

 Microcontrollers

XMC1000
Microcontroller Series
for Industrial Applications

Tooling Guide
V1.0 2013-10

Tool ing Guide
 Boot Mode Index for Booting Up

 ASC Loader

 ASC Programmer

Edition 2013-10

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2013 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.

 Tooling Guide
 XMC1000 Family

 Revision History

Revision History

Page or Item Subjects (major changes since previous revision)

V1.0, 2013-10

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™,
IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,
SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.).
EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique
Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL
ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of
NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™
Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited.
TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™,
PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated.
VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-02-24

 Tooling Guide
 XMC1000 Family

 Table of Contents

Tooling Guide 4 V1.0, 2013-10

Table of Contents

1 Boot Mode Index for Booting Up .. 6
1.1 Boot Mode Use Cases .. 7
1.2 Programming / Debugging Pin ... 7
1.3 Boot Mode Index ... 8
1.4 Description of the Boot Modes ... 9
1.4.1 ASC_BSL - ASC Bootstrap Loader mode .. 9
1.4.2 User mode with debug enabled and HAR (UMHAR) .. 9
1.4.3 User mode with debug enabled (UMD) .. 10
1.4.4 User productive Mode (UPM) .. 10
1.5 Programming the BMI value .. 11
1.5.1 Programming the BMI by calling a user routine upon external interrupt .. 11
1.5.2 Using Memtool to change the BMI value.. 12
1.5.3 Using DAVE

TM
 v3.1.8 „BMI Get Set‟ feature to change BMI value .. 17

2 ASC Loader ... 19
2.1 Stage 1: Baud rate detection and mode selection .. 20
2.2 Stage 2: Download sequence .. 22

3 ASC Programmer .. 25
3.1 ASC Bootstrap Loading ... 25
3.1.1 Flash Loader ... 28
3.1.2 DAVE3 Project Settings .. 28
3.2 Flash Memory Organization .. 29
3.3 Communication Protocol ... 30
3.3.1 Mode 0: Program Flash Page .. 31
3.3.2 Mode 1: Execute „Change BMI‟ routine .. 32
3.3.3 Mode 3: Erase Flash Sector .. 32
3.3.4 Response Code to the HOST .. 32
3.4 HOST PC Program Example ... 33
3.5 Using the Demonstrator .. 35
3.5.1 Hardware Setup .. 36
3.5.2 Demonstrator File Structure .. 36
3.5.3 Run the Demonstrator ... 37
3.6 Reference Documents ... 38

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 5 V1.0, 2013-10

Boot Mode Index for Booting
Up

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 6 V1.0, 2013-10

1 Boot Mode Index for Booting Up

A microcontroller would normally have a few boot mode selection pins that determine the Boot Mode
after power-on reset. The XMC1000 family of products however are low pin count devices, so the use
of multiple pins just for Boot up mode selection is not desirable.

Instead, the XMC1000 microcontroller depends on the Boot Mode Index (BMI) value to determine the
boot mode after power-on reset. The BMI value is stored in the flash configuration sector 0 (CS0).

Figure 1 illustrates the various start-up modes which the XMC1000 device will enter after the Start-up
Software has read the BMI value. The default start-up mode when the device is delivered from the
factory is ASC BSL mode.

Note: For the XMC1100, XMC1200 and XMC1300 Boot Kits, the XMC1000 devices are programmed
to User mode with debug enabled, so that the application program will start to run after power-
up.

Figure 1 Boot ROM operating mode after power-on reset

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 7 V1.0, 2013-10

1.1 Boot Mode Use Cases

Table 1 Boot Mode Use Cases

Mode Use Case

ASC Bootstrap Loader mode, ASC_BSL Allow Flash Programmer to download Flash erasing
and programming routine using UART protocol to
the XMC1000 device.

SSC Bootstrap Loader mode, SSC_BSL Allow Flash Programmer to download Flash erasing
and programming routine using SSC protocol to the
XMC1000 device.

User mode with debug enabled and HAR (SWD)

or

User mode HAR (SWD)

 Serial Wire Debug is ARM propriety debug protocol

for ARM Cortex
TM

 processor.
 User code will not run after power-up.
 Allows debugging at the beginning of user code.

User mode with debug enabled and HAR (SPD)

or User mode HAR (SPD)

 Single Pin DAP is Infineon propriety debug protocol.
 Allows single pin debugging.
 Pin-saving for XMC1000‟s 16 pin package.
 User code will not run after power-up.
 Allows debugging at the beginning of user code.

User mode with debug enabled (SWD)

orUser mode debug (SWD)

 User code will run after power-up.
 Supports debugging using serial wire debug

protocol.

User mode with debug enabled (SPD)

orUser Mode debug (SPD)

 User code will run after power-up and supports
debugging using single pin debug protocol.

User productive Mode Flash protection scheme.
 Debugging is not supported.

1.2 Programming / Debugging Pin

Two sets of pins/channels are available for you to choose from to use for programming or debugging
the XMC1000 device.

Note: For ASC_BSL mode, both channel 0 and 1 are ready for UART communication after power-up,
so the user does not need to choose which channel to use for ASC_BSL communication.

The selection of a port pin depends on the BMI value.

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 8 V1.0, 2013-10

Figure 2 Pins used to communicate with the XMC1000 device in each Boot mode

Please refer to Table 2, Table 3 and Table 4 for more detail and further understanding of the
selection process.

1.3 Boot Mode Index

The XMC1000 device BMI value is read from memory location 0x10000E00.

Figure 3 Boot Mode Index bit field description

As shown in Figure 3, if the BMI value is 0xFFC0, it means that the device is in ASC Bootstrap

Loader mode.

The DAPTYP and DAPDIS field are only considered when the start-up mode is User mode.

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 9 V1.0, 2013-10

1.4 Description of the Boot Modes

The respective Boot modes are described in this section.

