
LPRF San Diego

Bluetooth Low Energy Deep Dive

May 2011
TI confidential information - Strictly Private

Agenda

• Introduction

• Bluetooth Low Energy Protocol Stack (2.5 hours)
– Stack Architecture / Overview

– Link Layer – Basics of BLE communication

– Generic Access Profile (GAP) – Roles, Device Discovery, Connections, Security

– Attribute Protocol (ATT) – Attribute Table, Reading and Writing Data

– Generic Attribute Profile (GATT) – Profiles, Services, Characteristics

• BLE Industry and Technology Update

• CC2540 BLE Software (2.5 hours)
– CC2540 Hardware Overview

– CC2540 BLE Software Architecture and Structure

– SimpleBLEPeripheral Project – Framework for Custom Applications

– GAP Role Profiles and Bond Manager

– GATT Profiles and Services

– CC2540DK-MINI Kit Overview

• Hands-on Labs (3 hours)

TI confidential information - Strictly Private

Goals for this Training

• Gain a basic understanding of what Bluetooth low energy is, and how
BLE communications work at the link-layer

• Understand Bluetooth low energy access control and data
communication at the top-layers of the protocol stack

• Learn about the current state of BLE from an industry and technology
perspective

• Become familiar with the architecture of CC2540 BLE software,
including the OSAL, HAL, BLE stack, profiles, application, and how all
of the pieces work together

• Be able to get started with the CC2540DK-MINI kit and use BTool to
create a BLE connection

• Be able to open up, build, and debug projects on the CC2540 using
IAR Embedded Workbench and the CC Debugger

• Be able to modify the existing GAP role profiles

• Be able to modify existing GATT attribute profiles, or create new ones

• Understand the sample applications

TI confidential information - Strictly Private

What is Bluetooth Low Energy?

• A wireless protocol standard overseen by the Bluetooth
Special Interest Group (BT-SIG), comprised of member
companies including Texas Instruments

• The primary new feature added to the Bluetooth standard
in version 4.0 of the Bluetooth core specification (adopted
in June 2010)

• Targeted towards wireless applications with low-power,
low-latency, and low-throughput requirements

• Primarily centered around the mobile phone and PC
ecosystem, but can be used for other applications as well

• Expected to be found in billions of devices over the next
five years

• Not backwards compatible with classic Bluetooth devices

TI confidential information - Strictly Private

Agenda

• Introduction

• Bluetooth Low Energy Protocol Stack (2.5 hours)
– Stack Architecture / Overview

– Link Layer – Basics of BLE communication

– Generic Access Profile (GAP) – Roles, Device Discovery, Connections, Security

– Attribute Protocol (ATT) – Attribute Table, Reading and Writing Data

– Generic Attribute Profile (GATT) – Profiles, Services, Characteristics

• BLE Industry and Technology Update

• CC2540 BLE Software (2.5 hours)
– CC2540 Hardware Overview

– CC2540 BLE Software Architecture and Structure

– SimpleBLEPeripheral Project – Framework for Custom Applications

– GAP Role Profiles and Bond Manager

– GATT Profiles and Services

– CC2540DK-MINI Kit Overview

• Hands-on Labs (3 hours)

TI confidential information - Strictly Private

Bluetooth Low Energy Protocol Stack

Architecture / Configurations
• Protocol stack consists of two main sections:

– Controller

– Host

• Profiles and Application sit on top of the GAP
and GATT layers of the host

• In a “single-device solution” (or “single-chip
solution”), the host, controller, profiles, and
application are all implemented together on the
same chip

• In a “dual-device solution”, the BLE controller is
implemented on one device, while the host,
application, and profiles are implemented
separately

• In a “network processor”, the host and
controller are implemented together, but the
application and profiles sit on another device
(such as a PC or external microcontroller)

• CC2540 can support any of these
configurations

TI confidential information - Strictly Private

ce-linshaokai
文本框
Host

ce-linshaokai
文本框
Controller

Bluetooth Low Energy Protocol Stack:

Physical Layer

• RF Specifications
– Operates in 2.4 GHz ISM band

– GFSK modulation

– 40 channels with 2 MHz spacing

• 3 fixed advertisting channels for
broadcasting, which avoid 802.11
interferance

• 37 adaptively frequency hopped
dynamic data channels

• Physical layer can be combined
with standard Bluetooth RF in a
dual-mode device

• 2 MHz spacing allows for better
adjacent channel rejection

TI confidential information - Strictly Private

ce-linshaokai
文本框
3个固定通道用作广播

ce-linshaokai
文本框
37个动态数据通道

ce-linshaokai
文本框
物理层可以与经典蓝牙联合——兼容？

ce-linshaokai
文本框
不同通道的频率间隔为2MHz

BLE Link Layer:

Channels
3 Advertising Channels and 37 Data Channels

BLE Link Layer:

States and Network Topology

• There are six possible Link Layer states of
a BLE device:

– Standby - device is not transmitting or
receiving any data, and is not connected to
any other device

– Advertiser - periodically broadcasting
advertisements

– Scanner - actively looking for advertisers

– Initiator - actively trying to initiate a
connection with another device

– Master - connected to another device as a
master

– Slave - connected to another device as a
slave

• BLE is a star topology network:
– Master device “manages” the connection,

and can be connected to multiple slaves

– Slave device can only be connected to one
master

TI confidential information - Strictly Private

ce-linshaokai
文本框
星型拓扑网络结构一主最多可连接3个从机从机只能拥有一个主机

BLE Link Layer:

States Flow Chart

TI confidential information - Strictly Private

Advertiser

Slave

Scanner

Initiator

Master

Standby Standby

ce-linshaokai
矩形

BLE Link Layer:

Advertisement Events

TI confidential information - Strictly Private

• A device in the advertising state transmits advertising packets

– Advertising packets can contain a data payload

– Advertising packets can be directed towards a specific scanner device, or

undirected

– Advertisements can be connectable or non-connectable (and therefore

just used for broadcast of data)

• During one “advertising event”, an advertisement packet is transmitted on

each of the three advertising channels (37, 38, and 39)

Advertising

packet

Advertising

packet

Advertising

packet

Event

started

Event

closed

Adv_idx = 37 Adv_idx = 38 Adv_idx = 39

ce-linshaokai
文本框
广播包可以包含广播数据

ce-linshaokai
文本框
广播包可以无指定或对指定的设备发送

ce-linshaokai
文本框
广播中可以声明该器件是可以连接还是不可连接的

ce-linshaokai
文本框
在一次广播事件中，广播包三个广播频道中同时发送

BLE Link Layer:

Advertisement Intervals

TI confidential information - Strictly Private

• The advertising device has an “advertising interval”, which is the

minimum amount of time between two advertising events

• Advertising Interval can be any amount of time between 20ms and

10.24s

• The Link Layer generates a pseudo-random amount of time between

0ms and 10ms (“advertising delay”) during each advertising event.

This delay is added to the advertising interval before the next

advertising event, in order to prevent “beating” from multiple devices

ce-linshaokai
矩形

ce-linshaokai
文本框
广播器件有一个叫做"advertising interval"的参数，这个参数决定两次广播事件的最大时间间隔

ce-linshaokai
文本框
广播时间间隔可以是20ms~10.24s

ce-linshaokai
文本框
在每次广播事件中，链路层会产生一个0~10ms的随机延迟，这个延迟时间被加到广播间隔中去，避免多器件的碰撞

• Advertising packets can contain a data payload,
and therefore broadcast data without a connection

• Four types of advertisements:
– Connectable undirected- any scanner device can initiate a

connection with this advertiser

– Connectable directed- only one specific device can initiate a
connection with this advertiser

– Non-connectable undirected- no devices can initiate a
connection with this advertiser; primarily used for general
broadcast of data

– Discoverable undirected- any scanner device can request
more information from the advertising device, but no devices
can initiate a connection with it

BLE Link Layer:

Advertisement Types

TI confidential information - Strictly Private

ce-linshaokai
文本框
未指定、可连接

ce-linshaokai
文本框
指定、可连接

ce-linshaokai
文本框
未指定、不可连接

ce-linshaokai
文本框
未指定、不可见

• Passive Scanning

– Scanner listens on advertising channels for advertising packets

– When an advertisement packet is received, it passes the
information up to the host

• Active Scanning

– Scanner listens on advertising channels for advertising packets

– When an advertisement packet is received, it responds with a
“scan request” packet

– Advertiser then responds back with a “scan response” packet (this
packet can contain additional data from advertiser)

BLE Link Layer:

Scanning

TI confidential information - Strictly Private

ce-linshaokai
文本框
被动扫描：—扫描者监听广播频道的广播包—当接收到一个广播包后，将其上传到host层

ce-linshaokai
文本框
主动扫描—扫描者监听广播频道的广播包—当收到广播包后，回应一个"scan request"包—广播设备则响应一个"scan reponse"包

Active Scanning Packet Flow

ce-linshaokai
文本框
1

ce-linshaokai
文本框
2

ce-linshaokai
文本框
3

ce-linshaokai
文本框
1.器件被发现。Scanner会收到GAP_DEVICE_INFO_EVENT事件2.发出扫描请求3.收到扫描Rsp

Demonstration: Advertising and Scanning

• After a scanner device has scanned a connectable
advertisement message, it can become an “initiator”
by sending a “connection request” packet to the
advertiser

