<m. E2ForLife W5100

Interface Driver for the WIZnet W5100 Device
V1.1

eatures

e Compatible with PSoC 3, 4, 5, and 5LP iW5100
e SPI port independent (Uses Either SCB or SPIM)

e Supports TCP, UDP, and ARP

e 4 simultaneous protocol Sockets

e 2K off-processor packet buffer per socket

General Description

The W5100 interface driver provides a simple software driver for using the WIZnet W5100
iEthernet controller with a PSoC project. The driver can be customized to support many
system configurations, and allows for SPI port sharing. Both the SPIM and the SCB
interfaces are supported to allow the driver to support many hardware configurations of the
application.

Using the W5100 Driver

Schematic Requirements

This driver is a software only driver, thus in order to effectively use the functions provided
to access the W5100, there must be a hardware interface defined in the schematics to
access the device. Once entered in the schematics, enter the instance name of the SPI
component in to the customizer parameters for the driver component.

Using the Driver

When using the driver, simply start the driver with the Start() function then open a socket
using the protocol desired, and either start a server to wait for connections or connect to a
remote server. The W5100 device and the software driver handle the interfacing,
management, and data handling for the connections.

Schematic Macros

As part of the distribution of the driver component, two schematic macros have been
provided to simplify the use of the component. Each macro is defined for the type of SPI
interface used to communicate with the W5100 device, and have all of the options set so
that they will correctly communicate with the W5100.

SCB mode (PSoC 4 Only)

When using a SCB to communicate with the W5100 device, you should use the schematic
macro “"Community\Communications\Ethernet\E2ForLife - W5100 (SCB Mode)”. This macro
has the SCB and the W5100 device driver configured for proper operation with the W5100
device.

To add Ethernet support to a project which
w5100 . .
W5100 already contains an SPI port, just drop the
: SPI W5100 driver component on to your
SPI schematics and set the SPI_INSTANCE

a configuration parameter to the instance

name of the SPI device in your project. You
might also wish to double-check the

configuration of the SPI port to make sure
that it will support the W5100 interface.

Motorola

SPIM mode (SPI Master)

When using a SPI Master component (SPIM) as the communications interface with the
W5100 device, you should start with the "Community\Communications\Ethernet\E2ForLife -
W5100 (SPIM mode)” schematic macro. This macro contains the pre-configured device
driver and SPI master mode device to support proper operation of the device driver with the
W5100 device. y ™\

SPI Configuration P
SPIM »
SPI Master e Mode 0 or 3
ETH_MISO_1 [«+—————{miso mosif——— [+ ETH_MOSI_1 e 8-bit data, MSB first
sclkf————1»ETH_SCLK_1 e At Least a 4-byte FIFO buffer
iW51(\)I;5100 S8 ——[xJETH_CSN_1 e Continuous SS mode (SCB Only)
e Motorola Style SS (SCB Only)
a ~reset e Chip Select generated by SPI
rx_interrupti- component.
X_Interruptie e NOTE: In some instances when
8-bit using the SPIM, the “Enable High-
Speed Mode" option may be

Input/output Connections L required for proper operation.

There are no Input or Output connections to this component.

Component Parameters

Drag a W5100 component on to your design and double-click to open the component
configuration dialog.

I Configure 'E2Forlife_W5100° - - &Iéj1
Name:
" Basic | Builtin 4 b
Parameter Value
-~ CMD_TIMEOUT 128
-- INCLUDE_TCP true
- INCLUDE_UDP true
INIT_DELAY 10
-- TIMEOUT 3000
=
-~ GATEWAY 152.168.11 The MAC address is a Comma]
P 192.168.1.101 Delimited List AR,
- MAC 030, D2, (DA, OxDE, 0xeC2, IneAC k
-+ SUBNET_MASK 255.255.255.0
=
READ_WRITE_DELAY | &
- SPI_INSTANCE SPI0
- B5_NUM 1
Parameter Information
[Datasheet l [oK Aoply
Parameters

Driver Configuration Parameters

This section contains parameters that modify the operation of the driver, or provide settings
for options of the driver implementation.

CMD_TIMEOUT - The number of milliseconds to wait for a W5100 Command to execute

This parameter will allow you to set the amount of time that the internal driver function
used to execute socket commands within the W5100 device will wait for a command to
execute before declaring a timeout condition.

