
ADSP-BF54x Blackfin® Processor
Hardware Reference (Volume 2 of 2)

Preliminary

Revision 0.4, August 2008

Part Number
82-000001-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2008 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Lockbox Secure Technology Disclaimer

Analog Devices products containing LockboxTM Secure Technology are
warranted by Analog Devices as detailed in the Analog Devices Standard
Terms and Conditions of Sale. To our knowledge, the Lockbox Secure
Technology, when used in accordance with the data sheet and hardware
reference manual specifications, provides a secure method of implement-
ing code and data safeguards. However, Analog Devices does not
guarantee that this technology provides absolute security. ACCORD-
INGLY, ANALOG DEVICES HEREBY DISCLAIMS ANY AND ALL
EXPRESS AND IMPLIED WARRANTIES THAT THE LOCKBOX
SECURE TECHNOLOGY CANNOT BE BREACHED, COMPRO-
MISED OR OTHERWISE CIRCUMVENTED AND IN NO EVENT
SHALL ANALOG DEVICES BE LIABLE FOR ANY LOSS, DAMAGE
DESTRUCTION OR RELEASE OF DATA, INFORMATION, PHYSI-
CAL PROPERTY OR INTELLECTUAL PROPERTY.

ADSP-BF54x Blackfin Processor Hardware Reference iii

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, the Blackfin logo, CrossCore, EZ-KIT
Lite, SHARC, TigerSHARC, and VisualDSP++ are registered trademarks
of Analog Devices, Inc.

Lockbox is a trademark if Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Contents

iv ADSP-BF54x Blackfin Processor Hardware Reference

CONTENTS

PREFACE

Contents of Two Volumes ... xli

Purpose of This Manual ... xlii

Intended Audience ... xlii

Manual Contents .. xliii

What’s New in This Manual .. xlv

Technical or Customer Support .. xlv

Supported Processors ... xlvii

Conventions ... xlviii

Register Diagram Conventions .. xlix

INTRODUCTION

Peripherals .. 20-3

Memory Architecture .. 20-6

Internal Memory ... 20-7

External Memory .. 20-8

NAND Flash Controller (NFC) .. 20-9

ADSP-BF54x Blackfin Processor Hardware Reference v

Contents

I/O Memory Space .. 20-10

One-Time-Programmable (OTP) Memory 20-10

DMA Support ... 20-11

Host DMA Interface .. 20-13

External Bus Interface Unit ... 20-14

DDR SDRAM Controller .. 20-14

Asynchronous Controller ... 20-15

Ports ... 20-15

General-Purpose I/O (GPIO) ... 20-15

Two-Wire Interfaces .. 20-16

Controller Area Network ... 20-17

Enhanced Parallel Peripheral Interface (EPPI) 20-18

SPORT Controllers ... 20-20

Serial Peripheral Interface (SPI) Ports .. 20-22

Timers .. 20-22

UART Ports .. 20-23

USB On-The-Go, Dual-Role Device Controller 20-24

ATA/ATAPI–6 Interface .. 20-25

Keypad Interface ... 20-25

Secure Digital (SD)/SDIO Controller .. 20-26

Rotary Counter and Thumbwheel Interface 20-27

Security .. 20-27

Media Transceiver (MXVR) MAC Layer 20-29

Real-Time Clock ... 20-30

Contents

vi ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Timer ... 20-31

Clock Signals .. 20-32

Dynamic Power Management ... 20-32

Full On Mode (Maximum Performance) 20-33

Active Mode (Moderate Dynamic Power Savings) 20-33

Sleep Mode (High Dynamic Power Savings) 20-33

Deep Sleep Mode (Maximum Dynamic Power Savings) 20-34

Hibernate State (Maximum Power Savings) 20-34

Voltage Regulation .. 20-34

Boot Modes .. 20-35

Instruction Set Description ... 20-35

Development Tools ... 20-36

MEDIA TRANSCEIVER MODULE (MXVR)

Overview .. 21-1

Interface Signals ... 21-3

MXVR Memory Map ... 21-5

MXVR Registers ... 21-6

MXVR Configuration Register (MXVR_CONFIG) 21-12

MXVR State Registers ... 21-19

MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0) . 21-29

MXVR Interrupt Status Register_1 (MXVR_INT_STAT_1) 21-40

MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0) ... 21-43

MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1) ... 21-46

MXVR Node Position Register (MXVR_POSITION) 21-48

ADSP-BF54x Blackfin Processor Hardware Reference vii

Contents

MXVR Maximum Node Position Register 21-50

MXVR Node Frame Delay Register (MXVR_DELAY) 21-51

MXVR Maximum Node Frame Delay Register
(MXVR_MAX_DELAY) ... 21-53

MXVR Logical Address Register (MXVR_LADDR) 21-54

MXVR Group Address Register (MXVR_GADDR) 21-55

MXVR Alternate Address Register (MXVR_AADDR) 21-56

MXVR Allocation Table Registers .. 21-56

MXVR Synchronous Logical Channel Assignment Registers . 21-58

MXVR DMAx Configuration Registers 21-60

MXVR DMA Channel x Start Address Registers 21-70

MXVR DMA Channel x Current Address Registers 21-72

MXVR DMA Channel x Transfer Count Registers 21-73

MXVR DMA Channel x Current Transfer Count Registers ... 21-76

MXVR Asynchronous Packet Control Register
(MXVR_AP_CTL) ... 21-77

MXVR Asynch Packet Receive Buffer Start Address Register 21-80

MXVR Asynch Packet Receive Buffer Current Address 21-81

MXVR Asynch Packet Transmit Buffer Start Address Register 21-82

MXVR Asynch Packet Transmit Buffer Current Address 21-83

MXVR Control Message Control Register 21-83

MXVR Control Message Receive Buffer Start Address 21-86

MXVR Control Message Receive Buffer Current Address 21-87

MXVR Control Message Transmit Buffer Start Address 21-88

MXVR Control Message Transmit Buffer Current Address .. 21-89

Contents

viii ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Remote Read Buffer Start Address Register 21-90

