m m
Micripm
© Copyright 2008, Micripm
All Rights reserved

uC/0S-Il

and the

Microchip dsPIC33

Application Note

AN-1033

www.Micrium.com

pC/OS-Il and the Microchip dsPIC33

Table of Contents

O[O I [0o [0 T [o] o PP P PP PPPPPPPPPPPPI 3
2.00 The Microchip dsPIC33 programmer’s MOdelccovviiiiiiiiiiiiiii e 4
3.00 PC/OS-I Port for dsPICS33 e 7
3.01 Directories and FIlES..........uuuuiiiiiie e 7
.02 OS _CPULH .t 8
3.02.01 OS_CPU.H, mMacros for ‘@XterNals’coooiiiiiiiiiiiieeeeeeeeeiii e 8
3.02.02 OS_CPU.H, Dala TYPES. .. ieeiieiiiieiiiiee ettt ettt et e et e et e e e eeans 8
3.02.03 OS_CPU.H, CritiCal SECHONSccuuuiiiiiiieiiiiiiiiiii e 9
3.02.04 OS_CPU.H, Stack growWthcccoeeiiuiiiiie et e e 9
3.02.05 OS_CPU.H, Task Level Context SWItCh..............cooviiiiiiiiiiiiiie e 9
3.02.06 OS_CPU.H, FUNCLION ProtOtYPESuvuvuieeeeeeeeeeeiiiiiie e e e e eeeeein e e e e e e e eeeeannnas 10
0 @ 1 T = 3 10
3.03.01 OS_CPU_C.C, OSINItHOOKBEGIN() .. tttvurrrrnrnunnnnnninniiniiiininenneniinneennnnnennnnennennenn. 10
3.03.02 OS_CPU_C.C, OSINItHOOKENG() +.vvvvvrrrrrrnne 11
3.03.03 OS_CPU_C.C, OSTaskCreateHOOK()ceeerrrrerrriiiieeeeeeeeeeeiiiiie e e e e e e eeeennnnns 11
3.03.04 OS_CPU_C.C, OSTASKSKINIE() ..vvvvrrrurnnnnnnnnnnnnnnnnnnnnnnnmnnnnnnnnnnnnnnnnnnnennnnnnnnnnnnn.. 12
3.03.05 OS_CPU_C.C, OSTaSKSWHOOK()vvuvurrrununuunninniiniiniiniminnnniinineeennnnnnnnnnennnnnenne. 15
3.03.06 OS_CPU_C.C, OSTIMETICKHOOK() +..vvvuueeieeiiiiiiiiiiiiee et 15
.04 OS CPU _ A S ittt 16
3.04.01 OS_CPU_A.S, OSStartHighRAY()uvurrrmmmmmnmnnnriinmmniinmmiennennnnnnennnnnnnnnnnennen. 16
3.04.02 OS_CPU_A.S, OSCEXSW() .errurruuunnnnnnnnnnnnnnnnnnnnnnnnunnnnnsnnnnnnsnnsnsnnnnnnnnsnennnnennnnn. 17
3.04.03 OS_CPU_A.S, OSINECEXSW() trrrurrrrrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnssnnnnsnssnsnnnnnssssnnnnnn 18
3.04.04 OS_CPU_A.S, T2INEITUPL() +vvvvvrrrnrnnnnunnnnnnnnnnnnnnnnnnnnnnsnnnnnnsnnesssnennnsnnnnneennennnnenes 18
3.04.05 OS_CPU_A.S, TAINLEITUPL() -ooeeeeeeeeeereiieee e e e e e eeeeiiiea e e e e e e eeeeaain e e e e e e eeeennnnnns 19
.05 OS CPU _UTIL A S ottt 20
0T @ 1T =T T 21
0 1O I] (=Y ¢ U o =V o |11 T 22
N 00 Y o] o] [Tor= i o] o I @0 o [P 26
5.01 APP.C, APP.H and APP_CFG.H.......uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeienennannes 27
02 | N[0 1 s T o 29
5.03 OS GG H ittt 29
6.00 BSP (Board SUppOrt Package).......cooviiiiiiiiiiieieeeeeeeeie et 30
7.00 CONCIUSION. ...ttt 31
[Tod =Y 0 1S o PP RURPPPTRPPR 32
RETEIENCES ...ttt e e e e e e e 32
L0704 | r= To) £ TP TUPPPPTR PPN 32

pC/0OS-Il and the Microchip dsPIC33

1.00 Introduction

This application note describes how pC/OS-Il has been ported to the Microchip dsPIC33 family of
processors. This application note does not assume any specific dsPIC33 derivative.

Figure 1-1 shows a block diagram showing the relationship between your application, pC/OS-Il, the port
code and the BSP (Board Support Package). Relevant sections of this application note are referenced
on the figure.

Your Application

_ APP_C
Section 5 APP _H

APP_CFG.H
INCLUDES .H
0S CFG.H

¢ A
pC/OS-II

0S_CORE.C
0S_FLAG.C
0S_MBOX.C
0S_MEM.C
uc/os-i 0S_MUTEX.C
Book 0S_Q.C

0S_SEM.C
0S_TASK.C
OS_TIME.C
0S_TMR.C
ucos 11.H

!
"C/OS'II 4

sections | dsPIC33 Port
0S _CPU C.C BSP _
0S_CPU_A.S BSP.C Section 6
0S_CPU UTIL_A.S BSP.H
0S_CPU.H
0S DBG.C %
Section 2 Explorer 16 / Target Board

Figure 1-1, Relationship between modules.

pC/OS-Il and the Microchip dsPIC33

2.00 The Microchip dsPIC33 programmer’s model

This section provides a brief description of the dsPIC33 programmer’s model. We present enough
information in this section to provide a brief introduction. A complete description can be found in the
Microchip documentation.

The dsPIC33 family of CPU cores features proprietary Microchip architecture and is designed for
controller applications using a 16-bit (data), DSP capable architecture. Below are some of the features of
the dsPIC33 family of CPU cores:

16 General-purpose ‘Working’ registers

Dual 40 bit Accumulators, 17x17 Multiplier

24 bit variable length instruction word, 23 bit program counter.

40 bit barrel shifter capable of 16 bit shift left of shift right in 1 cycle.
Dedicated 1KB of DMA Ram

Hardware divider support

Dual Address generators for accessing memory blocks X and Y.
High speed deterministic interrupt processing

The dsPIC33 is a Little Endian architecture and thus the least significant byte of a value is placed at a
lower memory location than its most significant byte.

Figure 2-1 shows the register model of the dsPIC33 and consist of 16 Working registers, two 40 bit
accumulators, the Data Table Page register, the Program Space Visibility Page Address register, a
Repeat Loop Counter, three dedicated DO Loop registers, the Core Configuration register, and a CPU
Status register.