1.4.1 ASC_BSL - ASC Bootstrap Loader mode

After power-up/master reset, the device will wait for a falling edge transition at its RXD pin after exit
from the startup software. This falling edge transition indicates the ASC_BSL handshaking has
started.

In ASC_BSL mode the user can download their own monitor program into XMC1000‟s SRAM, starting
at address 0x20000200. After the monitor program is received and stored, the Start-up Software will
run the user‟s monitor program at SRAM address 0x20000200, which can then be used to
communicate with the Host PC for BMI installation, flash erasing, programming and verification of
code/data download.

The ASC_BSL can communicate with the Host PC in full duplex or half duplex mode. This depends
on the Header Byte which the Host PC sends to the XMC1000 device during the ASC_BSL
handshaking.

ASC_BSL also supports a time-out option. As shown in Figure 1, if the XMC1000 device does not
receive the Start and Header Bytes from the Host within the duration defined in BMI.BLSTO, it will
jump to the Flash location whose address is stored at 0x10001004, and execute from there.

Table 2 BMI values and Port settings for ASC_BSL mode

Header Byte BMI value UART
communication

RXD Pin TXD Pin

0x12 0xFFC0 Half Duplex P0.14 P0.14

0x12 0xFFC0 Half Duplex P1.3 P1.3

0x6C 0xFFC0 Full Duplex P0.14 P0.15

0x6C 0xFFC0 Full Duplex P1.3 P1.2

0x12 0xFFD0 (time-out = 4995ms
@ MCLK=8MHz)

Half Duplex P0.14 P0.14

0x12 0xFFD0 (time-out = 4995ms
@ MCLK=8MHz)

Half Duplex P1.3 P1.3

0x6C 0xFFD0 (time-out = 4995ms
@ MCLK=8MHz)

Full Duplex P0.14 P0.15

0x6C 0xFFD0 (time-out = 4995ms
@ MCLK=8MHz)

Full Duplex P1.3 P1.2

1.4.2 User mode with debug enabled and HAR (UMHAR)

After power-up/master reset, the device will wait for SWD/SPD connection after exit from the startup
software. If it encounters a system reset, the device will behave in User Mode (debug) manner. The
user can access the full debug functionality using SWD/SPD to establish connection to the XMC1000
device.

This mode is recommended when the user wants to develop and debug their code, especially in
motor applications. After power-up, the user‟s application code will not run and the user is in full
control on where the code execution should stop at which part of the application code, via the
debugger.

Table 3 BMI value and Port settings for User mode with debug enabled and HAR (UMHAR)

BMI value SWD / SPD Signal Pin used

0xF8C7 SWDIO_0 P0.14

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 10 V1.0, 2013-10

Table 3 BMI value and Port settings for User mode with debug enabled and HAR (UMHAR)

BMI value SWD / SPD Signal Pin used

 SWDCLK_0 P0.15

0xF9C7 SPD_0 P0.14

0xFAC7 SWDIO_1 P1.3

SWDCLK_1 P1.2

0xFBC7 SPD_1 P1.3

1.4.3 User mode with debug enabled (UMD)

After power-up the device will start to run from the Flash location address stored at 0x10001004. The
specified SPD/SWD pins are automatically configured to allow for Debugger access.

This mode is recommended when you want to test the code in a real application environment. You
can update your working code using the debugger for future upgrades. This „hot-attached‟ mode is the

default connection mode for the ARM® Cortex
TM

 processor.

Table 4 BMI value and Port settings for User mode with debug enabled (UMD)

BMI value SWD / SPD Signal Pin used

0xF8C3 SWDIO_0 P0.14

SWDCLK_0 P0.15

0xF9C3 SPD_0 P0.14

0xFAC3 SWDIO_1 P1.3

SWDCLK_1 P1.2

0xFBC3 SPD_1 P1.3

1.4.4 User productive Mode (UPM)

Attention: This mode should only be used once the user has confirmed that their code is
FULLY TESTED.

After power-up, the device will start to run from the Flash location address stored at 0x10001004.

This mode provides MEMORY PROTECTION by not allowing external tools such as the debugger,
access (read/write) to the Flash memory.

Table 5 BMI value and Port settings for User productive mode (UPM)

BMI value SWD / SPD Signal Pin used

0xF8C1 - -

It is still possible to change the BMI value in this mode, by embedding the provided “Request BMI
installation routine (new BMI)” in the user code.

The “Request BMI installation” routine is provided inside the XMC1000 ROM at location 0x00000108.
Your application software can call this routine to change the BMI value under user-defined conditions,
for example via an external interrupt or via GPIO pin latch values.

For code protection purposes, if the current BMI value is User productive Mode and the new
requested BMI value is NOT User productive Mode, the Start-up software will erase the full Flash of
the device, and re-install the default BMI (ASC_BSL). The user needs to call the „Request BMI
installation (new BMI)‟ routine again via ASC_BSL mode if that is not the desired BMI value.

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 11 V1.0, 2013-10

A code snippet on how to use an external interrupt to trigger the “Request BMI installation” routine is
provided in section 1.5.1.

1.5 Programming the BMI value

When the XMC1000 device is delivered from the factory, the default boot mode is ASC_BSL. If you
want to connect the device to the debugger, you need to change the BMI value to „User mode with
debug enabled‟, or to „User mode with debug enabled and HAR‟. The change is made via the
“Request BMI installation routine (new BMI)”, available in ROM address 0x00000108. Use this routine
to change the current BMI value to the required value.

Note: A Master reset will be executed when the BMI value is updated. Note however, that if the power
supply is switched off before the Master reset occurs, the BMI value will revert to the default
value (ASC_BSL), instead of the desired BMI value. It is therefore very important to keep the
VDDP of the XMC1000 device operating voltage stable when programming the BMI value.

In the following sections, example code is used to illustrate how to change the BMI value using
software on an external interrupt. An introduction to using Memtool v4.5 to change the BMI value is
also provided.