INCLUDE TCP - Set to True to enable the TCP interface code

A True/False parameter used to specify if the TCP protocol interface code will be included
when compiling the driver software. Set this to False when not using the TCP interface
functions to save FLASH memory space. The default setting is to include this interface code.

INCLUDE _UDP - Set to True to enable the UDP interface Code

A True/False parameter used to specify if the UDP protocol interface code will be compiled
when building the library. Set this to False if not using the UDP functions and you wish to
save some FLASH memory space. The default setting for this parameter is true.

INIT_DELAY - the number of milliseconds to wait for the W5100 PLL to lock after a device
reset or power on.

Usually this parameter will not need to be modified; however, it allows you to configure the
amount of time that the driver will wait for the W5100 internal PLL to achieve lock. This
might need to be adjusted if your power supply is noisy or you are experiencing a high
amount of clock jitter at power on.

TIMEOUT - The number of milliseconds to wait before an operation declares a general
timeout

This parameter will allow you to adjust the number of milliseconds that an operation will
wait for an operation to complete before declaring a timeout condition. This does not affect
every function.

Network Configuration Parameters

The "configuration" parameters section contains the parameters for initializing the default
network configuration for use by the W5100. These parameters can be overridden within
your application through the use of the API function calls.

GATEWAY - The IPv4 Address of the network gateway

This parameter will allow you to specify the IP address of the Ethernet gateway router. This
value is a string specified in IPv4 format of www.xxXx.yyy.zzz

IP - The IPv4 Address of the device

This parameter contains the network address of the W5100 device. This address is the
configured address of the controller after the API Start() call executes. Setting this will
change the fixed IP of the system.

MAC - The hardware (MAC) address of the Ethernet Controller

The MAC address contains the hardware If you're using an Arduino Ethernet =)
address of the system. It is expressed as a 6 shield, the MAC address is printed on)
byte comma delimited string containing the the sticker on the bottom of the board

hardware address of the W5100.
SUBNET_MASK - The subnet mask used for Ethernet communications

Modifying this parameter will change the subnet that the MAC will use to communicate over
the network. The default subnet mask is 255.255.255.0 , meaning that for a IP address of
192.168.1.100 the MAC can communicate directly with only other IP addresses that match
192.168.1.xxx. Setting any bit in the subnet mask to a zero defines that bit as “don't care”
for communications.

Hardware Configuration

This parameter section is used to define the interface parameters for associating component
instances with the driver, and for declaring design specific delays and configuration data.

SPI_INSTANCE - The Instance Name of the SPI component

Enter the component (instance) name of the SPI component
that is used to communicate with the W5100. This SPI port
should be configured to use 8-bit data, MSB first
transmission, and SPI mode 0. The data rate is dependent
upon your board layout (EMI/Noise issues), and your
processor and bus clock speeds.

Note: When using the =
SPIM or SPI mode SCB, §
this driver requires at

least a 4-byte FIFO buffer

SS_NUM - the slave select number used to connect to the W5100 (SCB Mode)

When using the SCB component, this parameter specifies the slave select (SS) number used
to communicate with the W5100 device. Valid values are from 0 to 3; values outside of this
range are assumed to be 0 and will use the “ss0Q” pin.

Note: This component uses the internal SPI chip select generation to select the W5100.

Application Programming Interface

The functions of the Application Programming interface (API) provide the ability to configure
and operate the W5100 device using your software application. The following sections
describe the driver API in detail.

By default, PSoC Creator assigns the name W5100_1 to the first instance of the driver
component within your project. You may rename the component to any unique name within
your project, provided it follows the syntax rules defined within PSoC Creator. The name of
the instance becomes the prefix for each global identifier within the driver so that no
interface of the driver will interfere with your software project. For simplicity, API references
within this document will use the instance name prefix of W5100.

W5100_Start() Startup and initialize the device using the creator
defaults

W5100_1Init() initialize device parameters and memory setup

W5100_ParselIP() Parse an ASCII Text IPv4 address to an IPv4
Address.

