
September 2014 DocID024590 Rev 3 1/25

1

AN4296
Application note

Overview and tips for using STM32F303/328/334/358xx CCM RAM
with IAR EWARM, Keil MDK-ARM and GNU-based toolchains

Introduction

The purpose of this application note is to give a presentation of the core coupled memory
(CCM) RAM available on STM32F303xB/xC and STM32F358xC microcontrollers and
describe what is required to execute part of the application code from this memory region
using different toolchains.

This application note is divided into four sections: the first section gives an overview of the
STM32F3 CCM RAM, while the next sections describe the steps required to execute part of
the application code from CCM RAM using the following toolchains:

• IAR EWARM

• KEIL MDK-ARM™

• RIDE and Atollic GNU based toolchain

The procedures described throughout the document are applicable to other RAM regions
such as the CCM data RAM of some F4 devices, or external SRAM.

Refer to Table 1 for the list microcontrollers embedding CCM RAM.

Table 1. Applicable products

Product family Part numbers or product categories

Microcontrollers
STM32F303xB, STM32F303xC, STM32F358xC

STM32F303x6/x8, STM32F328x8, STM32F334x4/x6/x8

www.st.com

http://www.st.com

Contents AN4296

2/25 DocID024590 Rev 3

Contents

1 Overview of STM32F303xB/C and STM32F358xC CCM RAM 5

1.1 Purpose . 5

1.2 STM32F303xB/C and STM32F358xC CCM RAM features 6

1.2.1 CCM RAM mapping . 6

1.2.2 CCM RAM remapping . 6

1.2.3 CCM RAM write protection . 6

1.2.4 CCM RAM parity check . 7

2 Execute application code from CCM RAM
using the IAR EWARM toolchain . 8

2.1 Executing a simple code from CCM RAM (except for interrupt handler) . . 8

2.1.1 Executing a source file from CCM RAM . 9

2.1.2 Executing one or more functions from CCM RAM 10

2.2 Executing an interrupt handler from CCM RAM .11

2.2.1 Updating the linker file (.icf) . 11

2.2.2 Updating the startup file . 13

2.2.3 Place the interrupt handler in CCM RAM . 13

2.2.4 Remap the vector table to CCM RAM . 13

2.3 Executing a library (.a) from CCM RAM . 14

3 Execute application code from CCM RAM
using the KEIL MDK-ARM toolchain . 16

3.1 Executing a function or an interrupt handler from CCM RAM 16

3.2 Executing a source file from CCM RAM . 18

3.3 Executing a library or a library module from CCM RAM 18

4 Execute application code from CCM RAM
using a GNU-based toolchain . 19

4.1 Executing a function or an interrupt handler from CCM RAM 19

4.2 Executing a file from CCM RAM . 22

4.3 Executing a library from CCM RAM . 23

5 Revision history . 24

DocID024590 Rev 3 3/25

AN4296 List of tables

3

List of tables

Table 1. Applicable products . 1
Table 2. CCM RAM organization . 6
Table 3. Document revision history . 24

List of figures AN4296

4/25 DocID024590 Rev 3

List of figures

Figure 1. STM32F303xB/xC and STM32F358xC system architecture . 6
Figure 2. EWARM linker update . 9
Figure 3. EWARM file placement . 10
Figure 4. EWARM function placement . 10
Figure 5. EWARM linker update for interrupt handler . 12
Figure 6. EWARM startup file update for interrupt handler . 13
Figure 7. CCM RAM area definition . 14
Figure 8. EWARM section initialization . 14
Figure 9. EWARM library placement . 14
Figure 10. EWARM library module placement . 15
Figure 11. MDK-ARM scatter file . 16
Figure 12. MDK-ARM Options menu . 17
Figure 13. MDK-ARM function placement . 17
Figure 14. MDK-ARM target memory . 18
Figure 15. MDK-ARM file placement . 18
Figure 16. MDK-ARM library placement . 18
Figure 17. GNU linker update . 19
Figure 18. GNU linker section definition . 20
Figure 19. GNU function placement. 21
Figure 20. GNU file placement. 22
Figure 21. GNU library placement . 23

DocID024590 Rev 3 5/25

AN4296 Overview of STM32F303xB/C and STM32F358xC CCM RAM

24

1 Overview of STM32F303xB/C and STM32F358xC CCM
RAM

1.1 Purpose

The STM32F303xB/C and STM32F358xC CCM RAM is tightly coupled with the Cortex™
core. it is primarily intended to execute code at maximum system clock frequency (72 MHz)
without any wait state penalty. It thus allows to significantly decrease critical task execution
time, compared to code execution from Flash memory.

