
本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

一步一步教你使用 uCOS-II

前言篇

前段时间看了 Linux 版块“zjw50001”网友上传的资料《一步一步教你开发嵌入式

Linux 应用程序》感觉对于学习 Linux 的新手来说有很大帮助。同时也很受启发。决定在

UCOS 版块发这样一个连续贴来介绍一下 uCOS-II。主要包括 uCOS-II 的介绍、UCOS-II 的移

植、uCOS-II 的的源码解析和 UCOS-II 的应用案例。

uCOS-II 的版本采用常用的 2.52 版本，开发平台用我手头现有的 STM32F103XXX 自制的

开发板。

在这采用边写边讨论的方式。如果在过程中大家有疑问请及时跟帖提出。会在每篇后给

出解决方法，同时考虑到工作量比较大，所以希望大家积极参与，让我们共同把 uCOS-II

这个嵌入式操作系统的知识传授个每一位需要的网友。

第一章 UCOS介绍

第一篇 UCOS 介绍

这个大家都知道。呵呵。考虑到咱们学习的完整性还是在这里唠叨一下。让大家再熟悉

一下。高手们忍耐一下吧！ uC/OS II(Micro Control Operation System Two)是一个可以

基于 ROM 运行的、可裁减的、抢占式、实时多任务内核，具有高度可移植性，特别适合于微

处理器和控制器，是和很多商业操作系统性能相当的实时操作系统(RTOS)。为了提供最好的

移植性能，uC/OS II 最大程度上使用 ANSI C 语言进行开发，并且已经移植到近 40 多种处

理器体系上，涵盖了从 8 位到 64 位各种 CPU(包括 DSP)。

uC/OS II 可以简单的视为一个多任务调度器，在这个任务调度器之上完善并添加了和多

任务操作系统相关的系统服务，如信号量、邮箱等。其主要特点有公开源代码，代码结构清

晰、明了，注释详尽，组织有条理，可移植性好，可裁剪，可固化。内核属于抢占式，最多

可以管理 60 个任务。

μC/OS-II 的前身是 μC/OS，最早出自于 1992 年美国嵌入式系统专家 Jean

J.Labrosse 在《嵌入式系统编程》杂志的 5 月和 6 月刊上刊登的文章连载，并把 μC/OS 的

源码发布在该杂志的 B B S 上。

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

μC/OS 和 μC/OS-II 是专门为计算机的嵌入式应用设计的， 绝大部分代码是用 C 语言

编写的。CPU 硬件相关部分是用汇编语言编写的、总量约 200 行的汇编语言部分被压缩到最

低限度，为的是便于移植到任何一种其它的 CPU 上。用户只要有标准的 ANSI 的 C 交叉编译

器，有汇编器、连接器等软件工具，就可以将 μC/OS-II 嵌人到开发的产品中。μC/OS-II 具

有执行效率高、占用空间小、实时性能优良和可扩展性强等特点， 最小内核可编译至 2KB 。

μC/OS-II 已经移植到了几乎所有知名的 CPU 上。

严格地说 uC/OS-II 只是一个实时操作系统内核，它仅仅包含了任务调度，任务管理，

时间管理，内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理，文件系统，

网络等额外的服务。但由于 uC/OS-II 良好的可扩展性和源码开放，这些非必须的功能完全

可以由用户自己根据需要分别实现。

uC/OS-II 目标是实现一个基于优先级调度的抢占式的实时内核，并在这个内核之上提

供最基本的系统服务，如信号量，邮箱，消息队列，内存管理，中断管理等。

uC/OS-II 以源代码的形式发布，但并不意味着它是开源软件。你可以将其用于教学和

私下研究（peaceful research）；但是如果你将其用于商业用途，那么你必须通过 Micrium

获得商用许可。

虽然 uCOS-II 在商业上使用时需要的得到授权并且费用也是一笔不小的数字，但是他的

开源毕竟带领我们走入了内核的世界。在此我代表嵌入式工程师向 Mr Jean J.Labrosse 致

谢。

任务管理

uC/OS‐II 中最多可以支持 64 个任务，分别对应优先级 0～63，其中 0 为最高优先级。63

为最低级，系统保留了 4个最高优先级的任务和 4 个最低优先级的任务，所有用户可以使用

的任务数有 56 个。

uC/OS‐II 提供了任务管理的各种函数调用，包括创建任务，删除任务，改变任务的优先级，

任务挂起和恢复等。

系统初始化时会自动产生两个任务：一个是空闲任务，它的优先级最低，该任务仅给一个整

形变量做累加运算；另一个是系统任务，它的优先级为次低，该任务负责统计当前 cpu 的利

用率。

在系统初始化完毕后启动任务时必须创建一份用户任务，也就是说必须有一个应用程序（用

户任务，使用应用程序对于我们经常使用Windows用户容易接受一些。呵呵），否则系统会

崩溃。当然还有一些其他的要求，咱们后续再说，下面简要概述一下任务管理相关的函数

1：建立任务 OSTaskCreat()/OSTaskCreatExt()

如果想让 UCOS管理用户的任务，必须先建立任务。可以通过将任务的地址和其他参数传递

到以下两个函数之一来建立任务。当调用 OSTaskCreat()时，需要四个参数：

OSTaskCreate(void(*task)(void*pd),void*pdata,OS_STK*ptos,INTU prio)

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

Task：是指向任务代码的指针，pdata：是任务开始执行是，传递给任务的参数的指针，ptos：

是分配给任务的堆栈的栈顶指针，prio是分配给任务的优先级。

也可以用 OSTaskCreatExt()，不过该函数需要 9 个参数，前四个参数与 OSTaskCreat()一样，例

如：

INT8U OSTaskCreateExt(void(*task)(void *pd),void *pdata,OS_STK *ptos, INT8U prio, INT16U

id, OS_STK *pbos, OS_STK *pbos, OS_STK *pbos, INT16U opt)

id 参数为要建立的任务创建一个特殊的标识符。pbos是指向任务的堆栈栈底的指针，用于

堆栈的检验。stk _size用于指定堆栈成员数目的容量。pext 是指向用户附加的数据域的指

针，用来扩展任务的 OS_TCB。opt 用于设定 OSTaskCreateExt()的选项，指定是否允许堆栈检

验，是否将堆栈清零，任务是否要进行浮点操作等等。

2：任务堆栈 OS_STK（）

每个任务都有自己的堆栈，堆栈必须申明为 OS_STK 类型，并且由连续的内存空间组成。可

以静态分配堆栈空间，也可以动态分配堆栈空间。

3：堆栈检验 OSTaskStkChk()

有时确定任务实际需要的堆栈空间的大小是很有必要的，因为这样就可以避免为任务分配过

多的堆栈空间，从而减少应用程序代码所需的 RAM 空间。

4：删除任务 OSTaskDel()

有时需要删除任务，删除任务，是说任务返回并处于休眠态，并不是说任务的代码被删除了，

只是任务的代码不再被 UCOS调用。删除任务前应保证所删任务并非空闲任务。

5：请求删除任务 OSTaskDelReq()

有时，任务会占用一些内存缓冲或信号量一类的资源。这时，假如另一个任务试图删除该任

务，这些被占用的资源就会因为没有被释放而丢失。在这种情况下，需想办法拥有这些资源

的任务在使用完资源后先释放资源，再删除自己。

6：改变任务的优先级 OSTaskChangePrio()

在建立任务时，会分配给任务一个优先级。在程序运行期间，可以通过调用该函数改变任务

的优先级。也就是说，UCOS允许动态的改变任务的优先级。

7：挂起任务 OSTaskSuspend()

任务挂起是一个附加功能，也就是说，如果任务在被挂起的同时也在等待延迟时间到，那么，

需要对任务做取消挂起的操作，并且等待延迟时间到，任务才能转让就绪状态。任务可以挂

起自己或者其他任务。

8：恢复任务 OSTaskResume()

挂起的任务只有通过该函数才能被恢复。

9：获得任务的信息 OSTaskQuery()

通过调用该函数，来获得自身或其他应用任务的信息

时间管理

uC/OS‐II的时间管理是通过定时中断来实现的，该定时中断一般为 10 毫秒或 100 毫秒发生

一次（这个时间片段是 OS的作者推荐的，大家可以参考邵贝贝翻译的《嵌入式实时操作系

统 ucos‐II》这本书），时间频率取决于用户对硬件系统的定时器编程来实现。中断发生的时

间间隔是固定不变的，该中断也成为一个时钟节拍。这里隐含的意思就是你选择的芯片如果

想使用 UCOS 系统，前提条件一定要有一个 Timer。

uC/OS‐II 要求用户在定时中断的服务程序中，调用系统提供的与时钟节拍相关的系统函数，

例如中断级的任务切换函数，系统时间函数。

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

uCOS时间管理的相关函数

1：任务延迟函数 OSTimeDly()

Ucos提供一个可以被任务调用而将任务延时一段特定时间的功能函数，即 OSTimeDly().任务

调用 OSTimeDly()后，一旦规定的时间期满或者有其他的任务通过调用 OSTimeDlyResume()

取消了延时，他就会进入就绪状态。只有当该任务在所有就绪态任务中具有最高的优先级，

它才会立即运行。

2：按时，分，秒延时函数 OSRimeDLyHMSM()

与 OSTimeDly()一样，调用 OSRimeDlyHMSM()函数也会是 UCOS 进行一次任务调度，并且执

行下一个优先级最高的就绪任务。当 OSTimeDlyHMSM()后，一旦规定的时间期满，或者有

OSTimeDlyResume()，它就会马上处于就绪态。同样，只有当该任务在所有就绪态任务中具

有最高的优先级，他才开始运行。

3：恢复延时的任务 OSTimeDlyResume()

延时的任务可以不等待延时的期满，而是通过其他任务取消延时而使自己处于就绪态，可以

通过该函数来实现，实际上，OSTimeDlyResume()也可以唤醒正在等待的事件。

4：系统时间 OSTimeGet()和 OSTimeSet()