WO0-W15 (Working Registers)
* Registers W0-W3 are general purpose scratch pad registers
* Registers W4-W7 are the DSP Operand registers
* Registers W8-W11 are the DSP address registers
* Register W12 doubles as the DSP Offset register
* Register W13 doubles as the DSP Write Back register
* Register W14 doubles as the Frame Pointer register
* Register W15 doubles as the CPU Stack Pointer register

The stack pointer always points to the last pushed element. In other words, when an element is
pushed onto the stack, the stack pointer is first decremented and the value placed at the current
location where the stack is pointing to. The stack is popped by first reading the contents of the
stack and then incrementing the stack pointer.

SPLIM (Stack Pointer Limit Register)
* Causes a TRAP error when W15 is greater than SPLIM

ACCA / ACCB (DSP Accumulators)

¢ Dual 40 bit accumulators for DSP operations

TBLPAGE (Table Page Register)
* The 8-hit Table Page register (TBLPAG) is used to define a 32K word region within the program
space. This is concatenated with a 16-bit effective address in order to arrive at a full 24-bit
program space address.

pC/0OS-Il and the Microchip dsPIC33

PSVPAG (Program Space Visibility Page Address Register)
e For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to
define a 16K word page in the program space. When the Most Significant bit of the EA is ‘1’,
PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space
address. Unlike table operations, this limits remapping operations strictly to the user memory
area.

RCOUNT (Repeat Loop Counter)
* The RCOUNT register tracks the iteration count of an instruction that must be executed
repetitively until its operation has been completed. Divide instructions are iterative instructions
that make extensive use of the RCOUNT register.

DCOUNT (Do Loop Counter)
* Counts the iteration number of a DO loop

DOSTART (Do Loop Start Address)

* Holds the start address of a particular DO loop

DOEND (Do Loop End Address)s
* Holds the end address of a particular DO loop

CORECON (Core Configuration Register)

* Contains configuration bits pertaining to how the processor handles certain types of operations.

STATUS (CPU Status Register)

* Contains status CPU status flags indicating the state of the CPU after a given instruction.

pC/OS-Il and the Microchip dsPIC33

015 oa
TR = i .-\'. '_ ______ T
WOAWRES | PUSH.S Shaow |
Wi
e || coshaow |
L |
B W3 Legend
W4
OSP Cperand W2
Registers J .
W
WT)
- — » Working Registers
L=
Wo
OSF Address = —
Registers W
_ W1
W12/DSP Offset
W13/DEP Write Back
Wi4/Frame Pointer
W15b/Stack Pointer |
vy
SPLIM Stack Pointer Limit Register
AD3D ADA AD15 ADD
DspP Aooh
Accumulators AccE
PCI2 s
| | o | Program Counter
7 0
| TBLP2G | Data Table Page Address
T 0
| FEVPAG | Program Space Visibility Page Address
15 0
| RCOUNT | REPEAT Locp Counter
15 0
| DCOUNT I'l O Loop Counter
22 o
| DOSTART ” 00 Loop Start Address
22
| COEMD |‘| 00 Loop End Address
18 o
| CORCOMN | Core Configuration Register
[0a|os | sa|ss [oss|sas| Da |DC F PizPLifieof ma [W ov | Z [© | sTaTUS Register
- SRH - g SRL -

Figure 2-1, dsPIC33 Programmers Model.

pC/0OS-Il and the Microchip dsPIC33

3.00 pC/OS-Il Port for dsPIC33

pC/OS-Il has been ported to the Microchip C30, Hi-Tech dsPICC, and IAR iccDSPIC compilers. All ports
currently utilize the MPLAB development environment v7.60 or greater. We strongly recommend
checking with your compiler vendor to ensure that you have obtained the latest MPLAB IDE plug-in
version available for the compiler of choice.

We used an Explorer 16 EVB with a dsPIC33FJ256GP710 dsPIC33 derivative to test the described
application. It is assumed that you have pC/O0S-11 VV2.82 or higher.

Various tool-chains require different extensions for assembly files. This document refers to assembly files
having the extension ‘.s’ in order to be consistent with the Microchip C30 tool-chain. However, in practice,
the Hi-Tech dsPICC compiler uses the extension ‘.as’ while the IAR iccDSPIC compiler uses ‘.s59'. Files
from different tool-chain ports are not interchangeable.

3.01 Directories and Files

The software that accompanies this application note is assumed to be placed within the following
directory depending on the tool-chain used:

C30:
\Micrium\Software\uCOS- I I\Ports\Microchip\PIC33FJ256\MPLAB_C30

dsPICC:
\Micrium\Software\uCOS- I I\Ports\Microchip\PIC33FJ256\MPLAB_HT-DSPICC

iccDSPIC:
\Micrium\Software\uCOS- I I\Ports\Microchip\PIC33FJ256\MPLAB_IAR

The source code for the pC/OS-1l1 dsPIC33 port is found in the following files:

0S _CPU.H Section 3.02
0S_CPU_C.C Section 3.03
0S CPU_A.S Section 3.04
0S CPU_UTIL_A.S Section 3.05
0S DBG.C Section 3.06

pC/OS-Il and the Microchip dsPIC33

3.02 OS_CPU.H

0S _CPU.H contains processor- and implementation-specific #defines constants, macros, and

typedefs.

3.02.01 OS_CPU.H, macros for ‘externals’

0S_CPU_GLOBALS and 0S_CPU_EXT allows us to declare global variables that are specific to this port.
However, this port does not contain any global variables but the declarations have been included in case
we need to add some in the future.

Listing 3-1, OS_CPU.H, Globals and Externs

#ifdef 0S C
#define 0OS_C
#else
#define 0S _C
#endif

PU_GLOBALS
PU_EXT

PU_EXT extern

3.02.02 OS_CPU.H, Data Types

Listing 3-2, OS_CPU.H, Data Types

typedef unsi
typedef unsi
typedef sign
typedef unsi
typedef sign
typedef unsi
typedef sign

gned char BOOLEAN;

gned char INT8U;

ed char INT8S;

gned int INT16U; (@)
ed int INT16S;

gned long INT32U;

ed long INT32S;

typedef float FP32;)

typedef long

typedef unsi
typedef unsi
L3-2(1)
L3-2(2)

L3-2(3)

L3-2(4)

double FP64;

gned int 0S_STK; A)
gned int 0S_CPU_SR; (C))

If you were to consult the MPLab compiler documentation, you would find that an int is
16 bits, an long is 32 bits.

Floating-point data types are included even though pC/OS-Il doesn't make use of
floating-point numbers.

A stack entry for the dsPIC33 processor is always 16 bits wide; thus, 0OS_STK is declared
accordingly. All task stacks must be declared using OS_STK as its data type.

