

Agilent N4373C 40/50/67 GHz Single-Mode Lightwave Component Analyzer for 40/100G Electro-Optical Test

Data Sheet

General Information

Agilent's N4373C Lightwave Component Analyzer (LCA) offers a modulation bandwidth of 50/67 GHz which makes it the ideal choice to develop and characterize electro-optical components, for the upcoming 40G/10GbE as defined in IEEE802.3ba.

Accuracy

For these modern optical transmission systems with advanced modulation schemes it is key for the electro-optical components to have very flat S21 transfer function in amplitude and delay. This performance can be achieved only with electro-optical S-parameter test as provided by the N4373C LCA.

In addition fast, accurate, repeatable and traceable characterization of these electro-optical components, like lasers, modulators and detectors is required, to guarantee the performance with respect to modulation bandwidth, jitter, gain, and distortion.

By optimizing the electrical and the optical design of the N4373C for lowest noise and ripple, the accuracy has been improved by more than a factor of 2, compared to its predecessor, the 86030A 50GHz LCA. This increased accuracy improves the yield from tests performed with the N4373C by narrowing margins needed to pass the tested devices.

This advanced design together with temperature-stabilized transmitter and receiver ensures repeatable measurements over hours without recalibration.

Turn-key solution

The fully integrated "turn-key" N4373C helps reduce time to market, compared to the time-consuming development of a self-made setup. In addition you get a fully specified easy transferable and reliable test instrument. With guaranteed specifications Agilent takes the responsibility to provide you with accurate and traceable test results that can only be achieved in a turn-key solution.

High productivity

The N4373C achieves fast measurements by including the E8361/63C Performance Network Analyzer. A unique new calibration concept significantly reduces setup time to a maximum of several minutes, depending on the selected measurement parameters. This results in increased productivity in R&D or on the manufacturing floor.

Using the advanced measurement capabilities of the network analyzer, all S-parameter related characteristics of the device under test, like responsivity and 3 dB-cutoff frequency, can be qualified with the new N4373C Lightwave Component Analyzer from 10 MHz to 40/50/67 GHz.

Network analyzer

The N4373C LCA is based on the new E8361/63C or the newest N5245A network analyzer with an identical and well known user interface across all Agilent network analyzers.

General Information (continued)

Key benefits

High absolute and relative accuracy measurements improve the yield of development and production processes. With the excellent accuracy and reproducibility, measurement results can be compared among test locations world wide

Traceable balanced measurements up to 50 GHz

High confidence and fast time-to-market with a NIST-traceable turnkey solution

Significantly increased productivity using the fast and easy measurement setup with an unique new calibration process leads to lower cost of test

External optical source input option to test at customer selected wavelength

Common PNA and LCA user interface across all N437xB/C LCA series

Identical LCA software and remote control across the N437xB/C family simplifies integration

Relative frequency response uncertainty

± 0.8 dB @ 50 GHz (typical)

± 1.3 dB @ 65 GHz (typical)

Absolute frequency response uncertainty

± 1.2 dB @ 50 GHz (typical)

± 1.8 dB @ 65 GHz (typical)

Noise floor

-60 (55) dB (A/W) for 0/E measurements @ 50 (65) GHz

-64 (59) dB (W/A) for E/O measurements @ 50 (65) GHz

Typical phase uncertainty

± 2.3°

Transmitter wavelength

1550 nm ± 20 nm

1310 nm \pm 20 nm

1290 to 1610 nm with external source input

Built-in optical power meter

For fast transmitter power verification

Powerful remote control

State of the art programming interface based on Microsoft .NET or COM

Warranty

1 year warranty is standard for the N4373C Lightwave Component Analyzer

Extension to 3 or 5 years available on request

General Information (continued)

Measurement capabilities
3dB cut-off frequency (S21)
Responsivity (S21)
Electrical reflection (S11 or S22)
Group Delay vs. frequency
Insertion Loss (IL)
Transmission bandwidth
All electrical S-parameter measurements
Target test devices
Transmitter (E/O)
Mach-Zehnder modulators
Electro-absorption modulators (EAM)
Directly modulated lasers
Transmitter optical subassemblies (TOSA)
Receiver (O/E)
PIN diodes
Avalanche photodiodes (APD)
Receiver optical subassemblies (ROSA)
Optical (0/0)
Passive optical components
Optical multimode fibers
Optical transmission systems

Agilent N4373C Applications

In digital photonic transmission systems, the performance is ultimately determined by Bit Error Ratio Test (BERT). As this parameter describes the performance of the whole system, it is necessary to design and qualify subcomponents like modulators and PIN detectors, which are analog by nature, with different parameters that reflect their individual performance.

These components significantly influence the overall performance of the transmission system with the following parameters:

- 3dB bandwidth of the electro-optical transmission.
- Relative frequency response, quantifying the electro-optical shape of the conversion.
- Absolute frequency response, relating to the conversion efficiency of signals from the input to the output, or indicating the gain of a receiver.
- · Electrical reflection at the RF port.
- · Group delay of the electro-optical transfer function.

Only a careful design of these electro-optical components over a wide modulation signal bandwidth guarantees successful operation in the transmission system.

Electro-optical components

The frequency response of detector diodes, modulators and directly modulated lasers typically depends on various parameters, like bias voltages, optical input power, operating current and ambient temperature. To determine the optimum operating point of these devices, an LCA helps by making a fast characterization of the electro-optic transfer function while optimizing these operating conditions.

In manufacturing it is important to be able to monitor the processes in regular time slots to keep up the throughput and yield. In this case the LCA is the tool of choice to monitor transmission characteristic and absolute responsivity of the manufactured device.

Electrical components

Electrical components such as amplifiers, filters and transmission lines are used in modern transmission systems and require characterization to ensure optimal performance. Typical measurements are bandwidth, insertion loss or gain, impedance match and group delay.

Agilent N4373C Features

Turnkey solution

In today's highly competitive environment, short time-to-market with high quality is essential for new products. Instead of developing a home-grown measurement solution, which takes a lot of time and is limited in transferability and support, a fully specified and supported solution helps to focus resources on faster development and on optimizing the manufacturing process.

