
uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 1 页 共 19 页

uCOS 学习随笔 StepbyStep‐1
——构建模板（基于 STM32 控制的第四代圆梦小车）

一、 序

基于第四代圆梦小车 —— FIRA 设计了一个使用 STM32 的控制板（详细介绍见项目中

的说明： Introduction B ‐ Hardware of the Smart Car.pdf ）。

既然硬件从 51 升级到 ARM，软件也应该相应升级，似乎不能再编写那种简单的轮询调

度程序，也应该相应升级到基于操作系统编程。

按 STM32 的规模和性能，以及小车的控制需求，实时多任务操作系统 uCOSII 应该是不

二的选择，不论从其性能和功能考虑，还是从学习角度考虑，uCOSII 都很适合。

首先，它是开源的，有丰富的资源。

其次，它是可靠的，符合正式的工业控制、产品设计需求。

小车所面对的是那些学习相关专业的大学生，作为他们学习的辅助工具，趣味性只是为

了降低学习的枯燥性，不是目的。他们借助这个平台是为了积攒应付未来工作的能力，所以，

学习内容的实用性是必须考虑的。

本人从未基于操作系统编写嵌入式程序。

开始使用 MCU 的时候，MCU 的内存太小，256 字节 RAM ，2K 字节 ROM，能勉强把

程序装入就不错了，连 C 语言都不敢选择。

而且，那时好像也没有 RTOS（Real Time Operation System），或者是由于信息交流渠道

匮乏，不知道有 RTOS。

既然我提供了这个平台，也借此机会尝试一下，和大家一起学习使用 uCOSII。（从单片

机应用升级为嵌入式应用 ^_^）

http://code.google.com/p/fira-mirosot-robot/downloads/list
http://code.google.com/p/fira-mirosot-robot/

