
Micriµm
© Copyright 2008, Micriµm

All Rights reserved

µC/OS-II
and the

Microchip dsPIC33

Application Note
AN-1033

www.Micrium.com

 µC/OS-II and the Microchip dsPIC33

2

Table of Contents

1.00 Introduction ... 3
2.00 The Microchip dsPIC33 programmer’s model ... 4
3.00 µC/OS-II Port for dsPIC33 ... 7
3.01 Directories and Files.. 7
3.02 OS_CPU.H.. 8
3.02.01 OS_CPU.H, macros for ‘externals’ ... 8
3.02.02 OS_CPU.H, Data Types... 8
3.02.03 OS_CPU.H, Critical Sections ... 9
3.02.04 OS_CPU.H, Stack growth .. 9
3.02.05 OS_CPU.H, Task Level Context Switch... 9
3.02.06 OS_CPU.H, Function Prototypes ... 10
3.03 OS_CPU_C.C ... 10
3.03.01 OS_CPU_C.C, OSInitHookBegin()... 10
3.03.02 OS_CPU_C.C, OSInitHookEnd() ... 11
3.03.03 OS_CPU_C.C, OSTaskCreateHook() .. 11
3.03.04 OS_CPU_C.C, OSTaskStkInit() ... 12
3.03.05 OS_CPU_C.C, OSTaskSwHook().. 15
3.03.06 OS_CPU_C.C, OSTimeTickHook() .. 15
3.04 OS_CPU_A.S.. 16
3.04.01 OS_CPU_A.S, OSStartHighRdy() .. 16
3.04.02 OS_CPU_A.S, OSCtxSw() ... 17
3.04.03 OS_CPU_A.S, OSIntCtxSw() ... 18
3.04.04 OS_CPU_A.S, T2Interrupt() ... 18
3.04.05 OS_CPU_A.S, T4Interrupt() ... 19
3.05 OS_CPU_UTIL_A.S .. 20
3.06 OS_DBG.C.. 21
4.00 Interrupt Handling.. 22
5.00 Application Code ... 26
5.01 APP.C, APP.H and APP_CFG.H... 27
5.02 INCLUDES.H... 29
5.03 OS_CFG.H.. 29
6.00 BSP (Board Support Package).. 30
7.00 Conclusion... 31
Licensing .. 32
References.. 32
Contacts .. 32

 µC/OS-II and the Microchip dsPIC33

 3

1.00 Introduction

This application note describes how µC/OS-II has been ported to the Microchip dsPIC33 family of
processors. This application note does not assume any specific dsPIC33 derivative.

Figure 1-1 shows a block diagram showing the relationship between your application, µC/OS-II, the port
code and the BSP (Board Support Package). Relevant sections of this application note are referenced
on the figure.

µC/OS-II
OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C
OS_MUTEX.C
OS_Q.C
OS_SEM.C
OS_TASK.C
OS_TIME.C
OS_TMR.C
uCOS II.H

µC/OS-II
dsPIC33 Port

OS_CPU_C.C
OS_CPU_A.S

OS_CPU_UTIL_A.S
OS_CPU.H
OS DBG.C

Section 5

Your Application
APP.C
APP.H

APP_CFG.H
INCLUDES.H
OS CFG.H

Explorer 16 / Target Board

BSP
BSP.C
BSP.H

Section 2

µC/OS-II
Book

Section 6
Section 3

Figure 1-1, Relationship between modules.

 µC/OS-II and the Microchip dsPIC33

4

2.00 The Microchip dsPIC33 programmer’s model

This section provides a brief description of the dsPIC33 programmer’s model. We present enough
information in this section to provide a brief introduction. A complete description can be found in the
Microchip documentation.

The dsPIC33 family of CPU cores features proprietary Microchip architecture and is designed for
controller applications using a 16-bit (data), DSP capable architecture. Below are some of the features of
the dsPIC33 family of CPU cores:

• 16 General-purpose ‘Working’ registers
• Dual 40 bit Accumulators, 17x17 Multiplier
• 24 bit variable length instruction word, 23 bit program counter.
• 40 bit barrel shifter capable of 16 bit shift left of shift right in 1 cycle.
• Dedicated 1KB of DMA Ram
• Hardware divider support
• Dual Address generators for accessing memory blocks X and Y.
• High speed deterministic interrupt processing

The dsPIC33 is a Little Endian architecture and thus the least significant byte of a value is placed at a
lower memory location than its most significant byte.

Figure 2-1 shows the register model of the dsPIC33 and consist of 16 Working registers, two 40 bit
accumulators, the Data Table Page register, the Program Space Visibility Page Address register, a
Repeat Loop Counter, three dedicated DO Loop registers, the Core Configuration register, and a CPU
Status register.

W0-W15 (Working Registers)

• Registers W0-W3 are general purpose scratch pad registers
• Registers W4-W7 are the DSP Operand registers
• Registers W8-W11 are the DSP address registers
• Register W12 doubles as the DSP Offset register
• Register W13 doubles as the DSP Write Back register
• Register W14 doubles as the Frame Pointer register
• Register W15 doubles as the CPU Stack Pointer register

The stack pointer always points to the last pushed element. In other words, when an element is
pushed onto the stack, the stack pointer is first decremented and the value placed at the current
location where the stack is pointing to. The stack is popped by first reading the contents of the
stack and then incrementing the stack pointer.

SPLIM (Stack Pointer Limit Register)

• Causes a TRAP error when W15 is greater than SPLIM

ACCA / ACCB (DSP Accumulators)
• Dual 40 bit accumulators for DSP operations

TBLPAGE (Table Page Register)

• The 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program
space. This is concatenated with a 16-bit effective address in order to arrive at a full 24-bit
program space address.

 µC/OS-II and the Microchip dsPIC33

 5

PSVPAG (Program Space Visibility Page Address Register)
• For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to

define a 16K word page in the program space. When the Most Significant bit of the EA is ‘1’,
PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space
address. Unlike table operations, this limits remapping operations strictly to the user memory
area.

RCOUNT (Repeat Loop Counter)

• The RCOUNT register tracks the iteration count of an instruction that must be executed
repetitively until its operation has been completed. Divide instructions are iterative instructions
that make extensive use of the RCOUNT register.

