
STM32 平台移植 uCOS-II 详细说明

 1 / 13

STM32 平台移植 uCOS-II详细说明 v1.0

硬件平台：盘古 UE-STM32F103 开发板

软件平台：RVMDK_v4.20 + uCOS-II_v2.86 + StmLib_v3.5

联系方式：WWW.UE-TECH.NET

淘宝店铺：UETECH.TAOBAO.COM

文档作者：合嵌电子科技有限公司

移植准备

1. 建立工程所需的文件夹
 建立文件夹 uCOS-II-Port ：工程根目录

 建立文件夹 uCOS-II-Port/App ：存放用户应用程序相关

 建立文件夹 uCOS-II-Port/Bsp ：存放开发板初始化驱动文件

 建立文件夹 uCOS-II-Port/Library

 建立文件夹 uCOS-II-Port/Library/CM3 ：存放启动文件及内核支撑文件

 建立文件夹 uCOS-II-Port/Library/CM3/startup

 建立文件夹 uCOS-II-Port/Library/STM32_Lib ：存放标准外设函数库文件

 建立文件夹 uCOS-II-Port/OS-uCOSII

 建立文件夹 uCOS-II-Port/OS-uCOSII/core ：存放 uCOS-II 源代码，无需修改

 建立文件夹 uCOS-II-Port/OS-uCOSII/port ：存放移植相关文件，需修改

 建立文件夹 uCOS-II-Port/Project ：存放工程相关文件

 建立文件夹 uCOS-II-Port/Project/List

 建立文件夹 uCOS-II-Port/Project/Obj

 此步骤完成以后，目录结构如下所示：

2. 移植源码包(光盘中附带)：

 STM32 标准外设驱动库 v3.5

此源代码的文件结构不再说明

 uCOS-II 系统源代码 v2.86

解压后文件结构如下：

STM32 平台移植 uCOS-II 详细说明

 2 / 13

 具体文件结构说明如下图所示：

文件名 说明

AppNote
uCOS-II说明，其中AppNotes\AN1xxx-RTOS\AN1018-uCOS-II-Cortex-M3.pdf文件介绍了
移植过程的详细说明。

Licensing uCOS-II的应用许可。

Software

此文件夹在移植过程中需要修改，具体为uCOS-II文件夹下的ports和source。

uCOS-II

Doc 官方自带说明文档和教程

CPU STM32标准外设固件库

EvalBoards micrium 官方评估板的代码

uC-CPU 基于 micrium 官方评估板的 CPU 移植代码

uC-LIB micrium 官方的一个库代码

uC-Probe 一个通用工具，能让嵌入式开发人员在实时环境中监测嵌入式系统。

Ports

官方移植M3的文件(RealView)