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 2 页 共 19 页

二、Step1 想要得到什么？（需求分析）

第一步我想得到的是：

1) 如何建立一个基于 uCOSII 的编程环境（目录、文件组织）；

2) 如何基于 IDE（IAR 或 RvMDK）建立一个工程，能够产生可以运行的程序；

3) 得到一个“干净的”、可以作为模板的 uCOSII 程序组（Project）；

4) 通过上述过程初步理解在 uCOSII 下如何编写应用程序。

之所以要把“如何建立……”作为需求，而不是找一个现成的模板或示例程序修改、添

加自己的功能，是因为看了许多这种程序，感觉“极不可靠”！因为程序中有太多的东西不知

道为何而存在？不知道为何而被注释掉？似乎这些东西都像“定时炸弹”，早晚会给你的程序

带来麻烦。

同时，也给自己理解程序的构成和运行机制带来困扰，既然是学习，就应该知其然、知

其所以然，否则也谈不上“掌握”，更不敢在日后的工作中应用（如果是打工，也许还敢试试，

如果是用自己的钱做产品、项目，我想你一定不敢用），如此则和做此事的初衷相悖了。

三、如何入手？

uCOS 的书有很多，也看了许多，但多数都是解析操作系统本身的，或者是如何移植，鲜

有书籍、资料教你如何在操作系统下编程。

实际上，对于学习者，特别是初学者，更多需要的是学会如何在一个移植好的系统下编

程，等到能基于操作系统实现自己的功能后，才会有心思去探究操作系统是如何在自己的

MCU 上运行的（移植），以及那些神秘的系统功能是如何实现的（了解系统函数及运行机制）。

而且这种探究也是有选择性的，首先是自己用到的功能才有兴趣去研究，否则如坠云雾。

其次，取决于自己所扮演的角色，如果只是学习一下，那只需泛泛了解，有个定性的认识即

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 3 页 共 19 页

可。如果要用于产品，那可能要深究，吃透其源代码，以保证产品的可靠和高效。

所以，要想学习有效，学习的方式首先要“正确”。

在编程理念上，人们已经接受了“面向对象”的思维方式，并且承认了其优越之处。

可在学习方式上似乎并未接受，至少大多数书籍还是基于“过程”的，目前所倡导的“任

务驱动”（或者称之为“项目驱动”）模式似乎未被响应，而所谓“任务驱动”我觉得从实质

上讲类似于编程中的“面向对象”概念。

“面向对象”核心是将编程的关注点放在要实现的功能上，而非实现功能的方式。

“任务驱动”核心是将学习的关注点放在要完成的任务上，而非完成任务的技能。

“面向对象”的优点源于这种思维方式转变带来了逻辑关系的清晰，从而使程序易于理

解，带来的所有好处我认为都源于“易于理解”，如可移植性、可靠性、便于多人合作等。

而“任务驱动”同样也是得益于“易于理解”！（使用 OS 编程也是为了“易于理解”）

以往的“教”和“学”都是先传授知识、技能，后让学生使用之。可痛苦在于，这些知

识、技能是前人为了解决某些问题而创建的，准确的说应该是解决问题后抽象出来的。学生

们却要先把抽象的“记住”、“理解”，“暂存”后再去找机会用。想象一下，学的过程会有多

“枯燥”，更可悲的是，到需要用时，“暂存”的东西找不到了 /。

人通常对于明确目标的事情有较强的兴趣，而且目标越近，动力越大，越亢奋。对于不

知为何而做的事很难投入，通常是三心二意应付了之。目前的大学多数是这个状况。

所谓“任务驱动”就是先明确目标，再去学习实现目的所需的知识和技能。这样学生在

整个学习过程中都会主动去思考，不断斟酌正在学的东西可以怎样帮助自己实现目标。此时，

你想让他走神都难。

所以，本学习过程尝试采用“任务驱动”方式。首先要确定一个合适的目标作为学习的

素材，目标要可行、能提起兴趣，否则无异于没有。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 4 页 共 19 页

我所选择的目标是用 STM32 去控制一个小车。小车控制涵盖了数字输出输入、模拟输

入、定时器应用、通讯应用等，应该说嵌入式控制常用的知识均已包含。

因为电机驱动，转动检测、电机电流检测、通讯等需求同时存在，而且这些任务都有响

应时间要求，uCOS 的实时多任务特征正好可以得到应用。

小车可以扩展，控制板有 I2C 接口，很多传感器都带。但那是在小车控制自如后的事了。

本系列文章就准备在这个基础上逐渐深入。

四、初步规划

从 03 年开始关注 uCOSII ，买了邵老师的书。真正开始看是 08 年，我的第二代小车推

出 STM32 扩展版之后。晕晕乎乎将书看完，结果还是无从下手，半途而废。

这次重新启动是因为第四代小车没有设计 51 的控制器，为了演示只能编写 STM32 的控

制程序。

为避免再次夭折，强迫自己不再为了销售而编写不带系统的示例程序。那样虽很快捷，

借助于 ST 的库，初始化好硬件，直接使用原来基于 51 的 C 程序即可。

可如果那样，或许就没有动力和压力去“折磨”自己，尝试在 uCOSII 下编程了。不过这

次我决定更章易辙，从应用入手，不再纠缠于系统本身。

1）买一个移植成功的学习板作为参考（我买的是“奋斗 STM32”），期望少走些弯路。

2）买了本《基于嵌入式实时操作系统的程序设计技术》，期待得到系统的指引。

3）从 uCOS 的官网（http://micrium.com/page/home）下载最新的 uCOS 源程序及资料。

4）以驱动小车控制板上唯一的 LED 为任务，自己构建编程环境和工程，作为日后深入

的基础。

因为 51 我是用 Keil 的，所以 ARM 决定还是用 Keil，减小难度。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 5 页 共 19 页