DCOUNT (Do Loop Counter)

• Counts the iteration number of a DO loop

DOSTART (Do Loop Start Address)
• Holds the start address of a particular DO loop

DOEND (Do Loop End Address)s

• Holds the end address of a particular DO loop

CORECON (Core Configuration Register)

• Contains configuration bits pertaining to how the processor handles certain types of operations.

STATUS (CPU Status Register)

• Contains status CPU status flags indicating the state of the CPU after a given instruction.

 µC/OS-II and the Microchip dsPIC33

Figure 2-1, dsPIC33 Programmers Model.

6

 µC/OS-II and the Microchip dsPIC33

 7

3.00 µC/OS-II Port for dsPIC33

µC/OS-II has been ported to the Microchip C30, Hi-Tech dsPICC, and IAR iccDSPIC compilers. All ports
currently utilize the MPLAB development environment v7.60 or greater. We strongly recommend
checking with your compiler vendor to ensure that you have obtained the latest MPLAB IDE plug-in
version available for the compiler of choice.

We used an Explorer 16 EVB with a dsPIC33FJ256GP710 dsPIC33 derivative to test the described
application. It is assumed that you have µC/OS-II V2.82 or higher.

Various tool-chains require different extensions for assembly files. This document refers to assembly files
having the extension ‘.s’ in order to be consistent with the Microchip C30 tool-chain. However, in practice,
the Hi-Tech dsPICC compiler uses the extension ‘.as’ while the IAR iccDSPIC compiler uses ‘.s59’. Files
from different tool-chain ports are not interchangeable.

3.01 Directories and Files

The software that accompanies this application note is assumed to be placed within the following
directory depending on the tool-chain used:

C30:
 \Micrium\Software\uCOS-II\Ports\Microchip\PIC33FJ256\MPLAB_C30

dsPICC:
 \Micrium\Software\uCOS-II\Ports\Microchip\PIC33FJ256\MPLAB_HT-DSPICC

iccDSPIC:
 \Micrium\Software\uCOS-II\Ports\Microchip\PIC33FJ256\MPLAB_IAR

The source code for the µC/OS-II dsPIC33 port is found in the following files:

 OS_CPU.H Section 3.02
 OS_CPU_C.C Section 3.03
 OS_CPU_A.S Section 3.04
 OS_CPU_UTIL_A.S Section 3.05
 OS_DBG.C Section 3.06

 µC/OS-II and the Microchip dsPIC33

8

3.02 OS_CPU.H

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and
typedefs.

3.02.01 OS_CPU.H, macros for ‘externals’

OS_CPU_GLOBALS and OS_CPU_EXT allows us to declare global variables that are specific to this port.
However, this port does not contain any global variables but the declarations have been included in case
we need to add some in the future.

Listing 3-1, OS_CPU.H, Globals and Externs

#ifdef OS_CPU_GLOBALS
#define OS_CPU_EXT
#else
#define OS_CPU_EXT extern
#endif

3.02.02 OS_CPU.H, Data Types

Listing 3-2, OS_CPU.H, Data Types

typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned int INT16U; (1)
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;
typedef float FP32; (2)
typedef long double FP64;

typedef unsigned int OS_STK; (3)
typedef unsigned int OS_CPU_SR; (4)

L3-2(1) If you were to consult the MPLab compiler documentation, you would find that an int is

16 bits, an long is 32 bits.

L3-2(2) Floating-point data types are included even though µC/OS-II doesn’t make use of

floating-point numbers.

L3-2(3) A stack entry for the dsPIC33 processor is always 16 bits wide; thus, OS_STK is declared

accordingly. All task stacks must be declared using OS_STK as its data type.

L3-2(4) The status register (STATUS) on the dsPIC33 processor is 16 bits wide. The

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described
below). In fact, this port only supports OS_CRITICAL_METHOD #3 because it’s the
preferred method for µC/OS-II ports.

 µC/OS-II and the Microchip dsPIC33

 9

3.02.03 OS_CPU.H, Critical Sections

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical sections of
code and re-enable interrupts when done. µC/OS-II defines two macros to disable and enable
interrupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. µC/OS-II defines three
ways to disable interrupts but, you only need to use one of the three methods for disabling and enabling
interrupts. The book (MicroC/OS-II, The Real-Time Kernel) describes the three different methods. The
one to choose depends on the processor and compiler. In most cases, the preferred method is
OS_CRITICAL_METHOD #3.

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will save the
status register of the CPU in a variable. OS_EXIT_CRITICAL() invokes another function to restore the
status register from the variable. We recommend that you name the functions expected in
OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() as OS_CPU_SR_Save() and
OS_CPU_SR_Restore(), respectively. These routines are generally stored in OS_CPU_A.ASM,
however, in this case, since the registers are memory mapped, it makes sense to simply write and read
to and from SR directly from C code.

Listing 3-3, OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 3

#if OS_CRITICAL_METHOD == 3
#define OS_ENTER_CRITICAL() {cpu_sr = SR; SRbits.IPL = 7;}
#define OS_EXIT_CRITICAL() {SR = cpu_sr;}
#endif

3.02.04 OS_CPU.H, Stack growth

The stacks on the dsPIC33 grows from low to high memory and thus, OS_STK_GROWTH is set to 0 to
indicate this to µC/OS-II.

Listing 3-4, OS_CPU.H, Stack Growth

#define OS_STK_GROWTH 0

3.02.05 OS_CPU.H, Task Level Context Switch

Task level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW(). Because
context switching is processor specific, OS_TASK_SW() needs to execute an assembly language
function. You should note that µC/OS-II disables all interrupts before calling OSCtxSw().

Listing 3-5, OS_CPU.H, Task Level Context Switch

#define OS_TASK_SW() OSCtxSw()

 µC/OS-II and the Microchip dsPIC33

10

3.02.06 OS_CPU.H, Function Prototypes

As of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy() need to be
placed in OS_CPU.H. In fact, it makes sense to do this since these are all port specific files.

Listing 3-8, OS_CPU.H, Function Prototypes

void OSCtxSw(void);
void OSIntCtxSw(void);
void OSStartHighRdy(void);

3.03 OS_CPU_C.C

A µC/OS-II port requires that you write ten (10) fairly simple C functions:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskStkInit()
OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

Typically, µC/OS-II only requires OSTaskStkInit(). The other functions allow you to extend the
functionality of the OS with your own functions.

IMPORTANT

You will also need to set the #define constant OS_CPU_HOOKS_EN to 1 in OS_CFG.H in
order for the compiler to use the functions declared in this file.