CCM RAM is typically used for real-time and computation intensive routines, such as:

• Digital power conversion control loops (switch mode power supplies, lighting)

• Field-oriented 3-phase motor control

• Real-time DSP tasks

When code is located in CCM RAM and data stored in the regular SRAM, the Cortex-M4
core is in the optimum Harvard configuration. A dedicated zero-wait state memory is
connected to each of its I- and D-bus (refer to Figure 1: STM32F303xB/xC and
STM32F358xC system architecture) and can thus perform at 1.25DMIPS/MHz up to
72 MHz, with a deterministic performance of 90 DMIPS. This also guarantees a minimal
latency if interrupt service routines are placed in the CCM RAM.

Example

A benchmark between the STM32F103xx and STM32F303xx microcontrollers using
STMicroelectronics MC library V3.4 shows that in case of single motor control using 3 shunt
algorithm, the FOC total execution time for STM32F303xx is 16.97 µs compared to 21.3 µs
in STMF103xx (see note below); with FOC core and sensorless core loops running from
CCM RAM for STM32F303xx. This means that the STM32F303xx is 20.33 % faster than the
STM32F103xx thanks to the CCM RAM.

Note: FOC routines are programmed in structured C, so the values provided above do not
represent the fastest possible execution both for STM32F103xx and STM32F303xx. In
addition, the execution time is also function of the compiler used and of its version.

When the CCM RAM is not used for code, it can hold data like an extra SRAM memory.
However it cannot be accessed through DMA. It is not recommended to place both code
and data together in the CCM, since the Cortex core will have to fetch code and data from
the same memory with the risk of collisions. The core would then be in the Von Neuman
configuration, and its performance would drop from 1.25DMIPS/MHz to below
1DMIPS/MHz.

Overview of STM32F303xB/C and STM32F358xC CCM RAM AN4296

6/25 DocID024590 Rev 3

Figure 1. STM32F303xB/xC and STM32F358xC system architecture

1.2 STM32F303xB/C and STM32F358xC CCM RAM features

1.2.1 CCM RAM mapping

The CCM RAM is available on the STM32F303xB/C and STM32F358xC devices, starting
from 0x1000 0000 address.

1.2.2 CCM RAM remapping

Unlike regular SRAM, the CCM RAM cannot be remapped at address 0x0000 0000.

1.2.3 CCM RAM write protection

The CCM RAM can be protected against unwanted write operations with a page granularity
of 1 Kbyte. Refer to Table 2 for a description of CCM RAM organization.

Table 2. CCM RAM organization

Page number Start address End address

Page 0 0x1000 0000 0x1000 03FF

Page 1 0x1000 0400 0x1000 07FF

Page 2 0x1000 0800 0x1000 0BFF

Page 3 0x1000 0C00 0x1000 0FFF

DocID024590 Rev 3 7/25

AN4296 Overview of STM32F303xB/C and STM32F358xC CCM RAM

24

The write protection is enabled through the SYSCFG CCM SRAM protection register
(SYSCFG_RCR). This is a write '1' once mechanism, which means that once the write
protection is enabled on a given CCM RAM page by programming the corresponding bit to
‘1’, it can be cleared only through a system reset. For more details refer to the product
reference manual.

1.2.4 CCM RAM parity check

A parity check is implemented on STM32F303xB/C and STM32F358xC microcontrollers. It
is disabled by default and can be enabled by the user when needed through an option bit
(SRAM_PE bit). When this option bit is cleared, the parity check is enabled for the first
16 Kbytes of SRAM and for the 8-Kbyte CCM RAM.

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

8/25 DocID024590 Rev 3

2 Execute application code from CCM RAM
using the IAR EWARM toolchain

2.1 Executing a simple code from CCM RAM (except for interrupt
handler)

A simple code can be composed of one or more functions that are not referenced from an
interrupt handler. If the code is referenced from an interrupt handler, follow the steps
described in Section 2.2: Executing an interrupt handler from CCM RAM.

EWARM provides the possibility to place one or more functions or a whole source file in
CCM RAM.

This operation requires a new section to be defined in the linker file (.icf) to host the code to
be placed in CCM RAM. This section is copied to CCM RAM at startup. The required steps
are the following:

1. Define the address area for the CCM RAM by indicating the start and end addresses.

2. Tell the linker to copy at startup the section named .ccmram from Flash memory to
CCM RAM.

3. Indicate to the linker that the code section .ccmram should be placed in the CCM RAM
region.

Refer to Figure 2: EWARM linker update for an example of code implementing these
operations.

