
 

USB Descriptors:

The USB descriptors were implemented as stated in the spec.

The device descriptor states a device class of 0xEF, a sub-class of 0x02, and a protocol code of 0x01. These values indicate to the host that the device belongs to a ‘Miscellaneous’ class, and that the class ought to be determined from the IAD present in the config descriptor.
This is because U3V functionality is not located at device level, but at the interface level.
The rest of the device descriptor is as per USB3 spec.

The 9 bytes of configuration descriptor is as per USB3 spec.
However, the order and details of all the descriptors under the configuration descriptor is as defined in U3V spec.
U3V defines upto three interfaces – Device Control Interface (DCI), Device Event Interface (DEI) and Device Streaming Interface (DSI).
U3V spec also states that the three interfaces be clubbed together using an IAD.
So the Interface Association Descriptor comes immediately after the config descriptor, and it carries a device class of 0xEF (miscellaneous class) and a sub-class of 0x05 (U3V).

The first interface under the IAD is the DCI.
It carries the same class, sub-class, protocol values as the IAD.
The one and only class-specific descriptor (as per U3V v1.0) comes under the DCI.
It is called the Device Info descriptor, and it contains the following details:
GenCP and U3V versions followed by the device; string descriptor indices for U3V_GUID, Vendor name, Model name, Family name, Device name etc.
It also contains details about the USB speeds supported by the device.
Although the spec is titled USB’3’Vision, U3V devices can support lower speed through USB2.0 support as well.

Next come the two endpoints of the DCI interface: DCI_CMD (out endpoint) and DCI_RSP (in endpoint).
These endpoints together act as command-response channels between the host and device.

The spec defines the next interface to be the DEI.
However, DEI is optional and so is not implemented in this preliminary version of the firmware.

The last and final interface is the DSI.
The DSI carries the same class and sub-class values as the DCI, but is has a protocol code of 0x02.
It contains one burst-enabled bulk endpoint which is the video streaming endpoint (DSI_STREAM).


Firmware basics:

The device configuration is not unlike most other Fx3 examples. SysClk is set to 403.2MHz.
For now, only the UART interface is enabled (for debug prints).
The I2C interface will be enabled when an image sensor is connected and configured.

Only one thread is created in firmware. This is used entirely to receive and process the U3V-specific commands and send out the appropriate U3V-specific response on the DCI endpoints.

All video streaming related processing is currently done in the DMA callback for the streaming channel.

U3V requires a device-specific implementation of various ‘register maps’ which store all the info about the device and its characteristics.
Three register maps are implemented in this firmware in the form of fixed-length arrays:
Technology-Agnostic Bootstrap Register Map (ABRM), Technology-Specific Bootstrap Register Map (SBRM) and Streaming Interface Register Map (SIRM).

The device is also required to store an xml file (this is as per GenICam) which contains info about the camera’s features etc.
The xml file is stored as an array of hex values inside the usb3vision_xml.c file.
The xml file was created on a PC (as per guidelines in the GenICam spec) and read in hex format.

The GPIFII design currently implemented is simple. The buffer size is configured to be a multiple of 1280 bytes (the video resolution configured is 1280x720, 1 byte per pixel monochrome), so that a buffer boundary always coincides with a LV blanking period.
As such, the state machine becomes rather simple and there is no requirement for multiple producer sockets.
The GPIFII state machine also generates ZLP’s at the beginning and end of every frame. The firmware appends either the Leader or Trailer structure to this and commits it.

The Leader and Trailer structures are defined in the U3V spec. The leader is sent at the beginning of every frame before any payload data is sent out. The trailer is sent at the end of every frame after the payload for the frame is sent out. The payload data is nothing but the video data captured by GPIFII.


Device Control Interface:

The device control interface is comprised of two DMA channels: glChHandleDCICmd, which is a MANUAL_IN channel from the DCI_CMD endpoint to the CPU; and
glChHandleDCIRsp, which is a MANUAL_OUT channel from the CPU to the DCI_RSP endpoint.
A dedicated thread, USB3VisionAppThread_Entry, is used to constantly monitor the glChHandleDCICmd channel and process and respond to the command received.

The entire command processing code is present in the CyFxProcessU3VCmd() function that is invoked once a command is received.

The command interface of U3V follows the exact structure and implements the exact commands defined in the GenCP spec.
The spec defines the command data to be split into two: Common Command Data (CCD) and Specific Command Data (SCD).
The CCD contains a fixed structure that is valid for all commands. It contains these fields: Prefix, Flags, Command_ID, Length, Request_ID.

