
IDE Guide

Document # 001-42655 Rev *D

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com

http://www.cypress.com


2 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Copyrights

Copyrights

Copyright © 2002-2010 Cypress Semiconductor Corporation. The information contained herein is
subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or
imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to
an express written agreement with Cypress. Furthermore, Cypress does not authorize its products
for use as critical components in life-support systems where a malfunction or failure may reasonably
be expected to result in significant injury to the user. The inclusion of Cypress products in life-support
systems application implies that the manufacturer assumes all risk of such use and in doing so
indemnifies Cypress against all charges. 

PSoC Designer™, Programmable System-on-Chip™ is trademarks and PSoC® is a registered
trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks refer-
enced herein are property of the respective corporations. 

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation
(Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom
software and or firmware in support of licensee product to be used only in conjunction with a
Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification,
translation, compilation, or representation of this Source Code except as specified above is prohib-
ited without the express written permission of Cypress. 

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges. 

Use may be limited by and subject to the applicable Cypress software license agreement. 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 3

Contents

1. Introduction 7

1.1 Application Overview ...................................................................................................7
1.1.1 Chip-Level Editor..............................................................................................7
1.1.2 Code Editor ......................................................................................................9
1.1.3 Build Manager ..................................................................................................9
1.1.4 Debugger .........................................................................................................9
1.1.5 Getting Help ...................................................................................................10

1.2 Chapter Overviews ....................................................................................................11
1.3 Support ......................................................................................................................12

1.3.1 Technical Support Systems............................................................................12
1.3.2 Product Upgrades ..........................................................................................12

1.4 Installation..................................................................................................................12
1.5 Conventions...............................................................................................................16

1.5.1 Acronyms .......................................................................................................16
1.6 References ................................................................................................................17
1.7 Revision History.........................................................................................................17

2. Chip-Level Editor 19
2.1 Chip-Level Editor Overview .......................................................................................20
2.2 Create a Project.........................................................................................................21

2.2.1 Clone a Project...............................................................................................22
2.2.2 Updating Existing Projects .............................................................................23

2.3 Selecting User Module...............................................................................................23
2.4 Selecting Multiuser Module........................................................................................24
2.5 Placing User Modules................................................................................................27

2.5.1 Setting User Module Parameters ...................................................................29
2.5.2 Global Resources...........................................................................................29

2.6 Project Backup Folder ...............................................................................................35
2.7 Specifying Interconnects............................................................................................35

2.7.1 Connecting User Modules..............................................................................36
2.7.2 Digital Interconnect Row Input Window .........................................................42
2.7.3 Digital Interconnect Row Output Window.......................................................43

2.8 Specifying the Pinout .................................................................................................45
2.8.1 Port Connections............................................................................................46
2.8.2 Port Drive Modes ...........................................................................................51
2.8.3 Port Interrupts ................................................................................................51
2.8.4 InitialValue......................................................................................................54

2.9 Tracking Device Space..............................................................................................54
2.10 Design Rule Checker.................................................................................................55
2.11 Generating Application Files......................................................................................56
2.12 Source Files Generated by Generate Project Operation ...........................................57

2.12.1 About the boot.asm File .................................................................................57
2.13 Configuration Data Sheets.........................................................................................58



4 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Copyrights

2.14 APIs and ISRs ...........................................................................................................58
2.14.1 Working with ISRs .........................................................................................59
2.14.2 Interrupt Vectors and the Chip-Level Editor ...................................................60

2.15 Dynamic Reconfiguration ..........................................................................................63
2.15.1 Adding Configurations ...................................................................................63
2.15.2 Deleting Configurations..................................................................................64
2.15.3 Renaming Configurations ..............................................................................64
2.15.4 Employing Dynamic Reconfiguration .............................................................65

3. Code Editor 69

3.1 File Definitions and Recommendations ....................................................................69
3.1.1 File Types and Extensions.............................................................................70
3.1.2 Project File System........................................................................................71
3.1.3 boot.asm ........................................................................................................72
3.1.4 main.asm/main.c............................................................................................72
3.1.5 PSoCConfig.asm ...........................................................................................72
3.1.6 Additional Generated Files.............................................................................72

3.2 Working in Code Editor..............................................................................................74
3.2.1 Modifying Files ...............................................................................................74
3.2.2 Adding New Files...........................................................................................75
3.2.3 Adding Existing Files......................................................................................76
3.2.4 Removing Files ..............................................................................................76
3.2.5 Searching Files ..............................................................................................76

4. Assembler 79
4.1 Accessing the Assembler ..........................................................................................79
4.2 The M8C Microprocessor (MCU)...............................................................................79

4.2.1 Address Spaces .............................................................................................80
4.2.2 Instruction Format ..........................................................................................80
4.2.3 Addressing Modes .........................................................................................80
4.2.4 Destination of Instruction Results ..................................................................81

4.3 Assembly File Syntax ................................................................................................81
4.4 List File Format..........................................................................................................81
4.5 Assembler Directives.................................................................................................82
4.6 Compile and Assemble Files .....................................................................................82
4.7 Calling Assembly Functions From C .........................................................................83

5. Build Manager 87
5.1 Working in the Build Manager ...................................................................................87
5.2 C Compiler.................................................................................................................89

5.2.1 ImageCraft Compiler Options ........................................................................89
5.2.2 HI-TECH Compliler Options...........................................................................90

5.3 Linker.........................................................................................................................90
5.3.1 ImageCraft Specific Linker Options................................................................90
5.3.2 HI-TECH Specific Linker Options...................................................................90
5.3.3 Customizing Linker Actions............................................................................91

5.4 Librarian.....................................................................................................................91

6. Debugger 93

6.1 Online Training ..........................................................................................................94
6.2 Menu Options ............................................................................................................94
6.3 Debugging With an External Emulator ......................................................................96



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 5

6.3.1 Connecting to the ICE ....................................................................................96
6.3.2 Downloading to the Pod .................................................................................96

6.4 Debugging With an On-Chip Emulator ......................................................................98
6.4.1 Enable Debug Mode ......................................................................................98
6.4.2 Connecting to the MiniProg............................................................................98
6.4.3 Downloading to the Device ............................................................................99
6.4.4 I2C Debugger...............................................................................................100

6.5 Debug Strategies .....................................................................................................101
6.5.1 Trace ............................................................................................................102
6.5.2 Break Points.................................................................................................103
6.5.3 CPU and Register Views..............................................................................103
6.5.4 Watch Variables ...........................................................................................104
6.5.5 Dynamic Event Points ..................................................................................108
6.5.6 End Point Data ............................................................................................. 111

6.6 Programming the Part..............................................................................................112

7. Flash Protection 115

7.1 FPMP and PSoC Designer ......................................................................................115
7.2 About flashsecurity.txt..............................................................................................116
7.3 FPMP File Errors .....................................................................................................117

Appendix A.Troubleshooting 119
A.1 Troubleshooting the Chip-Level Editor ....................................................................119
A.2 Troubleshooting the Code Editor .............................................................................120
A.3 Troubleshooting the Debugger ................................................................................120
A.4 ICE Configuration ....................................................................................................120
A.5 Incorrect Code Compilation .....................................................................................120
A.6 I2C Hot Swapping....................................................................................................121
A.7 Manually Turning off the Analog Section ................................................................121
A.8 Trace Issues ............................................................................................................122
A.9 Using an External USB Hub ....................................................................................122
A.10 POD Detection Problem ..........................................................................................122
A.11 Project Cloning Warnings ........................................................................................123
A.12 AreaName Not Defined............................................................................................123
A.13 General Troubleshooting Issues..............................................................................123

Appendix B.Build Process 127
B.1 Build Utilities ............................................................................................................127
B.2 Make Process ..........................................................................................................128

B.2.1 Environment Variables .................................................................................128
B.2.2 MAKE Invocations........................................................................................128
B.2.3 Build Files.....................................................................................................128

B.3 Moving the Build System to Another PC..................................................................133
B.3.1 ImageCraft License key ...............................................................................133

B.4 Building Project Through Command Line ................................................................134
B.4.1 Command Line Instructions .........................................................................134
B.4.2 Executable File (PDCLI.exe)........................................................................135

B.5 Examples .................................................................................................................136
B.5.1 Batch Build File ............................................................................................136
B.5.2 Boot Loader Example...................................................................................136
B.5.3 Add External Files to the Project..................................................................137
B.5.4 Change Link Order.......................................................................................137



6 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Copyrights

Glossary 139

Index  143



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 7

1. Introduction

PSoC® Designer™ 5.1 is the revolutionary Integrated Design Environment (IDE) that you can use to
customize PSoC to meet your specific application requirements. PSoC Designer software
accelerates system bring-up and time-to-market. Develop your applications using a library of pre-
characterized analog and digital peripherals in a drag-and-drop design environment. Then,
customize your design leveraging the dynamically generated API libraries of code.  Finally, debug
and test your designs with the integrated debug environment including in-circuit emulation and
standard software debug features.

1.1 Application Overview

PSoC Designer contains several subsystems: Chip-Level Editor, Code Editor, Build Manager,
Project Manager, and Debugger. The interface is split into several active windows that differ
depending upon which subsystem you are in. As you move between subsystems, different options
are enabled or disabled in the toolbar and menus depending upon the functionality of your PSoC
device. The default window layout contains the Chip Editor Workspace Explorer, User Module
Catalog, Global Resources, and Datasheet Windows. There are also a number of other windows
available from the View menu that show details of different aspects of PSoC Designer.

1.1.1 Chip-Level Editor

If you select the Chip view in the Workspace Explorer, the main view of the project is the Chip-Level
Editor. The Chip-Level Editor contains a diagram of the resources available on the chip you have

selected; the digital, analog, CapSense®, and other block types that are available on the chip you
have selected and the interconnections between them as well as connections to pins. As you place
user modules, they will occupy the available resources. You can alter the default placement if you
wish. You use this window to route inputs and resources to user modules and user module outputs to
other user modules or pins. 



8 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Introduction

You can rearrange the work area to suit your own work style. 

Figure 1-1.  PSoC Designer Chip Editor 
 

Menus Toolbar Workspace
Explorer

Datasheet Resource
Meter

 Chip Editor View User Module CatalogPinout Info

Global
Resources



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 9

Introduction

1.1.2 Code Editor

The code editor is a full-featured text editor designed for editing C and assembly code in your
project. You can use the code editor to create and edit project files. You can rearrange the work area
to suit your own work style.

Figure 1-2.  PSoC Designer Code Editor

1.1.3 Build Manager

The Build Manager is a largely invisible utility that controls the various portions of the build process
including the compiler (or compilers), assembler, and linker, and manages the process of building
your project and preparing it to download to a target device.

The only visible portions of the Build Manager in the PSoC Designer application are the Build menu
and the Build options in the Tools > Options... dialog. For more information on the Build Manger, see
Appendix B. 

1.1.4 Debugger

The debugger has multiple windows that allow you to interact with and observe the code execution
on the target PSoC device. The debugger is tightly integrated with the rest of the IDE, and there is no
separate debugger view. Instead, there are a number of different windows that you can use to
monitor the status of various parts of your target board while debugging, including the following:

 Break Points

 Memory

 Watch Variables



10 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Introduction

 Events

 Trace

 Output

1.1.5 Getting Help

The Help menu contains several different options for obtaining more information about how to use
PSoC Designer. The Help -> Help Topics window contains information about how PSoC Designer
works. For additional information, the Help -> Documentation... selection opens a window showing
all of the XLS, TXT and PDF documentation available with PSoC Designer, including this IDE Guide. 

When you first launch PSoC Designer, the Start Page opens in the main application window. This
start page contains panes that help you get started quickly using PSoC Designer.

 Recent Projects allows you to open any previous saved project, create a new project, or browse
to find projects that are not displayed in Recent Projects.

 Design Catalog allows you to choose among numerous preconfigured PSoC Designer designs.
These are fully functioning PSoC Designer designs, many of which can be built and programmed
on Cypress Evaluation Boards and Kits to give you full functioned examples.

 PSoC Shortcuts provides a shortcuts to PSoC resources that you may find helpful. 

1.1.5.1 Register

After you install the software, the next step is to register the PSoC Designer.   

To register your version of PSoC Designer, go to Help menu and click Register.  The registration
window opens. 

Figure 1-3.  Registration Window

1. If you have an account with Cypress, enter your Email Id and Password else go to step 3.

2. To recover your password, click Forgot password link.

3. Click Create new account link to register with Cypress as a new user.

4. If you wish to enhance PSoC Designer, select I'd like to help make PSoC Designer better box.

5. In case of any privacy concern on how Cypress uses your information.  Click How will Cypress 
use my information... link.

6. Click Register.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 11

Introduction

1.1.5.2 Feedback

If you need technical support or want to provide feedback about PSoC Designer, select Help menu
and click Feedback. The feedback windows opens.

Figure 1-4.  Feedback Window

1. If you need any clarification on technical features, select Technical Support.

2. If your queries related to product information, select Marketing Feedback.

3. Click Submit.

1.2 Chapter Overviews

This table briefly describes the contents of each chapter in this guide. 

Table 1-1.  Chapter Overviews

Chapter Description

Introduction Describes the purpose of this guide, provides an application overview and 
descriptions of each chapter, supplies product support and upgrade infor-
mation, and lists documentation conventions and references for more infor-
mation.

Chip-Level Editor Describes the chip-level editor that allows you to work directly with the 
resources available on a PSoC device, select and configure user modules, 
and route inputs, outputs, and other resources to and from them.

Code Editor In this chapter you learn how to create the project code. 

Assembler In this chapter you receive high-level guidance on programming assembly 
language source files for the PSoC device.

Build Manager In this chapter you learn the details of building a project, discover more 
about the C Compiler as well as the basic, transparent functions of the sys-
tem Linker and Loader, and Librarian.

Debugger In this chapter you learn how to download your project to the In-Circuit Emu-
lator (ICE), use debug strategies, and program the part.

Flash Protection Flash Program Memory Protection (FPMP) allows you to select one of four 
protection (or security) modes for each 64-byte block within the Flash, 
based upon the particular application.



12 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Introduction

1.3 Support

Go to http://www.cypress.com/?id=4 for free support. Resources include training seminars,
discussion forums, application notes, PSoC consultants, TightLink technical support email/
knowledge base, and application support technicians.

Before using the Cypress support services, know the version of PSoC Designer installed on your
system. To quickly determine the version of PSoC Designer, click Help > About PSoC Designer.

Cypress provides upgrades and version enhancements for PSoC Designer free of charge. The
upgrades are downloadable from Cypress web under Software > PSoC Designer. Also provided are
critical updates to system documentation under Design Support or go to http://www.cypress.com.

1.3.1 Technical Support Systems

Enter a support request into the TightLink Technical Support System with a guaranteed response
time of four hours or view and participate in discussion threads about a wide variety of PSoC device
topics at http://www.cypress.com/support/.

1.3.2 Product Upgrades

Cypress provides upgrades and version enhancements for PSoC Designer free of charge. The
upgrades are downloadable from Cypress web under Software > PSoC Designer. Also provided are
critical updates to system documentation under Design Support or go to http://www.cypress.com.

1.4 Installation

The PSoC Designer Installation wizard provides a step by step instruction to install PSoC Designer.

1. Select the Installation Wizard from Start > All Programs > Cypress > PSoC Designer 5.1 > 
CyInstaller for PSoC Designer 5.1. The welcome wizard appears.

Figure 1-5.  Welcome Window

2. Click Change... to change the location of the installation file. 

3. Click Next.

http://www.cypress.com
http://www.cypress.com/support/login.cfm
http://www.cypress.com/support/login.cfm

http://www.cypress.com/?id=4
http://www.cypress.com/?id=2522
http://www.cypress.com/?id=2522
http://www.cypress.com/?id=2522
http://www.cypress.com/
http://www.cypress.com/?id=4


PSoC Designer IDE Guide, Document # 001-42655 Rev *D 13

Introduction

4. "Choose the installtion type from the Installation Type Drop Down box. 

Figure 1-6.  Installtion Type Page

5. If you select Typical installation type from the drop down box, the minimum set of files required 
gets installed. 

6. If you select Complete option, the full package gets installed. 

7. If you select Custom option, you can choose what exactly you want to install. 

Figure 1-7.  Select Typical Installation Type option



14 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Introduction

8. Select Typical option from the Installtion Type drop down list, then click Next.

Figure 1-8.  License Agreement 

9. Select the I accept the above license agreement checkbox. 

10.Click Next, to start the installation process

Figure 1-9.  Downloads



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 15

Introduction

11. "You can see the downloading information such as Tool name, Tool Version and build number in 
the page. It downloads the complete build from the source. Then it starts installing the Designer.

Figure 1-10.  Installation 

12.Click Finish to close the InstallShield Wizard.

If you have any problem in installing PSoC Designer. Click Contact Us.



16 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Introduction

1.5 Conventions

Here are the conventions used throughout this guide. 

1.5.1 Acronyms

These are the acronyms used throughout this guide. 

Table 1-2.  Documentation Conventions 

Convention Usage

Courier New Displays file locations and source code:

C:\ …cd\icc\, user entered text

Italics Displays file names and reference documentation:

sourcefile.hex

[bracketed, bold] Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]

File > New Project Represents menu paths:

File > New Project > Clone

Bold Displays commands, menu paths and selections, and icon 
names in procedures:

Click the Debugger icon, and then click Next.

Text in gray boxes Displays cautions or functionality unique to PSoC Designer or 
the PSoC device.

Table 1-3.  Acronyms

Acronym Description

ADC analog-to-digital converter

API application programming interface

BOM bill of material

C (refers to the C programming language)

DAC digital-to-analog converter

DRC design rule checker

EPP enhanced parallel port

FPMP Flash program memory protection

grep global regular expression print

ICE in-circuit emulator

IDE integrated development environment

IO input/output

ISR interrupt service routine

MCU microcontroller unit

MHz megahertz

OBM on-board monitor

OHCI open host controller interface

PWM pulse width modulator

RAM random access memory

ROM read only memory



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 17

Introduction

1.6 References

This guide is part of a larger documentation suite for the PSoC Designer application. It is meant as a
reference, not as the complete source of information. For the most up-to-date information, go to
http://www.cypress.com. The documentation listed here provides more specific information on a vari-
ety of topics:

 PSoC Designer Help Topics (Online Help)

 PSoC Designer Development Kit Getting Started Guide

 PSoC Programmer Guide

 Various PSoC Designer application notes and data sheets

1.7 Revision History

SSC system supervisory call

UART universal asynchronous receiver transmitter

UHCI universal host controller interface

USB universal serial bus

Table 1-4.  Revision History

Revision
PDF 

Creation 
Date

Origin 
of 

Change
Description of Change

** May 27, 2008 FSU
Put changes to the original PSoC Designer IDE Guide in a new template and assigned a 
Spec Number.

*A August 14, 2008 FSU
Changed some screen captures. Added many previously undocumented global parame-
ters.

*B March 24, 2009 PYRS Added content relating to compilers and large scale updates 

*C July 14, 2010
FSU/
RAVG

Removed Sytsem Level Editor chapter and other large scale updates. 

Added Register, Feedback, CyInstaller for PSoC Designer 5.1 and Selecting User Module-
section

*D 12/09/2010 RAVG Comprehensive updates of all chapters and the updates are based on CDTs

Table 1-3.  Acronyms (continued)

Acronym Description

http://www.cypress.com


18 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Introduction



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 19

2. Chip-Level Editor

The Chip-Level Editor allows you to work directly with the resources available on a PSoC device,
select and configure user modules, such as analog to digital converters (ADCs), timers, amplifiers,
and others, and route inputs, outputs, and other resources to and from them.

Figure 2-1.  Chip-Level Editor Desktop



20 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

2.1 Chip-Level Editor Overview

The Chip-Level Editor gives you complete control over Chip-Level Projects resource use, routing,
and firmware. You choose a specific chip at the beginning of this process:

Step 1: Create a Project

This is the first step in both processes, but after naming your project, the first thing that you do in
a Chip-Level  Project is select a PSoC device.

Step 2: Select a PSoC Device

There are a large number of PSoC devices in the PSoC architecture with more being added all
the time. Some are general purpose devices with varying amounts of general purpose digital and
analog resources while others are more specialized with onboard peripherals suited to specific
solutions such as wireless, LED control, or capacitive sensing. Consult the Cypress web site for a
wide variety of literature and contact information for people that can help you choose the right
device for your design. 

Step 3: Choose User Modules

PSoC devices have programmable analog and digital blocks that can be configured for a wide
variety of uses. User Modules configure these programmable blocks to behave as a specific
peripheral, such as an analog to digital converter, a timer, or a pulse width modulator. You choose
user modules based on what you need the PSoC device to do for you. 

Step 4: Configure the User Modules

Each user module has a set of parameters that allow you to configure it to meet your needs. For
example, a CapSense user module must be configured to detect signals coming from capacitive
sensing components in a wide variety of configurations, so it has a large number of configurable
parameters. A design rule checker can alert you to potential problems with your design as you
work. 

Step 5: Connect the User Modules

Each user module will have inputs, outputs, and interrupts that can be routed internally to and
from other user modules, and externally to and from pins. The PSoC devices have a very flexible
routing system, but resources are limited and it may take some experimentation to find the
optimal routing and placement for all of the user modules.

Step 6: Generate Your Project

This prepopulates your project with APIs and libraries that you can use to program your
application.

Step 7: Write Your Program

Write your program in C for rapid development, assembly language to get every last drop of per-
formance from the MCU, or a combination of both. You have a choice of third party C compilers
for PSoC devices.

Step 8: Build and Debug Your Program

Build and test your program. Use PSoC Designer in conjunction with one of the PSoC emulators.
PSoC Designer has a powerful built in debugger.

Step 9: Program the Device

Cypress has a variety of programmers that you can use to program your production parts.

Your design is now complete. The remainder of this chapter is organized just like the above outline
with additional details on each of the steps. 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 21

Chip-Level Editor

2.2 Create a Project

In order to program the desired functionality into a PSoC device, you need to first create a project
directory in which the files and device configurations reside.

1. To start a new project, select New Project... from the File menu. 

Figure 2-2.  New Project Dialog Box

2. Choose a name and location for the project. By default, a project is created inside a workspace
with the same name as the project, the project is stored in the project directory. If you plan to
create multiple projects in a single workspace (for example, if your project will use multiple PSoC
devices), click Create a directory for workspace and supply a name for the first project. The
Workspace menu provides you the option to Create a new Workspace or to Add to an existing
workspace. When you are finished, click OK.

3. In the Select Project Type dialog box, click View Catalog... to access a detailed list of available
parts.

Figure 2-3.  Select Project Type Dialog Box



22 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

4. In the Device Catalog Dialog Box, highlight your part of choice. Tabs at the left and characteristic
selections along the top narrow the list of devices. You have several options in this dialog box
including layout display, viewing part image, and sorting part selection (by clicking on a chosen
column title). Click Select to save your selection and exit the dialog box.

Figure 2-4.  Device Catalog Dialog Box

5. After you select a part, click C or Assembler, in the Select Project Type dialog box, to designate
the language in which you want the system to generate the “main” file.

6. Click OK. Your workspace directory with folders is created and is listed in the Workspace
Explorer. If the Workspace Explorer is not visible, choose Workspace Explorer from the View
menu. 

2.2.1 Clone a Project

Cloning a project is used when you want to convert an existing project to a different PSoC part. The
part is referred to as the “base” part. 

You can clone an existing project at any point of its existence: before, during, or after device
configuration, assembly-source programming, or project debugging. Cloning copies the existing
project but allows you to change the base device. Use the cloning method to move an existing
project from one directory to another, rather than physically moving the files. 

You must use the cloning method to change parts within a part family in the middle of a project
design. Refer to the Application Notes on the Cypress web site for assistance. 

To clone an existing project:

1. From the File menu, select New Project... You can only clone a Chip-Level  project. Select Chip-
level .

2. Select a name and location for your new application and click OK.

3. In the Clone project box click Browse... and find the .CMX file of the project you want to clone. 

4. You have two radio button “Use the same target device” and “Select target device”. 

5. Choose “Use the same target device” radio button to use the same device or choose “Select 
target device” to use new base device.

6. Select View Catalog... to select a new device and Click OK.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 23

Chip-Level Editor

Figure 2-5.  Cloning a Project

7. If you choose to use the same target device, select Use the same target device radio button and 
click OK. 

The clone analysis window appears only if you choose a different target device.

2.2.2 Updating Existing Projects

If you download a newer version of PSoC Designer, you may need to update existing projects
created with an earlier version of PSoC Designer. Most project updates are done automatically;
however, some need to be done manually depending upon project specifics. Manual project updates
are described at the end of this chapter.