The status register (STATUS) on the dsPIC33 processor is 16 bits wide. The
0S_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described
below). In fact, this port only supports OS_CRITICAL_METHOD #3 because it's the

preferred method for pC/OS-Il ports.

pC/0OS-Il and the Microchip dsPIC33

3.02.03 OS_CPU.H, Critical Sections

pC/OS-Il, as with all real-time kernels, needs to disable interrupts in order to access critical sections of
code and re-enable interrupts when done. pC/OS-ll defines two macros to disable and enable

interrupts: OS_ENTER_CRITICAL(Q) and OS_EXIT_CRITICAL(), respectively. pC/OS-Il defines three
ways to disable interrupts but, you only need to use one of the three methods for disabling and enabling
interrupts. The book (MicroC/OS-Il, The Real-Time Kernel) describes the three different methods. The
one to choose depends on the processor and compiler. In most cases, the preferred method is
OS_CRITICAL_METHOD #3.

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will save the
status register of the CPU in a variable. 0S_EXIT_CRITICAL() invokes another function to restore the
status register from the variable. We recommend that you name the functions expected in
OS_ENTER_CRITICALQ and OS_EXIT_CRITICALO as 0S_CPU_SR_Save() and
0S_CPU_SR_Restore(), respectively. These routines are generally stored in OS_CPU_A_ASM,
however, in this case, since the registers are memory mapped, it makes sense to simply write and read
to and from SR directly from C code.

Listing 3-3, 0S_CPU.H, 0S_ENTER_CRITICAL() and 0S_EXIT_CRITICAL()
#define O0S_CRITICAL_METHOD 3

#if OS_CRITICAL_METHOD ==
#define OS_ENTER_CRITICAL() {cpu_sr
#define OS_EXIT_CRITICALO) {SR
#endif

SR; SRbits.IPL = 7;}
cpu_sr;}

3.02.04 OS_CPU.H, Stack growth

The stacks on the dsPIC33 grows from low to high memory and thus, 0S_STK_GROWTH is set to O to
indicate this to pC/OS-Il.

Listing 3-4, OS_CPU.H, Stack Growth
#define 0S_STK_GROWTH 0

3.02.05 OS_CPU.H, Task Level Context Switch

Task level context switches are performed when pC/OS-l1l invokes the macro OS_TASK_SW(). Because
context switching is processor specific, 0S_TASK_SW() needs to execute an assembly language

function. You should note that uC/OS-Il disables all interrupts before calling 0SCtxSw().

Listing 3-5, OS_CPU.H, Task Level Context Switch
#define O0OS_TASK _SWQO osCtxsw(Q

pC/OS-Il and the Microchip dsPIC33

3.02.06 OS_CPU.H, Function Prototypes

As of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy() need to be
placed in OS_CPU_H. In fact, it makes sense to do this since these are all port specific files.

Listing 3-8, OS_CPU.H, Function Prototypes

void 0SCtxSw(void);
void OSIntCtxSw(void);
void OSStartHighRdy(void);

3.03 OS_CPU C.C

A puC/0S-1l port requires that you write ten (10) fairly simple C functions:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
0STaskDelHook()
OSTaskldleHook()
OSTaskStatHook()
OSTaskStkInit()
0STaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

Typically, pC/OS-Il only requires 0STaskStkInit(). The other functions allow you to extend the
functionality of the OS with your own functions.

IMPORTANT

You will also need to set the #define constant 0S_CPU_HOOKS_EN to 1in OS_CFG.H in
order for the compiler to use the functions declared in this file.

3.03.01 OS_CPU_C.C, OSInitHookBegin()

This function is called by pC/OS-II's OSInit() at the very beginning of OSInit(). It gives the
opportunity to add additional initialization code specific to the port. In this case, we initialize the global
variable (global to 0S_CPU_C.C) OSTmrCtr, which is used by the OS_TMR.C module if OS_TMR_EN is

set to 1. Additionally, since pC/OS-ll1 does not currently support the stack checking feature of the
dsPIC33, the SPLIM register is set to a maximum value in RAM for compiler libraries that pre-initialize the
SPLIM register during the start-up code.

Listing 3-9, 0S_CPU_C.C, 0SInitHookEnd()
void OSInitHookBegin (void)
;b{fif OS_TMR_EN > O
OSTmrCtr = 0;
#endif

SPLIM = OxFFFE;

10

pC/0OS-Il and the Microchip dsPIC33

3.03.02 OS_CPU_C.C, OSInitHookEnd()

This function is called by uC/0S-1lI's OSInit() at the very end of 0SInit(). It gives the opportunity to
add additional initialization code specific to the port. In this port, we stop measuring the interrupt disable
time.

Listing 3-10, OS_CPU_C.C, OSInitHookEnd()

void OSInitHookEnd (void)

{

#if OS_CPU_INT_DIS_MEAS_EN > O
0S_CPU_IntDisMeasInit();

#endif

}

3.03.03 OS_CPU_C.C, OSTaskCreateHook()

This function is called by pC/OS-II's OSTaskCreate() or OSTaskCreateExt() when a task is
created. OSTaskCreateHook() gives the opportunity to add code specific to the port when a task is
created. In our case, we call an application hook defined within app.c or app_hooks.c. The
placement of the application hooks is non critical and may vary depending on project developer.

Listing 3-11, OS_CPU_C.C, OSInitHookEnd()

#if OS_CPU_HOOKS_EN > O
void OSTaskCreateHook (OS_TCB *ptcb)

{
#if OS_APP_HOOKS_EN > O
App_TaskCreateHook(ptcb);
#else
(void)ptchb;
#endif

ro
#endif

11

pC/OS-Il and the Microchip dsPIC33

3.03.04 OS_CPU_C.C, OSTaskStklnit()

Recall (from the pC/0OS-ll documentation) that a task is declared as shown in listing 3-12.

Listing 3-12, uC/OS-1l Task
zoid MyTask (void *p_arg)

/* Do something with “p_arg”, optional */
while (1) {
/* Task body */
OSTimeDlyHMSM(O, 0, 1, 0);
}
}

The code in Listing 3-13 initializes the stack frame for the task being created. The task received an
optional argument ‘p_arg’. Most compilers pass a single argument in register WO and thus, ‘p_arg’ is
passed in WO when the task is created.

The ‘Task Body’ MUST call either one of the 0S???Pend() functions or OSTimedly??() functions. In
other words, a task MUST always be waiting for an event to occur. An event can be the reception of a
signal or a message from another task or ISR. An event can also be to wait for the passage of time.

