

Features

 Compatible with PSoC 3, 4, 5, and 5LP

 SPI port independent (Uses Either SCB or SPIM)

 Supports TCP, UDP, and ARP

 4 simultaneous protocol Sockets

 2K off-processor packet buffer per socket



General Description

The W5100 interface driver provides a simple software driver for using the WIZnet W5100

iEthernet controller with a PSoC project. The driver can be customized to support many

system configurations, and allows for SPI port sharing. Both the SPIM and the SCB

interfaces are supported to allow the driver to support many hardware configurations of the

application.

Using the W5100 Driver

Schematic Requirements

This driver is a software only driver, thus in order to effectively use the functions provided

to access the W5100, there must be a hardware interface defined in the schematics to

access the device. Once entered in the schematics, enter the instance name of the SPI

component in to the customizer parameters for the driver component.

Using the Driver

When using the driver, simply start the driver with the Start() function then open a socket

using the protocol desired, and either start a server to wait for connections or connect to a

remote server. The W5100 device and the software driver handle the interfacing,

management, and data handling for the connections.

Schematic Macros

As part of the distribution of the driver component, two schematic macros have been

provided to simplify the use of the component. Each macro is defined for the type of SPI

interface used to communicate with the W5100 device, and have all of the options set so

that they will correctly communicate with the W5100.

SCB mode (PSoC 4 Only)

Interface Driver for the WIZnet W5100 Device
E2ForLife_W5100

 V1.0

To add Ethernet support to a project which

already contains an SPI port, just drop the

W5100 driver component on to your

schematics and set the SPI_INSTANCE

configuration parameter to the instance

name of the SPI device in your project. You

might also wish to double-check the

configuration of the SPI port to make sure

that it will support the W5100 interface.

SPI Configuration

 Mode 0 or 3

 8-bit data, MSB first

 At Least a 4-byte FIFO buffer

 Continuous SS mode (SCB Only)

 Motorola Style SS (SCB Only)

 Chip Select generated by SPI

component.

When using a SCB to communicate with the W5100 device, you should use the schematic

macro “Community\Communications\Ethernet\E2ForLife - W5100 (SCB Mode)”. This macro

has the SCB and the W5100 device driver configured for proper operation with the W5100

device.

SPIM mode (SPI Master)

When using a SPI Master component (SPIM) as the communications interface with the

W5100 device, you should start with the “Community\Communications\Ethernet\E2ForLife –

W5100 (SPIM mode)” schematic macro. This macro contains the pre-configured device

driver and SPI master mode device to support proper operation of the device driver with the

W5100 device.

Input/output Connections

There are no Input or Output connections to this component.

Component Parameters

Drag a W5100 component on to your design and double-click to open the component

configuration dialog.

Parameters

Driver Configuration Parameters

This section contains parameters that modify the operation of the driver, or provide settings

for options of the driver implementation.

CMD_TIMEOUT – The number of milliseconds to wait for a W5100 Command to execute

This parameter will allow you to set the amount of time that the internal driver function

used to execute socket commands within the W5100 device will wait for a command to

execute before declaring a timeout condition.

INCLUDE_TCP – Set to True to enable the TCP interface code

A True/False parameter used to specify if the TCP protocol interface code will be included

when compiling the driver software. Set this to False when not using the TCP interface

functions to save FLASH memory space. The default setting is to include this interface code.

INCLUDE_UDP – Set to True to enable the UDP interface Code

A True/False parameter used to specify if the UDP protocol interface code will be compiled

when building the library. Set this to False if not using the UDP functions and you wish to

save some FLASH memory space. The default setting for this parameter is true.

INIT_DELAY – the number of milliseconds to wait for the W5100 PLL to lock after a device

reset or power on.

The MAC address is a Comma

Delimited List

If you're using an Arduino Ethernet

shield, the MAC address is printed on

the sticker on the bottom of the board

Usually this parameter will not need to be modified; however, it allows you to configure the

amount of time that the driver will wait for the W5100 internal PLL to achieve lock. This

might need to be adjusted if your power supply is noisy or you are experiencing a high

amount of clock jitter at power on.

