

Copyright © 2010-2013 Texas Instruments, Inc.

Texas Instruments CC2540/41
Bluetooth® Low Energy

Software Developer’s Guide
v1.3.1

Document Number: SWRU271E

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

REFERENCES .. 4

USEFUL LINKS .. 4

1 OVERVIEW... 5
1.1 INTRODUCTION ... 5
1.2 BLE PROTOCOL STACK BASICS.. 5

2 TEXAS INSTRUMENTS BLE SOFTWARE DEVELOPMENT PLATFORM 6
2.1 CONFIGURATIONS ... 6
2.2 PROJECTS ... 8

3 SOFTWARE OVERVIEW ... 9
3.1 OPERATING SYSTEM ABSTRACTION LAYER (OSAL).. 9

3.1.1 Task Initialization .. 10
3.1.2 Task Events and Event Processing .. 10
3.1.3 Heap Manager ... 10
3.1.4 OSAL Messages ... 11

3.2 HARDWARE ABSTRACTION LAYER (HAL) ... 11
3.3 BLE PROTOCOL STACK .. 12

3.3.1 Generic Access Profile (GAP) ... 12
3.3.2 Generic Attribute Profile (GATT) .. 14
3.3.3 Using the GAP and GATT Stack API ... 16
3.3.4 GATT Server Application API ... 17
3.3.5 Library Files .. 17

3.4 PROFILES .. 18
3.4.1 GAP Peripheral Role Profile ... 18
3.4.2 GAP Peripheral / Broadcaster Multi-Role Profile .. 19
3.4.3 GAP Central Role Profile .. 19
3.4.4 GAP Bond Manager... 20
3.4.5 Simple GATT Profile .. 21
3.4.6 Simple Keys GATT Profile ... 23
3.4.7 Device Information Service.. 24
3.4.8 Additional GATT Profiles .. 25

4 WORKING WITH PROJECTS USING IAR EMBEDDED WORKBENCH 8.10.4 25
4.1 IAR OVERVIEW .. 25
4.2 USING IAR EMBEDDED WORKBENCH .. 25

4.2.1 Open an Existing Project ... 25
4.2.2 Project Options, Configurations, and Defined Symbols .. 26
4.2.3 Building and Debugging a Project .. 29
4.2.4 Linker Map File ... 31

4.3 SIMPLEBLEPERIPHERAL SAMPLE PROJECT .. 32
4.3.1 Project Overview ... 32
4.3.2 Initialization ... 34
4.3.3 Periodic Event ... 34
4.3.4 Peripheral State Notification Callback .. 34
4.3.5 Key Presses (CC2540/41DK-MINI Keyfob only) .. 34
4.3.6 LCD Display (CC2540/41 Slave only) ... 35
4.3.7 Complete Attribute Table ... 35

4.4 SIMPLEBLECENTRAL SAMPLE PROJECT .. 38
4.4.1 Project Overview ... 38
4.4.2 User Interface .. 38
4.4.3 Basic Operation ... 39
4.4.4 Initialization ... 39
4.4.5 Event Processing ... 39
4.4.6 Callbacks ... 40
4.4.7 Service Discovery .. 40

4.5 HOSTTESTRELEASE NETWORK PROCESSOR PROJECT .. 40

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

4.5.1 Project Overview ... 40
4.5.2 External Device Control of BLE Stack .. 41

4.6 ADDITIONAL SAMPLE PROJECTS ... 41

5 GENERAL INFORMATION ... 42
5.1 RELEASE NOTES HISTORY .. 42
5.2 DOCUMENT HISTORY ... 52

6 ADDRESS INFORMATION .. 53

7 TI WORLDWIDE TECHNICAL SUPPORT ... 53

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

References
Included with Texas Instruments Bluetooth Low Energy v1.3.1 Stack Release (All path and file
references in this document assume that the BLE development kit software has been installed to
the default path C:\Texas Instruments\BLE-CC254X-1.3.1\):

[1] OSAL API Guide

C:\Texas Instruments\ BLE-CC254X-1.3.1\Documents\osal\OSAL API.pdf

[2] HAL API Guide

C:\Texas Instruments\ BLE-CC254X-1.3.1\Documents\hal\HAL API.pdf

[3] TI BLE Vendor Specific HCI Reference Guide

C:\Texas Instruments\ BLE-CC254X-1.3.1\Documents\
TI_BLE_Vendor_Specific_HCI_Guide.pdf

[4] Texas Instruments CC2540 Bluetooth Low Energy API Guide

C:\Texas Instruments\ BLE-CC254X-1.3.1\Documents\BLE_API_Guide_main.htm

[5] Texas Instruments CC2540 Bluetooth Low Energy Sample Applications Guide

C:\Texas Instruments\ BLE-CC254X-1.3.1\Documents\
TI_BLE_Sample_Applications_Guide.pdf

Available for download from the Texas Instruments web site:

[6] Texas Instruments CC2540DK-MINI Bluetooth Low Energy User Guide v1.1

http://www.ti.com/lit/pdf/swru270

Available for download from the Bluetooth Special Interest Group (SIG) web site:

[7] Specification of the Bluetooth System, Covered Core Package version: 4.0 (30-June-2010)

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[8] Device Information Service (Bluetooth Specification), version 1.0 (24-May-2011)

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=238689

Useful Links
TI Bluetooth LE Wiki-page: www.ti.com/ble-wiki

Latest stack download: www.ti.com/ble-stack

Support forum: www.ti.com/ble-forum

http://www.ti.com/lit/pdf/swru270
http://www.ti.com/lit/pdf/swru270
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=238689
http://www.ti.com/ble-wiki
http://www.ti.com/ble-stack
http://www.ti.com/ble-forum

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

1 Overview
The purpose of this document is to give an overview of the Texas Instruments CC2540/41
Bluetooth® low energy (BLE) software development kit. This document also serves as an
introduction to the BLE standard; however it should not be used as a substitute for the complete
specification. For more details, see [7].

The release history of the BLE software development kit, including detailed information on
changes, enhancements, bug fixes, and known issues, can be found in section 5.1.

1.1 Introduction

Version 4.0 of the Bluetooth® standard allows for two systems of wireless technology: Basic Rate
(BR; often referred to as “BR/EDR” for “Basic Rate / Enhanced Data Rate”) and Bluetooth low
energy (BLE). The BLE system was created for the purpose of transmitting very small packets of
data at a time, while consuming significantly less power than BR/EDR devices.

Devices that can support BR and BLE are referred to as dual-mode devices and go under the
branding Bluetooth Smart Ready. Typically in a Bluetooth system, a mobile phone or laptop
computer will be a dual-mode device. Devices that only support BLE are referred to as single-
mode devices and go under the branding Bluetooth Smart. These single-mode devices are
generally used for application in which low power consumption is a primary concern, such as
those that run on coin cell batteries.

Figure 1 Bluetooth Smart and Smart Ready Branding Marks

1.2 BLE Protocol Stack Basics

The BLE protocol stack architecture is illustrated here:

Host

Generic Access Profile
(GAP)

Security Manager
(SM)

Controller

Host-Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Attribute
Protocol (ATT)

Logical Link Control and
Adaptation Protocol (L2CAP)

Generic Attribute
Profile (GATT)

Figure 2: BLE Protocol Stack

The protocol stack consists of two sections: the controller and the host. This separation of
controller and host goes back to standard Bluetooth BR/EDR devices, in which the two sections

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

were often implemented separately. Any profiles and applications that are being used sit on top of
the GAP and GATT layers of the stack.

The PHY layer is a 1Mbps adaptive frequency-hopping GFSK (Gaussian Frequency-Shift Keying)
radio operating in the unlicensed 2.4 GHz ISM (Industrial, Scientific, and Medical) band.

The LL essentially controls the RF state of the device, with the device being in one of five possible
states: standby, advertising, scanning, initiating, or connected. Advertisers transmit data without
being in a connection, while scanners listen for advertisers. An initiator is a device that is
responding to an advertiser with a connection request. If the advertiser accepts, both the
advertiser and initiator will enter a connected state. When a device is in a connection, it will be
connected in one of two roles: master or slave. The device that initiated the connection becomes
the master, and the device that accepted the request becomes the slave.

The HCI layer provides a means of communication between the host and controller via a
standardized interface. This layer can be implemented either through a software API, or by a
hardware interface such as UART, SPI, or USB.

The L2CAP layer provides data encapsulation services to the upper layers, allowing for logical
end-to-end communication of data.

The SM layer defines the methods for pairing and key distribution, and provides functions for the
other layers of the stack to securely connect and exchange data with another device.

The GAP layer directly interfaces with the application and/or profiles, and handles device
discovery and connection-related services for the device. In addition, GAP handles the initiation of
security features.

The ATT protocol allows a device to expose certain pieces of data, known as “attributes”, to
another device. In the context of ATT, the device exposing attributes is referred to as the “server”,
and the peer device is referred to as the “client”. The LL state (master or slave) of the device is
independent of the ATT role of the device. For example, a master device may either be an ATT
server or an ATT client, and a slave device may also be either an ATT server or an ATT client. It
is also possible for a device to be both an ATT server and an ATT client simultaneously.

The GATT layer is a service framework that defines the sub-procedures for using ATT. GATT
specifies the structure of profiles. In BLE, all pieces of data that are being used by a profile or
service are called “characteristics”. All data communications that occur between two devices in a
BLE connection are handled through GATT sub-procedures. Therefore, the application and/or
profiles will directly use GATT.

2 Texas Instruments BLE software development platform
The Texas Instruments royalty-free BLE software development kit is a complete software platform
for developing single-mode BLE applications. It is based on the CC2540/41, complete System-on-
Chip (SoC) solutions. The CC2540/41 combines a 2.4GHz RF transceiver, microcontroller, up to
256kB of in-system programmable memory, 8kB of RAM, and a full range of peripherals.

2.1 Configurations

The platform supports two different stack / application configurations:

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• Single-Device: The controller, host, profiles, and application are all implemented on the
CC2540/41 as a true single chip solution. This is the simplest and most common configuration
when using the CC2540/41. This is the configuration that most of our sample projects use. It
is most cost effective and provides the lowest-power performance. The SampleBLEPeripheral
and SimpleBLECentral projects are examples of applications built using the single-device
configuration. More information on these projects can be found in section 4.

CC2540 / CC2541

Host

Generic Access Profile
(GAP)

Security Manager
(SM)

Host-Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Attribute
Protocol (ATT)

Logical Link Control and
Adaptation Protocol (L2CAP)

Generic Attribute
Profile (GATT)

Generic Access Profile
(GAP)

Security Manager
(SM)

Controller

Host-Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Attribute
Protocol (ATT)

Logical Link Control and
Adaptation Protocol (L2CAP)

Generic Attribute
Profile (GATT)

GAP Role/Security Profiles GATT Profiles

Application

Figure 3: Single-Device Configuration

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• Network Processor: The controller and host are implemented together on the CC2540/41,
while the profiles and application are implemented separately. The application and profiles
communicate with the CC2540/41 by means of vendor-specific HCI commands using a SPI or
UART interface, or using a virtual UART interface over USB. This configuration is useful for
applications which execute on either another device (such as an external microcontroller) or a
PC. In these cases, the application can be developed externally while still running the BLE
stack on the CC2540/41. To use the network processor, the HostTestRelease project must be
used. More information on the HostTestRelease project can be found in section 4.5.

CC2540 / CC2541 / CC2541S

Host

Generic Access Profile
(GAP)

Security Manager
(SM)

Controller

Host-Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Attribute
Protocol (ATT)

Logical Link Control and
Adaptation Protocol (L2CAP)

Generic Attribute
Profile (GATT)

Generic Access Profile
(GAP)

Security Manager
(SM)

Controller

Host-Controller Interface (HCI)

Link Layer (LL)

Physical Layer (PHY)

Attribute
Protocol (ATT)

Logical Link Control and
Adaptation Protocol (L2CAP)

Generic Attribute
Profile (GATT)

GAP Role/Security Profiles GATT Profiles

Application

Serial comm (SPI/UART/USB-CDC)

Figure 4: Network Processor Configuration

2.2 Projects

The SimpleBLEPeripheral project consists of sample code that demonstrates a very simple
application in the single-device configuration. It can be used as a reference for developing a slave
/ peripheral application.

The SimpleBLECentral project is similar, in that it demonstrates a simple master / central
application in the single-device configuration, and can be used as a reference for developing
master / central applications.

The HostTestRelease project is used to build the BLE network processor software for the
CC2540/41. It contains configurations for both master and slave roles.

Several other sample projects are included in the BLE development kit, implementing various
profiles and demo applications. More information on these projects can be found in [5]

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

3 Software Overview
Software developed using the BLE software development kit consists of five major sections: the
OSAL, HAL, the BLE Protocol Stack, profiles, and the application. The BLE protocol stack is
provided as object code, while the OSAL and HAL code is provided as full source. In addition,
three GAP profiles (peripheral role, central role, and peripheral bond manager) are provided, as
well as several sample GATT profiles and applications.

All path and file references in this document assume that the BLE development kit software has
been installed to the default path: C:\Texas Instruments\BLE-CC254X-1.3.1\.

Note. In this section, the SimpleBLEPeripheral project will be used as a reference; however all
of the BLE projects included in the development kit will have a similar structure.

3.1 Operating System Abstraction Layer (OSAL)

The BLE protocol stack, the profiles, and all applications are all built around the Operating System
Abstraction Layer (OSAL). The OSAL is not an actual operating system (OS) in the traditional
sense, but rather a control loop that allows software to setup the execution of events. For each
layer of software that requires this type of control, a task identifier (ID) must be created, a task
initialization routine must be defined and added to the OSAL initialization, and an event
processing routine must be defined. Optionally, a message processing routine may be defined as
well. Several layers of the BLE stack, for example, are OSAL tasks, with the LL being the highest
priority (since it has very strict timing requirements).