Cpu.h 数据类型、处理器相关代码、函数原型

Cpu_c.c
定义用户钩子函数，提供扩充软件功能的入口
点（所谓钩子函数，就是指那些插入到某函数
中拓展这些函数功能的函数）

Cpu_a.asm 与处理器相关汇编函数，主要是任务切换函数

Os_dbg.c 内核调试数据和函数

Source

uCOS-Ii的源代码文件

ucos_ii.h 内核函数参数设置

os_core.c
内核结构管理，uC/OS 的核心，包含了内核初
始化，任务切换，事件块管理、事件标志组管
理等功能。

os_time.c 延时处理

os_tmr.c
定时器管理，设置定时时间，时间到了就进行
一次回调函数处理。

os_task.c 任务管理

os_mem.c 内存管理

os_mutex.c 信号量管理

os_mbox.c 邮箱消息

os_q.c 队列

os_flag.c 事件标志组

3. 文件对号入座

 通过之前的准备工作，我们需要把官方源码包中相应的文件，拷贝到我们建立的工程文件夹中，

首先进行库函数源代码搬移工作：

 打开 STM32F10x_StdPeriph_Lib_V3.5.0\Libraries\STM32F10x_StdPeriph_Driver

STM32 平台移植 uCOS-II 详细说明

 3 / 13

将其下的 inc 和 src 拷贝至 uCOS-II-Port\Library\STM32_Lib

 打开 STM32F10x_StdPeriph_Lib_V3.5.0\Libraries\CMSIS\CM3

其下有 CoreSupport 和 DeviceSupport 两个文件夹

 分别将 CoreSupport 下的 core_cm3.c 和 core_cm3.h

 和 DeviceSupport\ST\STM32F10x 下的 stm32f10x.h、system_stm32f10x.c 和

 system_stm32f10x.h 拷贝至 uCOS-II-Port\Library\CM3，并去掉只读属性

 再将 DeviceSupport\ST\STM32F10x\startup\arm 下的 startup_stm32f10x_hd.s

 拷贝至 uCOS-II-Port\Library\CM3\startup

 注：盘古 UE-STM32F103 的主芯片的内部 flash 为 512K

 打开 STM32F10x_StdPeriph_Lib_V3.5.0\Project\STM32F10x_StdPeriph_Template

将其下的 stm32f10x_conf.h、stm32f10x_it.c 和 stm32f10x_it.h 拷贝至 uCOS-II-Port\App

至此，库函数的源代码搬移工作已经完成，现在进行 uCOS-II 的源代码搬移工作：

 打开 Micrium\Software\uCOS-II\Source

将其下的所有文件拷贝至 uCOS-II-Port\OS-uCOSII\core

 打开 Micrium\Software\uCOS-II\Ports\ARM-Cortex-M3\Generic\RealView

将其下的所有文件拷贝至 ucos\uCOS-II-Port\OS-uCOSII\port

 打开 Micrium\Software\EvalBoards\ST\STM3210B-EVAL\RVMDK\OS-Probe

将其下的 os_cfg.h 拷贝至 ucos\uCOS-II-Port\App

至此，所有的可利用的文件已经搬移结束，不过仍然需要建立一些文件，这个工程的文件结构才算完

整，具体如下：

 打开 ucos\uCOS-II-Port\App

新建 app.c、app_cfg.h 和 includes.h 三个空文件

 打开 ucos\uCOS-II-Port\Bsp

新建 bsp.c 和 bsp.h 两个空文件

到目前为止，我们所有的文件准备工作已经完成，我们可以了解一下 uCOS-II 的体系结构，如下所示：

APP
app.c

app_cfg.h
os_cfg.h

includes.h

uCOS-II_core
os_core.c
os_flag.c
os_mbox.c
os_mem.c

os_mutex.c
os_q.c

os_sem.c
os_task.c
os_time.c
os_tmr.c

uCOS-II_port
os_cpu.h

os_cpu_a.asm
os_cpu_c.c
os_dbg.c

BSP
bsp.c
bsp.h

盘古UE-STM32F103开发板
ARM Cotex-M3

STM32 平台移植 uCOS-II 详细说明

 4 / 13

4. 建立 Keil 工程

 打开 Keil_v4.20，新建工程 UE-uCOS-II-Port 工程，并将其保存至 uCOS-II-Port\Project

在随后跳出的窗口中，选择芯片型号，盘古 UE-STM32F103 开发板的芯片为：STM32F103VET6

点击 OK，跳出对话框，是否自动添加启动文件，注意此处选择否，因为我们会自己添加。

 右击项目窗口中 Target1，选择 Manage Components，在窗口中创建文件组，并在相应的组添加

文件，具体如下：

 将 Project Targets 中的 Target1 重命名为 UE-uCOS-II-Port

 新建组 STM32F10x_StdPeriph_Driver，并将 uCOS-II-Port\Library\STM32_Lib\src 下的所

有文件添加到此组下

 新建组 STM32F10x_CM3，并将 uCOS-II-Port\Library\CM3 下所有文件添加到此组中（包括 C

文件、H 文件和 startup 下的文件）

 新建组 APP，并将 uCOS-II-Port\App 下所有文件添加到此组中