TIMEOUT – The number of milliseconds to wait before an operation declares a general

timeout

This parameter will allow you to adjust the number of milliseconds that an operation will

wait for an operation to complete before declaring a timeout condition. This does not affect

every function.

Network Configuration Parameters

The "configuration" parameters section contains the parameters for initializing the default

network configuration for use by the W5100. These parameters can be overridden within

your application through the use of the API function calls.

GATEWAY – The IPv4 Address of the network gateway

This parameter will allow you to specify the IP address of the Ethernet gateway router. This

value is a string specified in IPv4 format of www.xxx.yyy.zzz

IP – The IPv4 Address of the device

This parameter contains the network address of the W5100 device. This address is the

configured address of the controller after the API Start() call executes. Setting this will

change the fixed IP of the system.

MAC – The hardware (MAC) address of the Ethernet Controller

The MAC address contains the hardware

address of the system. It is expressed as a 6

byte comma delimited string containing the

hardware address of the W5100.

SUBNET_MASK – The subnet mask used for Ethernet communications

Modifying this parameter will change the subnet that the MAC will use to communicate over

the network. The default subnet mask is 255.255.255.0 , meaning that for a IP address of

192.168.1.100 the MAC can communicate directly with only other IP addresses that match

192.168.1.xxx. Setting any bit in the subnet mask to a zero defines that bit as “don't care”

for communications.

Hardware Configuration

This parameter section is used to define the interface parameters for associating component

instances with the driver, and for declaring design specific delays and configuration data.

Note: When using the

SPIM or SPI mode SCB,

this driver requires at

least a 4-byte FIFO buffer

READ_WRITE_DELAY – The number of milliseconds to wait for a read/write operation to

complete

This option allows for the configuration of the lag time between the SEND/RECEIVE

command execution and when the driver polls for the completion status of the transmission.

Under normal conditions, it is inadvisable to modify this parameter, however, tweaking the

delay time may allow for enhanced operation in some applications.

SPI_INSTANCE – The Instance Name of the SPI component

Enter the component (instance) name of the SPI component

that is used to communicate with the W5100. This SPI port

should be configured to use 8-bit data, MSB first

transmission, and SPI mode 0. The data rate is dependent

upon your board layout (EMI/Noise issues), and your

processor and bus clock speeds.

SS_NUM – the slave select number used to connect to the W5100 (SCB Mode)

When using the SCB component, this parameter specifies the slave select (SS) number used

to communicate with the W5100 device. Valid values are from 0 to 3; values outside of this

range are assumed to be 0 and will use the “ss0” pin.

Note: This component uses the internal SPI chip select generation to select the W5100.

Application Programming Interface

The functions of the Application Programming interface (API) provide the ability to configure

and operate the W5100 device using your software application. The following sections

describe the driver API in detail.

By default, PSoC Creator assigns the name W5100_1 to the first instance of the driver

component within your project. You may rename the component to any unique name within

your project, provided it follows the syntax rules defined within PSoC Creator. The name of

the instance becomes the prefix for each global identifier within the driver so that no

interface of the driver will interfere with your software project. For simplicity, API references

within this document will use the instance name prefix of W5100.

API Function Description

W5100_Start() Startup and initialize the device using the creator

defaults

W5100_Init() initialize device parameters and memory setup

W5100_ParseIP() Parse an ASCII Text IPv4 address to an IPv4

Address.

W5100_SetIP() re-assign the local IP address of the device

W5100_GetIP() Read the current IP address of the device

W5100_SetMAC() Re-assign the hardware address (MAC) of the

device

API Function Description

W5100_GetMAC() Retrieve the assigned Source hardware (MAC)

address of the device

W5100_SocketOpen() Open a socket using the specified protocol on the

specified port

W5100_SocketClose() Close a previously opened socket

W5100_SocketProcessConnections() Process the socket connection to check for errors