五、实施

5.1 准备工作

uCOS 官网上有移植好的 Cortex‐M3 上的 uCOSII，程序包为：

Micrium‐ST‐uCOS‐II‐LCD‐STM32.exe

下载安装后，里面有 uCOS 源程序、ST 库、基于 ST 学习板的示例程序、相应的说明。

看了若干资料，觉得最有价值莫过于从官网上下载的手册：

AN­1018 ：µC/OS­II and the ARM Cortex‐M3 Processors

特别是其中的这张图：

nio
线条

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 6 页 共 19 页

对照 ReadMe 文件中的目录说明：

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 7 页 共 19 页

结合“程序关系图”、“目录文件说明”，浏览一下相关内容，那张“程序关系图”最好能

映射在脑中，对理解、构建程序极为有益！

通过浏览，在脑中形成一个 uCOS 实现的框架，此时不必了解细节。

再把示例程序在 IDE 中打开编译、运行看看，因为我没有 ST 的学习板，就以奋斗 STM32

板的示例为参考。

这一步主要是为了验证 IDE 环境是否正确，因为示例的工程是正确的，如果此时有问题

应出在 IDE 环境安装环节。如果开始就建立自己的工程，出现障碍则无法判断。

这次看这些文件似乎有些感觉，不知道是不是那些似懂非懂的阅读从量变到质变了。

不过回想学计算机的经历，似乎每次学习新的东西都要有个“从混沌的积累到顿悟”的

过程，或许这就是计算机知识的特征：每个概念都建立在一大堆概念之上，而且都是多因素

网状关联，需要同时“拥有”才能得到“答案”。

5.2 动手实施

示例程序还是比较“复杂”，因为它需要演示板上所有的功能。以 STM3210B‐EVAL 为例，

它上面有 LCD、按钮、JoyStick、M25 Flash 等外设，还支持了串口调试工具 uC/Probe。

第一步我要的是一个“干净”的模板，只需要驱动一个 LED，即一个 IO 口，因为这几乎

是所有系统都会设计的。

通过这个模板，我希望理解 uCOS 下的程序是如何工作的。

至于调试用的 uC/Probe，相对于这一步所具备的水平，属于“奢侈品”，暂时还无法享

用，所以暂不考虑，等日后程序功能多了，编程自如了，再“锦上添花”。

第一步：构建程序目录

首先根据自己的需要构建一个目录。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 8 页 共 19 页

因为我希望分步实现目标，将每一步都保留，而不是做完后只剩最后一步的内容，这样

别人参考就比较容易，不会像 uCOS 附带的示例程序，内容太多，难以消化。

但不希望每一步的目录中都包含 ST 和 uCOS 的库文件，这样一是文件太大，二是如果库

文件要升级会很麻烦。

为此，构建了以下目录结构：

COMMON 目录是基本不用修改的，其中内容来自：

..\Micrium\Software\CPU\ST\STM32 Æ STM32LIB

..\Micrium\Software\uC‐CPU\ Æ uC‐CPU

..\Micrium\Software\uC‐LIB\ Æ uC‐LIB

.. \Micrium\Software\uCOS‐II\ Æ uCOS‐II

.. \Micrium\Software\uC‐Probe\ Æ uC‐Probe

虽然这一步不用 uC/Probe，但日后考虑会使用，故保留。

感到遗憾的是 Micrium 程序包中所附的 ST 库是 2.0 版的，本来打算自己更换为 3.0 版，

但发现有些困难，初学乍练，不敢造次，就放弃了，留待日后升级吧。

学习目录目前只有 StepByStep‐1 一个，分为三个子目录：

asp —— 用于存放应用程序，就是实现功能的程序。工程文件在这个目录中。

bsp —— 用于存放相应的硬件驱动程序，用到什么添加什么。

out —— 存放所有编译、链接产生的文件，交流时这个目录内容可以不拷贝。

这样每做一步都建立一个目录，逐步丰富内容。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 9 页 共 19 页

asp、bsp 目录中的文件均以上述“uCOS 程序关系图”中所描述的文件为基础。

第二步：构建自己的 bsp 文件

我参考的是这个目录：

.. \Micrium\Software\EvalBoards\ST\STM3210B‐EVAL\RVMDK\BSP

它包含以下文件：

我不用 LCD，所以去掉，bsp 文件如下：

注意：除删除了三个与 LCD 显示相关的文件外，bsp.h 和 bsp.c 也作了相应修改，主要

是删除了不用的外设初始化和驱动程序，只保留了必须的驱动（详见程序清单）。

bsp_int.c 和中断初始化相关，因第一步不涉及中断，故暂不处理。

Bsp_periph.c 初始化各外设的时钟，因未吃透，也暂不处理。

Init.s 是启动代码，程序复位后的入口，因第一步无特殊要求，也没有能力变出花样，不

去碰它。

两个 SCAT 文件是程序装载时的定位文件，STM32 在这上面有不少花样，可以将指定程

序加载到指定位置等，未来如果要实现小车远程程序下载或许会用到，此时还一知半解。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 10 页 共 19 页