1.5.1 Programming the BMI by calling a user routine upon external interrupt

Here we provide example code which uses an external interrupt (rising edge trigger) to call the
“Request BMI installation routine (new BMI)”. The code uses P2.0 to trigger the Event Request Unit
(ERU) which triggered Interrupt Node ERU0.SR0. Then, in the interrupt routine, it will call the
XMC1000_BmiInstallationReq() routine with the desired BMI value as the parameter to pass.

/* Constants definitions */

// Start address of the ROM function table

#define ROM_FUNCTION_TABLE_START (0x00000100)

#define _BmiInstallationReq (ROM_FUNCTION_TABLE_START + 0x08)

// Pointer to Request BMI installation routine

#define XMC1000_BmiInstallationReq (*((unsigned long (**) (unsigned short))

_BmiInstallationReq))

void ERU0_Init(void)

{

// Enable IRQ3 = ERU0.SR0

 NVIC_EnableIRQ(3);

// Choose P2.0 as ERU0 input 0B0

 ERU0->EXISEL &= 0xFFF3;

// Rising edge trigger

// Output to OGU0 of ERU0

 ERU0->EXICON[0] |= 0x0107;

// Enable event detection

 ERU0->EXOCON[0] |= 0x1024;

}

void ERU0_0_IRQHandler(void)

{

// Call the BMI_installation routine to set BMI = ASC_BSL

 XMC1000_BmiInstallationReq(0xFFC0);

}

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 12 V1.0, 2013-10

int main(void)

{

 P1_0_set_mode(OUTPUT_PP_GP);

// set P2.0 as input pin, disable its ADC function

 PORT2->PDISC &= 0xFFFE;

 P2_0_set_mode(INPUT_PD);

// initialise ERU0 to set P2.0 as external interrupt

 ERU0_Init();

 while(1)

 {

 P1_0_toggle(); // toggle LED

 Delay100US(500); // tune minimum and maximum flashing time

 ...

 }

 return 0;

}

1.5.2 Using Memtool to change the BMI value

Memtool is a free tool from Infineon Technologies that can be used to support the programming of
XMC1000 devices.

Note: Other professional tools can also support changing the BMI value, such as Universal Access
Device 2 from PLS for example, but those tools are not described in this document.

Table 6 Memtool v4.5 connection configuration

Hardware Driver Connection Methods

1) XMC1000 Boot Kit Virtual COM Port ASC_BSL

2) DAP miniwiggler v2.0 DAS ASC_BSL, SWD, SPD

1.5.2.1 Memtool connection to XMC1000 using Virtual Com Port via XMC1000 CPU
Card

This mode of connection can only be used when XMC1000 device BMI value is ASC_BSL mode.

The XMC1000 Boot Kit has a CPU Card with an on-board COM and SEGGER J-Link Debugger.
Memtool uses the COM port for ASC_BSL communication with the XMC1000 device. So, if you have
any virtual COM port equipment, Memtool can be used to perform ASC_BSL communication with the
XMC1000 device and change the BMI value.

For the pin connection please refer to Figure 2.

Note: The XMC1000 Boot Kit can be ordered online from: www.infineon.com/xmc1000 -> XMC1000
Kits.

http://www.infineon.com/xmc1000

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 13 V1.0, 2013-10

Figure 4 Setup Memtool to connect to XMC1000 Boot kit using virtual com port

Procedure

1. Open Memtool v4.5.
2. Click Target ->change of GUI 1).
3. Click default button of GUI 2), a list of XMC1000 boards is available for selection.

− If the BMI of the XMC1200 Boot Kit is ASC_BSL, then choose Infineon XMC1200 TSSOP38
evaluation board XMC1200 (Minimon/ASC).

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 14 V1.0, 2013-10

4. Close GUI 3), connect the USB cable to the XMC1200 Boot Kit board and click Connect button of
GUI 1).

1.5.2.2 Memtool connection to XMC1000 using DAS via DAP miniWiggler

This mode of connection can be used when XMC1000 device BMI value is ASC_BSL, User mode
debug (SWD/SPD) or User mode HAR (SWD/SPD).

The DAP miniWiggler can be ordered online from: www.infineon.com/das -> DAP miniWiggler.

Figure 5 Setup Memtool to connect to XMC1200 target board using DAS

Procedure

1. Open Memtool v4.5.
2. GUI 1) appears, click Target ->change.
3. Click default button in GUI 2), a list of XMC1000 boards is available for selection.

− If using the XMC1200 target board, then choose Infineon XMC1000 TSSOP38 evaluation board
XMC1200 (DAS).

4. Close GUI 2), plug the DAP miniWiggler to the USB port of the Host PC and connect the 10pin
connector of the DAP miniWiggler to the XMC1200 target board as shown in figure below.

5. Click Connect button of GUI 1). Now, Memtool should be connected to the XMC1200 device.

http://www.infineon.com/das

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 15 V1.0, 2013-10

Figure 6 Connection diagram between DAP miniWiggler v2.0 and XMC1200 target board

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 16 V1.0, 2013-10

1.5.2.3 Procedure for using Memtool to change the BMI value after connection

Figure 7 Using Memtool to change the BMI value

With the DAS driver, Memtool can connect to the XMC1000 device via ASC_BSL, SWD and SPD
protocols.

When using the virtual COM port, Memtool can only connect to the XMC1000 device via ASC_BSL.

After connection to the XMC1000 device, to change the BMI value of the XMC1000 device:

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 17 V1.0, 2013-10

1. Click the HW Protect… button of the main menu GUI 1).
2. Click the Setup… button of GUI 2) of Figure 7.
3. From the pull-down menu of GUI 3) of Figure 7, user can choose the BMI value that he wanted.
4. Clicks the Start button of Figure 7 GUI 2) and the BMI of the XMC1000 device is changed.