and remote closure

W5100_SocketEstablished() Check the connection establishment status of the

socket

W5100_SocketRxDataWaiting() Retrieve the length of waiting Receive data

W5100_TcpOpen() Open an port using the TCP protocol

W5100_TcpStartServer() Start a server listening for connection on an

open socket

W5100_TcpStartServerWait() Start a TCP server listening for connections on

the specified socket

W5100_TcpConnect() Open a client connection to a specified IP and

port

W5100_TcpConnected() Return the connection status of the TCP socket

W5100_TcpDisconnect() Terminate a connection with a remote

client/server

W5100_TcpSend() Transmit a byte packet using the built-in TCP

W5100_TcpReceive() Receive a packet of data using the built-in TCP

handler

W5100_TcpPrint() Send a zero-terminated ASCII string using TCP

W5100_UdpOpen() Open a Socket Port using the UDP protocol

W5100_UdpSend() Transmit a byte packet using the built-in UDP

W5100_UdpReceive() Receive a packet of data using the built-in p

handler

W5100_Start()

Startup and initialize the device using the creator defaults.

Syntax

void W5100_Start(void)

Description

This function will initialize and startup the Ethernet device chip using the default parameters

supplied in the configuration window of Creator. This is usually the main method for

initializing the device

This function requires that the SPI interface is initialized, however it will attempt to discover

if the initialization has been completed and initialize the interface if it has not yet been

setup. It is highly recommended that your application initialize the SPI interface directly

rather than depend on this, since every SPI implementation may be different and your port

might not be correctly initialized.

See Also

W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(), W5100_SetMAC(),

W5100_GetMAC()

W5100_Init()

Initialize device parameters and memory setup.

Syntax

void W5100_Init(uint8* mac, uint32 ip, uint32 subnet, uint32 gateway)

Parameters

Parameter Description

*mac Pointer to a 6-byte buffer holding the device MAC address

ip The IP address to which the device will be configured

subnet The subnet mask to be used for the device (usually 255.255.255.0)

gateway The IP address of the network gateway

Description

This function will reset the device, and wait for the internal PLL to lock, then initialize the

device registers to allow for correct operation in your application. It currently assumes that

there will be a 2K buffer for both transmit and receive for each of the 4 sockets available.

The usual method of calling W5100_Init() is from W5100_Start(). No explicit user calls are

required unless the modification of the network settings beyond the component default

parameters is desired by the application.

Note: Calling this function will reset all open connections.

See Also

W5100_Start(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(), W5100_SetMAC(),

W5100_GetMAC()

W5100_ParseIP()

Parse an ASCII Text IPv4 address to an IPv4 Address.

Syntax

uint32 W5100_ParseIP(const char* ipString)

Parameters

Parameter Description

*ipString ASCII Z-String containing the IP address to Parse

Returns

The parsed IP address

Description

This function will parse an ASCII String IP address in to a 32-bit IP address used by the

device. If the address string contains an error, this function will return an IP address of

255.255.255.255, or 0xFFFFFFFF to indicate that an error has been detected.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(),

W5100_SetMAC(), W5100_GetMAC()

W5100_SetIP()

re-assign the local IP address of the device

Syntax

uint8 W5100_SetIP(uint32 ip)

Returns

0 IP Address specified was not valid

0xFF (255) IP Address was successfully assigned to the device.

Parameters

Parameter Description

ip The new IP address to which the device will be assigned.

Description

This function will re-assign the IP address of the Ethernet device to the specified address. If

the address to be assigned is invalid, a zero (0) is returned from the function to indicate

that a bad IP address was specified. Otherwise, 255 will be returned.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(),W5100_GetIP(), W5100_SetMAC(),

W5100_GetMAC()

W5100_GetIP()

Read the current IP address of the device.

Syntax

uint32 W5100_GetIP(void)

Returns

This function returns the IP address read from the W5100 device.

Parameters

None.

Description

This function reads and returns the contents of the Source IP register of the W5100 device.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_SetMAC(),

W5100_GetMAC()

W5100_SetMAC()

Re-assign the hardware address (MAC) of the W5100 device.

Syntax

void W5100_SetMAC(uint8* mac)

Parameters

Parameter Description

*mac Pointer to a 6-byte array that contains the MAC value to be written

Description

This function will store the contents of the specified MAC address to the source Hardware

Address register (MAC address) for the W5100 device.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(),

W5100_GetMAC()

W5100_GetMAC()

Retrieve the assigned Source hardware (MAC) address of the device.