内存管理

在 ANSI C中是使用 malloc 和 free两个函数来动态分配和释放内存。例如在 Linux 系统中就

是这样。但在嵌入式实时系统中，多次这样的操作会导致内存碎片，因为嵌入式系统尤其是

uCOS是实地址模式，这种模式在分配任务堆栈时需要整块连续的空间，否则任务无法正确

运行。且由于内存管理算法的原因，malloc 和 free的执行时间也是不确定。这点是实时内

核最大的矛盾。

基于以上的原因 uC/OS‐II中把连续的大块内存按分区管理。每个分区中包含整数个大小相同

的内存块，但不同分区之间的内存快大小可以不同。用户需要动态分配内存时，系统选择一

个适当的分区，按块来分配内存。释放内存时将该块放回它以前所属的分区，这样能有效解

决碎片问题，同时执行时间也是固定的。

同时 uCOS‐II根据以上的处理封装了适合于自己的动态内存分配函数 OSMemGet（）和

OSMemPut（），但是使用这两个函数动态分配内存前需要先创建内存空间，也就是第二段

咱们介绍的内存分块。呵呵，不罗嗦了，具体的关于内存管理的函数如下：

内存控制块的数据结构

Typedef

struct

{void *osmemaddr ;指向内存分区起始地址的指针。

Void *osmemfreelist ;指向下一个空余内存控制块或者下一个空余内存块的指针，

Int32u osmemblksize ;内存分区中内存块的大小，是建立内存分区时定义的。

Int32u osmemnblks ;内存分区中总的内存块数量，也是建立该内存分区时定义的。

Int32u osmemnfree ;内存分区块中当前获得的空余块数量。

}os_mem;

1；建立一个内存分区，OSMemCreate()

2：分配一个内存块，OSMemGet()

应用程序通过调用该函数，从已经建立的内存分区中申请一个内存块。该函数唯一的参数是

指向特定内存分区的指针。

3：释放一个内存块，OSMemPut()

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

当应用程序不再使用一个内存块时，必须及时的把它释放，并放回到相应的内存分区中，这

个操作就是通过调用该函数实现的。

4：查询一个内存分区的状态，OSQMemQuery()。

任务间通信与同步

对一个多任务的操作系统来说，任务间的通信和同步是必不可少的。uC/OS‐II中提供了 4 种

同步对象，分别是信号量，邮箱，消息队列和事件。所有这些同步对象都有创建，等待，发

送，查询的接口用于实现进程间的通信和同步。

对于这 4 种同步对象将在后面一一讨论。

任务调度

uC/OS‐II 采用的是可剥夺型实时多任务内核。可剥夺型的实时内核在任何时候都运行就绪了

的最高优先级的任务。

uC/os‐II的任务调度是完全基于任务优先级的抢占式调度，也就是最高优先级的任务一旦处

于就绪状态，则立即抢占正在运行的低优先级任务的处理器资源。为了简化系统设计，

uC/OS‐II规定所有任务的优先级不同，因为任务的优先级也同时唯一标志了该任务本身。

UCOS的任务调度在一下情况下发生：

1） 高优先级的任务因为需要某种临界资源，主动请求挂起，让出处理器，此时将调度就绪

状态的低优先级任务获得执行，这种调度也称为任务级的上下文切换。

2）高优先级的任务因为时钟节拍到来，在时钟中断的处理程序中，内核发现高优先级任务

获得了执行条件(如休眠的时钟到时)，则在中断态直接切换到高优先级任务执行。这种调度

也称为中断级的上下文切换。

这两种调度方式在 uC/OS‐II的执行过程中非常普遍，一般来说前者发生在系统服务中，后者

发生在时钟中断的服务程序中。

调度工作的内容可以分为两部分：最高优先级任务的寻找和任务切换。其最高优先级任务的

寻找是通过建立就绪任务表来实现的。u C / O S 中的每一个任务都有独立的堆栈空间，并有

一个称为任务控制块 TCB(Task Control Block)的数据结构，其中第一个成员变量就是保存的任

务堆栈指针。任务调度模块首先用变量 OSTCBHighRdy 记录当前最高级就绪任务的 TCB 地

址，然后调用 OS_TASK_SW()函数来进行任务切换。

第二章 搭建 UCOS‐II 2.52版的调试平台

在这一章中我们主要讨论 UCOSII的源码调试环境，为了给大家一个共同的学习平台，我搜

集整理了一写资料，就是以 X86 为平台，使用 BC31（这个堪称骨灰级的编译器）来调试 UCOSII

源码。当然你也可以用 BC45或更高版本的编译器，具体方法大同小异，我在此就不再啰嗦。

本章节的主要内容包括四点：

1、下载并安装 BC31编译器

2、下载并安装 UCOS‐II2.52 版本源代码

3、使用 BC31编译 UCOS‐II源码

4、让 OS的第一个任务 RUN起来

本课

户 w

接下

下载

我在

BC31

让自

前面

信有

OK，

第一

第二

第三

第四

具体

然后

OK，

第

关于

UCO

做一

在学

课件由 EEWORLD

o4fisher收集整

下来会在每个

载并安装 BC

在这里提供给

1）由于这个

自己的第一

面已经给大家

有兴趣的朋友

下面我就分

一步：CopyC:

二步：修改工

三部：按照咱

四步：修改 Te

体的内容我就

后编译

第一个任务

第三章：

于 UCOS 任务

OS的运行是基

一个理解

学习ＵＣＯＳ

D版主 wstrom

整理，送给那些

个帖子中讨论

C31 编译器

给大家这个骨

个软件的比较

一个任务 Run

家介绍了如何

友已经安装调

分步介绍建立

\SOFTWARE\

工程模板的名

咱们前面的《

est.c 文件，建

就不再帖子上

务就 Run起来

：关于

务的理解

基于任务运行

任务前我们

讲解，并有 ee

些在学习 uC/O

论一点。耐心

器

骨灰级的编译器

较大，分成两

n 起来

何在 PC机上调

试了，下面

立自己的第一

\uCOS‐II目录

字为：Hello

使用 BC31

建立自己的第

上写了。大家

来了，显示如

于 UCO

行的，为了能

先对我们以前

eworld论坛注册

OS的朋友………

等待哦！

器 BC31.需要

两个压缩包。

调试 UCOS，

咱们就让自

一个任务

录下的 EX1_x8

oEEWorld

工具编译 U

第一个任务

可以参考附件

如下界面

S任务

能够好的使用

前使用的模式

册用

要的可以下载

下班了，先到

方法和需要的

己的第一个任

86L 文件夹。

UCOS‐II 的源

件 HelloEEWo

务的理解

用 UCOS我们

式做一个回顾

载。见附件（

到这里，回家

的软件都介绍

任务在 PC上

作为我们的

源码过程 》修

orld.rar 里面

解

先要对 UCO

顾－－前后台

（骨灰级编译

家再传附件！

绍给大家了，

上 Run 起来。

的工程模板

修改配置文件

面的 Test.c 文件

OS的任务的概

台模式。

译器

相

件；

件。

概念

本课

户 w

这种

中调

处理

级。

务提

处理

的任

一特

这种

我大

UCO

认为

务，

CPU

课件由 EEWORLD

o4fisher收集整

种系统可称为

调用相应的函

理异步事件，

时间相关性

提供的信息一

理信息的及时

任务级响应时

特定部分的准

种系统是在我

大学毕业后的

OS‐II是基于任

为 CPU 完全只

每个任务都

 寄存器和自

D版主 wstrom

整理，送给那些

为前后台系统

函数完成相应

这部分可以看

性很强的关键

一直要等到后

时性上，比实

时间取决于整

准确时间也是

我们上学时和

的钱三年写的

任务运行的。

只属该程序

都是整个应用

自己的栈空间

讲解，并有 ee

些在学习 uC/O

2

统或超循环系

应的操作，这

看成前台行

键操作(Critical

台程序走到

际可以做到的

整个循环的执行

是不能确定的

做小项目时

项目都是在裸

一个任务，

自己。实时应

的某一部分

间(如下图所示

eworld论坛注册

OS的朋友………

2011‐3‐6 22:2

统(Super‐Loo

部分可以看成

foreground。

l operation)一

该处理这个信

的要差。这个

行时间。因为

。进而，如果程

经常用到，很

裸奔。

也称作一个

应用程序的设

，每个任务被

示)。

册用

23

ops)。应用程

成后台行为(

。后台也可以

一定是靠中断

信息这一步时

个指标称作任

为循环的执行

程序修改了，

很多工程师称

个线程，是一

设计过程，包

被赋予一定的

程序是一个无

background)