3.03.01 OS_CPU_C.C, OSInitHookBegin()

This function is called by µC/OS-II’s OSInit() at the very beginning of OSInit(). It gives the
opportunity to add additional initialization code specific to the port. In this case, we initialize the global
variable (global to OS_CPU_C.C) OSTmrCtr, which is used by the OS_TMR.C module if OS_TMR_EN is
set to 1. Additionally, since µC/OS-II does not currently support the stack checking feature of the
dsPIC33, the SPLIM register is set to a maximum value in RAM for compiler libraries that pre-initialize the
SPLIM register during the start-up code.

Listing 3-9, OS_CPU_C.C, OSInitHookEnd()

void OSInitHookBegin (void)
{
#if OS_TMR_EN > 0
 OSTmrCtr = 0;
#endif

 SPLIM = 0xFFFE;
}

 µC/OS-II and the Microchip dsPIC33

 11

3.03.02 OS_CPU_C.C, OSInitHookEnd()

This function is called by µC/OS-II’s OSInit() at the very end of OSInit(). It gives the opportunity to
add additional initialization code specific to the port. In this port, we stop measuring the interrupt disable
time.

Listing 3-10, OS_CPU_C.C, OSInitHookEnd()

void OSInitHookEnd (void)
{
#if OS_CPU_INT_DIS_MEAS_EN > 0
 OS_CPU_IntDisMeasInit();
#endif
}

3.03.03 OS_CPU_C.C, OSTaskCreateHook()

This function is called by µC/OS-II’s OSTaskCreate() or OSTaskCreateExt() when a task is
created. OSTaskCreateHook() gives the opportunity to add code specific to the port when a task is
created. In our case, we call an application hook defined within app.c or app_hooks.c. The
placement of the application hooks is non critical and may vary depending on project developer.

Listing 3-11, OS_CPU_C.C, OSInitHookEnd()

#if OS_CPU_HOOKS_EN > 0
void OSTaskCreateHook (OS_TCB *ptcb)
{
#if OS_APP_HOOKS_EN > 0
 App_TaskCreateHook(ptcb);
#else
 (void)ptcb;
#endif
}
#endif

 µC/OS-II and the Microchip dsPIC33

12

3.03.04 OS_CPU_C.C, OSTaskStkInit()

Recall (from the µC/OS-II documentation) that a task is declared as shown in listing 3-12.

Listing 3-12, µC/OS-II Task

void MyTask (void *p_arg)
{
 /* Do something with ‘p_arg’, optional */
 while (1) {
 /* Task body */
 OSTimeDlyHMSM(0, 0, 1, 0);
 }
}

The code in Listing 3-13 initializes the stack frame for the task being created. The task received an
optional argument ‘p_arg’. Most compilers pass a single argument in register W0 and thus, ‘p_arg’ is
passed in W0 when the task is created.

The ‘Task Body’ MUST call either one of the OS???Pend() functions or OSTimedly??() functions. In
other words, a task MUST always be waiting for an event to occur. An event can be the reception of a
signal or a message from another task or ISR. An event can also be to wait for the passage of time.

 µC/OS-II and the Microchip dsPIC33

 13

Listing 3-13, OS_CPU_C.C, OSTaskStkInit()

OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt)
{
 INT16U x;
 INT8U pc_high;

 pc_high = 0;

 *ptos++ = (OS_STK)task; // Push the PC (Starting Address for the new task)
 *ptos++ = (OS_STK)pc_high; // Upper byte word of start address

 *ptos++ = (OS_STK)task; // Simulate an Interrupt, Push the PC

 x = 0; // Set SR to enable all interrupts
 if (CORCONbits.IPL3) { // Check the interrupt level mask bit IPL3, == 1?
 x |= 0x0080; // Save the value of IPL3 in x, bit 7.
 }

 *ptos++ = (OS_STK)(x | (INT16U)pc_high); // Push the SR Low, CORCON IPL3 and PC (22..16)

 *ptos++ = x; // Push SR Low and CORCON IPL3 on to the stack

 *ptos++ = (OS_STK)p_arg; // W0, Push a dummy argument on to the stack
 *ptos++ = 0x1111; // W1
 *ptos++ = 0x2222; // W2
 *ptos++ = 0x3333; // W3
 *ptos++ = 0x4444; // W4
 *ptos++ = 0x5555; // W5
 *ptos++ = 0x6666; // W6
 *ptos++ = 0x7777; // W7
 *ptos++ = 0x8888; // W8
 *ptos++ = 0x9999; // W9
 *ptos++ = 0xAAAA; // W10
 *ptos++ = 0xBBBB; // W11
 *ptos++ = 0xCCCC; // W12
 *ptos++ = 0xDDDD; // W13
 *ptos++ = 0xEEEE; // W14

 *ptos++ = ACCAL; // Accumulator A
 *ptos++ = ACCAH; // Accumulator A
 *ptos++ = ACCAU; // Accumulator A

 *ptos++ = ACCBL; // Accumulator B
 *ptos++ = ACCBH; // Accumulator B
 *ptos++ = ACCBU; // Accumulator B

 *ptos++ = TBLPAG; // Table Page
 *ptos++ = PSVPAG; // Program Space Visibility Page Address
 *ptos++ = RCOUNT; // Repeat Loop Counter

 *ptos++ = DCOUNT; // Do Loop Counter
 *ptos++ = DOSTARTL; // Do Loop Start Address
 *ptos++ = DOSTARTH; // Do Loop Start Address
 *ptos++ = DOENDL; // Do Loop End Address
 *ptos++ = DOENDH; // Do Loop End Address

 *ptos++ = 0; // Status Register (contents irrelevant)
 *ptos++ = CORCON; // Core Configuration Register

 return (ptos); // Return the address to the top of the stack
}

 µC/OS-II and the Microchip dsPIC33

Figure 3-1 shows how the stack frame is initialized for each task when it’s created.

Low Memory

PC [15:0] (TaskAddr) Stack Bottom

PC [15:0] (TaskAddr)

PC [22:16](TaskAddr)

14

Figure 3-1, The Initial Stack Frame for each Task.

When the task is created, the final value of ptos is placed in the OS_TCB of that task by the µC/OS-II
function that calls OSTaskStkInit() (i.e. OSTaskCreate() or OSTaskCreateExt()).