• Connection request contains a set of link layer
parameters for the slave device, which dictate the
channels and timing requirements for the connection

• If the advertiser accepts the connection, both devices
enter a connected state, with the initiator becoming
the “master” and the advertiser becoming the “slave”

BLE Link Layer:

Connection Initiation

TI confidential information - Strictly Private

ce-linshaokai
文本框
在扫描设备 扫描到一个可连接的广播消息后，扫描设备可以通过发送"connection request"数据包给广播设备，而成为(连接的)发起者

ce-linshaokai
文本框
Connection Request包含从机设备一系列的链路层参数，这些参数声明连接时的通道及时序要求。

ce-linshaokai
文本框
如果广播设备接受了连接，那么这两个器件就进入了连接状态。而发起者就成为了主机，广播设备则成为了从机

Connection Request Packet Flow

BLE Link Layer:

Connection Parameters

• Channel Map- indicates which data channels are used
during the connection

• Hop Increment- random value between 5 and 16 for
channel selection algorithm

• Connection Interval- multiple of 1.25ms in range of 7.5ms
and 4.0s

• Supervision Timeout- multiple of 10ms in the range of
100ms and 32.0s. Must be larger than:

(1 + slaveLatency) * (ConnInterval)

• Slave Latency- any value between 0 and 499, though it
cannot exceed:

((supervisionTimeout / connInterval) – 1)

TI confidential information - Strictly Private

ce-linshaokai
矩形

ce-linshaokai
文本框
数据通道

ce-linshaokai
文本框
连接间隔

ce-linshaokai
文本框
监督超时

ce-linshaokai
文本框
外设空闲时可跳过连接事件的次数

BLE Link Layer:

Connection Events

• All communications between two connected devices occur in “connection
events”

• Connection events occurs periodically, with the connection interval parameter
specifying the period

• Each event occurs on one data channel (channels 0-36), with the hop
increment parameter determining the next channel for the next event

• During each connection event, the master transmits first, and the slave
responds 150us later

• Master and slave can continue transmitting back and forth as many times as
they want during a single connection event

• Connection events occur even when one (or both) sides have no data to send
(the exception to this is when slave latency is enabled; more information on
next slide). This allows both devices to acknowledge that the other is still there
and keeps the connection active.

TI confidential information - Strictly Private

Connection event Connection event

time

Connection interval Connection interval

Connection event

ce-linshaokai
矩形

ce-linshaokai
文本框
两个已连接的设备的所有通信发生在连接事件中

ce-linshaokai
文本框
连接事件周期性地发生，这个周期由连接间隔参数指定

ce-linshaokai
文本框
每个事件都发生在数据频道中，并且伴随着下一次事件使用的频道的跳频参数

ce-linshaokai
文本框
在每个连接事件中，主机先发起通信，而从机则在150us的延迟后响应

ce-linshaokai
文本框
主机和从机可以在一次连接事件中反复地进行多次数据传输

ce-linshaokai
文本框
即便没有数据要传输，连接事件依然要执行，这两个器件可以确认另一方还处于连接状态

Connection Interval

TI confidential information - Strictly Private

Demonstration: Connection

BLE Link Layer:

Slave Latency

• Slave latency allows for a slave device to skip connection events if it
does not have any data to send

• The slave latency connection parameter specifies the maximum
number of connection events that the slave can skip

• If slave doesn‟t respond to master‟s packet during a connection event,
master will resend the packet in subsequent connection events until
the slave responds

• The typical amount of time between two connection events (assuming
that the slave skips the maximum number events) is often referred to
as the “effective connection interval”

• Example: if connection interval is 100ms and slave latency is set to 4,
then the effective connection interval would be 500ms, since slave
typically skips four connection events at 100ms intervals

• The slave latency can be any value between 0 and 499, though the
effective connection interval must be less than 32.0s

TI confidential information - Strictly Private

ce-linshaokai
矩形

ce-linshaokai
文本框
允许从机设备在没有数据要发送时，可跳过一定次数的连接事件

ce-linshaokai
文本框
Slave latency 这个参数决定了从机可跳过连接事件的最大次数

ce-linshaokai
文本框
如果在连接事件中，从机没有回应主机的数据包，则主机会一直重发这个数据包直到从机响应(或超时)

ce-linshaokai
文本框
从机跳过连接事件的次数为0~499可变，但实际上有效连接间隔必须小于32s

ce-linshaokai
文本框
两次连接事件的时间间隔又称为"有效的连接间隔"

BLE Link Layer:

Slave Latency

24

M S M S M S

No slave latency – slave responds with empty packets every connation interval.

M S

Slave latency on. Slave can skip n connection events. Only wake up if slave has data to send.

Event

Data to

Send

Event

Data to

Send

M S M S

M MM S M

Slave Latency = OFF

Slave Latency = ON

Demonstration: Slave Latency

BLE Link Layer:

Connection Parameters Tradeoffs

• Short connection interval:

– Higher power consumption for both devices

– Higher throughput in both directions

– Shorter wait for data to be sent in either direction

• Long connection interval:

– Lower power consumption for both devices

– Lower throughput in both directions

– Longer wait for data to be sent in either direction

• Low / Zero slave latency:

– Higher power consumption for peripheral

– Peripheral receives data sent from central device sooner

• High slave latency:

– Lower power consumption for peripheral during periods when it has no data to send

to central device

– Peripheral may not immediately receive data being sent from central device

TI confidential information - Strictly Private

ce-linshaokai
文本框
短的连接间隔：—造成彼此更高的器件功耗—更高的吞吐量—数据发送短延迟长的连接间隔：—节约彼此的器件功耗—较低的吞吐量—发送数据延迟长

ce-linshaokai
文本框
低/零外设跳连：—更多的外设功耗—外设接收数据实时性好高外设跳连：—节约外设器件的功耗—外设接收数据的实时性差

BLE Link Layer:

Connection Update Request

• If the slave does not like the connection parameters
(interval, slave latency, or supervision timeout), it can send
a connection update request to the master

• Connection update request allows slave device to request
a desired connection interval range (minimum and
maximum), as well as desired slave latency and
supervision timeout

• Slave device can send a connection update request at any
time, allowing for slave applications to dynamically adjust
the connection parameters based on application

TI confidential information - Strictly Private

ce-linshaokai
矩形

ce-linshaokai
文本框
如果从机不想使用当前的连接参数，可以向主机发送连接更新请求

ce-linshaokai
文本框
连接更新请求允许从机请求合适的连接间隔范围、合适的跳连次数及监督超时

ce-linshaokai
文本框
从机设备可以在任何时候发送连接更新请求，这使得从机设备的应用程序可以动态地调整连接参数

BLE Link Layer:

Connection Termination

• A connection can be voluntarily terminated by either the
master or the slave for any reason
– One side initiates termination, and the other side must respond

accordingly before both devices exit the connected state

• Connection can also be terminated as a result of a
supervision timeout
– The supervision timeout parameter specifies the maximum amount

of time that either the master or slave can go before receiving a
link-layer packet

– Supervision timeout value must be greater than the effective
connection interval and less than 32.0 seconds

– Both slave and master device maintain their own “Supervision
timer”, which resets to zero every time a packet is received

– If supervision timer ever reaches the supervision timeout, the
device considers the connection lost, and exits the connection
state (returning to the advertising, scanning, or standby state)

TI confidential information - Strictly Private

ce-linshaokai
文本框
不论是主机还是从机，都可以无条件地终止当前的连接

ce-linshaokai
文本框
一方请求终止，而另一方则必须在断开连接状态之前响应

ce-linshaokai
文本框
连接亦可以由于监督超时而终止

ce-linshaokai
文本框
监督超时参数指定两个器件接收链路层数据包的最大时间间隔

ce-linshaokai
文本框
监督超时必须大于有效的连接间隔，且小于32秒

ce-linshaokai
文本框
主机和从机保存各自的监督计时器，每次收到数据包，则清零监督计时，一旦监督计时器的数值达到监督超时的数值，就认为连接已经丢失并退出连接状态（回到广播、扫描或者待机状态）

BLE Link Layer:

Direct Test Mode

• Allows a tester to directly control the device under

test (DUT) in either Rx or Tx mode on any

channel with any amount of data

• Used by Bluetooth low energy testers such as the

Anritsu MT8852B for RF performance testing

• TI working directly with Anritsu to provide a simple

means for test during manufacturing

TI confidential information - Strictly Private

Bluetooth Low Energy Protocol Stack:

Host/Controller Interface (HCI) Overview
• Reused from standard Bluetooth specification,

with new additional commands for low energy-
specific functions

• Thin layer; doesn‟t perform any processing

• In a dual-chip solution (with separate host and
controller) allows for host to communicate with
controller over a standard interface (UART,
USB, SDIO, etc.)