1.5.3 Using DAVE
TM

 v3.1.8 ‘BMI Get Set’ feature to change BMI value

There is a BMI handling feature in DAVE
TM

 v3.1.8 release. This feature works with J-Link XMC4200
OBD (part of XMC1000 Boot Kit), J-Link or J-Link EDU.

Figure 8 Illustration of ‘BMI Get Set’ feature in DAVE
TM

 v3.1.8

First, the J-Link debugger needs to connect to the XMC1000 device. Next, launch the DAVE
TM

 v3.1.8
IDE and clicks on the „BMI Get Set‟ button indicated in (1). The „BMI Get Set‟ dialog box will pop out.
If user wants to write a new BMI value to the XMC1000 device, then choose the desire BMI value
from the pull-down menu indicated in (2). Follow by clicking the „Set BMI‟ button below. The chosen
BMI value will write to the XMC1000 device, follow by a system reset to the XMC1000 device.

If user wants to read the BMI value of the XMC1000 device, then the „Get BMI‟ button should be
clicked. The BMI value will be read out from XMC1000 device and output at the „Detected BMI Value‟
field.

 Tooling Guide
 XMC1000 Family

 Boot Mode Index for Booting Up

Tooling Guide 18 V1.0, 2013-10

ASC Loader

 Tooling Guide
 XMC1000 Family

 ASC Loader

Tooling Guide 19 V1.0, 2013-10

2 ASC Loader

The XMC1000 family supports both Asynchronous Serial Interface (ASC) BSL and Synchronous
Serial Channel (SSC) BSL. In this chapter we will demonstrate Bootstrap Loading using the ASC
interface only.

Using the UART protocol, the Bootstrap Loader allows the Host PC to download user code to SRAM,
starting at address 0x20000200. Once the last code byte is received and stored in SRAM the device
will run the user code.

Flash erasing, programming and a routine to change the Boot Mode Index (BMI) for example, could
be embedded in this code. The user can communicate with the downloaded code via the UART
protocol for programming, erasing and verifying the XMC1000 Flash.

If the XMC1000 device‟s BMI value is programmed to ASC Bootstrap Loader mode, then after power-
up both USIC channel 0 and 1 are configured to ASC mode, 8 data bits, 1 stop bit, no parity and
ready for UART communication. The received header byte will determine whether the UART
communication is in full-duplex or half-duplex mode.

Note: The factory delivered XMC1000 device BMI value is set to ASC Bootstrap Loader mode by
default.

Figure 9 XMC1000 Pin usage for ASC Bootstrap Loader mode

There are two type of ASC Bootstrap Loader mode entry sequence:

 Standard ASC Bootstrap Loader mode
 Enhanced ASC Bootstrap Loader mode

− The Enhanced ASC Bootstrap Loader mode supports a much higher baud rate than Standard
mode, as shown in Table 1

The flow in both modes consists of 2 stages.

5. Baud rate detection and mode selection sequence.
6. Download sequence.

Table 7 Supported Baud Rates

MCLK(MHz) Standard baud rates supported with
ASC Bootstrap Loader mode (kHz)

Maximum baud rate supported with Enhanced
ASC Bootstrap Loader mode (MHz)

Minimum Maximum

8 1.2 28.8 0.999

16 2.4 57.6 1.998

32 4.8 115.2 3.996

 Tooling Guide
 XMC1000 Family

 ASC Loader

Tooling Guide 20 V1.0, 2013-10

2.1 Stage 1: Baud rate detection and mode selection

The interaction between the XMC1000 ASC Bootstrap Loader and the Host is via a handshake
protocol and the request/acknowledge/data bytes defined in below.

Table 8 Handshake protocol data definition

Name Byte
Length

Value Description

BSL_ASC_F 1 0x6C Header requesting full duplex ASC mode with the current baud rate.

BSL_ASC_H 1 0x12 Header requesting half duplex ASC mode with the current baud rate.

BSL_ENC_F 1 0x93 Header requesting full duplex ASC mode with a request to switch the
baud rate.

BSL_ENC_H 1 0xED Header requesting half duplex ASC mode with a request to switch the
baud rate.

BSL_STEP 2 0xXXX 10-bit value (LSB aligned) to be programmed into selected USIC
channel‟s FDR.STEP bit field. Most significant 6 bits should contain all
0.

BSL_BR_OK 1 0XF0 Final baud rate is established in enhanced ASC Bootstrap Loader
mode.

BSL_ID 1 0x5D Start and header bytes are received, baud rate is established.

BSL_ENC_ID 1 0xA2 Start and header bytes are received in enhanced ASC Bootstrap
Loader mode, initial baud rate is established.

BSL_PDIV 2 0xXXX 10-bit value (LSB aligned) containing the selected USIC channel‟s
BRG.PDIV bit field value. Most significant 6 bits should contain all 0.

BSL_BR_OK 1 0xF0 Final baud rate is established in enhanced ASC Bootstrap Loader
mode.

BSL_OK 1 0x01 Data received is OK.

BSL_NOK 1 0x02 Failure encountered during data reception.

 Tooling Guide
 XMC1000 Family

 ASC Loader

Tooling Guide 21 V1.0, 2013-10

Figure 10 Handshake protocol

Standard mode

In the standard ASC Bootstrap Loader mode, the XMC1000 device is able to calculate the baud rate
based on the zero byte received from the Host. Whether to operate in full duplex or half duplex mode
is determined by whether the header byte BSL_ASC_H or BSL_ASC_F is received from the Host.

Enhanced mode

When the Enhanced ASC Bootstrap Loader mode is selected, the XMC1000 device has to
communicate in enhanced ASC Bootstrap Loader mode full duplex or half-duplex when it receives the
BSL_ENC_F/H header byte. The XMC1000 device will transmit the 10-bit PDIV value to the Host.

