
The World Leader in High Performance Signal Processing Solutions

Basic Microcontroller

Integration Using Sigma Studio

Wilfrido Sierra

November 2010

Overview

This document will describe how to program a
microcontroller to emulate SigmaStudio to communicate with
a SigmaDSP IC in a real production system.

SigmaStudio already displays helpful information in the
Capture Window, which is shown below.

Displays all data written over the USB communications link

Parameter/register name, value, hex data, number of bytes

Data can easily be exported to a file

Very useful for application development and debugging

Enable under SigmaStudio‟s “View” menu (Ctrl-5)

2

Sigma Studio Overview

3

Suppose we have a simple SigmaStudio Project with two sine
tone sources that looks like this:

Sigma Studio Overview (cont…)

When the project has been verified and is ready to be ported
to the microcontroller, there are few steps to start the process

First, locate and press the “Link Compile Download” button

This compiles the project code and generates all necessary data files
to run the project on the SigmaDSP)

If an evaluation board is attached to the computer, the capture window
will display all data written from the computer to the SigmaDSP over
the USB port.

After compilation, the “Export System Files” button will be enabled

4

Sigma Studio Overview (cont…)

Pressing the “Export System Files” button will display a dialog
box which allows the user to choose a target folder for saving the
exported files. In this example, the files are named “Beep_export”.

A list of the files generated and their contents is explained in detail
in the following slides.

5

Sigma Studio Overview (cont…)

The following is a list of all files that are automatically
generated, where the „*‟ represents the given name:

 *.hex

This contains the contents of the program RAM

 *.params

Gives detailed information of Cell Name, Parameter Name, Address,
Value, and Data. For example:

Cell Name = Tone1

Parameter Name = sin_lookupAlg19401mask

Parameter Address = 8

Parameter Value = 255

Parameter Data :

0X00, 0X00, 0X00, 0XFF,

6

Sigma Studio Overview (cont…)

The following is a list of all files that are automatically
generated, where the „*‟ represents the given name:

 *_IC_1.h

This file contains all the information needed to access the IC registers,
program data, and param data using a method named
“default_download()”. This method calls all the registers and
commands exactly as they appear on the capture window.

7

Sigma Studio Overview (cont…)

The following is a list of all files that are automatically
generated, where the „*‟ represents the given name:
 *_IC_1_PARAM.h

Contains the parameter definitions of each independent module. For
example, here is an excerpt from the sine tone generator:
/* Module Tone1 - Sine Tone*/

#define MOD_TONE1_COUNT 3

#define MOD_TONE1_DEVICE "IC1"

#define MOD_STATIC_TONE1_ALG0_MASK_ADDR 8

#define MOD_STATIC_TONE1_ALG0_MASK_FIXPT 0x000000FF

 *_IC_1_REG.h

Contains the Register definitions and settings for the SigmaDSP IC.
For example:
/* MCLK Pad Control - Registers (IC 1) */

#define REG_MCLK_PAD_CONTROL_ADDR 0x4031

#define REG_MCLK_PAD_CONTROL_VALUE 0x2

8

Sigma Studio Overview (cont…)

 The following is a list of all files that are automatically generated,
where the „*‟ represents the given name:
 defines.h

This is rather a legacy header file that defines the total number of
transactions (i.e. writes to the I2C/SPI control port) already defined on our
*_IC_1.h file. It also contains the total buffer size expressed in bytes. The
“defines.h” is now seldom used, along with the “NumBytes_IC_1.dat” and
“TxBuffer_IC_1.dat” files. Together, these three files duplicate the
download sequence similar to default_download(). These files are still
generated to maintain backwards-compatibility with older systems.

NumBytes_IC_1.dat

Contains an array, size of the total number of commands. Each element
will let the microcontroller know how many bytes will be written in the
transaction.

 TxBuffer_IC_1.dat

Contains the actual data for the download transactions, which consists of
address byte(s) followed by data.

9

Sigma Studio Overview (cont…)

SigmaStudioFW.h is the only file that is not automatically
generated.

 It is located in the base SigmaStudio installation folder (by default,
this is [Program Files]\Analog Devices\Sigma Studio 3.x).

 It contains a template with pre defined macros. The user has to
implement these macros manually to be used with the desired
microcontroller family.

One macro that is very helpful is the command
“SIGMA_WRITE_REGISTER_BLOCK (int devAddress, int address,
int length, ADI_REG_TYPE *pData) ”, which contains basic
information such as device address, instruction address and
length, and instruction data.

10

Microcontroller Implementation

Now that the files have successfully been exported from
SigmaStudio, microcontroller code can be developed.

This example uses the ARM Cortex M3 series and Keil
integrated development environment.

The user should define the basic microcontroller
configuration such System Clocks, NVIC, GPIO, and the
communication protocol configurations (in our case I2C)
before continuing with this tutorial.

11

Microcontroller Implementation

First, open the “main.c” file.

 In this file, the following header files must be included:

SigmaStudioFW.h (Assuming that the macros have been already
defined by the user)

 *_IC_1.h

 *_IC_1_PARAM.h

12

Microcontroller implementation

The “main” function should look something like this:

13

Notice that we are calling

“default_dowload()”. This

function will actually

grab all of the

SigmaStudio code,

parameters, data, and

register settings, and

load them to the

SigmaDSP. In essence,

this should allow the

microcontroller to

emulate what

SigmaStudio does when

the Link-Compile-

Download button is

pressed.