 新建组 BSP，并将 uCOS-II-Port\Bsp 下所有文件添加到此组中

 新建组 uCOSII_core，并将 uCOS-II-Port\OS-uCOSII\core 下所有 C 文件添加到此组中

 新建组 uCOSII_port，并将 uCOS-II-Port\OS-uCOSII\port 下所有文件添加到此组中

具体操作结果，及各文件说明如下图所示：

STM32F10x_StdPeriph_Driver:
 STM32固件库函数v3.5，包含了各个外设驱动代码；
STM32F10x_CM3：
 core_cm3.h和core_cm3.c文件为内核支撑文件，其他CM3核
的芯片也能使用；
 stm32f10x.h为标准函数库的入口文件，包含了一些寄存器
的定义；
 system_stm32f1ox.h、system_stm32f10x.c提供了初始化
stm32芯片的库函数，以及配置PLL、系统时钟和内置flash的接
口函数；
 startup_stm32f10x_hd.s为stm32的启动文件，hd表示大容
量的芯片。
APP:
 stm32f10x_conf.h为外设配置文件，此文件可以使能/禁用
外设驱动；
 stm32f10x_it.c和stm32f10x_it.h为中断服务程序文件；
 includes.h为全部头文件的头文件，对头文件进行统一管
理；
 app.c为应用程序文件，包含Main函数；
 app_cfg.h用来配置应用软件，主要是任务的优先级和堆栈
大小及中断优先级；
 os_cfg.h为内核配置头文件，移植时需要修改；
BSP:
 Bsp.c存放了开发板初始化启动函数，包含设置系统时钟，
初始化硬件；
 Bsp.h包含有与开发板初始化相关函数的头文件；
uCOSII_core：
 此文件组包含了uCOS-II的源代码文件，在移植的过程中，
不需要修改。
uCOSII_port：
 此文件组包含了移植的相关文件
 os_cpu.h进行数据类型定义，处理器相关代码和几个函数
型；
 os_cpu_c.c定义一些用户 hook 函数；
 os_cpu_a.asm为移植需要用汇编代码完成的函数，主要就是
任务切换函数；
 os_dbg.c为内核调试相关数据和函数，可以不改。

STM32 平台移植 uCOS-II 详细说明

 5 / 13

5. 设置 Option 选项

 Device 选项卡

此步骤前面已经操作，即选择主芯片：stm32f103vet6

 Output 选项卡

设置工程输出文件至：uCOS-II-Port\Project\Obj

 Listing 选项卡

设置工程 Listing 路径值 uCOS-II-Port\Project\List

 C/C++选项卡

设置 H 文件的路径

 Debug 选项卡

在此选项卡中选择你所连接的 JLINK，并作相应配置

 Utilities 选项卡

作出如下选择操作

至此为止，工程已经建立完毕，接下来需要对相关文件进行修改移植。

6. 移植修改
以下移植步骤来自 Micrium\AppNotes\AN1xxx-RTOS\AN1018-uCOS-II-Cortex-M3\AN-1018.pdf

 os_cpu.h

STM32 平台移植 uCOS-II 详细说明

 6 / 13

此文件定义数据类型、处理器相关代码、声明函数原型，下面为部分代码的解释说明。

/*全局变量*/

#ifdef OS_CPU_GLOBALS

#define OS_CPU_EXT

#else

#define OS_CPU_EXT extern

#endif

/*数据类型*/

typedef unsigned char BOOLEAN;

typedef unsigned char INT8U;

typedef signed char INT8S;

typedef unsigned short INT16U;

typedef signed short INT16S;

typedef unsigned int INT32U;

typedef signed int INT32S;

typedef float FP32;

typedef double FP64;

typedef unsigned int OS_STK;

typedef unsigned int OS_CPU_SR;

/*临界段*/

#define OS_CRITICAL_METHOD 3 //进入临界段的三种模式，一般选择第 3 种

#define OS_ENTER_CRITICAL() {cpu_sr = OS_CPU_SR_Save();}

#define OS_EXIT_CRITICAL() {OS_CPU_SR_Restore(cpu_sr);}

为了实现资源共享，一个操作系统必须提供临界段擦作的功能。

uCOS-II 为了处理临界段代码需要关中断，处理完毕后再开中断。这使得 uCOS-II 能够避免同时

有其它任务或中断服务进入临界段代码。

微处理器一般都有关中断/开中断指令，用户使用的 C 语言编译器必须有某种机制能够在C 中直

接实现关中断/开中断地操作。某些 C 编译器允许在用户的C 源代码中插入汇编语言的语句。这使得

插入微处理器指令来关中断/开中断很容易实现。而有的编译器把从 C 语言中关中断/开中断放在语言

的扩展部分。uCOS-II 定义两个宏(macros)来关中断和开中断，以便避开不同 C 编译器厂商选择不同

的方法来处理关中断和开中断。uCOS-II 中的这两个宏调用分别是：OS_ENTER_CRITICAL()和

OS_EXIT_CRITICAL()。

/*栈方向*/

#define OS_STK_GROWTH 1

Cotex-M3 的栈生长方向是由高地址向低地址增长的，因此 OS_STK_GROWTH 定义为 1

/*任务切换宏*/

#define OS_TASK_SW() OSCtxSw()