MXVR Remote Read Buffer Current Address Register 21-91

MXVR Pattern Registers ... 21-91

MXVR Pattern Data Registers ... 21-92

MXVR Pattern Enable Registers .. 21-93

MXVR Frame Counter Registers .. 21-94

MXVR Routing Registers .. 21-95

MXVR Block Counter Register (MXVR_BLOCK_CNT) 21-98

MXVR Clock Control Register (MXVR_CLK_CTL) 21-100

MXVR Clock/Data Recovery PLL Control Register 21-107

MXVR Frequency Multiply PLL Control Register) 21-110

MXVR Pin Control Register (MXVR_PIN_CTL) 21-112

MXVR System Clock Counter Register 21-113

General Operation .. 21-115

Network Services Software .. 21-115

Network Activity Detection ... 21-115

Node Initialization .. 21-117

Initialization of Processor Pin Multiplexing 21-118

Master mode initialization, MXVR_CONFIG register ... 21-118

Slave mode initialization, MXVR_CONFIG register 21-118

Initialization of the MXVR_CLK_CTL register 21-119

Initialization of the MXVR_ROUTING_x registers 21-119

Initialization of the buffer start address registers 21-120

Enabling the MXVR PLLs ... 21-120

ADSP-BF54x Blackfin Processor Hardware Reference ix

Contents

Enabling MXVR Output Clocks .. 21-120

Network Lock ... 21-121

Network Initialization ... 21-121

Synchronous Data Routing, Muting, and Transmission 21-123

Synchronous Data Reception ... 21-126

Asynchronous Packet Transmission 21-126

Asynchronous Packet Reception ... 21-129

Control Message Transmission ... 21-131

Normal Control Message Transmission 21-135

Remote Read Control Message Transmission 21-137

Remote Write Control Message Transmission 21-139

Resource Allocate Control Message Transmission 21-141

Resource De-Allocate Control Message Transmission 21-144

Remote Get Source Control Message Transmission 21-147

Control Message Reception .. 21-150

Normal Control Message Reception 21-151

Remote Read and Remote Write Reception 21-153

Resource Allocate Reception .. 21-154

Resource De-Allocate Reception 21-155

Remote Get Source Reception 21-156

MXVR Low Power Operation .. 21-156

Full On Mode ... 21-158

Active Mode ... 21-159

Sleep Mode ... 21-160

Contents

x ADSP-BF54x Blackfin Processor Hardware Reference

Deep Sleep Mode ... 21-162

Hibernate State ... 21-163

Power Gating the ADSP-BF54x 21-164

KEYPAD INTERFACE

Interface Overview ... 22-1

Description of Operation .. 22-2

Keypad Operation ... 22-2

Keypad Enable/Disable ... 22-4

Input Keypad Matrix Programmability 22-4

Waking Up on Keypad Press .. 22-4

Sensitivity of Keypad Interface .. 22-5

Limited Multiple Key Resolution ... 22-5

Keypad Interrupt Modes ... 22-6

Implementing Press-Hold Feature .. 22-6

Functional Description ... 22-7

State Diagram ... 22-7

Programming Model ... 22-9

Keypad Registers .. 22-10

Keypad Control Register (KPAD_CTL) 22-10

KPAD_PRESCALE Register ... 22-14

KPAD_MSEL Register .. 22-15

KPAD_ROWCOL Register ... 22-16

KPAD_STAT Register ... 22-19

KPAD_SOFTEVAL Register ... 22-21

ADSP-BF54x Blackfin Processor Hardware Reference xi

Contents

Programming Examples ... 22-22

SECURE DIGITAL HOST

Overview .. 23-1

Interface Overview .. 23-2

Description of Operation .. 23-3

Functional Description ... 23-4

SDH Clocking .. 23-4

SDH Operation .. 23-5

SDH Data ... 23-10

WAIT_R .. 23-11

RECEIVE ... 23-11

SEND .. 23-12

SDH Data FIFO ... 23-16

Transmit FIFO .. 23-16

Receive FIFO .. 23-17

SDIO Interrupt and Read Wait Support 23-17

MMC/SD Card Detection ... 23-18

SDH DMA Transfers ... 23-19

Programming Model ... 23-19

SDH Registers .. 23-19

SDH Power Control Register (SDH_PWR_CTL) 23-22

SDH Clock Control Register (SDH_CLK_CTL) 23-23

SDH Argument Register (SDH_ARGUMENT) 23-24

SDH Command Register (SDH_COMMAND) 23-24

Contents

xii ADSP-BF54x Blackfin Processor Hardware Reference

SDH Response Command Register (SDH_RESP_CMD) 23-25

SDH Response Registers (SDH_RESPONSEx) 23-26

SDH Data Timer Register (SDH_DATA_TIMER) 23-26

SDH Data Length Register (SDH_DATA_LGTH) 23-27

SDH Data Control Register (SDH_DATA_CTL) 23-27

SDH Data Counter Register (SDH_DATA_CNT) 23-29

SDH Status Register (SDH_STATUS) 23-30

SDH Status Clear Register (SDH_STATUS_CLR) 23-32

SDH Interrupt Mask Registers (SDH_MASKx) 23-33

SDH FIFO Counter Register (SDH_FIFO_CNT) 23-34

SDH Data FIFO (SDH_FIFOx) Registers 23-35

SDH Exception Status Register (SDH_E_STATUS) 23-35

SDH Exception Mask Register (SDH_E_MASK) 23-35

SDH Configuration Register (SDH_CFG) 23-36

SDH Read Wait Enable Register (SDH_RD_WAIT_EN) 23-38

SDH Identification Registers (SDH_PIDx) 23-38

Programming Examples .. 23-39

ATAPI INTERFACE

Interface Overview ... 24-1

Description of Operation .. 24-4

Host PIO/Register Transfers .. 24-4

PIO Data-Out Transfers (Device Write) 24-6

PIO Data-In Transfers (Device Read) 24-8

Host Multiword DMA Transfers .. 24-11

ADSP-BF54x Blackfin Processor Hardware Reference xiii

Contents

Host Pausing the Multi-DMA Transfer 24-14

Host Terminating the Multi DMA Transfer 24-14

Device Pausing the Multi-DMA Transfer 24-14

Device Terminating the Multi-DMA Transfer 24-15

Host Ultra DMA Command Protocol Transfers 24-16

Host Pausing the Ultra DMA Data-In Transfer 24-17

Host Terminating the Ultra DMA Data-In Transfer 24-17

Device Pausing the Ultra DMA Data-In Transfer 24-17

Device Terminating the Ultra DMA Data-In Transfer 24-18

Host Pausing Ultra DMA Data-Out Transfer 24-18

Host Terminating Ultra DMA Data-Out Transfer 24-18

Device Pausing the Ultra DMA Data-Out Transfer 24-18

Device Terminating the Ultra DMA Data-Out Transfer ... 24-18

Functional Description ... 24-19

Power-on and Hardware Reset Protocol 24-19

Device Selection Protocol .. 24-21

Programmed I/O (PIO) ... 24-22

Host Multi DMA Block Implementation 24-23

Host Ultra DMA Block Implementation 24-29

Initiating an Ultra DMA Data-In Burst 24-29

Data-In Transfer ... 24-32

Device pausing an Ultra DMA Data-In Burst 24-33

Host pausing an Ultra DMA Data-In Burst 24-33

Ultra DMA Timing ... 24-35

Contents

xiv ADSP-BF54x Blackfin Processor Hardware Reference

Ultra DMA-Out Timing ... 24-39

Programming Model ... 24-43

ATAPI Device Configuration and Setup 24-43

PIO Data-out Transfers Pseudo-code 24-45

Host Multiword DMA Transfers Pseudo-code 24-46

Host Ultra DMA Command Protocol Transfers Pseudo-code 24-47

ATAPI Registers ... 24-48

ATAPI Control and Status Registers 24-49

ATAPI Control Register (ATAPI_CONTROL) 24-50

ATAPI Status Register (ATAPI_STATUS) 24-52

ATAPI Device Address Register (ATAPI_DEV_ADDR) ... 24-53

ATAPI Device Transmit Buffer Register 24-54

ATAPI Device Receive Buffer Register 24-55

ATAPI Interrupt Mask (ATAPI_INT_MASK) Register 24-56

ATAPI Interrupt Status Register (ATAPI_INT_STATUS) 24-57

ATAPI Transfer Length Register (ATAPI_XFER_LEN) 24-59

ATAPI Line Status Register (ATAPI_LINE_STATUS) 24-60

ATAPI State Machine Status Register 24-61

ATAPI Host Terminate Register (ATAPI_TERMINATE) . 24-61

ATAPI PIO Transfer Count Register 24-62

ATAPI Multiword DMA Transfer Count 24-62

ATAPI Ultra DMA Transfer Count 24-63

ATAPI Ultra DMA OUT Transfer Count 24-64

ATAPI Register Transfer Timing 0 (ATAPI_REG_TIM_0) 24-64

ADSP-BF54x Blackfin Processor Hardware Reference xv

Contents

ATAPI Programmed I/O Timing 0 24-65

ATAPI Programmed I/O Timing 1 24-65

ATAPI Multi DMA Timing 0 .. 24-66

ATAPI Multi DMA Timing 1 ... 24-66

ATAPI Multi DMA Timing 2 .. 24-67

ATAPI Ultra DMA Timing 0 ... 24-67

ATAPI Ultra DMA Timing 1 ... 24-68

ATAPI Ultra DMA Timing 2 Register 24-68

ATAPI Ultra DMA Timing 3 Register 24-69

ATAPI Device I/O Registers .. 24-69

Command Register (R/W) .. 24-71

Device Control Register (WO) .. 24-71

Features Register (WO) ... 24-72

Sector Count Register (R/W) .. 24-72

Status Register (RO) ... 24-72

Alternate Status Register (RO) ... 24-73

Error Register (RO) ... 24-73

ATAPI Standards Reference ... 24-74

Summary of IDE/ATA Standards ... 24-78

ATAPI Timing Summary ... 24-79

IDE/ATA Transfer Modes and Protocols 24-79

Programmed (I/O) PIO Modes .. 24-79

Direct Memory Access (DMA) Modes 24-80

Ultra Direct Memory Access (DMA) Modes 24-80

Contents

xvi ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Device Selection .. 24-81

NAND FLASH CONTROLLER

Overview .. 25-2

Interface Overview ... 25-4

Description of Operation .. 25-5

Internal Bus Interfaces .. 25-5

Bus Access Types ... 25-6

Access Timing ... 25-6

Pin Sharing ... 25-7

Functional Description ... 25-7

Page Write .. 25-8

Page Read ... 25-9

Additional Operations ... 25-10

Write Protection ... 25-11

Chip Enable Don’t Care .. 25-11

NFC Error Detection .. 25-11

Error Analysis ... 25-13

Large Page Size Support .. 25-15

NFC SmartMedia Support .. 25-15

Programming Model ... 25-15

NFC Registers .. 25-17

NFC Control Register (NFC_CTL) 25-19

NFC Status Register (NFC_STAT) 25-20

NFC Interrupt Status Register (NFC_IRQSTAT) 25-21

ADSP-BF54x Blackfin Processor Hardware Reference xvii

Contents

NFC Interrupt Mask Register (NFC_IRQMASK) 25-23

NFC ECC Registers (NFC_ECCx) 25-23

NFC Count Register (NFC_COUNT) 25-25

NFC Reset Register (NFC_RST) ... 25-25

NFC Page Control Register (NFC_PGCTL) 25-26

NFC Read Data Register (NFC_READ) 25-26

NFC Address Register (NFC_ADDR) 25-27

NFC Command Register (NFC_CMD) 25-28

NFC Data Write Register (NFC_DATA_WR) 25-29

NFC Data Read Register (NFC_DATA_RD) 25-29

NFC Programming Examples .. 25-30

ENHANCED PARALLEL PERIPHERAL INTERFACE

Overview .. 26-1

Interface Overview .. 26-5

Description of Operation .. 26-7

EPPI Reset .. 26-8

Clock Gating .. 26-8

Frame Sync Polarity & Sampling Edge 26-9

Interrupts ... 26-10

Functional Description ... 26-11

ITU-R 656 Modes ... 26-11

ITU-R 656 Background ... 26-11

ITU-R 656 Input Modes ... 26-17

Entire Field ... 26-17

Contents

xviii ADSP-BF54x Blackfin Processor Hardware Reference

Active Video ... 26-18

Vertical Blanking Interval (VBI) only 26-18

ITU-R 656 Output in GP Transmit Modes 26-19

Frame Synchronization in ITU-R 656 Modes 26-22

General-Purpose EPPI Modes .. 26-23

GP 0 FS Mode .. 26-24

Frame Synchronization in GP 0 FS External Trigger Mode 26-25

Frame Synchronization in GP 0 FS Internal Trigger Mode 26-25

GP 1 FS Mode .. 26-25

GP 2 FS Mode .. 26-26

DEN functionality in GP 2 FS Transmit Mode 26-27

GP 3 FS Mode .. 26-28

EPPI Data Path Options ... 26-29

EPPI Data Lengths .. 26-29

EPPI DMA Channels .. 26-30

Data Packing For Receive Modes ... 26-30

Data Unpacking For Transmit Modes 26-31

Sign-Extension and Zero-Filling .. 26-32

Split Receive Modes .. 26-33

Split Transmit Modes .. 26-33

RGB Data Formats ... 26-34

Programmed Clipping and Thresholding of Data Values 26-34

Data Transfer Examples ... 26-35

8-Bit Receive Mode .. 26-35

ADSP-BF54x Blackfin Processor Hardware Reference xix

Contents

10/12/14-Bit Receive Modes ... 26-37

16-Bit Receive Mode ... 26-40

18-Bit Receive Mode ... 26-42

24-Bit Receive Mode ... 26-44

8-Bit Split Receive Mode ... 26-45

10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0 ... 26-48

16-Bit Split Receive Mode with SPLT_16 = 1 26-50

8-Bit Transmit Mode ... 26-51

10/12/14-Bit Transmit Modes ... 26-52

16-Bit Transmit Mode ... 26-53

18-Bit Transmit Mode ... 26-55

24-Bit Transmit Mode ... 26-56

8-Bit Split Transmit Mode ... 26-56

10/12/14/16-Bit Split Transmit Mode with SPLT_16 = 0 . 26-61

16-Bit Split Transmit Mode with SPLT_16 = 1 26-64

Programming Model ... 26-66

DMA Operation .. 26-66

Elevating EPPI Urgent requests at DDR controller Interface . 26-74

System Configuration .. 26-76

EPPI Registers .. 26-76

PPIx_CONTROL Register .. 26-79

PPIx_STATUS Register ... 26-86

Windowing Registers ... 26-90

EPPI Lines per Frame Register (PPIx_FRAME) 26-92

Contents

xx ADSP-BF54x Blackfin Processor Hardware Reference

EPPI Samples per Line Register (PPIx_LINE) 26-92

EPPI Vertical Delay Register (PPIx_VDELAY) 26-93

EPPI Vertical Transfer Count Register (PPIx_VCOUNT) 26-93

EPPI Horizontal Delay Register (PPIx_HDELAY) 26-94

EPPI Horizontal Transfer Count Register 26-95

EPPI Clock Divide Register (PPIx_CLKDIV) 26-95

Frame Sync/ Blanking Generation Registers 26-96

EPPI FS1 Width Register / EPPI Horizontal Blanking
Samples per Line Register (PPIx_FS1W_HBL) 26-96

EPPI FS2 Width Register/ EPPI Lines of Vertical
Blanking Register (PPIx_FS2W_LVB) 26-96

EPPI FS1 Period Register/EPPI Active Video Samples
per Line Register (PPIx_FS1P_AVPL) 26-98

EPPI FS2 Period Register/EPPI Lines of Active Video
per Frame Register (PPIx_FS2P_LAVF) 26-99