In the N4373C all optical and electrical components are carefully selected and matched to each other to minimize noise and ripple in the measurement traces. Together with the temperature stabilized environment of the core components, this improves the repeatability and the accuracy of the overall system. Extended factory calibration data at various optical power levels ensures accurate and reliable measurements that can only be achieved with an integrated solution like the N4373C.

Easy calibration

An LCA essentially measures the conversion relation between optical and electrical signals. This is why user calibration of such systems can evolve into a time consuming task. With the new calibration process implemented in the N4373C, the tasks that have to be done by the user are reduced to one pure electrical calibration. The calibration with an electrical calibration module is automated and needs only minimal manual interaction.

Built-in performance verification

Sometimes it is necessary to make a quick verification of the validity of the calibration and the performance of the system. The N4373C's unique calibration process allows the user to perform a self-test without external reference devices. This gives full confidence that the system performance is within the user's required uncertainty bands.

State-of-the-art remote control

Testing the frequency response of electro-optical components under a wide range of parameters, which is often necessary in qualification cycles, is very time consuming. To support the user in minimizing the effort for performing this huge number of tests, all functions of the LCA can be controlled remotely via LAN over the state-of-the-art Microsoft .NET or COM interface. This interface is identical for all LCA of the N437xB/C series.

Based on programming examples for VBA with Excel, Agilent VEE and C++, it is very easy for every user to build applications for their requirements.

These examples cover applications like integration of complete LCA measurement sequences.

Agilent N4373C Features (continued)

Balanced measurements

With the option N43973C-303/314 the N4373C offers balanced measurements up to 50 GHz to test PIN TIA combinations with differential outputs in one measurement. This offers additional analysis capabilities of common mode transfer function or gain imbalance measurements.

Integrated optical power meter

In applications where optical power dependence characterization is needed, the average power meter can be used to set the exact average output power of the LCA transmitter by connecting the LCA optical transmitter output, optionally through an optical attenuator, to the LCA optical receiver input. By adjusting the transmitter output power in the LCA user interface or the optical attenuation, the desired transmitter optical power can be set.

In cases where an unexpectedly low responsivity is measured from the device under test, it is very helpful to get a fast indication of the CW optical power that is launched into the LCA receiver. The cause might be a bad connection or a bent fiber in the setup. For this reason too, a measurement of the average optical power at the LCA receiver is very helpful for fast debugging of the test setup.

Selectable output power of the transmitter

Most PIN diodes and receiver optical subassemblies need to be characterized at various average optical power levels. In this case it is necessary to set the average input power of the device under test to the desired value. The variable average optical output power of the LCA transmitter offers this feature. Together with an external optical attenuator, this range can be extended to all desired optical power levels.

Group delay and length measurements

In some applications it is necessary to determine the electrical or optical length of a device. With the internal length calibration of the electro-optical paths with reference to the electrical and optical inputs or outputs, it is possible to determine the length of the device under test.

External optical source input

For applications where test of opto-electric devices need to be done at a specific optical wavelength like proposed in the IEEE 802.3ba standard, the N4373C-050 option offers an external optical input to the internal modulator where an external tunable laser can be applied. As modulators are polarization sensitive devices, this input is a PMF input to a PMF optical switch to maintain the polarization at the internal modulator and keep loss at a minimum.

This external optical source input is required when O/E devices with integrated filter are to be characterized, or generally when the O/E converter needs to be tested at different wavelengths than the internal source.

Definitions

Generally, all specifications are valid at the stated operating and measurement conditions and settings, with uninterrupted line voltage.

Specifications (guaranteed)

Describes warranted product performance that is valid under the specified conditions.

Specifications include guard bands to account for the expected statistical performance distribution, measurement uncertainties changes in performance due to environmental changes and aging of components.

Typical values (characteristics)

Characteristics describe the product performance that is usually met but not guaranteed. Typical values are based on data from a representative set of instruments.

General characteristics

Give additional information for using the instrument. These are general descriptive terms that do not imply a level of performance.

Explanation of Terms

Responsivity

For electro-optical devices (e.g. modulators) this describes the ratio of the optical modulated output signal amplitude compared to the RF input amplitude of the device.

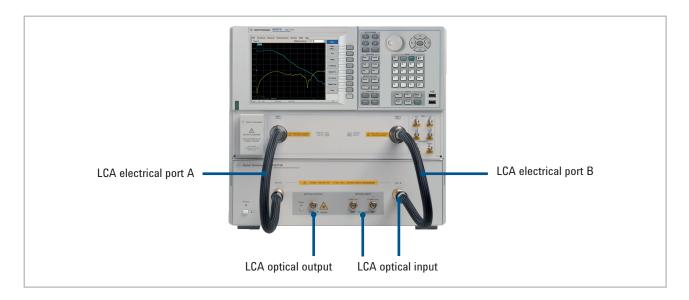
For opto-electrical devices (e.g. photodiodes) this describes the ratio of the RF amplitude at the device output to the amplitude of the modulated optical signal input.

Relative frequency response uncertainty

Describes the maximum deviation of the shape of a measured trace from the (unknown) real trace. This specification has strong influence on the accuracy of the 3-dB cut-off frequency determined for the device under test.

Absolute frequency response uncertainty

Describes the maximum difference between any amplitude point of the measured trace and the (unknown) real value. This specification is useful to determine the absolute responsivity of the device versus modulation frequency.


Frequency response repeatability

Describes the deviation of repeated measurement without changing any parameter or connection relative to the average of this measurements.

Minimum measurable frequency response

Describes the average measured responsivity when no modulation signal is present at the device under test. This represents the noise floor of the measurement system.