• Used internally by the CC2540 BLE protocol
stack for communication between higher and
lower layers

• Also allows for custom “vendor-specific
commands”. In the CC2540, vendor-specific
commands can be used by an external source
to directly interface with the entire stack or
application. This is called a “Network
Processor”

TI confidential information - Strictly Private

Bluetooth Low Energy Protocol Stack:

Host Overview

• The host uses the HCI API

to communicate with the

lower layers

• The different layers of the

host stack manage control

messages, event

messages, and

transmission of data

TI confidential information - Strictly Private

Bluetooth Low Energy Protocol Stack:

Host Message and Data Flow Chart

TI confidential information - Strictly Private

L2CAP

HCI API

Events

ATTGAP

Application/

Profile

Outgoing

Data

Incoming

Data

Commands

Fixed

Channel

Msgs
Fixed Channel

Responses
State Change

Control

Events

Events

Characteristic Setup

Attrib Setup

Events

SMP

Control

Events

Fixed

Channel

Msgs

Fixed Chan

Responses

CommandsEvents

GATT

Attrib

Setup

Events

Bluetooth Low Energy Protocol Stack:

Logical Link Control and Adaptation Protocol (L2CAP)

• Permits upper level protocols

and applications to transmit

and receive upper layer data

packets up to 23 bytes in length

• Provides channel management,

allowing for logical channels

between two endpoints,

supported by the link layer

• Connection Parameter Updates

TI confidential information - Strictly Private

ce-linshaokai
矩形

ce-linshaokai
文本框
允许协议+应用程序 传输/接收最大23个字节的数据包

Bluetooth Low Energy Protocol Stack:

Security Manager Protocol (SMP)

• Performs authentication and key
management

• Uses AES-128 as the encryption
algorithm for security procedures

• Defines protocol to setup secure link

• Works with GAP to manage
relationships between devices:
– Pairing – encryption between two

devices once a connection has been
established between them

– Authentication – verification that a
peer device can be trusted, providing
protection against “Man-in-the-Middle”
attacks

– Bonding – long-term relationship
between devices; security and identity
information is saved for re-use next
time the devices are connected

TI confidential information - Strictly Private

ce-linshaokai
文本框
配对——设备间加密？授权——设备信任绑定——保存安全及身份信息，用于长期的relationship

Bluetooth Low Energy Protocol Stack:

Generic Access Profile (GAP) Overview

• Defines generic procedures for

connection-related services:

– Device Discovery

– Link Establishment

– Link Management

– Link Termination

– Initiation of security features

• Many GAP functions

correspond directly to the

functions of the Link Layer in

the controller

TI confidential information - Strictly Private

ce-linshaokai
矩形

BLE Generic Access Profile (GAP):

Profile Roles

• The GAP layer works in one of four profile roles:
– Broadcaster – an advertiser that is non-connectable

– Observer – scans for advertisements, but cannot initiate connections.

– Peripheral – an advertiser that is connectable and can operate as a slave in a single
link layer connection.

– Central – scans for advertisements and initiates connections; operates as a master
in a single or multiple link layer connections.

Temperature Sensor (Broadcaster) Temperature Display (Observer)

Watch (Peripheral) Mobile Phone (Central)

TI confidential information - Strictly Private

BLE Generic Access Profile (GAP):

Profile Multi-Roles

• The BLE specification allows for a few different possible

multiple-role configurations:

– Peripheral and Broadcaster – device operates as a slave in a single

link layer connection, but meanwhile also can send out non-

connectable advertisements (supported in Beta stack)

– Peripheral and Observer – device operates as a slave in a single

link layer connection, but meanwhile also can scan for

advertisements without initiating a connection (not supported in

Beta stack)

– Central and Broadcaster – device scans for advertisements and

initiates connections as a master, but also can broadcast non-

connectable advertisements (not supported in Beta stack)

TI confidential information - Strictly Private

BLE Generic Access Profile (GAP):

Discoverable Modes

• GAP supports three different discoverable modes:
– Non-discoverable Mode – No advertisements

– Limited Discoverable Mode – Device advertises for a limited
amount of time before returning to the standby state

– General Discoverable Mode – Devices advertises continuously

• GAP uses the HCI to communicate with the controller to
turn advertising on and off in the link layer

• Peripheral role devices may send out either connectable or
non-connectable advertisements while in a discoverable
mode

• Broadcaster role device may only send out non-
connectable advertisements while in a discoverable mode

TI confidential information - Strictly Private

ce-linshaokai
文本框
无广播

ce-linshaokai
文本框
限时的广播

ce-linshaokai
文本框
不断的广播

ce-linshaokai
文本框
GAP通过HCI与链路层广播开关控件通信

ce-linshaokai
文本框
Peripheral器件可以发送可连接/不可连接的广播

ce-linshaokai
文本框
Broadcaster器件只发送不可连接的广播

BLE Generic Access Profile (GAP):

Advertisement and Scan Response Data

• GAP manages the data that is sent out in advertisement
and scan response packets

• The BLE spec defines several types of advertisement data
(“AD” types):
– Device Services (e.g. “I am a remote control”)

– Service Solicitation (e.g. “I want a remote control to talk to me”)

– Device Name

– “Flags” - describes the discoverable mode and whether device
supports standard Bluetooth or just Low Energy

– Tx Power Level

– Slave preferred connection interval range

– Security support

– Manufacturer-specific data

TI confidential information - Strictly Private

ce-linshaokai
文本框
GAP管理广播数据以及扫描的响应包

BLE Generic Access Profile (GAP):

Pairing

• Pairing can be initiated by either the central or peripheral
device

• During pairing, the two devices generate and exchange
short-term keys (STK) which can be used to decrypt data
packets

• In addition, either device can request to enable “bonding”
to create a long-term relationship between the two devices
– A long-term key (LTK) is generated, exchanged, and stored

allowing device to re-encrypt the link quickly upon re-connection,
without going through the complete pairing process once again

– Profile / Service configuration data is remembered, so that the user
does not need to re-configure the device every time they re-
connect

• During the pairing process, each device states whether it
wants authentication to the other device

TI confidential information - Strictly Private

ce-linshaokai
文本框
配对可以由中央设备或外设发起

ce-linshaokai
文本框
配对过程中，两个设备产生并交换一个短期的密匙，用于数据包的解密

ce-linshaokai
文本框
器件可以通过请求绑定来产生一个长期使用的密匙，这样在下次连接时就可以跳过配对过程

BLE Generic Access Profile (GAP):

Pairing (continued)
• Each device also states it‟s input/output capabilities from among these options:

– DisplayOnly – no way user can input anything into device, but it can output data

– DisplayYesNo – user can input “yes” or “no” but nothing else; can also display data

– KeyboardOnly – user can input a password or PIN, but no display

– NoInputNoOutput – device has no means for user input, and has no display

– KeyboardDisplay – device has a means for display as well as for input

• Based on the combination of the capabilities of the two devices, one of two
methods of pairing will be used:

– Passkey entry – one device will display a randomly generator passkey, while the
other will require the user to input the passkey. This allows for an authenticated link
(MITM protection)

– “Just Works” – the pairing process completes without requiring a passkey to be
entered. The link will not be authenticated, but is encrypted

• If either one of the two devices does not require authentication, then Just
Works will be used by default, allowing the user to skip passkey entry

TI confidential information - Strictly Private

• An attribute is a discrete value that
has associated with it the following
three properties:

1. A handle (address)

2. A type

3. A set of permissions

• ATT defines the over-the-air protocol
for reading, writing, and discovering
attributes

• Allows for different permissions to be
assigned to attributes, including
whether they are readable or
writeable, and whether additional
security is required for access

TI confidential information - Strictly Private

Bluetooth Low Energy Protocol Stack:

Attribute Protocol (ATT) Overview

Attribute Protocol (ATT):

Client / Server Architecture

ServerClient

Data
Requests

Responses
Data

Data

• Servers have data, Clients want to use this data

• Servers expose data using attributes

• The Client / Server role of a device is independent of the GAP central /

peripheral role or the link layer master / slave role

• It is possible for a device to act as both a client and server simultaneously,

though the attributes on one device have no effect on the attributes on the

other device

BLE Attribute Protocol (ATT):

Attribute Table Example

• Handle – The address of the attribute in the table

• Type – Tells what the data represents; can be a UUID (universal

unique identifier) assigned by the Bluetooth SIG, or a custom type

• Permissions – Enforces if and how the attribute client can access the

attribute‟s value

TI confidential information - Strictly Private

Handle Type Permissions Value

39 0x2800 (GATT Service UUID) Read E0:FF (2 bytes)

40 0x2803 (GATT Characteristic UUID) Read 10:29:00:E1:FF (5 bytes)

41 0xFFE1 (Simple Keys state) (none) 00 (1 byte)

42
0x2902 (GATT Client Characteristic

Configuration UUID)

Read and

Write
00:00 (2 bytes)

ce-linshaokai
文本框
句柄——属性在列表中的位置类型——权限——读写等

• Designed for use by the application or
a profile, so that an attribute client can
communicate with attribute server

• GATT defines:

– Procedures for using the attribute
protocol (ATT) to discover, read, write,
and obtain indications of these
attributes

– The grouping and relationship of
characteristics within a service or
profile

– Procedures for configuring the
broadcast of attributes

TI confidential information - Strictly Private

Bluetooth Low Energy Protocol Stack:

Generic Attribute Profile (GATT) Overview

• GATT specifies the structure in which profile data is

exchanged

• Same client server architecture as Attribute Protocol,

except that data is encapsulated in “Services” and data

is exposed in “Characteristic”

Generic Attribute Profile (GATT):

Client / Server Architecture

Server

Service

Client

Char.
Requests

Responses

Service

Char.