In addition to task management, the OSAL provides additional services such as message
passing, memory management, and timers. All OSAL code is provided as full source.

Figure 5: OSAL task loop

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Note: The OSAL is capable of providing many more services than are covered in this guide,
including message management, timer management, and more; however for many applications
this level of depth is not required. This guide should serve as an introduction to the basic
framework of the OSAL.

Additional information on the OSAL can be found in [1]:

3.1.1 Task Initialization

In order to use the OSAL, at the end of the main function there should be a call to
osal_start_system. This is the OSAL routine that starts the system, and which will call the
osalInitTasks function that is defined by the application. In the SimpleBLEPeripheral project, this
function can be found in the file OSAL_SimpleBLEPeripheral.c.

Each layer of software that is using the OSAL must have an initialization routine that is called from
the function osalInitTasks. Within this function, the initialization routine for every layer of software
is called. As each task initialization routine is called, an 8-bit “task ID” value is assigned to the
task. Note that when creating an application, it is very important that it be added to the end of the
list, such that it has a higher task ID than the others. This is because the priority of tasks is
determined by the task ID, with a lower value meaning higher priority. It is important that the
protocol stack tasks have the highest priority in order to function properly. Such is the case with
the SimpleBLEPeripheral application: its initialization function is SimpleBLEPeripheral_Init, and
it has the highest task ID and therefore the lowest priority.

3.1.2 Task Events and Event Processing

After the OSAL completes initialization, it runs the executive loop checking for task events. This
loop can be found in the function osal_start_system in the file OSAL.c. Task events are
implemented as a 16-bit variable (one for each task) where each bit corresponds to a unique
event. The definition and use of these event flags is completely up to the application.

For example, the SimpleBLEPeripheral application defines a flag in simpleBLEPeripheral.h:
SBP_START_DEVICE_EVT (0x0001), which indicates that the initial start has completed, and
the application should begin. The only flag value which is reserved and cannot be defined by the
application is 0x8000, which corresponds to the event SYS_EVENT_MSG (this event is used for
messaging between tasks, which is covered in section 3.1.3).

When the OSAL detects an event for a task, it will call that task’s event processing routine. The
layer must add its event processing routine to the table formed by the array of function pointers
called tasksArr (located in OSAL_SimpleBLEPeripheral.c in the example). You will notice that
the order of the event processing routines in tasksArr is identical to the order of task ID’s in the
osalInitTasks function. This is required in order for events to be processed by the correct
software layer.

In the case of the SimpleBLEPeripheral application, the function is called
SimpleBLEPeripheral_ProcessEvent. Note that once the event is handled and if it is not
removed from the event flag, the OSAL will continue to call the task’s process event handler. As
can be seen in the SimpleBLEPeripheral application function
SimpleBLEPeripheral_ProcessEvent, after the START_DEVICE_EVT event occurs, it returns
the 16-bit events variable with the SBP_START_DEVICE_EVT flag cleared.

It is possible for any layer of the software to set an OSAL event for any other layer, as well as for
itself. The simplest way to set up an OSAL event is to use the osal_set_event function (prototype
in OSAL.h), which immediately schedules a new event. With this function, you specify the task ID
(of the task that will be processing the event) and the event flag as parameters.

Another way to set an OSAL event for any layer is to use the osal_start_timerEx function
(prototype in OSAL_Timers.h). This function operates just like the osal_set_event function. You
select task ID of the task that will be processing the event and the event flag as parameters;
however for a third parameter in osal_start_timerEx you input a timeout value in milliseconds.
The OSAL will set a timer, and the specified event will not get set until the timer expires.

3.1.3 Heap Manager

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

OSAL provides basic memory management functions. The osal_mem_alloc function serves as a
basic memory allocation function similar to the standard C malloc function, taking a single
parameter determining the number of bytes to allocate, and returning a void pointer. If no memory
is available, a NULL pointer will be returned. Similarly, the osal_mem_free function works similar
to the standard C free function, freeing up memory that was previously allocated using
osal_mem_alloc.

The pre-processor define INT_HEAP_LEN is used to reserve memory for dynamic allocation.

To see how much memory you typically need, you can set the pre-processor define
OSALMEM_METRICS=TRUE in the project options. After a stress test of the application where
you send as many messages, have as many clients as you will in the worst case, remembering to
use bonding and encryption during the test if that’s applicable, you can look at the value of the
variable memMax in OSAL_Memory.c to see how much memory was ever allocated at the same
time. This figure could be used as a guideline for lowering INT_HEAP_LEN if necessary, but
thorough testing is needed, as the heap is used by the BLE stack.

3.1.4 OSAL Messages

OSAL also provides a system for different subsystems of the software to communicate with each
other by sending or receiving messages. Messages can contain any type of data and can be any
size. To send an OSAL message, first the memory must be allocated by calling the
osal_msg_allocate function, passing in the length of the message as the only parameter. A
pointer to a buffer containing the allocated space will be returned (you do not need to use
osal_mem_alloc when using osal_msg_allocate). If no memory is available, a NULL pointer will
be returned. You can then copy the data into the buffer. To send the message, the
osal_msg_send should be called, with the destination task for the message indicated as a
parameter.

The OSAL will then signal the receiving task that a message is arriving by setting the
SYS_EVENT_MSG flag for that task. This causes the receiving task’s event handler function to
be called. The receiving task can then retrieve the data by calling osal_msg_receive, and can
process accordingly based on the data received. It is recommended that every OSAL task have a
local message processing function (the simpleBLEPeripheral application’s message processing
function is simpleBLEPeripheral_ProcessOSALMsg) that decides what action to take based on
the type of message received. Once the receiving task has completed processing the message, it
must deallocate the memory using the function osal_msg_deallocate (you do not need to use
osal_mem_free when using osal_msg_deallocate).

3.2 Hardware Abstraction Layer (HAL)

The Hardware Abstraction Layer (HAL) of the CC2540/41 software provides an interface of
abstraction between the physical hardware to and the application and protocol stack. This allows
for the development of new hardware (such as a new PCB) without making changes to the
protocol stack or application source code. The HAL includes software for the SPI and UART
communication interfaces, ADC, keys, and LED’s etc. The HAL drivers that are provided support
the following hardware platforms:

• SmartRF05EB + CC2540EM
• SmartRF05EB + CC2541EM
• CC2540 Keyfob
• CC2541 Keyfob
• CC2541 SensorTag
• CC2540 USB Dongle

When developing with a different hardware platform, it might be necessary to modify the HAL
source for compatibility.

More information on the HAL API can be found in [2].

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

3.3 BLE Protocol Stack

The entire BLE protocol stack is provided as object code in a single library file (Texas Instruments
does not provide the protocol stack source code as a matter of policy). The functionality of the
GAP and GATT layers should be understood as they interact directly with the application and
profiles.

3.3.1 Generic Access Profile (GAP)

The GAP layer of the BLE Protocol Stack is responsible for handling the device’s access modes
and procedures, including device discovery, link establishment, link termination, initiation of
security features, and device configuration.

The GAP layer is always operating in one of four roles:

• Broadcaster – an advertiser that is non-connectable

• Observer – scans for advertisements, but cannot initiate connections

• Peripheral – an advertiser that is connectable, and operates as a slave in a single link-layer
connection.

• Central – scans for advertisements and initiates connections; operates as a master in a
single or multiple link-layer connections. Currently, the BLE central stack supports up to three
simultaneous connections.

The BLE specification allows for certain combinations of multiple-roles. The default setup of the
sample application is to only support the peripheral role, though source code is provided to run a
combination peripheral and broadcaster role.

In a typical Bluetooth Low Energy system, the peripheral device advertises with specific data
letting any central device know that it is a connectable device. This advertisement contains the
device address, and can contain some additional data as well, such as the device name. The
central device, upon receiving the advertisement, sends a “scan request” to the peripheral. The
peripheral responds with a “scan response”. This is the process of device discovery, in that the
central device is now aware of the peripheral device, and knows that it can form a connection with
it. The central device can then send out a request to establish a link with the peripheral device. A
connection request contains a few connection parameters:

• Connection Interval – In a BLE connection between two devices, a frequency-hopping
scheme is used, in that the two devices each send and receive data from one another on a
specific channel, then “meet” at a new channel (the link layer of the BLE stack handles the
channel switching) at a specific amount of time later. This “meeting” where the two devices
send and receive data is known as a “connection event”. Even if there is no application data
to be sent or received, the two devices will still exchange link layer data to maintain the
connection. The connection interval is the amount of time between two connection events, in
units of 1.25ms. The connection interval can range from a minimum value of 6 (7.5ms) to a
maximum of 3200 (4.0s).

Different applications may require different connection intervals. The advantage of having a
very long connection interval is that significant power is saved, since the device can sleep
most of the time between connection events. The disadvantage is that if a device has data
that it needs to send, it must wait until the next connection event.

The advantage of having a very short connection interval is that there is more opportunity for
data to be sent or received, as the two devices will connect more frequently. The
disadvantage is that more power will be consumed, since the device is frequently waking up
for connection events.

• Slave Latency – This parameter gives the slave (peripheral) device the option of skipping a
number of connection events. This gives the peripheral device some flexibility, in that if it does
not have any data to send it can choose to skip connection events and stay asleep, thus
providing some power savings. The decision is up to the peripheral device.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

The slave latency value represents the maximum number of events that can be skipped. It
can range from a minimum value of 0 (meaning that no connection events can be skipped) to
a maximum of 499; however the maximum value must not make the effective connection
interval (see below) greater than 16.0s.

• Supervision Timeout – This is the maximum amount of time between two successful
connection events. If this amount of time passes without a successful connection event, the
device is to consider the connection lost, and return to an unconnected state. This parameter
value is represented in units of 10ms. The supervision timeout value can range from a
minimum of 10 (100ms) to 3200 (32.0s). In addition, the timeout must be larger than the
effective connection interval (explained below).

The “effective connection interval” is equal to the amount of time between two connection events,
assuming that the slave skips the maximum number of possible events if slave latency is allowed
(the effective connection interval is equal to the actual connection interval if slave latency is set to
zero). It can be calculated using the formula:

Effective Connection Interval = (Connection Interval) * (1 + (Slave Latency))

Take the following example:

Connection Interval: 80 (100ms)

Slave Latency: 4

Effective Connection Interval: (100ms) * (1 + 4) = 500ms

This tells us that in a situation in which no data is being sent from the slave to the master, the
slave will only transmit during a connection event once every 500ms.

In many applications, the slave will skip the maximum number of connection events. Therefore it
is useful to consider the effective connection interval when selecting your connection parameters.
Selecting the correct group of connection parameters plays an important role in power
optimization of your BLE device. The following list gives a general summary of the trade-offs in
connection parameter settings:

Reducing the connection interval will:

• Increase the power consumption for both devices

• Increase the throughput in both directions

• Reduce the amount of time that it takes for data to be sent in either direction

Increasing the connection interval will:

• Reduce the power consumption for both devices

• Reduce the throughput in both directions

• Increase the amount of time that it takes for data to be sent in either direction

Reducing the slave latency (or setting it to zero) will:

• Increase the power consumption for the peripheral device

• Reduce the amount of time that it takes for data sent from the central device to be received by
the peripheral device

Increasing the slave latency will:

• Reduce power consumption for the peripheral during periods when the peripheral has no data
to send to the central device

• Increase the amount of time that it takes for data sent from the central device to be received
by the peripheral device

In some cases, the central device will request a connection with a peripheral device containing
connection parameters that are unfavorable to the peripheral device. In other cases, a peripheral
device might have the desire to change parameters in the middle of a connection, based on the

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

peripheral application. The peripheral device can request the central device to change the
connection settings by sending a “Connection Parameter Update Request”. This request is
handled by the L2CAP layer of the protocol stack.

This request contains four parameters: minimum connection interval, maximum connection
interval, slave latency, and timeout. These values represent the parameters that the peripheral
device desires for the connection (the connection interval is given as a range). When the central
device receives this request, it has the option of accepting or rejecting the new parameters.

A connection can be voluntarily terminated by either the master or the slave for any reason. One
side initiates termination, and the other side must respond accordingly before both devices exit
the connected state.

GAP also handles the initiation of security features during a BLE connection. Certain data may be
readable or writeable only in an authenticated connection. Once a connection is formed, two
devices can go through a process called pairing. When pairing is performed, keys are established
which encrypt and authenticate the link. In a typical case, the peripheral device will require that
the central device provide a passkey in order to complete the pairing process. This could be a
fixed value, such as “000000”, or could be a randomly generated value that gets provided to the
user (such as on a display). After the central device sends the correct passkey, the two devices
exchange security keys to encrypt and authenticate the link.

In many cases, the same central and peripheral devices will be regularly connecting and
disconnecting from each other. BLE has a security feature that allows two devices, when pairing,
to give each other a long-term set of security keys. This feature, called bonding, allows the two
devices to quickly re-establish encryption and authentication after re-connecting without going
through the full pairing process every time that they connect, as long as they store the long-term
key information.

In the SimpleBLEPeripheral application, the management of the GAP role is handled by the GAP
role profile, and the management of bonding information is handled by the GAP security profile.
More information on the GAP profiles included with the CC2540/41 BLE Protocol Stack can be
found in section 3.4

3.3.2 Generic Attribute Profile (GATT)

The GATT layer of the BLE Protocol Stack is designed to be used by the application for data
communication between two connected devices. From a GATT standpoint, when two devices are
connected they are each in one of two roles:

• GATT Client – This is the device that is reading/writing data from/to the GATT Server.