Syntax

void W5100_GetMAC(uint8* mac)

Parameters

Parameter Description

*mac Pointer to a 6-byte array to hold the read MAC value.

Description

This function will read the assigned MAC address and store it within the specified array.

See Also

W5100_Start(), W5100_Init(), W5100_ParseIP(), W5100_SetIP(), W5100_GetIP(),

W5100_SetMAC

W5100_SocketOpen()

Open a socket using the specified protocol on the specified port.

Syntax

uint8 W5100_SocketOpen(uint8 Protocol, uint16 port, uint8 flags)

Parameters

Parameter Description

Protocol The protocol type to use for socket communications. (See Description)

port The port number with which the opened socket will be associated

flags Socket configuration flags (presently not used)

Returns

The socket number (0-3) of the allocated socket, or 0xFF upon error.

Description

This function will allocate and initialize a socket from the socket table and return the socket

number which was opened. If there are no sockets available, or there is an error opening

the socket, a value of 0xFF will be returned.

When calling this function, you should use one of the defined constants for declaring the

socket protocol.

Protocol Constant Description

W5100_PROTO_TCP Use the W5100 Native TCP implementation

W5100_PROTO_UDP Use the W5100 Native UDP implementation

W5100_PROTO_IP IP mode, Reserved for future use

W5100_PROTO_MAC MAC mode, Reserved for future use

Example

// Define a holder for the allocated socket

uint8 socket;

// Open and initialize a socket

socket = W5100_SocketOpen(W5100_PROTO_TCP, 23, 0);

if (socket < 4) {

 // The socket was allocated Correctly… Continue

} else {

 // there was an error allocating the socket, so handle the error

}

See Also

W5100_SocketClose(), W5100_SocketEstablished(), W5100_SocketProcessConnections(),

W5100_TcpSend(), W5100_TcpReceive(), W5100_UdpSend(), W5100_UdpReceive()

W5100_SocketClose()

Close a previously opened socket.

Syntax

Void W5100_SocketClose(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket to be closed.

Description

This function will close (and disconnect) an open socket specified as a parameter. The

socket allocation record will be flushed from memory and made available for further

allocation using the W5100_SocketOpen() function. If an invalid socket is specified, the

function will ignore the request. Closing an already closed socket has no effect.

See Also

W5100_SocketOpen(), W5100_SocketProcessConnections(), W5100_SocketEstablished()

W5100_SocketProcessConnections()

Process the socket connection to check for errors and remote closure.

Syntax

uint8 W5100_SocketProcessConnections(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Returns

TRUE The socket was closed

FALSE The socket is ready for communications

Description

This function is a helper function for handling remote socket closure status that can occur

during a session. It will process the opened socket to look for socket closure errors, and

other aspects which would require the software to reset the socket. Upon detection of the

issue, the socket will be closed and a TRUE state will be returned. When no remote closure

status is detected, no action is taken.

Example

// Define a holder for the allocated socket

uint8 socket;

// Open and initialize a socket

socket = W5100_SocketOpen(W5100_PROTO_TCP, 23, 0);

if (socket < 4) {

 // The socket was allocated Correctly… Continue

} else {

 // there was an error allocating the socket, so handle the error

}

// Start a TCP Server and wait for connection establishment

W5100_TcpStartServerWait(socket);

while(W5100_SocketEstablished(socket)) {

 // Communications loop … Do stuff for comms

 … Insert Comms code …

 // Process the server socket, and reset connections if closed

 if (W5100_SocketProcessConnections(socket)) {

 // The socket was close, so re-open the socket connection

 socket = W5100_TcpOpen(23);

 }

}

See Also

W5100_SocketOpen(), W5100_SocketClose()

W5100_SocketEstablished()

Check the connection establishment (connection) status of the socket.

Syntax

Uint8 W5100_SocketEstablished(uint8 socket)

Returns

TRUE The socket has been established

FALSE The socket has not yet been established

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Description

This function reads the socket status register of the W5100 device and returns the state of

the socket establishment.

Example

// wait for a connection to be established

while (!W5100_SocketEstablished(socket)) {

 // Process waiting for connection

 // delay a bit

CyDelay(1);

}

See Also

W5100_SocketOpen(), W5100_SocketClose()

W5100_SocketRxDataWaiting()

Retrieve the length of waiting Receive data.