EPPI Clipping Register (PPIx_CLIP) 26-101

CAN MODULE

Overview .. 27-1

Interface Overview ... 27-2

CAN Mailbox Area ... 27-5

CAN Mailbox Control .. 27-7

CAN Protocol Basics ... 27-8

CAN Operation ... 27-10

Bit Timing .. 27-11

Transmit Operation .. 27-13

ADSP-BF54x Blackfin Processor Hardware Reference xxi

Contents

Retransmission .. 27-14

Single Shot Transmission ... 27-15

Auto-Transmission .. 27-16

Receive Operation ... 27-16

Data Acceptance Filter .. 27-20

Watchdog Mode ... 27-21

Time Stamps ... 27-21

Remote Frame Handling .. 27-22

Temporarily Disabling Mailboxes ... 27-23

Functional Operation .. 27-25

CAN Interrupts ... 27-25

Mailbox Interrupts .. 27-25

Global CAN Interrupt .. 27-26

Event Counter ... 27-29

CAN Warnings and Errors ... 27-30

Programmable Warning Limits .. 27-30

CAN Error Handling .. 27-30

Error Frames ... 27-31

Error Levels .. 27-33

Debug and Test Modes .. 27-35

Low Power Features ... 27-39

CAN Built-In Suspend Mode .. 27-39

CAN Built-In Sleep Mode ... 27-40

CAN Wakeup From Hibernate State 27-40

Contents

xxii ADSP-BF54x Blackfin Processor Hardware Reference

CAN Registers .. 27-41

Global CAN Registers ... 27-46

CANx_CONTROL Master Control Registers 27-46

CANx_STATUS Global CAN Status Registers 27-47

CANx_DEBUG Registers ... 27-48

CANx_CLOCK Registers ... 27-48

CANx_TIMING Registers .. 27-49

CANx_INTR Interrupt Pending Registers 27-49

CANx_GIM Global CAN Interrupt Mask Registers 27-50

CANx_GIS Global CAN Interrupt Status Registers 27-51

CANx_GIF Global CAN Interrupt Flag Registers 27-52

Mailbox/Mask Registers .. 27-52

CANx_AMxx Acceptance Mask Registers 27-53

CANx_MBxx_ID1 Registers ... 27-57

CANx_MBxx_ID0 Registers ... 27-59

CANx_MBxx_TIMESTAMP Registers 27-61

CANx_MBxx_LENGTH Registers 27-63

CANx_MBxx_DATAx Registers 27-65

Mailbox Control Registers ... 27-72

CANx_MCx Mailbox Configuration Registers 27-73

CANx_MDx Mailbox Direction Registers 27-74

CANx_RMPx Registers .. 27-75

CANx_RMLx Registers .. 27-76

CANx_OPSSx Register ... 27-77

ADSP-BF54x Blackfin Processor Hardware Reference xxiii

Contents

CANx_TRSx Registers .. 27-78

CANx_TRRx Registers ... 27-79

CANx_AAx Registers .. 27-80

CANx_TAx Registers .. 27-81

CANx_MBTD Register ... 27-82

CANx_RFHx Registers ... 27-83

CANx_MBIMx Registers .. 27-84

CANx_MBTIFx Registers ... 27-85

CANx_MBRIFx Registers ... 27-86

Universal Counter Registers ... 27-87

CANx_UCCNF Register ... 27-87

CANx_UCCNT Register .. 27-88

CANx_UCRC Register ... 27-88

Error Registers ... 27-89

CANx_CEC Register .. 27-89

CANx_ESR Register ... 27-89

CANx_EWR Register ... 27-90

Programming Examples ... 27-91

CAN Setup Code .. 27-91

Initializing and Enabling CAN Mailboxes 27-93

Initiating CAN Transfers and Processing Interrupts 27-94

SPI-COMPATIBLE PORT CONTROLLERS

Overview .. 28-1

Interface Overview .. 28-3

Contents

xxiv ADSP-BF54x Blackfin Processor Hardware Reference

External Interface .. 28-4

Serial Peripheral Interface Clock Signal (SPIxSCK) 28-5

Master Out Slave In (MOSI) .. 28-6

Master In Slave Out (MISO) .. 28-6

Serial Peripheral Interface Slave Select Input Signal 28-7

Serial Peripheral Interface Slave Select Enable Output 28-9

Slave Select Inputs .. 28-12

Use of FLS Bits in SPI_FLG for Multiple Slave SPI 28-12

Internal Interfaces ... 28-14

DMA Functionality .. 28-14

SPI Transmit Data Buffer .. 28-15

SPI Receive Data Buffer .. 28-16

Description of Operation .. 28-16

SPI Transfer Protocols ... 28-17

SPI General Operation .. 28-19

SPI Control .. 28-21

Clock Signals .. 28-22

SPI Baud Rate ... 28-22

Error Signals and Flags .. 28-23

Mode Fault Error (MODF) ... 28-24

Transmission Error (TXE) .. 28-25

Reception Error (RBSY) ... 28-25

Transmit Collision Error (TXCOL) 28-25

Interrupt Output .. 28-25

ADSP-BF54x Blackfin Processor Hardware Reference xxv

Contents

Functional Description ... 28-26

Master Mode Operation .. 28-26

Transfer Initiation From Master (Transfer Modes) 28-28

Slave Mode Operation ... 28-29

Slave Ready for a Transfer .. 28-30

Programming Model ... 28-30

Beginning and Ending an SPI Transfer 28-30

Master Mode DMA Operation ... 28-33

Slave Mode DMA Operation ... 28-35

SPI Registers ... 28-43

SPI Baud Rate (SPIx_BAUD) Register 28-44

SPI Control (SPIx_CTL) Register .. 28-45

SPI Flag (SPIx_FLG) Register .. 28-46

SPI Status (SPIx_STAT) Register ... 28-48

SPI Transmit Data Buffer (SPIx_TDBR) Register 28-48

SPI Receive Data Buffer (SPIx_RDBR) Register 28-49

SPI RDBR Shadow (SPIx_SHADOW) Register 28-49

Programming Examples ... 28-50

Core Generated Transfer .. 28-50

Initialization Sequence .. 28-50

Starting a Transfer ... 28-51

Post Transfer and Next Transfer 28-52

Stopping ... 28-53

DMA Transfer ... 28-53

Contents

xxvi ADSP-BF54x Blackfin Processor Hardware Reference

DMA Initialization Sequence .. 28-54

SPI Initialization Sequence ... 28-55

Starting a Transfer .. 28-56

Stopping a Transfer ... 28-56

TWO WIRE INTERFACE CONTROLLERS

Overview .. 29-1

Interface Overview ... 29-3

External Interface .. 29-4

Serial Clock signal (SCL1–0) .. 29-4

Serial data signal (SDA1–0) .. 29-5

TWI Pins ... 29-5

Internal Interfaces ... 29-6

Description of Operation .. 29-7

TWI Transfer Protocols ... 29-7

Clock Generation and Synchronization 29-7

Bus Arbitration ... 29-8

Start and Stop Conditions ... 29-9

General Call Support .. 29-10

Fast Mode .. 29-11

TWI General Operation ... 29-11

TWI Control .. 29-11

Clock Signal ... 29-12

Error Signals and Flags .. 29-13

TWI Master Status ... 29-13

ADSP-BF54x Blackfin Processor Hardware Reference xxvii

Contents

TWI Slave Status .. 29-16

TWI FIFO Status ... 29-17

TWI Interrupt Status .. 29-18

Functional Description ... 29-22

General Setup .. 29-22

Slave Mode .. 29-22

Master Mode Clock Setup ... 29-24

Master Mode Transmit .. 29-24

Master Mode Receive ... 29-25

Clock Stretching ... 29-26

Repeated Start Condition .. 29-29

Programming Model ... 29-32

TWI Registers ... 29-34

TWIx_CONTROL Register .. 29-36

TWIx_CLKDIV Register ... 29-36

TWIx_SLAVE_CTL Register ... 29-37

TWIx_SLAVE_ADDR Register ... 29-39

TWIx_SLAVE_STAT Register ... 29-40

TWIx_MASTER_CTL Register ... 29-41

TWIx_MASTER_ADDR Register 29-44

TWIx_MASTER_STAT Register ... 29-45

TWIx_FIFO_CTL Register ... 29-45

TWIx_FIFO_STAT Register .. 29-47

TWIx_INT_MASK Register .. 29-47

Contents

xxviii ADSP-BF54x Blackfin Processor Hardware Reference

TWIx_INT_STAT Register ... 29-51

TWIx_XMT_DATA8 Register .. 29-52

TWIx_XMT_DATA16 Register .. 29-52

TWIx_RCV_DATA8 Register ... 29-53

TWIx_RCV_DATA16 Register ... 29-54

Programming Examples .. 29-55

Master Mode Setup ... 29-55

Slave Mode Setup .. 29-60

Electrical Specifications .. 29-67

SPORT CONTROLLERS

Overview .. 30-1

Interface Overview ... 30-3

SPORT Pin/Line Terminations .. 30-10

Description of Operation .. 30-11

SPORT Operation .. 30-11

SPORT Disable .. 30-11

Setting SPORT Modes .. 30-12

Stereo Serial Operation ... 30-13

Multichannel Operation .. 30-17

Multichannel Enable ... 30-19

Frame Syncs in Multichannel Mode 30-20

Multichannel Frame ... 30-22

Multichannel Frame Delay .. 30-23

Window Size .. 30-23

ADSP-BF54x Blackfin Processor Hardware Reference xxix

Contents

Window Offset ... 30-24

Other Multichannel Fields in SPORTx_MCMC2 30-24

Channel Selection Register .. 30-24

Multichannel DMA Data Packing 30-26

Support for H.100 Standard Protocol 30-27

2X Clock Recovery Control ... 30-27

Functional Description ... 30-28

Clock and Frame Sync Frequencies 30-28

Maximum Clock Rate Restrictions 30-29

Word Length ... 30-29

Bit Order .. 30-30

Data Type ... 30-30

Companding ... 30-31

Clock Signal Options .. 30-31

Frame Sync Options .. 30-32

Framed Versus Unframed .. 30-32

Internal Versus External Frame Syncs 30-34

Active Low Versus Active High Frame Syncs 30-35

Sampling Edge for Data and Frame Syncs 30-35

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing) .. 30-37

Data Independent Transmit Frame Sync 30-39

Moving Data Between SPORTs and Memory 30-40

SPORT RX, TX, and Error Interrupts 30-40

PAB Errors .. 30-41

Contents

xxx ADSP-BF54x Blackfin Processor Hardware Reference

Timing Examples .. 30-41

SPORT Registers .. 30-48

Register Writes and Effective Latency 30-50

SPORTx_TCR1 and SPORTx_TCR2 Registers 30-51

SPORTx_RCR1 and SPORTx_RCR2 Registers 30-56

Data Word Formats ... 30-61

SPORTx_TX Register ... 30-61