The Host can calculate the MCLK that the XMC1000 device is running based on the formula:

 MCLK = Initial Baud Rate x (PDIV + 1) x 8

Example:

Initial Baud Rate = 19200 bps, PDIV = 0x00 0x33 = 0x0033 = 51.

MCLK = 19200 x 52 x 8 = 7.987200MHz ~ 8MHz

 Select a new baud rate based on the MCLK calculated with reference to Supported Baud Rates
Table.

 Tooling Guide
 XMC1000 Family

 ASC Loader

Tooling Guide 22 V1.0, 2013-10

 Calculate the scaling factor; i.e. ratio of the new baud rate to the initial baud rate. Some examples
are given in Scaling Factor Examples Table shown below. The scaling factor is rounded to the
nearest integer in order to meet a frequency deviation of +/- 3%.

Table 9 Scaling Factor Examples

Initial standard baud rate (kHz) Targeted higher baud rate (kHz) Scaling factor rounded to the
nearest integer

9.6 1500 156

19.2 1500 78

57.6 1500 26

115.2 1500 13

− Calculate the 10-bit value to be written into the STEP bit field of the USIC0_CHy_FDR register
through the formula: STEP (in fractional divided mode) = (1024 x Scaling Factor) / (PDIV + 1)

Example:

Initial Baud Rate = 19200 bps, target baud rate = 256000 bps, PDIV = 51.

STEP = 1024 x (256000/19200)/52 = 262.5 ~ 263 = 0x0107 = 0x01 0x07

 The host send the 10-bit STEP value to the XMC1000 device
 Wait until the BSL_BR_OK is received from the XMC1000 device using the new baud rate.
 Echo the BSL_BR_OK back to the device using the new baud rate.

2.2 Stage 2: Download sequence

After the baud rate has been detected/configured and channel/mode (full/half duplex) selected, the ASC
Bootstrap Loader waits for the 4 bytes describing the length of the application from the Host. The least
significant byte is received first. This download sequence is the same for both standard and Enhanced ASC
Bootstrap Loader mode.

Figure 11 ASC Bootstrap Loader mode Application downloading sequence

If the application length is found to be ok, a BSL_OK byte is sent to the Host and then the Host sends
the byte stream belonging to the application.

After the byte stream has been received, the XMC1000 microcontroller terminates the protocol by
sending a final OK byte and then cedes control to the downloaded application. If the application length
is found to be in error (i.e. application length is greater than the device SRAM size), a BSL_NOK byte

 Tooling Guide
 XMC1000 Family

 ASC Loader

Tooling Guide 23 V1.0, 2013-10

is transmitted back to the Host and the XMC1000 microcontroller resumes waiting for the length of the
application transmission.

 Tooling Guide
 XMC1000 Family

 ASC Loader

Tooling Guide 24 V1.0, 2013-10

ASC Programmer

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 25 V1.0, 2013-10

3 ASC Programmer

The XMC1000 microcontroller family has a built-in Bootstrap Loading (BSL) mechanism that can be used for
Flash programming. This mechanism is described in detail in the ASC Loader chapter of the XMC1000 Tooling
Guide. The XMC1000 family of products provide hard coded Bootstrap Loader routines in the BootROM to carry
out Flash programming; For example Flash writing, reading, erasing and verification. Furthermore, the
BootROM also provide a routine to change Boot Mode Index (BMI) value of the XMC1000 device.

In this chapter we will demonstrate the implementation of ASC Bootstrap Loader Programmer via standard ASC
Bootstrap Loader mode.

The target device is connected to a PC via the ASC interface. The Flash loader system demonstrated in this
application note consists of two parts:

 Flash Loader Program
− The Flash loader program is sent to the target device using the built-in Bootstrap Loading

mechanism. Once the program is sent and executed, the Flash loader program establishes a
communication protocol to receive commands from the HOST program that is running on the
PC, and controls the Flash programming of the target device.

 HOST PC Program
− The HOST program running on a PC uses the communication protocol defined by the Flash

loader. It sends Flash programming commands and the code bytes to be programmed. The
HOST program is application specific, so the HOST program in this application note is only an
example.

Tool-chains

The Flash loader program for ASC is developed with the following tool-chains:

 DAVE3 development platform v3.1.6 (www.infineon.com/dave)

Example Flash program

An example Flash program, the project LED_Blinky that toggles an LED controlled by P0.5, is provided. The file
Blinky.hex can be downloaded to Flash memory. The XMC1x_Load HOST PC program is developed with
Microsoft Visual C++ 2010. The example source code is found in the following folders:

 .\DAVE3\ XMC1x_ASCLoader, contains the ASC BSL Loader developed using the GCC compiler.
 .\DAVE3\ XMC1300_Blinky_withApps, contains the Flash example program developed using the

GCC compiler.
 .\XMC1x_Load\, holds the example HOST PC program that demonstrates the whole process of

Flash programming. The project files can be compiled with Microsoft Visual C++2010.

In Chapter -> Using the Demonstrator, describes in detail how to use the demonstrator to download
your own program into Flash and run it.

3.1 ASC Bootstrap Loading

The communication between PC and the target device is established via the ASC interface. Figure below shows
a hardware setup for this application. On the target device side, the channel 0 of USIC1 (U0C1) is used as ASC.
Ports P1.3 and P1.2 are used as RxD and TxD, respectively.

 receive pin RxD at pin P1.3 (USIC0_CH1.DX0A)
 transmit pin TxD at pin P1.2 (USIC0_CH1.DOUT0)

www.infineon.com/dave

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 26 V1.0, 2013-10

Figure 12 Connection between PC and target system for XMC1000 Bootstrap Loading

To run this program, the first step is to make the target device enter ASC BSL mode.

The boot mode of XMC1000 device depends on its BMI value which is preprogrammed when it is just
out of factory. The BMI value is 0xFFC0 which is ASC Bootstrap Load Mode, so ASC Bootstrap
Loader mode is entered upon a device reset.