Syntax

uint16 W5100_SocketRxDataWaiting(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Returns

The number of bytes that have been received by the W5100 and are waiting in the receiver

buffer memory.

Description

This function will read the waiting data length from the Receive buffer and return the read

length of waiting data.

W5100_TcpOpen()

Open a port using the TCP protocol.

Syntax

uint8 W5100_TcpOpen(uint16 port)

Parameters

Parameter Description

port The port number that the socket will be associated with.

Returns

This function returns the socket number that was opened (0 – 3) or 0xFF when an error

occurs.

Description

This function will open and initialize a socket using the W5100 built-in TCP protocol, and

return the socket number for the opened TCP socket. When there are no sockets available,

or there is an error opening the socket, 0xFF is returned.

See Also

W5100_SocketOpen(), W5100_SocketClose()

W5100_TcpStartServer()

Start a server listening for connection on an open socket.

Syntax

void W5100_TcpStartServer(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Description

This function will execute the socket command to begin listening for connections on the

specified socket. If the socket specified is not a valid socket nothing will occur. After starting

the listen operation, this function will return (NON-BLOCKING).

See Also

W5100_TcpOpen(), W5100_TcpStartServerWait(), W5100_SocketClose()

W5100_TcpStartServerWait()

Start a TCP server listening for connections on the specified socket.

Syntax

void W5100_TcpStartServerWait(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Description

This function will start a valid socket listening for TCP connections by executing the listen

command on the specified socket. If the socket is invalid, no action is taken. After the

socket server is started, this function will wait until a connection has been made to a client

before continuing.

See Also

W5100_TcpOpen(), W5100_TcpStartServer(), W5100_socketClose()

W5100_TcpConnect()

Open a client connection to a specified IP and port.

Syntax

void W5100_TcpConnect(uint8 socket, uint32 ip, uint16 port);

Parameters

Parameter Description

socket The socket number (0-3) of the socket

ip The IP Address of the server to attempt a connection

port The port number of the server

Description

This function will attempt to open a connection between a W5100 device socket, and a

remote server using TCP. This function will wait for the timeout specified in the component

parameters within Creator for the connection to be made before terminating the wait. While

waiting for the connection establishment, the function will block.

Example

// Open a socket for the connection

Socket = W5100_TcpOpen(80);

// Attempt a connection with a remote server

W5100_TcpConnect(Socket, W5100_ParseIP(“192.161.1.100”), 80);

// <Insert Client Code Here>

See Also

W5100_TcpOpen(), W5100_TcpConnected(), W5100_ParseIP(), W5100_TcpDisconnect(),

W5100_TcpSend(), W5100_TcpReceive()

W5100_TcpConnected()

Return the connection status of the TCP socket.

Syntax

uint8 W5100_TcpConnected(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Returns

TRUE The socket connection has been established

FALSE The socket connection is not established

Description

This function will check the establishment status of the specified socket, and return the

state.

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpDisconnect()

W5100_TcpDisconnect()

Terminate a connection with a remote client/server.

Syntax

void W5100_TcpDisconnect(uint8 socket)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

Description

This function will issue the disconnect function to initiate a connection termination between

the W5100 socket and the remote client/server.

See Also

W5100_TcpConnect(), W5100_TcpConnected(), W5100_StartServer(),

W5100_TcpStartServerWait(), W5100_TcpOpen()

W5100_TcpSend()

Transmit a byte packet using the built-in TCP.

Syntax

Uint16 W5100_TcpSend(uint8 socket, uint8 *buffer, uint16 len)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

*buffer Pointer to the byte buffer holding the data to transmit

len The number of bytes to transmit from the buffer

Returns

This function returns the number of bytes copied from the buffer memory to the internal

transmit buffer of the W5100 device.

Description

This function will copy the specified packet buffer to the W5100 Transmitter buffer, then

execute the commands to transmit the data packet using the built-in TCP handlers. Upon

completion of the operation, this function will return the number of bytes transmitted.