To update a PSoC project for compatibility:

1. Open PSoC Designer.

2. Access the project to update. 
At this point, PSoC Designer checks to see if the project is compatible with the new version of 
PSoC Designer.

3. If your project needs to be updated, the Old Version window appears with the appropriate 
message text. Click Update (or you can update later by selecting Update later...).

4. After the update is complete, click Finish. Your project is now compatible with the current version 
of PSoC Designer.

2.3 Selecting User Module

The user modules list is populated in the User Module Window depending on the selection of device
you make in the Device Catalog list. 

Select a User Module from the User Modules Window after you create a new project.  A user
module is a preconfigured function that is placed and is programmed.  It works as a peripheral on the
target device.



24 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

PSoC Designer provides you multiple ways to select the User module from the User Modules
Window.

1. Select the user module you need from the User Modules Window.  Double click on the selected
user module.  The selected user module is added into the block placed inside the chip editor.

2. Select the user module you need from the User Modules Window.  Right click on the selected
user module.  The pop menu appears.  Select Place menu.  The selected user module is added
into the block placed inside the chip editor.

3. Select the user module you need from the User Module Window.  Drag and drop inside the Chip 
Editor window.  The user module is added into the block placed inside chip editor window.

Repeat the process for adding each user module in the Chip Editor window. You can add or remove
the user modules from the chip editor at any time during the device configuration.

Select View > Datasheet Window from the menu, to view the user modules in a separate window.

2.4 Selecting Multiuser Module

The “Multiple” User Modules (MUM) are designed to support selection between different User
Module configurations. The Multi User Module (MUM) selection dialog appears during User Module
placement in the Chip Editor, which is specific to the User Module.

You can select the User Module that suits best to your needs.

The following examples describe the different types of Multi User Module.

 Supported topologies

 Different operation modes

 Available resource usages / CPU performance

 Single Stage / Double Stage Modulator

Select CY8C29466-24PVXI device from the catalog. Drag and drop LPF4 filter component to the
Chip Editor. The Select Multi User Module dialog appears.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 25

Chip-Level Editor

Example 1: Choose between supported topologies

The input signals routing and the occupied analog blocks depend on selected option. For this User
Module the selection will not affect functionality and performance. The selection will affect the
topology only.



26 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

Example 2: Choose Operation Mode

This dialog allows selection of functionality to be obtained from hardware I2C resource. The
functionality is totally different from the other. Depending on the selection, the hardware I2C
resource is configured to one of available operation modes and proper libraries are created for use
in application code.

Example 3: Choosing between Resource Usage / CPU Performance

The first option here saves one digital block but it consumes extra CPU time for servicing the
software timer. For the second option the hardware digital block is used as a timer.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 27

Chip-Level Editor

Example 4: Single Stage / Double Stage Modulator

In the ADCINC Multi User Module dialog, you can choose “Single-Stage modulator” to save analog
switched capacitor block or you can choose “Double-Stage modulator” to obtain higher SNR level of
application. You can choose either one of the topology that suits your requirements.

2.5 Placing User Modules

Placing user modules is the first step (after creating a project) in configuring your target device. A
user module is a preconfigured function that, after placed and programmed, works as a peripheral
on the target device.

To place a user module:

1. Locate the desired user module in the the user module catalog. Each user module has a user
module data sheet that describes what it is and how to use it. If you do not see the user module
data sheet when you click on a user module, select View > Datasheet Window. Right-click on
the user module and select Place. Some user modules have wizards or configuration screens
that appear before the user module can be placed. These will differ by user module. The user
module will be placed in the first available PSoC block in the Chip Editor view. 

The user module block reference names appear above the currently active blocks. For example,
an ADC10 has one digital block used as a counter (CNT) and two analog blocks, one for the
analog to digital conversion (ADC) and the other for a voltage ramp (RAMP). The name of the
user module is separate from these user module block function names. This is because a
multiblock user module may have distinct block actions. 

2. If you want to use a placement other than the default, click the Next Allowed Placement icon to
advance the user module to the next available location (active/anchor identified as green, non-



28 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

active as blue) and then select required user mosule and place. Click the target placer (identified
as green and blue highlights) and drag-and-drop the user module to a new location. If a user
module has multiple blocks, it may be possible to drag individual blocks onto a free block. Repeat
this procedure until you have identified the exact location for the user module.

The Next Allowed Placement button shows the next possible set of PSoC blocks in which a user
module may be placed, regardless of any currently placed user modules. If you cannot place the
user module in the highlighted location due to a lack of resources, a Resource Allocation
message flashes in the lower-left corner of PSoC Designer. Placement is not possible if another
user module occupies the PSoC block, or if a placed user module is using another resource
which the highlighted user module requires.

3. When you identify the location, click the Place User Module icon , or right-click and select 
Place.

After you place the module, it appears on the device, color-coded, bearing the designated name
of the chosen PSoC block. In the Interconnect frame, the inactive target placers (blue highlights)
of multi-block user modules are now identified by a group name across the top. 

Some user modules do not consume visible resources in the Chip Editor view when they are

placed. Examples of this include LCD, I2C Master, I2C Slave and software only user modules. 

4. At this time, you can print, save, clear or unplace, and name or rename the placed user module.

 To print your placement view, right-click anywhere in the Chip Editor view and select Print.

 To save your work, click File > Save Workspace.

 To clear all user module placements (i.e., remove them from their location on the PSoC
blocks), click Interconnect > Clear All Placements. To unplace one particular module, right-
click it (in either the Interconnect view or the Workspace Explorer) and select Unplace or click

the Unplace User Module icon . This does not remove user modules from PSoC Designer
or from your collection. Your unplaced user modules shown in the Workspace Explorer under
Interconnect > Loadable Configurations > User Modules.

 To name or rename user modules, select the user module either in the Workspace Explorer or
the Chip Editor view, and type a new name in the user module Parameters window.

5. Repeat this process (steps 1-4) for all user modules in your design.

For each user module you add, the system updates the data in the Resource Meter with the number
of occupied PSoC blocks, along with estimated RAM and ROM usage for the current set of selected
user modules. The RAM and ROM numbers grow or shrink depending upon wizard settings and
other user module parameter adjustments. If you select a user module that requires more resources
than are currently available, PSoC Designer does not allow the selection. If you do not see the
Device Resource Meter go to the View menu and select Resource Meter.

If user modules are already placed, then there are some cases when user module placement fails
even if it appears that sufficient PSoC blocks remain unallocated. In such cases, the already placed
user modules are using resources that the selected user module requires.

There are several user modules that require topology selection (that is filters). Right click on the
module in the Workspace Explorer after it is placed and click Selection Options. Make the topology
choice according to your application.

Some user modules have associated wizards to assist in configuration. To access a wizard, select
the user module in the Workspace Explorer and then right click the mouse. If a wizard exists, it
appears in the menu choices.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 29

Chip-Level Editor

To Remove a User Module:

To remove user modules from your collection, select any block of the user module in the Chip Editor
and press [Delete], or right-click the user module and select Delete. This does not remove user
modules from PSoC Designer, just from your collection.

If you add or remove user modules after generating application files, you need to regenerate the
application files (as well as reconfigure required settings). For further details, see “Generating Appli-
cation Files” on page 56. 

2.5.1 Setting User Module Parameters

Setting User Module Parameters configures the user module to behave the way you want it to and
connects the user module to the external pins and other user modules and resources. You connect
to user modules through the output and input parameters of the PSoC blocks. The interconnection
buses provide interconnection paths between the external pins and to other digital user modules.

After you place the user module, the parameters are updated with applicable names. When you
single-click a user module, you view its parameters under parameters. If you do not see the
Pameters window, go to the View menu and select Parameters Window. User Module Parameters

To update the User Module Parameters:

1. Click each drop arrow (in parameter value fields) and make your selections.

Some parameters are integer values. Set these values by clicking the up/down arrows, or double-
click the value and type in the value. You can set the values as minimum or maximum.

2. Repeat this process for all placed user modules.

2.5.2 Global Resources

Global Resources are hardware settings that determine the underlying operation of the part (for the
entire application). For example, the CPU_clock designates the clock speed of the M8C. 

Note that Global Resource options differ slightly for each device family. The registers for enCoRe II
apply to CY7C63x23, CY7C638xx and CY7C63310. 

To update and save Global Resources:

1. Click each drop-arrow (in parameter value fields) and make your selections.

Some parameters in Global Resources are specified as integer values (such as VC1 and VC2).
Set these values by clicking the up/down arrows or double-clicking the value and typing over
them. You can set minimum or maximum value in the Global Resources dialog box. Click OK to
close the dialog box.

2. The current settings for the Global Resources can be saved as default settings. Right-click on
any Global Resource name and select Update Default Values. 



30 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

Use these settings for any other project by right-clicking any Global Resource name and
selecting Restore Default Values. If no custom default values are saved, then the menu item
and the right-click to Restore Default Settings restore the factory default Global Resource
Settings.

The Global Resources available in PSoC Designer are shown and described briefly. Different PSoC
Devices have different global resources. The figure shown is typical.

Figure 2-6.  Global Resources Example.

8 Bit Capture or FreeRun Prescaler

Selects which eight bits of the 16-bit free running timer, that are captured when in the 8-bit mode.

Registers Affected:
TMRCR

32K_Select

The 32K_Select parameter allows selection of the internal 32 kHz oscillator or an external crystal
oscillator. A complete discussion of the implications of this selection is found in the PSoC Technical
Reference Manual.

A_Buf_Power

A_Buf_Power allows the user to select the power level for the analog output buffers of the PSoC.
These buffers are used to supply internal analog signals to external pins on the PSoC. Power levels
may affect the frequency response and current drive capability of the output buffers. Complete tables
for the AC Analog Output Buffer Specifications and DC Analog Output Buffer Specifications are con-
tained in the applicable device data sheet.

AGNDBypass

A provision is made in some versions of the PSoC device to provide an external AGND bypass
capacitor to reduce the small amounts of switching noise present on the internal AGND. This feature
is switched on and off using the AGNDBypass global parameter. Typical values for the external
bypass capacitor are 0.01 F and should not generally exceed 10 F. The recommended value is 1
F.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 31

Chip-Level Editor

Analog Power

This parameter controls the power to the analog section of the PSoC. Power is controlled in three
stages: 

1. All Analog Blocks Off

2. Continuous Time Blocks ON/Switched Capacitor Blocks OFF

3. Continuous Time Blocks ON/Switched Capacitor Blocks ON

For each of the two 'ON' cases, select reference drive levels of high, medium, and low to choose the
current drive capability for the internal reference buffers. All selections of this parameter, whether
used as a User Module Parameter or this Global Resource, need to agree. This selection affects the
total power consumption of the PSoC. Each user module using the reference and the opamp block
associated with it adds slightly to the power consumed by the device. Since the internal reference is
used as an integral part of most switched capacitor circuits, the current drive capability has an impact
on the speed at which the switched capacitor block operates. In general, higher settings for this
parameter allow switched capacitor circuits to operate at higher clock rates, at the expense of higher
power consumption. To estimate the current (and power) consumption per opamp block, refer to the
applicable table in the data sheet for the part: DC Operation Amplifier Specifications (ISOA).

Crystal OSC

Selects the external crystal oscillator when enabled. The external crystal oscillator shares pads
CLKIN and CLKOUT with two GPIOs; P0.0 and P0.1, respectively.

Crystal OSC Xgm

XGM is the amplifier transconductance setting and selects the calibration for the external crystal
oscillator.

EFTB

The external crystal oscillator is passed through the EFTB filter when this option is enabled.

FreeRun Timer and Free Run Timer/N

Selects clock source for 16-bit free-running timer. The free-running timer generates an interrupt at a
1024-µs rate. It can also generate an interrupt when counter overflow occurs at every 16.384 ms.
The combination of the FreeRun Timer and the FreeRun Timer divider are used to obtain the
FreeRun Timer rate. 

LVD ThrottleBack

This parameter allows you to configure the PSoC to lower its own CPU clock speed under low
voltage conditions. Use of this parameter and the bit it controls is discussed in the PSoC Technical
Reference Manual. Not all PSoC devices incorporate this parameter and bit.

Opamp Bias

Performance of the internal opamps are tailored based upon the application under development by
selecting high or low bias conditions for the analog section of the PSoC. Selecting high bias causes
the opamp to consume more current but also increases its bandwidth and switching speed, lowering
its output impedance. To estimate the current (and power) consumption per opamp block, including
the effect from high or low selection of opamp Bias, refer to the applicable table in the data sheet for
the part: DC Operation Amplifier Specifications (ISOA). To estimate the effect on AC opamp
parameters, refer to the applicable AC Operational Amplifier Specifications in the device data sheet.



32 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

PLL_Mode

The PSoC Technical Reference Manual discusses use of the phase-locked loop mode.

Power Setting [Vcc/SysClk Freq]

This parameter allows you to select the SysClock frequency and nominal operating voltage. Based
upon the SysClock selected, the Internal Main Oscillator (IMO) is set with appropriate calibration
settings. Since many internal clocks are derived from the SysClock, you see significant device
power-consumption savings by lowering the SysClock frequency, if the implemented design permits
it.

Ref Mux

The Ref Mux source selection is used to control the range and (potential) accuracy of various analog
resources. The reference chosen controls the maximum voltage that is input to a switched capacitor
circuit and output from a switched capacitor circuit. Both the analog ground level and the peak-to-
peak voltage are selected using this parameter. Values specified with the Ref Mux parameter are in
pairs and consist of [AGND level ± full scale]. Keep in mind that selecting Vdd (supply voltage) as a
reference level couples Vdd changes into the AGND input of internal resources. This directly affects
absolute accuracy of measurements. Using the internal bandgap reference results in better accuracy
but may not offer an exact Vdd/2 input reference. Choices of ± full-scale values also offer a number
of options. These full-scale values may be based on the PSoC internal references or on external
input voltages. The ± full scale values present constraints similar to those for AGND in terms of Vdd
variation and absolute range of input/output. Individual design criteria dictate the best selection for
the AGND and ± full-scale values. Further discussion of the analog reference can be found in the
PSoC Technical Reference Manual.

Supply Voltage

Selects the nominal operating voltage to be either 3.3V or 5V. 

SwitchModePump

An integrated switch mode pump circuit is available for operation of the device from very low voltage
sources. The pump requires a few external components and can be configured to automatically turn
on as supply voltage drops. Further discussion of the switch mode pump is found in the PSoC Tech-
nical Reference Manual. 

SysClk_Source and SysClk*2 Disable

These parameters allow you to select the 24 MHz system SysClock from an internal or external
source. The SysClock*2 Disable parameter allows the internal 48 MHz clock to be shut off. A
complete discussion of system clocking is found in the PSoC Technical Reference Manual.

Trip Voltage [LVD (SMP)]

A precision POR circuit is integrated into the PSoC. This parameter allows the user to select voltage
levels that the PSoC uses to internally monitor its supply voltage. Two levels are specified in the
parameter with the syntax <LVD (SMP)>. LVD is the value at which the internal low voltage
comparator asserts its control signal. SMP is the level at which the integrated switch mode pump is
enabled. Although selection of SMP is implicit in the selection of LVD, if no switch mode pump
circuitry is used, the part is reset if supply voltage falls too low. At the point when the supply voltage
exceeds the threshold level, the part resumes operation as if the power was switched off and on
(POR). Further discussion of the switch mode pump and low voltage detect is found in the PSoC
Technical Reference Manual. 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 33

Chip-Level Editor

VC1 and VC2

These resources are clocks that can be chained to provide various internal clock frequencies used
for digital or analog blocks. A complete discussion of system clocking is found in the PSoC Technical
Reference Manual.

VC3_Source and VC3_Divider

VC3 is a system clock resource similar to the VC1 and VC2 resources. The main difference between
it and VC1 and VC2 is that VC3 may be chained from one of several clock sources and may not be
used as an input clock as flexibly as VC1 and VC2. You cannot use it as a direct input to the analog
section of the PSoC. It can be used as an input to a digital PSoC block and then used to derive a
clock that can be used in many more places. For this reason, it is important to evaluate clocking
options as a PSoC design is being developed. Often, rearranging clock sources according to where
they are most easily connected solves clocking problems. A complete discussion of system clocking
is found in the PSoC Technical Reference Manual.

Global Resources for USB Chips

Capture Clock

Selects clock source for the Timer Capture Clock (TCAPCLK).
Registers Affected: 
TMRCLKCR

Capture Clock /N

Selects whether the capture timer data registers holds the data from the first detected edge or the 
most recent detected edge.
Registers Affected:
TMRCLKCR

Capture Edge

Selects whether the capture timer data registers holds the data from the first detected edge or the 
most recent detected edge. 
Registers Affected:
TMRCR

CLKOUT Source

Selects one of the clocks, internal SysClk, external, low power 32 kHz, or CPUCLK to be output 
directly on port P0[1].
Registers Affected:
CLKIOCR

CPU_Clock

Selects the source of SysClk as the Internal Main Oscillator (IMO) or the external source from Port 
1[4]. External clock source input in enCoRe II is P0.0 (not P1.4 like in PSoC devices)
Registers Affected:
CPUCLKCR

CPU Clock/N

Selects the CPU clock speed, from 187 kHz to 24 MHz. Derived from the SysClk. This setting affects 
the Power on Reset level in order to prevent the CPU from running outside of its Vdd specification.



34 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

Registers Affected: 
OSC_CR0

Low V Detect

Selects the level of the supply voltage at which the Low voltage detect interrupt is generated.
Registers Affected:
LVDCR

Sleep_Timer

Selects the timing of the sleep interrupt between 1 Hz and 512 Hz. The watchdog timer is affected 
for every 3 sleep timer cycles when it is enabled.
Registers Affected:
OSC_CR0

Timer Clock

Selects clock source for the 12-bit down counting internal timer (TMRCLK)
Registers Affected:
TMRCLKCR

Timer Clock/N

Selects the value by which to divide the source of TMRCLK to obtain TMRCLK.
Registers Affected:
TMRCLKCR

USB_Clock

Selects the clock source for USB SIE. Internal 24 MHz IMO or external clock source at P0.0
Registers Affected:
CPUCLKCR

USB Clock/2

Provides an option to divide the USB clock source by 2, depending on clock source and frequency. 
When USB clock is the internal 24 MHz oscillator, then the divide by 2 option is always enabled.
Registers Affected:
CPUCLKCR

V Reset

Selects the Power on Reset (POR) voltage level.
Registers Affected:
LVDCR

V Reg

A 3.3V (125 mA) regulator output is places on P1[2] when enabled. This must ONLY be enabled 
when the supply voltage is above 4.35V. A 1uF min, 2uF max capacitor is required on Vreg output.
Registers Affected:
VREGCR



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 35

Chip-Level Editor

V Keep-alive

Allows voltage regulator to source upto 20 ìA of current when voltage regulator is disabled.
Registers Affected:
VREGCR

Watchdog Enable

Enables watchdog timer that will result in a CPU reset if not serviced. Timing is based on a counter 
that counts 3 sleep timer events.
Registers Affected:
CPU_SCR

8 Bit Capture Prescaler

Selects which eight bits of the 16-bit free running timer, that are captured when in the 8-bit mode.
Registers Affected:
TMRCR

2.6 Project Backup Folder

PSoC Designer maintains a backup folder in the project directory for files that were removed from
the source tree. This includes files that are manually removed and files removed due to cloning or
code generation. The backup folder only retains the version of the file that was last removed. The
files are named identically to the original project file and the \lib directory is not retained (i.e.,
library files are placed directly under the backup folder).

2.7 Specifying Interconnects

Interconnectivity allows communication between user modules, PSoC blocks, pins, and other on-
chip resources. 

Connections are shown as lines between elements, special symbols, or flag connectors. Flag
connectors are used when the connection is made to a point where drawing a line results in a
cluttered display, with the legend indicating the origin of the connection. Connections to pins are
shown as lines from interconnection buses. The interconnection bus structure depends on the PSoC
device selected and can consist of one or more levels of buses between the digital PSoC blocks and
the pins.

Connections between analog PSoC blocks and pins are made through the analog input muxes and
output buses. 

Pin names are duplicated in several places, since they are multifunctional, and are highlighted when
used with lines showing their current connection state. The location of the pin to which a line is
drawn indicates the usage of the pin. Lines drawn to the pins on the left edge indicate that the pins
are used as inputs, while the right edge indicates the pins are used as output. 

Pins in the upper groups indicate connection to the digital network, while lower groups indicate
analog connections. Lines drawn from multiple locations on the same pin indicate that the shown
combination is electrically valid.

To specify interconnections, double-click the Interconnect folder in the Workspace Explorer.

User module interconnections consist of connections to surrounding PSoC blocks, output bus, input
bus, internal system clocks and references, external pins, and analog output buffers. Multiplexers
may also be configured to route signals throughout the PSoC block architecture.



36 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

Digital PSoC blocks are connected through the GlobalIN and GlobalOUT buses to external pins and
to other digital PSoC blocks. There are 8 GlobalInOdd/GlobalInEven, and 8 GlobalOutOdd/
GlobalOutEven line buses, numbered 0 through 7. For external pin connections, the number of the
Global bus line corresponds to the bit number of the associated port. For example, GlobalInOdd_0 /
GlobalInEven_0 can connect to pins associated with P0[0], P1[0], P2[0], etc. The GlobalOUT buses
can drive the inputs to other digital PSoC blocks. However, all GlobalOUT lines do not reach all
digital PSoC blocks. Refer to the PSoC Technical Reference Manual for details on the global bus
interconnections.

When setting output parameters to the GlobalOUT lines, only one PSoC block drives a single
GlobalOUT line at a time. GlobalOUT lines used by a user module are not available to other user
modules for output. For example, if two timer user modules are placed and the first timer is set to use
GlobalOUTOdd_1 / GlobalOUTEven_1 for output, attempting to set the output for the second timer
to GlobalOUTOdd_1 / GlobalOUTEven_1 fails.

2.7.1 Connecting User Modules

These procedures show you how to make certain types of connections.

Global In

Global In connections apply to a PSoC device in this manner:

 CY8C25xxx/26xxx as Global In: Input Port Connections.

 All other PSoC devices as Global In Odd and Global In Even: Input Port Connections and Global 
Connections.

To set Global In connections:

1. Click on the target Globalxxx vertical line.

2. Select the pin to connect to.

3. Select the global input to output connection (if active). 

4. Click OK.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 37

Chip-Level Editor

You see a line connecting the digital input port to the global vertical line.

Global Out

Global Out connections apply to a PSoC device in this manner:

 CY8C25xxx/26xxx as Global Out: Output Port Connections.

 All other PSoC devices as Global Out Odd and Global Out Even: Output Port Connections and 
Global Connections.

To set Global Out connections:

1. Click on the target Globalxxx vertical line.

2. Select the global input to output connection (if active) and the port.

3. Click OK.

You see a line connecting the digital output port to the global vertical line.

Analog Clock Select

To set Analog Clock Select connections:

1. Click on the target AnalogClock_x_Select Mux.

Figure 2-7.  The AnalogClock_0_Select Mux

2. Select a DBAxx or DBBxx PSoC block (as applies). 



38 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

You see a line from the right side of DBxxx to the input of the AnalogClock_x_Select Mux. The 
mux switch shows a connection to this input.

Figure 2-8.  The AnalogClock_0_Select Set to Connect to DBB30

Analog Column Clock

To set Analog Column Clock connections:

1. Click on the target AnalogColumn_Clock_x Mux.

Figure 2-9.  Setting the AnalogColumn_Clock_0 Mux

2. Select a device-specific option from the menu. 

You see that the AnalogColumn_Clock_x Mux has a line connecting your chosen option to the 
mux output.

Analog Column Input Mux

To set Analog Column Input Mux connections:

1. Click on the target AnalogColumn_InputMUX_x.

Figure 2-10.  Setting the AnalogColumn_InputMUX_3

2. Select a port from the menu. 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 39

Chip-Level Editor

You see a connection between the output of AnalogColumn_InputMUX_x and the analog input 
port.

Analog Column Input Select

To set Analog Column Input Select connections:

1. Click on the target AnalogColumn_InputSelect_x.

Figure 2-11.  Setting the AnalogColumn_InputSelect_1

2. Select appropriate AnalogColumn_InputMUX_x from the menu. 

You see that your chosen AnalogColumn_InputSelect_x has a line inside that connects the out-
put of AnalogColumn_InputMUX_x to its output.

Analog Output Buffer

The Analog Output Buffers can be connected to the associated port pin or turned off. To set Analog
Output Buffer connections:

1. Click on the target AnalogOutBuf_x.

Figure 2-12.  Setting the AnalogOutBuf_2

2. Select a port from the menu. 

You see a line that connects the AnalogOutBuf_x triangle to the analog output port.