• GATT Server – This is the device containing the data that is being read/written by the GATT
Client.

It is important to note that the GATT roles of Client and Server are completely independent from
the BLE link-layer roles of slave and master, or from the GAP peripheral and central roles. A slave
can be either a GATT Client or a GATT Server, and a master can be either a GATT client or a
GATT Server.

A GATT server consists of one or more GATT services, which are collections of data to
accomplish a particular function or feature.

In the case of the SimpleBLEPeripheral application, there are three GATT services:

• Mandatory GAP Service – This service contains device and access information, such as the
device name and vendor and product identification, and is a part of the BLE protocol stack. It
is required for every BLE device as per the BLE specification. The source code for this
service is not provided, as it is built into the stack library.

• Mandatory GATT Service – This service contains information about the GATT server and is
a part of the BLE protocol stack. It is required for every GATT server device as per the BLE
specification. The source code for this service is not provided, as it is built into the stack
library.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• SimpleGATTProfile Service – This service is a sample profile that is provided for testing and
for demonstration. The full source code is provided in the files simpleGATTProfile.c and
simpleGATTProfile.h.

 “Characteristics” are values that are used by a service, along with properties and configuration
information. GATT defines the sub-procedures for discovering, reading, and writing attributes over
a BLE connection.

The characteristic values, along with their properties and their configuration data (known as
“descriptors”) on the GATT Server are stored in the attribute table. The attribute table is simply a
database containing small pieces of data called attributes. In addition to the value itself, each
attribute has the following properties associated with it:

• Handle – this is essentially the attribute’s “address” in the table. Every attribute has a unique
handle.

• Type – this indicates what the data represents. It is often referred to as a “UUID” (universal
unique identifier) assigned by the Bluetooth SIG, or a custom type

• Permissions – this enforces if and how a GATT client device can access the attribute’s
value.

GATT defines several sub-procedures for communication between the GATT server and client.

Here are a few of the sub-procedures:

• Read Characteristic Value – The client requests to read the characteristic value at a specific
handle, and the server responds to the client with the value (assuming that the attribute has
read permissions).

• Read Using Characteristic UUID – The client requests to read all characteristic values of a
certain type, and the server responds to the client with the handles and values (assuming that
the attribute has read permissions) of all characteristics with matching type. The client does
not need to know the handles of these characteristics.

• Read Multiple Characteristic Values – The client requests to read the characteristic values
of several handles in a single request, and the server responds to the client with the values
(assuming that the attributes all have read permissions). The client must know how to parse
the data between the different characteristic values.

• Read Characteristic Descriptor – The client requests to read a characteristic descriptor at a
specific handle, and the server responds to the client with the descriptor value (assuming that
the attribute has read permissions).

• Discover Characteristic by UUID – The client requests to discover the handle of a specific
characteristic by its type. The server responds with the characteristic declaration, containing
the handle of the characteristic value as well as the characteristic’s permissions.

• Write Characteristic Value – The client requests to write a characteristic value at a specific
handle to the server, and the server responds to the client to indicate whether the write was
successful or not.

• Write Characteristic Descriptor – The client requests to write to a characteristic descriptor
at a specific handle to the server, and the server responds to the client to indicate whether the
write was successful or not.

• Characteristic Value Notification – The server notifies the client of a characteristic value.
The client does not need to prompt the server for the data, nor does it need to send any
response when a notification is received, but it must first configure the characteristic to enable
notifications. A profile defines when the server is supposed to send the data.

Each profile initializes its corresponding service and internally registers the service with the GATT
server on the device. The GATT server adds the entire service to the attribute table, and assigns
unique handles to each attribute.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

There are a few special attribute types that are found in the GATT attribute table, with values
defined by the Bluetooth SIG:

• GATT_PRIMARY_SERVICE_UUID – This indicates the start of a new service, and the type
of the service provided

• GATT_CHARACTER_UUID – This is known as the “characteristic declaration”, and it
indicates that the attribute immediately following it is a GATT characteristic value

• GATT_CLIENT_CHAR_CFG_UUID – This attribute represents a characteristic descriptor that
corresponds to the nearest preceding (by handle) characteristic value in the attribute table. It
allows the GATT client to enable notifications of the characteristic value

• GATT_CHAR_USER_DESC_UUID – This attribute represents a characteristic descriptor that
corresponds to the nearest preceding (by handle) characteristic value in the attribute table. It
contains an ASCII string with a description of the corresponding characteristic

These are just few of the special attribute types that are included in the BLE specification. For
more details on other attribute types, see [4].

3.3.3 Using the GAP and GATT Stack API

The application and profiles directly call GAP and GATT API functions to perform BLE-related
functions, such as advertising, connecting, and reading and writing characteristics. For detailed
information on the APIs of the different layers of the BLE protocol stack, the interactive HTML
guide can be consulted. For more details on this, see [4].

The general procedure for using the GAP or GATT API is as follows:

1. Call API function with appropriate parameters

2. Stack performs specified action and returns

3. After action is complete, or whenever the stack has information to report back to calling task,
the stack sends an OSAL message to the calling task

4. Calling task receives and processes accordingly based on the message

5. Calling task de-allocates the message

An example of this procedure can be seen in the GAP peripheral role profile (peripheral.c):

1. In order to initialize the device, the profile calls the GAP API function GAP_DeviceInit.

2. GAP performs the initialization and the function returns a value of SUCCESS (0x00).

3. After initialization is complete, the BLE stack sends an OSAL message back to the peripheral
role profile with a header event value of GAP_MSG_EVENT, and an opcode value of
GAP_DEVICE_INIT_DONE_EVENT.

4. The profile task receives a SYS_EVENT_MSG event, indicating that it has a message
waiting. The profile receives the message and looks at the header and opcode values. Based
on this, the profile knows to cast the message data to the appropriate type
(gapDeviceInitDoneEvent_t) and process accordingly. In this case, the profile stores the
generated keys in the NV memory space and locally saves the device address.

5. The profile de-allocates the message and returns.

Here is one more example that would occur if a GATT client device wants to perform a GATT
read request on a peer GATT server:

1. The application calls the GATT sub-procedure API function, passing the connection handle,
the characteristic handle (contained within thedata type), and its own task ID as parameters.

2. GATT processes the request, and returns a value of SUCCESS (0x00).

3. The stack sends out the read request at the next connection event. When a read response is
received from the remote device, the stack sends an OSAL message containing the data in

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

the read response back to the application. The message contains a header event value of
GATT_MSG_EVENT and a method value of ATT_READ_RSP.

4. The application task receives a SYS_EVENT_MSG event, indicating that it has a message
waiting. The profile receives the message and looks at at the header and method values.
Based on this, the profile knows to cast the message data to the appropriate type
(attReadRsp_t) and retrieve the data that was received in the read response.

5. The profile de-allocates the message and returns.

3.3.4 GATT Server Application API

The GATT Server Application provides APIs to the higher layer GATT profiles to perform two
primary functions:

• Register or deregister service attributes and callback functions from the GATT Server

• Add or delete a GATT Service. This API adds or deletes the GATT Service’s attribute list and
callback functions to/from the GATT Server Application

A profile may support one or more services. Each of the services may support characteristics or
references to other services. Each characteristic contains a value and may contain optional
descriptors. The service, characteristic, characteristic value and descriptors are all stored as
attributes on the server.

The service attribute list to be registered with the GATT Server Application must start with a
service attribute followed by all the attributes associated with that service attribute. Each service
is an array of type gattAttribute_t, as defined in the file gatt.h.

3.3.5 Library Files

Even though a single library file is needed for a BLE application to use the stack, there are two
different files corresponding to two different configurations for either CC2540 or CC2541 (see
section 2.1 for more information on stack / application configurations). Table 1 below can be used
as a reference to determine the correct library file to use in the project:

Configuration
GAP Roles Supported

Chipset Library
Broadcaster Observer Peripheral Central

Network
Processor X X X X CC2540 CC2540_BLE.lib

CC254X_BLE_HCI_TL_Full.lib

Single-Device X X X X CC2540 CC2540_BLE.lib
Single-Device X CC2540 CC2540_BLE_bcast.lib

Single-Device X X CC2540 CC2540_BLE_
bcast_observ.lib

Single-Device X X CC2540 CC2540_BLE_cent.lib

Single-Device X X X CC2540 CC2540_BLE_
cent_bcast.lib

Single-Device X CC2540 CC2540_BLE_observ.lib
Single-Device X X CC2540 CC2540_BLE_peri.lib

Single-Device X X X CC2540 CC2540_BLE_
peri_observ.lib

Network
Processor X X X X CC2541 CC2541_BLE.lib

CC254X_BLE_HCI_TL_Full.lib

Single-Device X X X X CC2541 CC2541_BLE.lib

Single-Device X CC2541 CC2541_BLE_
bcast.lib

Single-Device X X CC2541 CC2541_BLE_
bcast_observ.lib

Single-Device X X CC2541 CC2541_BLE_cent.lib

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Single-Device X X X CC2541 CC2541_BLE_
cent_bcast.lib

Single-Device X CC2541 CC2541_BLE_
observ.lib

Single-Device X X CC2541 CC2541_BLE_peri.lib

Single-Device X X X CC2541 CC2541_BLE_
peri_observ.lib

Table 1: BLE Stack Libraries

3.4 Profiles

The BLE software development kit includes three GAP role profiles, one GAP security profile, and
several sample GATT service profiles.

3.4.1 GAP Peripheral Role Profile

The peripheral role profile provides the means for the keyfob to advertise, connect with a central
device (though the initiation of the connection must come from the central device), and request a
specific set of connection parameters from a master device.

The primary API function prototypes for the peripheral role profile can be found in the file
peripheral.h. The API provides functions to get and set certain GAP profile parameters:
GAPRole_GetParameter and GAPRole_SetParameter, respectively. Here are a few GAP role
parameters of interest:

• GAPROLE_ADVERT_ENABLED – This parameter enables or disables advertisements. The
default value for this parameter is TRUE.

• GAPROLE_ADVERT_DATA – This is a string containing the data to appear in the
advertisement packets. By setting this value to { 0x02, 0x01, 0x05 }, the device will use limited
discoverable mode when advertising. More information on advertisement data types and
definitions can be found in [7].

• GAPROLE_SCAN_RSP_DATA – This is a string containing the name of the device that will
appear in scan response data. If an observer or central device is scanning and sends a scan
request to the peripheral device, the peripheral will respond back with a scan response
containing this string.

• GAPROLE_ADVERT_OFF_TIME – This parameter is used when the device is put into
limited discoverable mode. It sets how long the device should wait before becoming
discoverable again at the end of the limited discovery period. By setting this value to 0, the
device will not become discoverable again until the GAPROLE_ADVERT_ENABLED is set
back to TRUE.

• GAPROLE_PARAM_UPDATE_ENABLE – This enables automatic connection parameter
update requests. The profile default value is FALSE.

• GAPROLE_MIN_CONN_INTERVAL – This parameter is the minimum desired connection
interval value. The default value is 80, corresponding to 100ms.

• GAPROLE_MAX_CONN_INTERVAL – This parameter is the maximum desired connection
interval value. The default value is 3200, corresponding to 4.0s.

• GAPROLE_SLAVE_LATENCY – This parameter is the desired slave latency. The default
value is 0.

• GAPROLE_TIMEOUT_MULTIPLIER – This parameter is the desired connection supervision
timeout. The default value is 1000 (corresponding to 10.0s)

The GAP peripheral role uses callback functions to notify the application of events. These are set
up by means of the function GAPRole_StartDevice. This function initializes the GAP peripheral

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

role, and should only be called once. Its single parameter is a pointer to a variable of type
gapRolesCBs_t, which is a structure containing two function pointers:

• pfnStateChange – This function gets called every time the GAP changes states, with the
new state of the GAP passed as a parameter.

• pfnRssiRead – This function gets called every time the RSSI has been read, with the RSSI
value passed as a parameter.

It is up to the application to provide the actual callback functions. In the case of the sample
application, the state change function is peripheralStateNotificationCB, while no function is
defined for the RSSI read (a NULL pointer is passed as the parameter for pfnRssiRead).

The peripheral profile also contains an automatic connection parameter update feature that can
be enabled by setting the GAPROLE_PARAM_UPDATE_ENABLE parameter to TRUE. If the
feature is enabled and the peripheral device enters a connection with a connection interval that
falls outside of the range of the desired interval, or with a slave latency or timeout setting that is
not the desired value, the peripheral profile will automatically send a Connection Parameter
Update Request with the desired parameters. As long as the parameter values are legal as per
the BLE specification, the central device should accept the request and change the connection
parameters. In the sample application, the desired connection parameters are set in the
SimpleBLEPeripheral_Init function, and can easily be changed to other values.

Additional details on using the GAP Peripheral Role Profile can be found in [4].

3.4.2 GAP Peripheral / Broadcaster Multi-Role Profile

The peripheral / broadcaster multi-role profile operates almost identically to the peripheral role
profile; however it provides additional functionality allowing the device to operate in both the
peripheral and broadcaster GAP roles simultaneously. In order to use this multi-role functionality,
the files peripheral.c and peripheral.h should be excluded from the build, and the files
peripheralBroadcaster.c and peripheralBroadcaster.h should be included. In addition, the
preprocessor value PLUS_BROADCASTER should be defined when using the peripheral /
broadcaster multi-role profile.

The function names within the peripheral / broadcaster profile are the same as they are in the
peripheral profile. This allows the developer to take a single-role application and add multi-role
support with minimal changes to the existing source code.

Additional details on using Multi-Role Profiles can be found in [4].

3.4.3 GAP Central Role Profile

The central role profile provides the means for a central device to discover advertising devices,
establish a connection with peripheral device, update the connection parameters, and monitor the
RSSI.