12

pC/0OS-Il and the Microchip dsPIC33

Listing 3-13, 0S_CPU_C.C, 0STaskStkInit()

0S_STK *0STaskStklnit (void (*task)(void *pd), void *p_arg, 0S_STK *ptos, INT16U opt)

INT16U Xx;
INT8U pc_high;

pc_high = 0;
*ptos++ = (0S_STK)task;
*ptos++ = (OS_STK)pc_high;
*ptos++ = (OS_STK)task;
X = 0;
ifT (CORCONbits.IPL3) {
X |= 0x0080;
*ptos++ = (OS_STK)(x | (INT16U)pc_high);
*ptos++ = X;
*ptos++ = (0S_STK)p_arg;
*ptos++ = Ox1111;
*ptos++ = 0x2222;
*ptos++ = 0x3333;
*ptos++ = 0x4444;
*ptos++ = O0x5555;
*ptos++ = 0X6666;
*ptos++ = OX7777;
*ptos++ = 0x8888;
*ptos++ = 0x9999;
*ptos++ = OXAAAA;
*ptos++ = OxBBBB;
*ptos++ = OXCCCC;
*ptos++ = OxDDDD;
*ptos++ = OXEEEE;
*ptos++ = ACCAL;
*ptos++ = ACCAH;
*ptos++ = ACCAU;
*ptos++ = ACCBL;
*ptos++ = ACCBH;
*ptos++ = ACCBU;
*ptos++ = TBLPAG;
*ptos++ = PSVPAG;
*ptos++ = RCOUNT;
*ptos++ = DCOUNT;
*ptos++ = DOSTARTL;
*ptos++ = DOSTARTH;
*ptos++ = DOENDL;
*ptos++ = DOENDH;
*ptos++ = 0;
*ptos++ = CORCON;

return (ptos);

//
//

//
//

//
//

//

13

Push the PC (Starting Address for the new task)
Upper byte word of start address

Simulate an Interrupt, Push the PC

Set SR to enable all interrupts
Check the interrupt level mask bit IPL3, == 17
Save the value of IPL3 in x, bit 7.

Push the SR Low, CORCON IPL3 and PC (22..16)
Push SR Low and CORCON IPL3 on to the stack

WO, Push a dummy argument on to the stack
w1
w2
w3
w4
W5
We
w7
w8
w9
W10
w11
w12
w13
w14

Accumulator
Accumulator
Accumulator

> >

Accumulator
Accumulator
Accumulator

[ssRveRvs]

Table Page
Program Space Visibility Page Address
Repeat Loop Counter

Do Loop Counter

Do Loop Start Address
Do Loop Start Address
Do Loop End Address
Do Loop End Address

Status Register (contents irrelevant)
Core Configuration Register

Return the address to the top of the stack

pC/OS-11 and the Microchip dsPIC33

Figure 3-1 shows how the stack frame is initialized for each task when it's created.

Low Memory

<+—— Stack Bottom

Simulated

2:16
] Interrupt

ptos -
(Top OFf Stack) ———————* High Memory

Figure 3-1, The Initial Stack Frame for each Task.

When the task is created, the final value of ptos is placed in the OS_TCB of that task by the uC/OS-Il
function that calls 0STaskStkInit() (i.e. 0STaskCreate() or OSTaskCreateExt()).

14

pC/0OS-Il and the Microchip dsPIC33

3.03.05 OS_CPU_C.C, OSTaskSwHook()

0STaskSwHook() is called when a context switch occurs. This function allows the port code to be
extended and do things such as measuring the execution time of a task, output a pulse on a port pin
when a context switch occurs, etc. In our case, we call an application hook defined within app.c or
app_hooks.c. The placement of the application hooks is non critical and may vary depending on
project developer.

Listing 3-14, OS_CPU_C.C, OSCtxSwHook()

#if OS_CPU_HOOKS_EN > O
void OSTaskSwHook (void)

{

#if OS_APP_HOOKS_EN > O
App_TaskSwHook() ;

#endif

X
#endif

3.03.06 OS_CPU_C.C, OSTimeTickHook()

OSTimeTickHook() is called at the very beginning of OSTimeTick(). This function allows the port
code to be extended. Much like the other hooks, this function calls a user defined application hook placed
within app - ¢ or app_hooks . c depending on the preference of the project developer.

Additionally, OSTimeTickHook() determines whether it's time to update the pC/OS-Il timers. This is
done by signaling the timer task.

Listing 3-15, OS_CPU_C.C, OSTimeTickHook()
void OSTimeTickHook (void)

{

#if OS_VIEW_MODULE > 0O
App_TimeTickHook();

#endif

#if OS_TMR_EN > O
OSTmrCtr++;
ifT (OSTmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {
OSTmrCtr = O;
OSTmrSignal();

b,
#endif
3

15

pC/OS-Il and the Microchip dsPIC33

3.04 OS_CPU A.S

A pC/OS-II port requires that you write five fairly simple assembly language functions. These functions
are needed because you normally cannot save/restore registers from C functions. The five functions are:

0S_CPU_SR_Save()
0S_CPU_SR_Restore()
0SStartHighRdy ()
osCtxsw(Q
OSIntCtxsw()

It should be noted that since the dsPIC33 has memory mapped registers, the first two functions, namely
0S_CPU_SR_Save() and 0S_CPU_SR_Restore() have been implemented as C macros. Since the
remaining functions involve modifying the program counter, they have been implemented in assembly
language in order to leverage off of the RETFIE instruction. The RETFIE instruction will restore the PC
from data located on the current tasks stack. This is why an interrupt is simulated during task stack
initialization.

3.04.01 OS_CPU_A.S, OSStartHighRdy()

0SStartHighRdy() is called by OSStart() to start running the highest priority task that was created
before calling OSStart(). OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest
priority task.

Listing 3-18, OSStartHighRdy ()

_0SStartHighRdy:
call _OSTaskSwHook ; (1) call user defined task switch hook
mov #0x0001, wO ; (2) Set OSRunning to TRUE
mov.b wreg, _OSRunning
mov _OSTCBHighRdy, wO ; (3) Resume Stack Pointer
mov [wO], w15
0S_REGS_RESTORE ; (4) Restore Context
retfie ; (5) Run Task

L3-18(1) Before starting the highest priority task, we call 0STaskSwHook() in case a hook
function has been declared (see 0S_CPU_C.C).

L3-18(2) The pC/OS-Il flag OSRunning is set to TRUE indicating that pC/OS-11 will be running
once the first task is started.

L3-18(3) We then get the pointer to the task’s top-of-stack (was stored by OSTaskCreate() or
OSTaskCreateExt()). See figure 3-1 (ptos is stored in the OS_TCB of the created
task).

L3-18(4) We then pop all the registers from the task’s stack. This is done by calling an assembly

language macro which is declared in 0S_CPU_UTIL_A.S and will be described later.

L3-18(5) By executing a return from interrupt instruction, the dsPIC33 pops the PC and the
STATUS register from the stack and thus, the dsPIC33 will start executing the task’s
code.