Clock Input for a Digital Block

To set Clock Input connections on a digital block:



40 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

1. Click the clock input triangle on the digital block where your target user module is placed. Note 
that the clock input triangle is not active for all blocks when a user module uses more than one 
block. Also note that the name “Clock Input” is determined by a specified user module parameter.

Figure 2-13.  Setting the Clock Input for an ADCINC User Module

2. Select an option from the menu. You see your chosen input option displayed next to the clock 
input triangle. 

Your choice option also appears in the Control Clock field under User Module Parameters (where 
you can click the drop-arrow to change your selection).

Enable Input for a Digital Block

To set the Enable Input connection on a digital block:

1. Click the Enable text label on the digital block where your target user module is placed. Note that 
the name Enable Input is determined by a specified user module parameter.

Figure 2-14.  Setting the Enable Input for an 8-bit Counter User Module

2. Select an option from the menu. 

You see your chosen input option displayed next to the Enable text label. Your choice option also 
appears in the Enable field under User Module Parameters (where you can click the drop-arrow 
to change your selection).



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 41

Chip-Level Editor

Output for a Digital Block

To set Output connections on a digital block:

1. Click the Output text label on the digital block where your target user module was placed. Note 
that the name Output is determined by a specified user module parameter.

Figure 2-15.  Setting the CompareOut on an 8-bit Pulse Width Modulator User Module

2. Select an option from the menu (None, Global_OUT_x for CY8C25xxx/26xxx, or 
Row_x_Output_x for all other PSoC devices). 

You see your chosen option displayed (with a connection) next to the Output text label. Your 
choice option also appears in the Output field under User Module Parameters (where you can 
click the drop-arrow to change your selection).

RBotMux for a CT Analog Block

To select a RBotMux for a CT Analog Block, follow this procedure. You can use this procedure when
the NMux, PMux, AnalogBus, or CompBus CT Analog Block apply, as well as for ACMux, BMux,
AnalogBus, or CompBus SC Analog Blocks.

1. Click the RBotMux text label on the analog block where your target user module was placed. 
Note that the name RBotMux is determined by a specified user module parameter. 

Figure 2-16.  Setting the Comparator Bus on a Comparator User Module

2. Select an option from the menu. 

You see your chosen option displayed next to the RBotMux text label. Your choice option also 
appears in the RBotMux field under User Module Parameters (where you can click the drop-
arrow to change your selection).

Row Broadcast

Row Broadcast connections do not apply to CY8C25xxx/26xxx parts. To set Row Broadcast connec-
tions:



42 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

1. Click the Row_0_Broadcast (BC0) or Row_1_Broadcast (BC1) horizontal line.

Figure 2-17.  Setting the Row_0_Broadcast Line

2. Select an option from the menu. 

You see a line connecting to a digital PSoC block or to the other Row Broadcast, depending on 
the option you chose.

Comparator Analog LUT

Comparator Analog LUT connections do not apply to CY8C25xxx/26xxx parts. To set Comparator
Analog LUT connections:

1. Click the AnalogLUT_x box. (Its symbol is identified in the Comparator x line along each column 
of analog PSoC blocks.)

2. Select an option from the menu. 

You see connections on the device interface reflecting your A or B selection with associated 
symbols.

2.7.2 Digital Interconnect Row Input Window

The Digital Interconnect Row Input window connections do not apply to CY8C25xxx/26xxx parts.

Connection to Global Input

To set a Connection to Global Input:



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 43

Chip-Level Editor

1. Click on the white box or the line of the target Row_x_Input_x. (A tool tip will appear to identify 
your selection.)

Figure 2-18.  Digital Interconnect Row Input

2. Click on the Row_x_Input_x Mux in the Digital Interconnect Row Input floating window and select 
a Global Input from the menu. (You immediately see a connection from the mux to the Global 
Input vertical line.) In this floating window you can also click the white box to toggle the Synchro-
nization value for Row_x_Input_x. Options include SysClk_Sync and Async

Figure 2-19.  Synchronization Options for Digital Interconnect Row Inputs

3. Click Close when finished.

2.7.3 Digital Interconnect Row Output Window

Digital Interconnect Row Output Window connections do not apply to CY8C25xxx/26xxx parts.

Row Logic Table Input

To set Row Logic Table Input connections:



44 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

1. Click on the target Row_x_Output_x Logic Table Box.

Figure 2-20.  Digital Interconnect Row Output 

2. Click on the Row_x_LogicTable_Input_x Mux in the Digital Interconnect Row Output floating win-
dow and select an input or output option from the menu.

3. Click Close when finished. 

You see connections on the device interface reflecting your row input or output selection.

Row Logic Table Select

To set Row Logic Table Select connections:

1. Click on the target Row_x_Output_x Logic Table Box.

2. Click on the Row_x_LogicTable_Select_x logical operation box in the Digital Interconnect Row 
Output floating window and select an option from the menu

Figure 2-21.  Logical Operations in Digital Interconnect Row Output



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 45

Chip-Level Editor

3. Click Close when finished. 

You see connections on the device interface reflecting your A or B input selection with associated 
symbol.

Connection to Global Output

To set connections to Global Output:

1. Click on the target Row_x_Output_x Logic Table Box.

2. Click on the target Row_x_Output_x_Drive_x triangle in the Digital Interconnect Row Output 
floating window and select an option from the menu.

After you open the Digital Interconnect Row Global Output window, you can select Row Logic 
Table Input, Row Logic Table Select, and Connections to Global Output without closing the win-
dow.

Figure 2-22.  Digital Interconnect Row Global Output

3. Click the Close button when finished. 

You see a connection from the Row_x_Output_x Logic Table Box to the chosen 
GlobalOutEven_x vertical line.

2.8 Specifying the Pinout

Specifying the pinouts is the next step to configuring your target device. This converts the pins to the
configurable PSoC resources.

To restore the default pinout, click the Restore Default Pinout button .

Be careful when connecting to pins. The pin settings can be modified either by setting elements to
connect to pins or by setting the pin directly. 

Setting the pin directly connects the pin to the appropriate element and disconnects it from any other
element. To have multiple connections to the same pin, make connections from the element to the
pin. For example, suppose a connection to a pin, an analog input mux and an analog output buffer,
simultaneously, is desired. P0[2] can connect to the analog input mux for column 1 and to the analog
output buffer for column 3. The connections must be made from the analog input mux and the ana-
log output buffer. Setting the pin to Default disconnects the pin from both digital buses, but does not
affect analog connections.



46 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

2.8.1 Port Connections 

You make port connections in three ways: 

 Click the port icons and make settings in the device interface

 Click the pin and make settings in the device pinout

 Change port-related fields in the Pinout window

These procedures show you how to make certain types of port connections.

Analog Input

To set Analog Input connections. 

1. Click on the target Port_0_x.

2. From the Select menu select AnalogInput.

Figure 2-23.  Select AnalogInput for a Port

3. Click OK.

On the device you see the new designation color coded according to the legend along side the 
device. The port name and selection also appears in the port-related fields underneath Pinout 
window (where you can click the drop-arrow to change your selection).

Default Input

To set Default Input connections:

1. Click on the target Port_x_x.

2. From the Select menu select Default.

Figure 2-24.  Select Default Input for a Port

3. Click OK.

On the device pinout frame you see the designation color coded according to the legend along 
side the device. The port name, the Select column value of StdCPU, and the drive mode of High 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 47

Chip-Level Editor

Z Analog also appears in the port-related fields underneath Pinout window (where you can click 
the drop-arrows to change your selections).

Global_IN_x

Global_IN_x connections apply to a PSoC device in this manner:

 CY8C25xxx/26xxx as Global_IN_x.

 All other PSoC devices as GlobalIn[Odd/Even]_x.

To set Global_IN_x connections:

1. Click on the target Port_x_x.

2. From the Select menu select the device-specific Global IN option.

Figure 2-25.  Select Global IN for a Port

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name, the Select column value of your chosen option, and the drive mode of High Z 
appear in the port-related fields underneath Pinout window (where you can click the drop-arrows 
to change your selections).

You also see a line between the digital input port and the Global IN vertical line.

Global_OUT_x

Global_OUT_x connections apply to a PSoC device in this manner:

 CY8C25xxx/26xxx as Global_OUT_x.

 All other PSoC devices as GlobalOUT[Odd/Even]_x.

To set Global_OUT_x connections:

1. Click on the target Port_x_x.

2. From the Select menu select the device-specific Global OUT option.

Figure 2-26.  Select Global OUT for a Port

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name, the Select column value of your chosen option, and the drive mode of Strong 



48 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

appear in the port-related fields underneath Pinout window (where you can click the drop-arrows 
to change your selections).

You also see a line between the Global OUT vertical line and the digital output port.

StdCPU

To set StdCPU connections:

1. Click on the target Port_x_x or select the port from the menu.

2. From the Select menu select StdCPU.

Figure 2-27.  Select StdCPU for a Port

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name and StdCPU also appear in the port-related fields underneath Pinout window 
(where you can click the drop-arrow to change your selection).

XtalOut

To set the XtalOut connection:

1. Click on Port_1_0 (P1[1]) or select Port_1_0 from the menu.

2. From the Select menu select XtalOut.

Figure 2-28.  Select XtalOut for Port 1 0

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name, XtalOut, and the drive mode of High Z also appear in the port-related fields 
underneath Pinout window (where you can click the drop-arrow to change your selection).

XtalIn

To set the XtalIn connection:

1. Click on Port_1_1 (P1[1]) or select Port_1_1 from the menu.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 49

Chip-Level Editor

2. From the Select menu select XtalIn.

Figure 2-29.  Select CXtalOut for Port 1 1

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name, XtalIn, and the drive mode of High Z also appear in the port-related fields under-
neath Pinout window (where you can click the drop-arrow to change your selection).

ExternalGND

To set the ExternalGND connection:

1. Click on Port_2_4 (P2[4]) or select Port_2_4 from the menu.

2. From the Select menu select ExternalAGND.

Figure 2-30.  Set External Ground for Port 2 4

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name and ExternalGND appear in the port-related fields underneath Pinout window 
(where you can click the drop-arrow to change your selection).

In the device interface you see that all lines from P2[4] are gone.

Ext Ref

To set the Ext Ref connection:

1. Click on Port_2_6 (P2[6]) or select P2[6] from the menu.



50 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

2. From the Select menu select ExtRef.

Figure 2-31.  Set External Reference for Port 2 6

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name and Ext Ref also appear in the port-related fields underneath Pinout window 
(where you can click the drop-arrow to change your selection).

In the device interface you see that all lines from P2[6] are gone.

I2C SDA

To set the I2C SDA connection 

1. Click on Port_1_5 (P1[5]) or select P1[5] from the menu.

2. From the Select menu select I2C SDA.

Figure 2-32.  

3. Click OK.

On the device you see the designation color coded according to the legend next to the device. 
The port name, I2C SDA, and the drive mode of Open Drain High also appear in the port-related 
fields underneath Pinout window (where you can click the drop-arrow to change your selection).

In the device interface you see that all lines from Port_1_5 are gone.

I2C SCL

To set the I2C SCL connection

1. Click on Port_1_7 (P1[7]) or select P1[7] from the menu.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 51

Chip-Level Editor

2. From the Select menu select I2C SCL.

Figure 2-33.  

3. Click OK.

On the device you see the designation color coded according to the legend next to the device.
The port name, I2C SCL, and the drive mode of Open Drain High also appear in the port-related
fields underneath Pinout window (where you can click the drop-arrow to change your selection).

In the device interface you see that all lines from Port_1_7 are gone.

2.8.2 Port Drive Modes

Port drive modes can be specified in one location, in three ways: 

 Click the port icons and make settings in the device interface

 Click the pin and make settings in the device pinout

 Change port-related fields in the Pinout window.

Depending on the architecture, PSoC Devices have either four or eight drive modes. All PSoC
devices have High Z, Pull Up, Pull Down, and Strong. Most PSoC devices also have High Z Analog,
Open Drain High, Open Drain Low, and Strong Slow. To specify a port drive mode:

1. Click on the target Port_x_x.

2. From the Drive menu select the port drive mode option.

The port name and the drive mode of your choice appears in the port-related fields in the Pinout
window (where you can click the drop-arrows to change your selections).

2.8.3 Port Interrupts

These procedures show you how to work with certain types of port interrupts.

ChangeFromRead

To specify a ChangeFromRead interrupt:

1. Click on the target Port_x_x.



52 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

2. From the Interrupt menu select ChangeFromRead.

Figure 2-34.  Set Port Interrupt to Change From Read

3. Click OK.

The port name and ChangeFromRead appears in the port-related fields in the Pinout window 
(where you can click the drop-arrows to change your selections).

DisableInt

To disable interrupts:

1. Click on the target Port_x_x.

2. From the Interrupt menu select DisableInt.

Figure 2-35.  Set Port Interrupt to Disable

3. Click OK.

The port name and DisableInt appears in the port-related fields in the Pinout window (where you 
can click the drop-arrows to change your selections).

FallingEdge

To specify FallingEdge interrupt:

1. Click on the target Port_x_x.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 53

Chip-Level Editor

2. From the Interrupt menu select FallingEdge.

Figure 2-36.  Set Port Interrupt to Falling Edge

3. Click OK.

The port name and FallingEdge appears in the port-related fields in the Pinout window (where 
you can click the drop-arrows to change your selections).

RisingEdge

To specify RisingEdge interrupt:

1. Click on the target Port_x_x.

2. From the Interrupt menu select RisingEdge.

Figure 2-37.  Set Port Interrupt to Rising Edge

3. Click OK.

The port name and RisingEdge appears in the port-related fields in the Pinout window (where 
you can click the drop-arrows to change your selections).



54 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

2.8.4 InitialValue

A new InitialValue feature has been added to all pins in PSoC 1 devices. This allows you to control
the initial value of each pin. The InitialValue is automatically set based on the drive mode of the pin,
but you can alter this value if needed.

Figure 2-38.  Initial Value Setting

Table 2-1.  Drive Modes and InitialValue

2.9 Tracking Device Space

Tracking the available space and memory of configurations for your device is something you do
intermittently throughout the process of configuring your target device. You need to monitor device
space and memory resources so you are aware, on an ongoing basis, of the capacity and limitations
you are working with on the microcontroller unit (MCU).

You can monitor device space and memory with the Resource Meter. If you do not see the Resource
meter, select Resource Meter from the View menu. Resources are updated as each user module is
placed.

The resource meter tracks Analog Blocks, Digital Blocks, RAM, ROM, and the use of device specific

special resources such as the decimator, CapSense™ blocks, or I2C controller. As you place user
modules, you can view how many analog and digital PSoC blocks you have available and how many
you have used. RAM and ROM monitors track the amount RAM and ROM required to employ each
selected user module.

Drive Mode
Default InitialValue 

Setting

Strong 0

Strong Slow 0

High Z 0

High Z Analog 0

Open Drain Low 1

Open Drain High 0

Pull Up 1

Pull Down 0



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 55

Chip-Level Editor

Figure 2-39.  PSoC Block Resource Meter

2.10 Design Rule Checker

The Design Rule Checker (DRC) operates on a collection of predetermined rules associated with
elements in a project database. After started, the DRC runs and then communicates the results of a
“rule” evaluation. 

The DRC is designed to point out potential errors or rule violations in your project that might eventu-
ally pose problems. The DRC does not impose limitations or prevent you from proceeding with your
project “as is.” It simply notifies you of PSoC user module, software, and hardware elements you
may not be aware of when configuring and sourcing your device. It is an additional tool to provide
support for user-configuration.

The PSoC Designer collection of rules is being updated on an ongoing basis. A few sample DRC
rules include:

 A project uses a Phase Locked Loop (PLL) but has not been configured with an External Crystal

 The device is set to 24 MHz and 3V operation

 The device is set to 48 MHz and 3V for Digital Clock Operation

 Failure to set required parameters or connections

 P0[1] and P0[0] Pins not High-Z with External Crystal

 3.3 V Indicating ICE is 5V Supply Only

 Global Bus with Signal Pulse Width < 1/12 MHz

 Phase Consistency Between Output to Input of SC blocks

 PWM/Counter/Timer with Pulse Width > Period

 Inappropriate Ground and Reference Level Selections

To run the Design Rule Checker, go to: Tools > Add-in Tools > Design Rule Checker.

In a matter of seconds, you can review the results of the rule evaluation in the Output window after
selecting "Code Generation" in the "Show output from box". 

You can run the DRC at any time or any number of times during project development. To run it
automatically each time you generate application files, go to: Tools > Options... > Tools.



56 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

2.11 Generating Application Files

Generating application files is the final step to configuring your target device. When you generate
application files, PSoC Designer takes all device configurations and updates existing assembly
source and C Compiler code and generates API (Application Programming Interface) and ISR (Inter-
rupt Service Routine) shells. At this time, the system also creates a data sheet based on your part
configurations that can be accessed in the Chip-Level Editor (see “Configuration Data Sheets” on
page 58). Generate Application is executed automatically during the code editor build process, when
needed.

After this process is complete, you can enter the Code Editor and begin programming the desired
functionality into your (now configured) device. For further details regarding programming, see
“Code Editor” on page 66 and “Assembler” on page 77.

You can generate application files from any view. To do this, click the Generate/Build Application icon
. 

Full details of the build are sent to the Output window. If the Output window is not visible, select
Output from the View menu.

Figure 2-40.  The Output Window with Build Messages

NOTE: It is important to note that if you modify any device configurations, you must re-generate the
application files before you resume source programming.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 57

Chip-Level Editor

2.12 Source Files Generated by Generate Project Operation

The following table lists and describes the source files generated by the Generate Project operation. 

NOTE: If you undo placement of a user module but leave it in your selected collection and generate
application files, associated .asm files remain (just not be updated). If you undo placement and
delete a user module from your collection then generate application files, all associated .asm files
are deleted (removed from source tree project files).

2.12.1 About the boot.asm File

When device configuration files are generated, the boot.asm file is updated. Among other things, this
file includes a jump table for interrupt handlers. (Additional details regarding this file are found in “File
Definitions and Recommendations” on page 93.)

The entries in the interrupt table are handled automatically for interrupts employed by user modules.
For example, a Timer8 User Module uses an interrupt. The interrupt-vector number depends on
which PSoC block is assigned to the Timer8 instance; vector 2 for PSoC digital block 0, vector 3 for
block 1, and so on.

During the device configuration process, the ISR name is added to the appropriate interrupt-vector
number. The interrupt handler is included in a file that is named instance_nameINT.asm, where
instance_name is the name given to the user module. For example, if the user module is named
Timer8_1, then the ISR source file is named Timer8_1INT.asm. All API files generated during the

Table 2-2.  Source Files Generated by Generate Application

Name Overwritten Description

…/lib/boot.asm Yes Boot code and initial interrupt table

…/lib/BuildMsg.txt

…/lib/opts.txt

…/lib/<User module name>.asm Yes User module API source

…/lib/<User module name>.h Yes User module API C include header

…/lib/<User module name>.inc Yes User module API assembly include

…/lib/<User module name>INT.asm Yes*

* User code markers can be used to preserve sections in the file.

User module interrupt .asm file (if needed)

…/lib/<Project 
Name>_GlobalParams.h

Yes

…/lib/<Project 
Name>_GlobalParams.inc

Yes Project parameters include 

…/lib/PSoCConfig.asm Yes Configuration loaded upon system access

…/lib/<Project Name>PSoCAPI.h Yes Project API include header

…/lib/<Project Name>PSoCAPI.inc

…/lib/PSoCCOnfig.asm

…/lib/PSoCCOnfigTBL.asm Yes Contains chip configuration

…/lib/PSoCGPIOINT.asm

…/lib/PSoCGPIOINT.h

…/lib/PSoCGPIOINT.inc



58 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

device configuration process follow this naming convention. The following are the API files that
would be generated for a user module named Timer8_1:

 Timer8_1.inc

 Timer8_1.h

 Timer8_1.asm

 Timer8_1INT.asm

The boot.asm file is based on a file named boot.tpl. You can make changes to boot.tpl and those
changes are reflected in boot.asm whenever the application is generated. Do not change any strings
with the form `@INTERRUPT_nn` where nn = 0 to 15. These substitution strings are used
when device configuration application files are generated. However, you can replace substitution
strings if you safely define the interrupt vector and install your own handler. If there is no interrupt
handler for a particular interrupt vector, the comment string “// call void_handler” is inserted
in place of the substitution string. 

NOTE: If you install an interrupt handler and make changes directly to boot.asm, the changes are
not preserved if application generation is executed after you make the changes. If you make
changes to boot.asm that you do not want overwritten, hard code the change in boot.tpl (template for
boot.asm).

2.13 Configuration Data Sheets

After you have configured your device and generated application files, you can produce, view, or
print a data sheet based upon how you configured your project device. The configuration data sheet
is self-contained in its own folder in the project directory and can be viewed independently of PSoC
Designer by opening configreport.xml in Internet Explorer. (If you need to move or send someone
the file, you must move/send the entire directory of \ConfigDataSheet.)

To produce and view a data sheet:

1. Select View > Configuration Data Sheet for 'project_name'. This opens an independent browser 
window that shows the current configuration data sheet. 

NOTE: If changes were made in the Chip Editor and a “Generate Application” was not performed, 
then PSoC Designer shows a dialog box asking for verification before performing Generate 
Application. If you select No, then the data sheet reflects the configuration after the changes were 
made.

2. To print the data sheet click the standard Print... button or File > Print..

2.14 APIs and ISRs

APIs (Application Programming Interfaces) and ISRs (Interrupt Service Routines) are also generated
during the device configuration process in the form of *INT.asm, .h, and .inc files. These files provide
the device interface and interrupt activity framework for source programming. Figure 2-41, illustrates



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 59

Chip-Level Editor

an .h file for configurations of a 16-bit PWM (Pulse Width Modulator) created during application-code
generation:

Figure 2-41.  PWM_FAN0.h 

After you generate the device configuration application code, the files for APIs and ISRs are located
in the source tree of Workspace Explorer under the Library Source Files and Library Header Files
folders. 

NOTE: If you modify any ISR file and then re-generate your application, changes are not overwritten
if they are placed between user code markers included in the *int.asm file. Source code outside of
the user code marker regions is overwritten and is always re-generated. However, if a user module
is renamed and the application is re-generated, any user modifications within the user code markers
are not updated with the instance name. Any use of the user module instance name within user code
markers must be manually updated.

Figure 2-42.  Place Your Custom Code Here

2.14.1 Working with ISRs 

The interrupts depends on the device that we use: 

 Reset 

 Supply Monitor 



60 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

 4 Analog Columns

 VC3

 GPIO

 16 Digital Blocks

 I2C

 Sleep Timer

The configurable interrupts include 16 digital blocks and 4 analog columns. The definition (for exam-
ple, interrupt vector action) of a configurable interrupt depends on the user module that occupies the
block or uses the analog column.

The Chip-Level Editor handles the details of getting user module parameters into source code, so
that the project is configured correctly at startup and exposes subroutines that make for ease-of-use.
Exposing subroutines that make user module parameters easy to use involves PSoC Designer add-
ing files to your project. These files are known as Application Program Interfaces (APIs). Typically,
one of these user module files, added to your project, is an interrupt handler.

Aside from adding API files to your project, the Chip-Level Editor also inserts a call or jump to the
user module’s interrupt handler in the startup source file, boot.asm. 

2.14.2 Interrupt Vectors and the Chip-Level Editor

Figure 2-43 shows an example of how an interrupt handler is dispatched in the interrupt vector table,
using a device from the CY8C27xxx part family. Shown below is the Timer32 User Module mapped
to PSoC blocks 00, 01, 02, and 03. An interrupt is generated by the hardware when terminal count is
reached. The last PSoC Block (or MSB byte) of Timer32 generates the terminal count interrupt.

Figure 2-43.  Timer32 on Four Digital PSoC Blocks 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 61

Chip-Level Editor

When the application is generated, code is produced for the Timer32_1 User Module. The interrupt
vector table is also altered with the addition of the call to the timer interrupt handler in boot.asm. 