Service

Char.

• A profile is composed of one or more
“services” necessary to fulfill a use-case

• A service may contain certain attributes
called “characteristic values”, which are
values used by a service (example: in a
temperature sensor, the attribute
containing the temperature itself is the
characteristic value)

• A characteristic value must have a
mandatory “characteristic declaration”
attribute immediately before the value,
containing the properties of the
characteristic

• Characteristics may also contain optional
“descriptor” attributes, with fields such as
a configuration or a description

TI confidential information - Strictly Private

BLE Generic Attribute Profile (GATT):

Profile Hierarchy

ce-linshaokai
文本框
PROFILE由1个或多个services组成，一个service可以包含多个属性（特征值）。特征值必须强制拥有Declaration属性，且位于特征值之前。其他的类似configuration或的description都是可选的属性

BLE Generic Attribute Profile (GATT):

Service Example

• Start of service at handle 39 is indicated by type 0x2800, which is defined by the Bluetooth SIG

Assigned Numbers Document as the UUID for a GATT Service

• The value of the attribute at handle 39 is 0xFFE0, which is a used for the Simple Keys custom profile

(this is just an example; the value of 0xFFE0 might already be used by the Bluetooth SIG)

• The service includes all subsequent attributes up until right before the next service in the table (or until

the end of the table if there are no more services). In this example, the last attribute in the Simple

Keys service is at handle 42, since a new service starts at handle 43

TI confidential information - Strictly Private

Handle Type Permissions Value

39 0x2800 (GATT Primary Service UUID) Read
E0:FF (2 bytes)

(0xFFE0 = Simple Keys Service custom UUID)

40
0x2803 (GATT Characteristic

Declaration UUID)
Read

10:29:00:E1:FF (5 bytes)

(0xFFE1 = Simple Keys Value custom UUID)

(0x0029 = handle 41)

(0x10 = characteristic properties: notify only)

41 0xFFE1 (Simple Keys state) (none)
00 (1 byte)

(value indicates state of keys)

42
0x2902 (GATT Client Characteristic

Configuration UUID)

Read and

Write

00:00 (2 bytes)

(value indicates whether notifications or

indications are enabled)

43 0x2800 (GATT Primary Service UUID) Read
A1:DD (2 bytes)

(0xDDA1 = Other Service custom UUID)

ce-linshaokai
矩形

BLE Generic Attribute Profile (GATT):

Characteristic Declaration
• Handle 40 is a characterisitic declaration, as indicated by type 0x2803 (defined by the

Bluetooth SIG Assigned Numbers Document as the UUID for a GATT Characteristic

Declaration)

• The characteristic declaration attribute value is 5 bytes long:

– First two bytes (0xFFE1) – indicates the type of the characteristic value attribute

– Next two bytes (0x0029) – indicates the handle of the characteristic value attribute

– Next byte (0x10) – indicates the permissions of the characterisitic value attribute

TI confidential information - Strictly Private

Handle Type Permissions Value

39 0x2800 (GATT Primary Service UUID) Read
E0:FF (2 bytes)

(0xFFE0 = Simple Keys Service custom UUID)

40
0x2803 (GATT Characteristic

Declaration UUID)
Read

10:29:00:E1:FF (5 bytes)

(0xFFE1 = Simple Keys Value custom UUID)

(0x0029 = handle 41)

(0x10 = characteristic properties: notify only)

41 0xFFE1 (Simple Keys state) (none)
00 (1 byte)

(value indicates state of keys)

42
0x2902 (GATT Client Characteristic

Configuration UUID)

Read and

Write

00:00 (2 bytes)

(value indicates whether notifications or

indications are enabled)

43 0x2800 (GATT Primary Service UUID) Read
A1:DD (2 bytes)

(0xDDA1 = Other Service custom UUID)

BLE Generic Attribute Profile (GATT):

Characteristic Configuration
• In addition to the characteristic declaration and the characteristic value itself, a characteristic optionally

may have descriptors, which contain more information or configuration data related to the

characteristic value

• In this example, handle 42 contains a GATT Client Characteristic Configuration, as indicated by type

0x2902 (defined by the Bluetooth SIG Assigned Numbers Document as the UUID for a GATT Client

Characteristic Configuration)

• The configuration value has write permissions, meaning that the GATT Client can change the value

• By changing the value from 0x0000 (notifications off) to 0x0001 (notifications on), the GATT server will

begin sending notifications of the characteristic value to the GATT client, as determined by the profile

TI confidential information - Strictly Private

Handle Type Permissions Value

39 0x2800 (GATT Primary Service UUID) Read
E0:FF (2 bytes)

(0xFFE0 = Simple Keys Service custom UUID)

40
0x2803 (GATT Characteristic

Declaration UUID)
Read

10:29:00:E1:FF (5 bytes)

(0xFFE1 = Simple Keys Value custom UUID)

(0x0029 = handle 41)

(0x10 = characteristic properties: notify only)

41 0xFFE1 (Simple Keys state) (none)
00 (1 byte)

(value indicates state of keys)

42
0x2902 (GATT Client Characteristic

Configuration UUID)

Read and

Write

00:00 (2 bytes)

(value indicates whether notifications or

indications are enabled)

43 0x2800 (GATT Primary Service UUID) Read
A1:DD (2 bytes)

(0xDDA1 = Other Service custom UUID)

BLE Generic Attribute Profile (GATT):

Characteristics Additional Information
• Other optional characteristic descriptors include fields for a characteristic value

description, configuration for broadcast of the characteristic value in advertisements, and

information on the units and format of the characteristic value

• The characteristic includes the declaration and all subsequent attributes up until right

before the next characteristic declaration or service in the table (or until the end of the

table if there are no more services).

• In this example, the characteristic consists of handles 40 through 42, since the

declaration is at handle 40 and a new service starts at handle 43

TI confidential information - Strictly Private

Handle Type Permissions Value

39 0x2800 (GATT Primary Service UUID) Read
E0:FF (2 bytes)

(0xFFE0 = Simple Keys Service custom UUID)

40
0x2803 (GATT Characteristic

Declaration UUID)
Read

10:29:00:E1:FF (5 bytes)

(0xFFE1 = Simple Keys Value custom UUID)

(0x0029 = handle 41)

(0x10 = characteristic properties: notify only)

41 0xFFE1 (Simple Keys state) (none)
00 (1 byte)

(value indicates state of keys)

42
0x2902 (GATT Client Characteristic

Configuration UUID)

Read and

Write

00:00 (2 bytes)

(value indicates whether notifications or

indications are enabled)

43 0x2800 (GATT Primary Service UUID) Read
A1:DD (2 bytes)

(0xDDA1 = Other Service custom UUID)

BLE Generic Attribute Profile (GATT):

Client Commands

• When two BLE devices are in the connected state, the GATT client
device can perform several different sub-procedures to communicate
with the GATT server device:
– Discover Characteristic by UUID – search the GATT server for all attributes

with type that matches the specified UUID

– Read Characteristic Value – read the value of the characteristic at the
specified handle

– Write Characteristic Value – write a new value to the characteristic at the
specified handle

• A GATT server device, when configured to do so, can send out
messages to the GATT client device without being prompted:
– Notification – The value a characteristic is sent from the server to the client

without receiving a read request, and does not need to be acknowledged

– Indication – The value a characteristic is sent from the server to the client
without receiving a read request, but must be acknowledged before any
further data can be sent

TI confidential information - Strictly Private

Demonstration: ATT / GATT

Agenda

• Introduction

• Bluetooth Low Energy Protocol Stack (2.5 hours)
– Stack Architecture / Overview

– Link Layer – Basics of BLE communication

– Generic Access Profile (GAP) – Roles, Device Discovery, Connections, Security

– Attribute Protocol (ATT) – Attribute Table, Reading and Writing Data

– Generic Attribute Profile (GATT) – Profiles, Services, Characteristics

• BLE Industry and Technology Update

• CC2540 BLE Software (2.5 hours)
– CC2540 Hardware Overview

– CC2540 BLE Software Architecture and Structure

– SimpleBLEPeripheral Project – Framework for Custom Applications

– GAP Role Profiles and Bond Manager

– GATT Profiles and Services

– CC2540DK-MINI Kit Overview

• Hands-on Labs (3 hours)

TI confidential information - Strictly Private

BLE Industry and Technology Update

TI confidential information - Strictly Private

Agenda

• Introduction

• Bluetooth Low Energy Protocol Stack (2.5 hours)
– Stack Architecture / Overview

– Link Layer – Basics of BLE communication

– Generic Access Profile (GAP) – Roles, Device Discovery, Connections, Security

– Attribute Protocol (ATT) – Attribute Table, Reading and Writing Data

– Generic Attribute Profile (GATT) – Profiles, Services, Characteristics

• BLE Industry and Technology Update

• CC2540 BLE Software (2.5 hours)
– CC2540 Hardware Overview

– CC2540 BLE Software Architecture and Structure

– SimpleBLEPeripheral Project – Framework for Custom Applications

– GAP Role Profiles and Bond Manager

– GATT Profiles and Services

– CC2540DK-MINI Kit Overview

• Hands-on Labs (3 hours)