Microcontroller implementation (cont…)

The function “default_download()” looks like this:

14

Microcontroller implementation (cont…)

Each line in default_download() corresponds to a transaction
shown in the capture window during SigmaStudio‟s Link-
Compile-Download sequence.

15

Microcontroller implementation (cont…)

 In our example the SIGMA_WRITE_REGISTER_BLOCK(int
devAddress, int address, int length, ADI_REG_TYPE *pData)
macro is shown below

16

Microcontroller implementation (cont…)

How to access single registers or SigmaStudio cell
parameters?

One example is to turn on/off the sine Tone 1 and sine Tone 2.

First, we declare a value vector of type “ADI_REG_TYPE” with the
desired value to be modified.

Then call the SIGMA_WRITE_REGISTER_BLOCK macro with the
right parameters

17

Using the Sequencer Window

The Sequencer window is a powerful tool that creates sets of
instructions for a specific task. To access it, simply open the
Data Capture window (Ctrl + 5) and click on the upper right
double arrow button.

Then, the Sequencer Window will appear as part of the
Capture Window

18

Using the Sequencer Window (cont…)

Suppose that we have a slightly more complicated Sigma
Studio schematic

19

Using the Sequencer Window (cont…)

We want to compile this Sigma Studio schematic or project and port
the basic microcontroller information as previously described.

 Instead of duplicating the system initialization download, this time
we will create sequences. Using the Data Capture window as a tool,
we can start populating the sequencer window with data. For
example, we want to switch between internal generated sine tones,
external input, and white noise by clicking the multiplexer in the
SigmaStudio project. Instead of using this graphical control, let‟s try
using the sequencer window.

To get started, clear all possible information that currently may
exist on the data capture window by clicking the red “x” button

20

Using the Sequencer Window (cont…)

Now, its time to create modes using the data capture window.

A “mode” is a set of register and RAM writes that change
something about the signal flow or device configuration

Clicking at the first radio button on our Nx2-1 control will display
the corresponding write sequence in the Capture window

 In the sequencer window, let‟s create a mode named “Tones”
containing this write sequence (because it will route the sine tones
to the output). Add a mode. Then right click on the mode, select
“Rename” and type “Tones”

21

Using the Sequencer Window (cont…)

Now, its time to create modes using the data capture window.

Drag and drop the information displayed on the data capture
window to the sequencer window. This creates a single write
command in our “Tones” mode.

Multiple lines can be selected in the capcture window using shift-
click or control-click

Clear the data capture window again by clicking the red X in the its
upper left corner. Now, select the next routing path from the Nx2-1
control.

22

Using the Sequencer Window (cont…)

Now, its time to create modes using the data capture window.

Create another mode by right clicking under the “Tones” button.
Select “Add Mode” and rename it to “Music”

Drag and drop the information from the data capture window into
the sequencer window.

Repeat these steps for the last option on the multiplexer and
create a mode named “White Noise”.

23

Using the Sequencer Window (cont…)

Save the sequencer file on a folder by pressing the “Save
Sequence File” button.

To test that the modes work, there are two buttons.

The “Download Mode to Hardware” button downloads everything on
the current selected mode. In the case shown here, it will only
download the “White Noise” mode.

24

Using the Sequencer Window (cont…)

The “Launch Sequencer Window” button creates a floating window
with all modes created. This way, the user could download any mode
in any order.

You must save the sequence file (click the blue disk icon) before the
Sequencer Window can be used

25

Exporting Sequences to a microcontroller

Once all sequencer modes have been tested, and we already
have our basic program in the microcontroller, the next step
is to include some sequences and map each mode to a GPIO
port on our ARM M3 series uC.

First, we click on the “Export Sequence Data” button.

Then, we give it a name. For this example we‟ll name it
“1761_Demo.h”. After pressing “OK” the following files will
be created:

 1761_Demo.h

This file contains references for all modes

26

Exporting Sequences to a microcontroller

(cont…)

Tones_Modes.h, Music_Modes.h, and White Noise_Modes.h

Each independent file contains it mode data. For example:

ADI_REG_TYPE TONES_0[4] = {0x00, 0x00, 0x00, 0x00};

void TONES_download()

{

SIGMA_WRITE_REGISTER_BLOCK(DEVICE_ADDR_IC_1, 0x0010, 6,
TONES_0); /* StMuxSwSlew1coeffname
*/}

27

Accessing Sequencer Modes

On the “main.c” file, we include the “1761_Demo.h” file.

We create another c file named “1761Demo_seq.c”.

Within this file we just simply call the function by its name. Using
the example above, we just type in “TONES_download();” and
that‟s all.

28

For reference

See the example files that were created for an ADAU1761 and
an ARM Cortex M3

ADAU1761_Demo.zip

SigmaDSP Overview - October, 200929

Conclusion

Porting and using SigmaStudio header files for
microcontrollers is as easy as pressing the “Export System
Files” button.

The user needs to modify the SigmaStudioFW.h file to enable
the pre configured macros within the microcontroller
environment.

All SigmaDSP register and program information is
automatically generated and ready to be used.

The Sequencer window is a powerful tool to access specific
data within our SigmaDSP ICs.

30