AREA TOP (ROM, ABS, CON)

    org   0                        ;Reset Interrupt Vector

IF (TOOLCHAIN & HITECH)

;   jmp   __Start                  ;C compiler fills in this vector

ELSE

    jmp   __Start                  ;First instruction executed following a Reset

ENDIF

    org   04h                      ;Low Voltage Detect (LVD) Interrupt Vector

    halt                           ;Stop execution if power falls too low

    org   08h                      ;Analog Column 0 Interrupt Vector

    // call void_handler

    reti

    org   0Ch                      ;Analog Column 1 Interrupt Vector

    // call void_handler

    reti

    org   10h                      ;Analog Column 2 Interrupt Vector

    // call void_handler

    reti

    org   14h                      ;Analog Column 3 Interrupt Vector

    // call void_handler

    reti

    org   18h                      ;VC3 Interrupt Vector

    // call void_handler

    reti

    org   1Ch                      ;GPIO Interrupt Vector

    // call void_handler

    reti

    org   20h                      ;PSoC Block DBB00 Interrupt Vector

    // call void_handler

    reti

    org   24h                      ;PSoC Block DBB01 Interrupt Vector

    // call void_handler

    reti

    org   28h                      ;PSoC Block DCB02 Interrupt Vector

    // call void_handler

    reti

    org   2Ch                      ;PSoC Block DCB03 Interrupt Vector

    ljmp _Timer32_1_ISR



62 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

    reti

    org   30h                      ;PSoC Block DBB10 Interrupt Vector

    // call void_handler

    reti

    org   34h                      ;PSoC Block DBB11 Interrupt Vector

    // call void_handler

    reti

    org   38h                      ;PSoC Block DCB12 Interrupt Vector

    // call void_handler

    reti

    org   3Ch                      ;PSoC Block DCB13 Interrupt Vector

    // call void_handler

    reti

    org   60h                      ;PSoC I2C Interrupt Vector

    // call void_handler

    reti

    org   64h                      ;Sleep Timer Interrupt Vector

    // call void_handler

reti

Table 2-3 shows how boot.asm vector names map to fixed, analog column, and PSoC block (config-
urable) interrupts. Not all of these are shown in the code example.

Table 2-3.  boot.asm Interrupt Names

Address Data Sheet Interrupt Name Type

00h Reset Fixed

04h Supply Monitor Fixed

08h Analog Column 0 Analog Column

0Ch Analog Column 1 Analog Column

10h Analog Column 2 Analog Column

14h Analog Column 3 Analog Column

18h VC3 Fixed

1Ch GPIO Fixed

20h DBB00 PSoC Block

24h DBB01 PSoC Block

28h DCB02 PSoC Block

2Ch DCB03 PSoC Block

30h DBB10 PSoC Block

34h DBB11 PSoC Block

38h DCB12 PSoC Block

3Ch DCB13 PSoC Block

40h DBB20 PSoC Block



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 63

Chip-Level Editor

Continuing the example, 2Ch corresponds to DCB03. There are no interrupt handlers at DBB00,
DBB01, and DCB02 (20h, 24h, and 28h) because a 32-bit Timer User Module only requires the inter-
rupt at the end of the chain.

In many cases the actual interrupt handling code is “stubbed” out. You can modify the content of this
stubbed handler to suit your needs. Any subsequent device reconfiguration will not overwrite your
work in the handler if the modification is done in boot.tpl.

2.15 Dynamic Reconfiguration

The PSoC resources are configured using latch-based registers. These registers can be changed
on-the-fly, allowing for new functions to be created as needed during the execution of the application
program. 

Reconfiguring resources in this manner is called Dynamic Reconfiguration. User modules are an
abstraction of register settings that enable a high-level function. A set of user modules is called a
configuration. The application can switch in and out of configurations in real-time, allowing for over-
use of the chip resources. This is akin to memory overlaying. It is up to the application to ensure that
configurations are not reconfigured while they are being used. 

A loadable configuration consists of one or more placed user modules with module parameters, Glo-
bal Resources, set pinouts, and generated application files. PSoC projects can consist of one or
multiple loadable configurations.

2.15.1 Adding Configurations

To add loadable configurations to your PSoC project:

44h DBB21 PSoC Block

48h DCB22 PSoC Block

4Ch DCB23 PSoC Block

50h DBB30 PSoC Block

54h DBB31 PSoC Block

58h DCB32 PSoC Block

5Ch DCB33 PSoC Block

60h I2C Fixed

64h Sleep Timer Fixed

Table 2-3.  boot.asm Interrupt Names (continued)



64 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

1. Right click the Loadable Configuration folder in the Workspace Explorer and select New Load-
able Configuration.

Figure 2-44.  Add a New Loadable Configuration

2. You see a new folder with a default name of Configx where x is the number of alternate configu-
rations. 

Select the configuration folders to switch from one configuration to the other.

There is always at least one folder with the project name when a project is created. This folder
represents the base configuration. The base configuration has special characteristics. You can-
not delete the base configuration. The new configuration, by default, has global settings and pin
settings identical to the base configuration. Additional configuration folders appear in alphabetical
order from left to right, beginning after the base configuration tab.

3. To change the name right-click the folder and select Rename. The new name appears on the
folder.

NOTE: One requirement for Dynamic Reconfiguration is that user module instance names must
be unique across all configurations. This requirement eliminates confusion in code generation.
Otherwise, all other icon and menu-item functions are identical to projects that do not employ
additional configurations.

4. Proceed with the configuration process (i.e., selecting and placing user modules, setting up
parameters, and specifying pinout).

2.15.2 Deleting Configurations

To delete a loadable configuration from your PSoC project:

1. Right click on the loadable configuration and select Delete. 

After you delete a configuration, all associated source files are removed from the project (if applica-
tion files were generated).

2.15.3 Renaming Configurations

To rename a loadable configuration in your PSoC project:

1. Right click the loadable configuration and click Rename.

2. Type the new name.

3. Press [Enter] or click your cursor somewhere outside the folder.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 65

Chip-Level Editor

2.15.4 Employing Dynamic Reconfiguration

These sections discuss how global parameters, pin settings, and code generation are dynamically
reconfigured.

2.15.4.1 Global Parameters

When using Dynamic Reconfiguration, global parameters are set in the same manner as single
configurations. However, changes to the base configuration global parameters are propagated to all
additional configurations. Therefore, global parameter changes made to an additional configuration
are done locally to that particular configuration. For instance, if some global parameter #1 has
specific value in “Base” loadable configuration, this global parameter #1 will have the same value in
“New” loadable configuration. But not vice versa: if some global parameter #2 has specific value in
“New” loadable configuration, this global parameter #2 will have the default (or “Base” specific) value
in “Base” loadable configuration.”

2.15.4.2 Port Pin Settings

When using Dynamic Reconfiguration, port pin settings are similar to global parameters in that all
settings in the base configuration are propagated to additional configurations. When manually set,
port pin settings become local to the configuration. For instance, if Port_x_y pin is occupied (or has
the specific value of Select, Drive, Interrupt, Initial Value parameters) in “Base” loadable
configuration, this Port_x_y will be also occupied (or will have the specific value of Select, Drive,
Interrupt, Initial Value parameters) in “New” loadable configuration. But not vice versa: if Port_x1_y1
pin is occupied (or has the specific value of Select, Drive, Interrupt, Initial Value parameters) in
“New” loadable configuration, this Port_x1_y1 will be free in “Base” loadable configuration.

To set port pin interrupts:

1. Open the Chip Editor of Chip-Level Editor. 

2. Click the pin you want to set and select the Interrupt type you want.

3. The default pin interrupt setting is Disable. If all pin interrupts are set to disable, there is no
additional code generated for the pin interrupts. If at least one pin is set to a value other than
disable, code generation performs some additional operations. 

In the boot.asm file, the vector table is modified so that the GPIO interrupt vector has an entry with
the name PSoC_GPIO_ISR. Additional files being generated are:

 PSoCGPIOINT.asm 

 PSoCGPIOINT.inc 

PSoCGPIOINT.asm – This file contains an export and a placeholder so you can enter its pin interrupt
handling code. Enter user code between the user code markers where appropriate. This file is re-
generated for each code generation cycle, but the user code will be carried forward if it is within the
user code markers.

NOTE: When opening an old project that contains a PSoCGPIOINT.asm file where user code is
entered, the user code must be copied from the backup copy in the \Backup folder into the newly
generated PSoCGPIOINT.asm file.

PSoCGPIOINT.inc – This file contains equates that are useful in writing the pin interrupt handling
code. For each pin (with enabled interrupt or custom name), a set of equates are generated that
define symbols for the data address and bit, and for the interrupt mask address and bit associated
with the pin. The naming convention for the equates is:

 CustomPinName_Data_ADDR

 CustomPinName_MASK

 CustomPinName_IntEn_ADDR



66 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

 CustomPinName_Bypass_ADDR

 CustomPinName_DriveMode_0_ADDR

 CustomPinName_DriveMode_1_ADDR

 CustomPinName_IntCtrl_0_ADDR

 CustomPinName_IntCtrl_1_ADDR

The CustomPinName used in the substitution is replaced by the name entered for the pin during
code generation. Custom pin naming allows you to change the name of the pin. The name field is
included in the pin parameter area of the pinout diagram.

The Name column in the Pin Parameter Grid shows the names assigned to each of the pins. The
default name shows the port and bit number. To rename the pin, double-click the name field and type
the custom name. Note that the name must not include any embedded spaces.

The effect of the name is primarily used in code generation when the pin interrupt is enabled. The pin
name is appended to the equates that are used to represent the address and bit position associated
with the pin for interrupt enabling and disabling, as well as testing the state of the port data.

2.15.4.3 Code Editor

There are no direct changes in Code Editor with regards to Dynamic Reconfiguration. The additional
files generated are placed in the Library Source and Library Headers folders of the source tree.
Library source files that are associated with an additional configuration are shown under the SAME
folder that files of a base configuration are shown under. This partitions the files so that the source
tree view is not excessively long.

2.15.4.4 Code Generation

When configurations are present, additional code is generated to enable the application to load or
operate with the configurations. PSoCConfig.asm is generated. 

PSoCConfig.asm 

The static file PSoCConfig.asm contains: 

Exports and code for:

 LoadConfigInit – Configuration initialization function

 LoadConfig_projectname – Configuration loading function

Code only for:

 LoadConfig – General load registers from a table

For projects with additional configurations, a variable is added to the project that tracks the loaded
configurations. The LoadConfig_projectname function sets the appropriate bit in the active
configuration status variable. 

Additional functions named LoadConfig_ConfigurationName are generated with exports that
load the respective configuration. 

For each LoadConfig_xxx function, an UnloadConfig_xxx function is generated and exported
to unload each configuration, including the base configuration. The UnloadConfig_xxx functions
are similar to the LoadConfig_xxx functions except that they load an
UnloadConfigTBL_xxx_Bankn table and clear a bit in the active configuration status variable. In
these functions, the global registers are restored to a state that depends on the currently active con-
figuration.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 67

Chip-Level Editor

With regard to the base configuration, UnloadConfig_xxx and ReloadConfig_xxx functions are
also generated. These functions load and unload only user modules contained in the base
configuration. When the base configuration is unloaded, the ReloadConfig_xxx function must be
used to restore the base configuration user modules. The ReloadConfig_xxx function ensures
the integrity of the write only shadow registers. Respective load tables are generated for these
functions in the PSoCConfigTBL.asm file.

An additional unload function is generated as UnloadConfig_Total. The
UnloadConfig_Total function loads these tables:

 UnloadConfigTBL_Total_Bank0 

 UnloadConfigTBL_Total_Bank1 

These tables include the unload registers and values for all PSoC blocks. The active configuration
status variable is also set to ‘0’. The global registers are not set by this function.

The name of the base configuration matches the name of the project. The project name is changed
to match the base configuration name if you change the name of the base configuration (from the
project name).

A C callable version of each function is defined and exported so that these functions are called from
a C program.

PSoCConfigTBL.asm

The PSoCConfigTBL.asm file contains the personalization data tables used by the functions defined
in PSoCConfig.asm. For static configurations, there are only two tables defined;
LoadConfigTBL_projectname_Bank0 and LoadConfigTBL_projectname_Bank1, which
support the LoadConfig_projectname function. These tables personalize the entire global
register set and all registers associated with PSoC blocks that are used by user modules placed in
the project.

For projects with additional configurations, a pair of tables are generated for each
LoadConfig_xxx function generated in PSoCConfig.asm. The naming convention follows the
same pattern as LoadConfig_xxx and uses two tables: LoadConfigTBL_xxx_Bank0 and
LoadConfigTBL_xxx_Bank1. These tables are used by UnloadConfig_xxx. The labels for
these tables are exported at the top of the file.

Loading – The tables for the additional configurations’ loading function differ from the base
configuration load table. The additional configuration tables only include those registers associated
with PSoC blocks that are used by user modules placed in the project, the global registers with
settings that differ from the base configuration. If the additional configuration has no changes to the
global parameters or pin settings, only the placed user module registers are included in the tables.

Unloading – The tables for additional configurations’ unloading functions include registers that de-
activate any PSoC blocks that were used by placed user modules, and all global registers which
were modified when the configuration was loaded. The registers and the values for the PSoC blocks
are determined by a list in the device description for bit fields to set when unloading a user module,
and are set according to the type of PSoC block. The exceptions are the
UnloadConfigTBL_Total_Bankn tables, which include the registers for unloading all PSoC
blocks.

boot.asm 

The boot.asm file is generated similarly to a project that has no additional configurations, unless
there are one or more configurations that have user modules placed in such a way that common
interrupt vectors are used between configurations. In this case, the vector entry in the interrupt



68 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Chip-Level Editor

vector table will show the line ljmp Dispatch_INTERRUPT_n instead of a user module defined
ISR.

2.15.4.5 PSoCDynamic Files 

Four files are generated when additional configurations are present in a project:

 PSoCDynamic.inc 

 PSoCDynamic.asm 

 PSoCDynamicINT.asm 

 PSoCDynamic.h

PSoCDynamic.inc

The PSoCDynamic.inc file is always generated. It contains a set of equates that represent the bit
position in the active configuration status variable, and the offset to index the byte in which the status
bit resides, if the number of configurations exceeds eight. A third equate for each configuration
indicates an integer index representing the ordinal value of the configuration.

PSocDynamic.asm

The PSoCDynamic.asm file is always generated. It contains exports and functions that test whether
or not a configuration is loaded. The naming convention for these functions is IsOverlayName-
Loaded.

PSoCDynamicINT.asm

The PSoCDynamicINT.asm file is generated only when the user module placement between
configurations results in both configurations using a common interrupt vector. The reference to the
Dispatch_INTERRUPT_n function is resolved in this file. For each conflicting interrupt vector, one
of these ISR dispatch sets is generated. The ISR dispatch has a code section that tests the active
configuration and loads the appropriate table offset into a jump table immediately following the code.
The length of the jump table and the number of tests depends on the number of user modules that
need the common vector, rather than the total number of configurations. The number of conflicts can
equal the number of configurations, if each configuration utilizes the common interrupt vector.
Generally, there will be fewer interrupt conflicts on a per-vector basis.

PSoCDynamic.h

The PSoCDynamic.h file is always generated. It contains externs of functions prototypes that load,
reload, unload a separate dynamic configuration, unload all configurations, and test whether or not a
configuration is loaded.

2.15.4.6 Limitations

The new displays are based on a bitmap of loaded configurations maintained by the LoadConfig
and UnloadConfig routines, which are generated by the Chip-Level Editor. This bitmap can get out
of synchronization with the actual device configuration in several ways:

 The bitmap’s RAM area can be accidentally overwritten.

 If overlapping (conflicting) configurations are loaded at the same time, the register labels will be 
scrambled.

 If an overlapping configuration is loaded and then unloaded, register labels from the original 
configuration will be used, even though some PSoC blocks will have been cleared by the last 
UnloadConfig routine.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 69

3. Code Editor

In this chapter you learn how to create the project code. 

3.1 File Definitions and Recommendations 

After you complete your device configuration, you are ready to create the application code. This is
done in the Code Editor subsystem. 

To access the Code Editor, double click any source file in the Workspace Explorer.

Figure 3-1.  Code Editor View 

The Workspace Explorer is shown in the right frame of Figure 3-1. This tree maintains the list of files
that include configurations files, user module source and header files, boot files, and user application
code.



70 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Code Editor

3.1.1 File Types and Extensions

When you create a project, a root directory and “backup” is the fourth folder that is included in the
root directory location when a new project is created. The name of the root directory is the project
name and the names of the three folders are lib (Library), obj (Objects), and output (for files
generated by a project build).

■ The lib folder contains user module Library Source and Library Header files.

■ The obj folder contains intermediate files generated during the compiling/assembling of .c and 
assembly source files.

■ The output folder contains the project.hex file (used for debugging and device programming), the 
listing file, and other files that contain debug information.

Table 3-1 lists the PSoC Designer project file types and extensions. Most of these files are editable
and appear in the left frame of the system interface inside the folder bearing the project name. For
more details regarding files and recommended usage see “Project File System” on page 71. 

Table 3-1.  File Types and Extensions

Type Extension Location Description

Address Map .mp
…\output folder under 
project directory

Generated during the build process. Identifies 
global symbol addresses and other attributes 
of output.

ASM Includea .inc
ASM Include Headers in 
source tree

Editable Assembly language include file (gen-
erated for APIs).

Assembly of C .s Found near the C file Assembly generated from the C source code.

Assembly Sour-
cea .asm

Source Files\ Library 
Source in source tree

Editable assembly language source file (cre-
ated initially, added, or generated for APIs).

C Header .h C Headers in source tree
Editable language include file (generated for 
APIs).

C Sourcea .c Source Files in source tree
Compiler language file that can be added to 
the project.

CFG File .cfg
Folder under project direc-
tory

Project configuration file that can be imported 
and exported for Dynamic Reconfiguration.

CMX File .cmx

Debug Symbols .dbg
…\output folder under 
project directory

Generated during the build process. Used by 
the Debugger subsystem.

Full 
Program Listing

.lst
…\output folder under 
project directory

Full program listing. Used by the Single-Step 
ASM function.

HEX File .hex
…\output folder under 
project directory

Output file in Intel HEX format generated dur-
ing the build process. This file alone will be 
downloaded to the ICE for project debugging.

Library/Archive .a
…\lib\libpsoc.a but Librar-
ies can be anyplace

A collection of object files, created by 
ilibw.exe.

Make .mk
Menu under Project > Open 
local.mk file

Customize the Build/Make process for a partic-
ular PSoC Designer project.

Object Module .o
…\obj folder under project 
directory

Intermediate, relocatable object file generated 
during assembly and compilation.

Project 
Databasea .soc Project directory

Project file accessed under File > Open 
Project.

Relative Source 
Listing

.lis
…\obj folder under project 
directory

Relative address listing file generated by the 
assembler.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 71

Code Editor

3.1.2 Project File System

The project file system (workspace explorer) setup is like a standard file system. To access and edit
files simply double-click the target file. Open files appear in the main window to the right of the
source tree. The maximum number of characters allowed per line is 2,048.

Figure 3-2.  Source Tree 

The source tree contains these file folders:

Chip Folder – Contains the Loadable Configurations folder that contains one or more configura-
tions. Each of the loadable configurations contains the user modules for the configuration. For more
information see “Dynamic Reconfiguration” on page 63.

ROM File .rom
…\output folder under 
project directory

This file is a legacy (M8A M8B) program image 
output file. 

Template .tpl Project directory Editable template file.

Templatea .tpl
Installation directory under 
…\Templates then copied 
to project directory

Template files used to generate project files 
(boot.tpl > boot.asm).

Text 
Document

.txt Project directory
Text document that contains system informa-
tion.

WNP File .wnp Project directory
Persistence file unique to PSoC Designer. 
Contains project information restored each 
time the project is opened.

XML 

Documenta
.xml Project directory Device resource file.

a. If you are using a version control system to track project process, copy the above checked files including m8c.inc (as the only .inc file) and
not including boot.asm (as it is recreated during the device configuration process). Also include any *INT.asm files that have been modified.
All other project files will be regenerated during the device application configuration process.

Table 3-1.  File Types and Extensions<Italic> (continued)

Type Extension Location Description



72 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Code Editor

Source Files Folder – Contains assembly language code and C Compiler files generated by the
system and user modules.

Headers Files and Library Headers Files – Contains include files added by device configurations
and user modules.

Library Source Files – Contains the project configuration .asm as well other project-specific refer-
ence files generated by device configuration.

The .lst and .mp files are always available in the source tree under Output Files folder. Because
these files are generated output from your assembled and linked source, they are read only. 

3.1.3 boot.asm

This startup file resides in the source tree under Source Files and is important because it defines the
boot sequence. The components of the boot sequence are: 

■ Defines and allocates the reset and interrupt vectors.

■ Initializes device configuration.

■ Initializes C environment if using the C Compiler.

■ Calls main to begin executing the application code.

When a project is created, the template file, boot.tpl, is copied into the project directory. Each time
the project is generated, the boot.asm file is generated from the local boot.tpl file.

boot.asm is re-generated every time device configurations change and application files are
generated. This is done to make certain that interrupt handlers are consistent with the configuration.
If you make changes to boot.asm that you do not want overwritten, modify the local project boot.tpl
file and then re-generate file.

3.1.4 main.asm/main.c

If the C complier is not enabled, then the main.asm file is generated for applications written in
Assembly language. If the C Compiler is enabled, the main.c file is generated for a C program. This
file resides in the source tree under Source Files and is important because it holds the _main label
that is referenced from the boot sequence. 

3.1.5 PSoCConfig.asm

This is a required Library Source file because it contains the configuration that is loaded at system
power-up.

PSoC Designer overwrites PSoCConfig.asm when a device configuration changes and application
files are regenerated, with no exceptions. To manipulate bits, all part register values reside in this file
for your reference.

3.1.6 Additional Generated Files

Additional files are generated in association with user modules and Dynamic Reconfiguration.

PSoCGPIOINT.inc – This file contains additional information pertaining to pin GPIO write only
register shadows. If a pin group is defined in a register set for which register shadows are allocated,
then a set of three macros are defined for each register shadow to read, set, or clear the particular
bit within the register associated with the pin. The names of the macros are keyed to the custom
name assigned to the pin and are:

■ GetCustomName_registerName 

■ SetCustomName_registerName 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 73

Code Editor

■ ClearCustomName_registerName 

CustomName is the custom name set for the pin, and registerName is the associated register
name for which a register shadow is allocated.

The registerName registers vary with the chip device description and include all registers associated
with the GPIO ports. For the CY8C25xxx/26xxx device family, registers include:

■ Bypass

■ DriveMode_0

■ DriveMode_1

■ IntCtrl_0

■ IntCtrl_1

■ IntEn

For all other PSoC device families, registers include:

■ GlobalSelect

■ DriveMode_0

■ DriveMode_1

■ DriveMode_2

■ IntCtrl_0

■ IntCtrl_1

■ IntEn

The register shadow allocation is determined by user modules and Dynamic Reconfiguration. As the
register allocation changes, the macro generation changes accordingly.

PSoCGPIOINT.h – This file contains the same information as PSoCGPIOINT.inc except that it is in a
form needed for C code. In the case of the register shadows, this file does not generate macros, but
rather defines a symbol that allows manipulation of the shadow as a global variable. For each
register shadow associated with a custom pin definition, a variable named CustomName
_registerNameShadow is defined, where CustomName and registerName are the same as
previously defined for PSoCGPIOINT.inc. The variable name is then used to manipulate the shadow
register. For example, to set a pin value to ‘1’ within the port, do this:
CustomName_registerNameShadow |= CustomName_MASK;
CustomName_registerName_ADDR = CustomName_registerNameShadow;

GlobalParams.h – This file has the same contents as GlobalParams.inc, except it also has #define
statements.



74 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Code Editor

3.2 Working in Code Editor

Before you begin adding and modifying files, take a few moments to navigate Code Editor, take
inventory of your current files, and map out what you plan to do and how you plan to do it.

3.2.1 Modifying Files

When you are ready to program and modify C and assembly language source files, double-click the
target file located in the file source tree. The file opens and appears in the main active window. You
can open multiple files simultaneously. Table 3-2 details the menu options available for modifying
source files. 

Table 3-2.  Menu Options for Modifying Source Files

Icon Option Menu Shortcut Feature

Compile/Assemble Build > Compile ‘file_name’ [Ctrl] [F7]
Compiles or assembles the 
open, active file (.c or .asm)

Build Current Project
Build > Build ‘project_name’ 
Project

[F7] Builds the current project

Generate and Build All 
Projects

Build > Generate/Build All 
Projects 

[Shift] [F6] Builds all the project

Generate and Build 
Current Projects

Build > Generate/Build cur-
rent project

[F6]
Generates configuration files 
Builds the entire project and 
links applicable files

New File File > New File... [Ctrl] [N] Adds a new file to the project

Open File File > Open File... [Ctrl] [O]
Opens an existing file in the 
project

Increase Indent Increase Indents of 

Decrease Indent Decrease Indents of

Comment [Ctrl][E]+[C] Comments selected text

Uncomment [Ctrl][E]+[U] Uncomments selected text

Toggle Bookmark
Edit > Bookmarks > Toggle 
Bookmark

[Ctrl] [B] + 
[T]

Toggles the bookmark: Sets/
removes user-defined book-
marks used to navigate source 
files

Clear Bookmarks
Edit > Bookmarks > Clear 
Bookmarks

[Ctrl] [B] + 
[C]

Clears all user-defined book-
marks

Next Bookmark
Edit > Bookmarks > Next 
Bookmark

[Ctrl] [B] + 
[N]

Goes to next bookmark



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 75

Code Editor

3.2.2 Adding New Files

To add a file: 

1. Click the New File icon or select File > New File...

2. In the New File dialog box, select a file from the File types.

3. In the Name field, type the name for the file.

4. The current project directory is the default destination for your file. Uncheck the Add to current 
project field and click Browse... to identify a different location if you do not want the default. The 
Browse button is only enabled if you uncheck the Add to current project field.