The bootstrap loader procedure is as shown below.

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 27 V1.0, 2013-10

Figure 13 ASC Bootstrap loader procedure for Flash programming

The HOST starts by transmitting a zero byte to help the device detect the baud rate. The XMC1000 device
supports baud rates of up to 28800 bit/sec at MCLK = 8MHz. The ASC interface will be initialized for 8 data bits
and 1 stop bit. Next, the HOST will send a header indicating whether to communicate in basic ASC BSL full
duplex/half duplex mode or enhanced ASC BSL full duplex/half duplex mode. Using enhanced ASC BSL mode
can achieve a 0.999MHz baud rate at MCLK of 8MHz. In this device guide, we are using Basic ASC BSL mode.

After the baud rate is detected by the device, the bootstrap loader transmits an BSL_ID byte 5DH back to the
host. It then waits 4 bytes, describing the length of the Flash loading program from the HOST. The least
significant byte is received first. If the application length is found to be acceptable by the BSL, a BSL_OK
(0x01H) byte is sent to the HOST, and the HOST sends the byte stream of the Flash loader. Once the byte
stream is received, the BSL terminates the protocol by sending a final BSL_OK byte and then transfers control
to the Flash loader program.

If there is an error in the application length (i.e. the application length is greater than device SRAM size), a
BSL_NOK byte (0x02H) is transmitted back to the HOST and the BSL resumes its wait for the correct length of
bytes.

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 28 V1.0, 2013-10

The file XMC1x_ASCLoader.hex contains the Flash loading program. After XMC1x_ASCLoader is downloaded
to SRAM and executed, it will first establish the communication between PC and the target device and then
carry out Flash operations.

3.1.1 Flash Loader

The Flash Loader implements the Flash routines and establishes the communication between PC and the target
device. The main part of XMC1x_ASCLoader (main.c) implements Flash routines providing the following
features:

 Erase Flash sectors
 Erased, Program and verify the programmed Flash pages
 Change the Boot Mode Index (BMI) value of the XMC1000 device

3.1.2 DAVE3 Project Settings

The Flash loader DAVE
TM

 project is available in the .\DAVE3\XMC1x_ASCLoader folder. The project can be

imported into the DAVE
TM

 IDE with the following steps:

 Open the DAVE
TM

 IDE

 Import the Infineon DAVE
TM

 project
 Select root directory as .\DAVE3\XMC1x_ASCLoader
 Finish the import

Note: The Flash Loader program must be located in the SRAM starting at 0x20000200, because the Flash
Loader program can only run from SRAM. Therefore the default linker script file generated from DAVE3 cannot
be used in the Flash loader project, because the default linker script file locates the codes in Flash starting at
0x10001000. The linker script file that locates the codes into SRAM is provided in the XMC1x_ASCLoader.ld
folder. To change the linker script file go to project properties:

 Go to Settings->ARM-GCC C Linker->General->Script file (-T)
 Open “Browse…” to import the file XMC1x_ASCLoader.ld into the field

The Linker Script Language file XMC1x_ASCLoader.ld, defines the ROM memory for codes in SRAM starting
from address 0x20000200.
The stack, heap and global variables are located in SRAM starting from address 0x20000200. The sector and
page address must be specified to erase and program the Flash. An invalid address (an address that is not
within the Flash boundaries) results in an address error. The XMC1000 memory organization is described in the
Flash Memory Organization chapter.
Flash user codes can be executed starting from the Flash base address 0x10001000.

The Flash Loader defines a communication protocol to receive commands from the PC. Based on the
command received, the corresponding Flash routine is executed. The communication structure is
described in the Communication Protocol chapter.

3.1.2.1 Modification of DAVE
TM

 startup.s File

Attention: It is important to note that all clock setting functions in the startup_XMC1300.s file used in
XMC1x_ASCLoader project, must be removed so that the clock settings made in the ASC bootstrap
ROM code (firmware) can be kept without modification. For example, the following instructions in the

DAVE
TM

 startup_XMC1300.s file must be removed:

 LDR R0, =SystemInit
 BLX R0
 LDR R0, =SystemInit_DAVE3
 BLX R0

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 29 V1.0, 2013-10

These instructions must be removed because the functions SystemInit() and SystemInit:DAVE3() will change
the clock settings, which will change the ASC baud rate and destroy the ASC communication between the Host
PC and board after control handover from ROM code to the downloaded Flash loader program. If the baud rate
is changed, the ASC communication between PC and board will be broken and the Flash programming will not
more work.

The startup.s files provided in the XMC1x_ASCLoader project has been modified and the system init
functions are removed.

3.2 Flash Memory Organization

The embedded Flash module in the XMC1000 family includes 200 KB (maximum) of Flash memory for code or
constant data.

Flash memory is characterized by its sector architecture and page structure. Sectors are Flash
memory partitions of different sizes. The offset address of each sector is relative to the base address
of its bank which is given in Table 1. Derived devices (see the XMC1000 Data Sheet) can have less
Flash memory. The FLASH bank shrinks by cutting-off higher numbered physical sectors.

Table 10 Flash Memory Map

Range Desciption Size Start Address

Program Flash 200 Kbytes 0x10001000

 Flash erasure is sector-wise.
 Sectors are subdivided into pages.
 Flash memory programming is page-wise.
 A Flash page contains 256 bytes.

The following table lists the logical sector structure in the XCM1000 family of products.