The primary API function prototypes for the central role profile can be found in the file central.h.
The API provides functions to get and set certain GAP profile parameters:
GAPCentralRole_GetParameter and GAPCentralRole_SetParameter, respectively.

The GAP Central Role Profile uses callback functions to notify the application of events. These
are set up by means of the function GAPCentralRole_StartDevice. This function initializes the
GAP central role, and should only be called once. Its single parameter is a pointer to a variable of
type gapCentralRolesCBs_t, which is a structure containing two function pointers:

• eventCB – This function gets called every time a GAP event occurs, such as when a device
is discovered while scanning, or when a connection is established or terminated.

• rssiCB – This function gets called every time the RSSI has been read, with the RSSI value
passed as a parameter.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

It is up to the application to provide the actual callback functions. In the case of the
SimpleBLECentral sample application (see section 4.4), the event callback function is
simpleBLECentralEventCB and the RSSI callback function is simpleBLECentralRssiCB.

The peripheral profile also contains an automatic connection parameter update feature that can
be enabled by setting the GAPROLE_PARAM_UPDATE_ENABLE parameter to TRUE. If the
feature is enabled and the peripheral device enters a connection with a connection interval that
falls outside of the range of the desired interval, or with a slave latency or timeout setting that is
not the desired value, the peripheral profile will automatically send a Connection Parameter
Update Request with the desired parameters. As long as the parameter values are legal as per
the BLE specification, the central device should accept the request and change the connection
parameters. In the sample application, the desired connection parameters are set in the
SimpleBLEPeripheral_Init function, and can easily be changed to other values.

Additional details on using the GAP Central Role Profile can be found in [4].

3.4.4 GAP Bond Manager

Note: The GAP Peripheral Bond Manager from the BLEv1.0 software release has been replaced
by the GAP Bond Manager in BLEv1.1, which now supports both peripheral and central role
configurations. The files gapperiphbondmgr.c and gapperiphbondmgr.h are still included to
support legacy applications; however for it is recommended that future applications use the new
bond manager, as it is had additional features and is based on the latest updates.

The GAP Bond Manager allows the device to automatically initiate or respond to pairing requests
from a connected device. After pairing, if security keys are exchanged and bonding is enabled,
the bond manager saves the security key information in non-volatile memory.

Whenever the bond manager initiates, it loads any previously-stored bonding information into
memory. When the device goes into a new connection and if the peer device address matches
the address of the information that was loaded, it passes the keys and other necessary data to
the GAP layer of the BLE protocol stack. This way, encryption can easily (or automatically) be re-
established.

The bond manager is primarily controlled by the GAP role profile; however the application can
access a parameter in the bond manager using the GAPBondMgr_SetParameter and
GAPBondMgr_GetParameter functions. The sample application uses the
GAPBondMgr_SetParameter function during initialization to setup the bond manager. Here are
a few bond manager parameters of interest:

• GAPBOND_PAIRING_MODE – This parameter tells the bond manager whether pairing is
allowed, and if so, whether it should wait for a request from the central device, or initiate
pairing on its own. The default setting is to wait for a request from the central device.

• GAPBOND_MITM_PROTECTION – This parameter sets whether man-in-the-middle
protection is enabled or not. If it is enabled, the pairing request will also authenticate the
connection between the slave and master. The profile default value is FALSE, though the
sample application sets it to TRUE during initialization.

• GAPBOND_IO_CAPABILITIES – This parameter tells the bond manager the input and
output capabilities of the device. This is needed in order to determine whether the device can
display and/or enter a passkey. Therefore, the default value is
GAPBOND_IO_CAP_DISPLAY_ONLY, indicating that the device has a display but no
keyboard. Even if the device does not have a physical display, a passkey presented in a user
guide (such as this one) can be considered to be a “display”. The default passkey value is a
six digit string of zeros: “000000”.

• GAPBOND_BONDING_ENABLED – This parameter enables bonding. The profile default
value is FALSE, though the SimpleBLEPeripheral application sets it to TRUE during
initialization.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

The bond manager uses callback functions to notify the application of events. These are set up by
means of the function GAPBondMgr_Register. Its single parameter is a pointer to a variable of
type gapBondCBs_t, which is a structure containing two function pointers:

• passcodeCB – This function gets called during the pairing process if authentication is
requested. It allows the application to generate a six-digit passcode.

• pairStateCB – This function gets when the pairing state of the device changes, notifying the
application if the pairing process has started, has completed, and if the two devices are
bonded.

It is up to the application to provide the actual callback functions. In the case of the
SimpleBLECentral sample application (see section 4.4), the passcode callback function is
simpleBLECentralPasscodeCB and the pairing state callback function is
simpleBLECentralPairStateCB.

Additional details on using the GAP bond manager can be found in [4].

3.4.5 Simple GATT Profile

GATT profiles are used for the storage and handling of data within the GATT server of the device.
The simple GATT profile included with the BLE protocol stack provides an example of a generic
GATT profile implementation, and is for demonstration purposes. The source code for the simple
GATT profile is contained within the files simpleGATTProfile.c and simpleGATTProfile.h. This
source code can be used as a reference in creating additional profiles, either customer-designed
or based on Bluetooth specifications.

The simple GATT profile contains the following API functions:

• SimpleProfile_AddService – Initialization routine that adds the service attributes to the
attribute table, and registers read and validate/write callback functions within the profile with
the GATT server.

• SimpleProfile_SetParameter – Allows the application to set or change parameters in the
profile; these parameters correspond to the GATT characteristic values in the profile. If
notifications are enabled for a characteristic value, the notifications get sent when this
function is called to set a new value of the characteristic.

• SimpleProfile_GetParameter – Allows the application to read back parameter values from
within the profile.

• SimpleProfile_RegisterAppCBs – Allows the application to register a callback function with
the simple GATT profile which gets called any time a GATT client device successfully writes a
new value to any characteristic in the service with write permissions
(SIMPLEPROFILE_CHAR1 or SIMPLEPROFILE_CHAR3). A simpleProfileCBs_t value
containing a pointer to the callback function must be defined by the application, and passed
as a parameter when calling the register function.

The simple GATT profile also contains the following local functions:

• simpleProfile_ReadAttrCB – This function must get registered with the GATT server during
the AddService routine. Every time a GATT client device wants to read from an attribute in the
profile, this function gets called. This function would not be required if the profile didn’t contain
any attributes with read permissions.

• simpleProfile_WriteAttrCB – This function must get registered with the GATT server during
the AddService routine. Every time a GATT client device wants to write to an attribute in the
profile, this function gets called. Before actually writing the new data to the attribute, it checks
whether the data is valid. When a client characteristic configuration value is written to a
bonded device, it also notified the bond manager so that it can store the data in non-volatile
memory along with the bond data. This function would not be required if the profile didn’t
contain any attributes with write permissions.

• simpleProfile_HandleConnStatusCB – This function must get registered with the link
database in order to receive a callback whenever the link status changes. It automatically

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

resets all characteristic configuration values to disable notifications and/or indications if a link
is terminated.

• Several additional functions to handle client characteristic configurations. These functions are
used to look up the handle of characteristic configurations, read, write, or reset their values, or
process a notification of a characteristic value.

The simple GATT profile contains five characteristics, whose values can be set or read back by
the application using the SimpleProfile_SetParameter and SimpleProfile_GetParameter
functions, respectively. The parameters are as follows:

• SIMPLEPROFILE_CHAR1 – This parameter is the value of the first characteristic of the
simple GATT profile. It is a one-byte value that can be read or written from a GATT client
device.

• SIMPLEPROFILE_CHAR2 – This parameter is the value of the second characteristic of the
simple GATT profile. It is a one-byte value that can be read from a GATT client device, but
cannot be written.

• SIMPLEPROFILE_CHAR3 – This parameter is the value of the third characteristic of the
simple GATT profile. It is a one-byte value that can be written from a GATT client device, but
cannot be read.

• SIMPLEPROFILE_CHAR4 – This parameter is the value of the fourth characteristic of the
simple GATT profile. It is a one-byte value that cannot be directly read or written from a GATT
client device. Its value, however, can be sent as a notification to a GATT client device.

• SIMPLEPROFILE_CHAR5 - This parameter is the value of the fifth characteristic of the
simple GATT profile. It is a five-byte value that can be read (but not written) from a GATT
client device only if the link is encrypted (paired).

In order for it to be sent as a notification, the GATT client must turn on notifications by writing a
value of 0x0001 (GATT_CLIENT_CFG_NOTIFY) to the characteristic configuration attribute.
Once notifications are enabled, the data from the characteristic will be sent to the GATT client
every time the application sets a new value of the characteristic using
SimpleProfile_SetParameter.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

The SimpleGATTProfile registers the following attributes in the GATT server:

Figure 6: SimpleGATTProfile Attribute List

Note that the types (UUIDs) of the five characteristic values (0xFFF1, 0xFFF2, 0xFFF3,
0xFFF4, and 0xFFF5), as well as the simple profile primary service UUID value (0xFFF0), do
not conform to any specifications in the Bluetooth SIG. They are simply used as a
demonstration.

3.4.6 Simple Keys GATT Profile

The simple keys GATT profile included with the BLE protocol stack provides functionality for
sending notifications of key presses from a GATT server device to a GATT client. The profile is
designed for use with the keyfob board contained within CC2540/41DK-MINI development kit.
The source code for the simple keys GATT profile is contained within the files simplekeys.c and
simplekeys.h.

It is important to note that the simple keys profile included with the BLE development kit
does not conform to any standard profile specification available from the Bluetooth SIG. At
the time of the release of the software, no official GATT service profile specifications have
been approved by the Bluetooth SIG. Therefore the profile, including the GATT
characteristic definition, the UUID values, and the functional behavior, was developed by
Texas Instruments for use with the CC2540/41DK-MINI development kit.

As the Bluetooth SIG begins to approve specifications for different service profiles, Texas
Instruments plans to release updates to the BLE software development kit with source
code conforming to the specifications.

The simple keys GATT profile contains the following API functions:

• SK_AddService – Initialization routine that adds the simple keys service attributes to the
attribute table, and registers read and validate/write callback functions within the profile with
the GATT server.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• SK_SetParameter – Allows the application to set or change the state of the keys in the
profile; the parameter corresponds to the GATT characteristic value in the profile. If
notifications are enabled for the key press state characteristic value, the notification gets sent
when this function is called to set a new value of the characteristic.

• SK_GetParameter – Allows the application to read back the parameter value from within the
profile.

The simple GATT profile also contains the following local functions:

• sk_ReadAttrCB – This function must get registered with the GATT server during the
AddService routine. Every time a GATT client device wants to read from an attribute in the
profile, this function gets called. This function would not be required if the profile didn’t contain
any attributes with read permissions.

• sk_WriteAttrCB – This function must get registered with the GATT server during the
AddService routine. Every time a GATT client device wants to write to an attribute in the
profile, this function gets called. Before actually writing the new data to the attribute, it checks
whether the data is valid. This function would not be required if the profile didn’t contain any
attributes with write permissions.

The simple keys GATT profile contains one characteristic. The value of the characteristic can be
set or read back by the application using the SimpleProfile_SetParameter and
SimpleProfile_GetParameter functions, respectively. The single parameter in the simple keys
profile is the SK_KEY_ATTR.

The SK_KEY_ATTR parameter represents the current state of the keys. It is a one-byte value,
with a range from 0 through 3, with each value representing the following:

• 0 – Neither key on the keyfob is currently pressed

• 1 – The left key on the keyfob is currently pressed

• 2 – The right key on the keyfob is currently pressed

• 3 – Both the left and right keys on the keyfob are currently pressed

Its value cannot be directly read or written from a GATT client device; however it can be sent as a
notification to a GATT client device. In order for it to be sent as a notification, the GATT client
must turn on notifications by writing a value of 0x0001 (GATT_CLIENT_CFG_NOTIFY) to the
characteristic configuration attribute. Once notifications are enabled, the data from the
characteristic will be sent to the GATT client every time the application sets a new value of the
characteristic using SK_SetParameter.

The simple keys GATT profile registers the following attributes in the GATT server:

Figure 7: Simple Keys GATT Profile Attribute List

3.4.7 Device Information Service

The Device Information Service included with the BLE protocol stack is based on an adopted
Bluetooth specification. In addition to being mandatory as a part of many future BLE profile
specifications, it is recommended to include this service in any BLE application requiring
interoperability with Bluetooth-enabled mobile phones or PCs.

The full specification of the device information can be found in [8].

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

3.4.8 Additional GATT Profiles

In addition to the generic simple GATT profile, the simple keys profile, and the Device Information
Service, the BLE protocol stack contains two additional services that are mandatory as per the
BLE specification: the GATT profile service and the GAP profile service. These two services are
maintained by the BLE protocol stack and should not affect the application.

Several other GATT services are included in the BLE development kit, and are used by various
sample applications. More information on these sample applications and profiles can be found in
[5].

4 Working with Projects using IAR Embedded Workbench 8.10.4
All embedded software for the CC2540/41 is developed using Embedded Workbench for 8051
8.10.4 from IAR Software. This section provides information on where to find this software. It also
contains some basics on the usage of IAR, such as opening and building projects, as well as
information on the configuration of projects using the BLE protocol stack. IAR contains many
features that go beyond the scope of this document. More information and documentation can be
found on IAR’s website: www.iar.com.

4.1 IAR Overview

There are two options available for developing software on the CC2540/41:

1. Download IAR Embedded Workbench 30-day Evaluation Edition – This version of IAR is
completely free of charge and has full functionality; however it is only a 30-day trial. It includes
all of the standard features.