Figure 3-3.  New File Dialog Box 

5. When finished, click OK.

Your new file is added to the file source tree and appears in the main active window.

Previous Bookmark
Edit > Bookmarks > 
Previous Bookmark

[Ctrl] [B] + 
[P]

Goes to previous bookmark

Find Text Edit > Find and Replace [Ctrl] [F] Find specified text

Undo Edit > Undo [Ctrl] [Z] Undo last action

Redo Edit > Redo [Ctrl] [Y] Redo last action

Table 3-2.  Menu Options for Modifying Source Files<Italic> (continued)

Icon Option Menu Shortcut Feature



76 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Code Editor

3.2.3 Adding Existing Files

You are also able to add existing source files to your project (either C or assembly). Do this by
accessing Project > Add File... and identifying the source file (by locating the file with the file dia-
log). Keep in mind that you add a copy of your original file to the project, not the original itself.

If the existing file you want to add is under a lib folder (…\lib), this file is added to the Library
Source tree and resides in the lib folder of the project. 

3.2.4 Removing Files

You can remove files from your project in one of two ways:

1. To remove the file, right-click on the file,in the source tree and Select Exclude From Project.

2. Go to Project menu > click Exclude From Project. 

3.2.5 Searching Files

You can search for text in one or more files using the Find / Replace item in the Edit menu. 

1. Click Edit > Find and Replace. The Find and Replace menu is enabled only when source code 
editor window is active. 

Figure 3-4.  Find and Replace Dialog Box

2. In the Find what field, type the text that you want to search for or click the drop-arrow to choose 
a previous search pattern.

3. In the Replace with field, type the replacement text.

4. Select an option from Look In drop down list.  

❐ Select Current Document option to find a text in the same document.  

❐ Select All Open Document option to find a text in the all the documents.

❐ Select Current Project option to find a text across the project.

5. Click Browse button to select the folder that will be searched.

6. To find next occurrences of the “Find what” text, click Find Next button.

7. To replace an occurrence of the “Find what” text, click Replace button.

8. To replace all occurrences of the “Find what” text, click Replace All button.

9. You can mark all the occurrences of the “Find what” text in the document using Mark All button.

10.If the Match case check box is selected, it searches only for strings that match the case of the 
“Find what” text.

11. If Match whole word check box is selected, it searches the whole “Find what” text surrounded 
by white space or punctuation.

12.If the Search subdirectories check box is selected, all subdirectory folders are searched.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 77

Code Editor

13.If the Search in selection check box is selected, it searches only the text in the current selection.

14.The Search up check box is selected, the document is searched from the cursor position toward
the begining of the document.  This option is enabled only when you select the Current
Document from the “Look in” drop down list. 

15.If the Use regular expressions check box is checked, the find and replace text pattern fields will
accept typical 'Use regular expressions' syntax.

16.Click the Close button to close the Find/Replace dialog.

Note The Mark All and Replace All functions work only when Look in option is set to Current
Document or All Open Documents. 



78 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Code Editor



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 79

4. Assembler

In this chapter you receive high-level guidance on programming assembly language source files for
the PSoC device. For comprehensive details, see the PSoC Designer Assembly Language User
Guide.

4.1 Accessing the Assembler

The assembler is an application accessed from within PSoC Designer, much like the C Compiler.
This application is run as a batch process. It operates on assembly language source to produce exe-
cutable code. This code is then compiled and built into a single executable file that is downloaded
into the In-Circuit Emulator (ICE), where the functionality of the PSoC device is emulated and
debugged, aftger that it can be programmed into a target device.

The project source files appear in the left frame, called the source tree. Double-click individual files
so they appear in the main active window where you add and modify code using the standard cut,
copy, paste edit icons.

4.2 The M8C Microprocessor (MCU)

The Microprocessor (MCU) is an enhanced 8-bit microprocessor core. It is optimized to be small and
fast.

There are five internal registers, see Table 4-1. All registers are 8 bits wide except the PC, which is
composed of two 8-bit registers (PCH and PCL) which together form a 16-bit register. 

Table 4-1.  MCU Internal Registers

Register Abbreviation

Accumulator A

Flag F

Index X

Stack Pointer SP

Program Counter PC



80 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Assembler

4.2.1 Address Spaces

There are three separate address spaces implemented in the Assembler:

■ Register Space (REG) – Accessed through the MOV and LOGICAL instructions. There are 8
address bits available to access the register space, plus an extended address bit via the Flag
register bit 4.

■ Data RAM Space – Contains the data/program stack and space for variable storage. All the read
and write instructions, as well as instructions which operate on the stacks, use data RAM space.
Data RAM addresses are 8 bits wide.

The M8C is able to directly access 256 bytes of RAM. Some PSoC devices have more than a
256-byte RAM page. These devices access multiple RAM pages using a combination of page
mode bits in the Flag and Paging registers of the register address space. See the PSoC device
data sheets and the PSoC Technical Reference Manual for details.

■ Program Memory Space - composed of the Supervisory ROM and the on-chip Flash program
store. Flash is organized into 64-byte blocks. The user need not be concerned with program store
page boundaries, as the M8C automatically increments the 16-bit PC register on every
instruction making the block boundaries invisible to user code. Instructions occurring on a 256-
byte Flash page boundary (with the exception of jmp instructions) incur an extra M8C clock cycle,
as the upper byte of the PC register is incremented.

4.2.2 Instruction Format

Instruction addressing is divided into two groups:

■ Logic, Arithmetic, and Data Movement Functions (Unconditional) –
These are 1-, 2-, or 3-byte instructions. The first byte of the instruction contains the opcode for
that instruction. In 2/3 byte instructions, the second/third byte contains either a data value or an
address.

■ Jump and Call Instructions, including INDEX (Conditional) –
Most jumps, plus CALL and INDEX, are 2-byte instructions. The opcode is contained in the upper
4 bits of the first instruction byte and the destination address is stored in the remaining 12 bits.
For program memory sizes larger than 4 KB, a 3-byte format is used.

4.2.3 Addressing Modes

Ten addressing modes are supported. For examples of each see the PSoC Designer Assembly Lan-
guage User Guide.

■ Source Immediate

■ Source Direct

■ Source Indexed

■ Destination Direct

■ Destination Indexed

■ Destination Direct Source Immediate

■ Destination Indexed Source Immediate

■ Destination Direct Source Direct

■ Source Indirect Post Increment

■ Destination Indirect Post Increment



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 81

Assembler

4.2.4 Destination of Instruction Results

The result of a given instruction is stored in the destination, which is placed next to the opcode in the
assembly code. This allows for a given result to be stored in a location other than the accumulator.
Direct and indexed addressed data RAM locations, as well as the X register, are additional destina-
tions for some instructions. The AND instruction, in Table 4-2, is a good illustration of this feature
(i2 = second instruction byte, i3 = third instruction byte). The ordering of the operands within the
instruction determines where the result of the instruction is stored. 

4.3 Assembly File Syntax

Assembly language instructions reside in source files with .asm extensions in the source tree of the
Workspace Explorer. Each line of the source file may contain five keyword types of information.
Table 4-3 supplies critical details about each keyword type. 

Instructions in an assembly file have one operation on a single line. For readability, separate each
keyword type by tabbing once or twice (approximately 5-10 white spaces). .

Avoid use of the following characters in path and file names (they are problematic): \ / : * ? " < > | &

+ , ; = [ ] % $ ` '.

4.4 List File Format

When you build a project, a listing file with an .lst extension is created. The listing shows how the
assembly program is mapped into a section of code beginning at address 0. The linking (building)
process will resolve the final addresses. This file doesn't provide a listing of errors and warnings!
This file is created each time the build completes without errors or warnings.

.lst files are viewed after a project build in the Debugger subsystem under the Output Files folder of
the source tree.

Also generated during a build (in addition to the .lst file) are .rom, .mp, .dbg, and .hex files. The .hex
is used for debugging and programming. The .mp contains global symbol addresses and other
attributes of output.

Table 4-2.  Destination of AND Instruction

Syntax Operation

AND A, expr acc  acc & i2

AND A, [expr] acc   acc  &  [i2]

AND A, [X + expr] acc   acc  &  [x + i2]

AND [expr], A [i2]    acc  &  [i2]

AND [X + expr], A [x + i2]    acc & [x + i2]

AND [expr], expr [i2]    i3 &  [i2]

AND [X + expr], expr [x + i2]    i3 & [x + i2]

Table 4-3.  Keyword Types

Keyword Type Critical Details

Label Symbolic name followed by a colon (:)

Mnemonic character string representing an M8C instruction

Operands Arguments to M8C instructions

Expression A command, interpreted by the Assembler, to control the generation of machine code

Comment
May follow operands or expressions and starts in any column if first non-space character 
is either a C++-style comment (//) or semi-colon (;).



82 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Assembler

4.5 Assembler Directives

The PSoC Designer Assembler allows the assembler directives listed in Table 4-4. See the PSoC
Designer Assembly Language User Guide for descriptions and sample listings of supported assem-
bler directives. 

4.6 Compile and Assemble Files

After you complete programming all assembly language source (in addition to any .c source), you
are ready to compile and assemble the group of files. Compiling translates source code into object
code. (The Linker then combines modules and supplies real values to symbolic addresses, thereby
producing machine code.) Each time you compile and assemble, the most prominent, open source
file is compiled. PSoC Designer can decipher the difference between C and assembly language
files, and compile and assemble accordingly.

To compile the source files for your project, click the Compile icon . 

PSoC Designer employs a make utility. Each time you click the Compile/Assemble or Build icon, the
utility automatically determines which files of a large application (manual or generated) were modi-
fied and need recompiling, then issues commands to recompile them. For further details, see
make.pdf in the \Documentation\Supporting Documents subdirectory of the PSoC Designer
installation directory.

Table 4-4.  Assembler Directives

Symbol Assembler Directive

AREA Area

ASCIZ NULL Terminated ASCII String

BLK RAM Byte Block

BLKW RAM Word Block 

DB Define Byte

DS Define ASCII String

DSU Define UNICODE String

DW Define Word 

DWL Define Word with Little Endian Ordering

ELSE Alternative Result of IF Directive

ENDIF End Conditional Assembly

ENDM End Macro

EQU Equate Label to Valuable Value

EXPORT Export

IF Start Conditional Assembly

INCLUDE Include Source File

.LITERAL, 

.ENDLITERAL
Prevent Code Compression of Data

MACRO/ENDM Start Macro Definition Start/End

ORG Area Origin

.SECTION, 

.ENDSECTION
Section for Dead-Code Elimination

Suspend - OR F,0
Resume - ADD SP,0

Suspend and Resume Code Compressor



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 83

Assembler

The Output (or error-tracking) window is where the status of file compiling and assembling resides.
Each time you compile and assemble files, the Output window is cleared and the current status is
entered as the process occurs.

Figure 4-1.  Output Status Window 

When compiling is complete, you can see the number of errors. Zero errors signify that the
compilation and assemblage was successful. One or more errors indicate problems with one or
more files. 

This process reveals syntax errors. Such errors include missing input data and undeclared
identifier. For a list of all identified compile (and build) errors with solutions see the PSoC
Designer Assembly Language User Guide. For further details on compiling and building see “Build
Manager” on page 109 in this guide.

At any time you can ensure a clean compile and assemble (or build) by accessing Build > Clean
‘project_name’ Project, then clicking the Compile or Build icon. The “clean” deletes all
lib\libPSoc.a, obj\*.o, and lib\obj\*.o files. These files are regenerated upon a compile
or build (in addition to normal compile and build activity).

4.7 Calling Assembly Functions From C

When one C function calls another, the compiler uses a simple layout for passing arguments that the
caller and callee use to initialize and the access the values. Although you can use the same layout
when a C function calls an assembly language routine, it is best to use of the alternate fastcall16
calling convention. Fastcall16 is directly supported by the C compiler though use of a pragma direc-
tive and is often more efficient than the convention used by C. In fact, fastcall16 is identical to the C
calling convention except for simple cases when the parameters are passed and/or returned in the
CPU A and X registers. All user module API functions implement the fastcall16 interface for this rea-
son.

There are four conditions to meet when using the fastcall16 interface:

■ The function must be tagged with a C #pragma fastcall16 directive

■ The function needs a C function prototype

■ The assembly function name must be the C function name prefixed with an underscore 
character (_).

■ The assembly function name must be exported.



84 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Assembler

For example, an assembly function that is passed a single byte as a parameter and has no return
value looks like this:

C function declaration (typically in a .h header file)

#pragma fastcall16 send_byte
void send_byte(char val);

C function call (in a .c file)

send_byte(0x37);

Assembly function definition (in an .asm file)

export _send_byte
; Fastcall16 inputs (single byte)
;     A – data value
; Fastcall16 return value (none)
_send_byte:
mov reg[ PRT1DR],A
ret

 An assembly function that is passed two bytes and returns one byte might look like this:

C function declaration (typically in a .h header file)

#pragma fastcall16 read_indexed_reg
char read_indexed_reg( char bank, char index);

C function call (in a .c file)

val = read_indexed_reg(0x01, index);

Assembly function definition (in an .asm file)

export read_indexed_reg
; Read byte from specified IO register
; Fastcall16 inputs (two single bytes)
;     A – bank number (0 or non-zero)
;     X – register number
; Fastcall16 return value (single byte)
;     A – read data
_read_indexed_reg:
   cpl A
   jnz get_data:
   or F, FLAG_XIO_MASK; switch to bank 1
get_data:
   mov A, reg[X]
   and F, ~FLAG_XIO_MASK; make sure we’re in bank 0
   ret



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 85

Assembler

Functions with more complex input parameters or return values can be written using these tables. 

 

Note that the #pragma fastcall16 has replaced #pragma fastcall and use of #pragma fastcall is dep-
recated. 

Table 4-5.  Pragma Fastcall16 Conventions for Argument Passing 

Argument Type Register Argument Register

Single Byte A The argument is passed in A.

Two Single Bytes A, X The first argument is passed in A, the second in X.

Double Byte X, A The MSB is passed in X, the LSB in A.

Pointer A, X The MSB is passed in A, the LSB in X.

All Others None

Arguments are stored on the stack in standard byte order and in 
reverse order or appearance. In other words, the MSB of the last 
actual parameter is pushed first and the LSB of the first actual 
parameter is pushed last.

Table 4-6.  Pragma Fastcall16 Conventions for Return Value

Return Type
Return 

Register
Comment

Single Byte A The argument is returned in A.

Double Byte X, A The MSB is passed in X, the LSB in A.

Pointer A, X The MSB is passed in A, the LSB in X.

All Others None
Use a pass-by-reference parameter or global variable instead of 
returning arguments longer than 16 bits.



86 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Assembler



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 87

5. Build Manager

In this chapter you learn the details of building a project, discover more about the C Compiler as well
as the basic, transparent functions of the system Linker and Loader, and Librarian. For
comprehensive details on the C Compiler, see the PSoC Designer C Language Compiler User
Guide.

5.1 Working in the Build Manager

Building a project compiles and assembles source files and library source files selectively. PSoC
Designer uses GNU Make version 3.79 to manage the build process. Each time you Compile or
Build, make determines which source files were modified and issues commands to recompile them
and link the project. For further details, see make.pdf in the \Documentation\Supporting Doc-
uments subdirectory of PSoC Designer install directory. 

The build process performs the compile and assemble of project files then links to all the project’s
object modules (and libraries), creating a .hex file that is easily downloaded for debugging. To build
the current project, either click the Build icon, select Build > Build ‘project name’ Project from the
menu, or press [F7]. The build process creates object modules in the obj or \lib\obj subdirectory
of the project directory. The linking produces the final project image in the output folder of the project
directory.

The .hex file can be downloaded to the ICE. Other files in the folder provide references for the
Debugger. Each compiler may generate a different file format and file extension. The .lst file contains
a complete listing of the project, the .dbg file contains debug information, the .mp file contains a
memory map, and the .idata file contains initialized data. At any time you can ensure a clean build by
accessing Project > Clean ‘project name’ Project.  The “clean” deletes all lib\libpsoc.a,
obj\*.o and lib\obj\*.o files. (These are intermediate/object files generated during the
compilation).

Each time you build your project, the details in the Output window is cleared and the current status is
entered as the process occurs.

Figure 5-1.  Output  Window



88 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Build Manager

When the build is complete, you can see the number of errors and warnings. Zero errors signify a
successful build. One or more errors indicate problems with one or more files. If there are errors, the
program image (.hex file) is available for download to the ICE. For a list of all identified compile and
build errors with solutions see the Assembly Language User Guide or the C Compiler User Guide.

Table 5-1.   Build Menu Options 

Menu Shortcut Icon Description

Generate/Build 
‘project name’ 
Project

F6

Populates your project with APIs/libraries and 
builds the active project. If you add or remove 
User Modules after generating application 
files, you need to regenerate the application 
files as well as reconfigure required settings. 
For further details, see ““Generating 
Application Files” on page 56. If the project 
generation is disabled (locked) from the 
Project > Settings... > Chip Editor menu, this 
menu and shortcut would be grayed out

Generate/Build All 
Projects 

Shift+F6
Same as above. All projects in the workspace 
will be regenerated and rebuilt

Generate Configura-
tion Files for ‘project 
name’ Project

Ctrl+F6

This menu option populates your project with 
APIs/libraries. If you add or remove user 
modules after generating application files, 
you need to regenerate the application files 
as well as reconfigure required settings. For 
further details, see “Generating Application 
Files” on page 56”. If the project generation is 
disabled (locked) from the Project > Setting... 
> Chip Editor menu, this menu and shortcut 
would be grayed out.

Generate Configuration Files for All Projects
Same with above. All projects in the work-
space will be regenerated.

Compile <file name> Ctrl+F7
Compiles the source file that is active in the 
code editor

Build ‘project name’ 
Project

F7

Builds the active project. The make utility 
automatically determines which files were 
modified and need recompilation, and then 
issues commands to recompile them. For 
further detail, see make.pdf in the 
Documentation\Supporting 
Documents subdirectory of the PSoC 
Designer installation directory.

Rebuild ‘project name’ Project
Deletes all of the output files and build all 
source files.

Clean ‘project name’ Project

Deletes all lib\libpsoc.a, obj\*.o, and lib\obj\*.o 
files. These files are regenerated upon a 
compile or build (in addition to normal 
compile and build activity).



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 89

Build Manager

5.2 C Compiler

In addition to the development tools provided by Cypress Semiconductor, third party development
tools are available for PSoC devices. This gives developers a choice of tools when working with
PSoC devices. For information on how to install and use third party compilers with PSoC Designer,
refer to documentation supplied by the manufacturer of the tool.

The iMAGEcraft compiler enables you to quickly create a complete C application for a PSoC device.
Its built-in macro assembler allows assembly language code to seamlessly merge with C code.

The compiler compiles each .c source file to an .s assembly file. The assembler then translates each
.asm or .s file into a relocatable object file, .o. After all the files are translated into object files, the
builder and linker combine them together to form an executable file.

The iMAGEcraft C Compiler comes complete with embedded libraries providing port and bus
operations, standard keypad and display support, and extended math functionality. For
comprehensive details on the C Compiler, see the C Language Compiler User Guide. 

To set compiler options in PSoC Designer, select Project > Settings... > Build > Compiler. You can
select a compiler option from the compilers you have installed. Depending on the compiler selected,
the settings will differ.

5.2.1 ImageCraft Compiler Options

The ImageCraft specific compiler configuration options are as follows:

■ Macro defines specifies macros on the command line to the compiler.

■ Macro undefines undefines any predefined compiler macros.

■ Checking Optimize math functions for speed causes math functions optimized for speed to be
included in the application at the cost of additional Flash and/or RAM footprint.

■ The Enable paging checkbox is used to enable or disable large memory model appliations
(applications using more than 256 bytes of RAM) on target chips with more than 256 bytes of
RAM. Unchecking this box for these chip restricts RAM usage to the first 256 bytes and
decreases program execution time and size associated with manipulating RAM paging registers.

■ Stack page is an indicator of the RAM page on which the stack will be allocated for a large
memory model application.

■ Stack page offset enables setting the start address of the stack for a large memory model
application such that the stack page can be shared between the stack and static variables.

■ Code compression techologies are used to reduce the application's Flash footprint. 

Condensation (duplicate code), is a search of the binary code image for instruction sequences that
occur multiple times. These instruction sequences are placed into subroutines. Each occurrence of a
repeated instruction sequence is then replaced with a call to the applicable subroutine.

Sublimation (eliminate unused user module APIs) is the elimination of unused assembly code
bounded by the .section and endsection directives in AREA UserModules. If execution flow does not
go to the label immediately below the .section directive, the entire block of code up to the next 
endsection directive is removed.

Refer to the ImageCraft C Compiler Guide for more information.



90 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Build Manager

5.2.2 HI-TECH Compliler Options 

Listed below are the HI-TECH specific compiler configuration options:

■ Macro defines allows you to define macros on the command line to the compiler.

■ Macro undefines allows you to undefine any predefined compiler macros.

■ Warning Level specifies the minimum warning message level allowed for output.

■ Optimization Settings

❐ Checking the Global checkbox enables global optimization and the Level dropdown list
selects the global optimization level.

❐ Checking the Assembler checkbox enables assembler optimization.

■ Options allows you to enter any command line compiler options

■ The Switch to Lite Mode button adds a command line option for the Pro compiler to compile using
Lite mode. This button is applicable only to the Pro compiler and has no effect on the Lite
compiler, which compiles in Lite mode regardless of this option setting.

Refer to the HI-TECH C(R)  PRO for the PSoC(R)  Mixed-Signal Array guide for more information.

5.3 Linker

The linking functions in the build process are transparent to the user. Building your project links all
the programmed functionality of the source files (including device configuration) into a .hex file,
which is the file used for downloading and debugging.

The linking process links intermediate object and library files generated during compilation and
assembly, checks for unresolved labels, and then creates a .hex and a .lst file, as well as assorted .o
and .dbg files. For descriptions of these files, refer to “Source Files Generated by Generate Project
Operation” on page 57.

To set linker options in PSoC Designer, select Project > Settings... > Build > Linker. This screen
configures the linker specific options based on the compiler selection made in the Compiler screen.
The Selected C compiler box indicates which compiler (and linker) is currently selected.

5.3.1 ImageCraft Specific Linker Options

Configuration options of  imagecraft specific linker are as follows:

■ Relocatable code start address specifies the first Flash address for the linker to start placing
relocatable code areas. The relocatable code start address can be entered in only in
hexadecimal and is displayed in 0x  hexadecimal. 

■ Object/library modules specifies a list of libraries to link in addition to the default library.

■ Additional library path specifies a library path alternative to the default.

Refer to the ImageCraft C Compiler Guide for more information.

5.3.2 HI-TECH Specific Linker Options

Configuration options of  Hi-tech specific linker are as follows:

■ Warning Level specifies the minimum warning message level allowed for output.

■ Options allows you to enter any command line linker options

Refer to the HI-TECH C(R) PRO for the PSoC(R) Mixed-Signal Array guide for more information.

http://www.cypress.com/?rID=3410
http://www.cypress.com/?rID=3410


PSoC Designer IDE Guide, Document # 001-42655 Rev *D 91

Build Manager

5.3.3 Customizing Linker Actions

To customize the actions of the Linker, create a file called custom.lkp in the root folder of the project
(see the C Language Compiler User Guide - Command Line Overview). 

Be aware that in some cases, creating a text file and renaming it preserves the .txt file extension
(e.g., custom.lkp.txt). If this occurs, you cannot use custom commands. The make reads the
contents of custom.lkp and appends these commands to the Linker action.

A typical use for the custom.lkp capability is to define a custom relocatable code AREA. For
example, to create code in a separate code AREA that should be located in the upper 2K of the
Flash, use this feature. For this example, the custom code AREA is called ‘BootLoader’. If you were
developing code in C for the BootLoader AREA, use this pragma in your C source file:

#pragma text:BootLoader// switch the code below from 
// AREA text to BootLoader
// ... Add your Code ...
#pragma text:text // switch back to the text
// AREA

If you develop code in assembly, use the AREA directive in this manner:

AREA BootLoader(rom,rel)
; ... Add your Code ...
AREA text ; reset the code AREA

Now that you have code that should be located in the BootLoader AREA, you can add your custom
Linker commands to custom.lkp. For this example, type this line in the custom.lkp file:

-bBootLoader:0x3800.0x3FFF

You can verify that your custom Linker settings were used by checking the Use verbose build
messages field in the Tools > Options... > Build tab. Build the project, then view the Linker settings
in the Build tab of the Output Status window (or check the location of the BootLoader AREA in the
.mp file).