以叫做任务级

断服务来保证

时才能得到处

任务级响应时

行时间不是常

，循环的时序

称这种方式为

个简单的程序

包括如何把问

的优先级，有

无限的循环，

。中断服务程

级。前台也叫

证的。因为中

处理，这种系

时间。最坏情

常数，程序经

序也会受到影

为“裸奔”。哈

序，该程序可

问题分割成多

有它自己的一

循环

程序

中断

断服

统在

情况下

经过某

影响。

哈哈！

可以

个任

一套

本课

户 w

可以

同时

内容

的 C

大家

度时

这 5

下图

任务

暂时

可以

设的

待超

服务

些函

课件由 EEWORLD

o4fisher收集整

以这么理解，

时拥有自己的

容保存到自己

CPU寄存器从

家一定不要把

时在细说。每个

5 种状态是休

图） 休眠态

务已经准备好

时不能运行。

以叫做等待事

的 I/O 操作，

超时信号的到

务，原来正在

函数提供的服

D版主 wstrom

整理，送给那些

UCOS‐II 的每

的一套寄存器

己的堆栈中，

从自己的堆栈

把任务的运行

个任务都是一

休眠态， 就绪

态相当于该任

好， 可以运行

运行态的任

事件态 WAITIN

等待某共享

到来以结束目

在运行的任务

服务，这些函

讲解，并有 ee

些在学习 uC/O

Pic

每一个任务都

器，当任务执行

同时把 CPU

栈中放到真正

行当成是函数

一个无限的循

绪态、 运行态

任务驻留在内

行了， 但由于

务是指该任务

NG，指该任务

享资源由暂不

前的等待，

务暂不能运行

数使任务从

eworld论坛注册

OS的朋友………

22011‐3‐6 22

都有一个 CPU

行完毕后（时

让给别的任

正的 CPU寄存

的调用，这完

循环。每个任

态、 挂起态

内存中，但并

于该任务的优

务掌握了 CP

务在等待，等

不能使用变成

等等） 。最

，就进入了被

一种状态变到

册用

2:23

U，任务在运

时间片到），

任务，那么得到

存器中开始运

完全是两回事

任务都处在以

态(等待某一事

并不被多任务

优先级比正在

PU 的控制权

等待某一事件

成能使用状态

最后，发生中

被中断状态。

到另一种状态

行时占用 CP

他把自己的

到 CPU使用权

运行，就这样

事。这个我们

下 5 种状态

事件发生)和被

务内核所调度

在运行的任务

权，正在运行

件的发生，

， 等待定时

中断时，CPU

。如下图表示

态。

PU的全部资

CPU寄存器

权的任务把

周而复始。

们到后面的任

态之一的状态

被中断态（参

度。就绪意味

的优先级低

行中。挂起状

（例如等待

时脉冲的到来

提供相应的

示μC/OS‐Ⅱ中

源，

器所有

自己

任务调

态下，

参见

着该

， 还

状态也

某外

来或等

中断

中一

本课

户 w

简单

时的

中的

器。

补充

不可

不可

任务

使一

中断

CPU

不可

行着

大大

不可

课件由 EEWORLD

o4fisher收集整

单的我们可以

的中断，那个中

的任务切换是

充知识-可剥

可剥夺型内核

可剥夺型内核

务，各个任务

一个高优先级

断了的那个任

的使用权。

可剥夺型内核

着的任务。 中

大好于前后系

可剥夺型内核

D版主 wstrom

整理，送给那些

以把每一次任

中断是硬件中

是软中断，CPU

剥夺型内核

核

核要求每个任

务彼此合作共

级的任务由挂

任务，直到该

核允许每个任

中断服务完成

系统，但仍是

核的工作过程

讲解，并有 ee

些在学习 uC/O

Pic

任务的切换当

中断，中断时

U保存了必要

核和不可剥夺

任务自我放弃

共享一个 CPU

挂起状态变为

任务主动放弃

任务运行，直

成以后将 CP

是不可知的，

程见下图：

eworld论坛注册

OS的朋友………

32011‐3‐6 22

成一次中断，

时需要保存的

要的寄存器后

夺型内核

CPU 的所有

U。异步事件

就绪状态。

弃 CPU 的使

到该任务自愿

U 控制权还

商业软件几乎

册用

2:23

，这个中断不

CPU寄存器

后在切换时系

有权。 不可剥

件还是由中断服

但中断服务

使用权时，那

愿放弃 CPU

还给被中断了

乎没有不可剥

不同于我们在

器是由硬件实

系统会在保存

剥夺型调度法

服务来处理。

务以后控制权

那个高优先级

的控制权。

的任务。任务

剥夺型内核。

在使用前后台

现的，而在 U

存任务使用的

法也称作合作

。中断服务可

权还是回到原

级的任务才能

中断可以打

务级响应时间

。

模式

UCOS

寄存

型多

可以

来被

能获得

入运

间要

本课

户 w

可剥

 当系

售的

当一

被剥

服务

高的

到 C

可剥

UCO

课件由 EEWORLD

o4fisher收集整

剥夺型内核

系统响应时间

的实时内核都

一个运行着的

剥夺了，或者

务子程序使一

的那个任务开

CPU的控制权

剥夺型内核的

OS-II 任务

D版主 wstrom

整理，送给那些

间很重要时，

都是可剥夺型

的任务使一个

者说被挂起了

一个高优先级

开始运行。使用

权是可知的。

的工作过程是

务调度

讲解，并有 ee

些在学习 uC/O

2

要使用可剥

型内核。 最高

个比它优先级

，那个高优

级的任务进入

用可剥夺型内

使用可剥夺

是这样的：

2

eworld论坛注册

OS的朋友………

2011‐3‐6 22:2

剥夺型内核。

高优先级的任务

高的任务进入

先级的任务立

就绪态，中断

内核，最高优

夺型内核使得

2011‐3‐6 22:2

册用

26

因此，μC/O

务一旦就绪，

入了就绪态，

立刻得到了

断完成时，中

优先级的任务

得任务级响应

26

OS‐Ⅱ以及绝

， 总能得到 C

 当前任务

CPU的控制

中断了的任务

务什么时候可

应时间得以最

绝大多数商业

CPU 的控制

的 CPU使用

制权。如果是

务被挂起，优

可以执行，可

最优化。

业上销

权。

权就

中断

优先级

可以得

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

任务调度是内核的主要职责之一，就是要决定该轮到哪个任务运行了。多数实时内核是基于

优先级调度法的，UCOS 也不例外。每个任务根据其重要程度的不同被赋予一定的优先级。

基于优先级的调度法指，CPU总是让处在就绪态的优先级最高的任务先运行。然而，究竟何

时让高优先级任务掌握 CPU 的使用权，有两种不同的情况，这要看用的是什么类型的内核，

是不可剥夺型的还是可剥夺型内核。

上一次咱们已经介绍了可剥夺型内核和不可剥夺型内核的工作过程了。在此不再赘述！

当多任务内核决定运行另外的任务时，它保存正在运行任务的当前状态，即 CPU寄存器中

的全部内容。这些内容保存在任务的当前状况保存区，也就是任务自己的栈区之中，上一次

讨论的内容中有这个图示。入栈工作完成以后，就是把下一个将要运行的任务的当前状况从

该任务的栈中重新装入 CPU 的寄存器，并开始下一个任务的运行。这个过程叫做任务切换。

任务切换过程增加了应用程序的额外负荷。CPU 的内部寄存器越多，额外负荷就越重。做任

务切换所需要的时间取决于 CPU有多少寄存器要入栈。实时内核的性能不应该以每秒钟能

做多少次任务切换来评价。而是要看 OS总的关中断时间。总的关中断时间越短说明这个内

核的实时性越好。这个问题在前面一个坛友的问题中我做了详细的描述，有兴趣的朋友可以

在 UCOS这个版块找找这个帖子。

任务调度的算法有很多种。一种是基于优先级的。一种是基于时间片的。这两种算法在邵贝

贝教授翻译的《UCOS‐II 内核详解》这本书中有详细解释。我就不再重复。如果坛子里有朋

友对此有什么不明白。可以在这里留言。咱们再讨论。

UCOS-II 的文件结构

前面我们对 UCOS的基础知识做了了解，其中有些地方由于邵贝贝翻译的树上讲解的很少我

就没有班门弄斧，大家可以结合那本书来看。有问题或不明白的在这里讨论，欢迎大家剔除

问题。

这次我们主要了解 UCOS‐II的文件结构。等对 UCOS 文件结构了解以后，我们就逐一的去讲

解其各章的重点和难点，达到在短时间内学会使用 UCOS。

本课

户 w

2011

我们

次，

的最

学习

备一

于我

再往

相关

在往

深入

分，

同讨

最上

任务

UCO

课件由 EEWORLD

o4fisher收集整

1‐3‐17 06:56

们利用这张图

在这个图的

最小系统版、

习可以，使用

一个定时器，

我们人的心跳

往上就是软件

关的代码，在

往上左侧就是

入学习，由于

只是告诉大

讨论，右侧是

上层是我们的

务代码。

OS 的任务及

D版主 wstrom

整理，送给那些

图片把 UCOS

的最下面是我

51 最小系统

用我就不建议

也就是上图

跳。如果没有

件了，软件的第

在后面我们我

是系统内核源

于我在这里的

大家如何使用

是系统的配置

的应用软件，相

及状态

讲解，并有 ee

些在学习 uC/O

UCOS‐

的内部做一个

我们使用的硬件

统版。呵呵，

了！从图中我

中的 TIMER。

有这个 TIMER，

第一层是我们

我们再讲解移植

源码的各个文件

主要任务是

即可。当然，

置文件，相对

相当于我们在

eworld论坛注册

OS的朋友………

‐II内核文件结

个解剖，我们

件，就是我们

我本人觉得

我们可以知道

。这个 TIME

，统统就无法

们移植的重点

植过程的时候

件。有兴趣的

告诉大家如何

如果你在研

比较简单，主

在电脑上使用

册用

结构图

们可以清楚的

们的移植平台

得把 UCOS 移植

道，要想移植

R是用来给 U

法运行。

点，这三个文

候会详细的讨

的坛友可以参

何使用 UCOS

研究过程中遇

主要涉及到一

用的 Office软

的看到 UCOS

台，比如 STM

植到 51 上的

植 UCOS 你的

UCOS提供时

文件内主要包

讨论到这三个

参考邵贝贝教

S，故不再过

遇到问题可以

一些功能的裁

软件等，当然

内核的结构

M32F103XX 系

的意义不大。

的硬件平台必

时钟节拍的，

包括一些与处

个文件。

教授翻译的书

过多的讲解源

以拿出来和大

裁剪。

然这里是你自

及层

系列

只是

须具

相当

处理器

进行

码部

大家共

己的

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

任务的资源主要包括以下几部分，ECB 控制块、任务堆栈、任务代码及与 CPU 共用的寄存器

和 CPU 的使用权

本课

户 w

第

课件由 EEWORLD

o4fisher收集整

第 4章_

D版主 wstrom

整理，送给那些

_uCOS

讲解，并有 ee

些在学习 uC/O

S‐II及其

eworld论坛注册

OS的朋友………

其任务

册用

务.ppt.ppdf

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

第4章 进程与线程_uCOS的任务

1111 uC/OS-II 概述1111

2222 uC/OS-II的任务

uC/OS II 概述

2222 uC/OS-II的任务

3333 任务控制块

4444 任务堆栈

5555 系统任务

1

uC/OS-II 概述

μC/OS——Micro Controller OS，微控制器操作系
统统

美国人Jean Labrosse 1992年完成

应用面覆盖了诸多领域，如照相机、医疗器械、音
响设备、发动机控制、高速公路电话系统、自动提响设备、发动机控制、高速公路电话系统、自动提
款机等

1998年出μC/OS II 目前的版本μC/OS II V2 611998年出μC/OS-II，目前的版本μC/OS -II V2.61
2000年，得到美国航空管理局（FAA）的认证，
以用于飞行器中可以用于飞行器中

网站www.ucos-II.com（www.micrium.com)