W5100_SetIP() re-assign the local IP address of the device

W5100_GetIP() Read the current IP address of the device

W5100_SetMAC() Re-assign the hardware address (MAC) of the
device

W5100_GetMAC() Retrieve the assigned Source hardware (MAC)
address of the device

W5100_SocketOpen() Open a socket using the specified protocol on the
specified port

W5100_SocketClose() Close a previously opened socket

W5100_SocketProcessConnections() Process the socket connection to check for errors
and remote closure
W5100_SocketEstablished() Check the connection establishment status of the

W5100_SocketRxDataWaiting()
W5100_TcpOpen()
W5100_TcpStartServer()

W5100_TcpStartServerWait()
W5100_TcpConnect()

W5100_TcpConnected()
W5100_TcpDisconnect()

W5100_TcpSend()
W5100_TcpReceive()

W5100_TcpPrint()
W5100_UdpOpen()
W5100_UdpSend()
W5100_UdpReceive()

W5100_Start()

socket

Retrieve the length of waiting Receive data
Open an port using the TCP protocol

Start a server listening for connection on an
open socket

Start a TCP server listening for connections on
the specified socket

Open a client connection to a specified IP and
port

Return the connection status of the TCP socket
Terminate a connection with a remote
client/server

Transmit a byte packet using the built-in TCP
Receive a packet of data using the built-in TCP
handler

Send a zero-terminated ASCII string using TCP
Open a Socket Port using the UDP protocol
Transmit a byte packet using the built-in UDP
Receive a packet of data using the built-in p
handler

Startup and initialize the device using the creator defaults.

Syntax
void W5100_Start(void)

Description

This function will initialize and startup the Ethernet device chip using the default parameters
supplied in the configuration window of Creator. This is usually the main method for

initializing the device

This function requires that the SPI interface is initialized, however it will attempt to discover
if the initialization has been completed and initialize the interface if it has not yet been
setup. It is highly recommended that your application initialize the SPI interface directly
rather than depend on this, since every SPI implementation may be different and your port

might not be correctly initialized.

See Also

W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(), W5100_SetMAC(),

W5100_GetMAC()

W5100_Init()
Initialize device parameters and memory setup.

Syntax

void W5100_Init(uint8* mac, uint32 ip, uint32 subnet, uint32 gateway)

Parameters

Parameter Description

*mac Pointer to a 6-byte buffer holding the device MAC address

ip The IP address to which the device will be configured

subnet The subnet mask to be used for the device (usually 255.255.255.0)
gateway The IP address of the network gateway

Description

This function will reset the device, and wait for the internal PLL to lock, then initialize the
device registers to allow for correct operation in your application. It currently assumes that
there will be a 2K buffer for both transmit and receive for each of the 4 sockets available.

The usual method of calling W5100_1Init() is from W5100_Start(). No explicit user calls are
required unless the modification of the network settings beyond the component default
parameters is desired by the application.

Note: Calling this function will reset all open connections.

See Also

W5100_Start(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(), W5100_SetMAC(),
W5100_GetMAC()

W5100_ParselIP()
Parse an ASCII Text IPv4 address to an IPv4 Address.

Syntax

uint32 W5100_ParseIP(const char* ipString)

Parameters
Parameter Description
*ipString ASCII Z-String containing the IP address to Parse

Returns

The parsed IP address

Description

This function will parse an ASCII String IP address in to a 32-bit IP address used by the
device. If the address string contains an error, this function will return an IP address of
255.255.255.255, or OxFFFFFFFF to indicate that an error has been detected.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(),
W5100_SetMAC(), W5100_GetMAC()

W5100_SetIP()

re-assign the local IP address of the device
Syntax

uint8 W5100_SetIP(uint32 ip)

Returns

0 IP Address specified was not valid
OxFF (255) IP Address was successfully assigned to the device.

Parameters

Parameter Description
ip The new IP address to which the device will be assigned.

Description
This function will re-assign the IP address of the Ethernet device to the specified address. If

the address to be assigned is invalid, a zero (0) is returned from the function to indicate
that a bad IP address was specified. Otherwise, 255 will be returned.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(),W5100_GetIP(), W5100_SetMAC(),
W5100_GetMAC()

W5100_GetIP()

Read the current IP address of the device.

Syntax

uint32 W5100_GetIP(void)

Returns

This function returns the IP address read from the W5100 device.

Parameters

None.

Description

This function reads and returns the contents of the Source IP register of the W5100 device.
See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_SetMAC(),
W5100_GetMAC()

W5100_SetMAC()
Re-assign the hardware address (MAC) of the W5100 device.