SPORTx_RX Register ... 30-63

SPORTx_STAT Register ... 30-66

SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers 30-68

SPORTx_TFSDIV and SPORTx_RFSDIV Register 30-69

SPORTx_MCMCn Registers .. 30-70

SPORTx_CHNL Register ... 30-71

SPORTx_MRCSn Registers .. 30-72

SPORTx_MTCSn Registers .. 30-74

Programming Examples .. 30-76

SPORT Initialization Sequence ... 30-77

DMA Initialization Sequence .. 30-78

Interrupt Servicing .. 30-81

Starting a Transfer ... 30-82

UART PORT CONTROLLERS

Overview .. 31-1

Features .. 31-2

Interface Overview ... 31-3

ADSP-BF54x Blackfin Processor Hardware Reference xxxi

Contents

External Interface .. 31-4

Internal Interface ... 31-5

Description of Operation .. 31-6

UART Transfer Protocol .. 31-6

UART Transmit Operation .. 31-7

UART Receive Operation .. 31-9

Hardware Flow Control ... 31-12

IrDA Transmit Operation .. 31-14

IrDA Receive Operation .. 31-15

Interrupt Processing .. 31-17

Bit Rate Generation ... 31-19

Autobaud Detection .. 31-21

Programming Model ... 31-23

Non-DMA Mode .. 31-23

DMA Mode .. 31-25

Mixing Modes ... 31-27

UART Registers .. 31-28

UARTx_LCR Registers .. 31-30

UARTx_MCR Registers .. 31-33

UARTx_LSR Registers .. 31-36

UARTx_MSR Registers ... 31-39

UARTx_THR Registers ... 31-41

UARTx_RBR Registers .. 31-42

UARTx_IER_SET and UARTx_IER_CLEAR Registers 31-43

Contents

xxxii ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_DLL and UARTx_DLH Registers 31-48

UARTx_SCR Registers .. 31-49

UARTx_GCTL Registers .. 31-50

Programming Examples .. 31-51

USB OTG CONTROLLER

Overview .. 32-2

Features .. 32-2

Interface Overview ... 32-3

FIFO Configuration ... 32-7

Interrupts ... 32-8

Resets ... 32-11

Description of Operation .. 32-12

Peripheral Mode Operation ... 32-13

Endpoint Setup .. 32-13

IN Transactions as a Peripheral 32-14

High Bandwidth Isochronous IN Endpoints 32-16

OUT Transactions as a Peripheral 32-17

High Bandwidth Isochronous OUT Endpoints 32-19

Peripheral Transfer Workflows .. 32-20

Control Transactions as a Peripheral 32-21

Write Requests .. 32-22

Zero Data Requests ... 32-23

Peripheral Mode, Bulk IN, Transfer Size Known 32-24

Peripheral Mode, Bulk IN, Transfer Size Unknown 32-25

ADSP-BF54x Blackfin Processor Hardware Reference xxxiii

Contents

Peripheral Mode, ISO IN, Small MaxPktSize 32-26

Peripheral Mode, ISO IN, Large MaxPktSize 32-26

Peripheral Mode, Bulk OUT, Transfer Size Known 32-27

Peripheral Mode, Bulk OUT, Transfer Size Unknown ... 32-28

Peripheral Mode, ISO OUT, Small MaxPktSize 32-29

Peripheral Mode, ISO OUT, Large MaxPktSize 32-29

Peripheral Mode Suspend .. 32-30

Start Of Frame (SOF) Packets ... 32-30

Soft Connect / Soft Disconnect 32-31

Error Handling As a Peripheral .. 32-31

STALLS Issued to Control Transfers 32-33

Zero Length OUT Data Packets in Control Transfers 32-33

Host Mode Operation ... 32-34

Endpoint Setup and Data Transfer 32-34

Control Transaction as a Host ... 32-34

Setup Phase as a Host .. 32-35

IN Data Phase as a Host .. 32-36

OUT Data as a Host (Control) .. 32-37

IN Status Phase, (SETUP phase or OUT Data Phase) 32-39

OUT Status Phase as a Host (following IN Data Phase) ... 32-39

Host IN Transactions .. 32-40

Host OUT Transactions .. 32-41

Transaction Scheduling ... 32-42

Babble .. 32-43

Contents

xxxiv ADSP-BF54x Blackfin Processor Hardware Reference

Host Mode Reset .. 32-43

Host Mode Suspend ... 32-43

Functional Description ... 32-44

On-Chip Bus Interfaces .. 32-44

Interface Pins .. 32-45

Power and Clocking .. 32-45

UTMI Interface .. 32-46

Programming Model ... 32-46

OTG Session Request ... 32-47

Starting a Session .. 32-47

Detecting Activity .. 32-48

Host Negotiation/Configuration ... 32-49

Software Clock Control ... 32-50

Wakeup from Hibernate State ... 32-50

Wakeup without Re-Enumeration 32-53

Data Transfer .. 32-55

Loading/Unloading Packets from Endpoints 32-56

DMA Master Channels ... 32-57

DMA Bus Cycles .. 32-59

Transferring Packets Using DMA ... 32-59

Individual Packet: Rx Endpoint 32-60

Individual Packet: TX Endpoint 32-61

Multiple Packets: Rx Endpoint 32-61

Multiple Packets: TX Endpoints 32-63

ADSP-BF54x Blackfin Processor Hardware Reference xxxv

Contents

USB OTG Registers .. 32-64

USB Function Address (USB_FADDR) Register 32-81

USB Power Management (USB_POWER) Register 32-82

USB Transmit Interrupt (USB_INTRTX) Register 32-85

USB Receive Interrupt (USB_INTRRX) Register 32-86

USB Transmit Interrupt Enable (USB_INTRTXE) Register . 32-87

USB Receive Interrupt Enable (USB_INTRRXE) Register 32-88

USB Common Interrupts (USB_INTRUSB) Register 32-89

USB Common Interrupt Enable (USB_INTRUSBE) Register 32-90

USB Frame Number (USB_FRAME) Register 32-91

USB Index (USB_INDEX) Register 32-91

USB Test Mode (USB_TESTMODE) Register 32-93

USB Global Interrupt (USB_GLOBINTR) Register 32-94

USB Global Control (USB_GLOBAL_CTL) Register 32-95

USB Tx Max Packet (USB_TX_MAX_PACKET) Register ... 32-97

USB Control/Status EP0 (USB_CSR0) Register 32-98

USB Tx Control/Status EPx (USB_TXCSR) Register 32-102

USB Rx Max Packet (USB_RX_MAX_PACKET) Register . 32-107

USB Rx Control/Status (USB_RXCSR) Register 32-109

USB Count 0 (USB_COUNT0) Register 32-115

USB Rx Byte Count EPx (USB_RXCOUNT) Register 32-116

USB Tx Type (USB_TXTYPE) Register 32-117

USB NAK Limit 0 (USB_NAKLIMIT0) Register 32-117

USB Tx Interval (USB_TXINTERVAL) Register 32-118

Contents

xxxvi ADSP-BF54x Blackfin Processor Hardware Reference

USB Rx Type (USB_RXTYPE) Register 32-119

USB Rx Interval (USB_RXINTERVAL) Register 32-120

USB Tx Byte Count EPx (USB_TXCOUNT) Register 32-121

USB Endpoint FIFO (USB_EPx_FIFO) Registers 32-122

USB OTG Device Control Register 32-122

USB OTG VBUS Interrupt Register 32-124

USB OTG VBUS Mask Register 32-126

USB Link Info (USB_LINKINFO) Register 32-127

USB VBUS Pulse Length (USB_VPLEN) Register 32-127

USB High-Speed EOF 1 (USB_HS_EOF1) Register 32-128

USB Full-Speed EOF 1 (USB_FS_EOF1) Register 32-128

USB Low-Speed EOF 1 (USB_LS_EOF1) Register 32-129

USB APHY Control 2 (USB_APHY_CNTRL2) Register ... 32-130

USB PLL OSC Control (USB_PLLOSC_CTRL) Registers 32-132

USB SRP Clock Divider (USB_SRP_CLKDIV) Register ... 32-133

USB DMA Interrupt (USB_DMA_INTERRUPT) Register 32-134

USB DMAx Control (USB_DMA_CONTROL) Registers . 32-135

USB DMAx Address Low Registers 32-137

USB DMAx Address HighRegisters 32-138

USB DMAx Count Low Registers 32-139

USB DMAx Count High Registers 32-140

Programming Examples .. 32-141

References .. 32-141

Glossary of USB Terms .. 32-141

ADSP-BF54x Blackfin Processor Hardware Reference xxxvii

Contents

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registers ... A-3

System Reset and Interrupt Control
Registers ... A-3

Watchdog Timer Registers .. A-3

Real-Time Clock Registers ... A-4

Timer Registers .. A-4

Ports Registers .. A-4

External Bus Interface Unit Registers .. A-4

DMA/Memory DMA Control Registers A-5

Handshake MDMA Control Registers .. A-5

Host DMA Registers .. A-5

PIXC Registers ... A-5

Rotary Counter Registers ... A-5

Security Registers ... A-6

Core Timer Registers .. A-6

Processor-Specific Memory Registers .. A-6

MXVR Registers .. A-7

Keypad Registers .. A-13

SDH Registers ... A-13

ATAPI Registers ... A-16

NAND Flash Controller Registers .. A-18

EPPI1 Registers ... A-19

EPPI2 Registers ... A-20

Contents

xxxviii ADSP-BF54x Blackfin Processor Hardware Reference

CANx Registers .. A-22

SPI0 Controller Registers .. A-32

SPI1 Controller Registers .. A-32

TWI Registers .. A-33

SPORT0 Controller Registers ... A-35

SPORT1 Controller Registers ... A-37

SPORT2 Controller Registers ... A-39

SPORT3 Controller Registers ... A-41

UART0 Controller Registers ... A-43

UART1 Controller Registers ... A-44

UART2 Controller Registers ... A-45

UART3 Controller Registers ... A-46

USB OTG Registers ... A-47

TEST FEATURES

JTAG Standard ... B-1

Boundary-Scan Architecture ... B-3

Instruction Register ... B-5

Public Instructions .. B-5

EXTEST – Binary Code 00000 ... B-5

SAMPLE/PRELOAD – Binary Code 10000 B-7

BYPASS – Binary Code 11111 .. B-7

IDCODE – Binary Code 00010 ... B-7

Boundary-Scan Register .. B-7

ADSP-BF54x Blackfin Processor Hardware Reference xxxix

 PREFACE

Thank you for purchasing and developing systems using an enhanced
Blackfin® processor from Analog Devices.

Contents of Two Volumes
Contents of Volume 1 and Volume 2 are listed below.