2

网站www.ucos II.com（www.micrium.com)

uC/OS-II 概述--文件结构

体
系系
结
构

3

uC/OS-II 概述-性能特点

源代码公开

可移植（Portable）

大部分代码用ANSI C写 与处理器无关 移植时大部分代码用ANSI C写，与处理器无关，移植时
不需修改

少量与微处理器硬件相关的部分用C与汇编编写，
移植时需修改：移植时需修改：

OS_CPU.H //与硬件相关，移植时需修改

OS_CPU_A.ASM //集中了所有与处理器相关的汇编语
言代码

4

OS_CPU.C //集中了所有与处理器相关的汇编语言代码

uC/OS-II 概述-性能特点

可裁剪（Scalable）
可以只使用μ C/OS-II中应用程序需要的那些
系统服务 也就是说某产品可以只使用很少系统服务。也就是说某产品可以只使用很少
几个μ C/OS-II调用，而另一个产品则使用了
几乎所有μ C/OS-II的功能 这样可以减少产几乎所有μ C/OS-II的功能，这样可以减少产
品中的μ C/OS-II所需的存储器空间（RAM
和ROM）和ROM）。

可剪裁性通过条件编译实现。实

5

uC/OS-II 概述-性能特点

可剥夺性（Preemptive）与可确定性

内核可剥夺、函数调用或系统服务的执行时间具有
可确定性，是硬实时操作系统。可确定性，是硬实时操作系统。

支持多任务

μC/OS-II可以管理64个任务

任务栈任务栈

每个任务有自己单独的栈， μ C/OS-II允许每个任每个任务有自己单独的栈， μ C/OS II允许每个任
务有不同的栈空间，以便压低应用程序对RAM的
需求。

6

需求。

uC/OS-II 概述-性能特点

系统服务

μC/OS-II提供很多系统服务，例如邮箱、消息队列

、信号量、块大小固定的内存的申请与释放、时间、信号量、块大小固定的内存的申请与释放、时间
相关函数等。

中断管理中断管理

中断可以使正在执行的任务暂时挂起，如果优先级中断可以使正在执行的任务暂时挂起，如果优先级
更高的任务被该中断唤醒，则高优先级的任务在中
断嵌套全部退出后立即执行，中断嵌套层数可达断嵌套全部退出后立即执行，中断嵌套层数可达
255层。

7

uC/OS-II 概述-图书

描述了µC/OS-II内部的
工作原理工作原理

随书的CD中包含了源代随书的CD中包含了源代
码

工业界最清晰的源代

English
ISBN 1-57820-103-9

工业界最清晰的源代
码

美国CMP BOOK

除英文版外，有中文和
韩文版韩文版

Chinese
ISBN 7-81077-290-2

北京航空航天大学出版社

8

北京航空航天大学出版社

第4章 进程与线程_uCOS的任务

1111 uC/OS-II 概述1111

2222 uC/OS-II的任务

uC/OS II 概述

2222 uC/OS-II的任务

3333 任务控制块

4444 任务堆栈

5555 系统任务

9

uC/OS-II的任务

1) 任务代码结构

2) 任务存储结构

3) 任务状态

4) 任务优先级

10

uC/OS-II的任务—代码结构

uCOS中的任务是一个线程，其代码通常是一
个无限循环结构/超循环结构，看起来像其它C
函数一样。函数 样

void mytask(void *pdata)
{{

for (;;)
{{
do something;
waiting;
do something;
}

}

11

}

uC/OS-II的任务--存储结构

任务控制块

指向任务堆栈的指针指向任务堆栈的指针…..
指向前一个任务控制块的指针
指向后一个任务控制块的指针
……..

任务的优先级别

任务堆栈 void mytask ()
{

任务代码
……

指向任务代码 {
…..
for(;;)
{任务

指向任务代码

{
…..

}
}

任务

12

任务的存储结构

uC/OS-II的任务--存储结构

…
任务
控制块

…
任务
控制块

任务
控制块

任务
代码

任务
堆栈

任务
代码

任务
堆栈

任务
代码

任务
堆栈

任务1

任务控制块链表

任务2
堆栈

任务n

任务控制块链表

13

uC/OS-II的任务--状态

uC/OS-II的任务有5种状态

睡眠态（DORMANT）: 任务驻留在程序空间，还没
有交给uCOS管理,即还没有配备任务控制块,还没
有被创建有被创建。

就绪态(READY): 任务一旦建立，就进入就绪态准
备运行 “万事具备 只欠CPU”备运行，“万事具备，只欠CPU”。

运行态(RUNNING): 正在使用CPU的状态称运行态
。

等待态(WAITING):等待某事件发生的状态.

中断服务态(ISR):正在运行的任务被中断时就进
入了中断服务态（ISR）。

14

uC/OS-II的任务--状态

15

uC/OS-II的任务--优先级

μCOS 支持64个任务，每个任务有一个特定
的优先级的优先级。

任务的优先级别用数字表示，0表示的任务任务的优先级别用数字表示，0表示的任务
的优先级最高，数字越大表示的优先级越低
。

通过常数OS_LOWEST_PRIO （在_ _
OS_CFG.H中）定义系统的最低优先级别，
同时限定系统能容纳的最多任务数量。

OS_LOWEST_PRIO给空闲任务，
OS LOWEST PRIO 1给统计任务

16

OS_LOWEST_PRIO-1给统计任务。

第4章 进程与线程_uCOS的任务

1111 uC/OS-II 概述1111

2222 uC/OS-II的任务

uC/OS II 概述

2222 uC/OS-II的任务

3333 任务控制块

4444 任务堆栈

5555 系统任务

17

任务控制块

1）任务控制块结构

2）任务控制块链表

3）任务控制块初始化

18

任务控制块--结构

任务控制块（Task Control Blocks, OS_TCBs）是
用来存储任务堆栈指针、当前状态、优先级及μCOS用来存储任务堆栈指针、当前状态、优先级及

任务链表指针等属性的一个数据结构。

任务控制块是任务的身份证，每个任务都有一个属
于自已的任务控制块，当任务的CPU使用权被剥夺时于自已的任务控制块，当任务的CPU使用权被剥夺时

，任务的属性被保存在任务控制块中，而当任务重
新得到CPU使用权时 任务控制块能确保任务从当时新得到CPU使用权时，任务控制块能确保任务从当时
被中断的那一点丝毫不差地继续执行。

OS_TCBs全部驻留在RAM中。

OS TCBs 在任务建立的时候被初始化

19

OS_TCBs 在任务建立的时候被初始化.

任务控制块--结构
t d f t t t b {typedef struct os_tcb {

OS_STK *OSTCBStkPtr;
#if OS TASK CREATE EXT EN>0#if OS_TASK_CREATE_EXT_EN>0

void *OSTCBExtPtr;
OS STK *OSTCBStkBottom;OS_STK *OSTCBStkBottom;
INT32U OSTCBStkSize;
INT16U OSTCBOpt;INT16U OSTCBOpt;
INT16U OSTCBId;

#endif#endif
struct os_tcb *OSTCBNext;
struct os tcb *OSTCBPrev;_

#if (OS_Q_EN && (OS_MAX_QS >= 2)) || OS_MBOX_EN
|| OS_SEM_EN

20

OS_EVENT *OSTCBEventPtr;
#endif

#if (OS_Q_EN && (OS_MAX_QS >= 2)) || OS_MBOX_EN

void *OSTCBMsg;
##endif

INT16U OSTCBDly;
INT8U OSTCBSt tINT8U OSTCBStat;
INT8U OSTCBPrio;
INT8U OSTCBX;INT8U OSTCBX;
INT8U OSTCBY;
INT8U OSTCBBitX;INT8U OSTCBBitX;
INT8U OSTCBBitY;

#if OS TASK DEL EN#if OS_TASK_DEL_EN
BOOLEAN OSTCBDelReq;

#endif

21

} OS_TCB;

任务控制块--结构

OSTCBStkPtr：指向当前任务堆栈栈顶的指针
。

OSTCBExtPtr 指向用户定义的任务控制块扩OSTCBExtPtr：指向用户定义的任务控制块扩
展的指针。用户可以扩展任务控制块而不必修
改 COS Ⅱ的源代码 只在函数改μCOS-Ⅱ的源代码,只在函数
OstaskCreateExt()中使用,使用时将
OS_TASK_CREAT_EN设为1.

OSTCBS kB 指向任务堆栈栈底的指针OSTCBStkBottom：指向任务堆栈栈底的指针。
递减栈指针指向任务使用的栈空间的最低地址

22

；递增型栈则指向栈空间的最高地址。。

任务控制块--结构

OSTCBStkSize：堆栈尺寸。

OSTCBOpt ：OSTaskCreateExt()中的选项，
COS Ⅱ目前只支持3个选择项μCOS-Ⅱ目前只支持3个选择项：

OS TASK OTP STK CHK- STK检查OS_TASK_OTP_STK_CHK STK检查

OS TASK OPT STK CLR-清零_ _ _ _ 清零

OS_TASK_OPT_SAVE_FP-浮点运算

23

任务控制块--结构

OSTCBId：存储任务的识别码。

OSTCBNext和OSTCBPrev：任务控制块OS_TCBs
双向链接 将任务控制块链接起来双向链接，将任务控制块链接起来。

OSTCBEventPtr ：指向事件控制块的指针OSTCBEventPtr ：指向事件控制块的指针

。

OSTCBMsg：指向传给任务的消息的指针

24

任务控制块--结构

OSTCBDly：任务延时的时钟节拍数。当需要

把任务延时若干时钟节拍时，或者需要把任务
挂起一段时间以等待某事件的发生时需要用到挂起 段时间以等待某事件的发生时需要用到
这个变量。如果这个变量为0，表示任务不延
时 或者表示等待事件发生的时间没有限制时，或者表示等待事件发生的时间没有限制 .

