SD卡读CSD寄存器

2011-06-13 14:37:51| 分类： 开发应用|字号 订阅
typedef struct
{
 uint8 CSDStruct; // CSD结构
 uint8 SysSpecVersion; // 系统规范版本
 uint8 Reserved1; // 保留
 uint8 TAAC; // 读取时间1
 uint8 NSAC; // 数据在CLK周期内读取时间2
 uint8 MaxBusClkFrec; // 最大总线速度
 uint16 CardComdClasses; // 卡命令集合
 uint8 RdBlockLen; // 最大读取数据块长
 uint8 PartBlockRead; // 允许读的部分块
 uint8 WrBlockMisalign; // 非线写块
 uint8 RdBlockMisalign; // 非线读块
 uint8 DSRImpl; // DSR条件
 uint8 Reserved2; // 保留
 uint32 DeviceSize; // 设备容量
 uint8 MaxRdCurrentVDDMin; // 最小读取电流 @ VDD min
 uint8 MaxRdCurrentVDDMax; // 最大读取电流 @ VDD max
 uint8 MaxWrCurrentVDDMin; // 最小写入电流 @ VDD min
 uint8 MaxWrCurrentVDDMax; // 最大写入电流 @ VDD max
 uint8 DeviceSizeMul; // 设备容量乘积因子
 uint8 EraseGrSize; // 擦出块大小
 uint8 EraseGrMul; // 擦出扇区大小
 uint8 WrProtectGrSize; // 写保护群大小
 uint8 WrProtectGrEnable; // 写保护群使能
 uint8 ManDeflECC; // Manufacturer default ECC
 uint8 WrSpeedFact; // 写速度因子
 uint8 MaxWrBlockLen; // 最大写数据块长度
 uint8 WriteBlockPaPartial; // 允许写的部分
 uint8 Reserved3; // 保留
 uint8 ContentProtectAppli; // Content protection application
 uint8 FileFormatGrouop; // 文件系统群
 uint8 CopyFlag; // 拷贝标志
 uint8 PermWrProtect; // 永久写保护
 uint8 TempWrProtect; // 暂时写保护
 uint8 FileFormat; // 文件系统
 uint8 ECC; // ECC code
 uint8 CSD_CRC; // CSD CRC
 uint8 Reserved4; // 始终为 1
} SD_CSD;

/**
* FunctionName : SD_GetCSDRegister()
* Description : CSD-寄存器。寄存器长度为128，16字节
* EntryParameter : csd 寄存器
* ReturnValue : 返回操作状态：成功-0
**/
uint8 SD_GetCSDRegister(SD_CSD *csd)
{
 uint8 i;
 uint8 csdTable[16];
 uint8 count = 0xFF;
 uint8 rvalue = SD_RESPONSE_FAILURE; // 返回值

 SD_Enable(0); // SD卡使能

 if (SD_SendCmd(CMD9,0x00,0xFF) == SD_RESPONSE_NO_ERROR)
 {
 while ((SD_ReadByte() != SD_START_SINGLE_BLOCK_READ) && count) // 等待数据接收开始，收到0xFE表示开始
 {
 count--; // 等待超时
 }

 if (count != 0x00)
 {
 for (i=0; i<16; i++)
 {
 csdTable[i] = SD_ReadByte();
 }
 }

 SD_ReadByte(); // 读CRC
 SD_ReadByte();

 rvalue = SD_RESPONSE_NO_ERROR; // 设置成功标志
 }

 SD_Enable(1); // 清除SD卡片选
 SD_WriteByte(0xFF); // 8个时钟脉冲的延迟

 // 把获取值放入CSD结构体中
 csd->CSDStruct = (csdTable[0] & 0xC0) >> 6; // Byte 0
 csd->SysSpecVersion = (csdTable[0] & 0x3C) >> 2;
 csd->Reserved1 = csdTable[0] & 0x03;

 csd->TAAC = csdTable[1]; // Byte 1
 csd->NSAC = csdTable[2]; // Byte 2
 csd->MaxBusClkFrec = csdTable[3]; // Byte 3
 csd->CardComdClasses = csdTable[4] << 4; // Byte 4
 csd->CardComdClasses |= (csdTable[5] & 0xF0) >> 4; // Byte 5
 csd->RdBlockLen = csdTable[5] & 0x0F;

 csd->PartBlockRead = (csdTable[6] & 0x80) >> 7; // Byte 6
 csd->WrBlockMisalign = (csdTable[6] & 0x40) >> 6;
 csd->RdBlockMisalign = (csdTable[6] & 0x20) >> 5;
 csd->DSRImpl = (csdTable[6] & 0x10) >> 4;
 csd->Reserved2 = 0;
 csd->DeviceSize = (csdTable[6] & 0x03) << 10;

 csd->DeviceSize |= (csdTable[7]) << 2; // Byte 7
 csd->DeviceSize |= (csdTable[8] & 0xC0) >> 6; // Byte 8
 csd->MaxRdCurrentVDDMin = (csdTable[8] & 0x38) >> 3;
 csd->MaxRdCurrentVDDMax = (csdTable[8] & 0x07);

 csd->MaxWrCurrentVDDMin = (csdTable[9] & 0xE0) >> 5; // Byte 9
 csd->MaxWrCurrentVDDMax = (csdTable[9] & 0x1C) >> 2;
 csd->DeviceSizeMul = (csdTable[9] & 0x03) << 1;

 csd->DeviceSizeMul |= (csdTable[10] & 0x80) >> 7; // Byte 10
 csd->EraseGrSize = (csdTable[10] & 0x40) >> 6;
 csd->EraseGrMul = (csdTable[10] & 0x3F) << 1;

 csd->EraseGrMul |= (csdTable[11] & 0x80) >> 7; // Byte 11
 csd->WrProtectGrSize = (csdTable[11] & 0x7F);

 csd->WrProtectGrEnable = (csdTable[12] & 0x80) >> 7; // Byte 12
 csd->ManDeflECC = (csdTable[12] & 0x60) >> 5;
 csd->WrSpeedFact = (csdTable[12] & 0x1C) >> 2;
 csd->MaxWrBlockLen = (csdTable[12] & 0x03) << 2;

 csd->MaxWrBlockLen |= (csdTable[13] & 0xC0) >> 6; // Byte 13
 csd->WriteBlockPaPartial = (csdTable[13] & 0x20) >> 5;
 csd->Reserved3 = 0;
 csd->ContentProtectAppli = (csdTable[13] & 0x01);

 csd->FileFormatGrouop = (csdTable[14] & 0x80) >> 7; // Byte 14
 csd->CopyFlag = (csdTable[14] & 0x40) >> 6;
 csd->PermWrProtect = (csdTable[14] & 0x20) >> 5;
 csd->TempWrProtect = (csdTable[14] & 0x10) >> 4;
 csd->FileFormat = (csdTable[14] & 0x0C) >> 2;
 csd->ECC = (csdTable[14] & 0x03);

 csd->CSD_CRC = (csdTable[15] & 0xFE) >> 1; // Byte 15
 csd->Reserved4 = 1;

 return rvalue;
}