Table 11 Sector Structure of Flash

Sector Address Range Size

1 0x10001000 – 0x10001FFF 4 KB

2 0x10002000 – 0x10002FFF 4 KB

3 0x10003000 – 0x10003FFF 4 KB

4 0x10004000 – 0x10004FFF 4 KB

5 0x10005000 – 0x10005FFF 4 KB

6 0x10006000 – 0x10006FFF 4 KB

7 0x10007000 – 0x10007FFF 4 KB

8 0x10008000 – 0x10008FFF 4 KB

9 0x10009000 – 0x10009FFF 4 KB

10 0x1000A000 – 0x1000AFFF 4 KB

11 0x1000B000 – 0x1000BFFF 4 KB

12 0x1000C000 – 0x1000CFFF 4 KB

13 0x1000D000 – 0x1000DFFF 4 KB

14 0x1000E000 – 0x1000EFFF 4 KB

15 0x1000F000 – 0x1000FFFF 4 KB

16 0x10010000 – 0x10010FFF 4 KB

17 0x10011000 – 0x10011FFF 4 KB

18 0x10012000 – 0x10012FFF 4 KB

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 30 V1.0, 2013-10

Sector Address Range Size

19 0x10013000 – 0x10013FFF 4 KB

20 0x10014000 – 0x10014FFF 4 KB

21 0x10015000 – 0x10015FFF 4 KB

22 0x10016000 – 0x10016FFF 4 KB

23 0x10017000 – 0x10017FFF 4 KB

24 0x10018000 – 0x10018FFF 4 KB

25 0x10019000 – 0x10019FFF 4 KB

26 0x1001A000 – 0x1001AFFF 4 KB

27 0x1001B000 – 0x1001BFFF 4 KB

28 0x1001C000 – 0x1001CFFF 4 KB

29 0x1001D000 – 0x1001DFFF 4 KB

30 0x1001E000 – 0x1001EFFF 4 KB

31 0x1001F000 – 0x1001FFFF 4 KB

32 0x10020000 – 0x10020FFF 4 KB

33 0x10021000 – 0x10021FFF 4 KB

34 0x10022000 – 0x10022FFF 4 KB

35 0x10023000 – 0x10023FFF 4 KB

36 0x10024000 – 0x10024FFF 4 KB

37 0x10025000 – 0x10025FFF 4 KB

38 0x10026000 – 0x10026FFF 4 KB

39 0x10027000 – 0x10027FFF 4 KB

40 0x10028000 – 0x10028FFF 4 KB

41 0x10029000 – 0x10029FFF 4 KB

42 0x1002A000 – 0x1002AFFF 4 KB

43 0x1002B000 – 0x1002BFFF 4 KB

44 0x1002C000 – 0x1002CFFF 4 KB

45 0x1002D000 – 0x1002DFFF 4 KB

46 0x1002E000 – 0x1002EFFF 4 KB

47 0x1002F000 – 0x1002FFFF 4 KB

48 0x10030000 – 0x10031FFF 4 KB

49 0x10032000 – 0x10032FFF 4 KB

3.3 Communication Protocol

The Flash loader program “XMC1x_ASCLoader” establishes a communication structure to receive commands
from the HOST PC.

The HOST sends commands via transfer blocks. Three types of blocks are defined:

Header Block

Byte 0 Byte1 Bytes 2 … 14 Byte 15

Block
Type

(0x00)

Mode Mode-specific content Checksum

The header block has a length of 16 bytes.

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 31 V1.0, 2013-10

Data Block

Byte 0 Byte1 Bytes 2 … 257 Bytes 258 … 262 Byte 263

Block
Type

(0x01)

Verification
option

256 data bytes Not used Checksum

The data block has a length of 264 bytes.

EOT Block

Byte 0 Bytes 1 … 14 Byte 15

Block
Type

(0x02)

Not used Checksum

The EOT block has a length of 16 bytes.

The action required by the HOST is indicated in the Mode byte of the header block.
The Flash loader program waits to receive a valid header block and performs the corresponding action. The
correct reception of a block is judged by its checksum, which is calculated as the XOR sum of all block bytes
excluding the block type byte and the checksum byte itself.

In ASC BSL mode, all block bytes are sent at once via the UART interface. The different modes
specify the Flash routines that will be executed by the XMC1x_ASCLoader. The modes and their
corresponding communication protocol are described in the following sections of this chapter.

3.3.1 Mode 0: Program Flash Page

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Byte 15

Block
Type

(0x00)

Mode

(0x00)

Page Address Not Used Checksum

 Page Address (32bit)
− Address of the Flash page to be programmed. The address must be 256-byte-aligned and in a

valid range (see chapter 3), otherwise an address error will occur. Byte 2 indicates the highest
byte, and byte 5 indicates the lowest byte.

After reception of the header block, the device sends either 0x55 as acknowledgement or an error code for an
invalid block. The loader enters a loop waiting to receive the subsequent data blocks in the format shown below.

The loop is terminated by sending an EOT block to the target device.

Data Block

Byte 0 Byte1 Bytes 2 … 257 Bytes 258 … 262 Byte 263

Block
Type

(0x01)

Verification
option

256 data bytes Not used Checksum

 Verification Option
− Set this byte to 0x01 to request a verification of the programmed page bytes.
− If set to 0x00, no verification is performed.

 Code bytes

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 32 V1.0, 2013-10

− Page content.
After each received data block, the device either sends 0x55 to the PC as acknowledgement, or it
sends an error code.

EOT Block

Byte 0 Bytes 1 … 14 Byte 15

Block
Type

(0x02)

Not used Checksum

After each received EOT block, the device sends either 0x55 to the PC as acknowledgement, or it
sends an error code.

3.3.2 Mode 1: Execute ‘Change BMI’ routine

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Byte 15

Block
Type

(0x00)

Mode

(0x00)

Page Address Not Used Checksum

The command causes a jump to the Change BMI routine located at address 0x00000108. The device
will do a system reset and boot up according to the BMI value programmed.

3.3.3 Mode 3: Erase Flash Sector

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Bytes 10 …
14

Byte 15

Block
Type

(0x00)

Mode

(0x03)

Sector Address Sector Size Not Used Checksum

 Sector Address (32bit)
− Address of the Flash sector to be erased. The address must be a valid sector address,

otherwise an address error will occur.
− Byte 2 indicates the highest address byte.
− Byte 5 indicates the lowest address byte.

