Applicable products
	1 Overview of STM32F303xB/C and STM32F358xC CCM RAM
	1.1 Purpose
	Figure 1. STM32F303xB/xC and STM32F358xC system architecture

	1.2 STM32F303xB/C and STM32F358xC CCM RAM features
	1.2.1 CCM RAM mapping
	1.2.2 CCM RAM remapping
	1.2.3 CCM RAM write protection
	Table 2. CCM RAM organization

	1.2.4 CCM RAM parity check

	2 Execute application code from CCM RAM using the IAR EWARM toolchain
	2.1 Executing a simple code from CCM RAM (except for interrupt handler)
	Figure 2. EWARM linker update
	2.1.1 Executing a source file from CCM RAM
	Figure 3. EWARM file placement

	2.1.2 Executing one or more functions from CCM RAM
	Figure 4. EWARM function placement

	2.2 Executing an interrupt handler from CCM RAM
	2.2.1 Updating the linker file (.icf)
	Figure 5. EWARM linker update for interrupt handler

	2.2.2 Updating the startup file
	Figure 6. EWARM startup file update for interrupt handler

	2.2.3 Place the interrupt handler in CCM RAM
	2.2.4 Remap the vector table to CCM RAM

	2.3 Executing a library (.a) from CCM RAM
	Figure 7. CCM RAM area definition
	Figure 8. EWARM section initialization
	Figure 9. EWARM library placement
	Figure 10. EWARM library module placement

	3 Execute application code from CCM RAM using the KEIL MDK-ARM toolchain
	3.1 Executing a function or an interrupt handler from CCM RAM
	Figure 11. MDK-ARM scatter file
	Figure 12. MDK-ARM Options menu
	Figure 13. MDK-ARM function placement

	3.2 Executing a source file from CCM RAM
	Figure 14. MDK-ARM target memory
	Figure 15. MDK-ARM file placement

	3.3 Executing a library or a library module from CCM RAM
	Figure 16. MDK-ARM library placement

	4 Execute application code from CCM RAM using a GNU-based toolchain
	4.1 Executing a function or an interrupt handler from CCM RAM
	Figure 17. GNU linker update
	Figure 18. GNU linker section definition
	Figure 19. GNU function placement

	4.2 Executing a file from CCM RAM
	Figure 20. GNU file placement

	4.3 Executing a library from CCM RAM
	Figure 21. GNU library placement

	5 Revision history
	Table 3. Document revision history