Volume 1 Volume 2

Introduction
Chip Bus Hierarchy
Memory
System Interrupts
Direct Memory Access
External Bus Interface Unit
Pixel Compositor
Host DMA Port
General-Purpose Ports
General-Purpose Timers
Core Timer
Watchdog Timer
Rotary Counter
Real-Time Clock
Security
OTP Memory
System Reset and Booting
Dynamic Power Management
System Design
System MMR Assignments

Introduction
Media Transceiver Module (MXVR)
Keypad Interface
Secure Digital Host
ATAPI Interface
NAND Flash Controller
Enhanced Parallel Peripheral Interfaces
CAN Modules
SPI-Compatible Port Controllers
Two-Wire Interface Controllers
SPORT Controllers
UART Port Controllers
USB OTG Controller
System MMR Assignments
Test Features

Purpose of This Manual

 xl ADSP-BF54x Blackfin Processor Hardware Reference

Purpose of This Manual
The ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2)
provides system interface peripheral architectural information about the
ADSP-BF542, ADSP-BF544, ADSP-BF547, ADSP-BF548, and
ADSP-BF549 processors. The companion volume, ADSP-BF54x Blackfin
Processor Hardware Reference (Volume 1 of 2) provides architectural infor-
mation about additional processor core interface features of these
processors. The architectural descriptions cover functional blocks, buses,
and ports, including all features and processes that they support. For pro-
gramming information, see the Blackfin Processor Programming Reference.
For timing, electrical, and package specifications, see the ADSP-BF54x
Blackfin Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate programming reference manual and data sheets)
that describe your target architecture.

ADSP-BF54x Blackfin Processor Hardware Reference xli

Preface

Manual Contents
This manual consists of:

• Chapter 20, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

• Chapter 21, “Media Transceiver Module (MXVR)”
Describes the media transceiver module (MXVR) of the processor.
This transceiver serves as the network interface to a media-oriented
system transport (MOST®) ring network.

• Chapter 22, “Keypad Interface”
Describes the keypad interface of the processor. This interface is a
16-pin interface module which is used to detect the key pressed in
a 8x8 (maximum) keypad matrix. The size of the input keypad
matrix is programmable.

• Chapter 23, “Secure Digital Host”
Describes the secure digital input/output cards (SDIO) interface of
the processor. The SDIO support includes support for the inter-
rupt and read/wait signals for SDIO.

• Chapter 24, “ATAPI Interface”
Describes the ATAPI interface of the processor. This interface is an
ATA/ATAPI-6 compliant host implementation. The ATA (AT
attachment) interface, also known as IDE (integrated drive elec-
tronics) interface, provides a simple interface to low cost,
non-volatile memories like hard-disk drives, DVD players,
CD-ROM players/writers, and Compact Flash and PC-Card
devices.

Manual Contents

 xlii ADSP-BF54x Blackfin Processor Hardware Reference

• Chapter 25, “NAND Flash Controller”
Describes the NAND flash controllers (NFC)—which are part of
the external bus interface—of the processor. NAND flash devices
provide high density, low cost memory.

• Chapter 26, “Enhanced Parallel Peripheral Interface”
Describes the enhanced parallel peripheral interfaces (EPPIx) of the
processor. The EPPI is a half-duplex, bidirectional port accommo-
dating up to 24 bits of data and is used for digital video and data
converter applications.

• Chapter 27, “CAN Module”
Describes the Controller Area Network (CANx) modules, which
are low bit rate serial interfaces intended for use in applications
where bit rates are typically up to 1M bit/s.

• Chapter 28, “SPI-Compatible Port Controllers”
Describes the serial peripheral interface (SPIx) ports that provide
an I/O interface to a variety of SPI-compatible peripheral devices.

• Chapter 29, “Two Wire Interface Controllers”
Describes the two-wire interface (TWIx) controllers, which allows
a device to interface to an Inter IC bus as specified by the Philips
I2C Bus Specification version 2.1 dated January 2000.

• Chapter 30, “SPORT Controllers”
Describes the independent, synchronous serial port controllers
(SPORT0, SPORT1, SPORT2, and SPORT3) that provide an I/O
interface to a variety of serial peripheral devices.

• Chapter 31, “UART Port Controllers”
Describes the universal asynchronous receiver/transmitter ports
(UART0, UART1, UART2 and UART3) that convert data
between serial and parallel formats. The UARTs support the
half-duplex, IrDA® SIR protocol as a mode-enabled feature.

ADSP-BF54x Blackfin Processor Hardware Reference xliii

Preface

• Chapter 32, “USB OTG Controller”
Describes the USB OTG interface of the processor. This interface
provides a low cost connectivity solution for consumer mobile
devices such as cell phones, digital still cameras and MP3 players,
allowing these devices to transfer data through a point-to-point
USB connection without the need for a PC host.

• Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

• Appendix B, “Test Features”
Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

What’s New in This Manual
This is Revision 0.4 of the ADSP-BF54x Blackfin Processor Hardware Ref-
erence. With each revision of this document, modifications and
corrections shall be based on errata reports against the manual.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com

Technical or Customer Support

 xliv ADSP-BF54x Blackfin Processor Hardware Reference

• E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

ADSP-BF54x Blackfin Processor Hardware Reference xlv

Preface

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

Blackfin (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF52x, ADSP-BF53x, ADSP-BF54x and ADSP-BF56x.

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
(8-bit, 16-bit, and 32-bit) processors. VisualDSP++ currently supports the
following TigerSHARC families: ADSP-TS101 and ADSP-TS20x.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x,
ADSP-2136x and ADSP-2137x.

Conventions

 xlvi ADSP-BF54x Blackfin Processor Hardware Reference

Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

SWRST software reset
register

Register names appear in UPPERCASE and a special typeface. The
descriptive names of registers are in mixed case and regular typeface.

TMR0E, RESET Pin names appear in UPPERCASE and a special typeface.
Active low signals appear with an OVERBAR.

DRx, I[3:0]
SMS[3:0]

Register, bit, and pin names in the text may refer to groups of registers
or pins:
A lowercase x in a register name (DRx) indicates a set of registers (for
example, DR2, DR1, and DR0).
A colon between numbers within brackets indicates a range of registers
or pins (for example, I[3:0] indicates I3, I2, I1, and I0; SMS[3:0] indi-
cates SMS3, SMS2, SMS1, and SMS0).

0xabcd, b#1111 A 0x prefix indicates hexadecimal; a b# prefix indicates binary.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for device
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-BF54x Blackfin Processor Hardware Reference xlvii

Preface

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses (see Table P-1).

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

 Examples of these conventions are shown in Figure P-1.

Conventions

 xlviii ADSP-BF54x Blackfin Processor Hardware Reference

Table P-1. Short Form of Register Names

Pattern Description Examples

TIMERx_CONFIG The x refers to multiple instances of the
peripheral.

TIMER0_CONFIG
TIMER1_CONFIG
TIMER2_CONFIG

SIC_IARn The n refers to multiple registers within the
same peripheral or within the same core
component.

SIC_IAR2
ICPLB_DATA15

SPORTx_TCRn The combination of x and n indicates mul-
tiple instances of the peripheral and multi-
ple registers within the same peripheral.

SPORT0_TCR0
SPORT1_TCR1

MDMA_yy_CONFIG The yy represents MemDMA stream 0 or 1,
either destination or source.

MDMA_D0_CONFIG
MDMA_S0_CONFIG
MDMA_D1_CONFIG
MDMA_S1_CONFIG

ADSP-BF54x Blackfin Processor Hardware Reference xlix

Preface

Figure P-1. Register Diagram Examples

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PF1 pin to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin
1 - Sample UART RX pin

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

Timerx:
See Appendix for
correct register
addresses

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

Conventions

 l ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 20-1

20 INTRODUCTION

The ADSP-BF54x processors are new members of the Blackfin processor
family that offer significant high performance and low power while retain-
ing their ease-of-use benefits. The ADSP-BF54x processors are completely
pin compatible, differing only in their performance and on-chip memory,
mitigating many risks associated with new product development but
allowing the possibility to scale up or down based on specific application
demands.

This chapter includes the following sections:

• “Peripherals” on page 20-3

• “Memory Architecture” on page 20-6

• “DMA Support” on page 20-11

• “External Bus Interface Unit” on page 20-14

• “Ports” on page 20-15

• “Two-Wire Interfaces” on page 20-16

• “Controller Area Network” on page 20-17

• “Enhanced Parallel Peripheral Interface (EPPI)” on page 20-18

• “SPORT Controllers” on page 20-20

• “Serial Peripheral Interface (SPI) Ports” on page 20-22

• “Timers” on page 20-22

20-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “UART Ports” on page 20-23

• “USB On-The-Go, Dual-Role Device Controller” on page 20-24

• “ATA/ATAPI–6 Interface” on page 20-25

• “Keypad Interface” on page 20-25

• “Secure Digital (SD)/SDIO Controller” on page 20-26

• “Rotary Counter and Thumbwheel Interface” on page 20-27

• “Security” on page 20-27

• “Media Transceiver (MXVR) MAC Layer” on page 20-29

• “Real-Time Clock” on page 20-30

• “Watchdog Timer” on page 20-31

• “Clock Signals” on page 20-32

• “Dynamic Power Management” on page 20-32

• “Voltage Regulation” on page 20-34

• “Boot Modes” on page 20-35

• “Instruction Set Description” on page 20-35

• “Development Tools” on page 20-36

ADSP-BF54x Blackfin Processor Hardware Reference 20-3

Introduction

Peripherals
The processor system peripherals include combinations of:

• High speed USB On-the-Go (OTG) with integrated PHY

• SD/SDIO controller

• ATA/ATAPI-6 controller

• Up to four synchronous serial ports (SPORTs)

• Up to three serial peripheral interfaces (SPI-Compatible)

• Up to four UARTs, two with automatic hardware flow control

• Up to two CAN (controller area network) 2.0B interfaces

• Up to two TWI (2-wire interface) controllers

• 8- or 16-bit asynchronous host DMA interface

• Multiple enhanced parallel peripheral interfaces (EPPI), supporting
ITU-R BT.656 video formats and 18/24-bit LCD connections

• Video data compositor/blender

• Up to eleven 32-bit timers/counters with PWM support

• Real-time clock (RTC) and watchdog timer

• Up/down counter with support for rotary encoder

• Up to 152 general-purpose I/O (GPIOs)

• On-chip PLL capable of 0.5x to 64x frequency multiplication

• Debug/JTAG interface

Peripherals

20-4 ADSP-BF54x Blackfin Processor Hardware Reference

These peripherals are connected to the core through several high band-
width buses, as shown in Figure 20-1.

All of the peripherals, except for general-purpose I/O, CAN, TWI, RTC,
and timers, are supported by a flexible DMA structure. There are also two
separate memory DMA channels dedicated to data transfers between the
processor’s memory spaces, which include external DDR1 SDRAM and
asynchronous memory. Multiple on-chip buses provide enough band-
width to keep the processor core running even when there is also activity
on all of the on-chip and external peripherals.