Syntax

void W5100_SetMAC(uint8* mac)

Parameters
Parameter Description
*mac Pointer to a 6-byte array that contains the MAC value to be written

Description

This function will store the contents of the specified MAC address to the source Hardware
Address register (MAC address) for the W5100 device.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(),
W5100_GetMAC()

W5100_GetMAC()

Retrieve the assigned Source hardware (MAC) address of the device.

Syntax

void W5100_GetMAC(uint8* mac)

Parameters
Parameter Description
*mac Pointer to a 6-byte array to hold the read MAC value.

Description
This function will read the assigned MAC address and store it within the specified array.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(),
W5100_SetMAC

W5100_SocketOpen()
Open a socket using the specified protocol on the specified port.

Syntax

uint8 W5100_SocketOpen(uint8 Protocol, uintl6 port, uint8 flags)

Parameters

Parameter Description

Protocol The protocol type to use for socket communications. (See Description)
port The port number with which the opened socket will be associated
flags Socket configuration flags (presently not used)

Returns

The socket number (0-3) of the allocated socket, or OxFF upon error.

Description

This function will allocate and initialize a socket from the socket table and return the socket
number which was opened. If there are no sockets available, or there is an error opening
the socket, a value of OxFF will be returned.

When calling this function, you should use one of the defined constants for declaring the
socket protocol.

Protocol Constant Description

W5100_PROTO_TCP Use the W5100 Native TCP implementation
W5100_PROTO_UDP Use the W5100 Native UDP implementation
W5100_PROTO_IP IP mode, Reserved for future use

W5100_PROTO_MAC MAC mode, Reserved for future use

Example

// Define a holder for the allocated socket
uint8 socket;
// Open and initialize a socket
socket = W5100_SocketOpen(W5100_PROTO_TCP, 23, 0);
if (socket < 4){
// The socket was allocated Correctly... Continue
¥ else {
// there was an error allocating the socket, so handle the error

b

See Also

W5100_SocketClose(), W5100_SocketEstablished(), W5100_SocketProcessConnections(),
W5100_TcpSend(), W5100_TcpReceive(), W5100_UdpSend(), W5100_UdpReceive()

W5100_SocketClose()
Close a previously opened socket.

Syntax

Void W5100_SocketClose(uint8 socket)

Parameters
Parameter Description
socket The socket number (0-3) of the socket to be closed.

Description

This function will close (and disconnect) an open socket specified as a parameter. The
socket allocation record will be flushed from memory and made available for further
allocation using the W5100_SocketOpen() function. If an invalid socket is specified, the
function will ignore the request. Closing an already closed socket has no effect.

See Also

W5100_SocketOpen(), W5100_SocketProcessConnections(), W5100_SocketEstablished()
W5100_SocketProcessConnections()

Process the socket connection to check for errors and remote closure.

Syntax

uint8 W5100_SocketProcessConnections(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket
Returns

TRUE The socket was closed

FALSE The socket is ready for communications

Description

This function is a helper function for handling remote socket closure status that can occur
during a session. It will process the opened socket to look for socket closure errors, and
other aspects which would require the software to reset the socket. Upon detection of the
issue, the socket will be closed and a TRUE state will be returned. When no remote closure
status is detected, no action is taken.

Example

// Define a holder for the allocated socket
uint8 socket;
// Open and initialize a socket
socket = W5100_SocketOpen(W5100_PROTO_TCP, 23, 0);
if (socket < 4){

// The socket was allocated Correctly... Continue
} else {

// there was an error allocating the socket, so handle the error
>
// Start a TCP Server and wait for connection establishment
W5100_TcpStartServerWait(socket);

while(W5100_SocketEstablished(socket)) {
// Communications loop ... Do stuff for comms
... Insert Comms code ...
// Process the server socket, and reset connections if closed
if (W5100_SocketProcessConnections(socket)) {
// The socket was close, so re-open the socket connection
socket = W5100_TcpOpen(23);
b

b

See Also

W5100_SocketOpen(), W5100_SocketClose()

W5100_SocketEstablished()
Check the connection establishment (connection) status of the socket.

Syntax

Uint8 W5100_SocketEstablished(uint8 socket)

Returns

TRUE The socket has been established

FALSE The socket has not yet been established
Parameters

Parameter Description

socket The socket number (0-3) of the socket

Description

This function reads the socket status register of the W5100 device and returns the state of
the socket establishment.