/*开中断 关中断*/

#if OS_CRITICAL_METHOD == 3

STM32 平台移植 uCOS-II 详细说明

 7 / 13

OS_CPU_SR OS_CPU_SR_Save(void);

void OS_CPU_SR_Restore(OS_CPU_SR cpu_sr);

#endif

其 中 OS_CPU_SR_Save() 和 OS_CPU_SR_Restore()是用汇编代码写的，代码在 os_cpu_a.asm

/*任务切换的函数*/

void OSCtxSw(void); //用户任务切换

void OSIntCtxSw(void); //中断任务切换函数

void OSStartHighRdy(void); //在操作系统第一次启动的时候调用的任务切换

void OS_CPU_PendSVHandler(void); //用户中断处理函数

void OS_CPU_SysTickHandler(void); //系统定时中断处理函数，时钟节拍函数

void OS_CPU_SysTickInit(void); //系统 SysTick 定时器初始化

INT32U OS_CPU_SysTickClkFreq(void);//返回 SysTick 定时器的时钟频率

关于任务切换，会涉及到异常处理，具体为 SVC（系统服务调用，亦简称系统调用）和 PendSV

（可悬起系统调用），它们常用于在操作系统之上的软件开发中。

SVC 用于产生系统函数的调用请求。例如，操作系统不让用户程序直接访问硬件，而是通过提供

一些系统服务函数，用户程序使用 SVC 发出对系统服务函数的呼叫请求，以这种方法调用它们来间接

访问硬件。因此，当用户程序想要控制特定的硬件时，它就会产生一个 SVC 异常，然后操作系统提供

的 SVC 异常服务例程得到执行，它再调用相关的操作系统函数，后者完成用户程序请求的服务。SVC

异常通过执行”SVC”指令来产生，该指令需要一个立即数，充当系统调用代号。SVC 异常服务例程

稍后会提取出此代号，从而解释本次调用的具体要求，再调用相应的服务函数。

另一个相关的异常是 PendSV（可悬起的系统调用），它和 SVC 协同使用。一方面，SVC 异常是必

须立即得到响应的（若因优先级不比当前正处理的高，或是其它原因使之无法立即响应，将上访成硬

fault），应用程序执行 SVC 时都是希望所需的请求立即得到响应。另一方面，PendSV 则不同它是可

以像普通的中断一样被悬起的（不像 SVC 那样会上访）。OS 可以利用它“缓期执行”一个异常，直到

其它重要的任务完成后才执行动作。悬起 PendSV 的方法是：手工往 NVIC 的 PendSV 悬起寄存器中写

1。悬起后，如果优先级不够高，则将缓期等待执行。

 具体异常处理相关知识，若想知其原理，请详细阅读《Cotex-M3 权威指南》。

 在此处，我们需要对此文件进行修改：

1) void OS_CPU_PendSVHandler(void) 需替换成 void PendSV_Handler(void)