Note: This procedure is not valid for interrupt handlers.

DocID024590 Rev 3 9/25

AN4296 Execute application code from CCM RAM using the IAR EWARM toolchain

24

Figure 2. EWARM linker update

2.1.1 Executing a source file from CCM RAM

Executing a source file from CCM RAM means that all functions declared in this file will be
executed from this memory area.

To place and execute a source file from CCM RAM, use the EWARM file Options window:

1. Add the section .ccmram (for example) in the linker file as defined in Section 2.1.

2. Right click the file name from the workspace window.

3. Select options from the displayed menu.

4. Check override inherited settings from the displayed window

5. Select the output tab, and type the name of the section already defined in the linker file
(‘.ccmram’ in this example) in the Code section name field (see Figure 3: EWARM file
placement).

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

10/25 DocID024590 Rev 3

Figure 3. EWARM file placement

2.1.2 Executing one or more functions from CCM RAM

The steps required to execute a function from CCM RAM are the following:

1. Add the section .ccmram in the linker file as described in Section 2.1.

2. Using the key word pragma location, specify the function to be executed from CCM
RAM (see Figure 4: EWARM function placement).

Figure 4. EWARM function placement

DocID024590 Rev 3 11/25

AN4296 Execute application code from CCM RAM using the IAR EWARM toolchain

24

Note: To execute more than one function from CCM RAM, the pragma location keyword should
be placed above each function declaration.

2.2 Executing an interrupt handler from CCM RAM

The vector table is implemented as an array named __vector_table and referenced in the
startup code.

EWARM linker protects the sections that are referenced from the startup code from being
affected by an 'initialize by copy' directive. So, you should not use the symbol
__vector_table to allow copying interrupt handler sections via the 'initialize by copy'
directive.

As a consequence, you should make a second vector table and place it in CCM RAM.

The steps required to execute an interrupt handler from CCM RAM are the following:

1. Update the linker file (.icf).

2. Update the startup file.

3. Place the interrupt handler in CCM RAM.

4. Remap the vector table to CCM RAM.

2.2.1 Updating the linker file (.icf)

To update the linker file:

1. Define the address where the second vector table will be located: 0x1000 0000.

2. Define the memory address area for the CCM RAM by specifying the start and end
addresses.

3. Tell the linker to copy at startup the section named .ccmram and the second vector
table section ‘.intvec_CCMRAM’ from Flash memory to CCM RAM.

4. Tell the linker that the second vector table should be placed in the intvec_CCMRAM
section.

5. Indicate that the .ccmram code section should be placed in CCM RAM.

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

12/25 DocID024590 Rev 3

Figure 5. EWARM linker update for interrupt handler

DocID024590 Rev 3 13/25

AN4296 Execute application code from CCM RAM using the IAR EWARM toolchain

24

2.2.2 Updating the startup file

To update the startup file:

1. Make a second vector table to be stored in CCM RAM. The startup_stm32f30x.s file
should be modified by removing all entries except for sfe(CSTACK) and Reset_Handler
from the original vector table ‘__vector_table’.

2. Add a second vector table to be placed in CCM RAM. It should contain all entries. As
an example you can call it ‘__vector_table_CCMRAM’. This vector table must be
placed in the intvec_CCMRAM section defined in the linker file.

Figure 6. EWARM startup file update for interrupt handler

2.2.3 Place the interrupt handler in CCM RAM

Place the interrupt handler to be executed in CCM RAM as described in Section 2.1.2 or
the whole stm32f_it.c file as described in Section 2.1.1.

2.2.4 Remap the vector table to CCM RAM

In SystemInit function, remap the vector table to CCM RAM by modifying the VTOR register
as following:

SCB->VTOR = 0x10000000 | VECT_TAB_OFFSET;

Execute application code from CCM RAM using the IAR EWARM toolchain AN4296

14/25 DocID024590 Rev 3

2.3 Executing a library (.a) from CCM RAM

EWARM allows executing a library or a library module from CCM RAM. The actions to be
executed are the following:

1. Define the memory address area corresponding to the CCM RAM by specifying the
start and end addresses.

Figure 7. CCM RAM area definition

2. Update the linker to copy at startup the library or the library module in CCM RAM using
the “initialize by copy” directive.

Example:

Figure 8. EWARM section initialization

3. Indicate to the linker that the library should be placed in CCM RAM:

Figure 9. EWARM library placement

To execute a library module from CCM RAM, follow steps 1, 2 and 3 using the library
module name.