TI confidential information - Strictly Private

TI CC2540 Solution

57

• System on chip

• RF Transceiver + 8051MCU

• Master or Slave

• Programmable flash

• 8KB RAM

• Full SW stack – royalty free

• First to RTM & meet full
qualification

CC2540 System-on-a-chip (SoC)
• 8051 MCU - 128/256 kB in-system

programmable Flash 8 kB SRAM

• Programmable Radio Supports
– Bluetooth Low Energy (1Mbps GFSK)

• Digital peripherals
– 21 GPIOs
– 2 USART (UART or SPI)
– Full Speed USB 2.0
– 2x 16 bit, 2x 8-bit timers
– Dedicated Link Layer timer for Bluetooth LE protocol timing
– AES-128 encryption/decryption in HW

• Advanced analog peripherals
– 8-channel 8-12 bit delta-sigma ADC
– Ultra-low-power analog comparator
– Integrated high-performance op-amp

• All in a 40-pin 6x6x0.85mm QFN package

• Pin compatible with CC2530/33 and CC2541

TI confidential information - Strictly Private

CC2540 User’s Guide

TI confidential information - Strictly Private

TI CC2540DK-MINI Hardware Kit

60

Debugger

• Works with keyfob and USB dongle

• Supports IAR and TI flash programmer

CC2540 Keyfob

• Powered by CR2032 coin cell battery

• LED, buttons, buzzer, accelerometer

• Usually acts as peripheral, application is on chip.

USB Dongle

• Use Btool.exe to or custom app to send HCI
commands.

• Usually acts as master (cell phone)

TI CC2540DK-MINI Software

61

Stack Libraries

• Royalty free

• Full qualification

• Example Projects

Btool Application

• Drives USB dongle with HCI commands

• Scan for devices, connect, authentication

• Log messages

SmartRF Flash Programmer

• Can flash CC2540

• Change address on device

IAR Compiler and IDE

• Robust 8051 compiler with CC2540 support.

• 30 day free evaluation

TI CC2540DK-MINI Support

62

TI RF Sniffer

• Free

• Works with Mini Kit USB Dongle

Example Applications

• SimplePeripheral – keypress, strings

• KeyFobDemo – Accelerometer, buzzer, beeper, proximity,
battery level.

• Other SIG profile applications under development

Power Calc Applications Note

• Excel sheet to help calculate battery life expectancy

• Powered by CR2032 coin cell

• Peripheral

• Peripheral/Broadcaster

• Reference Design

• DC/DC converter available

TI confidential information - Strictly Private

CC2540DK-MINI Kit – KeyFob Hardware

Application

Profiles

TI Library

Host/Controller

•USB Dongle

• GAP Central Device

• Network processor

TI confidential information - Strictly Private

CC2540DK-MINI Kit – USB Dongle

•USB Dongle

PC Application

Btool.exe

TI Library

Host/Controller

USB Dongle

Virtual Com Port

PC

TI confidential information - Strictly Private

CC2540DK-MINI Kit – Network Example

IAR Embedded Workbench IDE:

Overview

• All software development on the CC2540 is done using

IAR Embedded Workbench for 8051 Integrated

Development Environment (IDE)

• IAR Embedded Workbench for 8051 includes:

– C Compiler

– Assembler

– Library Builder

– Support for Hardware Debugger

• IAR Website: www.iar.com

TI confidential information - Strictly Private

• An intermediate level of knowledge of the C programming
language is required in order to modify or develop
software for the CC2540

• The CC2540 software runs on an embedded 8051
microcontroller (MCU) with limited resources
– Algorithms and application should be coded efficiently

– C standard library should not be used

• Many of the modules in the CC2540 BLE software use the
concepts of encapsulation and information hiding:
– GetParameter and SetParameter functions to access data within

the module

– Callbacks – function pointers that must be registered with the
module

TI confidential information - Strictly Private

CC2540 SDK:

General Notes

• Capital letters at the beginning of a function or variable indicate that it is
public or global; lowercase letters indicate private or local

• Defined variable types:
– uint8 – 8-bit unsigned integer

– uint16 – 16-bit unsigned integer

– uint32 – 32-bit unsigned integer

– int8 – 8-bit signed integer

– int16 – 16-bit signed integer

– Int32 – 32-bit signed integer

• Build is dependent on having a

correct set of preprocessor defined

symbols, which can be found in the

IAR project options menu

TI confidential information - Strictly Private

CC2540 Embedded Software:

Source Code and Project Notes

• After building a project,

IAR generates a “map

file” under the “Output”

group

• The end of the map file

contains a summary of

the code memory and

RAM used by the

project

TI confidential information - Strictly Private

CC2540 Embedded Software:

Map File

CC2540 Embedded Software

Application Overview

• Five major parts of the application software:

– Operating System Abstraction Layer (OSAL)

– Hardware Abstraction Layer (HAL)

– KeyFobDemo Application

– BLE Protocol Stack

– Profiles: GAP Role, GAP Security, and GATT Services

TI confidential information - Strictly Private

BLE Protocol Stack

GATT Service

Profiles

GAP Role/Security

Profiles

SimpleBlePeripheral

OSAL

HAL

Application Startup

TI confidential information - Strictly Private

Application (simpleBLEPeripheral.c)

SimpleBLEPeripheral_Init()

Profiles

HAL

RegisterKeys(TaskID)

GAP Profile (peripheral.c)

-AdvData

-ConnInterval)

-Scan Resp

User Source Code

TI Source Code

TI Object Code

BLE Library (ble_single_chip_slave_pm_on.lib)

GAP Bond (gapPeripheralBondMgr.c)

- passkey

- IO cap

GAP GATT Server (gapgattserver.h)

-DeviceName

-AddService

User Profile (simpleGATTProfile.c)

-char1Value

-char12Value

Application – Turn on Notifications

TI confidential information - Strictly Private

Application (simpleBLEPeripheral.c)

Profiles

BLE Library (ble_single_chip_slave_pm_on.lib)

User Profile (simpleKeys.c)

Store Config Value

PC Application BTool

HostTestReleaseWriteAttrCB()

ReadAttrCB() Get()

Set()

BLE Library
(ble_single_chip_master_pm_off

.lib)

USB DONGLE RFKeyFob RF

Write
AppCB

TX:

ATT_writeReq (handle, value)

Check
Permissions

Application – Keypress Notification
Application (simpleBLEPeripheral.c)

Profiles

BLE Library (ble_single_chip_slave_pm_on.lib)

User Profile (simpleKeys.c)

BTool

HostTestRelease

WriteAttrCB()

ReadAttrCB() Get()

Set()

BLE Library
(ble_single_chip_master_pm_off.lib)

USB DONGLE RFKeyFob RF

ProcessEvent
HAL OSAL Msg

-Set Value

-If (notify) then

-Send gattNotify()

GATT_Notification()

RX:

ATT_handleValueNotification

CC2540 Bluetooth Low Energy Software:

Operating System Abstraction Layer (OSAL)

• The software architecture of the CC2540 is based around the
Operating System Abstraction Layer (OSAL)

• The OSAL is not an actual operating system (OS) in the traditional
sense, but rather a control loop that allows software to setup execution
of events

• Each subsystem of the software runs as an OSAL task, and has a
unique task identifier (ID)

• The lower the task ID, the higher the priority for the task

• The SimpleBLEPeripheral Project has 12 OSAL tasks (task ID in
parenthesis):

TI confidential information - Strictly Private

– Link Layer (0)

– HAL (1)

– HCI (2)

– OSAL Callback Timer (3)

– L2CAP (4)

– GATT (5)

– GAP (6)

– SM (7)

– Peripheral Role Profile (8)

– GAP Bond Manager (9)

– GATT Server (10)

– SimpleBLEPeripheral(11)

Operating System Abstraction Layer (OSAL):

Task Setup

• Each task is required to have two functions:
– Initialization (example: SimpleBLEPeripheral_Init)

– Event Handler (example: SimpleBLEPeripheral_ProcessEvent)

• Every application that uses the OSAL must define a function called
“osalInitTasks” (void parameters and void return)

• This function calls each task‟s intialization function, and sets up it‟s
task ID

• Every application must also create a global variable called “tasksArr”,
which is array consisting of one pointer to each task‟s event handler
function

• The order of the elements in the array must be exactly the same as the
order of the task IDs

• Application must also create a global variable called “tasksEvents”,
which is an array consisting of one uint16 value for each task
– All elements of the tasksEvents array must be initialized to zero

– Each element of the array represents the pending events for that task

TI confidential information - Strictly Private

Operating System Abstraction Layer (OSAL):

Events

• An OSAL “event” is a scheduled process for a task to run

• Any OSAL task can define up to 15 events in addition to the mandatory
SYS_EVENT_MSG event (0x8000), which is used for OSAL messaging

• Events can be set using one of two OSAL API functions:
– osal_set_event – immediately schedules the event to occur

– osal_start_timerEx – schedules the event to occur at a specific time in the future
(set in milliseconds)

• An event set up using osal_start_timerEx can be cancelled by calling OSAL
API function osal_stop_timerEx

• Each element in the tasksEvents array acts as a 16-bit mask for each task,
with any set bit indicating that a specific event is scheduled for that task