When called, this function will verify that a socket connection has first been established and

is opened with the correct socket protocol. Send operations to sockets that contain a

different protocol or are not yet established are ignored and 0 is returned.

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpStartServer(),

W5100_TcpStartServerWait(), W5100_TcpPrint(), W5100_TcpReceive()

W5100_TcpReceive()

Receive a packet of data using the built-in TCP handler.

Syntax

uint16 W5100_TcpReceive(uint8 socket, uint8 *buffer, uint16 length)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

*buffer Pointer to the byte buffer to receive the data from the W5100 device

length The maximum amount of data to be received in to the buffer

Returns

This function returns the length of data copied from the W5100 device’s internal buffer to

the buffer memory.

Description

This function will check for available received data, then copy the data from the internal

W5100 buffer to the specified holding buffer for the received data. When there is more data

waiting than available space in the buffer (specified by the length parameter), this function

will only receive up to the maximum length specified.

Prior to receiving data, this function will verify that a valid connection has been established,

and that the configured protocol is set to the internal TCP. When not properly configured,

this function will return 0, otherwise, the number of bytes read from the W5100 receive

buffer memory is returned.

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpStartServer(),

W5100_TcpStartServerWait(), W5100_TcpPrint(), W5100_TcpSend()

W5100_TcpPrint()

Send a zero-terminated ASCII string using TCP.

Syntax

Void W5100_TcpPrint(uint8 socket, const char *str)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

*str Pointer to the ASCII X-String to send

Description

This function is a shortcut to using the W5100_TcpSend() to transmit a zero-terminated

ASCII (ASCII-Z) string to a remote client/server.

Calling this function is the same as:

W1500_TcpSend(socket, (const char *) &str[0], strlen((char *) &str[0]);

See Also

W5100_TcpOpen(), W5100_TcpConnect(), W5100_TcpStartServer(),

W5100_TcpStartServerWait(), W5100_TcpSend()

W5100_UdpOpen()

Open a socket port using the UDP protocol.

Syntax

Uint8 W5100_UdpOpen(uint16 port)

Parameters

Parameter Description

port The port number that the socket will be associated with.

Returns

This function returns the socket number that was opened (0 – 3) or 0xFF when an error

occurs.

Description

This function will open and initialize a socket using the W5100 built-in UDP protocol, and

return the socket number for the opened UDP socket. When there are no sockets available,

or there is an error opening the socket, 0xFF is returned.

See Also

W5100_SocketOpen(), W5100_SocketClose(), W5100_TcpOpen()

W5100_UdpSend()

Transmit a byte packet using the built-in UDP.

Syntax

Uint16 W5100_UdpSend(uint8 socket, uint32 ip, uint16 port, uint8 *buffer, uint16 length)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

ip The IP address of the destination

port The port number of the datagram destination

*buffer Pointer to the byte buffer containing the datagram data

length The number of bytes to transmit in the user datagram.

Returns

This function returns the number of bytes copied from the user datagram buffer to the

internal transmit buffer of the W5100.

Description

This function will copy the specified packet buffer to the W5100 Transmitter buffer, then

execute the commands to transmit the data packet using the built-in UDP handlers. Upon

completion of the operation, this function will return the number of bytes transmitted.

When called, this function will verify that a socket connection has first been opened with the

correct socket protocol. Send operations to sockets that contain a different protocol are

ignored and 0 is returned.

See Also

W5100_UdpReceive(), W5100_UdpOpen()

W5100_UdpReceive()

Receive a packet of data using the built-in UDP handler.

Syntax

Uint16 W5100_UdpReceive(uin8 socket, uint32 *ip, uint16 *port,

uint8 *buffer, uint16 length)

Parameters

Parameter Description

socket The socket number (0-3) of the socket

*ip Pointer to a buffer to hold the sender’s IP address

*port Pointer to a buffer to hold the sender’s port number

*buffer Pointer to the byte buffer to receive the data from the W5100 device

length The maximum amount of data to be received in to the buffer

Returns

This function returns the actual length of data copied from the W5100 device’s internal

receiver buffer to the buffer memory.

Description

This function will check for available received data, and then copy the data from the internal

W5100 buffer to the specified holding buffer for the received data. When there is more data

waiting than available space in the buffer (specified by the length parameter), this function

will only receive up to the maximum length specified.