W12 = 0xCCCC

W11 = 0xBBBB

W10 = 0xAAAA

W9 = 0x9999

W8 = 0x8888

W7 = 0x7777

W6 = 0x6666

W5 = 0x5555

W4 = 0x4444

W3 = 0x3333

W2 = 0x2222

W1 = 0x1111

ptos
(Top Of Stack) High Memory

W14 = 0xEEEE

W13 = 0xDDDD

SR Low | IPL3 | PC [22:16]

W0 = p_arg

Simulated
Interrupt

DOSTARTL

DCOUNT

RCOUNT

PSVPAG

TBLPAG

ACCBU

ACCBH

ACCBL

ACCAU

ACCAH

ACCAL

DOENDL

DOSTARTH

SR (Initialized to 0)

DOENDH

CORCON

 µC/OS-II and the Microchip dsPIC33

 15

3.03.05 OS_CPU_C.C, OSTaskSwHook()

OSTaskSwHook() is called when a context switch occurs. This function allows the port code to be
extended and do things such as measuring the execution time of a task, output a pulse on a port pin
when a context switch occurs, etc. In our case, we call an application hook defined within app.c or
app_hooks.c. The placement of the application hooks is non critical and may vary depending on
project developer.

Listing 3-14, OS_CPU_C.C, OSCtxSwHook()

#if OS_CPU_HOOKS_EN > 0
void OSTaskSwHook (void)
{
#if OS_APP_HOOKS_EN > 0
 App_TaskSwHook();
#endif
}
#endif

3.03.06 OS_CPU_C.C, OSTimeTickHook()

OSTimeTickHook() is called at the very beginning of OSTimeTick(). This function allows the port
code to be extended. Much like the other hooks, this function calls a user defined application hook placed
within app.c or app_hooks.c depending on the preference of the project developer.

Additionally, OSTimeTickHook() determines whether it’s time to update the µC/OS-II timers. This is
done by signaling the timer task.

Listing 3-15, OS_CPU_C.C, OSTimeTickHook()

void OSTimeTickHook (void)
{
#if OS_VIEW_MODULE > 0
 App_TimeTickHook();
#endif

#if OS_TMR_EN > 0
 OSTmrCtr++;
 if (OSTmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {
 OSTmrCtr = 0;
 OSTmrSignal();
 }
#endif
}

 µC/OS-II and the Microchip dsPIC33

16

3.04 OS_CPU_A.S

A µC/OS-II port requires that you write five fairly simple assembly language functions. These functions
are needed because you normally cannot save/restore registers from C functions. The five functions are:

OS_CPU_SR_Save()
OS_CPU_SR_Restore()
OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()

It should be noted that since the dsPIC33 has memory mapped registers, the first two functions, namely
OS_CPU_SR_Save() and OS_CPU_SR_Restore() have been implemented as C macros. Since the
remaining functions involve modifying the program counter, they have been implemented in assembly
language in order to leverage off of the RETFIE instruction. The RETFIE instruction will restore the PC
from data located on the current tasks stack. This is why an interrupt is simulated during task stack
initialization.

3.04.01 OS_CPU_A.S, OSStartHighRdy()

OSStartHighRdy() is called by OSStart() to start running the highest priority task that was created
before calling OSStart(). OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest
priority task.

Listing 3-18, OSStartHighRdy()

_OSStartHighRdy:
 call _OSTaskSwHook ; (1) Call user defined task switch hook

 mov #0x0001, w0 ; (2) Set OSRunning to TRUE
 mov.b wreg, _OSRunning

 mov _OSTCBHighRdy, w0 ; (3) Resume Stack Pointer
 mov [w0], w15

 OS_REGS_RESTORE ; (4) Restore Context

 retfie ; (5) Run Task

L3-18(1) Before starting the highest priority task, we call OSTaskSwHook() in case a hook

function has been declared (see OS_CPU_C.C).

L3-18(2) The µC/OS-II flag OSRunning is set to TRUE indicating that µC/OS-II will be running

once the first task is started.

L3-18(3) We then get the pointer to the task’s top-of-stack (was stored by OSTaskCreate() or

OSTaskCreateExt()). See figure 3-1 (ptos is stored in the OS_TCB of the created
task).

L3-18(4) We then pop all the registers from the task’s stack. This is done by calling an assembly

language macro which is declared in OS_CPU_UTIL_A.S and will be described later.

L3-18(5) By executing a return from interrupt instruction, the dsPIC33 pops the PC and the

STATUS register from the stack and thus, the dsPIC33 will start executing the task’s
code.

 µC/OS-II and the Microchip dsPIC33

 17

3.04.02 OS_CPU_A.S, OSCtxSw()

The code to perform a ‘task level’ context switch is shown below in pseudo-code. OSCtxSw() is called
when a higher priority task is made ready to run by another task or, when the current task can no longer
execute (e.g. it calls OSTimeDly(), OSSemPend() and the semaphore is not available, etc.).

A task level context switch occurs when µC/OS-II invokes the macro OS_TASK_SW() which, in the case
of the dsPIC33 port, corresponds to calling OSCtxSw(). Normally, it is ideal to use a software interrupt or
TRAP in order to enter OSCtxSw(), however, since a software interrupt is not available, code must
adjust the stack frame in order to simulate an interrupt such that the RETFIE instruction may be used to
restore the PC, SR Low, and CORCON IPL3.

 OS_TASK_SW()

 OSCtxSw:
 Add SRL, IPL3 and the upper 7 bits of the return PC to simulate an ISR /* (1) */

 Save the CPU registers onto the old task’s stack; /* (2) */

 OSTCBCur->OSTCBStkPtr = SP; /* (3) */
 OSTaskSwHook(); /* (4) */
 OSPrioCur = OSPrioHighRdy; /* (5) */
 OSTCBCur = OSTCBHighRdy; /* (6) */
 SP = OSTCBHighRdy->OSTCBStkPtr; /* (7) */

 Restore the CPU registers from the new task’s stack; /* (8) */

 Return from Interrupt; /* (9) */

The actual code for the task level context switch is shown in Listing 3-19.