25

任务控制块--结构

OSTCBStat：任务状态字,可取下列值：

OS_STAT_RDY: 处于就绪状态

等待信 态OS_STAT_SEM： 处于等待信号量状态

OS STAT MBOX 处于等待邮箱状态OS_STAT_MBOX：处于等待邮箱状态

OS STAT Q： 处于等待消息队列状态_ _Q 处于等待消息队列状态

OS_STAT_SUSPEND：处于被挂起状态

OS_STAT_MUTEX：处于等待互斥信号量
状态

26

状态

任务控制块--结构

OSTCBPrio：任务优先级。高优先级任务的
OSTCBPrio值小，低优先级任务的 OSTCBPrio
值大值大

OSTCBX、OSTCBY、OSTCBBitX与OSTCBBitY：
与优先级有关的量，用于加速任务进入就绪态
的过程或进入等待事件发生状态的过程。这些的过程或进入等待事件发生状态的过程。这些
值是在任务建立时算好的，或者是在改变任务
优先级时算出的优先级时算出的 。

27

任务控制块--结构

OSTCBX、OSTCBY、OSTCBBitX与OSTCBBitY 的计算OSTCBX、OSTCBY、OSTCBBitX与OSTCBBitY 的计算

OSTCBY i it 3OSTCBY = priority >> 3; OSMa pTbl[]的值

0 0 0 0 00 0 01
1 0 0 0 00 0 10
2 0 0 0 00 1 00
3 0 0 0 01 0 00

Ind ex Bit Ma sk (Bina ry)

OSTCBBitY = OSMapTbl[priority >> 3]; 4 0 0 0 10 0 00
5 0 0 1 00 0 00
6 0 1 0 00 0 00
7 1 0 0 00 0 00

OSTCBX = priority & 0x07;

OSTCBBitX = OSMapTbl[priority & 0x07];

28

任务控制块--结构

OSTCBDelReq：一个布尔量，用于表示该任务
是否需要删除。

29

任务控制块--链表

任务控制块空闲链表：任务控制块空白链表。

系统初始化时，初始化函数OSInit()将创建
一个任务控制块空闲缓冲池，其中有一定数一个任务控制块空闲缓冲池，其中有一定数
量的空任务控制块，并将其链接成一个单向
链表，即空闲链表，并用OSTCBFreeList 指链表，即空闲链表，并用OSTCBFreeList 指
向表头。

当建立一个任务时，即将空闲链表表头指针
OSTCBFreeList指向的空任务控制块赋给该指向的空任务控制块赋给该
任务，然后将OSTCBFreeList指向链表中的
下一个空任务控制块

30

下一个空任务控制块

任务控制块--链表

任务控制块空闲链表(List of free OS_TCBs)

31

任务控制块--链表

任务控制块使用链表(双向)
使用链表用
于管理已建
立任务的控

制块

32

任务控制块--初始化

创建任务时，必须创建任务的控制块，通过控
制块初始化函数OSTCBInit()完成，其做三件
事：事

1、从空白/闲任务控制块链表中获取一个任
务控制块；

2 用任务的属性值对任务控制块各个成员2、用任务的属性值对任务控制块各个成员
进行赋值；

3、把这个任务控制块链入到任务控制块使
用链表的头部

33

用链表的头部。

任务控制块--初始化OSTCBInit()任务控制块 初始化OSTCBInit()
INT8U OSTCBInit (INT8U prio, OS_STK *ptos, OS_STK *pbos, INT16U id,

INT16U stk_size, void *pext, INT16U opt)

{{

OS TCB *ptcb;
ptcb = OSTCBFreeList

OS_TCB *ptcb;

OS ENTER CRITICAL();
ptcb

OSTCBFreeList= ptcb->OSTCBNext

ptcb

_ _ ();

//从空闲的OS_TCB缓冲池中获得一个OS_TCB

OSTCBFreeList ptcb >OSTCBNext

ptcb = OSTCBFreeList; (1)

34

任务控制块--初始化OSTCBInit()

if (ptcb != (OS_TCB *)0) { (2)
//如果OS_TCB池中有空闲的OS_TCB,它就被初始化了

OSTCBFreeList = ptcb->OSTCBNext;
//一旦OS_TCB被分配，该任务的创建者就已经完全拥有它了，不担心被同时建立的
另 个任务夺 故 重新 中断并继续初始化 的数据单

OS_EXIT_CRITICAL();
另一个任务夺取,故可以重新开中断,并继续初始化OS_TCB的数据单元。

ptcb = OSTCBFreeList

ptcb->OSTCBStkPtr = ptos; (3)
ptcb

OSTCBFreeList= ptcb->OSTCBNext

ptcb

ptcb->OSTCBPrio = (INT8U)prio;

ptcb >OSTCBStat = OS STAT RDY;

OSTCBFreeList ptcb >OSTCBNext

ptcb->OSTCBStat = OS_STAT_RDY;

ptcb->OSTCBDly = 0;

35

ptcb OSTCBDly 0;

任务控制块--初始化OSTCBInit()
#if OS_TASK_CREATE_EXT_EN

ptcb->OSTCBExtPtr = pext;

ptcb->OSTCBStkSize = stk_size;

ptcb->OSTCBStkBottom = pbos;

ptcb->OSTCBOpt = opt;

ptcb->OSTCBId = id;

36

任务控制块--初始化OSTCBInit()
#else

pext = pext;

stk_size = stk_size;

pbos = pbos;

opt = opt;

id = id;

#endif

#if OS_TASK_DEL_EN

ptcb->OSTCBDelReq = OS_NO_ERR;

#endif

37

任务控制块--初始化OSTCBInit()
ptcb->OSTCBY = prio >> 3;

ptcb->OSTCBBitY = OSMapTbl[ptcb->OSTCBY];

ptcb->OSTCBX = prio & 0x07;ptcb->OSTCBX prio & 0x07;

ptcb->OSTCBBitX = OSMapTbl[ptcb->OSTCBX];

#if OS_MBOX_EN ||(OS_Q_EN && (OS_MAX_QS >= 2))|| OS_SEM_EN

ptcb->OSTCBEventPtr = (OS_EVENT *)0;

#endif

38

#endif

任务控制块--初始化OSTCBInit()
#if OS_MBOX_EN || (OS_Q_EN && (OS_MAX_QS >= 2))

ptcb->OSTCBMsg = (void *)0;

#endif

OS ENTER CRITICAL() (4)OS_ENTER_CRITICAL(); (4)
//将OS_TCB插入到已建立任务的OS_TCB的双向链表中,该双向链表开始于
OSTCBList，而一个新任务的OS_TCB常常被插入到链表的表头

OSTCBPrioTbl[prio] = ptcb; (5)

ptcb->OSTCBNext = OSTCBList;

ptcb->OSTCBPrev = (OS_TCB *)0;

if (OSTCBList != (OS TCB *)0) {
ptcb

0

ptcb->OSTCBNext = OSTCBList

OSTCBPrioTbl[prio] = ptcb

ptcb->OSTCBPrev = 0

OSTCBList->OSTCBPrev = ptcb

OSTCBList = ptcb

1

2

3if (OSTCBList ! (OS_TCB)0) {

OSTCBList->OSTCBPrev = ptcb;
OSTCBList

OSTCBList->OSTCBPrev=ptcb

OSTCBList

4

5

39

}
OSTCBList = ptcb

任务控制块--初始化OSTCBInit()

OSRdyGrp | ptcb >OSTCBBitY; (6)

//使任务进入就绪态

OSRdyGrp |= ptcb->OSTCBBitY; (6)

OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

OS_EXIT_CRITICAL();

return (OS NO ERR); 返回 个代码表明 已经被分配和初return (OS_NO_ERR);

} else {

//返回一个代码表明OS_TCB已经被分配和初
始化了

OS_EXIT_CRITICAL();

return (OS NO MORE TCB);return (OS_NO_MORE_TCB);

}

40

}

第4章 进程与线程_uCOS的任务

1111 uC/OS-II 概述1111

2222 uC/OS-II的任务

uC/OS II 概述

2222 uC/OS-II的任务

3333 任务控制块

4444 任务堆栈

5555 系统任务

41

任务堆栈

1) 堆栈创建

2) 堆栈增长方向

3) 堆栈的初始化

42

任务堆栈--创建

1）堆栈创建

堆栈是在存储器中按数据“后进先出”的原
则组织的连续存储空间 用于任务切换和响则组织的连续存储空间。用于任务切换和响
应中断时保存CPU寄存器中的内容及其它任
务私有数据。uCOS如何创建堆栈？

OS STK M T kSt k[t k i]OS_STK MyTaskStack[stack_size];

typedef unsigned int OS STK； //16位typedef unsigned int OS_STK； //16位

43

任务堆栈--增长方向

2）堆栈增长方向：µCOS支持向上增长(低地址

往高地址) 及向下增长堆栈。用户在调用
OSTaskCreate()或OSTaskCreateExt()的时候OSTaskCreate()或OSTaskCreateExt()的时候
必须确定堆栈增长方式。

向上增长堆栈（OS_STK_GROWTH=0）

OS STK TaskStack[TASK STACK SIZE];OS_STK TaskStack[TASK_STACK_SIZE];

OSTaskCreate(task,
pdata,
&TaskStack[0],
prio);

44

prio);

任务堆栈--增长方向

向下增长堆栈（OS STK GROWTH=1）向下增长堆栈（OS_STK_GROWTH 1）

OS STK T kSt k[TASK STACK SIZE]OS_STK TaskStack[TASK_STACK_SIZE];

OSTaskCreate(task,
pdata,
&TaskStack[TASK_STACK_SIZE-1],
prio);

45

任务堆栈--增长方向

可上下两方向增长堆栈
OS STK T kSt k[TASK STACK SIZE]OS_STK TaskStack[TASK_STACK_SIZE];

#if OS STK GROWTH 0#if OS_STK_GROWTH == 0

OSTaskCreate(task, pdata, &TaskStack[0], prio);

#else

OSTaskCreate(task, pdata, &TaskStack[TASK_STACK_SIZE-1],
prio);

#endif

46

任务堆栈--初始化

3）任务堆栈的初始化

当处理器启动一个任务时，处理器的各寄存器总是需
要预置一些与待运行任务相关的初始数据，如指向任
务代码的指针、指向任务堆栈的指针、程序状态字
PSW等，这些初始数据从何而来？

系统在创建一个新任务时，应该把启动该任务所需的
初始数据（指向任务代码的指针、指向任务堆栈的指
针、程序状态字PSW等）事先存放到这个任务的堆
栈中。

任务堆栈初始化函数OSTaskStkInit()完成上述工作
（其在OSTaskCreate()创建任务时被调用）。

47

其在 ()创建任务时被调用

任务堆栈--初始化
OSTaskStkInit ()

OS STK *OSTaskStkInit (void (*task)(void *pd) voidOS_STK OSTaskStkInit (void (task)(void pd), void
*pdata, OS_STK *ptos, INT16U opt)