IAR 30-day Evaluation Edition can be downloaded from the following URL:

http://supp.iar.com/Download/SW/?item=EW8051-EVAL

2. Purchase the full-featured version of IAR Embedded Workbench – For complete BLE
application development using the CC2540/41, it is recommended that you purchase the
complete version of IAR without any restrictions.
Information on purchasing the complete version of IAR can be found at the following
URL:

http://www.iar.com/en/Products/IAR-Embedded-Workbench/8051/

4.2 Using IAR Embedded Workbench

After installing IAR Embedded Workbench, be sure to download all of the latest patches from IAR,
as they will be required in order to build and debug projects with the CC2540/41.

Once all of the patches have been installed, you are ready to develop software for the
CC2540/41. This section will describe how to open and build an existing project. The
SimpleBLEPeripheral project, which is included with the Texas Instruments BLE software
development kit, is used as an example.

4.2.1 Open an Existing Project

First, you must start the IAR Embedded Workbench IDE. When using Windows, this is typically
done by clicking Start > Programs > IAR Systems > IAR Embedded Workbench for MCS-51
8.10.4 > IAR Embedded Workbench.

Once IAR has opened up, click File > Open > Workspace. Select the following file:

C:\Texas Instruments\BLE-CC254X-1.3\Projects\ble\SimpleBLEPeripheral \CC2540DB\
SimpleBLEPeripheral.eww

http://www.iar.com/

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

This is the workspace file for the SimpleBLEPeripheral project. Once it is selected all of the files
associated with the workspace should open up as well, with a list of files on the left side.

Figure 8: IAR Embedded Workbench

4.2.2 Project Options, Configurations, and Defined Symbols

Every project will have a set of options, which include settings for the compiler, linker, debugger,
and more. To view the project options, right click on the project name at the top of the file list and
select “Options…” as shown in Figure 9.

Figure 9: Project Configurations and Options

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

After clicking “Options…”, a new window will pop-up, displaying the project options. Sometimes it
is useful to have a few different configurations of options for different setups, such as when
multiple hardware platforms are being used. IAR allows for multiple configurations to be created.
The default configuration in the SimpleBLEPeripheral project is the “CC2540/41 Slave”

configuration, which is targeted towards the SmartRF05 + CC2540/41EM hardware platform that
is included with the CC2540/41DK development kit. The other available option, “CC2540/41DK-
MINI Keyfob Slave”, is optimized for the “keyfob” board in the CC2540/41DK-MINI development
kit.

One of the important settings when building a project is the compiler preprocessor defined
symbols. These values can be found (and set) by clicking the “C/C++ Compiler” category on the
left, and then clicking the “Preprocessor” tab on the right:

Figure 10: Preprocessor Defined Symbols Settings

Any symbols that are defined here will apply to all files in the project. The symbols can be defined
with or without values. For convenience, some symbols may be defined with the character ‘x’ in
front of them. This generally means that a function is being disabled, and can be enabled by
removing the ‘x’ and letting the proper name of the symbol get defined.

In addition to the defined symbols list in the compiler settings, symbols can be defined in
configuration files, which get included when compiling. The “Extra Options” tab under the compiler
settings allows you to set up the configuration files to be included. The file config.cfg must be
included with every build, as it defines some required universal constants. The files
config_master.cfg and config_slave.cfg included with the software development kit will define
the appropriate symbols for master and slave builds, respectively.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Figure 11: Configuration File Setup

The following symbols are used by the BLE protocol stack and software, and can be found in the
sample project:

Symbols Mandatory for BLE Stack:

• INT_HEAP_LEN – This symbol defines the size of the heap used by the OSAL Memory
Manager (see section 3.1.3) in bytes. The default value in the sample project is 3072. This
value can be increased if additional heap memory is required by the application; however if
increased too high the RAM limit may be exceeded. If additional memory is needed by the
application for local variables, this value may need to be decreased. The memory set aside
for the heap will show up in the map file under the module OSAL_Memory. For more
information on the map file, see section 4.2.4.

• HALNODEBUG – This symbol should be defined for all projects in order to disable HAL
assertions.

• OSAL_CBTIMER_NUM_TASKS – This symbol defines the number of OSAL callback timers
that can be used. The BLE protocol stack uses the OSAL callback timer, and therefore this
value must be defined as either 1 or 2 (there is a maximum of two callback timers allowed).
For applications that are not using any callback timers, such as the sample application, this
value should be defined as 1.

• HAL_AES_DMA – This symbol must be defined as TRUE1, as the BLE stack uses DMA for
AES encryption.

• HAL_DMA – This value must be defined as TRUE for all BLE projects, as the DMA controller
is used by the stack when reading and writing to flash.

Optional Symbols:

• POWER_SAVING – This symbol must be defined if using a library with power management
enabled. It configures the system to go into sleep mode when there aren’t any pending tasks.

1 This has changed from v1.0 of the BLE stack, in which the symbol HAL_AES_DMA was required to be defined as
FALSE

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• PLUS_BROADCASTER – This symbol indicates that the device is using the GAP Peripheral
/ Broadcaster multi-role profile, rather than the single GAP Peripheral role profile (see
sections 3.4.1 and 3.4.2). The default option for this in the sample project is for this to be
undefined.

• HAL_LCD – This symbol indicates whether an LCD display exists, such as with the
SmartRF05 board (to be available in the CC2540/41DK development kit). For the
CC2540/41DK-MINI configuration, this value is defined as FALSE.

• HAL_LED – This symbol indicates whether the hardware has any LEDs. For the generic
configuration of the sample application, this value is defined as FALSE. For the
CC2540/41DK-MINI Keyfob Slave configuration it is defined as TRUE, since the board
contains two LEDs.

• HAL_UART – This symbol should be defined (with no value) if the UART interface is being
used. For the sample application, this symbol is not defined.

• CC2540_MINIDK – This symbol should be defined when using the keyfob board contained in
the CC2540/41DK-MINI development kit. It configures the hardware based on the board
layout.

• HAL_UART_DMA – This symbol sets the CC2540/41 UART interface to use DMA mode.

• HAL_UART_ISR – This symbol sets the CC2540/41 UART interface to use ISR mode, and
should be set to TRUE for builds that use the actual UART interface for the HCI, but not for
builds that use the USB (virtual UART) interface.

• HAL_UART_ISR_RX_MAX – This symbol sets the UART buffer size. For builds that use the
UART or USB (virtual UART) interface for the HCI (such as the HostTestRelease project), this
value should be set to 250 in order to allow for large messages to be sent from the
CC2540/41.

• HAL_UART_SPI – This symbol enables CC2540/41 SPI driver.

• GAP_BOND_MGR – This symbol is used by the HostTestRelease network processor
project. When this symbol is defined for slave / peripheral configurations, the GAP peripheral
bond manager security profile will be used to manage bonds and handle keys. For more
information on the peripheral bond manager, see section 3.4.4.

• GATT_DB_OFF_CHIP – This symbol sets a GATT client in a network processor configuration
to have management of the attributes in the application processor as opposed to being on the
CC2540/41.

4.2.3 Building and Debugging a Project

To build a project, right click on the workspace name “SimpleBLEPeripheral – CC2540/41 Slave”
as seen below, and click “Make”:

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Figure 12: Building a Project

This will compile the source code, link the files, and build the project. Any compiler errors or
warnings will appear in the messages window at the bottom of the screen.

To download the compiled code into a CC2540/41 device and debug, connect the keyfob using a
hardware debugger (such as the CC Debugger, which is included with the CC2540/41DK-MINI
development kit) connected to the PC over USB. Find the “Debug” button in the upper right side
of the IAR window:

Figure 13: Debug Button in IAR

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

The following pop-up window should appear on the screen, indicating that the code is being
downloaded to the device:

Figure 14

Once the code is downloaded, a toolbar with the debug commands will appear in the upper left
corner of the screen. You can start the program’s execution by pressing the “Go” button on the
toolbar. Once the program is running, you can get out of the debugging mode by pressing the
“Stop Debugging” button. Both of these buttons are shown in the image below:

Figure 15: IAR Debug Toolbar

At this point the program should be executing on its own. The hardware debugger can be
disconnected from the CC2540/41 and will continue to run as long as the device remains
powered-up.

4.2.4 Linker Map File

After building a project, IAR will generate a linker map file, which can be found under the “Output”
group in the file list.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Figure 16: MAP File in File List

The map file contains detailed low-level information about the build. At the very end of the map
file, lines of text similar to the following can be found:

 101 560 bytes of CODE memory
 26 bytes of DATA memory (+ 62 absolute)
 5 699 bytes of XDATA memory
 192 bytes of IDATA memory
 8 bits of BIT memory
 3 602 bytes of CONST memory

Errors: none
Warnings: none

This information is useful, in that it tells the total amount of code space (CODE memory) and RAM
(XDATA memory) being used by the project. The sum of the CODE memory plus CONST
memory must not exceed the maximum flash size of the device (either 128KB or 256KB,
depending on the version of the CC2540/41). The size of the XDATA memory must not exceed
7936 bytes, as the CC2540/41 contains 8kB of SRAM (256 bytes are reserved).

For more specific information, the map file contains a section title “MODULE SUMMARY”, which
can be found approximately 200-300 lines before the end of the file (the exact location will vary
from build-to-build). Within this section, the exact amount of flash and memory being used for
every module in the project can be seen.

4.3 SimpleBLEPeripheral Sample Project

The BLE software development kit contains a sample project that implements a very simple BLE
peripheral device. This project is built using the single-device stack configuration, with the stack,
profiles, and application all running on the CC2540/41.

4.3.1 Project Overview

On the left side of the IAR window, the “Workspace” section will list all of the files used by the
project:

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Figure 17: Project Files

The file list is divided into the following groups:

• APP – These are the application source code and header files. More information on these
files can be found later in this section.

• HAL – This group contains the HAL source code and header files. More information on the
HAL can be found in section 3.2.

• INCLUDE – This group includes all of the necessary header files for the BLE protocol stack
API. More information on the API can be found in section 3.3.3

• LIB – This group contains the protocol stack library file CC2540_ble_single_chip_peri.lib.
More information on the protocol stack libraries can be found in section 3.3.5.

• NPI – Network processor interface, a transport layer that allows you to route HCI data to a
serial interface. Must use CC254X_BLE_HCI_TL_Full.lib for this capability (See HostTest
project). Also allows you to save space by building projects without this interface using
CC254X_BLE_HCI_TL_None.lib (See SimpleBLEPeripheral) when developing a single-chip
application.

• OSAL – This group contains the OSAL source code and header files. More information on the
OSAL can be found in section 3.1.

• PROFILES – This group contains the source code and header files for the GAP role profile,
GAP security profile, and the sample GATT profile. More information on these profiles can be
found in section 3.4. In addition, this section contains the necessary header files for the GATT

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

server application API. More information on the GATT server application can be found in
section 3.3.4.

• TOOLS – This group contains the configuration files buildComponents.cfg and
buildConfig.cfg. It also contains the files OnBoard.c and OnBoard.h, which handle user
interface functions.

• OUTPUT – This group contains files that are generated by IAR during the build process,
including binaries and the map file (see section 4.2.4).

4.3.2 Initialization

The initialization of the application occurs in two phases: first, the SimpleBLEPeripheral_Init
function is called by the OSAL. This function sets up the GAP role profile parameters, GAP
characteristics, the GAP bond manager paramters, and simpleGATTprofile parameters. It also
sets an OSAL SBP_START_DEVICE_EVT event.

This triggers the second phase of the initialization, which can be found within the
SimpleBLEPeripheral_ProcessEvent function. During this phase, the GAPRole_StartDevice
function is called, which sets up the GAP functions of the application. The device then is made to
be discoverable with connectable undirected advertisements (for CC2540/41DK-MINI keyfob
builds, the device does not become discoverable until the right button is pressed). A central
device can discover the peripheral device by scanning. If a central device sends a connection
request to the peripheral device, the peripheral device will accept the request and go into the
connected state as a slave. If no connection request is received, the device will only remain
discoverable for 30.72 seconds, before going to the standby state.

The project also includes the SimpleGATTProfile service. A connected central device, operating
as a GATT client, can perform characteristic reads and writes on the SimpleGATTProfile
characteristic values. It can also enable notifications of one of the characteristics.

4.3.3 Periodic Event

The application contains an OSAL event defined as SBP_PERIODIC_EVT, which is set to occur
periodically by means of an OSAL timer. The timer gets set after the device is put in discoverable
mode, with a timeout value of PERIODIC_EVT_PERIOD (default value is 5000 milliseconds).
Every five seconds, the SBP_PERIODIC_EVT occurs and the function performPeriodicTask is
called. The performPeriodicTask function simply gets the value of the third characteristic in the
SimpleGATTProfile, and copies that value into the fourth characteristic. This is put in for
demonstration purposes; any application task can be performed within this function. Before calling
the function, a new OSAL timer is started, setting up the next periodic task.

4.3.4 Peripheral State Notification Callback

The application also contains a function called peripheralStateNotificationCB. This function gets
registered with the peripheral profile when GAPRole_StartDevice is called (for example, if the
device goes from an advertising state to a connected state). Any time that the peripheral state of
the device changes, the callback function gets called and updates the application’s local variable
gapProfileState. This allows the application to perform specific behavior based on the state of
the device.

4.3.5 Key Presses (CC2540/41DK-MINI Keyfob only)

The application has some additional code that is specific to the keyfob contained with the
CC2540/41DK-MINI development kit. This code is only surrounded by the pre-processor directive
“#if defined(CC2540_MINIDK)”, and therefore only gets compiled when using the
“CC2540/41DK-MINI Keyfob Slave” configuration. This code adds the simple keys service (see
section 3.4.6) to the GATT server, and handles key presses from the user through the simple
keys profile.