The prefix is a constant value and is defined in the U3V spec as 0x43563355.
The rest of the fields are as defined in the GenCP v1.0 spec under section 4.3.

The main purpose of the DCI is to read and write the various register maps and to read the xml file.
It provides a control interface for the host driver/application to read the various device features and write into a few specific device registers to alter its functionality.

As such, the main purpose of the CyFxProcessU3VCmd() function is to process the READMEM_CMD and WRITEMEM_CMD command and respond with the READMEM_ACK/WRITEMEM_ACK response if the read/write is successful.

The read commands can address registers from one of ABRM, SBRM, SIRM, Manifest or the XML file.
The write commands can also address any of the above (except XML file), but the device can limit this by responding with a write protect value for certain registers in the register maps.

One important point to note is that U3V data comes LSbyte first, and hence the processing in firmware needs to take this into account when combining multiple bytes into a word/dword field.


U3V-specific Register Maps:

U3V spec states that the device needs to implement certain registers, which are broadly divided into three register maps.

The ABRM is the register map that should exist for any GenICam device (regardless of what technology it implements). It is supposed to start at the zeroth location (0x0000), and contains info about the following:
· GenCP version the device follows
· Strings for manufacturer, model, family, device names, and serial number.
· Device capabilities register describing if the device supports SBRM etc.
· Manifest table and SBRM base address.
· Details about support for heartbeat timeout, timestamp, endianness etc.

The SBRM is the register map defined specifically for U3V devices.
Its base address is as specified in the ABRM and it contains info about the following:
· U3V version the device follows.
· U3V capabilities register describing if the device supports SIRM etc.
· DCI CMD and RSP packet max lengths.
· SIRM/EIRM base address
· No. of stream channels and current USB speed.

The SIRM is the register map that is defined in the U3V spec for U3V devices that have a DSI interface. It contains info about the following:
· Video payload size
· Leader and Trailer size
· Video payload transfer/buffer size and count
· Stream enable/disable switch

Complete details about the ABRM are present in the GenCP v1.0 spec (section 5).
Details about the SBRM and SIRM are present in the U3V v1.0 spec (SBRM in section 4.2 and SIRM in section 5.4).


Device Streaming Interface:

The DSI is comprised of one DMA channel, glChHandleDSI, a MANUAL channel from PIB socket 0 to DSI_STREAM endpoint.

All the video path processing is done inside the CyFxUSB3VisionDSIDmaCallback() registered for the glChHandleDSI channel.

Upon reception of a prod_event, the first check to be done is whether the received buffer is a ZLP. If it is, it is to be converted into either a Leader or Trailer depending on whether a frame is starting or ending. As such, one of the Leader or Trailer structures is copied into the buffer and committed with the appropriate length after updating the block count.

If it is not a ZLP, it is a payload buffer, and no processing needs to be done here. Just commit the buffer to the endpoint as it was received.
[bookmark: _GoBack]
So, using such a processing mechanism, we achieve the Leader-Payload-Trailer structure required for every video frame as described in the U3V spec .

Using the cons_event, we keep track of how many buffers have been consumed by the host. Once a whole frame has been consumed successfully, the state machine is switched back to the initial state to start a fresh frame capture.


U3V-specific Leader and Trailer:

U3V spec defines that a Leader structure be sent out at the beginning of every video frame, and a Trailer structure be sent out at the end of every video frame.

The Leader structure contains the following info:
· A ‘Magic Key’, 4 bytes whose ASCII values read out to be ‘U3VL’
· Size of leader, typically 52 bytes
· Block count, an 8-byte field that increments by one for every frame
· Payload type – Image
· Timestamp
· Info about pixel format, height/width of frame and horizontal/vertical padding/offset.

The Trailer structure contains the following info:
· A ‘Magic Key’, 4 bytes whose ASCII values read out to be ‘U3VT’
· Size of trailer, typically 32 bytes
· Block count (should carry same value as in Leader)
· Valid payload size in bytes


Host side driver/application:

The main limitation for U3V designs (in comparison with UVC designs) is that there is no standard device driver available on the host side, and as such there are no standard applications available to test out the U3V firmware.

Host application has to be developed by the user itself or can use any 3rd party solution.
Page 1 of 5
Page 5 of 5