Prior to receiving data, this function will verify that the configured protocol is set to the

internal UDP. When not properly configured, this function will return 0, otherwise, the

number of bytes read from the W5100 receive buffer memory is returned.

See Also

W5100_UdpSend(), W5100_UdpOpen()

API Memory Usage

 PSoC 3 PSoC 5/5LP PSoC 4

W5100 Driver FLASH SRAM FLASH SRAM FLASH SRAM

Using SCB N/A N/A N/A N/A 4462 32

Using SPIM 3792 40 4110 20

TCP Functions 696 0 808 0

UDP Functions 432 0 568 0

 PSoC 4 Memory size determined using PSoC4 CY8C4245AXI-483

 PSoC5 Memory size determined using PSoC5LP CY8C5868AXI-LP035

 PSoC3 Memory size determined using PSoC3 CY8C3…

Additional Resources

Please refer to the documents listed below for more information related to the W5100

device. Additional information and application notes can be obtained from the WIZnet

website http://www.wiznt.co.kr.

Document Version Location

W5100 Datasheet 1.2.4 W5100_Datasheet_v1.2.4.pdf

W5100 Reference Schematics W5100_Ref_sch_MAG_R2.1.pdf

W5100 Errata Sheet 2.4 3150Aplus_5100_errata_en_v2.4.pdf

Hardware/Software Notes

When working with the W5100 it is important that the 25 MHz reference is applied to the

device before the device is initialized using the W5100_Start() function. This can be

important when sourcing the reference clock from another device such as an FPGA. The

http://www.wiznt.co.kr/
http://wiznet.co.kr/UpLoad_Files/ReferenceFiles/W5100_Datasheet_v1.2.4.pdf
http://wiznet.co.kr/UpLoad_Files/ReferenceFiles/W5100_Ref_sch_MAG_R2.1.pdf
http://wiznet.co.kr/Admin_Root/UpLoad_Files/BoardFiles/3150Aplus_5100_errata_en_v2.4.pdf

W5100 initialization must be delayed until after the reference clock is stable to prevent

communications issues on the Ethernet.

If the reference clock is removed from the W5100, it is advisable to re-initialize the W5100

device to prevent communication issues. Unfortunately, this action will cause the W5100 to

disconnect any open connections, requiring this consideration to be me when writing

application software in an environment where the clock may be removed from the device.

Project team, Credits and Thanks

The following individuals were involved in the development, testing and support of this

component:

Name Notes

Chuck Erhardt
Project lead, author of original component code and

interface implementation of W5100 interface.

Component Versions

This section contains the versions of and major modifications to the W5100 interface driver

component.

Version Description of Changes Reason for changes

1.0 Initial Release N/A

Roadmap

Below are described features which are not yet included in the driver, but are desired to be

included at a later date. Since there is limited time to work on this driver, it is difficult to

forecast the time frame for the inclusion of the features. Check http://www.e2forlife.com

for more information on the status of any of these implementations, or to provide feedback

related to bug-fixes or suggestions of additional features or improvements to make the

driver better.

Feature Description

DHCP Add Support for the Dynamic Host Configuration Protocol

(ref: WIZnet app-note for implementation of DHCP)

Custom “Customizer” Add a C# Customizer to replace the default Creator

Customizer

HTTP (web) Server Add the ability to serve embedded web sites

http://www.e2forlife.com/

Copyright

E2ForLife W5100 Ethernet Driver by Chuck Erhardt is licensed under a Creative Commons

Attribution 3.0 Unported License.

Permissions beyond the scope of this license may be available at http://www.e2forlife.com.

Disclaimer of Warranty

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL

ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE

PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE

OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR

DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

Interpretation

If the disclaimer of warranty and limitation of liability provided above cannot be given local

legal effect according to their terms, reviewing courts shall apply local law that most closely

approximates an absolute waiver of all civil liability in connection with the Program, unless a

warranty or assumption of liability accompanies a copy of the Program in return for a fee.

http://www.e2forlife.com/
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://www.e2forlife.com/
http://creativecommons.org/licenses/by/3.0/deed.en_US