{{
unsigned int *stk ;

opt = opt; /* 'opt' is not used, prevent warning */
stk = (unsigned int *)ptos; /* Load stack pointer */

48

任务堆栈--初始化

/* build a context for the new task */
--stk = (unsigned int) task; / pc */
--stk = (unsigned int) task; / lr */
--stk = 0; / r12 */
--stk = 0; / r11 */--stk = 0; / r11 /
--stk = 0; / r10 */
--stk = 0; / r9 */
--stk = 0; / r8 */
--stk = 0; / r7 */
--stk = 0; / r6 */

49

stk 0; / r6 /

任务堆栈--初始化

--stk = 0; / r5 */
--stk = 0; / r4 */
--stk = 0; / r3 */ 关于OSStartHighRdy

OSStartHighRdy
LDR r4, addr_OSTCBCur ; Get current task TCB address
LDR r5, addr_OSTCBHighRdy ; Get highest priority task TCB

;address

--stk = 0; / r2 */
--stk = 0; / r1 */

LDR r5, [r5] ; get stack pointer
LDR sp, [r5] ; switch to the new stack

STR r5, [r4] ; set new current task TCB address

LDMFD sp!, {r4} ; YYY
MSR SPSR_cxsf, r4
LDMFD sp!, {r4} ; get new state from top of the stack
MSR CPSR_cxsf, r4 ; CPSR should be SVC32Mode
LDMFDsp!, {r0-r12, lr, pc } ; start the new task

--stk = 0; / r1 /
--stk = (unsigned int) pdata; / r0 */
--stk = (SVC32MODE|0x0); / cpsr IRQ, FIQ disable*/
--stk = (SVC32MODE|0x0); / spsr IRQ, FIQ disable */
return ((void *)stk);

}

50

}

第4章 进程与线程_uCOS的任务

1111 uC/OS-II 概述1111

2222 uC/OS-II的任务

uC/OS II 概述

2222 uC/OS-II的任务

3333 任务控制块

4444 任务堆栈

5555 系统任务

51

系统任务 --空闲任务

空闲任务OSTaskIdle()

μCOS总要建立一个空闲任务，这个任务在
没有其它任务进入就绪态时投入运行 这个没有其它任务进入就绪态时投入运行。这个
空闲任务永远设为最低优先级，即
OS LOWEST PRI0OS_LOWEST_PRI0。

空闲任务OSTaskIdle()什么也不做，只是在
不停地给一个32位的名叫OSIdleCtr的计数
器加1，统计任务使用这个计数器以确定现器加 统计任务使用 个计数器以确定现
行应用软件实际消耗的CPU时间。

空闲任务不可能被应用软件删除

52

空闲任务不可能被应用软件删除

系统任务 --空闲任务

μCOS的空闲任务.
void OSTaskIdle (void *pdata)
{{

pdata = pdata;
f () {for (;;) {

OS_ENTER_CRITICAL();
OSIdleCtr++;

OS EXIT CRITICAL();OS_ _C C ();
OSTaskIdleHook();
}

53

}
}

系统任务--统计任务

统计任务OSTaskStat()

统计任务是负责统计运行时间的任务，如果
用户将系统定义常数OS TASK STAT EN（见用户将系统定义常数OS_TASK_STAT_EN（见
文件OS_CFG.H）设为1，这个任务就会建立
。一旦得到允许，统计任务每秒运行一次（
OS CORE.C）以计算当前的CPU利用率。也即_ ）以计算当前的 利用率。也即
计算应用程序使用了多少CPU时间，用百分
比表示 这个值放在一个有符号8位整数比表示，这个值放在 个有符号8位整数
OSCPUsage中，精确度是1个百分点。

54

第4章 进程与线程_uCOS的任务

1111 uC/OS-II 概述1111

2222 uC/OS-II的任务

uC/OS II 概述

2222 uC/OS-II的任务

3333 任务控制块

4444 任务堆栈

5555 系统任务

55

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用户

wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

关于 UCOS信号量

一：信号量的理解：

（1）信号量可以分为两种：一种是二值信号量（0 和 1），一种是 N值信号量（计数式信号

量）。

二值信号量的意思是可以有多少任务同时享用这个信号量。比如二值信号，就是只有 1 个任

务可以使用。当有一个任务使用该信号量的时候，那么其他需要使用该信号量的任务就必须

等待，直到该任务释放该信号量。这种信号量可以看作一把钥匙。

对于 N值信号量（计数式信号量），就是说可以同时有 N‐1个任务同时使用该信号量。对于

二值信号量，N=1。

（2）建立信号量的工作必须在任务级代码中或者多任务启动之前完成。

二：任务如何得到信号量的问题：

想得到信号量的任务，必须执行等待操作（pend）。在信号量的建立的时候，我们首先确定

了该信号量可以被共享的资源数（N），并将其赋值给 pevent‐>OSEventCnt。如果信号量有效

(非 0)，即 pevent‐>OSEventCnt>0，则信号量减 1，任务得以继续运行。如果信号量无效，即

pevent‐>OSEventCnt==0，则等待信号量的任务就被列入等待信号量的任务表中。许多内核允

许定义等待超时，当等待时间超过了设定值，该信号量还是无效，则等待该信号量的任务进

入就绪态，准备运行，并返回出错代码(等待超时错误)。

三：任务对信号量的释放问题：

任务执行发信号（post）操作来释放信号量。如果没有任务等待信号量，那么信号量的值仅

是简单的加 1（则信号量大于 0，有效）；如果有任务等待该信号量，那么就会有另一个任务

进入就绪态，信号量的值就不加 1。

之后，这个释放的信号量给那个等待中的任务，要看内核如何调度的。收到信号量的任务可

能是如下两者之一：

◆等待任务中，优先级最高的；（uc/os‐ii仅支持这种方式）。

◆最早开始等待信号量的任务（如果是按先进先出 FIFO 原则）。

四：信号量的有效与无效的问题：

信号量有效：信号量的计算器非 0（.OSEventCnt！=0）。信号量有效表示任务对资源可用。

信号量无效：信号量的计算器为 0。信号量无效表示任务对目前资源不可用，需要等待其他

另一个任务（或者中断服务子程序）发出该信号量（OSSemPost）。

五：关于信号量的三个重要函数：

◆OSSemCreate() 创建一个信号量 （注：由任务或启动代码操作）

创建工作必须在任务级代码中或者多任务启动之前完成。功能只要是先获取一个事件控制块

ECB，写入一些参数。其中调用了 OS_EeventWaitListInt()函数，对事件控制块的等待任务列

表进行初始化。完成初始化工作后，返回一个该信号量的句柄(Handle)。

◆OSSemPend() 等待一个信号量 （注：只能由任务操作）

本函数应用于任务试图获得共享资源的使用权、任务需要与其他任务或中断同步及任务需要

等待特定事件发生的场合。

如果任务 Task_A 调用 OSSemPend()，且信号量的值有效(非 0)，那么 OSSemPend()递减信号

量计数器（.OSEventCnt），并返回该值。换句话说，Task_A获取到共享资源的使用权了，之

后就执行该资源。

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用户

wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

如果如果任务 Task_A 调用 OSSemPend()，信号量无效(为 0)，那么 OSSemPend()调用

OS_EventTaskWait()函数，把 Task_A 放入等待列表中。（等待到什么时候呢？要看

OSSemPost()(或者等待超时情况)，由它释放信号量并检查任务执行权，见下资料）

◆OSSemPost() 发出（释放）一个信号量 （注：由任务或中断操作）

本函数其中调用 OS_EventTaskRdy()函数，把优先级最高的任务 Task_A（在这假如是 Task_A，

另外假设当前调用 OSSemPost()的任务是 Task_B）从等待任务列表中去除，并使它进入就绪

态。然后调用 OSSched()进行任务调度。如果 Task_A是当前就绪态中优先级最高的任务，则

内核执行 Task_A；否则，OSSched()直接返回，Task_B继续执行。

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

UCOS另类信号量‐‐互斥信号量

在 UCOS的信号量使用过程中，我们经常会用的是二值信号量，而在二值信号两种用的醉的

情况就是互斥信号量。互斥信号是本身是一种二进制信号，具有超出 uCOS－II 提供的一般

信号机制的特性。由于其特殊性，UCOS 的作者将其独立成章，单独对待。组织了一套对于

互斥信号量管理的单独函数。互斥信号量具有以下特点： 1） 降解优先级反转。 2） 实现

对资源的独占式访问（二值信号量）。

在应用程序中使用互斥信号是为了减少优先级翻转问题，当一个高优先级的任务需要的资源

被一个低优先级的任务使用时，就会发生优先级翻转问题。为了减少优先级翻转问题，内核

可以提高的优先级任务的优先级，先于高优先级的任务运行，释放占用的资源。

为了实现互斥，实时内核需要具有支持在同一优先级具有多个任务的能力。不幸的是，

UC/OS‐II不允许在相同的优先级有多个任务，必须只有一个任务。但是我们有另外的方法解

决这个问题。可以把需要资源的高优先级任务上面的一个任务使用 Mutex 保留，允许提高

的优先级任务的优先级。

举一个 mutexes信号工作的例子，如 l下面的程序所示。

其中有三个任务可以使用共同的资源，为了访问这个资源，每个任务必须在互斥信号

ResourceMutex 上等待（pend）,任务＃1 有最高优先级 10，任务＃2 优先级为 15，任务＃3

优先级为 20，一个没有使用的正好在最高优先级之上的优先级＃9 用来作为优先级继承优先

级。如 main()所示，代码中(1)进行 uC/OS‐II 初始化，并通过调用 OSMutexCreate()代码中(2)

创建了一个互斥信号。需要注意的是，OSMutexCreate()函数使用 PIP最为参数。然后创建三

个任务代码中(3)，启动 uC/OS‐II 代码中(4).