Definition of LCA Input and Output Names

Agilent N4373C Specifications

Measurement of	conditions
Network analyzer se	et to -8 dBm electrical output power
Modulation frequent	cy range from 10 MHz to 40/50/65 GHz, depending on selected network analyzer option
Number of averages	c1
,	uce IF bandwidth at low frequency" enabled) with modulation frequency step size 10 MHz and measurement raster (if not differently stated)
Network analyzer se	et to "stepped sweep" – sweep moves in discrete steps"
Port 2 (4, for option OUT" to "CPLR ARM	314) of network analyzer configured in reverse coupler configuration ("RCVB B in" to "CPLR THRU", "SOURCE //")
After full two-port e	lectrical calibration using an Electronic Calibration Module, Agilent N4694A, at constant temperature (± 1 °C)
Modulation-bias opt	imization set to "every sweep"
Using the supplied f	lexible test port cables 1.85 mm f m (Part Number N4697-60200)
Measurement freque	ency grid equals electrical calibration grid
Tested from Port 1 t	o Port 2 (4, for option 314)
DUT signal delay \leq ().1/IF-BW
Specified temperatu	re range: +20 °C to +26 °C
After warm-up time	of 90 minutes
Using high quality e	lectrical and optical connectors in perfect condition
Using internal laser	source
All specifications for	r Exx option are typical

The optical test set always has angled connectors. Depending on the selected option (-021 straight, -022 angled) the appropriate jumper cable will be delivered. This jumper cable must always be used in front to the optical test set to protect the connectors at the optical test set and is required for performance tests.

Transmitter and Receiver Specifications

Optical test set		Option -302, -303, -314,-392, -393, -394, Exx options typical		
Operation frequency range	Option -302/ -392/-E92	10 MHz to 67 GHz		
	Option -303/ -393/-E93	10 MHz to 40 GHz		
	Option -314/ -394/-E94	10 MHz to 50 GHz		
Connector type	Optical input	SMF angled with Agilent versatile connector interface		
	Optical output			
	Optical source input (rear)	PMF angled, with Agilent versatile connector interface, polarization orientation aligned with connector key		
	RF	1.85 mm male (-302, -392)		
		2.4 mm male (-303, -314, -393, -394)		
LCA optical input				
Operating input wavelength range		1290 nm to 1610 nm ⁴		
Naximum linear average input Optical input 1		+4 dBm @ 1310 nm		
power ¹		+5 dBm @ 1550 nm		
Optical input 2		+14 dBm @ 1310 nm		
		+15 dBm @ 1550 nm		
Maximum safe average input Optical input 1		+7 dBm		
power	Optical input 2	+17 dBm		
Optical return loss (typical) ¹		> 25 dBo		
Average power measurement	Optical input 1	-25 dBm to +5 dBm on optical input 1		
range ¹	Optical input 2	-15 dBm to +15 dBm on optical input 2		
Average power measurement uncertainty (typical) ¹		± 0.5 dBo		
LCA optical output (Internal	source)			
Optical modulation index (OMI) (typical)		> 5% @ -8 dBm RF power @ 1 GHz modulation frequency		
Output wavelength	Option -100, -102	(1310 ± 20) nm		
	Option -101, -102	(1550 ± 20) nm		
Average output power range		-1 dBm to +5 dBm @ 1550 nm		
		-2 dBm to +4 dBm @ 1310 nm		
Average output power uncertainty (typical) ²		± 0.5 dBo		
Average output power stability, 15 minutes (typical)		± 0.5 dBo		

1. Wavelength within range as specified for LCA optical output.

2. After modulator optimization.

4. Excluding water absorption wavelength.

Transmitter and Receiver Specifications (continued)

Optical test set	Option -302, -303, -314,-392, -393, -394, Exx options typical
External optical source input (-050)	
Recommended optical input power ³	+8 to +15 dBm
Optical input power damage level	+20 dBm
Typical loss at quadrature bias point	9 dB
Operating input wavelength range	1290 nm to 1610 nm ⁴
LCA RF test port input	
Maximum safe input level at port A or B	+15 dBm RF, 7V DC

3. Required source characteristics: SMSR > 35 dB, line width < 10 MHz, power stability < 0.1 dB pp, PER > 20 dB, unmodulated, single mode.

4. Excluding water absorption wavelength.

Specifications for Electrical to Optical Measurements at 1310 nm (E/O Mode)

N4373C system with network analyzer: E8361C-014/E8363C-014/N5245A-400

Specifications are valid under the stated measurement conditions.

- At optical input 1 ("+ 7 dBm max"). At optical input 2 ("+ 17 dBm max"), specifications are typically the same for 10 dB higher incident average and modulated optical power.
- For wavelength: (1310 ± 10) nm (Option -100, 102).
- For N5245A-400: Network analyzer specification is limited to 50 GHz.
- · For E8363C-014: Network analyzer specification is limited to 40 GHz.

System performance		0.05 GHz to 0.2 GHz	0.2 GHz to 0.7 GHz	0.7 GHz to 20 GHz	20 GHz to 50 GHz	50 GHz to 65 GHz
Relative frequency	DUT response	-	-	-		
response uncertainty	≥ -24 dB (W/A) ¹	± 0.8 dBe typical	± 1.0 dBe (± 0.7 dBe, typical)	± 1.1 dBe (± 0.8 dBe, typical)	± 1.1 dBe (± 0.8 dBe, typical)	± 2.4 dBe (± 1.7 dBe, typical)
	≥ -34 dB (W/A) (typical)	± 0.8 dBe	± 0.8 dBe	± 0.8 dBe	± 0.8 dBe	± 1.8 dBe
	≥ -44 dB (W/A) (typical)	± 0.9 dBe	± 0.9 dBe	± 0.9 dBe	± 2.2 dBe	± 4.0 dBe
Absolute frequency	DUT response	_	-	-	_	_
response uncertainty	\geq -24 dB (W/A) ¹	± 1.7 dBe typical	± 2.4 dBe (± 1.7 dBe, typical)	± 2.6 dBe (± 1.8 dBe, typical)	± 2.7 dBe (± 1.9 dBe, typical)	± 3.2 dBe (± 2.2 dBe, typical)
Frequency	DUT response	_	-	_	_	_
response repeatability	\geq -24 dB (W/A) ¹	± 0.03 dBe	± 0.03 dBe	± 0.05 dBe	± 0.15 dBe	± 0.25 dBe
(typical)	≥ -34 dB (W/A)	± 0.03 dBe	± 0.03 dBe	± 0.11 dBe	± 0.4 dBe	± 0.8 dBe
	≥ -44 dB (W/A)	± 0.03 dBe	± 0.03 dBe	± 0.6 dBe	± 1.3 dBe	± 2.2 dBe
Minimum measurabl response (noise floor		-64 dB (W/A)	-64 dB (W/A)	-64 dB (W/A)	-64 dB (W/A)	-59 dB (W/A)
Phase uncertainty	DUT response	_	-	-	_	_
(typical) ³	\geq -24 dB (W/A) ¹	± 3.5°	± 3.0°	± 2.7°	± 3.7°	± 5.5°
	≥ -34 dB (W/A)	± 3.5°	± 3.5°	± 2.7°	± 4.8°	± 9.0°
Group delay uncertai	nty	Derived		tainty, see section $2.0^{\circ} \rightarrow \pm 8 \text{ ps} (1 \text{ G})$		rtainty".