• In example below, bit 8 of task 1 is set, indicating that the event with a defined
mask value of 0x0100 should be processed

TI confidential information - Strictly Private

0Task 0

Task 1

Task 2

Task 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MSB LSB

Operating System Abstraction Layer (OSAL):

Main Loop

• The OSAL main loop is run when the function osal_start_system is
called

• The loop checks each element of the tasksEvents array for a non-zero
value (which would indicate that at least one event bit is set)

• The loop always processes a pending event with a lower task ID first

• When a non-zero value is found, OSAL will call the task‟s event
handler function, using the pointer from tasksArr

• After the event is processed, it is up to the task to clear the event bit; if
it doesn‟t get cleared the OSAL will keep calling the event handler
function

• If every single element in the tasksEvents array has a zero value
(meaning that none of the tasks have any events scheduled) the
OSAL puts the processor into power savings mode, in which memory
remains stored and timers continue running

• Processor will wake up when an interrupt occurs or when an OSAL
timer schedules a task event

TI confidential information - Strictly Private

Operating System Abstraction Layer (OSAL):

Message Management

• OSAL provides a system for different subsystems of the software to
communicate with each other by sending or receive messages

• Messages can contain any type of data and can be any size

• Process to send a message:
– Allocate memory using osal_msg_allocate

– Copy data into allocated memory space, including a header indicating the
type

– Call osal_msg_send, indicating destination task for the message

• OSAL signals to receiving task that a message is arriving by setting
the SYS_EVENT_MSG flag for that task

• The receving task‟s event handler function retrieves the data and calls
it‟s local message processing function (example:
simpleBLEPeripheral_ProcessOSALMsg)

• The receiving task must deallocate the memory using the function
osal_msg_deallocate

TI confidential information - Strictly Private

Operating System Abstraction Layer (OSAL):

Memory Management

• OSAL APIs for memory
allocation and deallocation:
– osal_mem_alloc

– osal_mem_free

• Heap size set with
preprocessor defined
symbol INT_HEAP_LEN

• If heap size is set too high,
CC2540 may run out of
memory

• Check map file to verify that
memory has not exceeded
limits (8kB)

TI confidential information - Strictly Private

Operating System Abstraction Layer (OSAL):

Files and Key API’s

• Key Files:
– osal.c – API‟s for OSAL

– osal.h – OSAL API declarations

• Key API‟s:
– osal_init_system – initializes OSAL; must be called in main

– osal_start_system – starts the OSAL main loop

– osal_set_event – sets an OSAL event for a task

– osal_start_timerEx – sets an OSAL event for a task at a scheduled moment in time

– osal_stop_timerEx – cancels an existing OSAL event that was scheduled using
osal_start_timerEx

– osal_msg_allocate – dynamically allocates memory for an OSAL message

– osal_msg_send – sends an OSAL message to a specific task

– osal_msg_deallocate – deallocates an OSAL message (call this from receiving task)

– osal_mem_alloc – dynamically allocates memory

– osal_mem_free – free previously allocated memory

• The following OSAL function must be defined by the application:
– OsalInitTasks – set up task ID‟s for each task used by OSAL

• Additional information on the OSAL can be found in the OSAL API guide:

C:\Texas Instruments\BLE-CC2540\Documents\osal\OSAL API.pdf

TI confidential information - Strictly Private

CC2540 Bluetooth Low Energy Software:

Hardware Abstraction Layer (HAL) Overview

• The Hardware Abstraction Layer (HAL) provides an application programming
interface to hardware-related functions

– ADC

– UART

– SPI

– Flash

– Timers

– Keys

– LCD Driver

• Additional details on HAL functions can be found in the HAL API Guide:

C:\Texas Instruments\BLE-CC2540\Documents\hal\HAL Driver API.pdf

TI confidential information - Strictly Private

CC2540 Bluetooth Low Energy Software:

KeyFobDemo Application Overview

• The KeyFobDemo application provides a

demonstration of a simple wireless Bluetooth Low

Energy connection

– Advertise and connect with master device

– Key press notifications

– Proximity alarm

– Battery percentage measurement

– Accelerometer data notification

TI confidential information - Strictly Private

KeyFobDemo

TI confidential information - Strictly Private

• Source

• Instructions

KeyFobDemo Application:

Files

• The following application files are a part of the
KeyFobDemo project:
– KeyFob_Main.c – contains the main function, which performs HAL

and OSAL intialization, and calls osal_start_system to start the
main loop

– OSAL_KeyFobDemo.c – defines the global tasksArr and
tasksEvents arrays and the osalInitTasks function as required by
OSAL

– keyfobdemo.c – main application module, including the application
task initialization and event handler functions

– keyfobdemo.h – header file for application; defines the application
OSAL task events

– buzzer.c – controls the audio buzzer on the keyfob

– cma3000d.c – controls and reads data from the accelerometer

TI confidential information - Strictly Private

KeyFobDemo Application:

Startup
• The application starts with the main function in the file KeyFob_Main.c

• The KeyFobApp_Init function is called during task initialization
– Sets Peripheral Role profile initial parameters

– Sets GATT profile initial parameters

– Initializes each GATT service

– Initializes buzzer

– Registers with HAL to receive OSAL message when key presses occur

– Uses osal_start_timerEx to set a KEYFOB_START_DEVICE_EVT after a 500ms
delay

• After the 500ms delay, application task event process handler function gets
called due to KEYFOB_START_DEVICE_EVT flag getting set

– GAPRole_StartDevice called to turn advertisements on

– Application callbacks registered with proximity and accelerometer profiles

– Timer set for future BATTERY_CHECK_EVT after 5 seconds

– Proximity attribute values set in profile using ProxPeriph_GetParameter

– KEYFOB_START_DEVICE Event flag cleared

TI confidential information - Strictly Private

KeyFobDemo Application:

Key Handling
• Application registers with HAL during intialization by calling function

RegisterForKeys, allowing HAL to know the application task ID

• Key presses are handled by HAL using interrupts

• When the state of one of the keys changes, an OSAL message with
type KEY_CHANGE is sent to the application

• Application calls local function keyfobapp_HandleKeys
– Checks which keys were pressed

– If device is not connected, checks peripheral role profile to see whether
device is advertising or not, and toggles advertisements on or off

– Sets the state of the keys value in the Simple Keys profile using the
function SimpleKeys_SetParameter

• If a proximity alert is active and the keyfob is beeping, pressing the left
key will stop the alert

• If the device is in a connected state and notifications of the key
presses have been enabled, the keyfob will send a GATT notification
to the master device over the air (more information on this later)

TI confidential information - Strictly Private

KeyFobDemo Application:

Proximity Alerts
• The demo application contains a proximity profile, which is based on a

draft specification from the BT SIG

• Allows an alarm to be set based on the proximity of the keyfob to the
master device, or when connection drops due to supervision timeout

• During application initialization, the application registers private
function proximityAttrCB with proximity profile

• Proximity profile calls proximityAttrCB to notify application every time
any of the proximity profile characteristics has been changed

• Proximity profile characteristics:
– Link Loss Alert – when set, triggers a “low” (low-pitched buzzer sound) or

“high” (high-pitched buzzer sound with blinking LED) alert if a supervision
timeout occurs

– Path Loss Alert – the master device sets this if the path loss drops below a
certain level, triggered an immediate high or low alert to warn the user that
the peripheral device is about to go out of range

– Tx Power Level – the power level of the peripheral transmitter; used by the
central device to calculate the path loss

TI confidential information - Strictly Private

KeyFobDemo Application:

Proximity Alerts (continued)
• When proximityAttrCB gets called from profile, the application looks at

the current state of the device and:
– Stores the link loss alert setting, in order to trigger an alarm if the alert is

enabled and the connection drops

– Calls keyfobapp_PerformAlert if the path loss alert was enabled

– Calls keyfobapp_StopAlert if the path loss alert was turned off

• The function keyfobapp_PerformAlert does the following:
– Determines whether the device is in a “link-loss” state or a “path-loss”

state (or neither)

– If necessary, starts the buzzer and/or LED

• The function keyfobapp_StopAlert stops any active alert

• When alert is active, the buzzer stays on for 200ms, and off for 800ms
using the OSAL timer to generate “beeps”

• After 10 beeps, the buzzer will stop

• If left keyfob button is pressed during an alert, the buzzer and LED will
stop

TI confidential information - Strictly Private

KeyFobDemo Application:

Battery Percentage Measurement
• Battery service allows remote device to read the battery percentage

remaining on the keyfob

• Algorithm for measuring battery percentage uses HAL ADC API and is
not optimized and is for demonstration purposes only

• Battery voltage is read by the ADC every 5 seconds, using the OSAL
timer to set the application task event BATTERY_CHECK_EVT

• Every time the event occurs, a new OSAL timer is set to schedule the
following BATTERY_CHECK_EVT in 5 seconds

• The function checkBattery is called, which does the following:
– Sets the ADC reference voltage to the internal 1.25V regulator

– Perform ADC conversion

– Based on ADC reading, perform calculation of battery percentage
(algorithm is explained in source code comments)

– Check whether battery level is below 20%, and if so is in a “critical” state

– Calls Battery_SetParameter to update the battery profile with current state
and level values, allowing a GATT client device to read back the values