Listing 3-19, OSCtxSw()

_OSCtxSw:
 mov.b SRL, wreg ; (1) Simulate an interrupt, save SRL and CORCON IPL3
 sl w0, #8, w0
 btsc CORCON, #IPL3
 bset w0, #7;
 ior w0, [--w15], w0
 mov w0, [w15++]

 OS_REGS_SAVE ; (2) Save context of interrupted task

 mov _OSTCBCur, w0 ; (3) OSTCBCur->OSTCBStkPtr = SP
 mov w15, [w0]

 call _OSTaskSwHook ; (4) Call user defined task switch hook

 mov _OSTCBHighRdy, w1 ; (5) OSPrioCur = OSPrioHighRdy
 mov w1, _OSTCBCur

 mov.b _OSPrioHighRdy, wreg ; (6) OSTCBCur = OSTCBHighRdy
 mov.b wreg, _OSPrioCur

 mov [w1], w15 ; (7) SP = OSTCBHighRdy->OSTCBStkPtr

 OS_REGS_RESTORE ; (8) Restore context of interrupted task

 retfie ; (9) Return from interrupt

 µC/OS-II and the Microchip dsPIC33

18

3.04.03 OS_CPU_A.S, OSIntCtxSw()

When an ISR (Interrupt Service Routine) completes, OSIntExit() is called to determine whether a
more important task than the interrupted task needs to execute. If that’s the case, OSIntExit()
determines which task to run next and calls OSIntCtxSw() to perform the actual context switch to that
task. You will notice that OSIntCtxSw() is identical to the second half of OSCtxSw(). The reason we
have these as two separate functions is to simplify debugging. Specifically, if you wanted to set a
breakpoint in OSIntCtxSw(), you would hit the breakpoint during a task level context switch (if
OSIntCtxSw() was just a label in OSCtxSw()). Of course this would make debugging a bit difficult.

Listing 3-20, OSIntCtxSw()

_OSIntCtxSw:
 call _OSTaskSwHook ; Call user defined task switch hook

 mov _OSTCBHighRdy, w1 ; OSPrioCur = OSPrioHighRdy
 mov w1, _OSTCBCur
 mov.b _OSPrioHighRdy, wreg ; OSTCBCur = OSTCBHighRdy
 mov.b wreg, _OSPrioCur

 mov [w1], w15 ; W15 (SP) = OSTCBHighRdy->OSTCBStkPtr

 OS_REGS_RESTORE ; Restore context of interrupted task

 retfie ; Switch to the new context

3.04.04 OS_CPU_A.S, T2Interrupt()

Since the dsPIC uses a vectored interrupt controller, ALL ISR’s must follow the following format. The
example provided below is the actual OS Time Tick ISR for µC/OS-II. Generally, it is common practice to
initialize the OS Tick timer from C code (BSP.C) and service the interrupt in assembly (BSP_A.S). From
assembly, a C ISR Handler function may be called in order to handle more complex operations.

Note: T2Interrupt() is one of two possible OS Time Tick Interrupt vectors. The option to choose 1

of 2 possible timers to generate the OS Tick exists from within (BSP.H). If an alternate timer is
selected the ISR code below will not run. See T4Interrupt below.

__T2Interrupt:
 OS_REGS_SAVE ; 1) Save processor registers

 inc.b _OSIntNesting ; 2) Call OSIntEnter() or increment OSIntNesting

 dec.b _OSIntNesting, wreg ; 3) Check OSIntNesting. if OSIntNesting == 1,
 bra nz, T2_Cont ; then save the stack pointer, otherwise jump
 mov _OSTCBCur, w0 ; to T2_Cont.
 mov w15, [w0]

T2_Cont:
 call _OS_Tick_ISR_Handler ; 4) Call YOUR ISR Handler (May be a C function).
 ; In this case, the OS Tick ISR Handler

 call _OSIntExit ; 5) Call OSIntExit()

 OS_REGS_RESTORE ; 6) Restore registers

 retfie

 µC/OS-II and the Microchip dsPIC33

 19

3.04.05 OS_CPU_A.S, T4Interrupt()

Since the dsPIC uses a vectored interrupt controller, ALL ISR’s must follow the following format. The
example provided below is the actual OS Time Tick ISR for µC/OS-II. Generally, it is common practice to
initialize the OS Tick timer from C code (BSP.C) and service the interrupt in assembly (BSP_A.S). From
assembly, a C ISR Handler function may be called in order to handle more complex operations.

Note: T4Interrupt() is one of two possible OS Time Tick Interrupt vectors. The option to choose 1

of 2 possible timers to generate the OS Tick exists from within (BSP.H). If an alternate timer is
selected the ISR code below will not run. See T2Interrupt above.

__T4Interrupt:
 OS_REGS_SAVE ; 1) Save processor registers

 inc.b _OSIntNesting ; 2) Call OSIntEnter() or increment OSIntNesting

 dec.b _OSIntNesting, wreg ; 3) Check OSIntNesting. if OSIntNesting == 1,
 bra nz, T4_Cont ; then save the stack pointer, otherwise jump
 mov _OSTCBCur, w0 ; to T2_Cont.
 mov w15, [w0]

T4_Cont:
 call _OS_Tick_ISR_Handler ; 4) Call YOUR ISR Handler (May be a C function).
 ; In this case, the OS Tick ISR Handler

 call _OSIntExit ; 5) Call OSIntExit()

 OS_REGS_RESTORE ; 6) Restore registers

 retfie

 µC/OS-II and the Microchip dsPIC33

20

3.05 OS_CPU_UTIL_A.S

OS_CPU_UTIL_A.S is an assembly language file that declares two macros used to save the context of
the CPU. These macros are called OS_REGS_SAVE and OS_REGS_RESTORE and are declared as shown
below.

.macro OS_REGS_SAVE
 push.d w0
 push.d w2
 push.d w4
 push.d w6
 push.d w8
 push.d w10
 push.d w12
 push w14

 push ACCAL
 push ACCAH
 push ACCAU
 push ACCBL
 push ACCBH
 push ACCBU
 push TBLPAG
 push PSVPAG
 push RCOUNT
 push DCOUNT
 push DOSTARTL
 push DOSTARTH
 push DOENDL
 push DOENDH

 push SR
 push CORCON
.endm

.macro OS_REGS_RESTORE
 pop CORCON
 pop SR

 pop DOENDH
 pop DOENDL
 pop DOSTARTH
 pop DOSTARTL
 pop DCOUNT
 pop RCOUNT
 pop PSVPAG
 pop TBLPAG
 pop ACCBU
 pop ACCBH
 pop ACCBL
 pop ACCAU
 pop ACCAH
 pop ACCAL

 pop w14
 pop.d w12
 pop.d w10
 pop.d w8
 pop.d w6
 pop.d w4
 pop.d w2
 pop.d w0
.endm

 µC/OS-II and the Microchip dsPIC33

 21

IMPORTANT

You MUST include a reference to this file when you write your ISRs (see section 4.00, Interrupt
Handling). This is done by using the assembler directive #include as follows:

.include “os_cpu_util_a.s”

3.06 OS_DBG.C

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information
about µC/OS-II and its configuration. Specifically, OS_DBG.C contains a number of constants that are
placed in ROM (code space) which the debugger can read and display. Unfortunately, the MPLab
debugger is not µC/OS-II aware and thus this file is not needed but should be included in all builds for
future reference.