假设任务运行了一段时间，在某个时间点，任务#3 最先访问了共同的资源，并得到了互斥

信号，任务＃3 运行了一段时间后被任务＃1 抢占。任务＃1 需要使用这个资源，并通过调

用 OSMutexPend()企图获得互斥信号，这种情况下，OSMutexPend()会发现一个高优先级的任

务需要这个资源，就会把任务＃3 的优先级提高到 9，同时强迫进行上下文切换退回到任务

＃3执行。 任务＃3可以继续执行然后释放占用的共同资源。任务＃3通过调用OSMutexPost()

释放占用的 mutex 信号，OSMutexPost()会发现 mutex 被一个优先级提升的低优先级的任务

占有，就会把任务＃3 的优先级返回到 20。把资源释放给任务＃1 使用，执行上下文切换到

任务＃1

‐‐‐

OS_EVENT *ResourceMutex;

OS_STK TaskPrio10Stk[1000];

OS_STK TaskPrio15Stk[1000];

OS_STK TaskPrio20Stk[1000];

void main (void)

{

INT8U err;

OSInit(); /* (1) */

/* ‐‐‐‐‐‐‐‐‐‐ 应用程序初始化 ‐‐‐‐‐‐‐‐‐‐ */

OSMutexCreate(9, &err); /* (2) */

OSTaskCreate(TaskPrio10, (void *)0, &TaskPrio10Stk[999], 10); /* (3) */

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

OSTaskCreate(TaskPrio15, (void *)0, &TaskPrio15Stk[999], 15);

OSTaskCreate(TaskPrio20, (void *)0, &TaskPrio20Stk[999], 20);

/* ‐‐‐‐‐‐‐‐‐‐ Application Initialization ‐‐‐‐‐‐‐‐‐‐ */

OSStart(); /* (4) */

}

void TaskPrio10 (void *pdata)

{

INT8U err;

pdata = pdata;

while (1) {

/* ‐‐‐‐‐‐‐‐‐ 应用程序代码 ‐‐‐‐‐‐‐‐‐‐ */

OSMutexPend(ResourceMutex, 0, &err);

/* ‐‐‐‐‐‐‐ 访问共享资源 ‐‐‐‐‐‐ */

OSMutexPost(ResourceMutex);

/* ‐‐‐‐‐‐‐‐‐ 应用程序代码 ‐‐‐‐‐‐‐‐‐‐ */

}

}

void TaskPrio15 (void *pdata)

{

INT8U err;

pdata = pdata;

while (1) {

/* ‐‐‐‐‐‐‐‐‐应用程序代码 ‐‐‐‐‐‐‐‐‐‐ */

OSMutexPend(ResourceMutex, 0, &err);

/* ‐‐‐‐‐‐‐ 访问共享资源 ‐‐‐‐‐‐ */

OSMutexPost(ResourceMutex);

/* ‐‐‐‐‐‐‐‐‐ 应用程序代码 ‐‐‐‐‐‐‐‐‐‐ */

}

}

void TaskPrio20 (void *pdata)

{

INT8U err;

pdata = pdata;

while (1) {

/* ‐‐‐‐‐‐‐‐‐应用程序代码‐‐‐‐‐‐‐‐‐‐ */

OSMutexPend(ResourceMutex, 0, &err);

/* ‐‐‐‐‐‐‐访问共享资源‐‐‐‐‐‐ */

OSMutexPost(ResourceMutex);

/* ‐‐‐‐‐‐‐‐‐应用程序代码‐‐‐‐‐‐‐‐‐‐ */

}

}

上面代码为互斥信号使用示例

uC/OS‐II'互斥信号包含三个元素，一个 flag表示当前mutex是否能够获得（0或1）；一个priority

表示使用这个 mutex 的任务，以防一个高优先级的任务需要访问 mutex；还包括一个等待这

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

个 mutex 的任务列表。

为了启动 uC/OS‐II’s mutex 服务，应该在 OS_CFG.H 中设置 OS_MUTEX_EN=1。在使用一个

互斥信号之前应该首先创建它，创建一个 mutex信号通过调用 OSMutexCreate()完成，mutex

的初始值总是设置为 1，表示资源可以获得。

uC/OS‐II 提供了六种访问互斥信号量的操作 OSMutexCreate(), OSMutexDel(),OSMutexPend(),

OSMutexPost(), OSMutexAccept() and OSMutexQuery().

展示了任务和互斥信号量的关系。一个互斥信号量只能被任务访问。在以后的资料中使用钥

匙符号表示互斥信号。钥匙符号表明互斥信号用来访问共享资源。没有钥匙就无法访问。只

有得到钥匙的任务才有资格访问共享资源

UCOS互斥信号量操作函数分析	

//建立并初始化一个互斥型信号量(优先级继承优先级(PIP)、出错代码指针)

OS_EVENT *OSMutexCreate (INT8U prio, INT8U *err)

{

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */

OS_CPU_SR cpu_sr;

#endif

OS_EVENT *pevent;

if (OSIntNesting > 0) { /* See if called from ISR ... */

err = OS_ERR_CREATE_ISR; / can''t CREATE mutex from an ISR */

return ((OS_EVENT *)0);

}//不能从 ISR中建立，不允许在 ISR中调用此函数

#if OS_ARG_CHK_EN > 0

if (prio >= OS_LOWEST_PRIO) { /* Validate PIP */

*err = OS_PRIO_INVALID;

return ((OS_EVENT *)0);

}//不合理的 PIP

#endif

OS_ENTER_CRITICAL();

if (OSTCBPrioTbl[prio] != (OS_TCB *)0) { /* Mutex priority must nalready exist*/

//确认 PIP没有被任何任务占用。OSTCBPrioTbl[]中的一个指向 NULL 的空指针指示//PIP有效

OS_EXIT_CRITICAL(); /* Task already exist at priority ... */

err = OS_PRIO_EXIST; / ... inheritance priority */

//如果优先级存在 ，则出错。

return ((OS_EVENT *)0);

}

OSTCBPrioTbl[prio] = (OS_TCB *)1; /* Reserve the table entry */

//置非空指针，将这个优先级保留下来。

pevent = OSEventFreeList; /* Get next free event control block */

//从空余 ECB中得到一块空的 ECB。

if (pevent == (OS_EVENT *)0) { /* See if an ECB was available */

//看 ECB是否可用

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

OSTCBPrioTbl[prio] = (OS_TCB *)0; /* No, Release the table entry */

//如果不可用，释放此优先级表入口

OS_EXIT_CRITICAL();

err = OS_ERR_PEVENT_NULL; / No more event control blocks */

return (pevent);

}

OSEventFreeList = (OS_EVENT *)OSEventFreeList‐>OSEventPtr; /* Adjust the free list

//如果可用，重新调整事件控制块的表头

OS_EXIT_CRITICAL();

pevent‐>OSEventType = OS_EVENT_TYPE_MUTEX; //将其标记为互斥型信号量

pevent‐>OSEventCnt = (prio << 8) | OS_MUTEX_AVAILABLE;/* Resource is available */ // (#define

OS_MUTEX_AVAILABLE 0x00FF)

//mutex 为有效值，同时将 PIP保存起来。值得注意的是，事件计数器.OSEventCnt

//在此处的用法不同，高八位用于保存 PIP的值，低侂位在资源无任务占用

//时的值为 0xff，有任务占用时为占用 mutex 任务的优先级。这个避免了增加额

//外的空间，节约对 RAM的占用量

pevent‐>OSEventPtr = (void *)0; /* No task owning the mutex */

//消息正在初始化，所以没有等待这个 mutex 的任务

OS_EventWaitListInit(pevent);//初始化事件等待列表

*err = OS_NO_ERR;

return (pevent);

}

PIP是该函数的参数，指定优先级继承优先级。当发生优先级反转时，将占用该 mutex 的任

务的优先级太高到 PIP。

UCOS互斥信号量操作函数分析	

等待（申请）一个互斥信号量：OSMutexPend（）

关键代码剖析：

void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)

{

//不得在中断中调用该函数

if (OSIntNesting > 0) {

*err = OS_ERR_PEND_ISR;

return;

}

OS_ENTER_CRITICAL();

//信号量可用

if ((INT8U)(pevent‐>OSEventCnt & OS_MUTEX_KEEP_LOWER_8)

== OS_MUTEX_AVAILABLE) {

pevent‐>OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;

//将计数器低 8 为置成占用该 mutex 的任务（当前任务）的优先级。

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

pevent‐>OSEventCnt |= OSTCBCur‐>OSTCBPrio;

//在 mutex 中保存占用信号量的任务：修改该 mutex 的 OSEventPtr ，使其指向当前任务

pevent‐>OSEventPtr = (void *)OSTCBCur;

OS_EXIT_CRITICAL();

//信号量可用，正常返回。

*err = OS_NO_ERR;

return;

}

//信号量不可用：即已被占用

//从该信号量中获得 PIP

pip = (INT8U)(pevent‐>OSEventCnt >> 8);

//从该信号量中获得占用该信号量的任务的优先级。

mprio = (INT8U)(pevent‐>OSEventCnt & OS_MUTEX_KEEP_LOWER_8);

//从信号量中获得占用该信号量的任务

ptcb = (OS_TCB *)(pevent‐>OSEventPtr);

/*

如果原先占用该 mutex的优先级比提出申请该 mutex 的任务的优先级低

（mprio > OSTCBCur‐>OSTCBPrio），则提升原任务的优先级至 PIP

*/

if (ptcb‐>OSTCBPrio != pip && mprio > OSTCBCur‐>OSTCBPrio) {

if ((OSRdyTbl[ptcb‐>OSTCBY] & ptcb‐>OSTCBBitX) != 0x00) {

if ((OSRdyTbl[ptcb‐>OSTCBY] &= ~ptcb‐>OSTCBBitX) == 0x00) {

OSRdyGrp &= ~ptcb‐>OSTCBBitY;

}

//若原任务已就绪，则将其从就绪表中删除，并置就绪标志 rdy

rdy = TRUE;

} else {

rdy = FALSE;

}

//修改优先级，及相关参数

ptcb‐>OSTCBPrio = pip;

ptcb‐>OSTCBY = ptcb‐>OSTCBPrio >> 3;

ptcb‐>OSTCBBitY = OSMapTbl[ptcb‐>OSTCBY];

ptcb‐>OSTCBX = ptcb‐>OSTCBPrio & 0x07;

ptcb‐>OSTCBBitX = OSMapTbl[ptcb‐>OSTCBX];

//如果原任务是就绪的，则继续让新的优先级就绪

if (rdy == TRUE) {

OSRdyGrp |= ptcb‐>OSTCBBitY;

OSRdyTbl[ptcb‐>OSTCBY] |= ptcb‐>OSTCBBitX;