 一般我们自己开发基于 stm32 芯片的软件，都会使用标准外设库 CMSIS 中提供的启动文

件，比如 startup_stm32f10x_hd.s，而 Micrium 官方没有用 ST 的标准启动文件，而且分开写成

了两个.s 文件，即

 init.s 和 vectors.s（Micrium\Software\EvalBoards\ST\STM3210B-EVAL\RVMDK）

 init.s 负责进入 main()，vectors.s 设置中断向量

 由于 OS_CPU_PendSVHandler 这个中断向量就是在 vectors.s 中被设置的，且我们使用的是

startup_stm32f10x_hd.s 作为启动文件的，而在 startup_stm32f10x_hd.s 文件中，PendSV 的中

断向量名为 PendSV_Handler，所以只需用 PendSV_Handler 替换掉相应文件的

OS_CPU_PendSVHandler，其中函数声明在 OS_CPU_C.h 中，具体的中断服务函数原型在

OS_CPU_A.ASM 中，后面也将对其进行修改。

 这样子，替换后的 PendSV_Handler 函数在 OS_CPU_C.h 中有声明，在 OS_CPU_A.ASM 中有具

体的中断服务函数代码，与 startup_stm32f10x_hd.s 中的向量地址就对应上了。

2) 注释掉最后三个关于 SysTick 服务函数

STM32 平台移植 uCOS-II 详细说明

 8 / 13

void OS_CPU_SysTickHandler(void);

void OS_CPU_SysTickInit(void);

INT32U OS_CPU_SysTickClkFreq(void);

 其中，OS_CPU_SysTickHandler 函数在 ST 标准库 stm32f10x_it.c 中已定义，此处不需要；

其中，OS_CPU_SysTickInit 定义在 os_cpu_c.c 中，依赖于 OS_CPU_SysTickClkFreq，用于初始

化 SysTick 定时器，需注释掉；其中，OS_CPU_SysTickClkFreq 定义在官方 EvalBoards的 BSP.c

中，需解除依赖，若需要，我们可以在 bsp.c 中实现。

修改后如下所示：

 SysTick 作为 OS 的“心跳”，可称为滴答时钟，本质上来说就是一个定时器，和 PendSV 中

断一样，在 startup_stm32f10x_hd.s 中 SysTick 的中断向量名为 SysTick_Handler，且因为 ST

标准库已经有相关库函数，所以我们只需作如下修改：

 打开 os_cpu_c.c 文件，找到 void OS_CPU_SysTickHandler(void)的内容代码

 OS_CPU_SR cpu_sr;

 OS_ENTER_CRITICAL();

 OSIntNesting++;

 OS_EXIT_CRITICAL();

 OSTimeTick();

 OSIntExit();

复制到 stm32f10x_it.c 文件中的 SysTick_Handler (void)函数内；

 void SysTick_Handler(void)

 {

 OS_CPU_SR cpu_sr;

 OS_ENTER_CRITICAL();

 OSIntNesting++;

 OS_EXIT_CRITICAL();

 OSTimeTick();

 OSIntExit();

 }

并且在文件头部添加：#include<ucos_ii.h>

 os_cup_a.asm
根据前面的描述，OS_CPU_PendSVHandler 中断服务函数的原型在此文件中，我们需要用

PendSV_Handler 将其替换，以实现在 startup_stm32f10x_hd.s 中的中断向量的匹配。

1) 注释掉 EXPORT OS_CPU_PendSVHandler，并修改成 EXPORT PendSV_Handler，如下

所示：

2) 找到 OS_CPU_PendSVHandler 程序原型，并重命名为 PendSV_Handler

STM32 平台移植 uCOS-II 详细说明

 9 / 13

这样 PendSV_Handler 中断服务函数就成功建立了，同时，我们需要注释掉 stm32f10x_it.h 和

stm32f10x_it.c 中的相关 PendSV_Handler 的声明和定义，以防止冲突，如下所示：

 os_cpu_c.c
此文件需要由我们来写 10 个相当简单的C 函数

OSInitHookBegin()

OSInitHookEnd()

OSTaskCreateHook()

OSTaskDelHook()

OSTaskIdleHook()

OSTaskStatHook()

OSTaskStkInit()

OSTaskSwHook()

OSTCBInitHook()

OSTimeTickHook()