 µC/OS-II and the Microchip dsPIC33

22

4.00 Interrupt Handling

The dsPIC33 contains an interrupt and exception vector table which contains up to 54 entries. Each of
these entries point to an interrupt or exception handler. For µC/OS-II, each of those interrupt handlers
MUST be written in assembly language. In fact, only a portion must be in assembly language as shown
in listing 4-1. Note that you ONLY need to change the portion in RED for your own ISR. The rest of the
code is IDENTICAL from one ISR to the next. Of course, you will need to give a unique name to your
ISRs.

Additionally, every tool-chain vendor has a unique method for placing interrupt code and setting interrupt
vector table entries. At the time of this writing, the following methods are employed by each of the three
tool-chain vendors supported. You may use bsp_a.s as an interrupt example if necessary.

C30:
 .text (1)
 .global __ISR_Name (2)

 __ISR_Name: (3)
 … code … (4)

1. Place the remaining code below this point within the TEXT section
2. Prototype the name of the ISR Handler. Note that the ISR handler name has two

underscores. One provided by the ISR routine programmer, and another by Microchip as
part of the ISR naming convention.

3. Declare the ISR with the name specified in the Microchip MPLAB C30 Users Guide.
(Document DS51284F, Page 100, table 7-1). This will tell the compiler to add the constant
ISR address to the vector table by means of adding carefully placed constant data to the
application binary.

4. Include the ISR code under the ISR name label.

dsPICC:
 GLOBAL __ISR_Name (1)
 psect vectors,class=VECTORS,delta=2 (2)
 ORG 01Ch (3)
 DDW __ISR_Name (4)
 psect text,global,reloc=4,class=CODE,delta=2 (5)

 __ISR_Name: (6)
 … code … (7)

1. Prototype the name of the ISR.
2. Specify the placement of the defined double word (4) to be within the VECTORS section.
3. Specify the address to place ISR vector address. This value must be the vector address as

specified in the dsPIC33 datasheet, minus six. The subtraction of six is necessary since
ORG directive is NOT absolute and is relative to the current section (VECTORS) which
starts from an offset of 0x06 in the memory map. In this case 01Ch represents vector
address 0x22, the Timer2 ISR vector address.

4. Declare a double word representing the address of the ISR to be placed in the specified
address.

5. Place the remainder of the code within the file in the CODE segment.
6. Declare the ISR with the name of your choice.
7. Include the ISR code under the ISR name label.

 µC/OS-II and the Microchip dsPIC33

 23

iccDSPIC:
 COMMON INTVEC:CODE:ROOT(2) (1)
 ORG __ISR_Address * 2 (2)
 DL __ISR_Name / 2 (3)
 RSEG CODE:CODE:ROOT(2) (4)

 PUBLIC __ISR_Name (5)

 __ISR_Name: (6)
 … code … (7)

1. Place the defined long data word in the INTVEC section.
2. Specify the address to store the following long word (24 bit). This must be the ISR vector

address as specified in the datasheet, multiplied by two.
3. Declare a long word who’s value is that of the ISR_Handler defined within the same file

below. The address to be placed in the above memory address must be that of the
ISR_Name divided by two. Additional vectors may be declared at this time before step 4.

4. Place the remainder of the code within the file in the CODE segment.
5. Prototype the ISR Name. Note that the ISR name has two underscores appended to the

beginning. This is to maintain consistency with the C30 compiler port, but is not required.
6. Declare the ISR with the name of your choice.
7. Include the ISR code under the ISR name label.

 µC/OS-II and the Microchip dsPIC33

24

Listing 4-1, Assembly Language ISR

_My_ISR:
 OS_REGS_SAVE ; 1) Save processor registers

 inc.b _OSIntNesting ; 2) Call OSIntEnter() or increment OSIntNesting

 dec.b _OSIntNesting, wreg ; 3) Check OSIntNesting. if OSIntNesting == 1,
 bra nz, _My_ISR_1 ; then save the stack pointer, otherwise jump
 mov _OSTCBCur, w0 ; to _My_ISR_1
 mov w15, [w0]

_My_ISR_1:
 call _My_ISR_Handler ; 4) Call YOUR ISR Handler (May be a C function).
 ; You MUST clear the interrupt source either
 ; from within, or just after your ISR Handler.

 call _OSIntExit ; 5) Call OSIntExit()

 OS_REGS_RESTORE ; 6) Restore registers

 retfie ; 7) Return to the interrupted task

L4-1(1) You then MUST save all of the registers using the OS_REGS_SAVE macro.

L4-1(2) You MUST increment µC/OS-II’s interrupt nesting counter (OSIntNesting)

L4-1(3) You MUST check to see whether this is the first nested ISR by checking if

OSIntNesting got incremented to 1. If this is the first nested ISR level then you MUST
save the stack pointer into the current task’s OS_TCB.

L4-1(4) You can now call your actual ISR handler which could be written in C. You don’t have to

write the handler in C but it’s generally more readable and portable. You may optionally
choose to clear the interrupt source from within your ISR handler, or you may do it before
calling OSIntExit() from assembly.

L4-1(5) When you are done handling the ISR (i.e. the code returns from My_ISR_Handler()),

you MUST call OSIntExit(). OSIntExit() checks to see if this is the last nested
ISR. If it is then OSIntExit() checks to see if a more important task has been made
ready-to-run by the ISR (or any other nested ISRs). If a more important task is
ready-to-run, OSIntExit() doesn’t return but instead context switches to the more
important task.