Example

// wait for a connection to be established

while ('W5100_SocketEstablished(socket)) {
// Process waiting for connection
// delay a bit
CyDelay(1);

See Also

W5100_SocketOpen(), W5100_SocketClose()
W5100_SocketRxDataWaiting()

Retrieve the length of waiting Receive data.
Syntax

uintl6 W5100_SocketRxDataWaiting(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket
Returns

The number of bytes that have been received by the W5100 and are waiting in the receiver
buffer memory.

Description

This function will read the waiting data length from the Receive buffer and return the read
length of waiting data.

W5100_TcpOpen()
Open a port using the TCP protocol.

Syntax

uint8 W5100_TcpOpen(uintl6 port)

Parameters

Parameter Description

port The port humber that the socket will be associated with.
Returns

This function returns the socket number that was opened (0 - 3) or OxFF when an error
occurs.

Description

This function will open and initialize a socket using the W5100 built-in TCP protocol, and
return the socket number for the opened TCP socket. When there are no sockets available,
or there is an error opening the socket, OxFF is returned.

See Also

W5100_SocketOpen(), W5100_SocketClose()

W5100_TcpStartServer()

Start a server listening for connection on an open socket.

Syntax

void W5100_TcpStartServer(uint8 socket)

Parameters

Parameter Description
socket The socket number (0-3) of the socket

Description
This function will execute the socket command to begin listening for connections on the
specified socket. If the socket specified is not a valid socket nothing will occur. After starting

the listen operation, this function will return (NON-BLOCKING).

See Also

W5100_TcpOpen(), W5100_TcpStartServerWait(), W5100_SocketClose()
W5100_TcpStartServerWait()
Start a TCP server listening for connections on the specified socket.

Syntax

void W5100_TcpStartServerWait(uint8 socket)

Parameters
Parameter Description
socket The socket number (0-3) of the socket

Description

This function will start a valid socket listening for TCP connections by executing the listen
command on the specified socket. If the socket is invalid, no action is taken. After the
socket server is started, this function will wait until a connection has been made to a client
before continuing.

See Also

W5100_TcpOpen(), W5100_TcpStartServer(), W5100_socketClose()
W5100_TcpConnect()

Open a client connection to a specified IP and port.

Syntax

void W5100_TcpConnect(uint8 socket, uint32 ip, uintl6 port);

Parameters

Parameter Description

socket The socket number (0-3) of the socket

ip The IP Address of the server to attempt a connection
port The port number of the server

Description

This function will attempt to open a connection between a W5100 device socket, and a
remote server using TCP. This function will wait for the timeout specified in the component
parameters within Creator for the connection to be made before terminating the wait. While
waiting for the connection establishment, the function will block.

Example

// Open a socket for the connection
Socket = W5100_TcpOpen(80);

// Attempt a connection with a remote server
W5100_TcpConnect(Socket, W5100_ParseIP("192.161.1.100"), 80);

// <Insert Client Code Here>

See Also

W5100_TcpOpen(), W5100_TcpConnected(), W5100_ParselP(), W5100_TcpDisconnect(),
W5100_TcpSend(), W5100_TcpReceive()

W5100_TcpConnected()
Return the connection status of the TCP socket.

Syntax

uint8 W5100_TcpConnected(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket
Returns

TRUE The socket connection has been established
FALSE The socket connection is not established

Description

This function will check the establishment status of the specified socket, and return the
state.

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpDisconnect()
W5100_TcpDisconnect()
Terminate a connection with a remote client/server.

Syntax

void W5100_TcpDisconnect(uint8 socket)

Parameters
Parameter Description
socket The socket number (0-3) of the socket

Description

This function will issue the disconnect function to initiate a connection termination between
the W5100 socket and the remote client/server.

See Also

W5100_TcpConnect(), W5100_TcpConnected(), W5100_StartServer(),
W5100_TcpStartServerWait(), W5100_TcpOpen()

W5100_TcpSend()
Transmit a byte packet using the built-in TCP.

Syntax

Uint16 W5100_TcpSend(uint8 socket, uint8 *buffer, uint16 len)

Parameters

Parameter Description

socket The socket humber (0-3) of the socket

*buffer Pointer to the byte buffer holding the data to transmit
len The number of bytes to transmit from the buffer

Returns

This function returns the number of bytes copied from the buffer memory to the internal
transmit buffer of the W5100 device.