主要包括 9 个钩子函数和1 个负责建立任务堆栈的函数 OSTaskStkInit()。

所谓钩子函数，指那些插入到某些函数中为扩展这些函数功能而存在的函数。一般来说，钩

子函数是进行软件功能扩充的入口点。不仅如此，uCOS-II 中还提供有大量的钩子函数，用户不

需要修改 uCOS-II 的内核代码程序，而只需要向钩子函数添加代码即可拓展 uCOS-II 的功能，如

果要用到这些钩子函数，需要在

OS_CFG.H 中使能 OS_CPU_HOOKS_EN为 1，即：#define OS_CPU_HOOKS_EN 1

同时关于 OSTaskStkInit，OSTaskCreate 和 OSTaskCreateExt 通过调用 OSTaskStkInt 来初

始化任务的堆栈结构，因此，堆栈看起来就像刚发生过中断并将所有的寄存器保存到堆栈中的情

形一样。一旦用户初始化了堆栈，OSTaskStkInit 就需要返回堆栈指针所指的地址，OSTaskCreate

STM32 平台移植 uCOS-II 详细说明

 10 / 13

和 OSTaskCreateExt 会获得该地址并将它保存到任务控制块(OS_TCB)中，处理器的文档会告诉

用户堆栈指针会指向下一个堆栈空闲位置，还是会指向最后存入数据的堆栈单元位置。

下面进行文件的移植说明：

1) 把最后 OS_CPU_SysTickHandler(), OS_CPU_SysTickInit()这两个函数的内容代码注

释掉；

2) 禁用以下宏定义，因为他们涉及到上一步注释的 Systick 服务函数

#define OS_CPU_CM3_NVIC_ST_CTRL (*((volatile INT32U *)0xE000E010))

#define OS_CPU_CM3_NVIC_ST_RELOAD (*((volatile INT32U *)0xE000E014))

#define OS_CPU_CM3_NVIC_ST_CURRENT (*((volatile INT32U *)0xE000E018))

#define OS_CPU_CM3_NVIC_ST_CAL (*((volatile INT32U *)0xE000E01C))

#define OS_CPU_CM3_NVIC_ST_CTRL_COUNT 0x00010000

#define OS_CPU_CM3_NVIC_ST_CTRL_CLK_SRC 0x00000004

#define OS_CPU_CM3_NVIC_ST_CTRL_INTEN 0x00000002

#define OS_CPU_CM3_NVIC_ST_CTRL_ENABLE 0x00000001

 os_cfg.h

此文件为配置内核的头文件，在这个文件，我们可以禁用信号量、互斥信号量、邮箱、队列、信号量

集、定时器、内存管理，调试模式：

#define OS_FLAG_EN 0 //禁用信号量集

#define OS_MBOX_EN 0 //禁用邮箱

#define OS_MEM_EN 0 //禁用内存管理

#define OS_MUTEX_EN 0 //禁用互斥信号量

#define OS_Q_EN 0 //禁用队列

#define OS_SEM_EN 0 //禁用信号量

#define OS_TMR_EN 0 //禁用定时器

#define OS_DEBUG_EN 0 //禁用调试

也可以禁用应用软件的钩子函数和多重事件控制

#define OS_APP_HOOKS_EN 0

#define OS_EVENT_MULTI_EN 0

这些所做的修改主要是把一些功能给去掉，减少内核大小，也利于编译调试。等用到的时候，再开启

相应的功能。

7 应用实例

 至此，所有的移植已经完成，如需更详细的说明整个移植过程，请参考 AN-1018.pdf，接下来我

们将编写应用相关的代码，其中有一些入门知识需要说明，uCOS-II 可以管理多达 64 个任务，但保

留了优先级为 0、1、2、3、OS_LOWEST_PRIO-3、OS_LOWEST_PRI0-2，OS_LOWEST_PRI0-1 以及

OS_LOWEST_PRI0 这 8 个任务以被将来使用，用户可以有多达 56 个应用任务，必须给每个任务赋以不

同的优先级，优先级号越低，任务的优先级越高。

 uCOS-II 的初始化流程为：在调用 uCOS-II 的任何其它任务之前，uCOS-II 要求用户首先调用系

统初始化函数 OSInit()，且多任务的启动是用户通过调用 OSStart()实现的。然而，启动 uCOS-II 之

前，用户至少要建立一个应用任务, 用户可以通过传递任务地址和其它参数到以下两个函数之一来建

立任务：OSTaskCreate() 或者 OSTaskCreateExt()，如以下所示：

 main()

 {

STM32 平台移植 uCOS-II 详细说明

 11 / 13

 …..