L4-1(6) If the interrupted task is still the most important task to run then OSIntExit() returns

and we simply need to restore the saved CPU registers in order to return to the
interrupted task. To restore the registers, you MUST invoke the OS_REGS_RESTORE
macro.

L4-1(7) The RETFIE instruction MUST be executed to return program execution back to the

interrupted task in the event that OSIntExit()does not force a context switch.

The pseudo-code for the C ISR handler is shown in Listing 4-2.

 µC/OS-II and the Microchip dsPIC33

 25

Listing 4-2, C ISR Handler

void My_ISR_Handler (void)
{
 /* (1) Don’t forget to clear the interrupt source */
 /* (2) Enable interrupts if you want to allow nested interrupts */
 /* (3) Handle the interrupt using C */
 /* (4) Disable interrupts (if you enabled them) */
}

L4-2(1) Don’t forget to clear the interrupting device (i.e. acknowledge that you serviced the

interrupt). Failure to do this will cause the ISR to be re-entered which may not be what
you want.

L4-2(2) As indicated, you may enable interrupts (by lowering the IPL level in the SR) if you want

to allow nested interrupts.

L4-2(3) You can now service the interrupting device using the C programming language (instead

of doing that in assembly language).

L4-2(4) If you disabled interrupts (see step #1) then you should disable them before returning to

the caller of this function.

 µC/OS-II and the Microchip dsPIC33

 5.00 Application Code

Your application code can make use of the port presented in this application note as described in this
section. Figure 5-1 shows a block diagram of the relationship between your application, µC/OS-II, the
µC/OS-II port, the BSP (Board Support Package), the dsPIC CPU and the target hardware.

µC/OS-II
OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C
OS_MUTEX.C
OS_Q.C
OS_SEM.C
OS_TASK.C
OS_TIME.C
OS_TMR.C
uCOS II.H

µC/OS-II
dsPIC Port

OS_CPU_C.C
OS_CPU_A.ASM
OS_CPU_I.ASM
OS_CPU.H
OS DBG.C

Section 5

Your Application
APP.C
APP.H

APP_CFG.H
INCLUDES.H
OS_CFG.H

BSP
BSP.C
BSP.H

µC/OS-II
Book

Section 6
Section 3

Section 2 Explorer 16 / Target Board

Figure 5-1, Relationship between modules.

26

 µC/OS-II and the Microchip dsPIC33

 27

5.01 APP.C, APP.H and APP_CFG.H

For sake of discussion, your application is placed in files called APP.C, APP.H and APP_CFG.H. Of
course, your application (i.e. product) can contain many more files.

APP.C would be where you would place main() but, of course, you can place main() anywhere you
want.

APP.H contains #define constants, macros, prototypes, etc. that are specific to your application. This
file may NOT exist in YOUR application and it is not included in examples provided for the PIC.

APP_CFG.H contains #define constants to configure the application. We placed task stack sizes task
priorities and other #defines in this file. This allows you to locate task priorities and sizes in one place.

APP.C is a standard test file for µC/OS-II examples. The two important functions are main() (listing
5-1) and AppStartTask() (listing 5-2).

Listing 5-1, main()

void main (void)
{
 INT8U err;

 BSP_IntDisAll(); (1)

 OSInit(); (2)

 OSTaskCreateExt(AppStartTask, (3)
 (void *)0,
 (OS_STK *)&AppStartTaskStk[TASK_STK_SIZE-1],
 TASK_START_PRIO,
 TASK_START_PRIO,
 (OS_STK *)&AppStartTaskStk[0],
 TASK_STK_SIZE,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

#if OS_TASK_NAME_SIZE > 11
 OSTaskNameSet(TASK_START_PRIO, "Start Task", &err); (4)
#endif

 OSStart(); (5)
}

L5-1(1) A BSP function called BSP_IntDisAll() is called to disable ALL interrupts. You would

typically prevent the interrupt controller from issuing interrupts until your application is ready
to service them.

L5-1(2) As with all µC/OS-II based applications, you need to initialize µC/OS-II by calling

OSInit().

L5-1(3) You need to create at least one task. In this case, we created the task using the extended

task create call. This allow µC/OS-II to have more information about your task.

L5-1(4) We can now give a name for our task.

L5-1(5) In order to start multitasking, you need to call OSStart(). Note that OSStart() will not

return from this call.

 µC/OS-II and the Microchip dsPIC33

28

Listing 5-2, AppStartTask()

static void AppStartTask (void *p_arg)
{
 (void)p_arg;

 BSP_Init(); (1)

#if OS_TASK_STAT_EN > 0
 OSStatInit(); (2)
#endif

#if (uC_PROBE_OS_PLUGIN > 0) || (uC_PROBE_COM_MODULE > 0)
 AppProbeInit();
#endif

 AppTaskCreate(); (3)

 while (TRUE) { (4)
 for (i = 0; i < 4; i++) {
 for (j = 1; j <= 8; j++) {
 LED_On(j);
 OSTimeDlyHMSM(0, 0, 0, 25); (5)
 LED_Off(j);
 }

 for (j = 7; j >= 2; j--) {
 LED_On(j);
 OSTimeDlyHMSM(0, 0, 0, 25);
 LED_Off(j);
 }
 }

 for (i = 0; i < 4; i++) {
 LED_On(0);
 OSTimeDlyHMSM(0, 0, 0, 25);
 LED_Off(0);
 OSTimeDlyHMSM(0, 0, 0, 25);
 }
 }
}

L5-2(1) If you decided to implement a BSP (see section 6, Board Support Package) for your target

board, you would initialize it here.

L5-2(2) If you enabled the statistic task by setting OS_TASK_STAT_EN in OS_CFG.H to 1) then, you

need to call it here. Please note that you need to make sure that you initialized and enabled
the µC/OS-II clock tick because OSStatInit() assumes the presence of clock ticks. In
other words, if the tick ISR is not active when you call OSStatInit(), your application will
end up in µC/OS-II’s idle task and not be able to run any other tasks.

L5-2(3) At this point, you can create additional tasks. We decided to place all our task initialization in

one function called AppTaskCreate() but, you are certainly welcome to use a different
technique.

L5-2(4) You can now perform whatever additional function you want for this task. We decided to

toggle an LED by calling a BSP function called LED_Toggle(). It is in fact these nested
loops that perform the LED sweep functionality provided in many of our example applications.