DocID024590 Rev 3 15/25

AN4296 Execute application code from CCM RAM using the IAR EWARM toolchain

24

The example below shows how to place arm_abs_f32.o (a module of iar_cortexM4l_math.a
library) in CCM RAM:

Figure 10. EWARM library module placement

Execute application code from CCM RAM using the KEIL MDK-ARM toolchain AN4296

16/25 DocID024590 Rev 3

3 Execute application code from CCM RAM
using the KEIL MDK-ARM toolchain

MDK-ARM features make it possible to execute simple functions or interrupt handlers from
CCM RAM. The following sections explain how to use these features to execute code from
CCM RAM.

3.1 Executing a function or an interrupt handler from CCM RAM

The steps required to execute a function or an interrupt handler from CCM RAM are the
following:

1. Define a new region (ccmram) in the scatter file by indicating the start and end
addresses of the CCM RAM area.

2. Indicate to the linker that the sections with ccmram attribute must be placed in the CCM
RAM region.

Figure 11. MDK-ARM scatter file

DocID024590 Rev 3 17/25

AN4296 Execute application code from CCM RAM using the KEIL MDK-ARM toolchain

24

3. Refer to the modified scatter file for the project options (see Figure 11):

Figure 12. MDK-ARM Options menu

4. Place the part of code to be executed from CCM RAM in the ccmram section defined
above. This is done by adding the attribute key word above the function declaration.

Figure 13. MDK-ARM function placement

Note: To execute more than one function from CCM RAM, the attribute keyword should be placed
above each function declaration:

Execute application code from CCM RAM using the KEIL MDK-ARM toolchain AN4296

18/25 DocID024590 Rev 3

3.2 Executing a source file from CCM RAM

Executing a source file from CCM RAM means that all functions declared in this file will be
executed from the CCM RAM region.

Follow the steps below to execute a file from CCM RAM:

1. Define the CCM RAM as a memory area in the project option window
(Project>option>target):

Figure 14. MDK-ARM target memory

2. Right click the file to place it in CCM RAM and select options

3. Select the CCM RAM region in the memory assignment menu:

Figure 15. MDK-ARM file placement

3.3 Executing a library or a library module from CCM RAM

Follow the steps below to execute a library or a library module from CCM RAM:

1. Define the CCM RAM as a memory area as shown in Figure 16: MDK-ARM library
placement.

2. Right click the library from the workspace and select options.

3. You can either place the complete library or a module from a library in CCM RAM.

Figure 16. MDK-ARM library placement

DocID024590 Rev 3 19/25

AN4296 Execute application code from CCM RAM using a GNU-based toolchain

24

4 Execute application code from CCM RAM
using a GNU-based toolchain

GNU-based toolchains allow executing simple functions or interrupt handlers from CCM
RAM. The following sections explain how to use these features to execute code from CCM
RAM.

4.1 Executing a function or an interrupt handler from CCM RAM

The steps required to execute a function or an interrupt handler from CCM RAM are the
following:

1. Define a new region (ccmram) in the linker file (.ld) by defining the start address and
the size of CCM RAM region (see Figure 17: GNU linker update)

Figure 17. GNU linker update

2. Tell the linker that code sections with ccmram attribute must be placed in CCM RAM
(see Figure 18: GNU linker section definition).

Execute application code from CCM RAM using a GNU-based toolchain AN4296

20/25 DocID024590 Rev 3

Figure 18. GNU linker section definition

3. Modify the startup file to initialize data to place in CCM RAM at startup time (see code
lines in red):

.section .text.Reset_Handler

.weak Reset_Handler

.type Reset_Handler, %function

Reset_Handler:

/* Copy the data segment initializers from flash to SRAM and CCMRAM */

 movs r1, #0

b LoopCopyDataInit

CopyDataInit:

ldr r3, =_sidata

ldr r3, [r3, r1]

str r3, [r0, r1]

adds r1, r1, #4

LoopCopyDataInit:

ldr r0, =_sdata

ldr r3, =_edata

adds r2, r0, r1

cmp r2, r3

bcc CopyDataInit

movs r1, #0

DocID024590 Rev 3 21/25

AN4296 Execute application code from CCM RAM using a GNU-based toolchain

24

b LoopCopyDataInit1

CopyDataInit1:

ldr r3, =_siccmram

ldr r3, [r3, r1]

str r3, [r0, r1]

adds r1, r1, #4

LoopCopyDataInit1:

ldr r0, =_sccmram

ldr r3, =_eccmram

adds r2, r0, r1

cmp r2, r3

bcc CopyDataInit1

ldr r2, =_sbss

b LoopFillZerobss

/* Zero fill the bss segment. */

FillZerobss:

movs r3, #0

str r3, [r2], #4

LoopFillZerobss:

ldr r3, = _ebss

cmp r2, r3

bcc FillZerobss

/* Call the clock system intitialization function.*/

bl SystemInit

/* Call the application's entry point.*/

bl main

bx lr

4. Place the part of code to be executed from CCM RAM in the .ccmram section by
adding the attribute key word in the function prototype:

Figure 19. GNU function placement

Execute application code from CCM RAM using a GNU-based toolchain AN4296

22/25 DocID024590 Rev 3

4.2 Executing a file from CCM RAM

Executing a source file from CCM RAM means that all functions declared in this file will be
executed from CCM RAM.

To execute a file from CCM RAM, follow the sequence below:

1. Add the .ccmram section in the linker file as defined in Section 4.1.

2. Place your file in CCM RAM as shown below:

Figure 20. GNU file placement

DocID024590 Rev 3 23/25

AN4296 Execute application code from CCM RAM using a GNU-based toolchain

24

4.3 Executing a library from CCM RAM

Follow the steps below to execute a library from CCM RAM:

1. Add the .ccmram section in the linker file as defined in Section 4.1.

2. Place your libray in CCM RAM as shown below:

Figure 21. GNU library placement

Revision history AN4296

24/25 DocID024590 Rev 3

5 Revision history

Table 3. Document revision history

Date Revision Changes

23-Jul-2013 1 Initial release.

25-Mar-2014 2
Changed STM32F313xC into STM32F358xC.

Reworked Section 1: Overview of STM32F303xB/C and
STM32F358xC CCM RAM.

02-Sep-2014 3

Added STM32F303x6/x8, STM32F328x8,
STM32F334x4/x6/x8 in Table 1: Applicable products.

Updated step 2 in Section 2.1: Executing a simple code
from CCM RAM (except for interrupt handler), step 3 in
Section 2.2.1: Updating the linker file (.icf) and updated
Figure 5: EWARM linker update for interrupt handler.

Updated Figure 11: MDK-ARM scatter file.

DocID024590 Rev 3 25/25

AN4296

25

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

	Table 1. Applicable products
	1 Overview of STM32F303xB/C and STM32F358xC CCM RAM
	1.1 Purpose
	Figure 1. STM32F303xB/xC and STM32F358xC system architecture

	1.2 STM32F303xB/C and STM32F358xC CCM RAM features
	1.2.1 CCM RAM mapping
	1.2.2 CCM RAM remapping
	1.2.3 CCM RAM write protection
	Table 2. CCM RAM organization

	1.2.4 CCM RAM parity check

	2 Execute application code from CCM RAM using the IAR EWARM toolchain
	2.1 Executing a simple code from CCM RAM (except for interrupt handler)
	Figure 2. EWARM linker update
	2.1.1 Executing a source file from CCM RAM
	Figure 3. EWARM file placement

	2.1.2 Executing one or more functions from CCM RAM
	Figure 4. EWARM function placement

	2.2 Executing an interrupt handler from CCM RAM
	2.2.1 Updating the linker file (.icf)
	Figure 5. EWARM linker update for interrupt handler

	2.2.2 Updating the startup file
	Figure 6. EWARM startup file update for interrupt handler

	2.2.3 Place the interrupt handler in CCM RAM
	2.2.4 Remap the vector table to CCM RAM

	2.3 Executing a library (.a) from CCM RAM
	Figure 7. CCM RAM area definition
	Figure 8. EWARM section initialization
	Figure 9. EWARM library placement
	Figure 10. EWARM library module placement

	3 Execute application code from CCM RAM using the KEIL MDK-ARM toolchain
	3.1 Executing a function or an interrupt handler from CCM RAM
	Figure 11. MDK-ARM scatter file
	Figure 12. MDK-ARM Options menu
	Figure 13. MDK-ARM function placement

	3.2 Executing a source file from CCM RAM
	Figure 14. MDK-ARM target memory
	Figure 15. MDK-ARM file placement

	3.3 Executing a library or a library module from CCM RAM
	Figure 16. MDK-ARM library placement

	4 Execute application code from CCM RAM using a GNU-based toolchain
	4.1 Executing a function or an interrupt handler from CCM RAM
	Figure 17. GNU linker update
	Figure 18. GNU linker section definition
	Figure 19. GNU function placement

	4.2 Executing a file from CCM RAM
	Figure 20. GNU file placement

	4.3 Executing a library from CCM RAM
	Figure 21. GNU library placement

	5 Revision history
	Table 3. Document revision history

