 修改之后才发现，其实上次写的程序错误和不足还是很多的，以下把修改过程中碰到的一些问题罗列了一下：

1、连续输入红棋棋子操作：

 cin>>style>>x>>y;

 cout<<"*****此次输入完成****"<<endl;

 switch(style)

 {

 case 'G': {p1.set_num(1);p1.set_pos(x,y);break;} //用p1,p3,p4,p5分别表示帅、车、马、炮

 case 'R': {p3.set_num(3);p3.set_pos(x,y);break;} //根据输入的类型对相应的棋子置位

 case 'H': {p4.set_num(4);p4.set_pos(x,y);break;}

 case 'C': {p5.set_num(5);p5.set_pos(x,y);break;}

 default: cout<<"输入有误"<<endl;

 }

这个部分是根据棋子的类型来设置棋子坐标。Switch语句的条件值是可以为字符型的量的，对应的case后的值就应该是字符。

2：在棋盘上设置棋子

void Cpiece::set_pos(int x,int y)

{

plate[get_x()][get_y()]=0; // 移动棋子，原来位置上就没有棋子了

X=x;

Y=y;

plate[x][y]=num;

cout<<endl;

}

这是设置棋子坐标的函数，要注意的是函数体的第一句，将原坐标置空。
3、判断车将军中的一类特殊情况
case 3: // 判断车能否吃将

{

if(p.get_x()==p2.get_x())// 同一列上

{

if((p.get_y()==p2.get_y()+1)||(p.get_y()==p2.get_y()-1))

return 1;

else

{

i=(p.get_y()<p2.get_y()?p.get_y():p2.get_y())+1;

 j=p.get_y()>p2.get_y()?p.get_y():p2.get_y();

 for(int k=i;k<j;k++)

if(!isexist(p.get_x(),k))//棋子间无阻隔

return 1;

}

}

else if(p.get_y()==p2.get_y())//同一行上

 {

 i=(p.get_x()<p2.get_x()?p.get_x():p2.get_x())+1;

 j=p.get_x()>p2.get_x()?p.get_x():p2.get_x();

 for(int k=i;k<j;k++)

 if(!isexist(k,p1.get_y()))//棋子间无阻隔

return 1;

 }

else return 0;

}
这样来判断车能否吃将存在问题，当车与将的位置横纵坐标只相差一个单位时，比如车（3,8），将（4,8），这显然是将军情况里的一种，但此时程序是判断不出来，车已经将军了的。原因就在于，i+1=j,所以不存在j>k>=i+1,所以不会做isexist()这个函数，从而返回的将是0，也即没有将军。

修改的方法是把这样的情况单独拿出来处理

if(((p.get_x()==p2.get_x())&&((double)fabs((double)(p.get_y()-p2.get_y()))==1))||

 ((p.get_y()==p2.get_y())&&((double)fabs((double)(p.get_x()-p2.get_x()))==1)))

 return 1;

4、由于黑将吃棋引起棋盘变化的处理：

判断是否将军的函数在修改后，每个函数的第一句都有如下的句子。

case 3: // 判断车能否吃将

{

if(plate[p.get_x()][p.get_y()]!=p.get_num())

return 0;

case 4: //判断马能否吃将

{

if(plate[p.get_x()][p.get_y()]!=p.get_num())

return 0;

case 5: //判断炮能否吃将

{

if(plate[p.get_x()][p.get_y()]!=p.get_num())

return 0;

这个句子的作用是考虑到这样的情况：

黑将在躲避的过程中可能会吃掉相邻的红棋子，比如红车（3,8），黑将（4,8），那么黑将就可以左移一步，将红车吃掉。黑将左移的情况是

p2.set_pos(p2.get_x()-2,p2.get_y()); //左移

if(isok(p2)&&!judge(p1,p2)&&!judge(p3,p2)&&!judge(p4,p2)&&!judge(p5,p2))

{

 cout<<"NO"<<endl;

 exit(1);

}

（在移动黑将时，按上下右左的顺序依次移动，依次判断是否死棋，所以此处左移是p2.get_x()-2,p2.get_y()）

此过程首先要将黑将置位，即set_pos()，set_pos()函数里面plate[x][y]=num这句话完成棋盘上的记录。但是，实际上还是有一个问题，理论上这个时候红车被将吃了，没有了，棋盘plate【】【】也确是如此，但程序在判断时用的是这样的语句：judge(p1,p2)&&!judge(p3,p2)&&!judge(p4,p2)&&!judge(p5,p2)。之前并没有对p3.num进行处理，所以这时候判断时就会出现一个棋格上有两个棋子，会对判断结果造成影响。在每次判断前对plate[x][y]上的棋子进行判断，因为这个数组是静态变量，所以是可行的。从而解决了问题。

将程序由整理成多个.h和.cpp过程中遇到的问题；

 为使程序代码更有层次感，将原来在一个cpp文件下的代码，改成了两个头文件和三个cpp文件。这个过程里面一是有重复定义的问题，另外一个是作用域的问题。

 由于p1,p2,p3,p4,p5在func里用到，一开始只是在func.h文件里做了声明：
Cpiece p1,p2,p3,p4,p5;

生成解决方案时，总会报错
1>Func.obj : error LNK2005: "class Cpiece p5" (?p5@@3VCpiece@@A) 已经在Cpiece.obj 中定义

1>Func.obj : error LNK2005: "class Cpiece p3" (?p3@@3VCpiece@@A) 已经在Cpiece.obj 中定义

1>Func.obj : error LNK2005: "class Cpiece p2" (?p2@@3VCpiece@@A) 已经在Cpiece.obj 中定义

1>Func.obj : error LNK2005: "class Cpiece p4" (?p4@@3VCpiece@@A) 已经在Cpiece.obj 中定义

1>Func.obj : error LNK2005: "class Cpiece p1" (?p1@@3VCpiece@@A) 已经在Cpiece.obj 中定义

 百度得到的答案是：

编程中经常能遇到LNK2005错误——重复定义错误，其实LNK2005错误并不是一个很难解决的错误。弄清楚它形成的原因，就可以轻松解决它了。
 造成LNK2005错误主要有以下几种情况：
 1．重复定义全局变量。可能存在两种情况：
 A、对于一些初学编程的程序员，有时候会以为需要使用全局变量的地方就可以使用定义申明一下。其实这是错误的，全局变量是针对整个工程的。正确的应该是在一个CPP文件中定义如下：int g_Test;那么在使用的CPP文件中就应该使用：extern int g_Test即可，如果还是使用int g_Test，那么就会产生LNK2005错误，一般错误错误信息类似：AAA.obj error LNK2005 int book c？book@@3HA already defined in BBB.obj。切记的就是不能给变量赋值否则还是会有LNK2005错误。

这里需要的是“声明”，不是“定义”！根据C++标准的规定，一个变量是声明，必须同时满足两个条件，否则就是定义：
 (1)声明必须使用extern关键字；(2)不能给变量赋初值
 所以，下面的是声明:
 extern int a;
 下面的是定义
 int a; int a = 0; extern int a =0;

所以最终Cpiece p1,p2,p3,p4,p5放在func.cpp，而在main.cpp里又做extern Cpiece p1,p2,p3,p4,p5说明，以说明其为全局变量。

另外，plate[][]的声明最初是放在Chess.h中的，但运行程序是，通过调试发现plate[][]所有值都是0，因为这个时候的静态变量范围实在是搞不清楚，所以索性把plate[][]声明成跟p1之类的量一样的全局变量。于是就有了在Cpiece.cpp里int plate[9][10]，Func.cpp里extern int plate[9][10]，main.cpp里extern plate[9][10].