16

pC/0OS-Il and the Microchip dsPIC33

3.04.02 OS_CPU_A.S, OSCtxSw()

The code to perform a ‘task level' context switch is shown below in pseudo-code. 0SCtxSw() is called
when a higher priority task is made ready to run by another task or, when the current task can no longer
execute (e.g. it calls 0OSTimeDly (), 0SSemPend() and the semaphore is not available, etc.).

A task level context switch occurs when pC/OS-Il invokes the macro 0S_TASK_SW() which, in the case
of the dsPIC33 port, corresponds to calling 0SCtxSw(). Normally, it is ideal to use a software interrupt or
TRAP in order to enter 0SCtxSw(), however, since a software interrupt is not available, code must
adjust the stack frame in order to simulate an interrupt such that the RETFIE instruction may be used to
restore the PC, SR Low, and CORCON IPL3.

0S_TASK_SWQ)

0SCtxSw:
Add SRL, IPL3 and the upper 7 bits of the return PC to simulate an ISR /* (1) */
Save the CPU registers onto the old task’s stack; /* (2) */
OSTCBCur->0STCBStkPtr = SP; /* (3) */
0STaskSwHook() ; /* (4) */
OSPrioCur = OSPrioHighRdy; /* (5) */
OSTCBCur = OSTCBHighRdy; /* (6) */
SP = OSTCBHighRdy->0STCBStkPtr; /> (7)) */
Restore the CPU registers from the new task’s stack; /* (8) */
Return from Interrupt; /* (9) */

The actual code for the task level context switch is shown in Listing 3-19.

Listing 3-19, 0SCtxSw()

_0SCtxSw:
mov.b SRL, wreg ; (1) Simulate an interrupt, save SRL and CORCON IPL3
sl wo, #8, wO

btsc CORCON, #IPL3
bset w0, #7;

ior w0, [--wi5], w0

mov wo, [wl5++]

OS_REGS_SAVE ; (2) Save context of interrupted task
mov _OSTCBCur, w0 ; (3) OSTCBCur->0STCBStkPtr = SP

mov wl5, [wO]

call _OSTaskSwHook ; (4) Call user defined task switch hook
mov _OSTCBHighRdy, wl ; (5) OSPrioCur = OSPrioHighRdy

mov wl, OSTCBCur

mov.b _OSPrioHighRdy, wreg ; (6) OSTCBCur = OSTCBHighRdy
mov.b wreg, _OSPrioCur

mov [w1], wi5 ; (7) SP = OSTCBHighRdy->0STCBStkPtr
0S_REGS_RESTORE ; (8) Restore context of interrupted task
retfie ; (9) Return from interrupt

17

pC/OS-Il and the Microchip dsPIC33

3.04.03 OS_CPU_A.S, OSIntCtxSw()

When an ISR (Interrupt Service Routine) completes, OSIntExit() is called to determine whether a
more important task than the interrupted task needs to execute. If that's the case, OSIntExit()
determines which task to run next and calls 0SIntCtxSw() to perform the actual context switch to that
task. You will notice that OSIntCtxSw() is identical to the second half of 0OSCtxSw(). The reason we
have these as two separate functions is to simplify debugging. Specifically, if you wanted to set a
breakpoint in OSIntCtxSw(), you would hit the breakpoint during a task level context switch (if
OSIntCtxSw() was just a label in 0SCtxSw()). Of course this would make debugging a bit difficult.

Listing 3-20, OSIntCtxSw()

_0SIntCtxSw:
call _OSTaskSwHook ; Call user defined task switch hook
mov _OSTCBHighRdy, wl ; OSPrioCur = OSPrioHighRdy
mov wl, OSTCBCur
mov.b _OSPrioHighRdy, wreg ; OSTCBCur = OSTCBHighRdy

mov.b wreg, _OSPrioCur

mov [wi], wi5 ; W15 (SP) = OSTCBHighRdy->0STCBStkPtr
0S_REGS_RESTORE ; Restore context of interrupted task
retfie ; Switch to the new context

3.04.04 OS_CPU_A.S, T2Interrupt()

Since the dsPIC uses a vectored interrupt controller, ALL ISR’s must follow the following format. The
example provided below is the actual OS Time Tick ISR for pC/OS8-Il. Generally, it is common practice to
initialize the OS Tick timer from C code (BSP.C) and service the interrupt in assembly (BSP_A.S). From
assembly, a C ISR Handler function may be called in order to handle more complex operations.

Note: T2Interrupt() is one of two possible OS Time Tick Interrupt vectors. The option to choose 1
of 2 possible timers to generate the OS Tick exists from within (BSP_H). If an alternate timer is
selected the ISR code below will not run. See T4Interrupt below.

__T2Interrupt:

OS_REGS_SAVE ; 1) Save processor registers
inc.b _OSIntNesting ; 2) Call OSIntEnter() or increment OSIntNesting
dec.b _OSIntNesting, wreg ; 3) Check OSIntNesting. if OSIntNesting == 1,
bra nz, T2_Cont ; then save the stack pointer, otherwise jump
mov _0STCBCur, wo ; to T2_Cont.
mov wl5, [wO]
T2_Cont:
call _0S_Tick_ISR_Handler ; 4) Call YOUR ISR Handler (May be a C function).
; In this case, the 0S Tick ISR Handler
call _OSIntExit ; 5) Call OSInteExit()
OS_REGS_RESTORE ; 6) Restore registers
retfie

18

pC/0OS-Il and the Microchip dsPIC33

3.04.05 OS_CPU_A.S, T4Interrupt()

Since the dsPIC uses a vectored interrupt controller, ALL ISR’s must follow the following format. The
example provided below is the actual OS Time Tick ISR for pC/OS-Il. Generally, it is common practice to
initialize the OS Tick timer from C code (BSP.C) and service the interrupt in assembly (BSP_A.S). From
assembly, a C ISR Handler function may be called in order to handle more complex operations.

Note: T4lInterrupt() is one of two possible OS Time Tick Interrupt vectors. The option to choose 1
of 2 possible timers to generate the OS Tick exists from within (BSP.H). If an alternate timer is
selected the ISR code below will not run. See T2Interrupt above.

T4lInterrupt:

0S_REGS_SAVE ; 1) Save processor registers
inc.b _OSIntNesting ; 2) Call OSIntEnter() or increment OSIntNesting
dec.b _OSIntNesting, wreg ; 3) Check OSIntNesting. if OSIntNesting == 1,
bra nz, T4_Cont ; then save the stack pointer, otherwise jump
mov _0STCBCur, wo ; to T2_Cont.
mov wl5, [wO]
T4_Cont:
call _O0S_Tick_ISR_Handler ; 4) Call YOUR ISR Handler (May be a C function).
; In this case, the 0S Tick ISR Handler
call _OSIntExit ; 5) Call OSInteExit()
0S_REGS_RESTORE ; 6) Restore registers
retfie

19

pC/OS-Il and the Microchip dsPIC33

3.05 OS_CPU_UTIL_A.S

0S_CPU_UTIL_A.S is an assembly language file that declares two macros used to save the context of
the CPU. These macros are called 0S_REGS_SAVE and OS_REGS RESTORE and are declared as shown
below.