ADSP-BF54x Blackfin Processor Hardware Reference 20-5

Introduction

Figure 20-1. ADSP-BF54x Processor Block Diagram

RTC

HOSTDP

JTAG TEST AND
EMULATION

UART (2-3)

B

EXTERNAL PORT
NOR, DDR1 CONTROL

SPI (2)

SPORT (0-1)

SD / SDIO

WATCHDOG
TIMER

BOOT
ROM

32

16

PIXEL
COMPOSITOR

VOLTAGE
REGULATOR

EPPI (0-2)

SPORT (2-3)

SPI (0-1)

UART (0-1)

P
O

R
T

S

PAB

USB

DMAC0
(16-BIT)

DMAC1
(32-BIT)

INTERRUPTS

L2
SRAM

L1
INSTR ROM

L1
INSTR SRAM

L1
DATA SRAM

DAB1

DAB0

OTP

16 16

DDR1 ASYNC

16

NAND FLASH
CONTRLOLLER

ATAPI

DCB 32 EAB 64 DEB 32

P
O

R
T

S

CAN (0-1)

TWI (0-1)

TIMERS
(0-10)

KEYPAD

COUNTER

MXVR

CCLK
DOMAIN

SCLK DOMAIN
(ALL OUTSIDE CCLK)

0

1

2
0

1

2

3

MAB

DCB2

DEB2

DCB3

DEB1

DCB1

DCB0

DEB0

Memory Architecture

20-6 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency, on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 20-1 shows the memory comparison for the
ADSP-BF54x processors.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
external bus interface unit (EBIU), provides expansion with double-data
SDRAM (DDR1), flash memory, and SRAM, optionally accessing up to
516M bytes of physical memory.

Table 20-1. Memory Configurations

Memory
Configurations
(K Bytes)

ADSP-BF549 ADSP-BF548 ADSP-BF547 ADSP-BF544 ADSP-BF542

L1 Instruction
SRAM/Cache

16 16 16 16 16

L1 Instruction SRAM 48 48 48 48 48

L1 Data SRAM/Cache 32 32 32 32 32

L1 Data SRAM 32 32 32 32 32

L1 Scratchpad SRAM 4 4 4 4 4

L1 ROM1

1 This ROM is not customer configurable.

64 64 64 64 64

L2 128 128 128 64 –

L3 Boot ROM1 4 4 4 4 4

OTP Memory 8 8 8 8 8

ADSP-BF54x Blackfin Processor Hardware Reference 20-7

Introduction

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Certain models of the ADSP-BF54x processor also include an L2 SRAM
memory array which provides up to 128K bytes of high speed SRAM
operating at one half the frequency of the core, and slightly longer latency
than the L1 memory banks. The L2 memory is a unified instruction and
data memory and can hold any mixture of code and data required by the
system design.

Internal Memory
The processor has several blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

• L1 instruction ROM, operating at full processor speed. This ROM
is not customer configurable.

• L2 SRAM, providing up to 128K bytes of unified instruction and
data memory, operating at one half the frequency of the core.

• 4K boot ROM that can be seen as L3 memory. It operates at full
SCLK rate.

Memory Architecture

20-8 ADSP-BF54x Blackfin Processor Hardware Reference

External Memory
Through the external bus interface unit (EBIU) the ADSP-BF54x proces-
sors provide glueless connectivity to external 16-bit wide memories, such
as DDR SDRAM, mobile DDR, SRAM, NOR flash, NAND flash, and
FIFO devices. To provide the best performance, the bus system of the
DDR interface is completely separate from the other parallel interfaces.

The DDR memory controller can gluelessly manage up to two banks of
double-rate synchronous dynamic memory (DDR1 SDRAM). The 16-bit
wide interface operates at SCLK frequency enabling maximum throughput
of 532M byte/s. The DDR or Mobile DDR controller is augmented with
a queuing mechanism that performs efficient bursts onto the DDR. The
controller is an industry standard DDR SDRAM controller with each
bank supporting from 64M bit to 512M bit device sizes and 4-, 8-, or
16-bit widths. The controller supports up to 512M bytes in one bank, but
the total in two banks is also limited to 512M bytes. Each bank is inde-
pendently programmable and is contiguous with adjacent banks regardless
of the sizes of the different banks or their placement.

Traditional 16-bit asynchronous memories, such as SRAM, EPROM, and
flash devices, can be connected to one of the four 64M byte asynchronous
memory banks, represented by four memory select strobes. Alternatively,
these strobes can function as bank-specific read or write strobes preventing
further glue logic when connecting to asynchronous FIFO devices.

In addition, the external bus can connect to advanced flash device tech-
nologies, such as:

• Page-mode NOR flash devices

• Synchronous burst-mode NOR flash devices

• NAND flash devices

ADSP-BF54x Blackfin Processor Hardware Reference 20-9

Introduction

NAND Flash Controller (NFC)

The ADSP-BF54x provides a NAND flash controller (NFC) as part of the
external bus interface. NAND flash devices provide high-density, low-cost
memory. However, NAND flash devices also have long random access
times, invalid blocks, and lower reliability over device lifetimes. Because of
this, NAND flash is often used for read-only code storage. In this case, all
DSP code can be stored in NAND flash and then transferred to a faster
memory (such as DDR or SRAM) before execution. Another common use
of NAND flash is for storage of multimedia files or other large data seg-
ments. In this case, a software file system may be used to manage reading
and writing of the NAND flash device. The file system selects memory
segments for storage with the goal of avoiding bad blocks and equally dis-
tributing memory accesses across all address locations. Hardware features
of the NFC include:

• Support for page program, page read, and block erase of NAND
flash devices, with accesses aligned to page boundaries

• Error checking and correction (ECC) hardware that facilitates error
detection and correction

• A single 8-bit or 16-bit external bus interface for commands,
addresses, and data

• Support for SLC (single-level cell) NAND flash devices unlimited
in size, with page sizes of 256 and 512 bytes. Larger page sizes can
be supported in software

• Capability of releasing external bus interface pins during long
accesses

• Support for internal bus requests of 16 or 32 bits

• DMA engine to transfer data between internal memory and
NAND flash device

Memory Architecture

20-10 ADSP-BF54x Blackfin Processor Hardware Reference

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

One-Time-Programmable (OTP) Memory
The ADSP-BF54x processor also includes an on-chip OTP memory array
which provides 64K bits of non-volatile memory that can be programmed
by the developer only one time. It includes the array and logic to support
read access and programming. A mechanism for error correction is pro-
vided. Additionally, its pages can be write protected.

The OTP is not part of the Blackfin linear memory map. OTP memory is
not accessed directly using the Blackfin memory map, rather, it is accessed
through four 32-bit registers (OTP_DATA3–0) which act as the OTP mem-
ory read/write buffer.

This memory is organized into 512 pages, each comprised of 128 bits and
equally separated into two distinct areas with privileged access dependent
upon modes of operation when security features are utilized. Approxi-
mately 400 pages are available for developer use. The remaining 100 pages
are utilized for page protection bits, error correction, and ADI factory
reserved areas. One area is read/write accessible at all times (public OTP
memory). The second area maintains privileged access and can only be
accessed (read/write) upon entry into secure mode when security features
are utilized (private OTP memory).

ADSP-BF54x Blackfin Processor Hardware Reference 20-11

Introduction

OTP memory provides a means to store public keys in public OTP mem-
ory or secrets, such as private keys or symmetric keys, in private OTP
memory. One page of the public OTP memory is initialized in the Analog
Devices factory with a unique chip ID.

This OTP memory provides a means to store public and private cipher
keys as well as chip, customer, and factory identification data.

DMA Support
ADSP-BF54x processors have multiple, independent DMA channels that
support automated data transfers with minimal overhead for the processor
core. DMA transfers can occur between the ADSP-BF54x processor’s
internal memories and any of its DMA-capable peripherals. Additionally,
DMA transfers can be accomplished between any of the DMA-capable
peripherals and external devices connected to the external memory inter-
faces, including DDR and asynchronous memory controllers.

While the USB controller and MXVR have their own dedicated DMA
controllers, the other on-chip peripherals are managed by two centralized
DMA controllers, called DMAC1 (32-bit) and DMAC0 (16-bit). Both
operate in the SCLK domain. Each DMA controller manages twelve inde-
pendent DMA channels. The DMAC1 controller masters high-bandwidth
peripherals over a dedicated 32-bit DMA access bus (DAB32). Similarly,
the DMAC0 controller masters most of the serial interfaces over the
16-bit DAB16 bus. Individual DMA channels have fixed access priority
on the DAB buses. DMA priority of peripherals is managed by flexible
peripheral-to-DMA channel assignment.

All four DMA controllers use the same 32-bit DCB bus to exchange data
with L1 memory. This includes L1 ROM, but excludes scratchpad mem-
ory. Fine granulation of L1 memory and special DMA buffers minimize
potential memory conflict, if the L1 memory is accessed by the core simul-
taneously. Similarly, there are dedicated DMA buses between the

DMA Support

20-12 ADSP-BF54x Blackfin Processor Hardware Reference

DMAC1, DMAC0, and USB DMA controllers and the external bus inter-
face unit (EBIU) that arbitrates DMA accesses to external memories and
boot ROM.

The ADSP-BF54x processor DMA controllers support both one-dimen-
sional (1D) and two-dimensional (2D) DMA transfers. DMA transfer
initialization can be implemented from registers or from sets of parameters
called descriptor blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to ±32K elements. Furthermore, the column step size can be less than
the row step size, allowing implementation of interleaved data streams.
This feature is especially useful in video applications where data can be
de-interleaved on-the-fly.

Examples of DMA types supported by the ADSP-BF54x processor DMA
controller include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1D or 2D DMA using a linked list of descriptors

• 2D DMA using an array of descriptors, specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, both the DMAC1
and the DMAC0 controllers feature two memory DMA channel pairs for
transfers between the various memories of the ADSP-BF54x processor sys-
tem. This enables transfers of blocks of data between any of the
memories—including external DDR, ROM, SRAM, and flash memory—
with minimal processor intervention. Like peripheral DMAs, memory
DMA transfers can be controlled by a very flexible descriptor-based meth-
odology or by a standard register-based autobuffer mechanism.

ADSP-BF54x Blackfin Processor Hardware Reference 20-13

Introduction

The memory DMA channels of the DMAC1 controller (MDMA2 and
MDMA3) can be optionally controlled by the external DMA request
input pins. When used in conjunction with the external bus interface unit
(EBIU) this handshaked memory DMA (HMDMA) scheme can be used
to efficiently exchange data with block-buffered or FIFO-style devices
connected externally. Users can select whether the DMA request pins con-
trol the source or the destination side of the memory DMA. It allows
control of the number of data transfers for memory DMA. The number of
transfers per edge is programmable. This feature can be programmed to
allow memory DMA to have an increased priority on the external bus rel-
ative to the core.

Host DMA Interface
The host DMA port (HOSTDP) facilitates a host device external to the
ADSP-BF54x to be a DMA master and transfer data back and forth. The
host device always masters the transactions and the processor is always a
DMA slave device.