1. For DUT response max. -13 dB (W/A).

2. IFBW = 10 Hz.

3. Except phase wrap aliasing (Example: A DUT group delay of 5 ns (1 m cable length) requires a frequency step size of \leq 0.2 GHz to avoid phase wraps). Excluding a constant group delay offset of $\leq \pm 0.3$ ns typ. (Cable length uncertainty $\leq \pm 0.06$ m). A constant group delay offset leads to a phase offset $\Delta \phi = 360^{\circ} \times \Delta GD \times \text{fmod}$ (in deg).

Specifications for Electrical to Optical Measurements at 1550 nm (E/O Mode)

N4373C system with network analyzer: E8361C-014/E8363C-014/N5245A-400

Specifications are valid under the stated measurement conditions.

- At optical input 1 ("+ 7 dBm max"). At optical input 2 ("+ 17 dBm max"), specifications are typically the same for 10 dB higher incident average and modulated optical power.
- For wavelength: (1550 ± 20) nm (Option -101, 102).
- · For N5245A-400: Network analyzer specification is limited to 50 GHz.
- · For E8363C-014: Network analyzer specification is limited to 40 GHz.

System performance		0.05 GHz to 0.2 GHz	0.2 GHz to 0.7 GHz	0.7 GHz to 20 GHz	20 GHz to 50 GHz	50 GHz to 65 GHz
Relative frequency	DUT response	_	-	-		
response uncertainty	≥ -26 dB (W/A) ¹	± 0.7 dBe, typical	± 0.8 dBe (± 0.6 dBe, typical)	± 0.8 dBe (± 0.6 dBe, typical)	± 1.0 dBe (± 0.7 dBe, typical)	± 1.6 dBe (± 1.1 dBe, typical)
	≥ -36 dB (W/A) (typical)	± 0.7 dBe	± 0.6 dBe	± 0.6 dBe	± 0.9 dBe	± 1.3 dBe
	≥ -46 dB (W/A) (typical)	± 0.7 dBe	± 0.7 dBe	± 0.7 dBe	± 1.6 dBe	± 2.7 dBe
Absolute frequency	DUT response	_	-	-	_	_
response uncertainty	\geq -26 dB (W/A) ¹	±1.2 dBe, typical	± 1.8 dBe (± 1.2 dBe, typical)	± 1.8 dBe (± 1.2 dBe, typical)	± 1.9 dBe (± 1.2 dBe, typical)	± 2.7 dBe (± 1.8 dBe, typical)
Frequency	DUT response	_		_	_	_
response repeatability	\geq -26 dB (W/A) ¹	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.1 dBe	± 0.2 dBe
(typical)	≥ -36 dB (W/A)	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.3 dBe	± 0.5 dBe
	≥ -46 dB (W/A)	± 0.02 dBe	± 0.02 dBe	± 0.1 dBe	±1dBe	± 2.0 dBe
Minimum measurabl response (noise floor	. ,	-64 dB (W/A)	-64 dB (W/A)	-64 dB (W/A)	-64 dB (W/A)	-59 dB (W/A)
Phase uncertainty	DUT response	_	-	-	_	_
(typical) ³	\geq -26 dB (W/A) ¹	± 3.5°	± 3.0°	± 2.3°	± 3.2°	± 4.5°
	≥ -36 dB (W/A)	± 5.5°	± 3.5°	± 2.3°	± 4.2°	± 6.5°
Group delay uncertai	nty	Derived		tainty, see section 2.0° $\rightarrow \pm 8$ ps (1 G	· /	rtainty".

1. For DUT response max. -13 dB (W/A).

2. IFBW = 10 Hz.

3. Except phase wrap aliasing (Example: A DUT group delay of 5 ns (1 m cable length) requires a frequency step size of \leq 0.2 GHz to avoid phase wraps). Excluding a constant group delay offset of $\leq \pm$ 0.3 ns typ. (Cable length uncertainty $\leq \pm$ 0.06 m). A constant group delay offset leads to a phase offset $\Delta \phi = 360^{\circ} \times \Delta GD \times \text{fmod}$ (in deg).

Specifications for Optical to Electrical Measurements at 1310 nm (O/E Mode)

N4373C system with network analyzer: E8361C -014/E8363C-014/N5245A-400

Specifications are valid under the stated measurement conditions.

- For external source optical input, all specifications are typical. ^{2, 5, 6}
- For wavelength: (1310 ± 10) nm (Option -100, 102).
- For N5245A-400: Network analyzer specification is limited to 50 GHz.
- For E8363C-014: Network analyzer specification is limited to 40 GHz.