按我的理解：

STM32_Flash.scat 文件是为了编译生成 FLASH 中运行的程序用的，STM32_RAM.scat 应

该是编译生成 RAM 中运行的程序用的。刚从 51 上来，对在 RAM 中运行还不熟悉，故建立

工程时用的是 FLASH 方式。

这个目录会随着外设的不断起用而丰富起来。

第三步：构建自己的应用程序

因为原来 STM3210B‐Eval 板就有 LED 显示功能，而且是 4 个，我所做的就是删除所有

不用的功能，将 4 个 LED 驱动改为一个即可。（注意：是删除，不是注释掉）

删除后的 app 相当“单纯”：

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 11 页 共 19 页

APP 目录下有如下文件：

其中 app_cfg.h 也很“单纯”：

只有一个任务，确定其优先级和所用栈尺寸即可。

includes.h 里面有许多是系统需要的头文件，还没有吃透，暂不处理。

os_cfg.h 是 uCOSII 的配置文件，日后需要裁减系统时再琢磨，第一步不去惹它，以免系

统罢工。

stm32f10x_conf.h 是 STM32 的配置文件，不启用的外设就注释掉，此处不用删除，因为

恢复时太麻烦。

第一步应用部分只使用了一个 IO 口：PA3，所以从应用角度只需要打开 GPIO、GPIOA，

但 AFIO 似乎系统用了，去掉后系统编译出错，只能保留。

按我的理解，一些基础的功能系统应该需要，如中断、时钟、定时器等，没想到可以将

SysTick 及所有 TIM 注释掉，不清楚系统是如何产生定时任务切换的，如果要深入系统，这

就是一个值得探讨的点。（具体保留了那些外设详见程序）

vectors.s 中定义了 STM32 所有外设的中断向量，似乎没有必要去碰它。

至此，第一步所需要的源文件已经完成，下面要拿出来“遛遛”了。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 12 页 共 19 页

第四步：在 MDK 中构建工程

我所使用的是 MDK3.5 版本。构建过程如下:

1）在 Project 菜单中选择“New uVision Project”，创建一个新工程，放在 app 目录下；

我所创建的工程文件名是：

 YM4‐STM32‐Step1.Uv2

2）在 Project 菜单中选择“manage”，为工程设置工程目标名、文件组，并在每个文件

组中添加对应的文件：

因为编译产生的文件是在 Flash 上运行的，所以目标名用“Flash”，我觉得这个纯粹是为

了便于记忆、理解。

文件组是参考示例程序及自己的理解确定的。

确定组后，添加相应的文件，包括 C、S、asm（汇编）程序，asp、bsp 组的文件来自对

应的目录。其它都是系统文件，具体如下：

STM32‐LIB 文件添加自：（注：我是根据 STM32f10x‐conf.h 确定要添加的文件的）

\uCOS‐StepbyStep\COMMON\STM32LIB\src

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 13 页 共 19 页

uC‐CPU 文件添加自：

\uCOS‐StepbyStep\COMMON\uC‐CPU\ARM‐Cortex‐M3\RealView

uC‐LIB 文件添加自：（注：因第一步未用，故没有添加文件）

\uCOS‐StepbyStep\COMMON\uC‐LIB
\uCOS‐StepbyStep\COMMON\uC‐LIB\Ports\ARM‐Cortex‐M3\RealView

uCOSII 文件添加自：

\uCOS‐StepbyStep\COMMON\uCOS‐II\Source

uCOS‐Port 文件添加自：

\uCOS‐StepbyStep\COMMON\uCOS‐II\Ports\ARM‐Cortex‐M3\Generic\RealView

完成上述步骤后，在 IDE 的 Project Workspace 窗口显示如下：

3）鼠标在工程目标名“Flash”上，点右键菜单，选择“Option for Taget Flash” ，开始

配置工程选项。

打开后的主界面如下：

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 14 页 共 19 页

依次选择：

Device： ST 的 STM32F103RB

Target：默认值

Output：

Listing：同 Output 一样选择输出文件存放目录，也放在 out 目录下。

User：默认（还不明白有什么用处 /）

C/C++：这个选项中有很多暂时没有吃透，第一步必须做的是：首先选择编译的的告警

提示，建议用 “All Warning”，因为初学，多注意提示能帮助减少程序中的隐患。

其次就是配置 include 目录，将 COMMON 和 StepbyStep 目录下所有存在 *.h 的目录全部

添加进去。

如下所示：

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 15 页 共 19 页

Asm：默认

Linker：

Debug：按如下内容配置

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 16 页 共 19 页

Utilities：这一步主要配置 STM32 的 FLASH 编程算法，如下：

至此，工程全部建立完毕，可以编译了。

第五步：编译、下载、调试

这部分操作没有什么特别之处，用过 Keil51 就会，即使不熟悉，参考 MDK 的手册即可。

JTAG 工具用的是市场上最常见的 JLink V8。小车控制板较小，选用的是 IDC10 接口，需

要一个转接插头。

编译时建议先单独编译自己写的程序，此处是：asp.c bsp.c 。这样便于出错，因为编

译产生的提示信息相对少些。

排除错误后再进行“Build Taget” 。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 17 页 共 19 页