TI confidential information - Strictly Private

KeyFobDemo Application:

Accelerometer
• The keyfob contains a 3-axis accelerometer

• During application initialization, the application registers private function
accelEnablerChangeCB with accelerometer profile

• Profile calls the callback to notify application if remote device has written a
TRUE value to the accelerometer enabler characteristic value, then the
application begins to perform accelerometer reads

• If the remote device has written a FALSE value, then reads are stopped

• When enabled, application uses an OSAL timer to schedule the
ACCEL_READ_EVT every 50ms

• Every time the event occurs, local function accelRead gets called:
– Calls accReadAcc function (in file cma3000d.c) to get data from each axis

– Calls Accel_SetParameter three times to set each of the three X, Y, and Z- axis
data values in the accelerometer profile

• If the device is in a connected state and notifications of the accelerometer data
have been enabled, the keyfob will send a GATT notification to the master
device over the air (more information on this later)

TI confidential information - Strictly Private

CC2540 Bluetooth Low Energy Software:

BLE Stack Overview

• The BLE protocol stack is based on the
approved Bluetooth Core specification
version 4.0 (June 30, 2010)

• Protocol stack provided as a single library
file in KeyFobDemo application (three
versions provided: one for each hardware
platform)

• Application usually does not need to
directly call protocol stack API‟s

• Profiles provide a means for application to
send and receive control messages and
data with stack

TI confidential information - Strictly Private

CC2540 Bluetooth Low Energy Software:

Profiles Overview

• Profiles provide a layer of software between the
application and the BLE protocol stack

• Allow developer to perform basic BLE functions without
having in-depth knowledge of the stack

• Directly communicate with the top two layers of the BLE
stack
– GAP Peripheral Role Profile – Handles advertisements, scan

requests, connections, and connection parameters

– GAP Peripheral Bond Manager – Handles responses to pairing
and bonding requests, and the storage and management of
security keys

– GATT Profiles – Maintain GATT attributes in table, processing of
read and write requests, and notifications

TI confidential information - Strictly Private

GAP ROLE PROFILE

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

Purpose

• Allows device to act as a GAP peripheral and

perform the following:

– Turn advertising on and off

– Send connectable advertisements and accept

connection requests

– Request automatic updates of link-layer connection

parameters to a central device:

• Connection interval

• Slave latency

• Supervision timeout

– Notify application of connection state changes

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

Public Functions

• Peripheral Role Profile is an OSAL task, and contains
initialization and event processing functions called by
OSAL:
– GAPRole_Init

– GAPRole_ProcessEvent

• Profile contains several parameters, accessed through:
– GAPRole_SetParameter

– GAPRole_GetParameter

• Initialization from application:
– GAPRole_StartDevice

• Terminate a connection:
– GAPRole_TerminateConnection

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

Initialization
• OSAL initializes Peripheral Role with call to GAPRole_Init

• Application registers two callback functions with Peripheral Role
Profile by passing function pointers as parameter to
GAPRole_StartDevice function:
– peripheralStateNotificationCB – notifies application that the peripheral

device has changed GAP states (for example, devices goes from
advertising to being in a connection)

– rssiAvailableCB – notifies application of the RSSI when it becomes
available (set to NULL in KeyFobDemo application since it does not use
RSSI information)

• When GAPRole_StartDevice is called:
– Profile signals GAP to begin advertising (if enabled)

– Profile registers itself with GAP as the task to receive GAP event
messages (this allows profile to always know the connection status)

• In KeyFobDemo application, GAPRole_StartDevice is not called until
500ms delay (triggered by KEYFOB_START_DEVICE_EVT)

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

Key Parameters
• GAPROLE_ADVERT_DATA – Advertisement data string

• GAPROLE_SCAN_RSP_DATA – Scan response data string

• GAPROLE_ADVERT_ENABLED – a TRUE or FALSE value indicating if
advertising is enabled

• GAPROLE_RSSI_READ_RATE – amount of time (in ms) of RSSI readings

• GAPROLE_PARAM_UPDATE_ENABLE – enabled automatic connection
parameter update requests if master establishes a connection with unwanted
parameters (TRUE or FALSE)

• GAPROLE_MIN_CONN_INTERVAL – the minimum connection interval for the
device (in units of 1.25ms as per link layer specification)

• GAPROLE_MAX_CONN_INTERVAL – the maximum connection interval for
the device (in units of 1.25ms as per link layer specification)

• GAPROLE_SLAVE_LATENCY – the connection slave latency setting

• GAPROLE_TIMEOUT_MULTIPLIER – the connection supervision timeout
setting

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

Advertisement and Scan Response Data

• The GAPROLE_ADVERT_DATA and
GAPROLE_SCAN_RSP_DATA parameters allow
application to set the GAP data sent to a central
or observer device while in the advertising state

• Data must conform to GAP specification for “AD
types”:
– The first byte contains the length of the data

– The second byte contains a value indicating the AD
type accoring to spec (ex. 0x09 = Local Name, 0x01 =
Flags)

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

AD Types Used

• In KeyFobDemo application:
– Advertisement Data String:

– Scan Response Data String:

• By setting “General Discoverable”, device will continuously
advertise as long as advertisements are enabled

• If set to “Limited Discoverable” (0x01), when advertisements
are enabled the device will advertise for a limited time, stop for
10 seconds, and repeat

TI confidential information - Strictly Private

0x6F

„o‟

0x78

„x‟

0x50

„P‟

0x72

„r‟

0x69

„i‟

0x6D

„m‟

0x0A

(length 10)

0x09

(name)

0x69

„i‟

0x74

„t‟

0x79

„y‟

0x02

(General

Discoverable)

0x02

(2)

0x01

(flags)

GAP Peripheral Role Profile:

After Link Establishment
• Once a connection is established, GAP sends an OSAL message of type

GAP_EST_LINK_REQ_EVENT to GAP application (peripheral role profile)

• RSSI read timer starts

• Profile calls the callback function peripheralStateNotificationCB to notify application that
GAP state has changed

• Profile checks the connection interval and slave latency setting for the connection, and
(if enabled) will send an automatic update request if:

– Interval falls outside the range set by GAPROLE_MIN_CONN_INTERVAL and
GAPROLE_MAX_CONN_INTERVAL parameters

– OR latency setting does not equal GAPROLE_SLAVE_LATENCY parameter value

– OR supervision timeout settings does not equal GAPROLE_TIMEOUT_MULTIPLIER parameter
value

• Update parameter request sent with connection parameter values in profile

• Profile uses osal_start_timerEx to set the UPDATE_PARAMS_TIMEOUT_EVT OSAL
event for itself after a set time (calculated based on the max amount of time)

– If update parameter response is received before timeout, osal_stop_timerEx called to cancel
event

– If timeout expires before response is received, peripheral device terminates connection

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

RSSI Measurement
• The peripheral role profile can provide RSSI measurements to the

application with the callback function rssiAvailableCB (this feature is
not used by the KeyFobDemo application)

• RSSI can only be read when device is in a connection

• RSSI value only updated when data is received (in future release,
RSSI will update with each link layer connection event)

• GAPROLE_RSSI_READ_RATE parameter sets the amount of time in
milliseconds between RSSI reads

• When device enters connected state, profile calls osal_start_timerEx
to schedule an RSSI_READ_EVT

• Every time RSSI_READ_EVT occurs:
– Profile calls HCI_ReadRssiCmd function

– Peripheral role profile receives OSAL message from GAP (message type
HCI_GAP_EVENT_EVENT) containing RSSI reading

– Profile calls callback function rssiAvailableCB to notify application of value

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

After Link Termination

• When a connection is terminated for any reason, GAP
sends OSAL message to GAP application (peripheral role
profile) of type GAP_TERMINATE_LINK_EVENT

• Profile calls the callback function
peripheralStateNotificationCB to notify application that
GAP state has changed, and whether the link terminated
due to supervision timeout, or due to a terminate link
request

• Profile schedules a START_ADVERTISING_EVT using
the osal_start_timerEx function, with the amount of time
determined by the value of the parameter
GAPROLE_ADVERT_OFF_TIME

TI confidential information - Strictly Private

GAP Peripheral Role Profile:

Switching to multi-role profile
• In addition to peripheral role profile, Release

includes a peripheral / broadcaster multi-role
profile

• To use multi-role profile:
– Exclude the files “peripheral.c” and “peripheral.h”

from the KeyFobDemo project (right-click on files
and select “options” in IAR, then check the box for
“Exclude from build”)

– Add the files “peripheralBroadcaster.c” and
“peripheralBroadcaster.h” to the project under the
“Profiles” group

• In IAR Project options (compiler settings), add
the preprocessor defined symbol
“PLUS_BROADCASTER”

• All functions have the same names and work
identical to the functions in peripheral.c

• Advertisements can now be enabled or disabled
by setting GAPROLE_ADVERT_ENABLED
parameter value to TRUE while in a connected
state

• Advertisements will be non-connectable

TI confidential information - Strictly Private

GATT Service Profiles:

Overview
• Allows device to implement a GATT service:

– As defined by Bluetooth SIG

– Custom

• Provides means for application to read and write service data on the
attribute table

• Lets a remote GATT client access characteristics through:
– GATT reads

– GATT writes

– GATT notifications and indications

• Verifies the validity of data being written from a remote device

• GATT service profiles typically do not need to be OSAL tasks, and are
accessed directly by the protocol stack and by the application

• Most GATT service profiles have a very similar structure

• New GATT service profiles can be easily created by copying an
existing profile and renaming variables and functions

TI confidential information - Strictly Private

GATT Service Profiles:

Typical Functions

• Public functions:

– ProfileName_AddService – registers attribute list and callback functions
with GATT server

– ProfileName_RegisterAppCBs – allows function to register application
callback functions with profiles.

