

ANALOG DEVICES, INC.

www.analog.com

Basic SigmaDSP

Microcontroller Integration

Analog Devices Inc

Table of Contents
Introduction .. 3

SigmaStudio and Standalone Application Overview ... 4

Output Files ... 5

Data Capture Window .. 7

Sequencer Window ... 7

Microcontroller Implementation .. 12

Accessing Single Registers Or SigmaStudio Cell Parameters .. 14

Implementing Sequencer Modes .. 14

Analog Devices Inc

Introduction
 SigmaStudio software and any standalone application software developed by Analog

Devices Inc (ADI), under the Digital Audio Unit (DAU) software group supervision, can drive any

SigmaDSP family of audio specific processors. SigmaStudio and its standalone applications

software share the same highly intuitive user interface for audio system development and

tuning. Hence, most of the tools and tools menus are similar and execute similar tasks. This

document is intended to illustrate as clear as possible the integration process of ADI user

interface software into a micro controller system. For simplicity reasons, the examples used in

this document refer to a specific microcontroller and microcontroller graphical environment to

show a proof of concept. All the procedures and methodologies described in this manual are

applicable to any kind of microcontroller and their graphical environment.

Analog Devices Inc

SigmaStudio and Standalone Application

Overview
 While using SigmaStudio and the project created is ready to be ported to the

microcontroller (for details, please refer to the Microcontroller Implementation section), there

are few steps we must consider:

1. Locate and press the “Link Compile Download” button

2. After pressing the button, the “Export System Files” button will be enabled

3. In a similar fashion, if using any standalone application, locate the “Export System Files”

or “Export to uC” button

4. Pressing the “Export System Files” or “Export to uC” button will prompt a dialog box that

will allow the user to choose a folder where all the files would be saved. It is always

good practice to give a meaningful name.

Analog Devices Inc

Output Files

The following is a list of all files that are automatically generated, where the ‘*’ represents

the given name:

 *.hex

o This file is the Param Data of the System

 *.params

o Gives detailed information of Cell Name, Parameter Name, Address, Value,
and Data. For example:

 Cell Name = Tone1

 Parameter Name = sin_lookupAlg19401mask

 Parameter Address = 8

 Parameter Value = 255

 Parameter Data :

0X00, 0X00, 0X00, 0XFF,

Analog Devices Inc

 *.h

o This file contains all the information needed to access the IC registers,

program data, and param data using a method named “default_download()”

(where applicable). The “default_download()” method calls all the registers

and commands exactly as they appear on the capture window. For any

SigmaDSP that has no engine (i.e. CODECs, ADCs, DACs, etc) only the register

information will be displayed, and a method should be manually

implemented under the user’s needs.

 *_PARAM.h

o Contains the parameter definitions of each independent module. For
example:

 /* Module Tone1 - Sine Tone*/

 #define MOD_TONE1_COUNT 3

 #define MOD_TONE1_DEVICE "IC1"

 #define MOD_STATIC_TONE1_ALG0_MASK_ADDR 8

 #define MOD_STATIC_TONE1_ALG0_MASK_FIXPT
0x000000FF

 *_REG.h

o Contains the Register definition for the SigmaDSP IC. Example:

 /* MCLK Pad Control - Registers (IC 1) */

 #define REG_MCLK_PAD_CONTROL_ADDR 0x4031

 #define REG_MCLK_PAD_CONTROL_VALUE 0x2

Analog Devices Inc

 “SigmaStudioFW.h” is the only file that is not automatically generated

o It is located on [Program Files]\Analog Devices\Sigma Studio 3.x folder, or where the

executable file resides.

o It contains a template with pre defined macros. The user has to implement these

macros manually to better suit his needs on a specific microcontroller family.

o One macro that is very helpful is the command “SIGMA_WRITE_REGISTER_BLOCK

(int devAddress, int address, int length, ADI_REG_TYPE *pData) ”, which contains

basic information such as device address, instruction address , length, and

instruction data.

Data Capture Window
 The Data Capture Window is a tool that is basically used to see what has been written or

read over the USB communications link. It also serves as a log window where the user can grab

as much lines as desired and drop them into the Sequencer Window (explained later). It

contains the Parameter/Register name, address, data, number of bytes, etc. This window is

very useful for application development and debugging.

Sequencer Window
The Sequencer window is a powerful tool that creates sets of instructions for a specific

task. To get access to it from SigmaStudio, simply open the Data Capture window (Ctrl + 5) and
click on the upper right double arrow button.