System performance		0.05 GHz to 0.2 GHz	0.2 GHz to 0.7 GHz	0.7 GHz to 20 GHz	20 GHz to 50 GHz	50 GHz to 65 GHz
Relative frequency	DUT response	_	_	_	_	_
response uncertainty ²	\geq -19 dB (A/W) ¹	± 0.8 dBe, typical	± 1.0 dBe (± 0.7 dBe) ⁷	± 1.1 dBe (± 0.8 dBe) ⁷	± 1.7 dBe (± 1.2 dBe) ⁷	± 2.2 dBe (± 1.5 dBe) ⁷
	≥ -29 dB (A/W) (typical)	± 0.8 dBe	± 0.7 dBe	± 0.8 dBe	± 1.3 dBe	± 1.6 dBe
	≥ -39 dB (A/W) (typical)	± 0.9 dBe	± 0.9 dBe	± 0.9 dBe	± 1.7 dBe	± 2.8 dBe
Absolute frequency	DUT response	_	_	-	_	_
response uncertainty ²	\geq -29 dB (A/W) ¹	(± 1.5 dBe) ⁷	± 2.4 dBe (± 1.5 dBe) ⁷	± 2.4 dBe (± 1.5 dBe) ⁷	± 2.8 dBe (± 1.8 dBe) ⁷	± 3.2 dBe (± 2.1 dBe) ⁷
Frequency	DUT response	_	_	_	_	_
response repeatability	\geq -19 dB (A/W) ¹	± 0.03 dBe	± 0.03 dBe	± 0.05 dBe	± 0.3 dBe	± 0.5 dBe
(typical) ²	≥ -29 dB (A/W)	± 0.03 dBe	± 0.03 dBe	± 0.15 dBe	± 0.5 dBe	± 0.7 dBe
	≥ -39 dB (A/W)	± 0.03 dBe	± 0.03 dBe	± 0.3 dBe	± 0.5 dBe	± 0.8 dBe
Minimum measurabl response (noise floor		-60 dB (A/W)	-60 dB (A/W)	-60 dB (A/W)	-60 dB (A/W)	-55 dB (A/W)
Phase uncertainty	DUT response	_	_	_	_	_
(typical) ^{2, 4}	\geq -19 dB (A/W) ¹	± 3.5°	± 3.0°	± 2.7°	± 4.4°	± 6.0°
	≥ -29 dB (A/W)	± 5.5°	± 3.5°	± 2.7°	± 4.9°	± 7.5°
Group delay uncertainty Derived			•	ainty, see section " 2.0° \rightarrow ± 8 ps (1 GF		tainty".

1. DUT response max. -10 dB (A/W).

2. For +4 dBm average output power from LCA optical output.

3. IFBW = 10 Hz.

4. Except phase wrap aliasing (Example: A DUT group delay of 5 ns (1 m cable length) requires a frequency step size of \leq 0.2 GHz to avoid phase wraps). Excluding a constant group delay offset of $\leq \pm$ 0.3 ns typ. (Cable length uncertainty $\leq \pm$ 0.06 m). A constant group delay offset leads to a phase offset $\Delta \phi = 360^{\circ} \times \Delta GD \times \text{fmod.}$ (in deg).

5. After CW responsivity and user calibration with external source.

6. Requires option -100 or -102.

7. Typical with internal source.

Specifications for Optical to Electrical Measurements at 1550 nm (0/E Mode)

N4373C system with network analyzer: E8361C -014/E8363C-014 /N5245A-400

Specifications are valid under the stated measurement conditions.

- For external source optical input, all specifications are typical. ^{2, 5, 6}
- For wavelength: (1550 ± 20) nm (Option -101, 102).
- For N5245A-400: Network analyzer specification is limited to 50 GHz.
- For E8363C-014: Network analyzer specification is limited to 40 GHz.

System performance		0.05 GHz to 0.2 GHz	0.2 GHz to 0.7 GHz	0.7 GHz to 20 GHz	20 GHz to 50 GHz	50 GHz to 65 GHz
Relative frequency	DUT response	-	_	-	_	_
response uncertainty ²	\geq -15 dB (A/W) ¹	± 0.7 dBe, typical	± 0.8 dBe (± 0.6 dBe) ⁷	± 0.9 dBe (± 0.7 dBe) ⁷	± 1.2 dBe (± 0.8 dBe) ⁷	± 1.9 dBe (± 1.3 dBe) ^[7]
	≥ -25 dB (A/W) (typical)	± 0.8 dBe	± 0.7 dBe	± 0.8 dBe	± 0.9 dBe	± 1.4 dBe
	≥ -35 dB (A/W) (typical)	± 0.9 dBe	± 0.7 dBe	± 0.8 dBe	± 1.3 dBe	± 1.7 dBe
Absolute frequency	DUT response	_	_	_	_	_
response uncertainty ²	\geq -25 dB (A/W) ¹	(± 1.1 dBe) ⁷	± 1.9 dBe (± 1.1 dBe) ⁷	±1.9 dBe (± 1.1 dBe) ⁷	± 2.0 dBe (± 1.2 dBe) ⁷	± 2.8 dBe (± 1.6 dBe) ⁷
Frequency	DUT response	_	_	_	_	_
response repeatability	\geq -15 dB (A/W) ¹	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.3 dBe	± 0.5 dBe
(typical) ²	≥ -25 dB (A/W)	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.5 dBe	± 0.7 dBe
	≥ -35 dB (A/W)	± 0.02 dBe	± 0.02 dBe	± 0.06 dBe	± 0.5 dBe	± 0.8 dBe
Minimum measurabl response (noise floo	· /	-60 dB (A/W)	-60 dB (A/W)	-60 dB (A/W)	-60 dB (A/W)	-55 dB (A/W)
Phase uncertainty (typical) ^{2, 4}	DUT response	_	_	_	_	_
	\geq -19 dB (A/W) ¹	± 3.5°	± 3.0°	± 2.4°	± 3.2°	± 5.0°
	≥ -29 dB (A/W)	± 5.5°	± 3.5°	± 2.4°	± 5.0°	± 7.0°
Group delay uncertainty Derived from phase uncertainty, see section "Group delay uncertainty"				tainty".		

Example: $\pm 2.0^{\circ} \rightarrow \pm 8 \text{ ps}$ (1 GHz aperture)

1. For DUT response max. -10 dB (A/W).

2. For +5 dBm average output power from LCA optical output.

3. IFBW = 10 Hz.

4. Except phase wrap aliasing (Example: A DUT group delay of 5 ns (1 m cable length) requires a frequency step size of \leq 0.2 GHz to avoid phase wraps). Excluding a constant group delay offset of $\leq \pm$ 0.3 ns typ. (Cable length uncertainty $\leq \pm$ 0.06 m). A constant group delay offset leads to a phase offset $\Delta \phi = 360^{\circ} \times \Delta GD \times \text{fmod.}$ (in deg).