-macro OS_REGS_SAVE

push.d w0
push.d w2
push.d w4
push.d w6
push.d w8
push.d w10
push.d wi2
push wld

push ACCAL
push ACCAH
push ACCAU
push ACCBL
push ACCBH
push ACCBU
push TBLPAG
push PSVPAG
push RCOUNT
push DCOUNT
push DOSTARTL
push DOSTARTH
push DOENDL
push DOENDH

push SR
push CORCON
.endm

-macro OS_REGS_RESTORE

pop CORCON
pop SR
pop DOENDH
pop DOENDL
pop DOSTARTH
pop DOSTARTL
pop DCOUNT
pop RCOUNT
pop PSVPAG
pop TBLPAG
pop ACCBU
pop ACCBH
pop ACCBL
pop ACCAU
pop ACCAH
pop ACCAL
pop wl4
pop.d wil2
pop.-d wil0
pop.d w8
pop.d w6
pop.-d w4
pop.-d w2
pop.-d w0
-endm

20

pC/OS-Il and the Microchip dsPIC33

IMPORTANT

You MUST include a reference to this file when you write your ISRs (see section 4.00, Interrupt
Handling). This is done by using the assembler directive #include as follows:

-include “os_cpu_util_a.s”

3.06 OS_DBG.C

0S_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information
about uC/OS-Il and its configuration. Specifically, 0S_DBG.C contains a number of constants that are
placed in ROM (code space) which the debugger can read and display. Unfortunately, the MPLab
debugger is not uC/0S-1l aware and thus this file is not needed but should be included in all builds for
future reference.

21

pC/OS-Il and the Microchip dsPIC33

4.00 Interrupt Handling

The dsPIC33 contains an interrupt and exception vector table which contains up to 54 entries. Each of
these entries point to an interrupt or exception handler. For pC/OS-Il, each of those interrupt handlers
MUST be written in assembly language. In fact, only a portion must be in assembly language as shown
in listing 4-1. Note that you ONLY need to change the portion in RED for your own ISR. The rest of the
code is IDENTICAL from one ISR to the next. Of course, you will need to give a unique name to your
ISRs.

Additionally, every tool-chain vendor has a uniqgue method for placing interrupt code and setting interrupt
vector table entries. At the time of this writing, the following methods are employed by each of the three
tool-chain vendors supported. You may use bsp_a.s as an interrupt example if necessary.

C30:
-text (@D
-global __ISR_Name @)
__ISR_Name: A
.. code .. (D)
1. Place the remaining code below this point within the TEXT section
2. Prototype the name of the ISR Handler. Note that the ISR handler name has two
underscores. One provided by the ISR routine programmer, and another by Microchip as
part of the ISR naming convention.
3. Declare the ISR with the name specified in the Microchip MPLAB C30 Users Guide.
(Document DS51284F, Page 100, table 7-1). This will tell the compiler to add the constant
ISR address to the vector table by means of adding carefully placed constant data to the
application binary.
4. Include the ISR code under the ISR name label.
dsPICC:
GLOBAL __ ISR_Name €))
psect vectors,class=VECTORS,delta=2 @)
ORG 01Ch M)
DDW __ISR_Name ©))
psect text,global,reloc=4,class=CODE,delta=2 5)
___ISR_Name: (6)
. code .. a
1. Prototype the name of the ISR.
2. Specify the placement of the defined double word (4) to be within the VECTORS section.
3. Specify the address to place ISR vector address. This value must be the vector address as

specified in the dsPIC33 datasheet, minus six. The subtraction of six is necessary since
ORG directive is NOT absolute and is relative to the current section (VECTORS) which
starts from an offset of 0x06 in the memory map. In this case 01Ch represents vector
address 0x22, the Timer2 ISR vector address.

4. Declare a double word representing the address of the ISR to be placed in the specified

address.

Place the remainder of the code within the file in the CODE segment.

Declare the ISR with the name of your choice.

Include the ISR code under the ISR name label.

No g

22

pC/0OS-Il and the Microchip dsPIC33

iccDSPIC:
COMMON INTVEC:CODE :ROOT(2) €D
ORG ISR _Address * 2 (@)
DL __ ISR _Name / 2 (€))
RSEG CODE:CODE:ROOT(2) (€))
PUBLIC _ ISR _Name B)

__ISR_Name: (6)
.. code .. @)

1. Place the defined long data word in the INTVEC section.

2. Specify the address to store the following long word (24 bit). This must be the ISR vector
address as specified in the datasheet, multiplied by two.

3. Declare a long word who's value is that of the ISR_Handler defined within the same file
below. The address to be placed in the above memory address must be that of the
ISR_Name divided by two. Additional vectors may be declared at this time before step 4.

4. Place the remainder of the code within the file in the CODE segment.

5. Prototype the ISR Name. Note that the ISR name has two underscores appended to the
beginning. This is to maintain consistency with the C30 compiler port, but is not required.

6. Declare the ISR with the name of your choice.

7. Include the ISR code under the ISR name label.

23

pC/OS-Il and the Microchip dsPIC33

Listing 4-1, Assembly Language ISR

_My_ISR:
0S_REGS_SAVE ; 1) Save processor registers
inc.b _OSIntNesting ; 2) Call OSIntEnter() or increment OSIntNesting
dec.b _OSIntNesting, wreg ; 3) Check OSIntNesting. if OSIntNesting == 1,
bra nz, My ISR 1 ; then save the stack pointer, otherwise jump
mov _OSTCBCur, wO ; to My ISR_1
mov wl5, [wO]

_My ISR _1:
call _My_ISR_Handler ; 4) Call YOUR ISR Handler (May be a C function).

; You MUST clear the interrupt source either
from within, or just after your ISR Handler.

call _OSIntExit ; 5) Call OSIntExit()
0S_REGS_RESTORE ; 6) Restore registers
retfie > 7) Return to the interrupted task

L4-1(1) You then MUST save all of the registers using the 0S_REGS_SAVE macro.

L4-1(2) You MUST increment uC/OS-II's interrupt nesting counter (OSIntNesting)

L4-1(3) You MUST check to see whether this is the first nested ISR by checking if
OSIntNesting got incremented to 1. If this is the first nested ISR level then you MUST
save the stack pointer into the current task’s OS_TCB.

L4-1(4) You can now call your actual ISR handler which could be written in C. You don’t have to
write the handler in C but it's generally more readable and portable. You may optionally
choose to clear the interrupt source from within your ISR handler, or you may do it before
calling OSIntExit() from assembly.