Then, the Sequencer Window will appear as part of the Data Capture

Analog Devices Inc

For standalone applications look into the main menu, under “Tools” and select “Open
Sequencer”. Notice that the Data Capture Window is a separate window.

Suppose that we have the following Sigma Studio schematic:

Our goal is to compile this SigmaStudio schematic or project and port it to a
microcontroller.

At this point we are able to create sequences. Using the Data Capture window as a tool,
we can start populating the sequencer window with data. For example, we want to switch
between internal generated sine tones, external input (such as music), and white noise via Nx2-
1 Multiplexer. Instead of using this Nx2-1 control, we are going to use the sequencer window.
To get started, clear all possible information that currently may exist on the data capture
window by clicking the red “x” button.

Analog Devices Inc

Now, it’s time to create modes using the data capture window. Clicking at the first
selection on our Nx2-1 control will write the necessary information to the data capture to route
the Sine Tones.

Going to the sequencer window, let’s create a mode named “Tones” with the
information displayed on the data capture window. Right click the mouse over the “Modes”
button and select “Rename” and type “Tones”

Creating modes using the data capture window is as simple as dragging and dropping
the information displayed on the data capture window to the sequencer window.

To create another mode within our Sequencer Window, clear off the information on the
data capture and select the next routing path from the Nx2-1 control.

Analog Devices Inc

Go to the Sequencer Window, right click the mouse and select “Add Mode” and rename

it to “Music”.

Drag and drop the information from the data capture window into the sequencer
window. Repeat for the last option and create a mode named “White Noise”. Finally, save the
sequencer file on a folder by pressing the “Save Sequence File” button.

Test the modes by clicking one of two buttons: One could be the “Download Mode to
Hardware” button which downloads everything on the current selected mode, where in this
case it will only download the “White Noise” mode. The other button is the “Launch Sequencer
Window” button which creates a floating window with all modes created. This way, the user
could download any mode in any order by pressing the desired button.

Analog Devices Inc

Once we tested our sequencer with all its modes, and we already have our basic
program into the microcontroller, the next step is to include some sequences and map each
mode to a GPIO port on our ARM M3 series uC. It could be any other microcontroller.

First, we click on the “Export Sequence Data” button.

Then, we give it a name. For this example we’ll name it “1761_Demo.h”. After pressing
“OK” the following files will be created:

 1761_Demo.h. This file contains references for all modes

 Tones_Modes.h, Music_Modes.h, and White Noise_Modes.h. Each independent
file contains it mode data. For example:

o ADI_REG_TYPE TONES_0[4] = {0x00, 0x00, 0x00, 0x00};

o void TONES_download()

o {

o SIGMA_WRITE_REGISTER_BLOCK(DEVICE_ADDR_IC_1, 0x0010, 6,
TONES_0); /* StMuxSwSlew1coeffname */}

Analog Devices Inc

Microcontroller Implementation
 Now that we had a SigmaStudio overview and learned which files are generated and its
function, we are ready to implement them to our target microcontroller. For demonstration
purposes, we’re going to use an ARM Cortex M3 series, and Keil graphical environment.
Assuming that the user already has defined the basic microcontroller configuration such
System Clocks, NVIC, GPIO, and the communication protocol configurations (in our case I2C),
then we move to our “main.c” file. On this file we must include the following header files:

 SigmaStudioFW.h (Assuming that the macros had been already defined by the user)

 *.h, and *_PARAM.h (where applicable).

The main function should look similar to this

Notice that we are calling “default_dowload()”. This function will actually grab all of the
SigmaStudio parameters and load it to the microcontroller. If using a standalone
application software, the user must define a function similar to the
“default_download()” function. This function looks like this:

Analog Devices Inc

 Notice that the SIGMA_WRITE_REGISTER_BLOCK(int devAddress, int address, int
length, ADI_REG_TYPE *pData) macro is used. This macro is defined on the
SigmaStudioFW.h file as follows:

Analog Devices Inc

Accessing Single Registers Or SigmaStudio Cell Parameters

As an example, we’re going to turn on/off sine Tone 1 (Left Tone) and sine Tone 2 (Right
Tone).

1. Declare a value vector of type “ADI_REG_TYPE” with the desired value to be
modified.

2. Call the “SIGMA_WRITE_BLOCK” macro with the correspondent parameters

Implementing Sequencer Modes

 On the “main.c” file, we need to include the “1761_Demo.h” file. On the microcontroller
graphical environment we need to add the auto generated “1761_Demo.c” file, which contains
all the call functions (the Modes) from the Sequencer.