 Sector Size (32bit)
− Size of the Flash sector to be erased. The size must be a valid sector size.
− Byte 6 indicates the highest address byte.
− Byte 9 indicates the lowest address byte.

The device sends either 0x55 to the PC as acknowledgement, or it sends an error code.

3.3.4 Response Code to the HOST

The Flash loader program will let the HOST know whether a block has been successfully received
and whether the requested Flash routine has been successfully executed by sending out a response
code.

Table 12 Response Codes

Response Code Description

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 33 V1.0, 2013-10

Response Code Description

0x55 Acknowledgement, no error

0xFF Invalid block type

0xFE Invalid mode

0xFD Checksum error

0xFC Invalid address

0xFB Error during Flash erasing

0xFA Error during Flash programming

0xF9 Verification error

0xF8 Protection error

3.4 HOST PC Program Example

The XMC1000_Bootloader HOST program developed in C++ uses the communication structure described in
Chapter -> Communication Protocol.

The file XMC1x_load_API.cpp contains the API for direct communication with the
XMC1x_ASCLoader. The API includes the following functions:

Table 13 API Functions

API Function Description

Init_uart Initialize PC COM interface

Init_ASC_BSL Initialize ASC BSL

Send_loader Send the ASC Loader

bl_send_header Send header block via ASC interface

bl_send_data Send data block via ASC interface

bl_send_EOT Send EOT block via ASC interface

bl_erase_flash Erase Flash sectors

bl_download_flash Download code to Flash

Make_flash_image Create a Flash image from HEX file

The main program (XMC1x_Load.cpp) initializes ASC and sends XMC1x_ASCLoader to the target
device.

The user must specify the HEX file to be downloaded. An example HEX file
(XMC1300_Blinky_withApps.hex) is provided. The user code is first downloaded to Flash and the
user can then execute the downloaded code if user change the BMI value to User Mode (Debug)
SWD0.

 The Flash erase procedure is implemented in the function bl_erase_flash().
 The Flash programming procedure is implemented in bl_download_flash().

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 34 V1.0, 2013-10

Figure 14 Flash erase procedure implemented in bl_erase_flash()

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 35 V1.0, 2013-10

Figure 15 Flash programming procedure implemented in bl_download_flash()

3.5 Using the Demonstrator

The example programs have been tested on an Infineon XMC1300 CPU Card with XMC1302 AA step
device. The user can use the example program to download user codes (hex file format) into Flash.
Here we give a description how to do that.

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 36 V1.0, 2013-10

3.5.1 Hardware Setup

The XMC1300 CPU Card are configured to User Mode (Debug) SWD_0, hence, we need to use J-
Link commander to change the BMI value to ASC Bootstrap Load Mode. First, connect the XMC1300
CPU Card to the PC host via a USB cable. Then, double click on “JLink.exe” on SEGGER installation
folder to run SEGGER J-Link Commander. Next, type setBMI 0 at the DOS prompt to change the BMI
of the XMC1302 device to ASC_BSL mode.

Figure 16 Using J-Link commander to change the BMI value of the XMC1302 device

3.5.2 Demonstrator File Structure

The following figure shows the file structure in the example programs.

Figure 17 File structure of example programs

 This application note is contained in folder .\App
 The folders .\DAVE3 is the project generated using DAVE3‟s GNU compiler
 XMC1x_ASCLoader project contains the ASC Bootrstrap Loader program

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 37 V1.0, 2013-10

 The XMC1300_Blinky_withApps project is the example project for LED blinking
 .\XMC1x_Load contains the Microsoft Visual C++ 2010 project for the Host PC
 The XMC1x_ASCLoader.hex and LED Blinky example XMC1300_Blinky_withApps.hex files are

saved in .\XMC1_Load\Debug\XMC1300 and .\XMC1_Load\XMC1_Load\XMC1300, separately

3.5.3 Run the Demonstrator

Before starting the demonstrator, the hex file that needs to be downloaded into Flash and copied into
the folders .\ XMC1x_Load \Debug\XMC1300 and .\ XMC1x_Load \ XMC1x_Load \XMC1300:

Figure 18 Location of object hex files to be flashed

There are two ways to start the demonstrator.

1. Double click the file XMCLoad.exe under .\ XMC1x_Load \Debug:

Figure 19 Direct start of demonstrator

2. Double click the file XMCLoad.sln file in the folder .\XMC1x_Load to open the Microsoft Visual C++
project. The project in this Device Guide is developed using Microsoft Visual C++ 2010.

 Tooling Guide
 XMC1000 Family

 ASC Programmer

Tooling Guide 38 V1.0, 2013-10

Figure 20 Start using Microsoft Visual project

In Microsoft Visual project workbench the project can be started from the “F5” key.

On starting the demonstrator the following window is displayed:

Figure 21 Start Window from Visual Project

Follow the instructions in the window to finish the Flash programming.
Note: The hex file name that will be programmed into Flash must be given completely with the file extension;
e.g. XMC1300_Blinky_withApps.hex. Otherwise, the program does not know the file name. The Flash loader
program accepts only hex file format. Furthermore, the XMC1x_ASCLoader.hex is less than 2048 Bytes, so the
4 bytes Application Length should be given with 2048.

After the hex file is programmed into Flash, user can program the BMI value to be User Mode
(Debug) SWD_0, so that the program downloaded will be executed.

3.6 Reference Documents

 Tooling Guide
 XMC1000 Family

Tooling Guide 39 V1.0, 2013-10

Table 14 References

Document Description Location

XMC1300 User‟s Manual User‟s Manual for XMC1300 device http://www.infineon.com/xmc1000

Bootloader ASC Tooling Guide for XMC4000 http://www.infineon.com/xmc4000

 Published by Infineon Technologies AG

w w w . i n f i n e o n . c o m