L4-1(5) When you are done handling the ISR (i.e. the code returns from My ISR_Handler()),
you MUST call OSIntExit(). OSIntExit() checks to see if this is the last nested
ISR. Ifitis then OSIntExit() checks to see if a more important task has been made
ready-to-run by the ISR (or any other nested ISRs). If a more important task is
ready-to-run, OSIntExit() doesn't return but instead context switches to the more
important task.

L4-1(6) If the interrupted task is still the most important task to run then OSIntExit() returns
and we simply need to restore the saved CPU registers in order to return to the
interrupted task. To restore the registers, you MUST invoke the OS_REGS RESTORE
macro.

L4-1(7) The RETFIE instruction MUST be executed to return program execution back to the

interrupted task in the event that OSIntExit()does not force a context switch.

The pseudo-code for the C ISR handler is shown in Listing 4-2.

24

pC/0OS-Il and the Microchip dsPIC33

Listing 4-2, C ISR Handler

void My_ISR_Handler (void)

{
/* (1) Don’t forget to clear the interrupt source */
/* (2) Enable interrupts if you want to allow nested interrupts */
/* (3) Handle the interrupt using C */
/* (4) Disable interrupts (if you enabled them) */

}

L4-2(1) Don't forget to clear the interrupting device (i.e. acknowledge that you serviced the
interrupt). Failure to do this will cause the ISR to be re-entered which may not be what
you want.

L4-2(2) As indicated, you may enable interrupts (by lowering the IPL level in the SR) if you want
to allow nested interrupts.

L4-2(3) You can now service the interrupting device using the C programming language (instead
of doing that in assembly language).

L4-2(4) If you disabled interrupts (see step #1) then you should disable them before returning to

the caller of this function.

25

pC/OS-Il and the Microchip dsPIC33

5.00 Application Code

Your application code can make use of the port presented in this application note as described in this
section. Figure 5-1 shows a block diagram of the relationship between your application, pC/OS-Il, the
pC/OS-Il port, the BSP (Board Support Package), the dsPIC CPU and the target hardware.

Your Application

_ APP_C
Section 5 APP _H
APP_CFG.H
INCLUDES .H
0S_CFG.H

¢ A
pC/OS-II

0S_CORE.C
0S_FLAG.C
0S_MBOX.C
0S_MEM.C
uc/os-i 0S_MUTEX.C
Book 0S_Q.C
0S_SEM.C
0S_TASK.C
OS_TIME.C
0S_TMR.C
ucos 11.H

!
"C/OS'II 4

Section 3 dso|s,IC|(3:u I:‘C’rt BSP
0S_CPU_A.ASM BSP.C Section 6
0S_CPU_I .ASM BSP.H
0S_CPU.H
0S DBG.C I_
Section 2 Explorer 16 / Target Board

Figure 5-1, Relationship between modules.

26

pC/0OS-Il and the Microchip dsPIC33

5.01

APP.C, APP.H and APP_CFG.H

For sake of discussion, your application is placed in files called APP.C, APP_.H and APP_CFG.H. Of
course, your application (i.e. product) can contain many more files.

APP . C would be where you would place main() but, of course, you can place main() anywhere you

want.

APP _H contains #define constants, macros, prototypes, etc. that are specific to your application. This
file may NOT exist in YOUR application and it is not included in examples provided for the PIC.

APP_CFG.H contains #deFfine constants to configure the application. We placed task stack sizes task
priorities and other #defines in this file. This allows you to locate task priorities and sizes in one place.

APP.C is a standard test file for uC/OS-1l examples. The two important functions are main() (listing
5-1) and AppStartTask() (listing 5-2).

Listing 5-1, main()

void main (void)

INT8U err;

BSP_IntDisAII(); @
osInitQ; @
OSTaskCreateExt(AppStartTask, MA)

(void *)0,

(0S_STK *)&AppStartTaskStk[TASK_STK_SI1ZE-1],
TASK_START_PRIO,

TASK_START_PRIO,

(0S_STK *)&AppStartTaskStk[0],
TASK_STK_SIZE,

(void *)0,

0S_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

#if 0S_TASK_NAME_SIZE > 11

OSTaskNameSet(TASK_START_PRIO, *'Start Task'™, &err);)
#endif
osStart(); ®)
L5-1(1) A BSP function called BSP_IntDisAll() is called to disable ALL interrupts. You would

L5-1(2)

L5-1(3)

L5-1(4)

L5-1(5)

typically prevent the interrupt controller from issuing interrupts until your application is ready
to service them.

As with all pC/OS-Il based applications, you need to initialize pC/OS-1l1 by calling
osinit().

You need to create at least one task. In this case, we created the task using the extended
task create call. This allow pC/OS-Il to have more information about your task.

We can now give a name for our task.

In order to start multitasking, you need to call OSStart(). Note that OSStart() will not
return from this call.

27

pC/OS-Il and the Microchip dsPIC33

Listing 5-2, AppStartTask()

static void AppStartTask (void *p_arg)

(void)p_arg;

BSP_InitQ); (€]
#if 0S_TASK_STAT EN > 0

osStatInit(); @)
#endif

#if (UC_PROBE_0S_PLUGIN > 0) || (uC_PROBE_COM_MODULE > 0)
AppProbelnit();

#endif
AppTaskCreate(); (©))
while (TRUE) {)

L5-2(1)

L5-2(2)

L5-2(3)

L5-2(4)

L5-2(5)

for (i = 0; 1 < 4; i++) {

}

for g = 1; j <= 8; j++) {

LED_On(J);
OSTimeDlyHMSM(O, 0, 0, 25); (©)
LED OFf(j);
ks
for G =7; § >=2; j--) {
LED_On(j);
OSTimeDlyHMSM(O, 0, 0, 25);
LED OFfF(§);
s
for (i =0; 1 < 4; i++) {
LED_On(0);
OSTimeDlyHMSM(O, 0, 0, 25);
LED_Off(0);

0STimeDIYHMSM(0, 0, 0, 25);

If you decided to implement a BSP (see section 6, Board Support Package) for your target
board, you would initialize it here.

If you enabled the statistic task by setting OS_TASK_STAT_EN in OS_CFG_.H to 1) then, you
need to call it here. Please note that you need to make sure that you initialized and enabled
the uC/OS-1l clock tick because 0SStatlnit() assumes the presence of clock ticks. In
other words, if the tick ISR is not active when you call 0SStatInit(), your application will
end up in pC/OS-II's idle task and not be able to run any other tasks.

At this point, you can create additional tasks. We decided to place all our task initialization in
one function called AppTaskCreate() but, you are certainly welcome to use a different
technique.

You can now perform whatever additional function you want for this task. We decided to
toggle an LED by calling a BSP function called LED_Toggle(). It is in fact these nested
loops that perform the LED sweep functionality provided in many of our example applications.