5. After CW responsivity and user calibration with external source.

6. Requires option -101 or -102.

7. Typical with internal source.

Specifications for Optical to Optical Measurements at 1310 nm (0/0 Mode)

N4373C system with network analyzer: E8361C -014/E8363C-014 /N5245A-400

Specifications are valid under the stated measurement conditions.

- At optical input 1 ("+7 dBm max"). At optical input 2 ("+17 dBm max"), specifications are typically the same for 10 dB higher incident average and modulated optical power.
- For external source optical input, all specifications are typical. ^{2, 5, 6}
- For wavelength: (1310 ± 10) nm (Option -100, 102).
- · For N5245A-400: Network analyzer specification is limited to 50 GHz.
- · For E8363C-014: Network analyzer specification is limited to 40 GHz.

System performance		0.05 GHz to 0.2 GHz	0.2 GHz to 0.7 GHz	0.7 GHz to 20 GHz	20 GHz to 50 GHz	50 GHz to 65 GHz
Relative frequency	DUT response	-	_	_	_	_
response uncertainty ²	≥ -3 dBe (≥ -1.5 dBo) ⁴	± 0.4 dBe, typical (± 0.2 dBo)	± 0.4 dBe (± 0.2 dBo)	± 0.4 dBe (± 0.2 dBo)	± 0.5 dBe (± 0.25 dBo)	± 0.6 dBe (± 0.3 dBo)
	≥ -13 dBe (≥ -6.5 dBo, typical)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.7 dBe (± 0.35 dBo)	± 1.0 dBe (± 0.5 dBo)
	≥ -23 dBe (≥ -11.5 dBo, typical)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.9 dBe (± 0.45 dBo)	± 1.5 dBe (± 0.75 dBo)
Absolute frequency	DUT response	-	_	_	_	_
response uncertainty ²	≥ -3 dBe (≥ -1.5 dBo) ⁴	± 0.9 dBe, typical (± 0.45 dBo)	± 0.9 dBe (± 0.45 dBo)	± 0.9 dBe (± 0.45 dBo)	± 1.0 dBe (± 0.50 dBo)	± 1.2 dBe (± 0.6 dBo)
Frequency	DUT response	-	_	_	_	_
response repeatability	≥ -3 dBe (≥ -1.5 dBo) ⁴	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.15 dBe	± 0.3 dBe
(typical) ²	≥ -13 dBe (≥ -6.5 dBo)	± 0.03 dBe	±0.03 dBe	± 0.1 dBe	± 0.4 dBe	± 0.8 dBe
	≥ -23 dBe (≥ -11.5 dBo)	± 0.03 dBe	±0.03 dBe	± 0.1 dBe	±1dBe	± 1.5 dBe
Minimum measurable response (noise floor		-55 dBe, typical (-27.5 dBo)	-42 dBe (-21 dBo)	-42 dBe (-21 dBo)	-42 dBe (-21 dBo)	-36 dBe (-18 dBo)
Phase uncertainty	DUT response	-	_	_	-	_
(typical) ^{2, 3}	≥ -3 dBe ^₄ (≥ -1.5 dBo)	± 3.5°	± 3.0°	± 2.2°	± 2.7°	± 3.5°
-	≥ -13 dBe (≥ -6.5 dBo)	± 5.5°	± 3.5°	± 2.2°	± 3.3°	± 4.0°
Group delay uncertair	nty	Derived f	•	inty, see section "G 0° \rightarrow ± 8 ps (1 GHz		ainty".

1. IFBW = 10 Hz.

2. For +4 dBm average output power from LCA optical output.

- 3. Except phase wrap aliasing (Example: A DUT group delay of 5 ns (1 m cable length) requires a frequency step size of ≤ 0.2 GHz to avoid phase wraps).
- 4. For DUT response max. +6 dBe (+3 dBo) gain.
- 5. After CW responsivity and user calibration with external source.
- 6. Requires option -100 or -102.
- 7. Average value over frequency range.

Specifications for Optical to Optical Measurements at 1550 nm (0/0 Mode)

N4373C system with network analyzer: E8361C -014/E8363C-014 /N5245A-400

Specifications are valid under the stated measurement conditions.

- At optical input 1 ("+7 dBm max"). At optical input 2 ("+17 dBm max"), specifications are typically the same for 10 dB higher incident average and modulated optical power.
- For external source optical input, all specifications are typical. ^{2, 5, 6}
- For wavelength: (1550 ± 20) nm (Option -101,102).
- · For N5245A-400: Network analyzer specification is limited to 50 GHz.
- · For E8363C-014: Network analyzer specification is limited to 40 GHz.

System performance		0.05 GHz to 0.2 GHz	0.2 GHz to 0.7 GHz	0.7 GHz to 20 GHz	20 GHz to 50 GHz	50 GHz to 65 GHz
Relative frequency	DUT response	_	_	-	_	-
response uncertainty ²	≥ -3 dBe (≥-1.5 dBo) ⁴	± 0.3 dBe, typical (± 0.15 dBo)	± 0.3 dBe (± 0.15 dBo)	± 0.3 dBe (± 0.15 dBo)	± 0.4 dBe (± 0.2 dBo)	± 0.6 dBe (± 0.3 dBo)
	≥ -13 dBe (≥ -6.5 dBo), (typical)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.6 dBe (± 0.3 dBo)	± 1.0 dBe (± 0.5 dBo)
	≥ -23 dBe (≥ -11.5 dBo), (typical)	± 0.2 dBe (± 0.1 dBo)	± 0.2 dBe (± 0.1 dBo)	± 0.3 dBe (± 0.15 dBo)	± 0.7 dBe (± 0.35 dBo)	±1.3 dBe (± 0.65 dBo)
Absolute frequency	DUT response	_	_	-	_	-
response uncertainty ²	≥ -3 dBe (≥ -1.5 dBo) ⁴	± 0.4 dBe, typical (± 0.2 dBo)	± 0.4 dBe (± 0.2 dBo)	± 0.4 dBe (± 0.2 dBo)	± 0.7 dBe (± 0.35 dBo)	± 0.9 dBe (± 0.45 dBo)
Frequency	DUT response	_	_	_	_	_
response repeatability	≥ -3 dBe (≥ -1.5 dBo) ⁴	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.1 dBe	± 0.2 dBe
(typical) ²	≥ -13 dBe (≥-6.5 dBo)	± 0.02 dBe	± 0.02 dBe	± 0.02 dBe	± 0.3 dBe	± 0.5 dBe
	≥ -23 dBe (≥ -11.5 dBo)	± 0.02 dBe	± 0.02 dBe	± 0.1 dBe	±1.0 dBe	± 2.0 dBe
Minimum measurable response (noise floor	• •	-55 dBe, typical (-27.5 dBo)	-42 dBe (-21 dBo)	-42 dBe (-21 dBo)	-42 dBe (-21 dBo)	-36 dBe (-18 dBo)
Phase uncertainty	DUT response	_	-	-	_	-
(typical) ^{2,3}	≥ -3 dBe ^₄ (≥ -1.5 dBo)	± 3.5°	± 3.0°	± 2.2°	± 2.6°	± 3.0°
	≥ -13 dBe (≥ -6.5 dBo)	± 5.5°	± 3.5°	± 2.2°	± 3.0°	± 3.5°
Group delay uncertain	nty	Derived f		ainty, see section "(.0° \rightarrow ± 8 ps (1 GH		ainty".