Each time one of the keys on the keyfob gets pressed or released, the HAL sends an OSAL
message to the application. This causes a SYS_EVENT_MSG event to occur, which is handled in
the application by the function simpleBLEperipheral_ProcessOSALMsg. In the current

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

SimpleBLEPeripheral application, the only OSAL message that is recognized (additional types
can be defined) is the KEY_CHANGE message. This causes the function
simpleBLEPeripheral_HandleKeys to be called, which checks the state of the keys.

When the device is in an advertising state (before a connection), pressing of the right key will
toggle the advertising on and off. This is done via a call to GAPRole_GetParameter to read the
current advertising state, and a call to GAPRole_SetParameter to set a new state.

If the device is in a connection, the appropriate profile parameter value in the attribute table is set
using the SK_SetParameter function. If notifications of the key press state characteristic value
have been enabled, then a notification will be sent to every time the function gets called.

4.3.6 LCD Display (CC2540/41 Slave only)

The application also contains code which is compiled in when HAL_LCD is defined as TRUE,
such as with the SmartRF05 + CC2540/41EM hardware platform. The words
“BLE Peripheral” along with the device address will be displayed on the LCD screen. In addition,
the GAP state of the device will be displayed, such as “Advertising” or “Connected”. If a
connection is established and a GATT client device writes values to the first or third
characteristics in the SimpleGATTProfile (those are the only two characteristics with write
permissions), the LCD will display the value that has been written.

4.3.7 Complete Attribute Table

The table below shows the SimpleBLEPeripheral complete attribute table, and can be used as a
reference. Services are shown in yellow, characteristics are shown in blue, and characteristic
values / descriptors are shown in grey. When working with the SimpleBLEPeripheral application, it
might be useful to print out the table as a reference.

Each service is added to the GATT server dynamically at run-time, so it’s possible that the
characteristic value handles change if services are added or removed. To find the handle for, for
instance, the SimpleKeys Key press state notification characteristic, you can use BTool, choose
Discover Characteristics by UUID and enter the UUID which is 0xFFE1 into the Characteristic
UUID field in network byte order: E1:FF.

Figure 18: Discover Characteristics by UUID in BTool

The response here is 10:36:00:E1:FF, meaning Notify only, handle is 0x0036, and the UUID is
0xFFE1.

This will only work for characteristics that have a Characteristic declaration associated with them
(UUID type 0x2803)

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

To write or read to the Client Characteristic Configuration for the keys, you will have to take the
handle for Key press state notification, look in the attribute table and add one - because it is the
next characteristic - and get 0x37.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Figure 19: SimpleBLEPeripheral Complete GATT Server (part 1)

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Figure 20: SimpleBLEPeripheral Complete GATT Server (part 2)

4.4 SimpleBLECentral Sample Project

The BLE software development kit contains a sample project that implements a very simple BLE
central device. This project is built using the single-device stack configuration, with the stack,
profiles, and application all running on the CC2540/41. It is designed to be run on a SmartRF05 +
CC2540/41EM hardware platform; however it could be ported to other hardware platforms as well.
The application is designed to connect to the SimpleBLEPeripheral sample application to
demonstrate the operation of basic GAP and GATT procedures in the stack.

4.4.1 Project Overview

The SimpleBLECentral project structure is very similar to that of the SimpleBLEPeripheral project.
The APP directory contains the application source code and header files.

The project contains two configurations, CC2540EM and CC2541EM, using the SmartRF05EB
hardware platform.

4.4.2 User Interface

The SmartRF05EB joystick and display provide a user interface for the application. The joystick
and buttons are used as follows:

• Joystick Up: Start or stop device discovery. If connected to a SimpleBLEPeripheral, read
or write to the first characteristic in the SimpleGATTProfile service. Each time a write
occurs, the value will increment by one for the next write.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• Joystick Left: Scroll through device discovery results.
• Joystick Center: Connect or disconnect to/from the currently selected device.
• Joystick Right: If connected, perform a connection update.
• Joystick Down: If connected, start or stop periodic RSSI readings.

The LCD display is used to display the following information:

• Device BD address

• Device discovery results

• Connection state

• Pairing and bonding status

• Passcode display

• Connection parameter update

• RSSI value

• GATT characteristic value reads and writes

4.4.3 Basic Operation

When the application powers up it displays "BLE Central" and the BD address of the device.
Press Joystick Up to start device discovery. Devices that are discovered will be filtered based on
the UUIDs of the services that are declared to be included on the peripheral device in the
advertisement or scan response data. In particular, only devices containing the
SimpleGATTProfile service (UUID of 0xFFF0; see section 3.4.5) will be considered. Any devices
not containing this information in the advertisement or scan response data will be ignored. When
discovery completes the number of devices found will be displayed. Press Joystick Left to scroll
through the devices.

To connect to the selected device press Joystick Center. The connection status will be displayed.
Once connected, the application will attempt to discover the Simple BLE profile on the peer
device.

If configured to do so, the application or the peer device may also initiate security. If a passcode is
required the application will generate and display a random passcode. Enter this passcode on the
peer device to proceed with pairing.

Once connected, other operations such as RSSI readings or characteristic read/write can be
performed described in the previous section.

To disconnect press Joystick Center again. To reconnect to the same device again press Joystick
Center again.

4.4.4 Initialization

The initialization of the application occurs in two phases: first, the SimpleBLECentral_Init
function is called by the OSAL. This function configures parameters in the central profile, GAP,
and GAP bond manager and also initializes GATT for client operation. It also sets up standard
GATT and GAP services in the attribute server. Then it sets an OSAL START_DEVICE_EVT
event. This triggers the second phase of the initialization, which can be found within the
SimpleBLECentral_ProcessEvent function. During this phase, the
GAPCentralRole_StartDevice function is called to set up the GAP functions of the application.
Then GAPBondMgr_Register is called to register with the bond manager.

4.4.5 Event Processing

The application has two main event processing functions, SimpleBLECentral_ProcessEvent
and simpleBLECentral_ProcessOSALMsg.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

Function SimpleBLECentral_ProcessEvent handles events as follows:

• SYS_EVENT_MSG: Service the OSAL queue and process OSAL messages.

• START_DEVICE_EVT: Start the device, as described in the previous section.

• START_DISCOVERY_EVT: Start service discovery for the SimpleGATTprofile.

• Function simpleBLECentral_ProcessOSALMsg handles OSAL messages as follows:

• KEY_CHANGE messages: Call function simpleBLECentral_HandleKeys to handle key
presses.

• GATT_MSG_EVENT messages: Call function simpleBLECentralProcessGATTMsg to
handle messages from GATT.

4.4.6 Callbacks

The application callback functions are as follows:

• simpleBLECentralRssiCB: This is the GAP RSSI callback. It displays the latest RSSI value.
• simpleBLECentralEventCB: This is the GAP event callback. It processes GAP events for

initialization, device discovery, and link connect/disconnect.
• simpleBLECentralPairStateCB: This is the GAP bond manager state callback. It displays

the status of pairing and bonding operations.
• simpleBLECentralPasscodeCB: This is the GAP bond manager passcode callback. It

generates and displays a passcode.

4.4.7 Service Discovery

The simpleBLECentral application performs service discovery for the simpleGATTprofile.
Discovery is initiated when a connection is established by setting OSAL event
START_DISCOVERY_EVT. This will result in execution of function
simpleBLECentralStartDiscovery, which performs primary service discovery for the UUID used
by the simpleGATTprofile. When GATT events are received during service discovery function
simpleBLEGATTDiscoveryEvent is called. This function processes the results of the previous
GATT procedure and initiates the next step in the discovery process.

4.5 HostTestRelease Network Processor Project

The BLE software development kit also contains the HostTestRelease project, which implements
the network processor configuration on the CC2540/41 (see section 2.1). The HostTestRelease
software simply reads and writes HCI commands through a UART (or virtual UART) interface.

An overview of the HCI command interface can be found in [3].

In order to for the device to perform any actions when running the HostTestRelease project, it
must receive the command from an external source. Whenever any messages are received or if
an action is required, it simply passes the message on to the external source.

4.5.1 Project Overview

The HostTestRelease project structure is similar to that of the SimpleBLEPeripheral project:
OSAL and HAL are used, and the BLE stack is provided as a library. Even though the
HostTestRelease project files contain a group called “APP”, these files are not truly an
application. They are simply a thin layer of source code that translates external messages
received from the PC into calls to the BLE stack API. Any messages received from the stack are
translated into messages to be sent to the PC. The source code for all of these translations is
within the file hci_ext_app.c. Looking at this source code can be useful in that it provides working
examples of BLE stack API function calls.

The HostTestRelease workspace contains several project configurations:

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

• CC2540USB (this is the default configuration for the USB Dongle in the CC2540/41DK-MINI
development kit)

• CC2540/41EM (this is the default configuration for the SmartRF05 + CC2540/41EM hardware
in the CC2540/41DK development kit)

• CC2540/41EM-SBL

• CC2540/41SPI

• CC2540/41SPI-SBL

The USB builds can be used for devices such as the USB Dongle included with the
CC2540/41DK-MINI development kit. When the dongle is inserted into a PC, it will enumerate as
a CDC (communications device class) device, creating a virtual serial port for the HCI. The
following Windows INF file can be used to associate the USB Dongle with the appropriate USB-
to-serial port driver:

Note: The CC2541DK-MINI kit uses a CC2540 chip on the USB Dongle since USB is not
supported on CC2541.

C:\Texas Instruments\BLE-CC254X-1.3\Accessories\usb_cdc_driver_cc2540.inf

More detailed instructions can be found in [6].

The CC2540/41EM builds are based on the SmartRF05EB v1.8.1 + CC2540/41EM hardware
platform, and use the USART0 port on the CC2540/41 for the HCI.

4.5.2 External Device Control of BLE Stack

With the HostTestRelease project, a PC can control the CC2540/41 by means of sending
commands over the serial port interface. This allows for the creation of an application on an
external device, such as a microcontroller or a PC, to perform any kind of function using the BLE
stack. One such example of a PC application is BTool, which is included with the CC2540/41
software development kit.

The BTool Windows PC application currently only supports the “Master” configurations of the
HostTestRelease project. It communicates with the CC2540/41 through a Windows COM port,
which can be either a virtual serial port over USB (such as with the USB Dongle), or a hardware
serial port.

BTool allows a user to perform basic BLE central-device functions, such as discovering peripheral
and/or broadcaster devices, creating connections with peripheral devices, and performing GATT
reads and writes. For this reason, using BTool on a PC along with the HostTestRelease project
(with a “Master” configuration) on one CC2540/41 device can be useful in testing peripheral
applications such as the SimpleBLEPeripheral project.

For more information on BTool, please refer to [6].

4.6 Additional Sample Projects

The BLE development kit includes several sample projects implementing various profiles, such as
a heart rate monitor, health thermometer, and proximity keyfob. More information on these
projects can be found in [5].

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

5 General Information

5.1 Release Notes History

Texas Instruments, Inc.

CC2540/41 Bluetooth Low Energy Software Development Kit
Release Notes

Version 1.3.1
Apr 5, 2013

Notices:

- This version of the Texas Instruments BLE stack and software is a minor
 update to the v1.3 release. It contains some minor bug fixes, with no major
 functional changes. It also contains two additional projects for the CC2541
 Advanced Remote Control Kit.

- Since none of the profile source code was significantly changed since the
 v1.3 release, no additional re-testing of the profiles and sample
 application were done for v1.3.1. The only exception is the HID-over-GATT
 profile, which was fully re-tested for this release. The BLE protocol stack,
 including both the controller and host, was completely retested for v1.3.1.

Major Changes and Enhancements:

- The GAP parameter TGAP_LIM_ADV_TIMEOUT now uses units of seconds instead
 of milliseconds.

- The HidAdvRemote Project has been added. This implements a full mouse-like
 pointing functionality using motion and gesture control. The project runs on
 the CC2541 BLE Advanced Control included as part of the CC2541DK-REMOTE kit.
 The application implements the HID-over-GATT (HOGP) profile with a report
 descriptor supporting the keyboard, mouse, and consumer control classes of
 HID devices.

- The HidAdvRemoteDongle project has been added. This application runs on the
 CC2540USB dongle, and implements partial functionality of HID-over-GATT
 (HOGP) host with a fixed report descriptor to match that of the descriptor
 of the HidAdvRemote Project. This means that the HidAdvRemoteDongle was
 designed only to work with with the HidAdvRemote, and will not be compatible
 with any other HOGP devices. This project was created to allow users who
 are using a host device that does not have native Bluetooth Smart Ready
 support and/or does not have HOGP support to use the BLE Advanced Remote
 Control with their system.

- For GAP central role applications, the bond manager now properly handles
 cases in which the peripheral device has erased previously stored bonding
 infomration.

- A new HCI extension API has been added to allow peripheral/slave devices to
 temporarily ignore any nonzero slave latency value, and explicitly wake up
 at every connection event regardless of whether it has any data to send.
 The prototype for the API function HCI_EXT_SetSlaveLatencyOverrideCmd can
 be found in hci.h, including the description of the function.

- A new HCI extension API has been added to allow the application layer to
 get or set a build revision number.

Bug Fixes:

- In some cases L2CAP Peripheral Connection Parameter Update requests failed
 due to a zero value in the transmitWindowOffset parameter when the
 connection was initially established. This has been fixed and updates
 should now work succesfully.

- During bonding, connection failures would occasionally occur due to the
 OSAL Simple NV driver performing a page compaction and halting the CPU for

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 longer than the time required for the link layer to maintain proper
 connection timing. To prevent this from occurring, the simple NV driver now
 has any API to force a page compaction if the page is full beyond a specified
 threshold. The bond manager calls this API everytime a connection is
 terminated to ensure that compaction occurs before the next connection is set
 up.