L5-2(5) Each of your tasks MUST invoke one of the µC/OS-II functions that will wait for an event to

occur. We decided to use OSTimeDlyHMSM() which suspends the task for a specified
amount of time.

 µC/OS-II and the Microchip dsPIC33

 29

5.02 INCLUDES.H

INCLUDES.H is a master include file and is found at the top of all .C files. INCLUDES.H allows every .C
file in your project to be written without concern about which header file is actually needed. The only
drawbacks to having a master include file are that INCLUDES.H may include header files that are not
pertinent to the actual .C file being compiled and the compilation process may take longer. These
inconveniences are offset by code portability. You can edit INCLUDES.H to add your own header files,
but your header files should be added at the end of the list. Listing 5-3 shows the typical contents of
INCLUDES.H. Of course, you can add your own header files as needed.

Listing 5-3, INCLUDES.H

#ifndef INCLUDES_H
#define INCLUDES_H

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

#include <p33FJ256GP710.h> /* Header file name varies with tool-chain */

#include <cpu.h>
#include <ucos_ii.h>

#include <bsp.h>

#include <lib_def.h>
#include <lib_str.h>
#include <lib_mem.h>

#if (uC_PROBE_OS_PLUGIN > 0)
#include <os_probe.h>
#endif

#if (uC_PROBE_COM_MODULE > 0)
#include <probe_com.h>

#if (PROBE_COM_METHOD_RS232 > 0)
#include <probe_rs232.h>
#endif
#endif

#endif /* End of File */

5.03 OS_CFG.H

Every µC/OS-II requires that you configure the RTOS for your own application. The configuration of
µC/OS-II allows to specify how many tasks your application will have, how many semaphores (if any),
how many message queues (if any), etc. Configuring µC/OS-II allows µC/OS-II’s footprint to be only as
big as it needs to be.

 µC/OS-II and the Microchip dsPIC33

30

6.00 BSP (Board Support Package)

It is often convenient to create a Board Support Package (BSP) for your target hardware. A BSP could
allow you to encapsulate the following functionality:

 Timer initialization (OS Ticker and View)
 PLL Initialization
 ISR Handlers
 LED control functions
 Reading switches
 Setting up communication channels
 Etc.

A BSP consist of 2 files: BSP.C and BSP.H.

For example, because a number of evaluation boards are equipped with LEDs, we decided to create LED
control functions as follows:

 void LED_Init(void);
 void LED_On(INT8U led);
 void LED_Off(INT8U led);
 void LED_Toggle(INT8U led);

In this case, LEDs are referenced ‘logically’ instead of physically. When you write the BSP, you
determine which LED is LED #1, which is LED #2, etc. When you want to turn on LED #1, you simply call
LED_On(1). If you want to toggle LED #2, you simply call LED_Toggle(2). In fact, you can (and
should) associate names to your LEDs using #defines. You could thus specify LED_Off(LED_PM).
Where LED_PM ‘could’ be defined as LED #2.

Each BSP should contain a BSP initialization function. We called ours BSP_Init() and should be
called by your application code.

We decided to encapsulate the µC/OS-II clock tick ISR handler and its initialization function in the BSP
because they ideally belong in your application code and not as part of µC/OS-II. Doing this makes it
easier to adapt the µC/OS-II port to different target hardware since you could simply change the BSP to
select whichever timer or interrupt source for the clock tick that your application requires. The clock tick
ISR is in BSP_A.S which in turn calls the OS_Tick_ISR_Handler() that is found in BSP.C.

 µC/OS-II and the Microchip dsPIC33

 31

7.00 Conclusion

This application note presented a ‘generic’ port for the dsPIC33 processor. Of course, if you use
µC/OS-II and use the port on actual hardware, you will need to initialize and properly handle hardware
interrupts.

 µC/OS-II and the Microchip dsPIC33

32

Licensing

If you intend to use μC/OS-II in a commercial product, remember that you need to contact Micriμm to
properly license its use in your product. The use of μC/OS-II in commercial applications is NOT-FREE.
Your honesty is greatly appreciated.

References

MicroC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
CMP Technical Books, 2002
ISBN 1-5782-0103-9

Contacts

CMP Books, Inc.
6600 Silacci Way
Gilroy, CA 95020 USA
Phone Orders: 1-800-500-6875
 or 1-408-848-3854
Fax Orders: 1-408-848-5784
e-mail: rushorders@cmpbooks.com
WEB: http://www.cmpbooks.com

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, Arizona 85224-6199
USA
480-792-7200
WEB: www.MicroChip.com

mailto:rushorders@cmpbooks.com
http://www.cmpbooks.com/subject/embedded_systems
mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.microchip.com/

	1.00 Introduction
	2.00 The Microchip dsPIC33 programmer’s model
	3.00 µC/OS-II Port for dsPIC33
	3.01 Directories and Files
	3.02 OS_CPU.H
	3.02.01 OS_CPU.H, macros for ‘externals’
	3.02.02 OS_CPU.H, Data Types
	3.02.03 OS_CPU.H, Critical Sections
	3.02.04 OS_CPU.H, Stack growth
	3.02.05 OS_CPU.H, Task Level Context Switch
	3.02.06 OS_CPU.H, Function Prototypes
	3.03 OS_CPU_C.C
	3.03.01 OS_CPU_C.C, OSInitHookBegin()
	3.03.02 OS_CPU_C.C, OSInitHookEnd()
	3.03.03 OS_CPU_C.C, OSTaskCreateHook()
	3.03.04 OS_CPU_C.C, OSTaskStkInit()
	3.03.05 OS_CPU_C.C, OSTaskSwHook()
	3.03.06 OS_CPU_C.C, OSTimeTickHook()
	3.04 OS_CPU_A.S
	3.04.01 OS_CPU_A.S, OSStartHighRdy()
	3.04.02 OS_CPU_A.S, OSCtxSw()
	3.04.03 OS_CPU_A.S, OSIntCtxSw()
	3.04.04 OS_CPU_A.S, T2Interrupt()
	3.04.05 OS_CPU_A.S, T4Interrupt()
	3.05 OS_CPU_UTIL_A.S
	3.06 OS_DBG.C
	4.00 Interrupt Handling
	 5.00 Application Code
	5.01 APP.C, APP.H and APP_CFG.H
	5.02 INCLUDES.H
	5.03 OS_CFG.H
	6.00 BSP (Board Support Package)
	7.00 Conclusion
	Licensing
	References
	Contacts