The HOSTDP port is enabled through the peripheral access bus. Once
enabled, the DMA is controlled by the external host. The external host
can then program the DMA to send/receive data to any valid internal and
external memory location. The HOSTDP port controller includes the fol-
lowing features:

• Allows an external master to configure DMA read/write data trans-
fers and read port status

• Uses an asynchronous memory protocol for its external interface

• Allows 8- or 16-bit external data interface to the host device

• Supports half-duplex operation

• Supports Little/Big Endian data transfers

External Bus Interface Unit

20-14 ADSP-BF54x Blackfin Processor Hardware Reference

• Acknowledge mode allows flow control on host transactions

• Interrupt mode guarantees a burst of FIFO depth host transactions

External Bus Interface Unit
Through the external bus interface unit (EBIU), the ADSP-BF54x proces-
sors provide glueless connectivity to external 16-bit wide memories, such
as DDR SDRAM, SRAM, NOR flash, NAND flash, and FIFO devices.
To provide the best performance, the bus system of the DDR interface is
completely separate from the other parallel interfaces.

DDR SDRAM Controller
The DDR memory controller can gluelessly manage up to two banks of
double-rate synchronous dynamic memory (DDR1 SDRAM). The 16-bit
interface operates at SCLK frequency enabling a maximum throughput of
532 Mbyte/s. The DDR controller is augmented with a queuing mecha-
nism that performs efficient bursts onto the DDR. The controller is an
industry standard DDR SDRAM controller.

The maximum size of supported DDR SDRAM is 512M bits (64MByte).
Most of these memory devices can be configured as x4, x8 and x16. With
x16, one memory chip is configured per “external” bank; with x8 config-
ure two chips; and four chips with x4 configuration. Thus with x4
configuration, 64M byte x 4 = 265M byte per external bank can be sup-
ported. ADSP-BF54x Blackfin processor’s two external banks provide
support for a maximum of 2 x 256M bytes = 512M bytes.

Each bank is independently programmable and is contiguous with adja-
cent banks regardless of the sizes of the different banks or their placement.

ADSP-BF54x Blackfin Processor Hardware Reference 20-15

Introduction

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Ports
Because of their rich set of peripherals, the ADSP-BF54x processors group
the many peripheral signals to ten ports—referred to as Port A to Port J.
Most ports contain 16 pins, a few have less. Many of the associated pins
are shared by multiple signals. The ports function as multiplexer controls.
Every port has its own set of memory-mapped registers to control port
multiplexing and GPIO functionality.

General-Purpose I/O (GPIO)
Every pin in Port A to Port J can function as a GPIO pin resulting in a
GPIO pin count of up to 154. While it is unlikely that all GPIOs will be
used in an application, as all pins have multiple functions, the richness of
GPIO functionality guarantees nonrestrictive pin usage. Every pin that is
not used by any peripheral function can be configured in GPIO mode on
an individual basis.

After reset, all pins are in GPIO mode by default. Neither GPIO output
nor input drivers are active by default. Unused pins can be left uncon-
nected. GPIO data and direction control registers provide flexible

Two-Wire Interfaces

20-16 ADSP-BF54x Blackfin Processor Hardware Reference

write-one-to-set and write-one-to-clear mechanisms so that independent
software threads do not need to protect against each other because of
expensive read-modify-write operations when accessing the same port.

Two-Wire Interfaces
The two-wire Interface (TWI) is fully compatible with the widely used
I2C bus standard. The TWI was designed with a high level of functional-
ity and is compatible with multimaster, multislave bus configurations. To
preserve processor bandwidth, the TWI controllers can be set up and a
transfer initiated with interrupts only to service FIFO buffer data reads
and writes. Protocol-related interrupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers
many variants of I2C. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multimaster data arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lockup

ADSP-BF54x Blackfin Processor Hardware Reference 20-17

Introduction

• Input filter for spike suppression

• Serial camera control bus support as specified in the OmniVision
Serial Camera Control Bus (SCCB) Functional Specification version
2.1

Controller Area Network
The ADSP-BF54x processor offers up to two CAN controllers that are
communication controllers that implement the controller area network
(CAN) 2.0B (active) protocol. This protocol is an asynchronous commu-
nications protocol used in both industrial and automotive control systems.
The CAN protocol is well suited for control applications due to its capa-
bility to communicate reliably over a network since the protocol
incorporates CRC checking, message error tracking, and fault node
confinement.

The ADSP-BF54x CAN controllers offer:

• 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for
receive or transmit)

• Dedicated acceptance masks for each mailbox

• Additional data filtering on first two bytes

• Support for both the standard (11-bit) and extended (29-bit) iden-
tifier (ID) message formats

• Support for remote frames

• Active or passive network support

• CAN wakeup from hibernation state (lowest static power con-
sumption mode)

• Interrupts, including: TX complete, RX complete, error, global

Enhanced Parallel Peripheral Interface (EPPI)

20-18 ADSP-BF54x Blackfin Processor Hardware Reference

The electrical characteristics of each network connection are very demand-
ing, so the CAN interface is typically divided into two parts: a controller
and a transceiver. This allows a single controller to support different driv-
ers and CAN networks. The ADSP-BF54x CAN module represents only
the controller part of the interface. The controller interface supports con-
nection to 3.3V high speed, fault-tolerant, single-wire transceivers.

Enhanced Parallel Peripheral Interface
(EPPI)

The ADSP-BF54x processor provides multiple enhanced parallel periph-
eral interfaces (EPPIs) - 18-/24-bit PPI0 with LCD, 16-bit PPI1, and
8-bit PPI2. The EPPI supports the direct connection to active TFT LCDs,
parallel A/D and D/A converters, video encoders and decoders, image sen-
sor modules and other general-purpose peripherals.

The following features are supported in the EPPI module:

• Programmable data length: 8, 10, 12, 14, 16, 18, or 24 bits per
clock cycle

• PPI0 can connect to 18-bit and 24-bit RGB LCD displays. PPI1
can support up to 16-bit data, or be split into two independent
8-bit EPPIs (PPI1/PPI2)

• PPI0 can be configured for data lengths of 8, 10, 12, 14, 16, 18 or
24 bits. PPI1 can be configured for data lengths of 8, 10, 12, 14, or
16 bits. PPI2 supports only 8-bit data

• Bidirectional and half-duplex port

• PPIx_CLK can be provided externally or can be generated internally

• Various framed and nonframed operating modes. Frame syncs can
be generated internally or can be supplied by an external device.

ADSP-BF54x Blackfin Processor Hardware Reference 20-19

Introduction

• Various general-purpose modes with one frame syncs, two frame
syncs, three frame syncs and zero frame sync modes for both
receive and transmit

• ITU-656 status word error detection and correction for ITU-656
receive modes

• ITU-656 preamble and status word decode

• Three different modes for ITU-656 receive modes: active video
only, vertical blanking only, and entire field mode

• Horizontal and vertical windowing for GP 2 and 3 FS modes

• Optional packing and unpacking of data to/from 32 bits from/to 8,
16 and 24 bits. If packing/unpacking is enabled, endianness can be
altered to change the order of packing/unpacking of bytes/words

• Optional sign extension or zero fill for receive modes

• During receive modes, alternate even or odd data sample can be fil-
tered out

• Programmable clipping of data values for 8-bit transmit modes

• RGB888 can be converted to RGB666 or RGB565 for transmit
modes

• Various de-interleaving/interleaving modes for receiving/transmit-
ting 4:2:2 YCrCb data

• FIFO watermarks and urgent DMA features

• Clock gating by an external device asserting the clock gating con-
trol signal

SPORT Controllers

20-20 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT Controllers
The ADSP-BF54x processor incorporates up to four dual-channel syn-
chronous serial ports (SPORT0, SPORT1, SPORT2, SPORT3) for serial
and multiprocessor communications. The SPORTs support these features:

• I2S capable operation

Bidirectional operation. Each SPORT has two sets of independent
transmit and receive pins, which enable eight channels of I2S stereo
audio.

• Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

ADSP-BF54x Blackfin Processor Hardware Reference 20-21

Introduction

• Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single-cycle overhead

Each SPORT can automatically receive and transmit multiple buff-
ers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Ports

20-22 ADSP-BF54x Blackfin Processor Hardware Reference

Serial Peripheral Interface (SPI) Ports
The ADSP-BF54x processor has up to three SPI-compatible ports that
enable the processor to communicate with multiple SPI-compatible
devices.

Each SPI port uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and three SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured, general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

The SPI port’s baud rate and clock phase/polarities are programmable. It
has an integrated DMA controller, configurable to support either transmit
or receive data streams. The SPI’s DMA controller can only service unidi-
rectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers
There are up to two timer units in the ADSP-BF54x processors. Depend-
ing on the processor, one unit provides eight general-purpose
programmable timers, and the other unit provides three of them. Each
timer has an external pin that can be configured either as a pulse width
modulator (PWM) or timer output, as an input to clock the timer, or as a
mechanism for measuring pulse widths and periods of external events.

ADSP-BF54x Blackfin Processor Hardware Reference 20-23

Introduction

The timer units can be used in conjunction with the four UARTs and the
CAN controllers to measure the width of the pulses in the data stream to
provide a software auto-baud detect function for the respective serial
channels.

The timers can generate interrupts to the processor core providing peri-
odic events for synchronization, either to the system clock or to a count of
external signals.

In addition to the general-purpose programmable timers, another timer is
also provided by the processor core. This extra timer is clocked by the
internal processor clock and is typically used as a system tick clock for gen-
eration of operating system periodic interrupts.

UART Ports
The ADSP-BF54x processor provides four full-duplex Universal Asyn-
chronous receiver/transmitter (UART) ports. Each UART port provides a
simplified UART interface to other peripherals or hosts, providing
half-duplex, DMA-supported, asynchronous transfers of serial data. The
UART ports include support for five to eight data bits; one or two stop
bits; and none, even, or odd parity. The UART ports support two modes
of operation:

• Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double buffered on both
transmit and receive.

• Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTs have two

USB On-The-Go, Dual-Role Device Controller

20-24 ADSP-BF54x Blackfin Processor Hardware Reference

dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-
nels because of their relatively low service rates.

The baud rate, serial data format, error code generation and status, and
interrupts of the UARTs can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

UART1 and UART3 feature a pair of UARTx_RTS (request to send) and
UARTx_CTS (clear to send) signals for hardware flow purposes. The trans-
mitter hardware is automatically prevented from sending further data
when the UARTx_CTS input is deasserted. The receiver can automatically
deassert its UARTx_RTS output when the enhanced receive FIFO exceeds a
certain high water level.