- Occasional slave connection failures would previously occur in cases in which
 the master device sends Update Channel Map requests while a large slave
 latency value is in use. This has been fixed.

- The SensorTag application now properly supports storage of GATT Client
 Characteristic Configuration Descriptor values with bonded devices.

- After disabling advertising, the CC254x would unecessarily wake up for a
 short period of time 500ms later. This unecessary wake-up has been removed.

- Upon Power-On Reset or after wake-up from PM3, a 400ms delay has been
 implemented, during which time the CC254x will not go into PM2 sleep. This
 allows time for the 32kHz crystal to stabilize. Previously, in rare cases
 with certain hardware configurations the CC254x could have timing issues due
 to the crystal not having time to stabilize.

- Minor bug fixes to GlucoseSensor and GlucoseCollector projects.

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

- HCI packet size of 128 bytes or more will be disregarded by the stack, and as
 such, no HCI event will be returned.

- The HAL SPI driver that was implemented since the v1.3 release can sometimes
 hang, particularly in cases in which power management is used and when there
 is heavy traffic on the SPI bus.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.3
Dec 12, 2012

Notices:

- This version of the Texas Instruments BLE stack and software features several
 changes, enhancements, and bug fixes from v1.3.1. Details of these can be
 found below.

Changes and Enhancements:

- A new sample project, SensorTag, has been added. This application runs on the
 CC2541 Sensor Tag board, which is included as part of the CC2541DK-SENSOR
 development kit. The application includes custom services for an
 accelerometer, barometer, gyro, humidity sensor, IR temperature sensor, and
 magnetometer.

- A new Boot Image Manager (BIM) is included. This allows one CC2540 or CC2541
 device to contain two separate software images (an "A" image and a "B" image)
 stored in flash. Upon power-up, the BIM selects which image to boot into.
 This can be based on criteria such as the state of a GPIO pin, or based on a
 selection from the previously running application upon reset.

- A new Over-the-air firmware download (OAD) feature is included. The feature

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 allows a peer device (which could be a central BT Smart device such as a
 smartphone) to push a new firmware image onto a peripheral device and update
 the firmware. This feature uses the BIM, in which case the downloaded image
 gets stored in the opposite flash location as the currently running image.
 For example, if the "A" image is the current image and is used to perform the
 download, then the downloaded image becomes the "B" image. Upon reset, the
 "B" image with the updated firmware would be loaded. The OAD feature

optionally allows for the firmware image to be signed (using AES). Both the
 SensorTag and SimpleBLEPeripheral projects include configurations for using
 the OAD feature. A central "OADManager" application is also included,
 demonstrating a central implementation for sending a new firmware image to an

 OAD target device.

- The physical HCI interface used by the network processor (HostTestRelease)
 has been enhanced to work while power management is enabled on the CC254x
 device. The UART interface, when using RTS and CTS lines, can be used by an
 external application processor to wake-up the CC254x network processor. When
 the network processor has completed all processing, it will go into deep
 sleep. In addition to UART, an SPI interface has been added as an option for
 the physical HCI interface. It also supports power management by means of
 the MRDY and SRDY lines.

- The CC2541 configuration of the KeyFobDemo project has been modified to
 support the new CC2541 keyfob hardware, contained in the CC2541DK-MINI kit.
 The accelerometer has been changed, and a TPS62730 DC/DC converter has been
 added.

- The structure of all projects have been changed to include a Transport Layer
 ("TL") library and network processor interface "NPI" source code. This new
 architecture allows for non-network processor applications to have slightly
 reduced code size by removing unnecessary stack components.

- An API has been provided allowing the device name and appearance
 characteristics in the GAP service to be modified by the application layer.

- KeyFobDemo project now includes visual feedback from LED to indicate when
 device has powered up and when device is advertising.

- The HID-over-GATT Pofile (HOGP) implementation has been updated to now
 queue up HID report and send notifications upon reconnection to a HID host.

- A new implementation of the HID service has been included, which supports
 a combined keyboard, mouse, and consumer class device in its HID report
 descriptor.

- The API for sending L2CAP Connection Parameter Update Requests from the GAP
 Peripheral Role Profile has been updated to take both the requested minimum
 and maximum connection intervals as parameters.

- BTool has been enhanced with a new GATT explorer table, displaying discovered
 attributes, handles, and values. An XML file is included which allows the
 user to define descriptions of characteristics based on their UUIDs.

- HCI UART interface baud rate has been changed from 57600 to 115200.

Bug Fixes:

- When power management is used with long connection intervals (>2s), the
 CC254x remains sleeping properly without unnecessary wake-ups.

- When slave latency is used, peripheral devices now properly wake-up before
 the next connection event when a data packet is queued

- Various bug fixes on the GlucoseSensor and GlucoseCollector projects to
 improve compliance with profile and service specifications.

- HID-over-GATT Pofile (HOGP) implementation has been updated to provide
 better interoperability with HID hosts.

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

- HCI packet size of 128 bytes or more will be disregarded by the stack, and as
 such, no HCI event will be returned.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.3.1
Apr 13, 2012

Notices:

- This version of the Texas Instruments BLE stack and software is a minor
 update to the v1.2 release. It contains some minor enhancements and bug
 fixes, with no API changes or major functional changes.

Changes and Enhancements:

- When advertising is enabled by calling GAP_MakeDiscoverable, the first
 advertisement event will now occur within a few milliseconds, rather than
 waiting for 10ms.

Bug Fixes:

- The HidEmuKbd project now properly implements the HID Service include of the
 Battery Service. This bug fix allows for proper interoperability between the
 CC254x HID Profile and host systems running Windows 8.

- The source code file hal_board_cfg.h has been updated to better support the
 serial bootloader (SBL) and Universal Bootloader (UBL).

- Scanning in BTool can now be cancelled at any time without hanging or
 freezing the system.

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.2
Feb 13, 2012

Notices:

- This version of the Texas Instruments BLE stack and software includes support
 for the CC2541, as well as some enhancements and bug fixes. Details of these
 can be found below. If you have not previously worked with the v1.1b release
 (which had limited distribution) it is recommend that you also read the notes
 detailing the changes and enhancements from v1.1a to v1.1b in addition to the
 notes for v1.2.

Changes and Enhancements:

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

- All projects have been migrated from IAR v7.60 to IAR v8.10.4. In order to
 build all projects, be sure to upgrade and have IAR v8.10.4. Also, be sure to
 download and install all of the latest patches from IAR for full CC2540 and
 CC2541 support.

- Multi-role and combo-role support has been enhanced. The BLE stack can now
 support simultaneously advertising and/or scanning while in a connection as
 either a master or a slave. This allows for a central device to perform
 device discovery while in a connection. All previous rules for multiple
 simultaneous connections as a central device still apply (see v1.1a release
 notes below).

- New sample projects "SimpleBLEBroadcaster" and "SimpleBLEObserver" have been
 added, as example projects for pure broadcaster and observer applications
 with very low code size. The projects make use of new GAP role profiles
 broacaster.c and observer.c that are included.

- All projects have a modified architecture from the v1.1, v1.1a, and v1.1b
 releases. Each project contains a file "buildConfig.cfg" that can be found in
 the project directory and is included in the IAR project workspace as part of
 the "TOOLS" group. The settings in this file determine the role of the device
 in the application. Based on this configuration, different pieces of the BLE
 stack in object code are linked in, causing the code size to be larger or
 smaller depending on the roles supported. For example, HostTestRelease by
 default is now configured to support every single BLE GAP role in a single
 build, and therefore has a large code size (approx. 165kB). On the other
 hand, SimpleBLEBroadcaster is configured to only support the GAP broadcaster
 role, and therefore has a very small code size (approx. 39kB).

- The function GAPRole_SendUpdateParam in peripheral.c has been made public to
 allow a peripheral application to send an L2CAP connection parameter update
 request at any time.

- The names and configuration of the BLE stack libraries have changed.
 Different libraries are used depending on the GAP role (or combination of
 roles) used by the application. More information can be found in section
 3.3.5 of the BLE Software Developer's Guide.

- All library files now support power management. Power management must be
 enabled by the application by calling osal_pwrmgr_device(PWRMGR_BATTERY);.
 All sample applications that use power management make this call in the main
 function.

- All GATT service source code has been cleaned up to make handling of client
 characteristic configuration descriptors (CCCDs) simpler. All CCCDs are now
 processing is now handled by GATTServApp and no longer must be handled by the
 service itself. Examples of this can be found in the included example
 services such as SimpleGATTprofile, Simple Keys service, Accelerometer
 service, etc...

- The HostTestRelease network processor project now includes HCI Vendor
 Specific commands for each GATT client sub-procedure, matching the GATT
 client API. All GATT commands have been added to the "Adv. Commands" tab in
 BTool. The functions in the BTool GUI "Read / Write" tab now make use of the
 GATT commands as opposed to ATT commands.

- The old "EmulatedKeyboard" project has been removed and replaced with the new
 "HIDEmuKbd" project. The new project performs the same functions as the old
 one, but is now based on the "HID over GATT Profile" v1.0 specification
 (HOGP_SPEC_V10) that has been adopted by the Bluetooth SIG. The HID profile
 functionality has been implemented in a OSAL task that runs separate from the
 application to allow for easy portability to other HID projects. More details
 on the new application can be found in the BLE Sample Application Guide
 included as part of the release. The following additional new services /
 profiles have been included to fully support the HOGP specification:

 - HID Service v1.0 (HIDS_SPEC_V10)

 - Scan Parameters Profile v1.0 (ScPP_SPEC_V10)

 - Scan Parameters Service v1.0 (ScPS_SPEC_V10)

 - Device Information Service v1.1 (DIS_SPEC_V11r00)

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 - Battery Service v1.0 (BAS_SPEC_V10)

- The KeyFobDemo project has been updated to use the adopted battery service.
 The custom battery service that was used in previous released has been
 removed.

- The TimeApp project has been updated to include support for the Phone Alert
 Status Profile (PASP_SPEC_V10) in the Client role.

- Support for "Production Test Mode" has been added, allowing a BLE application
 in a "single-chip" configuration to temporarily expose the HCI over the UART
 interface when triggered externally to do so (e.g. hold a GPIO pin low during
 power up). This allows the device to be connected to a Bluetooth tester in
 order to run direct test mode (DTM) commands on a production line using the
 final release firmware, while leaving the UART GPIO pins available for the
 application to use at all other times

- A Universal Boot Loader (UBL) using the USB Mass Storage Device (USB-MSD)
 class has been added along with a Serial Boot Loader (SBL). The
 HostTestRelease project includes configurations with examples of both boot
 loaders. The SBL project is included with the installer. More information on
 the UBL can be found in the following document:

 C:\Texas Instruments\BLE-CC254x-1.2\Documents\
 Universal Boot Loader for SOC-8051 by USB-MSD Developer's Guide.pdf

- HCI extension command HCI_EXT_MapPmIoPortCmd added to support toggling of a
 GPIO line as CC254x device goes in and out of sleep. This command can be
 used to automatically control the bypass line of the TPS62730 DC/DC
 converter for reducing power consumption in an optimized manner.

- A slave device will now dynamically widen it's Rx window when a previous
 connection event was missed. This improves connection stability by accounting
 for additional clock drift that may have occurred since the last successful
 connection event.

- The application now has the capability to change the permissions of the
 device name in the GAP service by calling GGS_SetParameter and changing
 the value of the parameter GGS_W_PERMIT_DEVICE_NAME_ATT. The application can
 also receive a callback when a client device writes a new name to the device.
 The application registers the callback by calling GGS_RegisterAppCBs. The
 prototype for GGS_RegisterAppCBs can be found in gapgattserver.h.

Bug Fixes:

- Duplicate filtering now works with combination states.

- Various minor application / profile bug fixes.

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.1b
Nov 30, 2011

Notices:

- This version of the Texas Instruments BLE stack and software includes support
 for the CC2541, as well as some minor enhancements and bug fixes. Details of
 these can be found below. The general software architecture remains the same

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 as in the v1.1 and v1.1a releases.

Changes and Enhancements:

- BLE stack libraries for the CC2541 are included.

- All BLE libraries are renamed and now indicate whether they are used for
 CC2540 or CC2541.

- For each project and configuration, new IAR projects are included for use
 with the CC2541. The only exception is that any project/configuration that
 uses the USB interface has not been replicated for the CC2541, as it does not
 have an on-chip hardware USB interface.

- Link-layer processing has been optimized to provide for reduced power
 consumption during connection events and advertising events.

- SimpleBLEPeripheral and SimpleBLECentral now use the HCI_EXT_ClkDivOnHaltCmd,
 which reduces the current level while the CC2540/41 radio is active.

- The bond manager has been updated to allow peripheral devices to properly
 pair, bond, and resolve the address of central devices that use the private
 resolvable address type.

- New command HCI_EXT_SetMaxDtmTxPowerCmd included, which allows the maximum
 Tx power level to be set. This is useful when using Direct Test Mode (DTM),
 in that the Tx power level will be set to the maximum value set by the
 HCI_EXT_SetMaxDtmTxPowerCmd command, which may be less than +4dBm for the
 CC2540 and less than 0dBm for the CC2541. The function prototype can be
 found in hci.h.

Bug Fixes:

- The command HCI_EXT_SetTxPowerCmd is now properly working.

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

- Duplicate filtering does not work when scan is used in combination with a
 connection.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.1a
Aug 10, 2011

Changes and Enhancements:

- The thermometer profile sample application has been updated to support
 stored measurements. The TI_BLE_Sample_Applications_Guide has been updated
 to match these changes.