Each of your tasks MUST invoke one of the pC/OS-1I functions that will wait for an event to

occur. We decided to use OSTimeDlyHMSM() which suspends the task for a specified
amount of time.

28

pC/0OS-Il and the Microchip dsPIC33

5.02 INCLUDES.H

INCLUDES . H is a master include file and is found at the top of all .C files. INCLUDES.H allows every .C
file in your project to be written without concern about which header file is actually needed. The only
drawbacks to having a master include file are that INCLUDES.H may include header files that are not
pertinent to the actual .C file being compiled and the compilation process may take longer. These
inconveniences are offset by code portability. You can edit INCLUDES.H to add your own header files,
but your header files should be added at the end of the list. Listing 5-3 shows the typical contents of
INCLUDES.H. Of course, you can add your own header files as needed.

Listing 5-3, INCLUDES.H

#ifndef INCLUDES H
#define INCLUDES_H
#include <stdio.h>
#include <string.h>

#include <ctype.h>
#include <stdlib.h>

#include <p33FJ256GP710.h> /* Header file name varies with tool-chain */

#include <cpu.h>
#include <ucos_1ii.h>

#include <bsp.h>

#include <lib_def_h>
#include <lib_str.h>
#include <lib_mem.h>

#iT (UuC_PROBE_OS_PLUGIN > 0)
#include <0s_probe._h>
#endif

#iT (uC_PROBE_COM_MODULE > 0)
#include <probe_com.h>

#if (PROBE_COM_METHOD RS232 > 0)
#include <probe_rs232_h>
#endif

#endif

#endif /* End of File */

503 OS_CFG.H

Every uC/OS-lIl requires that you configure the RTOS for your own application. The configuration of
pC/OS-Il allows to specify how many tasks your application will have, how many semaphores (if any),

how many message queues (if any), etc. Configuring uC/OS-Il allows pC/OS-II's footprint to be only as
big as it needs to be.

29

pC/OS-Il and the Microchip dsPIC33

6.00 BSP (Board Support Package)

It is often convenient to create a Board Support Package (BSP) for your target hardware. A BSP could
allow you to encapsulate the following functionality:

Timer initialization (OS Ticker and View)
PLL Initialization

ISR Handlers

LED control functions

Reading switches

Setting up communication channels
Etc.

A BSP consist of 2 files: BSP.C and BSP . H.

For example, because a number of evaluation boards are equipped with LEDs, we decided to create LED
control functions as follows:

void LED Init(void);

void LED On(INT8U led);
void LED_OFF(INT8U led);
void LED Toggle(INT8U led);

In this case, LEDs are referenced ‘logically’ instead of physically. When you write the BSP, you
determine which LED is LED #1, which is LED #2, etc. When you want to turn on LED #1, you simply call
LED_On(1). If you want to toggle LED #2, you simply call LED_Toggle(2). In fact, you can (and
should) associate names to your LEDs using #defines. You could thus specify LED_OFff(LED_PM).
Where LED_PM ‘could’ be defined as LED #2.

Each BSP should contain a BSP initialization function. We called ours BSP_Init() and should be
called by your application code.

We decided to encapsulate the uC/OS-11 clock tick ISR handler and its initialization function in the BSP
because they ideally belong in your application code and not as part of uC/OS-1l. Doing this makes it

easier to adapt the pC/OS-Il port to different target hardware since you could simply change the BSP to
select whichever timer or interrupt source for the clock tick that your application requires. The clock tick
ISR is in BSP_A_S which in turn calls the OS_Tick ISR_Handler () that is found in BSP.C.

30

pC/OS-Il and the Microchip dsPIC33

7.00 Conclusion

This application note presented a ‘generic’ port for the dsPIC33 processor. Of course, if you use

pC/0OS-Il and use the port on actual hardware, you will need to initialize and properly handle hardware
interrupts.

31

pC/OS-Il and the Microchip dsPIC33

Licensing

If you intend to use pC/OS-Il in a commercial product, remember that you need to contact Micripm to

properly license its use in your product. The use of pC/OS-Il in commercial applications is NOT-FREE.
Your honesty is greatly appreciated.

References

MicroC/OS-II, The Real-Time Kernel, 2" Edition _

Jean J. Labrosse MichC/OS_II
CMP Technical Books, 2002
ISBN 1-5782-0103-9 posnd Kditlon o

-8 @
‘?\ :_,E:;os-n
..

Contacts

CMP Books, Inc.
6600 Silacci Way
Gilroy, CA 95020 USA
Phone Orders: 1-800-500-6875
or 1-408-848-3854
Fax Orders: 1-408-848-5784
e-mail: rushorders@cmpbooks.com
WEB: http://www.cmpbooks.com

Micripm

949 Crestview Circle

Weston, FL 33327

USA

954-217-2036

954-217-2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, Arizona 85224-6199
USA

480-792-7200

WEB: www.MicroChip.com

32

mailto:rushorders@cmpbooks.com
http://www.cmpbooks.com/subject/embedded_systems
mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.microchip.com/

	1.00 Introduction
	2.00 The Microchip dsPIC33 programmer’s model
	3.00 µC/OS-II Port for dsPIC33
	3.01 Directories and Files
	3.02 OS_CPU.H
	3.02.01 OS_CPU.H, macros for ‘externals’
	3.02.02 OS_CPU.H, Data Types
	3.02.03 OS_CPU.H, Critical Sections
	3.02.04 OS_CPU.H, Stack growth
	3.02.05 OS_CPU.H, Task Level Context Switch
	3.02.06 OS_CPU.H, Function Prototypes
	3.03 OS_CPU_C.C
	3.03.01 OS_CPU_C.C, OSInitHookBegin()
	3.03.02 OS_CPU_C.C, OSInitHookEnd()
	3.03.03 OS_CPU_C.C, OSTaskCreateHook()
	3.03.04 OS_CPU_C.C, OSTaskStkInit()
	3.03.05 OS_CPU_C.C, OSTaskSwHook()
	3.03.06 OS_CPU_C.C, OSTimeTickHook()
	3.04 OS_CPU_A.S
	3.04.01 OS_CPU_A.S, OSStartHighRdy()
	3.04.02 OS_CPU_A.S, OSCtxSw()
	3.04.03 OS_CPU_A.S, OSIntCtxSw()
	3.04.04 OS_CPU_A.S, T2Interrupt()
	3.04.05 OS_CPU_A.S, T4Interrupt()
	3.05 OS_CPU_UTIL_A.S
	3.06 OS_DBG.C
	4.00 Interrupt Handling
	 5.00 Application Code
	5.01 APP.C, APP.H and APP_CFG.H
	5.02 INCLUDES.H
	5.03 OS_CFG.H
	6.00 BSP (Board Support Package)
	7.00 Conclusion
	Licensing
	References
	Contacts