小车调试方式如下：

很幸运，uCOSII 下的第一个程序如愿运行了 ☺

六、总结

这是我的第一个 uCOSII 应用程序，虽然简单，但它帮助我初步理解了如何在 uCOS 下编

写程序，uCOS 程序大概（也就达到了这个水平）是如何运行的。

有了这个基础，就可以逐步深入，以小车的控制为需求，依次启用 STM32 上的外设，编

写相应的 BSP，并根据需要编写相应的应用程序。

通过这一步，自我感觉再看 uCOS 源程序时容易理解多了，以前看时是被动的接受书中

的概念，而这次是先有疑问，再去找答案。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 18 页 共 19 页

比如说，如果对照圆梦小车二代的 Step‐1 程序，用延时方式控制 LED 闪烁，那就无法再

处理其它任务，MCU 全给延时循环占用了。

为解此惑，我便看了 uCOS 的延时源程序，理解它是如何实现延时的。我主要看了两个

与定时相关的函数：

OSTimeDly（INT16U ticks）

OSTimeDlyHMSM（INT8U hours, INT8U minutes, INT8U seconds, INT16U milli）

因为有明确的需求，所以容易理解多了，同时还发现了一个小“秘密”：用后一个函数不

能提高延时的精度，虽然它提供了 ms 参数，看似可以精确到 ms，可如果你真想用它达到

ms 分辨率的延时一定会失望的，因为它是靠调用前一个函数实现的。

由此得出结论：

1）用系统延时函数最高分辨率就是系统的 ticks，通常 tick 为 10ms，太快了系统开销

太大，所以用此方法实现 1ms 分辨率的延时不可行，虽说 Step1 的 tick 是 1ms，但后面会

改为 10ms。

2）后一个函数最大的用途应该是长延时，用前一个函数最长只能 65535 个 ticks。

3）如果延时小于 65535 ticks，最好用前一个，可降低开销。

4）因为这个延时是利用任务控制块中的延时计数实现的，所以精度不高，如果要准确延

时，比如形成周期，最好还是直接用定时器中断配合消息机制实现。

为理解 OSTimeDly，顺带看了时钟节拍函数：OSTimeTick（void），初步了解了任务切换

的过程。

此文属于随笔，注重叙述过程和感悟，不想深入探讨系统实现，等小车的控制初具雏形

后再考虑是否需要对应写一系列文章，专门探讨每一步所涉及的系统函数是如何工作的。

uCOS 学习随笔 StepbyStep‐1 Project: fira‐mirosot‐robot

第 19 页 共 19 页

读者如果有兴趣可以自己先尝试一下，我觉得 Step1 应该了解的是：

1） uCOSII 的系统定时是如何产生的？使用的 STM32 什么硬件资源？

2） 看看用到的几个 OS 函数源代码，它们的功能是什么？如何实现？ 如：

BSP_IntDisAll()
OSInit()
OSTaskCreate()
OSTaskCreateExt()
OSTaskNameSet()
OSStart()

此外还有 BSP 中的一些函数

3） 消化任务控制块 TCB 中各个变量的作用，对理解 OS 函数很有帮助。

Step‐1 到此结束，准备着手根据需求构建任务了。

但愿本文能对那些和我一样曾经蠢蠢欲动多次又无疾而终的 uCOS 学习者有帮助，大家

共同交流、进步！

——————————

2010 年 10 月 20 日星期三

参考资料：

1、《嵌入式实时操作系统 uC/OS‐II（第二版）》邵贝贝 等译 ISBN7‐81077‐290‐2

2、《基于嵌入式实时操作系统的程序设计技术》周航慈 吴光文著 ISBN978‐7‐81077‐941‐8

3、《Cortex‐M3 + uCOS‐II 嵌入式系统开发入门与应用》陈瑶等著 ISBN978‐7‐115‐23105‐5

4、《uC/OS‐II 标准教程》杨宗德 张兵 著 ISBN978‐7‐115‐20442‐4

5、uC/OS‐II 官方网站资料

6、奋斗 STM32 MINI 学习板资料

	一、 序
	二、Step1 想要得到什么？（需求分析）
	三、如何入手？
	四、初步规划
	五、实施
	5.1 准备工作
	5.2 动手实施
	第一步：构建程序目录
	第二步：构建自己的bsp 文件
	第三步：构建自己的应用程序
	第四步：在MDK 中构建工程
	第五步：编译、下载、调试

	六、总结

