

SuperSpeed USB Design Guidelines

Howard Heck

Principal Engineer Intel Corporation

Where Are We?

Key Messages

- Design of USB 3.0 hosts and devices requires:
 - Adaptive Rx Equalization (CTLE)
 - Crosstalk minimization through careful routing
 - Control of losses
 - Minimize package and board lengths
 - Minimize via usage & layer transitions
- EMI/ESD mitigation has small routing impact:
 - Used solutions that maintain differential route integrity.
 - Be careful to ensure your "no stuff" options are not worse than stuffed configurations.

Agenda

- System Overview
 - Design Challenges
 - Physical Layer Overview
 - Channel Description
- Host Design
- Device Design
- Silicon Considerations
- EMI/EMC Design
- Summary

Design Challenges

- 5 Gb/s data rate at 10⁻¹² BER
- Low cost: 4 layer PCB, extension of USB cable technology
- Same design & usage flexibility as USB 2.0
 - Front panel & back panel connectors, 3 m cable
- Regulatory and Environmental Guidelines
 - EMI/EMC Mitigation: Impact at 5 Gb/s
 - Halogen Free Dielectrics: More crosstalk

Focus: 5 Gb/s SuperSpeed design guidelines

PHY Overview

Channel Characteristics

- 2"-12" host PCB length
- 10" to 16" Internal cable (FP)
- 0m to 3m External cable
- 1"- 4" device PCB length

Same channel as 480Mb/s USB 2.0

Channel Description

Crosstalk Sources and Attenuation

Agenda

- System Overview
- Host Design
 - Channel Configurations
 - Crosstalk Control
 - PCB Technology
 - Example Design Guidelines
 - Link Simulation
- Device Design
- Silicon Considerations
- EMI/EMC Design
- Summary

Channel Configurations

- Desktop Back Panel: Long routes, maximum loss
 - Front Panel: Can be reflective on short channels
- Mobile (Type 3 and Type 4 PCB)
 - Back Panel: Long routes, maximum loss ← Smallest margins
 - Daughter Card: Cabled or board-to-board
 - Docking: Only Active docks supported
 - ExpressCard II
- Handhelds: Low cost technology, wide impedance ranges, reflections

Crosstalk

Use semi/non-interleaved routing to minimize near end crosstalk (NEXT).

Use striplines to reduce far end crosstalk (FEXT) of non-interleaved routing.

PCB Design: Halogen Free Dielectric

The industry is moving to Halogen free (HF) dielectric materials...

Plan for a margin reduction of 5-10% when switching to HF from FR4.

PCB Design: Fiber Weave

- Local variation in dielectric constant causes differential skew.
- Varying the routing direction helps to cancel the skew.
- Reommendation: Keep RSS≤3" (8cm) to minimize the impact of fiber weave.

$$RSS = \sqrt{\sum_{i} Horizontal^{2} + \sum_{j} Vertical^{2}}$$

PCB Design: Reflections

Vias

Via connection: L1-L3 L1 L2 L3 L4 L5 L6

Stub-induced reflections cost up to 1" of routing per via

Connector Entry

Bottom entry recommended

 Otherwise trade-off: top entry vs. extra via for bottom entry

Host Design Example: Mobile Type 3 PCB Guidelines

USB 3.0 External Topology without Choke and ESD Diode

ļ		
LA1 (PCH Breakout)	MS	LA1+LA2
LA2 (PCH Breakout)	SL/DSL	Max = 600 mils (15.2 mm)
LB (Main route)	SL/DSL	Max - 8400 mils (213.4 mm)
LC (To AC cap)	MS	Max - 100 mils (2.5 mm)
LD (Io connector)	MS	Max = 900 mils (22.9 mm)
Total Trace Length		LA1+LA2+LB+LC+LD Max = 10000 mils (254.0 mm)

USB 3.0 External Topology with Choke and ESD Diode

LA1 (PCH Breakout)	MS	LA1+LA2 Max = 600 mils (15.2 mm)
LA2 (PCH Breakout)	SL/DSL	
LB (Main route)	SL/DSL	Max = 7400 mils (188.0 mm)
LC (To AC cap)	MS	LC+LD+LE
LD (To Choke)	MS	Max = 400 mils (10.2 mm)
LE (To ESD diode)	MS	
LF (To Connector)	MS	Max = 600 mils (15.2 mm)
Total Trace Length		LA1+LA2+LB+LC+LD+LE+LF
		Max = 9000 mils (228.6 mm)