 OSInit(); /* 初始化 uC/OS-II*/

 ……

 OSTaskCreate()或 OSTaskCreateExt()；

 ……

 OSStart(); /*开始多任务调度!永不返回 */

 }

在 UE-STM32F103 开发板上有3 个 LED，我们将创建两个任务，分别控制这 3个 LED，具体代码如下所

示：

 app.c

#include <includes.h>

static OS_STK led1_task_stk[LED1_TASK_STK_SIZE]; //开辟任务堆栈

static OS_STK led2_task_stk[LED1_TASK_STK_SIZE]; //开辟任务堆栈

static void systick_init(void); //函数声明

static void systick_init(void)

{

RCC_ClocksTypeDef rcc_clocks;

RCC_GetClocksFreq(&rcc_clocks); //调用标准库函数，获取系统时钟。

SysTick_Config(rcc_clocks.HCLK_Frequency / OS_TICKS_PER_SEC); //初始化并使能

SysTick

}

static void led1_task(void *para)

{

para = para;

while(1)

{

 GPIO_SetBits(GPIOD, GPIO_Pin_7);

 OSTimeDlyHMSM(0,0,1,0); //1s 延时，释放 CPU 控制权

 GPIO_ResetBits(GPIOD, GPIO_Pin_7);

 OSTimeDlyHMSM(0,0,1,0); //1s 延时，释放 CPU 控制权

}

}

static void led2_task(void *para)

{

para = para;

while(1)

{

 GPIO_SetBits(GPIOD, GPIO_Pin_5);

 GPIO_SetBits(GPIOD, GPIO_Pin_6);

 OSTimeDlyHMSM(0,0,0,500); //500ms 延时，释放 CPU 控制权

 GPIO_ResetBits(GPIOD, GPIO_Pin_5);

 GPIO_ResetBits(GPIOD, GPIO_Pin_6);

 OSTimeDlyHMSM(0,0,0,500); //500ms 延时，释放 CPU 控制权

}

STM32 平台移植 uCOS-II 详细说明

 12 / 13

}

int main(void)

{

BSP_Init();

OSInit();

systick_init();

OSTaskCreate(led1_task, 0, &led1_task_stk[LED1_TASK_STK_SIZE - 1],

LED1_TASK_PRIO);

OSTaskCreate(led2_task, 0, &led2_task_stk[LED2_TASK_STK_SIZE - 1],

LED2_TASK_PRIO);

OSStart();

return 0;

}

 app_cfg.h

/* task priority */

#define LED1_TASK_PRIO 4

#define LED2_TASK_PRIO 6

/* task stack size */

#define LED1_TASK_STK_SIZE 80

#define LED2_TASK_STK_SIZE 80

 Bsp.c
#include <includes.h>

static void BSP_LED_Init(void);

void BSP_Init (void)

{

 SystemInit();

 BSP_LED_Init(); /* Initialize the LED */

}

static void BSP_LED_Init(void)

{

 GPIO_InitTypeDef GPIO_InitStructure;

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); //使能时钟

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7; //LED_pin

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

}

 Bsp.h
#ifndef __BSP_H

STM32 平台移植 uCOS-II 详细说明

 13 / 13

#define __BSP_H

void BSP_Init(void);

#endif

说明

本开发板可以以下几个模块配套使用，模块详情请登录官网查询，或直接进入店铺购买

 双路 RS485/422 转 RS232 模块

 GPS 模块

 GPRS 模块

 Zigbee 模块

 WIFI 模块

 陀螺仪模块（支持 MPU6050 加速度+陀螺仪、HMC5883 磁力计、BMP085 气压计）

 7 寸液晶屏模块

合嵌电子提供良好电磁兼容性的嵌入式开发板，陆续将推出的嵌入式开发板如下：

 STM32F103 开发板、

 STM32F407 开发板、

 AT91SAM9260 开发板（ARM9 系列）、

 LPC1768 开发板、

 LPC1788 开发板

敬请关注，同时诚招各地加盟代理商，欢迎联系洽谈。

联系方式

电话：0550-3789700

店铺：UETECH.TAOBAO.COM

邮箱：UE_TECH@126.COM

网站：WWW.UE-TECH.NET WWW.UETECH.NET

地址：安徽省滁州市南谯区花园西路 82 号（科技创业中心1 幢 302 室）

mailto:UE_TECH@126.COM