1. IFBW = 10 Hz.

2. For +5 dBm average output power from LCA optical output.

- 3. Except phase wrap aliasing (Example: a DUT group delay of 5 ns (1 m cable length) requires a frequency step size of ≤ 0.2 GHz to avoid phase wraps).
- 4. For DUT response max. +6 dBe (+3 dBo) gain.
- 5. After CW responsivity and user calibration with external source.
- 6. Requires option 101 or -102.
- 7. Average value over frequency range.

Specifications for Electrical-Electrical Measurements (E/E Mode)

All specifications of the E8361C-014/E8363C-014/N5245A-400 Network Analyzer apply depending on selected option -302/-303/-314. Please see the corresponding Network Analyzer data sheet and User's Guide.

Group delay uncertainty

For more details see specifications of the E8361/3C and N5245A

Group delay

Group delay is computed by measuring the phase change within a specified aperture (for aperture see below):

	Phase change [deg]	
GD [s] =		(Equation 1)
	Aperture [Hz] * 360	

Group delay uncertainty

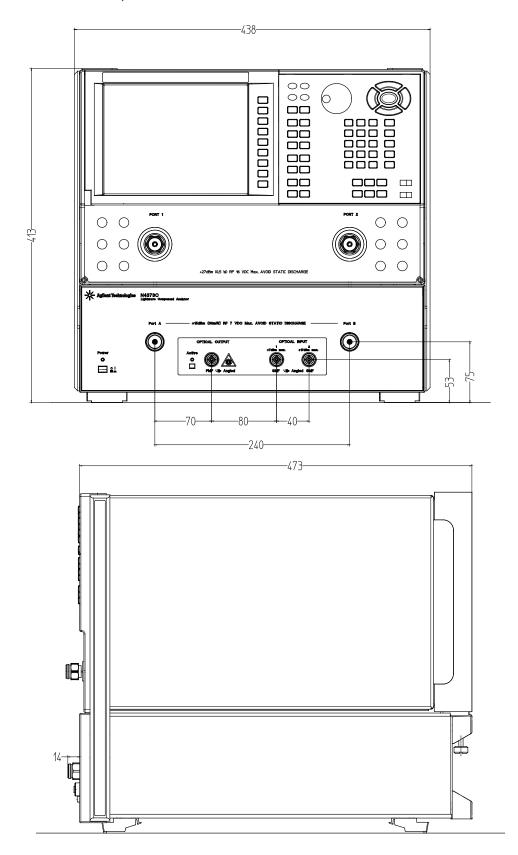
Is calculated from the specified phase uncertainty and from the aperture (for aperture see below):

Aperture

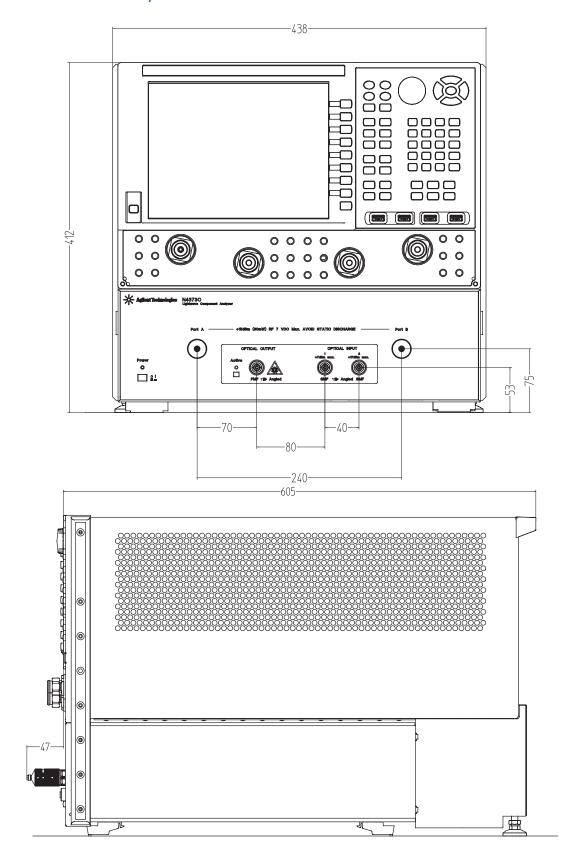
Determined by the frequency span and the number of points per sweep:

```
Aperture: (frequency span) / (number of points-1)
```

GD Range


The maximum group delay is limited to measuring no more than ± 180 degrees of phase change within the selected aperture (see Equation 1).