5.4 Librarian

The library and archiving features of PSoC Designer provide system storage and reference.

There are two types of Librarian files (located in the source tree): Library Source and Library
Headers. Source file types include archived and assembly language such as libpsoc.a and
PSoCConfig.asm. Header files are intermediate reference and include files created during
application code generation and compilation. Both types are generated and used by PSoC Designer
and are unique to each specific project. 

http://www.cypress.com/?docID=1553


92 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Build Manager



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 93

6. Debugger

In this chapter you learn how to download your project to an in-circuit emulator (ICE), use debug
strategies, and program the part. 

PSoC Designer supports two different methods to provide in-circuit emulation. The first uses an
external emulator called an ICE cube. The ICE cube has the ability to emulate different PSoC parts
in circuit using different foot kits or adapters to emulate the device in circuit. Figure 6-1 shows the
components in the ICE Cube Development Kit.

Some PSoC devices do not use an external emulator (ICE cube) for debugging. Instead, these
devices support a subset of the debugging options on chip. These devices use I2C to debug on-chip
through an ISSP header and MiniProg3. This section documents both emulation methods and how
to use them with the PSoC Designer debugger. Figure 6-2 on page 94 shows the MiniProg3 used
with devices with on-chip emulators.

The following device familites have on chip emulators

■ CY8CTMA3xx

Figure 6-1.  Components of the ICE Cube Development Kit



94 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

Figure 6-2.  Components of the MiniProg3 Program and Debug Kit

6.1 Online Training

For complete training on debugging and Dynamic Event Points, try PSoC Designer Module
3:Debugging with PSoC. Review and sign up under Training > On-Demand at 
http://www.cypress.com/.

6.2 Menu Options

The Debug and Ice tool bars incorporate the most important Debugger functions.

A listing of all Debugger menu options is available in Table 6-1.

The I2C debugger does not use an external emulator and does not support the following:

■ Events Window

■ Trace Window

■ Trace Mode

All other debug functions are fully supported.

Table 6-1.  Debugging Menu Options

Icon Menu/Tool Tip Shortcut Feature

Connect [F9] Connects PSoC Designer to ICE

Download to 
emulator

[Shift + F9]
Downloads project .hex file to hardware emulator (Pod). 
This file holds all device configurations and source-code 
functionality

Execute 
Program

[F4]
Switches into Debugging subsystem, connects, down-
loads .hex, runs... all from one click

Go [F5] Starts debugger

Run To Cursor [Ctrl] [F5]
Creates a temporary (invisible) breakpoint at the current 
cursor location in the source code and runs the applica-
tion to that point.

http://www.cypress.com/


PSoC Designer IDE Guide, Document # 001-42655 Rev *D 95

Debugger

Halt [Shift][F5] Stops debugger

Reset [Ctrl] [Shift] [F5]
Resets the device to a PC value of ‘0’ and restarts the 
debugger

Step Intoa [F11] Steps into next statement

Step Out [Shift] [F11] Steps out of current function

Step Overa [F8] Steps over next statement

Step ASM [Shift][F10]
If the current line of code is C code, the line is located in 
the.lst file and that line is executed.

Refresh M8C 
Views

Refreshes the data in the Memory, CPU Registers, and 
Watch Variables debugger windows with current data from 
the emulator.

Get Next Trace 
Data

When the debugger halts, the trace data window is loaded 
with the latest 64 lines of trace data. This button retrieves 
an additional 64 lines. 

Get all Trace Data When the debugger halts, the trace data window is loaded 
with all the trace data. This button retrieves all the trace 
data. 

Configure USB 
Data Tracking

If the device supports USB user modules, this button will 
be used for configuring USB end points.

a. If C source lines are compiled into assembly code that branches the execution path (such as lcall or call instructions), the Debugger
attempts to step into the source file of the destination address. For library code such as multiplication and division, a call to the library
assembly code is made but the original source file is not available in the project. Step Into then gives the message “No source available
for step operation.” Step Over can be used instead of step into for this situation.

Table 6-1.  Debugging Menu Options<Italic> (continued)



96 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

6.3 Debugging With an External Emulator

6.3.1 Connecting to the ICE

You must establish a communication link between the PC and the ICE. This is done by choosing the
appropriate ICE device. To make the Debugger port selection select the Project > Settings... >
Debugger tab.

Figure 6-3.  Debugger Project Settings for an ICE Cube

The Select ICE Device list shows USB connections supporting the ICE cube or MiniProg3. The ICE
cube can support up to 100 mA at 5V, or 3.3V or you can choose to supply the power externally.

After you have set your device, check the PC to ICE communication link by using the Connect button

 or by selecting the Debug > Connect/Disconnect menu item. The results of the connection
attempt are displayed in the status bar shown in Figure 6-4.

Figure 6-4.  Debug Status Bar.

6.3.2 Downloading to the Pod

Before you begin a debug session you need to download your project .hex file to the pod. By doing
this, you load the ROM addressing data into the emulation bondout device (chip on the pod). A
general rule to follow before downloading is to make sure there is not a part in the programming
socket of the Pod. Otherwise, debug sessions may fail.

To download the .hex file to the Pod:

1. Click the Download to Emulator (Pod) icon . 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 97

Debugger

The system downloads the project .hex file located in the …\output folder of your project direc-
tory. A progress indicator reports download status.

2. After the download is complete, the pod can be directly connected to and debugged on your spe-
cific circuit board.

If you cannot debug your project with the current pod, you receive this message:

“Attached pod is not compatible with the selected PSoC” 

This appears in the Debug tab of the Output Status window:

“Fail to Connect”



98 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

6.4 Debugging With an On-Chip Emulator

6.4.1 Enable Debug Mode

Before you generate your project, Debug Mode must be enabled in the Global Resources window.
During code generation, extra code necessary for debugging will be added to the hex file automati-
cally. A hex file generated with Debug Mode enabled will not run on the PSoC device unless it is con-
nected to the Debugger. Before generating production code, disable debug mode.

Figure 6-5.  Debug Mode Enabled

6.4.2 Connecting to the MiniProg

An important setting for each PSoC Designer project is the ICE Device that will be used for
debugging. For I2C debugging you will need to select the MiniProg3 from the list of ICE Devices in
the Project > Settings... > Debugger tab.   The ICE Device list shows only hardware that can be
used for the project that is currently opened.

MiniProg3 can support up to 100 mA in 5 V, 3.3 V, 2.5 V, 1.8 V, or you can choose to supply the
power externally.

Pod Clock Frequency is only effective in debug mode. It supports 50 kHz, 100 kHz, 400 kHz,
750 kHz, 1 MHz and 1.5 MHz. By default, it is set to 100 kHz.  Default value for Pod Clock
Frequency: 50 kHz.  Default value for Pod Supply Voltage: 5 V



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 99

Debugger

If the Auto option is selected for the Pod Clock Frequency, MiniProg3 will search for the fastest
frequency that the target device can handle. This option is recommended. The fastest operable
setting will depend on the project SysClk setting and on bus capacitance. Refer to the applicable
PSoC device data sheet for guidance.

Figure 6-6.  Debugger Project Settings

After you have set your ICE device, and are connected, check the communication link by using the

Connect button  or by selecting the Debug > Connect/Disconnect menu item. The results of the
connection attempt are displayed in the Output window and the status bar.

INFO  - 2010-07-26 17:27:10,140

Connecting . . .

INFO  - 2010-07-26 17:27:16,203

Connected."

Figure 6-7.  Debug Status Bar

6.4.3 Downloading to the Device

Before you begin a debug session you need to download your project .hex file to the device. 

To download the .hex file to the device:

1. Click the Download to emulator... icon . 

The system downloads the project .hex file located in the …\output folder of your project 
directory. A progress indicator reports download status.

2. After the download is complete, the device will run normally and report debug information over 

I2C to the attached MiniProg3.



100 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

6.4.4 I2C Debugger

Connecting to the ICE : An important setting for each PSoC Designer project is the ICE Device is
used for debugging. For I2C debugging you need to select the MiniProg3 from the list of ICE Devices
in the Project > Settings... > Debugger tab. The ICE Device list shows only hardware that can be
used for the project that is currently opened.

MiniProg3 can support up to 100mA in  5 V, 3.3 V, 2.5 V, 1.8 V, or you can choose to supply the
power externally. Pod Clock Frequency is only effective in debug mode. It supports 50 kHz, 100 kHz,
400 kHz, 750 kHz, 1 MHz and 1.5 MHz. By default, it is set to 100 kHz. Choose the option that best
fits the target hardware. The fastest operable setting depends on the project SysClk setting and on
bus capacitance. Refer to the applicable PSoC device data sheet for guidance.

After you have set your ICE device, and are connected, check the communication link by using the
Connect button or by selecting the Debug > Connect/Disconnect menu item.  The results of the con-
nection attempt are displayed in the Output window and the status bar.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 101

Debugger

6.5 Debug Strategies

Debugger commands allow you to read and write program and data memory, read and write IO
registers, read and write CPU registers and RAM, set and clear breakpoints, and provide program
run, halt, and step control.

Figure 6-8.  Debugger Subsystem View 

In the status bar of the Debugger subsystem you find ICE connection indication, debugger target
state information, and Accumulator, X, Stack Pointer, Program Counter, and Flag register values.

To help with troubleshooting, you can view your application source files inside the Debugger sub-
system. If the project source tree is not showing, click View > Workspace Explorer.

The project files that are viewed in the debugger are not read-only while the debugger is halted at a
breakpoint.  The source files are editable when the debugger is reset. 

Main Menu/
Toolbars
Area

Output
Window

Edit
Window

Memory
Window

Watch Variable
Window

Break Points
Window

Registers
Window

Locals
Window



102 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

6.5.1 Trace

The trace feature is not available with the I2C debugger. The trace feature enables you to track and
log device activity at either a high or detailed level. Such activity includes register values, data mem-
ory, and time stamps.

The Trace window is displayed when Debug > Windows > Trace is chosen. 

The Trace window displays a continuous, configurable listing of project symbols and operations from
the last breakpoint. (The trace shows symbolic, rather than address data, to enhance readability.)
Each time program execution starts, the trace buffer is cleared. When the trace buffer becomes full,
it continues to operate and overwrite old data.

Figure 6-9.  Trace Window 

Configure the Trace window by selecting either Debug > Trace Mode from the menu. Configuration
options include:

PC Only – Lists the PC value and instruction only. 

PC/Registers – Lists the PC, instruction, data, A register, X register, SP register, F register, and ICE
external input. 

PC/Timestamp – Lists the PC, instruction, A register, ICE external input, and time stamp.

The Trace.txt file is automatically updated and saved in the “...\output” folder of your project directory
by PSoC Designer IDE regardless of user actions File > Save Trace.txt As...

Trace.txt file is updated and saved automatically by PSoC Designer IDE regardless of user actions.

The trace log entries are logged after the instruction is executed. The contents of those entries are:

■ PC Register



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 103

Debugger

■ A Register

■ Data Bus

■ External Signals

The default size of trace is 256 kilobytes. This provides 128K trace instructions in trace mode 1 and
32K trace instructions in trace modes 2 and 3.

6.5.2 Break Points

The Break Point feature allows you to stop program execution at predetermined address locations.
When a break point is encountered, the program stops at the address of the break point, without
executing the address code. After halted, the program is restarted using the available menu or icon
options. 

To set break points, first open the file to debug. Do this from the Workspace Explorer. (If your project
file Workspace Explorer is currently not showing, click View > Workspace Explorer.) Break points are
created by right clicking your mouse at targeted points and selecting Insert Break Point. You can
view and remove active break points in the Break Points window. To open the Break Points window,
select Debug > Windows > Break Points. 

The I2C Debugger doesn’t use the external emulator and has a limited number of break points.
Active Break points will be shown with solid icon as shown in Figure 6-10:

Figure 6-10.  Breakpoints Window

You can also view the exact line and column for each break point (or wherever you click your cursor
in the file) across the bottom of PSoC Designer. 

6.5.3 CPU and Register Views 

There are five areas that are readable and writable during debugging: CPU Registers, Bank Regis-
ters 0, Bank Registers 1, RAM, and Flash. The CPU Registers are shown in their own window
(Debug > Windows > Registers) and in the notification area at the bottom of PSoC Designer. The
other four areas can be viewed in the Memory Window (Debug > Windows > Memory). Select one of
the four memory areas from the Address Space box. Each is described below.

NOTE: Use caution when changing register values; they can alter hardware functions.

CPU Registers – This window allows you to examine and change the contents of the CPU registers.
Data is entered in hexadecimal notation. CPU register values can be viewed across the bottom of
PSoC Designer. 



104 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

Bank Registers 0 and 1 – You can scroll through the register bank to view the values in the register
bank. Type a new value into the Offset to scroll directly to that offset. Click next to a value and type
a new value for the register. All values must be entered in hexadecimal notation.

Note that you cannot change some registers because they are read only. Some registers are write
only and cannot be read.

Figure 6-11.  Bank 0 Registers in the Memory Window

RAM – View a RAM memory page. RAM locations can be modified by clicking the data at the spe-
cific location and typing in the new value. Data is entered in hexadecimal notation.

Flash – The Flash window displays the data stored in Flash. This is the program memory; it is read
only.

6.5.4 Watch Variables

Watch Variables can be set by right clicking a variable in a source file and selecting Add Watch. You
can also select Global Variables.

Right-click inside the Watch Variables, the context menu appears as Define arbitrary watch, Delete,
Delete all watch variables, Edit, Hexadecimal. The properties in the Watch window to add, delete, or
modify values. Note that if you change a variable type (or other settings in the window) and close the
project, the next time you access that project the variable types and settings are the same.

Figure 6-12.  Watch Variables Window

The WatchWindow subsystem distinguishes between watch variables that were declared in the
project source code and watch variables that were created through the Watch Window pop-up
menu, Define arbitrary watch.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 105

Debugger

The dialog box for editing watch variables (and creating new arbitrary ones) is shown in Figure 6-13

Figure 6-13.  Edit Watch Dialog

6.5.4.1 Display Format

The 'Display As' property controls how the value will be displayed when the Watch Window is not set
to display its variables in hexadecimal format. There are 5 possible settings for the display format. 

Usually, the contents of the watch variable's memory location are displayed and modifiable in the
Value field. There are two conditions when the data is not displayed in the Value field:

1. When the Data Type of the watch variable is 'struct' the memory contents will not be displayed in 
the 'Value' field.

2. When the 'Elements' field is greater than 1 and the 'Display As' value is not ASCII (non-character 
array) the memory contents will not be displayed in the 'Value' field.

Figure 6-14.  A char Array Not Displayed as ASCII

Table 6-2.  Data Display versus Format

Format Types of Data that Can be Displayed

Decimal All Data Types

Hexadecimal All Data Types

Binary All Data Types

ASCII One-byte data types - char and unsigned char

Unicode
Two-byte data types - int, unsigned int, short, 
unsigned short, pointer



106 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

When the Display As property is changed, the value from memory is displayed in the Value field. If
you changed the Value and did not click OK before changing the Display As value, the data change
is lost.

When a display format is applied to an array or a struct watch variable, all the elements (or fields) of
the variable are displayed in the selected format. 

To display a single element or field of an array or struct, select just that element from the Watch Win-
dow and then edit the format of just that element.

Figure 6-15.  Items Displayed in their Configured Data Formats

The image of the Watch Window shown in Figure 6-16 shows a single watch variable named
yStruct, of type YourStruct. It contains 4 fields named myStruct, msArray, iArray and f.
The display format of the msArray field is set to Binary. Every data element contained in msArray
is displayed in binary format.   The format of iArray and f are the default of Decimal.

The display format of each field of yStruct.myStruct was set individually. The display format of
yStruct.myStruct.a is Hexadecimal. The format of yStruct.myStruct.b is Decimal, and the
format of yStruct.myStruct.c is set to ASCII.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 107

Debugger

Checking the Hexadecimal item in the Watch Window's pop-up menu toggles all data in the window
to hexadecimal format. When Hexadecimal is un-checked, the data formats return to their original
display format.

Figure 6-16.  Items Displayed in Hexadecimal Format

Note that when the native format of an item has been set to Hexadecimal, toggling the Watch Win-
dow Hexadecimal setting will appear to have no effect on that item.

6.5.4.2 Arbitrary vs. Project-Defined Watch Variables

For watch variables that were declared in the project source code, only the Value and Display As
properties can be changed. The Watch Name, Memory Bank, Addr, Elements and Data Type can-
not be changed for these variables.

All the parameters can be configured on arbitrary watch variables.

Watch Variables must have names. If you do not specify the name of an arbitrary watch variable
before you click OK, the watch variable will not be added to the watch variables shown in the Watch
Window.



108 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

6.5.4.3 Locals Watch Window

A separate watch window is available for local variables. Whenever execution halts, the content of
the Locals watch window is automatically updated to contain the current scope's local symbols.

6.5.5 Dynamic Event Points

Dynamic Event Points are only available with the ICE cube. The Events window is selectable by
clicking Debug > Windows > Events. It allows you to perform complex debugging by configuring
conditional breaks and traces.

While breakpoints allow you to select a program location and halt, Dynamic Event Points provide
multiple sequences of logical combinations and have multiple potential actions. Breakpoints allow
you to select locations within a program to stop, look around, and determine, “How did I get here?”
However, debugging is enhanced by the ability to stop and collect information about the target
program based upon specified conditions. An example scenario is “when variable OutputV gets set
to zero, turn trace buffer on.”

Dynamic Event Points help simplify the debugging process by providing this capability. They monitor
the processor to determine a match with logical operations of Program Counter (PC), data bus, data
address, instruction type, external logic signals, X Register, Accumulator, Stack Pointer, and Flags. 

Breakpoints have one logical input (PC) and one action (Break). Dynamic Event Points, on the other
hand, trigger actions when the specified logical condition occurs. An event point can trigger the
following actions: break, turn trace on or off, decrement the input counter, trigger the trace buffer,
and enable an event sequence.

In summary, Dynamic Event Points provide you with the ability to:

■ Define complex breakpoints.

■ Characterize multiple test cases to be monitored and logically sequenced.

■ Perform any of the following actions: break, turn the trace on, turn the trace off.

6.5.5.1 Configuring Events

Use the Events Window to enable or disable event settings anytime during a debug session. To
configure events:

1. Click Debug > Windows > Events to access debugger events.

2. Click your cursor in the first row, labeled ‘0’.

3. Below the rows are options for 8 and 16 bit threads. Check one or both depending on the needs 
of your project. Enabling both thread options activates the Combinatorial Operator field.

4. Fill in the applicable thread fields (i.e., Low Compare, Input Select, High Compare, Input Mask), 
as well as state logic fields (i.e., Next State, Match Count).

As you make your selection in the Input Select drop-down, you see details in the grayed-out, 
scrollable box below. Also, use Match Count to specify the number of times an event task occurs 
before it performs the selected action.

The input mask for 8-bit threads is applied to the high and low range comparison values, as well 
as to the input select value. This is done to support range comparisons on subsets of the bits in 
the input select value. All comparisons take place within the bits specified by the input mask. 
Other bits are ignored.

The range values are masked during event editing when the thread states are saved by the Apply 
button or by switching to a thread state. For example, if the entered low compare value is 06 HEX 
and the input mask value is 05 HEX, the low compare value after the mask is applied is 04 HEX. 
The input select value is masked at run time.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 109

Debugger

In the State Logic section you can choose to start or stop the trace and you can also choose to 
transition to another logic state once the current condition is met.

5. When finished, click Apply. The individual event is now configured and its information appears at 
row 0.

If you forget to apply your entries, you are prompted to save. Click Yes or No.

To clear all events in the dialog box, click Clear All. To disable all events in the dialog box, click 
Disable All.

6. Click row 1 and repeat steps 3-5 to configure another event. Repeat this process for each 
additional event. 64 Even Points entries are available in Event window. 

7. Click Close to exit the dialog box. All entries are saved.

As you run events, you can view messages regarding the status in the Debug tab of the Output
window. For instance, if you check Break as part of an event, “Hit Event state break” appears in the
Output window as the debugger hits the event.

6.5.5.2 Typical Event Uses

The many potential uses for events include:

■ Find a stack overflow. See Stack Overflow Errors under Invalid Memory Reference in PSoC 
Designer Online Help System at Help > Help Topics.

■ Detect jmp or call out of program. See Code that will Corrupt Stack under Invalid Memory 
Reference in PSoC Designer Online Help System at Help > Help Topics.

■ Trace a specific range of code.

■ Find when a register is written (with optional matching data value).

■ Measure interrupt latency.

■ Break the ‘n’th time a line of code is executed (match count).

■ Break on Carry Flag status.

■ Break on signals from customer target board.

■ Wait for certain number of instructions.

■ Count sleep periods.

■ Break on specific data in Accumulator on certain instructions (PC).

■ Collect trace data reads or writes to specified register.

■ Find memory write.

6.5.5.3 Event Examples

Here are a few examples for common events.

Find Memory Write

To break on a memory write to address 20h, execute the following example steps.

1. Access the Debugger Events dialog box by clicking Debug > Windows > Events.

2. Choose BITFIELD in the Parameter box.

The small help box in the lower left describes the BITFIELD input. Bit 1 is the RAM write flag.

3. Bit 1 is the focus bit of this example; therefore, you need to mask the other bits. The Input Mask
field allows you to hide bits that you do not care about. It is an 8-bit number. Set bits in the input
mask to mark the bits that you care about (e.g., 0F to get the low four bits, FF to get all eight bits,
01 to get the low bit, 80 to get the high bit, C0 to get the top two bits, etc.). Pick 02 for the input
mask to get the RAM write bit.



110 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

4. Any masked bits need to be zeros in the compare fields. You can see in the help box that the
focus bit is active low. It is a ‘0’ when the RAM write is happening. This means you can just set
both compare values to ‘0’.

5. Pick MEM_DA for the input select. (If you picked MEM_DA_DB, you could check the address
and the data value.) Note that this selection is different for the ICE Cube support of the
CY8C29x66 devices.

6. Set both compare values to ‘20’, your desired address.

7. Pick AND for your Combinatorial Operator.

8. Press the Break check box. This makes the debugger halt when it sees the RAM write.

9. Click Apply.

Stack Overflow

To create an event to break when the Stack Pointer reaches FF:

1. Access the Debugger Events dialog box by clicking Debug > Events.

Figure 6-17.  Stack Overflow Events Dialog Box 

2. Set the Input select drop-down to SP.

3. Set both the Low compare and High compare values to 00FF.

4. Check the Break check box in the State Logic fields.

5. Click Apply, then close the Events window.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 111

Debugger

The Register A Value, Trace On and Off, and Match Count

To create an event to turn the Trace Off at PC16=0000, turn the Trace On when Register A gets the
value 0x32, and then turn the Trace Off and Break after Register A gets the value 0x32 ten times.

1. Access the Debugger Events dialog box (click on Debug > Windows > Events).

2. Click on the State 0 event.

3. Set Input select to PC16, Low compare to 0000, and High compare to 0000.

4. Under State Logic set Next state to 1 and check Trace Off.

5. Click Apply to save.

6. Click on the State 1 event.

7. Turn on the 8-bit thread by checking Enable 8-Bit Thread.

8. Set Input Select to A, Low compare and High compare to 32, and leave the Input Mask at FF.

9. Under State Logic set Next state to 2 and check Trace On and Break.

10.Click Apply to save.

11.Click on the State 2 event.

12.Set Input select to A, Low compare and High compare to 32, and leave the Input Mask at FF.

13.Under State Logic set Next state to 3, the Match Count to 10, and check Trace Off and Break.

14.Click Apply to save, then close the Events window.

6.5.6 End Point Data

If your project includes one of the USB user modules, you can display USB endpoint data captured
from the emulator in a debug window. To do so, select Debug > Windows > USB Endpoint Data. This
creates a file named USB Data.txt that captures and displays endpoint data every time the debugger
is halted. 

To define Areas, use Debug > Configure USB Data Tracking.