Host PCB

- 8 layer 85Ω stack-up
- 2 vias
- Interleaved or non-interleaved Tx/Rx routing

Device PCB

- 2" 85Ω μstrip
- No vias
- Interleaved routing

Host Design Example: 4 Layer Desktop Board

USB 3.0 Frontpanel Topology without Choke and ESD diode

LA (PCH Breakout)	MS	Max = 600 mils (15.24 mm)
LB (Main route)	MS	Max LB+LC = 3900 mils (99.0 mm)
LC (Main route)	MS	
LD (Main route)	MS	Max = 500 mils (12.7 mm)
Total Motherboard Trace Length		LA+LB+LC+LD Max= 5000 mils (127 mm)
LE (Daughter card route)	MS	Max=1000 mils (25.4 mm)
Internal Cable Length		Max= 10000 mils (254 mm)

USB 3.0 Frontpanel Topology with Choke and ESD diode

LA (PCH Breakout)	MS	Max = 600 mils (15.24 mm)
LB (Main route)	MS	Max LB+LC = 2900 mils (73.7 mm)
LC (Main route)		
LD (Main route)	MS	Max = 500 mils (12.7 mm)
Total Motherboard Trace Length		LA+LB+LC+LD
		Max= 4000 mils (101.6 mm)
LE (to Choke)	MS	LE+LF+LG Max=1000 mils (25.4 mm)
LF (to ESD diode)	MS	
LG (to Connector)	MS	
Internal Cable Length		Max= 10000 mils (254 mm)

Host PCB

- 4 layer 85Ω Z_{diff} stack-up
- 2 vias
- Interleaved or non-interleaved Tx/Rx routing

Device PCB

- 2" $85\Omega Z_{diff}$ µstrip
- No vias
- Interleaved routing

Link Simulation

- Full system (Pad-to-pad)
 - Include crosstalk, variations in package, PCB, and cable.
 - Don't forget the non-cabled case (flash drive).
- Tx Compliance
 - Drive from host/device into the compliance channel S-parameter & reference CTLE.
 - Compliance channel models are available on the USB-IF website.

Simulate both of these to ensure proper operation.

Agenda

- System Overview
- Host Design
- Device Design
- Silicon Considerations
- EMI/EMC
- Summary

Device PCB & Package Design

Package

- Minimize trace length.
- Route on different layers or maximize inter-pair spacing.

PCB

- Keep trace length ≤ 2".
- Route on different layers or 0.040+" between pairs on same layer.

Agenda

- System Overview
- Host Design
- Device Design
- Silicon Considerations
- EMI/EMC Design
- Summary

CTLE Training

Design your receiver to accommodate a wide range of loss (6dB-20dB) by properly training your equalizer.

Decision Feedback Equalization

...it improves margin by up to~50mV & 20ps @ 10⁻¹² BFR.

While the spec does not require DFE...

Agenda

- System Overview
- Host Design
- Device Design
- Silicon Considerations
- EMI/EMC Design
 - Measured Loss Budgets
 - Component PCB Void and 0Ω Resistor Impacts
 - Component Placement & Routing
- Summary

EMC Design: Impact on PCB Length

Loss from common mode choke (CMC) + ESD Diode reduces max route length by ~1".

EMC Design Considerations

- Incorporate 100% voids under the CMC and ESD diode signal pads to reduce losses.
- Use 0402 "0" Ω resistors for CMC "no stuff" options.
 - Larger components can be more lossy than the CMC itself and exceed design budgets.

0604

EMC Design: Placement & Routing

- Place EMC components at the USB Connector
 - Back Panel: on Host PCB
 - Front Panel: on the Front Panel Card
 - Recommend Secondary side mounting to avoid connector via stubs
- 4 Lane ESD Diode is the best option
 - Cleanest differential routing no bends
 - Acceptable network loss when combined with wire wound CMC
 - Better ESD suppression than 1L Ceramics

Key Messages

- Design of USB 3.0 hosts and devices requires:
 - Adaptive Rx Equalization (CTLE)
 - Routing to minimize crosstalk minimization
 - Control of losses
 - Minimize package and board lengths
 - Minimize via usage & layer transitions
- EMI/ESD mitigation has small routing impact:
 - Used solutions that maintain differential route integrity.
 - Be careful to ensure your "no stuff" options are not worse than stuffed configurations.

THANK YOU

Common Mode Conversion in PCBs

- Phenomenon: Differential pairs see variation in effective dielectric constant due to local non-uniformity. [3]
- Cause: ε_r differences between glass (~ 6) & epoxy (~ 3).
 - •A line routed over a glass bundle travels more slowly due to the higher ε_r (& vice versa).
 - Converts differential signals to common mode thru electrical length mismatch caused by the ε_r difference.

This is sometimes called the "fiber weave" effect

Common Mode Conversion Mechanism

Differential phase skew degrades voltage & timing margins

Fiber Weave Routing Rules

- Horizontal & vertical routed lengths combine via root-sum-ofsquares (RSS)
- SuperSpeed USB Recommendation: Keep length_{RSS}≤3" (8cm)

$$Length_{RSS} = \sqrt{\sum_{i} Length_{Horizontal}^{2} + \sum_{j} Length_{Vertical}^{2}}$$