General Characteristics


-302, -392	-303, 393	-314, -394					
Weight, net							
38 kg (84 lb)	38 kg (84 lb)	57 kg (126 lb)					
Weight, shipping							
58 kg (128 lb)	58 kg (128 lb)	58.2 kg (128 lb) and 25kg (55 lb)					
Assembled dimensions $(H \times W \times D)$							
41.3 cm x 43.8 cm x 47.3 cm	41.3 cm x 43.8 cm x 47.3 cm	41.3 cm x 43.8 cm x 60.5 cm					
(16.3 in x 17.3 in x 18.7 in)	(16.3 in x 17.3 in x 18.7 in)	(16.3 in x 17.3 in x 23.8 in)					
Power requirements							
100 to 240 V~, 50 to 60 Hz max. 400 VA	100 to 240 V~, 50 to 60 Hz max. 400 VA	100 to 240 V~, 50 to 60 Hz max. 400 VA					
Shipping contents							
1x E8361C-014	1x E8363C-014	1x N5245A-400					
1x N4373C optical test set	1x N4373C optical test set	1x N4373C optical test set					
2x N4697-60200 f-m flexible test port MW cable	2x 85133-60017 f-m flexible test port MW cable	3x 85133-60017 f-m flexible test port MW cable					
	2x 85058-60121 test port adapter (f)-(f)						
• 1x N5520B-FG 1.85 mm	• 1x 85056-60006	• 1x 85056-60006					
• (f)-(f), adapter DC – 67 GHz	• 2.4mm f-f adaptor	• 2.4 mm f-f adaptor					
	3x 81000NI optical adaptor						
	1x 8121-1242 USB cable						
	1x 1150-7896 keyboard 1x 1150-7799 mouse						
	1x E5525-10285 UK6 report						
	1x 4373C-90A01 Getting Started Guide						
	1x 4373B-90CD1 LCA support CD						
	2x local power cord						
	1x RoHS addendum for photonic T&M accessor	ies					
	1x RoHS addendum for photonic T&M product	ts					
LCA electrical input							
1.85 mm (m)							
LCA electrical output							
1.85 mm (m)							
LCA optical input 1							
9 μm single-mode angled with Agilent univ	9 μm single-mode angled with Agilent universal adapter						
LCA optical input 2							
9 μm single-mode angled with Agilent univ	versal adapter						
LCA optical output							
9 µm single-mode angled with Agilent univ	versal adapter						
LCA external source input (Option -	050 only)						
$9\mu m$ polarization maintaining single-mode angled, with Agilent universal adapter							

General Characteristics (continued)

Storage temperature range -40 °C to +70 °C **Operating temperature range** +5 °C to +35 °C Humidity 15% to 80% relative humidity, non-condensing Altitude (Operating) 0 ... 2000 m **Recommended recalibration period** 1 year Laser safety information All laser sources listed above are classified as Class 1M INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT (IEC 60825-1 / 2001) according to IEC 60825 1 (2001). All laser sources comply with 21 CFR 1040.10 except for deviations pursuant to Laser Notice No. 50, dated 2001-July-26. Mechanical Outline Drawings, Option -302, -303, -392, -393 (All dimensions in mm)

Mechanical Outline Drawings, Option -314, -394 (All dimensions in mm)

Ordering Information

The N4373C consists of an optical test set and an electrical network analyzer which are mechanically connected. To protect your network analyzer investment, Agilent offers the integration of an already owned PNA with the optical test set as listed below.

All systems have 1 year warranty.

Network-analyzer options	
N4373C-302	67 GHz, 2 port PNA (E8361C-014)
N4373C-303	40 GHz, 2 port PNA (E8363C-014)
N4373C-314	50 GHz 4 port PNA-X (N5245A-400)
Network-analyzer integration options	
N4373C-392	 Integration of customer's 67 GHz, 2 port PNA¹
N43730-392	(E8361A/C-014, 010)
	All other NWA and options select E92
N4373C-393	 Integration of customer's 40 GHz, 2 port PNA¹
	(E8363A/C-014, 010) All other NWA and options select E93
N4373C-394	Integration of customer's 50 GHz, 4 port PNA ¹
N4373C-394	(N5245A-400, 010)
	All other NWA and options select E94
N4373C-E92	Integration of E8361A/C with other than above options. 1
	(All specifications are typical)
N4373C-E93	Integration of E8363A/C or E8364A/C with other than above
N4373C-E94	options. ¹ (All specifications are typical) Integration of N5244A or N5245A with 4 ports other than above
	options. ¹ (All specifications are typical)
Optical wavelength options	
N4373C-100	1310 nm source optical test set
N4373C-101	1550 nm source optical test set
N4373C-102	1310 nm and 1550 nm source optical test set
Configuration independent options	
N4373C-010	Time domain operation for network analyzer
N4373C-050	Testset with external optical source Input
N4373C-021	Straight fiber interface single mode
N4373C-022	Angled fiber interface single mode
Warranty options	
R-51B-001-3C	1-year return-to-Agilent warranty extended to 3-years
R-51B-001-5C	1-year return-to-Agilent warranty extended to 5-years
Calibration options	
R-50C-011-3	Agilent calibration plan, 3 year coverage
R-50C-011-5	Agilent calibration plan, 5 year coverage
Required accessories (To be ordered separately)	
N4694A	2 port microwave electrical calibration module
	(-00F recommended)

1. Minimum requirements: 1.1 GHz CPU, 1 GB RAM, Windows XP.

Optical Instruments Online Information

Optical test instruments www.agilent.com/find/oct

Lightwave component analyzers www.agilent.com/find/lca

Polarization solutions www.agilent.com/find/pol

Spectral analysis products www.agilent.com/comms/octspectral

Electro-optical converters www.agilent.com/find/ref

Optical test instruments accesories www.agilent.com/comms/octaccessories

Firmware and driver download www.agilent.com/comms/octfirmware

Agilent photonic discussion forum www.agilent.com/find/photonic forum

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

LXI

www.lxistandard.org

LAN extensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our world.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com www.agilent.com/find/lca

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3500
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Belgium	32 (0) 2 404 93 40
Denmark	45 45 80 12 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 972 6201

For other unlisted countries: www.agilent.com/find/contactus Revised: December 14, 2011

Product specifications and descriptions in this document subject to change

without notice. © Agilent Technologies, Inc. 2012

Published in USA, January 4, 2012 5989-9201EN

Agilent Technologies