For example:
PMA0_WA: 00    PMA0_RA: 00   
PMA1_WA: 00    PMA1_RA: 00   
PMA2_WA: 00    PMA2_RA: 00   
PMA3_WA: 00    PMA3_RA: 00   
PMA4_WA: 00    PMA4_RA: 00   
PMA5_WA: 00    PMA5_RA: 00   
PMA6_WA: 00    PMA6_RA: 00   
PMA7_WA: 00    PMA7_RA: 00   

Area 1 Data...
0x00: 8A 47 6F 84 35 2A 01 28   14 46 00 93 F3 B3 5D 60
0x10: B8 6C C4 A8 31 71 19 41   99 4A 89 AC CE 11 8D 28
0x20: 06 9D 43 8D 22 EE 6C 92   88 3B 33 61 93 A0 16 27
0x30: 8C 0C 9A F0 AA 21 E4 62   80 FA 48 C6 9E E3 66 22
0x40: C8 31 02 8E 14 50 5A 74   AB 38 6F 15 6C 21 E4 DA
0x50: E5 A0 00 1A 0E EA C1 6E   59 46 9A 50 33 06 1F 98
0x60: 8E C3 F4 30 FD 12 01 43   38 52 95 20 D1 EF 71 94
0x70: 1C F8 7B 52 97 E6 12 3C   0C 56 92 2C 89 05 B5 D6
0x80: 1A 1A 80 0B 1E 09 48 3D   4E AB 38 2C CA 42 B4 3A
0x90: 33 DB 13 A3 44 D9 8B 3B   51 DC 00 2D 1D A3 BD 32
0xA0: 01 E7 A1 24 4A 99 04 D8   83 63 C4 EF 88 4A 28 18
0xB0: 48 81 96 16 51 1C F3 9D   1C 2F 92 36 2A AE 5F 6D



112 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger

0xC0: 9C BC 0A FC D5 17 96 CF   61 20 FD 14 C4 09 E4 57
0xD0: D2 6C 51 36 3E AE 19 E2   99 5E 04 A1 C6 A9 D1 D0
0xE0: 5E 2D C1 70 97 F5 73 61   57 00 3D CB 77 E5 97 33
0xF0: 33 34 84 C7 2E 82 07 EA   76 9C 24 63 2B 7D 41 20

Area 2 Data...
0x03: 84 35 2A 01

Area 3 has zero length

Area 4 has zero length

6.6 Programming the Part

Programming a PSoC device is done once debugging is complete. By doing this, you store the ROM
data directly in the flash memory of the part. The PSoC device can be reprogrammed many times.
Programming is performed by using the Embedded programmer, which is launched by selecting
Program Part... from the Program menu.

This menu selection will launch the embedded programmer. Figure 6-18 shows the embedded
programmer. The embedded programmer enables the following actions:

■ Select from the available programmers

■ Connect or Disconnect to the selected port

■ Set Acquire Modes

❐ Reset

❐ Power Cycle

■ Set Verification procedures

❐ On

❐ Off

■ Select Power Settings (if applicable)

■ Toggle power

■ Program 

■ Log all processes and error messages

Figure 6-18.  PSoC Designer Embedded Programmer

Set the acquire mode appropriately for the device you are programming. If the MiniProg is supplying
power to the device it can acquire the device by cycling power. If the device is externally powered
the MiniProg can only acquire the device by resetting it. Click the connect button to connect to the
device. Click the Power button to power the device, if appropriate. Click the download button to



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 113

Debugger

program the device. The status bar and the status window will update as programming progresses.
Any error messages will be reported in the status window. Click the details button to see the status
window. 

Additional information regarding programming the PSoC devices and kits can be found in either the
specific kit documentation or the PSoC Programmer User Guide, which can be found in the root
PSoC Programmer installation directory. 

You can also use the full interface of PSoC Programmer, Start > All Programs > Cypress > PSoC
Programmer. The full interface provides access to more advanced programming and debugging
features.

Caution: There is a limit to the amount of current that can be supplied to the Vdd pin from the
programmer. If the target application requires more than 100 mA, it is safer to supply external
power to the device. Attempting to draw more than 100 mA from the programmer may cause
programming failures or damage the programmer.



114 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Debugger



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 115

7. Flash Protection

Flash Program Memory Protection (FPMP) allows you to select one of four protection (or security)
modes for each 64-byte block within the Flash, based upon the particular application.

7.1 FPMP and PSoC Designer

PSoC Designer has a rudimentary mechanism that enables you to set security modes in your Flash
program memory. The security (or protection) is set from within PSoC Designer on a per project
basis. The protection mechanism is implemented using the System Supervisor Call instruction
(SSC). When this command is executed, two bits of data programmed into the Flash selects the pro-
tection mode. Table 7-1 lists the available protection options. 

A simple text file called flashsecurity.txt is used as the medium for the Flash security. This text file
contains comments describing how to alter the Flash security. PSoC Designer validates the correct-
ness of the Flash security data before it is used.

NOTE: The flashsecurity.txt file for PSoC Designer v. 2.xx and higher projects that use Flash writes
must be set to the correct protection modes. The defaults are set to full-protect mode. To change the
protection mode, the part must be bulk erased and re-programmed using the flash security settings.

Table 7-1.  Flash Program Memory Protection Options

Mode Bits Mode Name External Read External Write Internal Write Mode Code

00 Unprotected Enabled Enabled Enabled U

01 Factory Upgrade Disabled Enabled Enabled F

10 Field Upgrade Disabled Disabled Enabled R

11 Full Protection Disabled Disabled Disabled W



116 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Flash Protection

7.2 About flashsecurity.txt

The FPMP file, flashsecurity.txt, is added to each new project and appears in the Workspace
Explorer.

Figure 7-1.  flashsecurity.txt in Source Tree

PSoC Designer also adds the FPMP file to a cloned project. This is especially useful when cloning
projects created with earlier versions of PSoC Designer because earlier versions did not carry this
feature. Note that if you do clone a project created in an earlier version of PSoC Designer, you are
prompted to update your project, (see “Updating Existing Projects” on page 23). 

NOTE: If, for some reason, flashsecurity.txt is missing or was deleted from the project, the default
behavior is to apply Mode Bit 11 Full Protection to the entire program memory.

This information contains instructions on modifying flashsecurity.txt and appears at the beginning of
this file in PSoC Designer.

; Edit this file to adjust the Flash security for this project.
; Flash security is provided by marking a 64-byte block with a 
; character that corresponds to the type of security for that 
; block, given:
;
; W: Full (Write protected)
; R: Field Upgrade (Read protected)
; U: Unprotected
; F: Factory

; Note #1: Protection characters can be entered in upper or 
; lower case.
; Note #2: Refer to the Flash Program Memory Protection section 
; in the Data Sheet.

; Comments may be added similar to an assembly language 
; comment, by using the semicolon (;) followed by your comment.
; The comment extends to the end of the line.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 117

Flash Protection

Figure 7-2 is an example of a flashsecuriy.txt file.

Figure 7-2.  Example of flashsecurity.txt 

7.3 FPMP File Errors

PSoC Designer lets you know when FPMP file errors occur. A dialog box appears, if you edit or enter
the wrong information in the flashsecurity.txt file, when you are downloading to the ICE or program-
ming a part. A message also appears in the Build tab of the Output Status window.

Figure 7-3.  FPMP Error in Output Status Window



118 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Flash Protection

For example, if you have a Flash data table that can be changed using a Flash write routine, you
might have assembly code that looks like this:

area Table (ROM, ABS)
org 3C80h
widgetTable:
export WidgetTable
db 57h ; W
db 49h ; I
db 44h ; D
db 47h ; G
db 45h ; E
db 54h ; T
; …. More table entries continue

You then unprotect the Flash block associated with this table at address 3C80h and make your
change in the flashsecurity.txt file as shown in Figure 7-4. 

Figure 7-4.  Unprotected Flash at 3C80h



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 119

Appendix A. Troubleshooting 

This appendix presents solutions for some potential system problems. 

A.1 Troubleshooting the Chip-Level Editor

Problem: You cannot read the fine print in the User Interface that shows the Chip Editor
view.

Solution: Place the cursor in the center of the diagram. Right-click the mouse and select
Zoom In from the menu. You can also hold the CTRL key and click the image
itself.

Figure A-1.  Reading the Fine Print 

To move the image to a different location on the screen, hold down the ALT key, click in the image
with the mouse and drag the image to a place where you want it on the screen.

To zoom out, hold down the CTRL+SHIFT keys and click. 



120 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

A.2 Troubleshooting the Code Editor

Problem: You cannot see the Output tab in the Project window. 

Solution: From the View menu select Output. 

Problem: When building the project, you see this error message: “process_begin: Cre-
ateProcess((null), C:\DOCUME~1\bok\LOCALS~1\Temp\make81222.bat, ...)
failed make (e=2): The system cannot find the file specified.”.

Solution: Rebuild the project, making certain that no other instances of PSoC Designer are
building at the same time.

Problem: When compiling, you see this warning: “!W warning: area ‘<project_name>’ not
defined in startup file './obj/boot.o' and does not have an link time address.” 

Solution: This is a bug in PD4.2, see the release notes for more details to "Rebuild the
project, making certain that no other instances of PSoC Designer are building at
the same time."

A.3 Troubleshooting the Debugger

Problem: User cannot connect to a pod.

Solution: There are a few possible issues that may cause this problem. One way to begin
the solution process is to create a decision tree that lists the issue and presents
potential causes.

Problem: While debugging, you see the message “Invalid Memory Reference.”

Solution: Similar to previous solution.

Problem: User cannot connect to ICE.

Solution: Similar to the previous solution.

A.4 ICE Configuration

Problem: It is possible to incorrectly configure the ICE for use with a POD in PSoC
Designer, even though the settings appear to be correct in a certain location.

Solution: There are two places in PSoC designer to adjust Programmer/Emulator settings: 

Go into Tools > Options > Debugger tab and uncheck Use default ICE connection
for all projects. 

Go into Project > Settings... > Debugger tab, select the ICE from the pull down
menu, Select OK for ICE to power pod and in Power supply voltage, select 3.3 V 

A.5 Incorrect Code Compilation

Problem: Code does not compile correctly after “*** Warning: File has modification time in
the future” is received. 
The application is built and a warning: “*** Warning: File has modification time in
the future” is generated at compile time. Any code changes are not updated in the
final build and not executed at run time. 

Cause The compiler checks to see if the source file is newer than the output file before
regenerating the output file. If the output file is sent to you from a time zone that is



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 121

several hours ahead, then the output file is newer than the source file that you just
modified. Therefore, the source file is not compiled. 

Solution: Use the “rebuild all” function to delete all of the output files and regenerate them
using the existing code. 

A.6 I2C Hot Swapping

Problem: The PSoC does not function independently as a hot swap controller with I2C. 

The protection diodes on the GPIO pins attached to the I2C bus load the bus if the
PSoC Vdd is separate from the I2C power supply and is powered down. 

Solution: We have a workaround fix. Please find attached block in PDF format. 

Figure A-2.  I2C Hot Swapping 

Notes: Place the N channel FETs used in this block so that the source of the FETs
attaches to the PSoC GPIO pin (otherwise the body diodes in the FETs will con-
duct in the same way as the protection diodes). 

This drawing illustrates the BSS145 from Infineon, but you may select something
less expensive as long as they are N ch FETs with an RdsON rating for Vgs <=
PSoC Vdd. For example, if PSoC Vdd = 3.5V you need an NCH FET with a spec-
ified Rds ON for a Vgs <= 3.5V (such as the BSS145).

Setting “Pin X” drive mode to “strong” and writing a 1 to the pin Drive Register
enables the PSoC on the I2C bus. Write a 0 to the pin drive register to disable the
I2C. 

A.7 Manually Turning off the Analog Section 

Problem: For situations where low quiescent current is required, such as sleep, you need to
to shutoff the entire analog section. To completely shut off the analog section of
the PSoC, manually write to the ARF_CR register. You should read about the
ARF_CR register, in the Technical Reference Manual (TRM), before changing this
register. 

Solution: To turn off the Analog Section use the following code snippet. 
ARF_CR &= ~0x03;

BSS145

100k

PSoC

Pin 1_5

Pin 1_7

Pin X  (to enable I2C)

BSS145

I2C SDA

I2C SCL

SD

G

G

D S



122 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

A.8 Trace Issues

Problem: Options under Debug > Trace Mode are grayed out in the menu of PSoC
Designer when in Debug mode if user code is running.

Solution: Set a breakpoint or click Halt on the toolbar. This activates the selections in the
menu.

A.9 Using an External USB Hub

Problem: Use an external USB hub to program your PSoC TWICE as fast.

The time it takes to program a PSoC is often reduced when the PSoC is con-
nected to an external USB hub. This is because of the Intel chipset based USB
found on many computers.

There are three common USB hub systems: UHCI, OHCI, and EHCI. UHCI and
OHCI were developed for the original USB 1.1 spec. UHCI was designed by Intel
and is a bare-bones implementation. OHCI is more aggressive and is more widely
used. OHCI is much more efficient and attempts to make better use of the band-
width. UHCI merely adheres to the basic specification. EHCI is designed for the
2.0 (high speed specification) used to communicate to all high-speed devices. 

Solution: External 2.0 Hubs operate very aggressively, like the old OHCI interface. Most
external Hubs are much more complex than internal Intel chipset based hubs, and
make much better use of the available bandwidth. If you have a computer with the
Intel USB chipset, connecting a 2.0 hub between your PC and your device
increases the data transfer rate. Programming the PSoC is usually TWICE as fast!

This speed increase carries over to other applications as well. The amount of
speed increase depends upon the driver used by the Host PC and the type of
USB transmission (bulk, isochronous, etc.).

A.10 POD Detection Problem

Problem: While in PSoC Designer you see this error message: Cannot detect a pod.

Solution: 1. Check all connections. Make certain that the ICE is powered and is connected
to the computer.

2. Make sure the ICE driver is correctly installed. Try uninstalling it and reinstalling
it.

3. Make sure you are using the correct POD for the part selected in PSoC
Designer. A CY8C29000 POD only emulates CY8C29x parts.

4. Check your PSoC Designer options. There are two places in PSoC Designer to
adjust Programmer/Emulator settings:

Select Project > Settings...> Debugger, select the ICE from the drop down menu,
click OK for ICE to power pod radio button and under Power supply voltage, click
3.3 V.

5. Start a TightLink Case about the issue. Include as many details about the
project and hardware setup as possible. You may have defective hardware.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 123

A.11 Project Cloning Warnings

Problem: You clone a project and receive what seems to be strange errors or warnings.

Solution: To convert your project between device types, select Start New Project. See
2.2.1 Clone a Project for details. Type a name for your new project in the Clone
dialog box. In the existing configuration window, select the project to clone and the
new device type into which to migrate your project. Select OK. The new version of
your project may require modification if you migrated to a part with fewer
resources.

Unfortunately, this migration tool does not always migrate the boot.tpl file
correctly.

To fix this issue delete the boot.tpl and boot.asm file from the project directory and
restart PSoC Designer. This forces PSoC Designer to regenerate the boot.tpl file.

A.12 AreaName Not Defined

Problem: Warning: area 'AreaName’ not defined in startup file ./obj/boot.o and does
not have a link time address.” applies to assembly code as well.

C compiler generates extraneous warning message relating to RAM AREAS. 

In projects that make use of RAM AREAs that are not explicitly defined in the
boot.asm, the linker may generate the warning message “Warning: area 'AreaN-
ame? not defined in startup file './obj/boot.o' and does not have an link time
address.”

Solution: You may ignore this message. The warning my also safely be ignored in projects
that only use assembler. 

A.13 General Troubleshooting Issues

Problem: You undocked a minibar, and then closed it by clicking the ‘x’ on the upper right
corner. Now, you cannot get the minibar back.



124 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Solution: From the menu select Tools > Customize > Toolbars tab. Select the minibars to
display. This restores the closed minibar.

Figure A-3.  Toolbar Customize Menu 



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 125

Problem: You have minibars stacked on the left side of the screen pushing down the
viewable screen area.

Solution: Increase size of the window and move minibars to the desired location. Then
switch to another PSoC Designer state to memorize the layout of the current
state. Repeat this process for the Chip-Level Editor, the Code Editor, and the
Debugger because PSoC Designer memorizes their layouts independently.



126 PSoC Designer IDE Guide, Document # 001-42655 Rev *D



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 127

Appendix B. Build Process

B.1 Build Utilities

The build utilities are single-purpose applications that contribute to the build process. Table B-1 pre-
sents a list of these utilities. These utilities/programs are installed in the Tools folder beneath the root
installation of PSoC Designer. 

Make and sed are standard tools with documentation in the Documentation/Supporting Doc-
uments folder of the PSoC Designer installation directory.

Table B-1.  Utilities and Programs

Utility/Program Developed By Description

iasm8c.exe ImageCraft Assembler

iccomm8c.exe ImageCraft Compiler/Assembler/Linker “Engine”

iccm8c.exe ImageCraft Compiler

ilinkm8c.exe ImageCraft Linker

ilstm8c.exe ImageCraft Produces a complete program listing (LST)

icppw.exe ImageCraft Preprocessor for compiler

ilibw.exe ImageCraft Librarian works on an archive file (.a)

MakeHex.exe Cypress
Creates an Intel HEX file from a ROM file and applies security 
records.

psocmakemake.exe Cypress Creates a project-specific make file (Project.mk)

VerLst.exe Cypress
Adds PSoC and ImageCraft version information to the program 
listing file.

mkdepend.exe Cypress Creates a project-specific dependency file (Project.dep)

make.exe GNU Make “Engine” version 3.79

sed.exe GNU Formatting utility used within the Makefile version 3.02



128 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

B.2 Make Process

B.2.1 Environment Variables

PATH: Change the path to add the PSoC designer tools directory. 
Example: 
PATH=C:\Program Files\Cypress\PSoC Designer\X.Y\Common\CypressSemiBuild-
Mgr\tools

DEVICE: The name of the device.
Example: DEVICE=CYC24994

BASEDEVICE: The tools/include subdirectory of the PSoC Designer install directory that
contains the include files for the DEVICE.

Example: BASEDEVICE=CY8C24090 

LASTROM: The last location in ROM.

Example: LASTROM=0x3fff 

B.2.2 MAKE Invocations

PSoC Designer sets the environment variables as indicated above and calls MAKE as follows:

make –f <installdir>/tools/makefile clean 
make PROJNAME=<projectname> -f <installdir>/tools/makefile makemake
make –f <installdir>/tools/makefile depend
make –f <installdir>/tools/makefile

Make invocations are executed from the project root folder.

B.2.3 Build Files

This section describes the files used by the build process. Except for ‘Makefile’, these files reside in
the local project folder.

B.2.3.1 Makefile

This file is a general-purpose MAKE file for all PSoC projects. Therefore, use care when changing
the actions in this file, because they apply to all PSoC builds. This file is located in the tools folder, off
the main PSoC Designer installation path.

The relevant makefile targets are:

Makemake target

When you use the psocmakemake.exe utility, this target produces the project.mk from the
project.SOC file (see Section B.2.3.2 project.mk).

Depend target

This runs mkdepend.exe with the appropriate arguments to generate include file dependencies.

All target

This is the default target that compiles, links, and builds.

Clean target

This removes all object files.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 129

B.2.3.2 project.mk

Project.mk is generated by psocmakemake.exe from environment variables and the project’s .soc
file. It is rewritten by the PSoC Designer build process.

This section describes what these symbolic variables are and gives examples of what values they
can have. Figure B-1 shows an example of a project.mk file for the c24 project using a CY8C24994
device.

Figure B-1.  Example Project.mk file

The section provides a description of "UMLIBS" and "CSFLOW” of the symbolic names found in a
project.mk file. You can look at the master make file in an editor and use a text search utility to see
how these symbolic names are used.

PROJNAME – Helps the master make file create the file name for the .hex, .lst, and .map files.

DEVICE – Not actually used by the master make file, but used by the psocmakemake.exe utility to
get things out of the device description XML files. This is a shell environment variable that is set
before running the ‘makemake’ target.

BASEDEVICE – Used to help create the proper path to a device family specific library. This is a shell
environment variable that is set before running the ‘makemake’ target.

PROJPATH – Helps create a path to link in the project’s user module library (libpsoc.a)

PROJNAME=CY8C24x94_SLCD
DEVICE=CY8C24994-24BVXI
BASEDEVICE=CY8C24090
PROJPATH=C:/DOCUME~1/FSU~1.MIC/MYDOCU~1/PSOCDE~1.1PR/CY8C24~1/
CY8C24~1
PSOCDIR=C:/PROGRA~1/Cypress/PSOCDE~1/5.1/Common/CY3E64~1
INCLUDE_PATH=C:/PROGRA~1/Cypress/PSOCDE~1/5.1/Common/CY3E64~1/tools/
include/CY8C24~1
CSRCS= main.c
LIBCSRCS=
ASMSRCS=
LIBASMSRCS= psocconfig.asm psocconfigtbl.asm slcd_1.asm slcd_1int.asm
OBJECT_SOURCES= main.c
FILLVALUE=0x30
LASTROM=0x3fff
LASTRAM=0x3ff
LAST_DATARAM=0x2ff
CODECOMPRESSOR=
MORE_CFLAGS=-Wf-Osize -Wf-LMM4 -D_LMM
RELSTART=0x1a0
CDEFINES=
LIBS=
UMLIBS=
LIB_PATH=
ENABLE_ALIGN_SHIFT=0
LMM=1
SYS_INC_CONTENTS:=SYSTEM_STACK_PAGE:_equ_...etc
SYSTEM_TOOLS=1
CSFLOW=
CONFIG_NAMES=cy8c24x94_slcd 



130 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

PSOCDIR – Helps form a path to invoke a sub-make target called ‘expanded_lib_prereq’. This is
also used in formulating other paths.

INCLUDE_PATH – PSoC Designer version 4.2 with Service Pack 1 has a limitation to the use of this
make variable in the master make file. The makemake target (psocmakemake.exe process) essen-
tially creates only one path for this variable using the PSOCDIR and BASEDEVICE values. The
master make file also statically adds an include paths to ./lib and %PSOCDIR%/tools/include. How-
ever, assume a project had a local.mk file that wanted to add additional include paths to common
folders that where located away from the project folder using a statement like:

INCLUDE_PATH:=$(INCLUDE_PATH);../common

The assignment, in the master make file, to CY_INCLUDE_PATH receives the potential list of
include folders. A list of include paths breaks the path creation that forms variables that produce the
memory.inc file. The solution is to modify the master make file assignment to:

CXY_INCLUDE_PATH=$(subst ;, ,$(INCLUDE_PATH))
CY_INCLUDE_PATH=$(firstword $(CXY_INCLUDE_PATH))

Notice that in the INCLUDE_PATH example for the local.mk file you must use a colon/equals to
break any recursion. Also, notice that the include paths are separated by a colon. This colon is
replaced in the master make file by a –I.

CSRCS – This is a (white space separated) list of C files in the root folder of the project. This list is
provided as an argument to the ‘depend’ target (mkdepends.exe process). The master make file was
not designed to add source files outside of the project directory structure.

LIBCSRCS – This is not used since the master make file is not yet made to ‘compile’ C library files.

ASMSRCS – This is a (white space separated) list of assembly files in the root folder of the project. 

LIBASMSRCS – This is a list of project assembly files in the ‘lib’ folder of the project. These files are
added to the project by the Chip-Level Editor and are stored in the project SOC file, which the ‘make-
make’ target (psocmakemake.exe process) extracts.

OBJECT_SOURCES – This variable basically governs the link order. The ‘makemake’ target puts
the files in alphabetical order. However, if you wish to change the link order you can revise the order
of the file list assigned to this variable. See Section B.5.4 Change Link Order on page 137 for an
example.

FILLVALUE – This variable is used as a linker argument (e.g. –F0x30) to fill empty areas between
code and by the MakeHex.exe utility to fill HEX records from the last code record to the end of
FLASH with the fill character. A halt (e.g. 0x30) opcode is used.

LASTROM – This is the FLASH size of the device. It is a shell environment variable that is set before
running the ‘makemake’ target. It is used in the link process of the master make file.

LASTRAM – This variable comes from the opts.txt file and gives the last RAM address. The PSoC
Designer build system “asks” the Chip-Level Editor for this value. This value is not really used in the
master make file because most devices that do not have paged RAM are 256 bytes. For example
this value is 0x7FF for a 2K RAM device and 0xFF for a 256 byte device.

LAST_DATARAM – This variable only shows up in the project.mk file when the project has multiple
pages of RAM and paging is enabled. The value is equal to the address of the last RAM byte that
could be used for data, just before the stack. This value relates to the Stack Page Offset GUI in the
Compiler settings of PSoC Designer. For example, if you have a stack page offset of zero (0), with
the stack on Page 7, your LAST_DATARAM value is 0x6FF. For example, with a stack page offset of
0x20 (stack on page 7) you get a value, for this variable, of 0x71F.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 131

CODECOMPRESSOR – This is used by the linker in the master make file. PSoC Designer’s
Project > Settings Compiler GUI shows two options for the Code Compression Technologies:
(1) Condensation and (2) Sublimation. These GUI options are only shown for non-RAM-paged
device projects. Using the shell environment does not limit you to use these options:

-O: Condensation (or duplicate code removal)

-elim: UserModules: Sublimation (unused User Module API elimination)

For example:

CODECOMPRESSOR=-O -elim:UserModules

MORE_CFLAGS – This variable adds ImageCraft commands when compiling C files. The PSoC
Designer ImageCraft compiler settings will hide or allow certain settings based on the project device.
For example, for a device that does not have a hardware Multiplier/Accumulator (MAC) the value in
MORE_CFLAGS is set to ‘-Wf-nomac’.