Description

This function will copy the specified packet buffer to the W5100 Transmitter buffer, then
execute the commands to transmit the data packet using the built-in TCP handlers. Upon
completion of the operation, this function will return the number of bytes transmitted.

When called, this function will verify that a socket connection has first been established and
is opened with the correct socket protocol. Send operations to sockets that contain a
different protocol or are not yet established are ignored and 0 is returned.

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpStartServer(),
W5100_TcpStartServerWait(), W5100_TcpPrint(), W5100_TcpReceive()

W5100_TcpReceive()
Receive a packet of data using the built-in TCP handler.

Syntax

uintl6 W5100_TcpReceive(uint8 socket, uint8 *buffer, uintl6 length)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

*buffer Pointer to the byte buffer to receive the data from the W5100 device
length The maximum amount of data to be received in to the buffer
Returns

This function returns the length of data copied from the W5100 device’s internal buffer to
the buffer memory.

Description

This function will check for available received data, then copy the data from the internal
W5100 buffer to the specified holding buffer for the received data. When there is more data
waiting than available space in the buffer (specified by the length parameter), this function
will only receive up to the maximum length specified.

Prior to receiving data, this function will verify that a valid connection has been established,
and that the configured protocol is set to the internal TCP. When not properly configured,

this function will return 0, otherwise, the number of bytes read from the W5100 receive
buffer memory is returned.

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpStartServer(),
W5100_TcpStartServerWait(), W5100_TcpPrint(), W5100_TcpSend()

W5100_TcpPrint()
Send a zero-terminated ASCII string using TCP.

Syntax

Void W5100_TcpPrint(uint8 socket, const char *str)

Parameters

Parameter Description

socket The socket number (0-3) of the socket
*str Pointer to the ASCII X-String to send

Description

This function is a shortcut to using the W5100_TcpSend() to transmit a zero-terminated
ASCII (ASCII-Z) string to a remote client/server.

Calling this function is the same as:

W1500_TcpSend(socket, (const char *) &str[0], strlen((char *) &str[0]);
See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpStartServer(),
W5100_TcpStartServerWait(), W5100_TcpSend()

W5100_UdpOpen()

Open a socket port using the UDP protocol.
Syntax

Uint8 W5100_UdpOpen(uintl6 port)
Parameters

Parameter Description
port The port humber that the socket will be associated with.

Returns

This function returns the socket number that was opened (0 - 3) or OxFF when an error
occurs.

Description
This function will open and initialize a socket using the W5100 built-in UDP protocol, and
return the socket number for the opened UDP socket. When there are no sockets available,

or there is an error opening the socket, OxFF is returned.

See Also

W5100_SocketOpen(), W5100_SocketClose(), W5100_TcpOpen()
W5100_UdpSend()
Transmit a byte packet using the built-in UDP.

Syntax

Uint16 W5100_UdpSend(uint8 socket, uint32 ip, uintl6 port, uint8 *buffer, uintl6 length)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

ip The IP address of the destination

port The port number of the datagram destination

*buffer Pointer to the byte buffer containing the datagram data
length The number of bytes to transmit in the user datagram.
Returns

This function returns the number of bytes copied from the user datagram buffer to the
internal transmit buffer of the W5100.

Description

This function will copy the specified packet buffer to the W5100 Transmitter buffer, then
execute the commands to transmit the data packet using the built-in UDP handlers. Upon
completion of the operation, this function will return the number of bytes transmitted.

When called, this function will verify that a socket connection has first been opened with the
correct socket protocol. Send operations to sockets that contain a different protocol are
ignored and 0 is returned.

See Also

W5100_UdpReceive(), W5100_UdpOpen()
W5100_UdpReceive()
Receive a packet of data using the built-in UDP handler.

Syntax

Uint16 W5100_UdpReceive(uin8 socket, uint32 *ip, uintl6 *port,

uint8 *buffer, uint16 length)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

*ip Pointer to a buffer to hold the sender’s IP address

*port Pointer to a buffer to hold the sender’s port number

*buffer Pointer to the byte buffer to receive the data from the W5100 device
length The maximum amount of data to be received in to the buffer
Returns

This function returns the actual length of data copied from the W5100 device’s internal
receiver buffer to the buffer memory.

Description

This function will check for available received data, and then copy the data from the internal
W5100 buffer to the specified holding buffer for the received data. When there is more data
waiting than available space in the buffer (specified by the length parameter), this function

will only receive up to the maximum length specified.