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

- Duplicate filtering does not work when scan is used in combination with a
 connection.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.1
July 13, 2011

Notices:

- This version of the Texas Instruments BLE stack and software features several
 changes, enhancements, and bug fixes from v1.0. Details of these can be found
 below.

Changes and Enhancements:

- All projects have been migrated from IAR v7.51A to IAR v.7.60. In order to
 build all projects, be sure to upgrade and have IAR v7.60. Also, be sure to
 download and install all of the latest patches from IAR for full CC2540
 support.

- The stack now supports up to 3 simultaneous connection as a central / master
 device, with a few constraints:

 - All connection intervals must be a multiple of the minimum connection
 interval (i.e. the minimum connection interval is the greatest common
 denominator of all connection intervals).

 - The minimum connection interval allowed is 25ms when using more than
 one connection.

 - When more than one connection is active, only one data packet per
 connection event will be allowed in each direction.

 - Scanning is not supported while in a connection. The consequences of
 this is that device discovery is not possible while in a connection.
 Therefore, to discover and connect to multiple devices, the device
 discovery must occur before the first connection is established.

- Several new sample projects are included, with examples of many different BLE
 applications / profiles. Full details on the sample applications can be found
 in the BLE Sample Applications Guide, which can be accessed from the Windows
 Start Menu. These sample applications implement various functions. Some are
 based on adopted Bluetooth specifications, some are based on draft
 specifications, and others are custom designed by Texas Instruments. These
 projects should serve as good examples for various other BLE applications.

- The following updates have been made to BTool (more information on these
 updates can be found in the CC2540DK-MINI User Guide which can be downloaded
 here: http://www.ti.com/lit/pdf/swru270):

 - Improved GUI and robustness.

 - All functions on the GUI been updated to handle multiple simultaneous
 connections.

 - A new "Pairing / Bonding" tab has been added, allowing link
 encryption and authentication, passkey entry, and saving / loading of
 long-term key data (from bonding) to file.

 - Ability to "Cancel" a link establishment while the dongle is
 initiating.

- The following additional new controller stack features are included in this
 release:

 - Support for multiple simultaneous connections as a master (details
 above)

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 - HCI Vendor Specific function HCI_EXT_SetSCACmd allows you to specify
 the exact sleep clock accuracy as any value from 0 to 500 PPM, in
 order to support any crystal accuracy with optimal power consumption.
 This feature is only available for slave / peripheral applications.

 - HCI Vendor Specific function HCI_EXT_SetMaxDtmTxPowerCmd allows you
 to set the maximum transmit output power for Direct Test Mode. This
 allows you to perform use the LE Transmitter Test command with power
 levels less than +4dBm.

 - A master device can now advertise while in a connection.

 - New production test mode (PTM) has been added allowing the CC2540 to
 run Direct Test Mode (DTM) while connected to a tester using a
 "single-chip" BLE library.

 - The controller now uses DMA to more efficiently encrypt and decrypt
 packets. All BLE projects must now define HAL_AES_DMA=TRUE in the
 preprocessor settings when using the v1.1 libraries.

- The following additional new host stack features are included in this
 release:

 - A new GAP central role profile for single-chip embedded central
 applications is included, with functions similar to the GAP
 peripheral role profile. The SimpleBLECentral project serves as an
 example of an application making use of the central role profile.

 - The GAP peripheral role has been optimized to significantly improve
 power consumption while advertising with small amounts of data by
 no longer transmitting non-significant bytes from in the
 advertisement and scan response data.

- The following additional new application / profile features are included in
 this release:

 - The GAP peripheral bond manager has been replaced with a general GAP
 bond manager, capable of managing bond data for both peripheral and
 central role devices. The gap peripheral bond manager has been
 included for legacy support; however it is recommend to switch to the
 general GAP bond manager (gapbondmgr.c/h).

 - The bond manager also now manages the storage of client
 characteristic configurations for each bond as per the Bluetooth 4.0
 spec.

 - The simple GATT profile has a new fifth characteristic. This
 characteristic is 5 bytes long, and has readable permissions only
 while in an authenticated connection. It should serve as a reference
 for development of other profiles which require an encrypted link.

 - All GATT profiles have been updated to properly handle client
 characteristic configurations for both single and multiple
 connections. Characteristic configurations now get reset to zero
 (notifications / indications off) after a connection is terminated,
 and the bond manager now stores client characteristic configurations
 for bonded devices so that they are remembered for next time when the
 device reconnects.

 - Added linker configuration file for support of 128kB flash versions
 of the CC2540. An example is included in the SimpleBLEPeripheral
 project.

 - The SimpleBLEPeripheral project "CC2540 Slave" configuration has been
 updated to better support the SmartRF05EB + CC2540EM hardware
 platform, making use of the LCD display.

Bug Fixes:

 - The following bugs have been fixed in the controller stack:

 - Scanning now working for master devices with power savings enabled.

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 - RSSI reads no longer require a data packet to update.

 - Improved stability when using very high slave latency setting

 - HCI LE direct test modes now working properly.

 - HCI Read Local Supported Features now returns the proper value.

 - Use of two advertising channels now works.

 - When connecting to a device on the whitelist, the correct peer device
 address is returned to the host.

 - The following bugs have been fixed in the host stack:

 - Pairing no longer fails when either device is using a static, private
 resolvable, or private non-resolvable address.

 - The following bugs have been fixed in the profiles / applications:

 - Reading of RSSI with peripheral role profile now working.

 - Peripheral role profile now allows all legal whitelist modes.

 - Can now connect with short connection intervals (such as 7.5ms),
 since bond manager now reads data from NV memory upon initialization
 rather than immediately after a connection is established. Pairing
 still may not be stable when using the bond manager with very short
 connection intervals (for reason noted in "Known Issues" below)

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

- Duplicate filtering does not work when scan is used in combination with a
 connection.

For technical support please visit the Texas Instruments Bluetooth low energy
E2E Forum:

http://e2e.ti.com/support/low_power_rf/f/538.aspx

Version 1.0
October 7, 2010

Notices:

- The Texas Instruments Bluetooth® low energy (BLE) software development kit
 includes all necessary software to get started on the development of
 single-mode BLE applications using the CC2540 system-on-chip. It includes
 object code with the BLE protocol stack, a sample project and applications
 with source code, and BTool, a Windows PC application for testing BLE
 applications. In addition to the software, the kit contains documentation,
 including a developer’s guide and BLE API guide.

- For complete information on the BLE software development kit, please read
 the developer's guide:

 BLE Software Developer's Guide:
 <Install Directory>\Documents\TI_BLE_Software_Developer's_Guide.pdf
 (Also can be accessed through the Windows Start Menu)

- The following additional documentation is included:

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 BLE API Guide:
 <Install Directory>\Documents\BLE_API_Guide_main.htm

 Vendor Specific HCI Guide:
 <Install Directory>\Documents\TI_BLE_Vendor_Specific_HCI_Guide.pdf

 HAL Drive API Guide:
 <Install Directory>\Documents\hal\HAL Driver API.pdf

 OSAL API Guide:
 <Install Directory>\Documents\osal\OSAL API.pdf

- The following software projects are included, all built using IAR Embedded
 Workbench v7.51A:

 SimpleBLEPeripheral:
 <Install Directory>\Projects\ble\SimpleBLEPeripheral\CC2540DB

\SimpleBLEPeripheral.eww

 HostTestRelease:
 <Install Directory>\Projects\ble\HostTestApp\CC2540\HostTestRelease.eww

- The following Windows PC application is included:

 BTool:
 <Install Directory>\Projects\BTool\BTool.exe
 (Also can be accessed through the Windows Start Menu)

Changes:

- Initial Release

Bug Fixes:

- Initial Release

Known Issues:

- Use of the NV memory (to save application data or BLE Host bonding
 information) during a BLE connection may cause an unexpected disconnect.
 The likelihood of this happening increases with frequent usage, especially
 when using short connection intervals. The cause is related to the NV wear
 algorithm which at some point may cause an NV page erase which can disrupt
 system real-time processing. It is therefore recommended that the NV memory
 be used sparingly, or only when a connection is not active.

5.2 Document History

Table 2: Document History

Revision Date Description/Changes

1.0 2010-10-07 Initial release

1.1 2011-07-13 Updated for BLEv1.1 software release

1.1b 2011-11-15 Updated for BLEv1.1b software release

1.2 2012-02-13 Updated for BLEv1.2 software release

1.3.1 2012-04-13 Updated for BLEv1.3.1 software release

1.3 2012-12-19 Updated for BLEv1.3 software release

1.3.1 2013-04-05 Updated for BLEv1.3.1 software release

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

6 Address Information
Texas Instruments Norway AS
Gaustadalléen 21
N-0349 Oslo
NORWAY
Tel: +47 22 95 85 44
Fax: +47 22 95 85 46
Web site: http://www.ti.com/lpw

7 TI Worldwide Technical Support
Internet
TI Semiconductor Product Information Center Home Page: support.ti.com
TI Semiconductor KnowledgeBase Home Page: support.ti.com/sc/knowledgebase

TI LPRF forum E2E community http://www.ti.com/lprf-forum

Product Information Centers
Americas

Phone: +1(972) 644-5580
Fax: +1(972) 927-6377
Internet/Email: support.ti.com/sc/pic/americas.htm

Europe, Middle East and Africa

Phone:
Belgium (English) +32 (0) 27 45 54 32
Finland (English) +358 (0) 9 25173948
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 180 949 0107
Italy 800 79 11 37
Netherlands (English) +31 (0) 546 87 95 45
Russia +7 (0) 95 363 4824
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Fax: +49 (0) 8161 80 2045
Internet: support.ti.com/sc/pic/euro.htm

Japan

Fax International +81-3-3344-5317
 Domestic 0120-81-0036
Internet/Email International support.ti.com/sc/pic/japan.htm
 Domestic www.tij.co.jp/pic

Asia

Phone International +886-2-23786800
 Domestic Toll-Free Number
 Australia 1-800-999-084
 China 800-820-8682
 Hong Kon 800-96-5941

http://www.ti.com/lpw
http://focus.ti.com/general/docs/dsnsuprt.tsp
http://www-k.ext.ti.com/sc/technical-support/knowledgebase.htm
http://www-k.ext.ti.com/sc/technical-support/pic/americas.htm
http://www-k.ext.ti.com/sc/technical-support/pic/euro.htm
http://www-k.ext.ti.com/sc/technical-support/pic/japan.htm
http://www.tij.co.jp/pic

TI CC254x Bluetooth Low Energy Software Developer’s Guide SWRU271D Version 1.3.1

Copyright © 2010-2013 Texas Instruments, Inc.

 India +91-80-51381665 (Toll)
 Indonesia 001-803-8861-1006
 Korea 080-551-2804
 Malaysia 1-800-80-3973
 New Zealand 0800-446-934
 Philippines 1-800-765-7404
 Singapore 800-886-1028
 Taiwan 0800-006800
 Thailand 001-800-886-0010

Fax +886-2-2378-6808
Email tiasia@ti.com or ti-china@ti.com
Internet support.ti.com/sc/pic/asia.htm

mailto:tiasia@ti.com
mailto:ti-china@ti.com
http://www-k.ext.ti.com/sc/technical-support/pic/asia.htm

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	References
	Useful Links
	1 Overview
	1.1 Introduction
	1.2 BLE Protocol Stack Basics

	2 Texas Instruments BLE software development platform
	2.1 Configurations
	2.2 Projects

	3 Software Overview
	3.1 Operating System Abstraction Layer (OSAL)
	3.1.1 Task Initialization
	3.1.2 Task Events and Event Processing
	3.1.3 Heap Manager
	3.1.4 OSAL Messages

	3.2 Hardware Abstraction Layer (HAL)
	3.3 BLE Protocol Stack
	3.3.1 Generic Access Profile (GAP)
	3.3.2 Generic Attribute Profile (GATT)
	3.3.3 Using the GAP and GATT Stack API
	3.3.4 GATT Server Application API
	3.3.5 Library Files

	3.4 Profiles
	3.4.1 GAP Peripheral Role Profile
	3.4.2 GAP Peripheral / Broadcaster Multi-Role Profile
	3.4.3 GAP Central Role Profile
	3.4.4 GAP Bond Manager
	3.4.5 Simple GATT Profile
	3.4.6 Simple Keys GATT Profile
	3.4.7 Device Information Service
	3.4.8 Additional GATT Profiles

	4 Working with Projects using IAR Embedded Workbench 8.10.4
	4.1 IAR Overview
	4.2 Using IAR Embedded Workbench
	4.2.1 Open an Existing Project
	4.2.2 Project Options, Configurations, and Defined Symbols
	4.2.3 Building and Debugging a Project
	4.2.4 Linker Map File

	4.3 SimpleBLEPeripheral Sample Project
	4.3.1 Project Overview
	4.3.2 Initialization
	4.3.3 Periodic Event
	4.3.4 Peripheral State Notification Callback
	4.3.5 Key Presses (CC2540/41DK-MINI Keyfob only)
	4.3.6 LCD Display (CC2540/41 Slave only)
	4.3.7 Complete Attribute Table

	4.4 SimpleBLECentral Sample Project
	4.4.1 Project Overview
	4.4.2 User Interface
	4.4.3 Basic Operation
	4.4.4 Initialization
	4.4.5 Event Processing
	4.4.6 Callbacks
	4.4.7 Service Discovery

	4.5 HostTestRelease Network Processor Project
	4.5.1 Project Overview
	4.5.2 External Device Control of BLE Stack

	4.6 Additional Sample Projects

	5 General Information
	5.1 Release Notes History
	5.2 Document History

	6 Address Information
	7 TI Worldwide Technical Support