}

OSTCBPrioTbl[pip] = (OS_TCB *)ptcb;

}

//让提出申请的任务先等待（从就绪表中删除，如 mutex 的等待队列）………

OSTCBCur‐>OSTCBStat |= OS_STAT_MUTEX;

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

OSTCBCur‐>OSTCBDly = timeout;

OS_EventTaskWait(pevent);

OS_EXIT_CRITICAL();

//执行任务切换（如果原来低优先级的任务优先级被抬高了，则该任务将被执行）

OS_Sched();

OS_ENTER_CRITICAL();

//提出申请的任务被唤醒继续执行

if (OSTCBCur‐>OSTCBStat & OS_STAT_MUTEX) {

//1）由于等待超时被定时器唤醒

OS_EventTO(pevent);

OS_EXIT_CRITICAL();

*err = OS_TIMEOUT;

return;

}

/*

2）原先占用 mutex 的任务执行完成释放了 mutex

并唤醒了等待该 mutex的最高优先级的任务

*/

OSTCBCur‐>OSTCBEventPtr = (OS_EVENT *)0;

OS_EXIT_CRITICAL();

*err = OS_NO_ERR;

}

释放一个互斥信号量	

释放一个互斥信号量：OSMutexPost（）

关键代码剖析：

INT8U OSMutexPost (OS_EVENT *pevent)

{

//不得在中断中调用该函数

if (OSIntNesting > 0) {

return (OS_ERR_POST_ISR);

}

OS_ENTER_CRITICAL();

//从该信号量中获得 PIP

pip = (INT8U)(pevent‐>OSEventCnt >> 8);

/*

从该信号量中获得占用该信号量的任务的优先级。

在 OSEventCnt 中的低 8 位保存占用 mutex 的任务的原始优先级，

不随优先级的提高而改变。

*/

prio = (INT8U)(pevent‐>OSEventCnt & OS_MUTEX_KEEP_LOWER_8);

/*

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

确认释放 mutex 的任务确实是占用 mutex 的任务自身。

占用/申请 mutex 的任务的优先级可能是 pip(被提高)，也可能是原先任务的优先级。

*/

if (OSTCBCur‐>OSTCBPrio != pip &&

OSTCBCur‐>OSTCBPrio != prio) {

OS_EXIT_CRITICAL();

//若释放 mutex 的任务非占用/申请的任务，则返回错误信息。

return (OS_ERR_NOT_MUTEX_OWNER);

}

//若当前释放 mutex 的任务的优先级为 pip，则需将该任务的优先级降到原来水平

if (OSTCBCur‐>OSTCBPrio == pip) {

//首先将 pip从就绪表删除

if ((OSRdyTbl[OSTCBCur‐>OSTCBY] &= ~OSTCBCur‐>OSTCBBitX) == 0) {

OSRdyGrp &= ~OSTCBCur‐>OSTCBBitY;

}

//将任务优先级修改为原始优先级，并修改相关参数

OSTCBCur‐>OSTCBPrio = prio;

OSTCBCur‐>OSTCBY = prio >> 3;

OSTCBCur‐>OSTCBBitY = OSMapTbl[OSTCBCur‐>OSTCBY];

OSTCBCur‐>OSTCBX = prio & 0x07;

OSTCBCur‐>OSTCBBitX = OSMapTbl[OSTCBCur‐>OSTCBX];

//将修改优先级后的任务重新如就绪表

OSRdyGrp |= OSTCBCur‐>OSTCBBitY;

OSRdyTbl[OSTCBCur‐>OSTCBY] |= OSTCBCur‐>OSTCBBitX;

OSTCBPrioTbl[prio] = (OS_TCB *)OSTCBCur;

}

OSTCBPrioTbl[pip] = (OS_TCB *)1;

//若 mutex 的等待列表不空，唤醒等待列表中最高优先级的任务，并将 mutex 分配给它

if (pevent‐>OSEventGrp != 0x00) {

/*

唤醒等待列表中最高优先级的任务（从 mutex等待列表中删除，使其入就绪表），

清除等待任务的 OS_STAT_MUTEX 标志，并返回其优先级 prio

*/

prio = OS_EventTaskRdy(pevent, (void *)0, OS_STAT_MUTEX);

pevent‐>OSEventCnt &= OS_MUTEX_KEEP_UPPER_8;

//将 mutex 分配给新任务：置 OSEventCnt 为 prio

pevent‐>OSEventCnt |= prio;

//在 mutex 中保存占用信号量的任务

pevent‐>OSEventPtr = OSTCBPrioTbl[prio];

OS_EXIT_CRITICAL();

//任务切换（如果唤醒的任务优先级比当前任务高，则使唤醒的任务得到运行）

OS_Sched();

return (OS_NO_ERR);

}

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………

//mutex 的等待列表为空，即该 mutex 可用：置 mutex 可用标志及占用任务指针。

pevent‐>OSEventCnt |= OS_MUTEX_AVAILABLE;

pevent‐>OSEventPtr = (void *)0;

OS_EXIT_CRITICAL();

return (OS_NO_ERR);

}

本课件由 EEWORLD版主 wstrom讲解，并有 eeworld论坛注册用

户 wo4fisher收集整理，送给那些在学习 uC/OS的朋友………1

UCOS事件标志组管理

今天我们就看看事件标志组的使用和管理吧

事件标志组（event flag）包含两部分：

typedef struct

{

INT8U OSFlagType;

void *OSFlagWaitList;

OS_FLAGS OSFlagFlags;

}OS_FLAG_GRP;

1	组中各事件状态的标志位	 	

2	等待这些标志位或清除的任务列表	 	

（这里是双向链表） 用于删除标志时检查是否有等待该

标志的任务链表包含 3 个数据结构： OS_FLAG_GRP, OS_TCB,OS_FLAG‐NODE 用来记录任务

在等待哪些标志位及等待方式（与/或），当一个任务开始等待某些标志位时建立一个

OS_FLAG‐NODE，当这些等待的事件标志位发生后，删除数据结构。

当某个任务需要与多个任务同步时，须要使用事件标志组。

⒈弄清楚 OS_FLAG_GRP、OS_FLAG_NODE和 OS_TCB之间的关系。

当一个任务开始等待某些事件标志位时，就回建立一个事件标志节点 OS_FLAG_NODE 数据

结构，并且将任务所要等待的事件标志位写入 OS_FLAG_NODE 的分量.OSFlagNodeFlags。然

后将该数据结构分量.OSFlagNodeFLagGrp 指向事件标志组 OS_FLAG_GRP，将.OSFlagNodeTCB

指向该任务的控制块 OS_TCB，建立起任务与事件标志组之间的联系，说明该任务是等待该

事件标志组中某些事件标志位的任务。当有多个任务都需要等待某个事件标志组中某些事件

标志位时，这些任务分别建立自己的事件标志节点。并且将这些事件标志节点通过分

量.OSFlagNodeNext 和.OSFlagNodePrev 连接成链。

⒉任务可以等待事件标志组中某些位置位 1，也可以等待事件标志组中某些位清 0，而置 1

（或清 0）又可以分为所有事件都发生的“与”型和任何一个事件发生的“或”型。这样便

有了 4 种不同的类型存放在.OSFlagNodeWaitType（OS_FLAG_NODE）中。

⒊事件标志组和信号量我觉得是有不同的。

信号量建立以后，假设初始值为 N，前 N个任务调用 OSSemPend（）函数都会得到信号量。

之后如果第Ｎ＋１个任务调用 OSSemPend（）函数申请信号量，该任务将会被置为等待事

件发生的状态（睡眠态）。只到前 N 个任务中有任务运行完了所要运行的程序，调用

OSSenmPost（）函数，释放了所占用了信号量，第 N+1 个任务。（这里假设该任务是所有等

待信号量任务中优先级最高的任务）才会获得信号量，被从睡眠态转入就绪态。

而事件标志组是事件标志组建立之后，某个任务需要事件标志组中某些事件标志位（置位或

者清 0）才能继续运行，于是任务调用 OSFlagPend（）函数，而此时若这些标志位满足要求，

本课

户 w

任务

将前

就绪

的标

号量

同步

等讲

过程

考虑

Prot

所以

作为

基本

输出

输入

其它

大家

课件由 EEWORLD

o4fisher收集整

务返回，继续

前一个任务所

绪态。因此几

标志位满足要

量中优先级最

步，而信号量

讲完邮箱和消

程了

虑了好多方法

teus下仿真。

以我决定这几

为大家共同学

本外设如下：

出设备：液晶

入设备：4*4

它：DS18B20

家有好的主意

D版主 wstrom

整理，送给那些

续执行。否则

所需要的标志

几个任务可以

要求，任务便进

最高的任务才

量只能是一个

*******。

消息队列后然

法。最后还是

我觉得这道

几天抽出点时

学习移植的平

晶屏（主要为

键盘

温度采集+LE

意可以提出来

讲解，并有 e

些在学习 uC/O

，任务将被挂

位（置位或清

同时得到所需

进入就绪态。

才能得到信号量

个任务与另一个

	

然后对 UCOS的

是在有问必答

道是一个好的

时间移植一个

平台。

以后讲解 UC

ED 跑马灯

来，咱们争取做

eeworld论坛注

OS的朋友………2

挂起。而当有

清 0）使之满

需要的事件标

。与信号量不

量进入就绪态

个任务同步

的内部通信机

的帖子上有个

的办法

UCOS到 STC

CGUI做准备

做一个完善的

注册用

2

有另外一个任

满足要求，前

标志进入就绪

不同，信号量

态。事件标志

。

机制做一个总

个坛友要 51

C51单片机上

备）+串口

的开发板。用

任务调用 OSF

前一个被挂起

绪态。注意：

量中的任务需

志组可以一个

总结，然后就

1 下移植好的

上。使用 Keil4.0

用于学习 UC

FlagPost（）

起的任务将被

只要任务所

需要是在等待

个任务与多个

就该讲关于移

的 UCOS 源码

0+Proteus仿

COS+UCGUI

函数

被置为

所需要

待该信

个任务

植的

码+在

真。

	一步一步教你使用uCOS-II
	第4章_uCOS-II及其任务[1]
	关于UCOS信号量
	UCOS另类信号量
	UCOS事件标志组管理

		2011-04-05T14:04:15+0800
	wo4fisher