Prior to receiving data, this function will verify that the configured protocol is set to the
internal UDP. When not properly configured, this function will return 0, otherwise, the
number of bytes read from the W5100 receive buffer memory is returned.

See Also

W5100_UdpSend(), W5100_UdpOpen()

API Memory Usage

PSoC 3 PSoC 5/5LP PSoC 4
W5100 Driver FLASH SRAM FLASH SRAM FLASH SRAM
Using SCB N/A N/A N/A N/A 4462 32

Using SPIM 3792 40 4110 20

TCP Functions 696 0 808 0
UDP Functions 432 0 568 0

e PSoC 4 Memory size determined using PSoC4 CY8C4245AXI1-483
e PSoC5 Memory size determined using PSoC5LP CY8C5868AXI-LP035
e PSoC3 Memory size determined using PSoC3 CY8C3...

Additional Resources

Please refer to the documents listed below for more information related to the W5100
device. Additional information and application notes can be obtained from the WIZnet
website http://www.wiznt.co.kr.

Document Version Location

W5100 Datasheet 1.2.4 W5100 Datasheet v1.2.4.pdf
W5100 Reference Schematics W5100 Ref sch MAG R2.1.pdf
W5100 Errata Sheet 2.4 3150Aplus 5100 errata en v2.4.pdf

Hardware/Software Notes

When working with the W5100 it is important that the 25 MHz reference is applied to the
device before the device is initialized using the W5100_Start() function. This can be
important when sourcing the reference clock from another device such as an FPGA. The
W5100 initialization must be delayed until after the reference clock is stable to prevent
communications issues on the Ethernet.

If the reference clock is removed from the W5100, it is advisable to re-initialize the W5100
device to prevent communication issues. Unfortunately, this action will cause the W5100 to
disconnect any open connections, requiring this consideration to be me when writing
application software in an environment where the clock may be removed from the device.

Project team, Credits and Thanks

The following individuals were involved in the development, testing and support of this
component:

Name Notes

Project lead, author of original component code and
Chubel e interface implementation of W5100 interface.

http://www.wiznt.co.kr/
http://wiznet.co.kr/UpLoad_Files/ReferenceFiles/W5100_Datasheet_v1.2.4.pdf
http://wiznet.co.kr/UpLoad_Files/ReferenceFiles/W5100_Ref_sch_MAG_R2.1.pdf
http://wiznet.co.kr/Admin_Root/UpLoad_Files/BoardFiles/3150Aplus_5100_errata_en_v2.4.pdf

Component Versions

This section contains the versions of and major modifications to the W5100 interface driver
component.

Version Description of Changes Reason for changes
1.0 Initial Release N/A
1.1 Removed READ_WRITE_DELAY Caused data rate to decrease when user

did not manually configure to a value
that represented the SPI data rate

1.1 Removed “inline” keywords PSoC 3 Keil compiler does not support
inline functions; GCC ignores them
without a special command line option
set that is not default.

1.1 Updated internal receive data process W5100 RxDataPointer register was not
updated correctly during a packet data
read.

Latest version

The latest version of the driver can be downloaded from the GIT repository at:

https://github.com/e2forlife/PSoC-W5100-Driver

Roadmap

Below are described features which are not yet included in the driver, but are desired to be
included at a later date. Since there is limited time to work on this driver, it is difficult to
forecast the time frame for the inclusion of the features. Check http://www.e2forlife.com
for more information on the status of any of these implementations, or to provide feedback
related to bug-fixes or suggestions of additional features or improvements to make the
driver better.

Feature Description

DHCP Add Support for the Dynamic Host Configuration Protocol
(ref: WIZnet app-note for implementation of DHCP)

Custom “Customizer” Add a C# Customizer to replace the default Creator
Customizer

HTTP (web) Server Add the ability to serve embedded web sites

https://github.com/e2forlife/PSoC-W5100-Driver
http://www.e2forlife.com/

Copyright

E2ForLife W5100 Ethernet Driver by Chuck Erhardt is licensed under a Creative Commons
Attribution 3.0 Unported License.
Permissions beyond the scope of this license may be available at http://www.e2forlife.com.

Disclaimer of Warranty

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Interpretation

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

http://www.e2forlife.com/
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://www.e2forlife.com/
http://creativecommons.org/licenses/by/3.0/deed.en_US