-Wf-nomac: Does not generate code to use the MAC.

-Wf-Osize: Uses calls to math library functions instead of inlining the code.

-Wf-LMM8: Tells the compiler to generate paged RAM code for eight pages. 

-D_LMM: Needed for C code using >1 page of RAM.

-g -e -c: These are always used by the master make file. They are, respectively, add
debug information, accept C++ comments, and compile file only.

RELSTART – This is the relocatable start address, for example 0x140. This is the starting address
for the text area (above the TOP area).

CDEFINES – This is added to a command line for compiling C source files. ‘Defines’ are prefixed
with a ‘-D’ and un-defines are prefixed with a ‘-U’. For example:

CDEFINES=-DSET_SPI –DMAX=2 –UADD_DBG

LIBS – This is a list of object (.o) and library (.a) files that you wish to link in from outside the project.
The elements must be separated by white space.

LIB_PATH – These are folder locations that should hold the LIBS. Elements in this list should be
separated by semicolons (;). Short (e.g., 8.3) path names should be used.

ENABLE_ALIGN_SHIFT – This is not used.

LMM – This helps the master make file when a project wishes to use paged RAM. The values are a
1 or nothing.

SYS_INC_CONTENTS – The value (e.g., list) for this variable is quite long. This value is a mecha-
nism used by PSoC Designer to push information about memory settings into an include file that the
master make file creates. Possibly, the additional elements in this list could be added so that you can
put your ‘equates’ in the memory include file. The master make file effectively creates the memory
include file by redirecting memhead.tpl from the proper device include folder to the top of the mem-
ory include file. Then each element in this list is placed in the memory include file after replacing
‘_equ_’ with ‘ equ ‘ (spaces added where underscores were). The remainder of the memory include
file comes from the redirection of the memfoot.tpl file (in the proper devices include folder). Again,
reading the master make file and understanding this will help a lot.

SYSTEM_TOOLS – This value is 1 for ImageCraft.

CONFIG_NAMES – This lists (white space separated) the overlay (or configuration) names created
in the device editor. This helps the master make file create linker switches to ensure that the RAM
data declared in User Modules gets located on the same RAM page for each overlay.



132 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

B.2.3.3 Local.mk

This file contains additional make instructions. It is not touched by the make process. Here you can
add and/or modify the build variables set in project.mk.

B.2.3.4 project.dep

Created by the ‘mkdepend’ via the make depend command. This file contains the include dependen-
cies for the project. It is rewritten by the build process.

B.2.3.5 local.dep 

This file contains additional file dependencies and make commands. It is not touched by the make
process.

Since this is the last thing in the make file, assignments here override those in the main make file.
See B.5.2 Boot Loader Example on page 136.

B.2.3.6 custom.lkp

This is a ‘legacy’ file inserted via sed into the linker arguments. This is typically used to locate ‘areas’
with the -b switch (for example: -bfoo:0x1C00.0x1FFF)

B.2.3.7 opts.txt

This is a file created by PSoC Designer to take the GUI settings for the compiler and linker and
translate them to ImageCraft arguments and other MAKE variables used by the master make file.
The contents of this file gets pulled into the project.mk file

NOTE : The following section (appendix B.3) is applicable only to PSoC Designer 5.0 SP4 or earlier
versions.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 133

B.3 Moving the Build System to Another PC

Typically when there is an interest in using the shell build environment it is because you wish to
create a PSoC HEX file with a minimum build environment on another workstation.

Archive or move the tools folder and all its subfolders. This ensures the same compiler version/
release and the same include and library files.

B.3.1 ImageCraft License key

If you are using C source files then you want to make sure that the workstation you intend to compile
files on has a valid compiler license. The utility program icc.exe is a wrapper for the ImageCraft
compiler. This wrapper validates the compiler license stored in the registry. The wrapper looks for
the compiler license in this registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Cypress MicroSystems\PSoC Designer\AddIn\Compilers\IMAGECRAFT

There should be a String value (REG_SZ) in this key named COMPILER_LICENSE. Its values are
your license (case sensitive). Create this key by exporting the key and then importing it onto another
PC or add it manually. This registry key location changed in PSoC Designer version 4.2 (icc.exe).
Earlier versions of icc.exe look for the license in the ‘AddIn’ key.

You then need to put your PSoC project files in a folder on the other PC. When you build your project
on the other machine make sure that the PSOCDIR variable, as well as other path-related variables
(e.g. INCLUDE_PATH), in a project.mk or local.mk file, point to the appropriate paths.



134 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

B.4 Building Project Through Command Line

B.4.1 Command Line Instructions

PSoC Designer 5.1 provides executable file, PDCLI.exe, clean, generate, and build the project
through command line. The location of the PDCLI.exe file is under installation folder =
\Cypress\PSoC Designer\5.1\ PSoC Designer 5\PDCLI.exe.

PDCLI provide four types of operation:

1. Cleaning the project files

This operation takes two arguments, command and project path. The command to invoke this oper-
ation is CP. The project path should be .cmx file.

2. Generate project files

This operation takes two arguments, command and project path. The command to invoke this oper-
ation is GP. The project path should be .cmx file.

3. Clean, generate, and build project

This operation takes three arguments, command, project path, and compiler. The command to
invoke this operation is CGBP. The project path should be cmx file. The compiler should be IMAGE-
CRAFT, ImageCraftPro, or HI-TECH. When the build fails, the console should show the error mes-
sage.

4. Help

When there is no argument, PDCLI shows help function

Examples

1. Cleaning the project files

PDCLI "CP" "C:\MyProject\MyProject.cmx"

2. Generate project files

PDCLI "GP" "C:\MyProject\MyProject.cmx"

3. Clean, generate, and build project

PDCLI "CGBP" "C:\MyProject\MyProject.cmx" "IMAGECRAFT

PDCLI "CGBP" "C:\MyProject\MyProject.cmx" "HI-TECH"

PDCLI "CGBP" "C:\MyProject\MyProject.cmx" "ImageCraftPro"

4. Help

PDCLI



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 135

B.4.2 Executable File (PDCLI.exe)

The following figure helps you to perform build, clean, and generate project using command line
interface

Figure B-2.  PDCLI.exe



136 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

B.5 Examples

B.5.1 Batch Build File

This is a .bat file that builds a project; here PSoC Designer is installed in c:\a\pd

set PSOCTOOLS=c:\a\pd\tools
set PATH=%PSOCTOOLS%;c:\winnt\system32;c:\winnt
set DEVICE=CY8C24423B
set BASEDEVICE=CY8C24000B
set LASTROM=0xFFF
make -f %PSOCTOOLS%\Makefile clean
make PROJNAME=aa -f %PSOCTOOLS%\Makefile makemake
make –f %PSOCTOOLS%\Makefile depend
make -f %PSOCTOOLS%\Makefile 

B.5.2 Boot Loader Example

This ‘make’ trick allows a project to have a block of RAM that is shared between a boot-loader and
the boot-loaded code. This trick tells the linker to begin RAM allocation at some point other than
location 0. In this example we will have this RAM scratch pad area from RAM address 0 to 4.

In the project's local.mk file add a ‘new’ MAKE variable as follows:

STARTRAM:=0x5

In the project’s local.dep file add this line:

DATARAM:=-bdata:$(STARTRAM).0xFF

Now in your boot loader code use an absolute RAM area to declare variables in this ‘hidden/shared’
area like:

AREA Foo(RAM,ABS)
ORG 0
export _Z1, _Z2, _Z3, _Z4
_Z1: blk 1
_Z2: blk 1
_Z3: blk 1
_Z4: blk 2



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 137

B.5.3 Add External Files to the Project

This is a trick for local.mk to have a ‘custom’ rule to build/add files outside of the project folder.

# CSRCS is used by makedepends to get the external headers/dependencies
CSRCS:=$(CSRCS) ../common/foo.c
OBJECT_SOURCES:=$(OBJECT_SOURCES) foo.c
# new rule to tell MAKE to get C files from ../common
# DON'T have files in COMMON with the same name as this project's Source 
# Files because we won't know which file MAKE will build last.

obj/%.o : ../common/%.c
ifeq ($(ECHO_COMMANDS),novice)
   echo $(call correct_path,$<)
endif

   $(CCMD) $(CFLAGS) $(CDEFINES) $(INCLUDEFLAGS) $(DEFAULTCFLAGS) -o $@ 
$(call correct_path,$<)

B.5.4 Change Link Order

# The CSRCS and ASMSRCS lists are found in project.mk.
# project.mk is generated by psocmakemake.exe and reflects
# the project settings (e.g. files, linker options, part family)

# Alter the filter patterns to change the 
# link order.

C_MY_SORT=$(filter s%.c, $(CSRCS))
C_MY_SORT+=$(filter m%.c, $(CSRCS))
C_THE_REST= $(filter-out $(C_MY_SORT), $(CSRCS))
C_ORDER =$(C_MY_SORT) $(C_THE_REST)

ASM_MY_SORT=$(filter j%.asm, $(ASMSRCS))
ASM_MY_SORT+=$(filter h%.asm, $(ASMSRCS))
ASM_THE_REST=$(filter-out $(ASM_MY_SORT), $(ASMSRCS))
ASM_ORDER=$(ASM_MY_SORT) $(ASM_THE_REST)

OBJECT_SOURCES=$(C_ORDER) $(ASM_ORDER)

# Note: Changes/edits to this file will not re-link
# the project since this file is not a prerequisite 
# condition for the Link 'target'.



138 PSoC Designer IDE Guide, Document # 001-42655 Rev *D



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 139

Glossary 

A

active windows Subsystem-related windows that are open and workable.

analog PSoC blocks Basic programmable opamp circuits. There are SC (switched capacitor) and CT (con-
tinuous time) blocks. These blocks can be interconnected to provide ADCs, DACs,
multi-pole filters, gain stages, and much more.

Application Program-
ming Interface (API)

A series of software routines that comprise an interface between a computer applica-
tion and lower-level services and functions (for example, user modules and libraries).
APIs serve as building blocks for programmers that create software applications.

Code Editor PSoC Designer subsystem where users edit and program C Compiler and assembly
language source files.

assemble (combined 
with compiling)

Assembling, in PSoC Designer, translates all relative-addressed code into a single
.rom file with absolute addressing.

B

build/link Building your project in PSoC Designer links all the programmed functionality of the
source files and loads it into a .rom file, which is the file you download for debugging
and programming. 

C

compile (combined 
with assembling)

Compiling, in PSoC Designer, takes the most prominent, open file and translates the
code into object source code with relative addresses.

D

debugger A hardware and software system that allows the user to analyze the operation of the
system under development. A debugger usually allows the developer to step through
the firmware one step at a time, set break points, and analyze memory.



140 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Glossary

design (export/
import)

One or more loadable configurations that can be exported from a project then imported
and used in a new or existing project. A loadable configuration consists of one or more
“placed” user modules with module parameters, Global Resources, set pinouts, and
generated application files.

design browser Venue to identify reusable designs for import to PSoC Designer projects.

Chip-Level Editor PSoC Designer subsystem where you choose/configure your device.

digital PSoC blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter,
CRC generator, pseudo-random number generator, or SPI.

dynamic reconfigura-
tion

Dynamic Reconfiguration allows for applications to dynamically load and unload con-
figurations. With this feature, your single PSoC MCU can have multiple functions.

F

family of devices A family of PSoC devices is a group of devices with similar characteristics but different
part numbers. For example, the CY8C20396A and CY8C20496A parts are very similar.
Both devices are members of the CY9C20x96 device family. A family is frequently listed
using Xs in place of the numbers that differ within the family. 

I

ice-Cube In-Circuit Emulator (ICE) and USB adapter for seamless USB connection, debugging,
and programming.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8C receives a
hardware interrupt. Many interrupt sources may each exist with its own priority and
individual ISR code block. Each ISR code block ends with the RETI instruction, return-
ing the device to the point in the program where it left normal program execution.

L

link/build Linking your project in PSoC Designer links all programmed functionality of the source
files (with absolute addressing) and loads it into a .rom file, which is the file you down-
load for debugging and programming.

M

M8C An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all
activity inside a PSoC by interfacing to the Flash, SRAM, and register space.



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 141

Glossary

miniProg1 Developmental programmer that provides a low-cost solution for learning about, pro-
gramming and evaluating the PSoC.

P

pod Part of the ICE that emulates functionality, in which debugging occurs. 

PSoC PSoC® is a registered trademark and Programmable System-on-Chip™ is a trade-
mark of Cypress Semiconductors. 

PSoCEval1 Evaluation board that provides a low-cost solution for learning about, programming,
and evaluating the PSoC.

PSoC blocks See analog blocks and digital blocks.

PSoC Designer The software for Cypress MicroSystems’ Programmable System-on-Chip technology.

PSoC Programmer New, multi-functional programming software accessible from within PSoC Designer.

S

source tree Project file system displayed by default in left frame of Workspace Explorer.

subsystem PSoC Designer has three subsystems: Chip-Level Editor, Code Editor, and Debugger.

U

USB adapter Port connection to work the ICE in PSoC Designer v. 4.1 or later.

user modules Accessible, preconfigured function that, once placed and programmed, will work as a
peripheral in the target device.



142 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Glossary



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 143

Index

A
address spaces 96
addressing modes 96
analog input connection 38
analog section, manually turning off 

troubleshooting 140
application editor

adding existing files 93
adding new files 93
additional generated files 90
file definitions and recommendations 87
modifying files 92
removing files 93
searching files 94
troubleshooting 138
working in 92

application files, generating 46
application programming interfaces 48
AreaName not defined, troubleshooting 142
assembler

accessing 95
address spaces 96
addressing modes 96
clean compile/assemble/build 100
compiling/assembling files 99
destination of instruction results 97
directives 98
file syntax 97
instruction format 96
instruction set 99
list file format 97
microprocessor (MCU) 95

assembling and compiling files 99
assembly functions, calling from C 100

B
backup folder for projects 27
bank register 0 and 1 window 118
boot.asm file

about 47
code generation 56
in application editor 90

breakpoints 117
build utilities 145
builder

building a project 103
C compiler 104
library source 107

linker/loader 105

C
C compiler 104
Chip-Level Editor 11
code generation 55

active configurations display 57
boot.asm 56
IO register labels 57
limitations 57
PSoCConfigTBL.asm 56
PSoCDynamic files 57

compatibility with existing projects 19
compiler

C compiler 104
compiling and assembling files 99
components of the debugger 109
configuring events, debugger 120
connecting user modules 28–34
connection to global input 34
connection to global output 36
CPU register window 118
creating

a project directory 17
customizing linker actions 106

D
debugger

breakpoints 117
components 109
configuring events 120
connecting to the ICE 112
CPU register window 118
debug strategies 115
development kit 109
downloading to pod 114
dynamic event points 120
event examples 122
flash memory window 118
header to device pin connections 132
local watch variables 119
menu options 111
programming the part 130
RAM memory window 118
registers 0 and 1 window 118
trace 116
trace log entries 117



144 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Copyrights

troubleshooting 139
typical event uses 121
watch variables 119

default input connection 38
design rule checker 45

running 45
development kit 109
device editor

interrupt vectors 50
troubleshooting 137

digital interconnect row input window 34
dynamic event points 120
dynamic reconfiguration

add configurations 52
application editor 55
code generation 55
delete configurations 53
global parameters 54
port pin settings 54
rename configurations 54

E
event examples

find memory write 122
register A value, trace on and off, and match 

count 123
stack overflow 122

F
file definitions and recommendations in application 

editor 87
file errors in FPMP 135
file syntax 97
file types and extensions 88
flash memory window 118
flash program memory protection

file errors 135
flashsecurity.txt file 134
options 133

flashsecurity.txt file 133, 134

G
general troubleshooting issues 142
generating application files 46–47
global resources 22–26
global variables 119
Globalparams.h file 91
globalparams.inc file 91

H
headers and library header folders 89
hot swapping, I2C troubleshooting 140

I
I2C hot swapping, troubleshooting 140
ICE

connecting to PC 112
troubleshooting 139

ICE, connecting to 112
icons

generate application 46
interconnect view 27
next allowed placement 20
options for modifying files 92
place user module 20
restore default pinout 37
undo place user module 20

incorrect code compilation, troubleshooting 139
instruction format 96
instruction set notation 99
interconnections

analog clock select 29
analog column clock 29
analog column input mux 30
analog column input select 30
analog output buffer 31
comparator analog LUT 34
connection to global input 34
connection to global output 36
CT analog block RBotMux 33
digital block clock input 31
digital block output 32
digital interconnect row input window 34
digital interconnect row output window 35
enable digital block input 32
global in 28
global out 28
row broadcast 33
row logic table input 35
row logic table select 36
selection of ACMux, BMux, AnalogBus and CompBus 

for SC analog block 33
selection of NMux, PMux, AnalogBus and CompBus 

for CT analog block 33
synchronization 35

interconnectivity in user modules 27
interrupt service routines, ISRs 48
interrupt vectors in device editor 50
interrupts, port 43
ISRs ??–49

L
lib (librarian) file folder 88
library headers 107
library source 88, 107
library source folder 89
linker/loader 105
list file format 97

M
main.asm file 90



PSoC Designer IDE Guide, Document # 001-42655 Rev *D 145

main.c file 90
make process 146
make utility 99
menu options in the debugger 111
microprocessor (MCU) 95

N
name user modules 20

O
obj (objects) file folder 88
options for modifying source files 92
output file folder 88
output tab 89

P
parameters, user modules 21
parts catalog 18
pinout specification 37
placing user modules 19–??
POD detection, troubleshooting 141
port connections

analog input 38
analog output buffer 38
default input 38
Ext Ref 41
ExternalGND 41
Global_IN_x 39
Global_OUT_x 39
I2C SDA 42
StdCPU 40
XtalIn 40
XtalOut 40

port drive modes 42
port interrupts

ChangeFromRead 43
DisableInt 43
FallingEdge 44
RisingEdge 44

programming parts in debugger 130
project

backup folder 27
building 103
file system 89

project cloning warnings, troubleshooting 142
PSoC dynamic files 57
PSoCConfig.asm file 55

in application editor 90
PSoCConfigTBL.asm file 56
PSoCgpioint.h file 91
PSoCgpioint.inc file 90

R
RAM memory window 118

registers
internal 95

removing user modules 21
rename user modules 20
resource manager 19
resource meter 44
rotating user modules 21
row logic table input 35
row logic table select 36

S
shadow registers 90
source files folder 89
source files generated by generate application 

operation 47
source tree 89
stack overflow, event examples 122
system interface 88
system supervisor call 133

T
trace issues, troubleshooting 140
trace window 116
tracking device space 44
troubleshooting

analog section, manually turning off 140
application editor 138
AreaName not defined 142
debugger 139
device editor 137
general troubleshooting issues 142
I2C hot swapping 140
ICE configuration 139
incorrect code compilation 139
POD detection 141
project cloning warnings 142
trace issues 140
USB hub 141

U
updating user module parameters 21
USB hub, troubleshooting 141
user modules

deploying interconnectivity 27
global resources 22–26
name 20
placing 19–??
removing 21
rename 20
restore default pinout 37
restore global resource defaults 22
rotating a placement 21
setting parameters 21
specifying pinout 37
tracking device space 44



146 PSoC Designer IDE Guide, Document # 001-42655 Rev *D

Copyrights

V
version control system 89

W
watch variables

array types 119
global 119

working in application editor 92
working with ISRs 49
write only register shadows 90


	IDE Guide
	Contents
	1. Introduction
	1.1 Application Overview
	1.1.1 Chip-Level Editor
	1.1.2 Code Editor
	1.1.3 Build Manager
	1.1.4 Debugger
	1.1.5 Getting Help

	1.2 Chapter Overviews
	1.3 Support
	1.3.1 Technical Support Systems
	1.3.2 Product Upgrades

	1.4 Installation
	1.5 Conventions
	1.5.1 Acronyms

	1.6 References
	1.7 Revision History

	2. Chip-Level Editor
	2.1 Chip-Level Editor Overview
	2.2 Create a Project
	2.2.1 Clone a Project
	2.2.2 Updating Existing Projects

	2.3 Selecting User Module
	2.4 Selecting Multiuser Module
	2.5 Placing User Modules
	2.5.1 Setting User Module Parameters
	2.5.2 Global Resources
	Global Resources for USB Chips

	2.6 Project Backup Folder
	2.7 Specifying Interconnects
	2.7.1 Connecting User Modules
	2.7.2 Digital Interconnect Row Input Window
	2.7.3 Digital Interconnect Row Output Window

	2.8 Specifying the Pinout
	2.8.1 Port Connections
	2.8.2 Port Drive Modes
	2.8.3 Port Interrupts
	2.8.4 InitialValue

	2.9 Tracking Device Space
	2.10 Design Rule Checker
	2.11 Generating Application Files
	2.12 Source Files Generated by Generate Project Operation
	2.12.1 About the boot.asm File

	2.13 Configuration Data Sheets
	2.14 APIs and ISRs
	2.14.1 Working with ISRs
	2.14.2 Interrupt Vectors and the Chip-Level Editor

	2.15 Dynamic Reconfiguration
	2.15.1 Adding Configurations
	2.15.2 Deleting Configurations
	2.15.3 Renaming Configurations
	2.15.4 Employing Dynamic Reconfiguration


	3. Code Editor
	3.1 File Definitions and Recommendations
	3.1.1 File Types and Extensions
	3.1.2 Project File System
	3.1.3 boot.asm
	3.1.4 main.asm/main.c
	3.1.5 PSoCConfig.asm
	3.1.6 Additional Generated Files

	3.2 Working in Code Editor
	3.2.1 Modifying Files
	3.2.2 Adding New Files
	3.2.3 Adding Existing Files
	3.2.4 Removing Files
	3.2.5 Searching Files


	4. Assembler
	4.1 Accessing the Assembler
	4.2 The M8C Microprocessor (MCU)
	4.2.1 Address Spaces
	4.2.2 Instruction Format
	4.2.3 Addressing Modes
	4.2.4 Destination of Instruction Results

	4.3 Assembly File Syntax
	4.4 List File Format
	4.5 Assembler Directives
	4.6 Compile and Assemble Files
	4.7 Calling Assembly Functions From C

	5. Build Manager
	5.1 Working in the Build Manager
	5.2 C Compiler
	5.2.1 ImageCraft Compiler Options
	5.2.2 HI-TECH Compliler Options

	5.3 Linker
	5.3.1 ImageCraft Specific Linker Options
	5.3.2 HI-TECH Specific Linker Options
	5.3.3 Customizing Linker Actions

	5.4 Librarian

	6. Debugger
	6.1 Online Training
	6.2 Menu Options
	6.3 Debugging With an External Emulator
	6.3.1 Connecting to the ICE
	6.3.2 Downloading to the Pod

	6.4 Debugging With an On-Chip Emulator
	6.4.1 Enable Debug Mode
	6.4.2 Connecting to the MiniProg
	6.4.3 Downloading to the Device
	6.4.4 I2C Debugger

	6.5 Debug Strategies
	6.5.1 Trace
	6.5.2 Break Points
	6.5.3 CPU and Register Views
	6.5.4 Watch Variables
	6.5.5 Dynamic Event Points
	6.5.6 End Point Data

	6.6 Programming the Part

	7. Flash Protection
	7.1 FPMP and PSoC Designer
	7.2 About flashsecurity.txt
	7.3 FPMP File Errors

	Appendix A. Troubleshooting
	A.1 Troubleshooting the Chip-Level Editor
	A.2 Troubleshooting the Code Editor
	A.3 Troubleshooting the Debugger
	A.4 ICE Configuration
	A.5 Incorrect Code Compilation
	A.6 I2C Hot Swapping
	A.7 Manually Turning off the Analog Section
	A.8 Trace Issues
	A.9 Using an External USB Hub
	A.10 POD Detection Problem
	A.11 Project Cloning Warnings
	A.12 AreaName Not Defined
	A.13 General Troubleshooting Issues

	Appendix B. Build Process
	B.1 Build Utilities
	B.2 Make Process
	B.3 Moving the Build System to Another PC
	B.4 Building Project Through Command Line
	B.5 Examples

	Glossary
	Index