– ProfileName_SetParameter – allows application to set attribute data
values; also sends out notifications of characteristics when enabled

– ProfileName_GetParameter – allows application to get attribute values

• Private GATT server callback functions:

– profileName_ReadAttrCB – called when a GATT read request is received
from a GATT client; returns attribute data to GATT server for read
response

– profileName_ValidateWriteAttrCB – called when a GATT write request is
received from a GATT client; validates data being written and writes new
value if data is valid; sends write response with appropriate error message
if data is invalid

TI confidential information - Strictly Private

GATT Service Profiles:

Structure

• Attribute value variables are defined as static and are local
to the module

• Standard UUID‟s (from BT SIG) are defined in gatt_uuid.h

• Custom UUID‟s are defined in profiles own header file

• In addition to attribute values, profile defines an array of
type gattAttribute_t, in which each element contains data
related to each attibute:
– Attribute type (UUID length in bytes and UUID itself)

– Permissions

– Handle – profile initializes this to zero, and server updates when
building the table

– Pointer to data value

TI confidential information - Strictly Private

GATT Service Profiles - UUID

TI confidential information - Strictly Private

GATT Service Profiles:

InitService Function

• InitService function called by application

• When InitService function is called, two variables must be

created

– gattService_t service – includes the number of attributes from the

service, and the attribute array itself

– gattServiceCBs_t serviceCBs – includes two function pointers:

ReadAttrCB and ValidateWriteAttrCB (if service doesn‟t have any

readable or writeable attributes, the corresponding pointer can be

set to NULL)

• Function calls GATTServApp_RegisterService, with the

two variables as parameters to register the attributes and

callback functions with the GATT server application

TI confidential information - Strictly Private

GATT Service Profiles:

RegisterAppCBs Function

• Only required if profile needs to notify application of
information related to the profile

• Examples:
– In proximity service profile, application needs to know if link-loss or

path-loss alert characteristic values have changed

– In accelerometer profile, application needs to know if
accelerometer enabler characteristic value is changed

• Profile must define a type for the callback function pointer
in the header file

TI confidential information - Strictly Private

GATT Service Profiles:

Notifications

• Notification / indication handling is typically part of

the SetParameter function

• The criteria for when to send notifications or

indications can either be set in profile itself or in

the application

– Might be defined by a profile specification

TI confidential information - Strictly Private

Agenda

• Bluetooth Low Energy Protocol Stack
– Link Layer - Basics of BLE communication

– GAP (Generic Access Profile) - GAP roles, advertisements, connections

– GATT (Generic Attribute Profile) - Attribute table data format, reads,
writes, notifications

• CC2540 Software Overview
– IAR Embedded Workbench IDE - Development environment overview, CC

Debugger

– CC2540 Software - Architecture and Structure, KeyFobDemo Application

– OSAL (Operating System Abstraction Layer) - Task setup and
initialization, events and processing, messaging and memory managers

– GAP Role Profiles - Peripheral and Peripheral / Broadcaster role profiles

– GATT Profiles - Structure and format, initialization, application callbacks

 Questions / Hands-On

TI confidential information - Strictly Private

Hands-on

1. Walkthrough- flash devices, set secondary address set

2. Walkthrough- USB Dongle driver install

3. Walkthrough- Use BTool to enable SimpleGATTProfile notifications

4. Exercise- Use BTool; enable button press notifications

(open up IAR)

3. Exercise – change periodic notification time, and have increment

4. Walkthrough – Turn on LED upon connection

5. Exercise – Set characteristic values upon disconnect (need to show
demo before exercise)

6. Walkthrough - Add a 5th characteristic to SimpleGATTProfile

Labs

• Use TI flash programmer to assign address and flash images.

• Enable keypress notifications from keyfob to USB dongle.

• Use Btool to see logging

KeyPress

• Load sniffer image into USB Dongle

• Enable advertisements on keyfob and watch on sniffer.

Sniffer

• Load keyfobdemo application

• Enable accelerometer notifications

Accelerometer (optional)

Lab #1.1

1. Connect USB Dongle and CC
Debugger as shown

2. CC debugger light should be
green and USB dongle LED
should be green.

Lab #1.2

1. Use SmartRF flash programmer to download .hex file
C:\Texas Instruments\BLE-CC2540\Accessories\Hex_Files\cc2540_ble1.0_master_usb_dongle.hex

* USB Dongle LED should turn red

Lab #1.2b

1. Use SmartRF flash programmer change address
 Click secondary radio button

 Enter in new address – left six bytes

 Click Write IEEE

 Read back to verify

Lab #1.3

1. Use SmartRF flash programmer to download .hex file
C:\Texas Instruments\BLE-CC2540\Accessories\Hex_Files\cc2540_ble1.0_slave_keyfob.hex

1. Connect keyfob and CC
Debugger as shown

2. Insert battery

3. Press button to stop buzzer

4. CC debugger light should be
green. (may need to detach and
attach USB cable)

Lab #1.4

1. Use SmartRF flash programmer to download .hex file
C:\Texas Instruments\BLE-CC2540\Accessories\Hex_Files\cc2540_ble1.0_slave_keyfob.hex

Lab #1.4b

1. Use SmartRF flash programmer change address
 Click secondary radio button

 Enter in new address – left six bytes

 Click Write IEEE

 Read back to verify

Lab #1.5

1. Plug in USB Dongle, install driver from - C:\Texas
Instruments\BLE-CC2540\Accessories\Drivers

2. Use Device Manager to determine COM used for USB
Dongle.

3. Start Btool.exe (C:\Texas Instruments\BLE-
CC2540\Projects\Btool)

4. Open Device (this is COM port which USB Dongle shows up
as)

Lab #1.6

Lab #1.7

1. Press button on keyfob to begin advertising for 20 sec

2. Scan, select you keyfob address, and establish

Lab #1.8
1. Verify connection in left pane

2. Write “01 00” to address 0x0020

3. Press button on keyfob to see notifications

Lab #2.1 1/5

1. Connect USB Dongle and CC
Debugger as shown

2. CC debugger light should be
green.

Lab #2.2

1. Use SmartRF flash programmer to download .hex file
C:\Program Files\Texas Instruments\Packet Sniffer\General\Firmware\sniffer_fw_cc2540_usb.hex

* USB Dongle LED should turn green

Lab #2.3

1. Start Packet Sniffer application

2. Select Bluetooth Low Energy

Lab #2.4
1. Select CC2540USB Dongle

2. Press play

3. Press button on keyfob to start advertising

Lab #3.1 – Accelerometer and IAR
1. Download and unzip project from - http://processors.wiki.ti.com/images/e/ec/Keyfobdemo.zip

2. Extract to C:\Texas Instruments\BLE-CC2540

3. Open workspace C:\Texas Instruments\BLE-CC2540\Projects\ble\KeyFob\CC2540DB\KeyFobDemo.eww

4. Press play button to download and debug

5. Press Go button

http://processors.wiki.ti.com/images/e/ec/Keyfobdemo.zip

Lab #3.2 – Accelerometer and IAR
1. Start Btool

2. Scan and Connect

3. Write a “1” to 0x0021 to enable the
accelerometer

4. Write a “01 00”to 0x0028 to enable the X
axis notifications

5. Move the keyfob to generate notifications.

Lab #3.2 – Accelerometer and IAR
1. Enter 0X0029 in handle field

2. Click Read and change to ASCII

3. You should see Accel X-Coordinate

4. Change this in code with IAR.

Lab #3.2 – Accelerometer and IAR

Portion of KeyFobDemo
application table showing
accelerometer GATT table.

Links
Description Link

TI Bluetooth, overview, link to Dual mode, data sheets www.ti.com/bluetoothlowenergy

BLE Stack and tools www.ti.com/blestack

CC2540 Datasheets, application notes www.ti.com/cc2540

Hardware sharepoint http://srvoswod34.norway.design.ti.com/wiki/CC2540_Project

LPRF Wiki Page – Keyfobdemo source http://processors.wiki.ti.com/index.php/Category:LPRF

SmartRF Flash Programmer http://focus.ti.com/docs/toolsw/folders/print/flash-

programmer.html

Bluetooth SIG http://www.bluetooth.com/English/Products/Pages/low_energy.a

spx

Documents
Description Link

Quick Start Guide http://focus.ti.com/lit/ml/swru272/swru272.pdf

Mini Kit User Guide http://focus.ti.com/lit/ug/swru270a/swru270a.pdf

Software Development Guide http://www.ti.com/litv/pdf/swru271

CC2540 User Guide http://focus.ti.com/lit/ug/swru191b/swru191b.pdf

Data Sheet

TI confidential information - Strictly Private

	未标题