The capabilities of the UART ports are further extended with support for
the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

USB On-The-Go, Dual-Role Device
Controller

The USB On-The-Go (OTG) Duel-Role Device controller (USBDRC)
provides a low-cost connectivity solution for consumer mobile devices
such as cell phones, digital still cameras and MP3 players, allowing these
devices to transfer data using a point-to-point USB connection without

ADSP-BF54x Blackfin Processor Hardware Reference 20-25

Introduction

the need for a PC host. The USBDRC module can operate in a traditional
USB peripheral-only mode as well as the host mode presented in the
on-the-go (OTG) supplement to the USB 2.0 specification. In host mode,
the USB module supports transfers at high-speed (480 Mbps), full-speed
(12 Mbps), and low-speed (1.5 Mbps) rates. Peripheral-only mode sup-
ports the high and full speed transfer rates.

ATA/ATAPI–6 Interface
The ATA/ATAPI interface connects to CD/DVD and HDD drives and is
ATAPI-6 compliant. The controller implements the peripheral I/O mode,
the multi-DMA mode, and the ultra DMA mode. The DMA modes
enable faster data transfer and reduced host management. The ATAPI
controller supports PIO, multi-DMA, and ultra DMA ATAPI accesses.
Key features include:

• Supports PIO modes 0, 1, 2, 3, and 4

• Supports multiword DMA modes 0, 1, 2and

• Supports ultra DMA modes 0, 1, 2, 3, 4, and 5 (up to UDMA 100)

• Programmable timing for ATA interface unit

• Supports CompactFlash card using true IDE mode

Keypad Interface
The keypad interface is a 16-pin interface module that is used to detect
the key pressed in a 8x8 (maximum) keypad matrix. The size of the input
keypad matrix is programmable. The interface is capable of filtering the
bounce on the input pins, which is common in keypad applications. The

Secure Digital (SD)/SDIO Controller

20-26 ADSP-BF54x Blackfin Processor Hardware Reference

width of the filtered bounce is programmable. The keypad interface mod-
ule is capable of generating an interrupt request to the core once it
identifies that any key is pressed.

The interface supports a press-release-press mode and infrastructure for a
press-hold mode. The former mode identifies a press, release, and press of
a key as two consecutive presses of the same key, where the latter mode
checks the input key’s state in periodic intervals to determine the number
of times the same key is meant to be pressed. Key features include:

• Maximum of 8x8 keypad matrix

• Programmable input keypad matrix size

• Debounce filter on input signals

• Programmable debounce filter width

• Press-release-press mode supported

• Infrastructure for press-hold mode present

• Interrupt on any key pressed capability

• Multiple key pressed detection and limited multiple key resolution
capability

Secure Digital (SD)/SDIO Controller
The SD/SDIO controller is a serial interface that stores data at a rate of up
to 10 M bytes per second using a 4-bit data line. The interface runs at 25
MHz.

The SD/SDIO controller supports the SD memory mode only. The inter-
face supports all the power modes and performs error checking by CRC
(Cyclical Redundancy Checking).

ADSP-BF54x Blackfin Processor Hardware Reference 20-27

Introduction

Rotary Counter and Thumbwheel
Interface

A 32-bit up/down counter is provided that can sense 2-bit quadrature or
binary codes as typically emitted by industrial drives or manual thumb
wheels. The counter can also operate in general-purpose up/down count
modes. Then, count direction is either controlled by a level-sensitive input
pin or by two edge detectors.

A third input can provide flexible zero marker support and can alterna-
tively be used to input the push-button signal of thumb wheels. All three
pins have a programmable debouncing circuit.

An internal signal forwarded to the timer unit enables one timer to mea-
sure the intervals between count events. Boundary registers enable
auto-zero operation or simple-system warning by interrupts when pro-
grammable count values are exceeded.

Security
The ADSP-BF54x Blackfin processor provides security features (Blackfin
Lockbox™ Secure Technology) that enable customer applications to use
secure protocols consisting of code authentication and execution of code
within a secure environment. Implementing secure protocols on Blackfin

Security

20-28 ADSP-BF54x Blackfin Processor Hardware Reference

processors involves a combination of hardware and software components.
Together these components protect secure memory spaces and restrict
control of security features to authenticated developer code.

• Blackfin Lockbox Secure Technology incorporates a secure hard-
ware platform for confidentiality and integrity protection of secure
code and data with authenticity maintained by secure software.

• This secure platform provides:

• A secure execution mode

• Secure storage for on-chip keys

• On-chip secure ROM

• Secure RAM

• Access to code and data in the secure domain is monitored by the
hardware and any unauthorized access to the secure domain is
prevented.

• The secure ROM code establishes the root of trust for the secure
software in the system.

• The secure RAM provides integrity protection and confidentiality
for authenticated code and data.

• User-defined cipher key(s) and ID(s) and can be securely stored in
the on-chip OTP memory.

• Every processor ships from the ADI factory with a unique chip ID
value stored in publicly accessible OTP memory area.

ADSP-BF54x Blackfin Processor Hardware Reference 20-29

Introduction

Media Transceiver (MXVR) MAC Layer
The ADSP-BF54x Blackfin processor provides a media transceiver
(MXVR) MAC layer, allowing the processor to be connected directly to a
MOST®1 network through just an FOT or electrical PHY.

The MXVR is fully compatible with the industry standard standalone
MOST controller devices, supporting 22.579 Mbps or 24.576 Mbps data
transfers. It offers faster lock times, greater jitter immunity and a sophisti-
cated DMA scheme for data transfers. The high speed internal interface to
the core and L1 memory allows the full bandwidth of the network to be
utilized. The MXVR can operate as either the network master or as a net-
work slave.

The MXVR supports synchronous data, asynchronous packets, and con-
trol messages using dedicated DMA channels which operate
autonomously from the processor core moving data to and from L1 mem-
ory. Synchronous data is transferred to or from the synchronous data
physical channels on the MOST bus through eight programmable DMA
channels. The synchronous data DMA channels can operate in various
modes including modes which trigger DMA operation when data patterns
are detected in the receive data stream. Two DMA channels support asyn-
chronous traffic and another two DMA channels support control message
traffic.

Interrupts are generated when a user defined amount of synchronous data
is sent or received by the processor or when asynchronous packets or con-
trol messages have been sent or received.

The MXVR peripheral can wake up the ADSP-BF54x processor from
sleep mode when a wakeup preamble is received over the network or based
on any other MXVR interrupt event. Additionally, detection of network
activity by the MXVR can be used to wake up the ADSP-BF54x processor

1 MOST is a registered trademark of Standard Microsystems, Corp.

Real-Time Clock

20-30 ADSP-BF54x Blackfin Processor Hardware Reference

from sleep mode or the hibernate state. These features allow the
ADSP-BF54x to operate in a low-power state when there is no network
activity or when data is not currently being received or transmitted by the
MXVR.

The MXVR clock is provided through a dedicated external crystal or crys-
tal oscillator. The frequency of the external crystal or the crystal oscillator
can be 256Fs, 384Fs, 512Fs, or 1024Fs for Fs = 38 kHz, 44.1 kHz, or
48 kHz. If using a crystal to provide the MXVR clock, use a parallel-reso-
nant, fundamental mode, microprocessor-grade crystal.

Real-Time Clock
The processor’s real-time clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low-power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

ADSP-BF54x Blackfin Processor Hardware Reference 20-31

Introduction

The stopwatch function counts down from a programmed value, with one
second resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode upon generation of any RTC wakeup event. An RTC wakeup event
can also wake up the on-chip internal voltage regulator from a pow-
ered-down state, and the RTC is the only peripheral capable of waking the
processor from deep sleep mode.

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the core and the ADSP-BF54x processor peripherals, but it does not reset
the dynamic power management controller. After a reset, software can
determine if the watchdog was the source of the hardware reset by interro-
gating a status bit in the watchdog control register.

The timer is clocked by the system clock (SCLK).

Clock Signals

20-32 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip phase locked loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (0.5x to
64x) multiplication factor (bounded by specified minimum and maximum
VCO frequencies). The default multiplier is 8x, but it can be modified by a
software instruction sequence. On-the-fly frequency changes can be made
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

ADSP-BF54x Blackfin Processor Hardware Reference 20-33

Introduction

Full On Mode (Maximum Performance)
In the full on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
maximum performance can be achieved. The processor core and all
enabled peripherals run at full speed.

Active Mode (Moderate Dynamic Power Savings)
In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and L2 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Dynamic Power Savings)
The sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically, an external event or RTC activity
wakes up the processor. When in the sleep mode, assertion of any inter-
rupt enabled in the SIC_IWRx register causes the processor to sense the
value of the bypass bit (BYPASS) in the PLL control register (PLL_CTL). If
bypass is disabled, the processor transitions to the full on mode. If bypass
is enabled, the processor transitions to the active mode.

When in the sleep mode, system DMA access to L1 and L2 memory is not
supported.

Voltage Regulation

20-34 ADSP-BF54x Blackfin Processor Hardware Reference

Deep Sleep Mode (Maximum Dynamic Power
Savings)

The deep sleep mode maximizes dynamic power savings by disabling the
processor core and synchronous system clocks (CCLK and SCLK). Asynchro-
nous systems, such as the RTC, may still be running, but cannot access
internal resources or external memory. This powered-down mode can only
be exited by assertion of the reset interrupt or by an asynchronous inter-
rupt generated by the RTC. When in deep sleep mode, an RTC
asynchronous interrupt causes the processor to transition to the active
mode. Assertion of RESET while in deep sleep mode causes the processor to
transition to the full on mode.

Hibernate State (Maximum Power Savings)
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate
internal voltage levels. The voltage regulation circuit figure in the data
sheet shows the typical external components required to complete the
power management system. The regulator controls the internal logic volt-
age levels and is programmable with the voltage regulator control register
(VR_CTL) in increments of 50 mV. To reduce standby power consumption,
the internal voltage regulator can be programmed to remove power to the
processor core while keeping I/O power supplied. While in this state,
VDDEXT can still be applied, eliminating the need for external buffers.

ADSP-BF54x Blackfin Processor Hardware Reference 20-35

Introduction

The regulator can also be disabled and bypassed at the user’s discretion.
For more information, see the voltage regulator circuit diagram in the
ADSP-BF54x Blackfin Embedded Processor data sheet.

Boot Modes
When the RESET input signal releases, the processor starts fetching and
executing instructions from the on-chip boot ROM at address
0xEF00 0000.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format, called the boot stream. A
boot stream consists of multiple blocks of data as well as special com-
mands that instruct the boot kernel on how to initialize on-chip L1 and
L2 SRAM memories as well as off-chip volatile memories.

The boot kernel processes the boot stream block-by-block until it is
instructed by a special command to terminate the procedure and to jump
to the application’s programmable start address, which traditionally is at
0xFFA0 0000 in on-chip L1 memory. This process is called booting.

Instruction Set Description
The ADSP-BF54x processor family assembly language instruction set
employs an algebraic syntax designed for ease of coding and readability.
Refer to the Blackfin Processor Programming Reference for detailed informa-
tion. The instructions have been specifically tuned to provide a flexible,
densely encoded instruction set that compiles to a very small final memory
size. The instruction set also provides fully featured multifunction instruc-
tions that allow the programmer to use many of the processor core
resources in a single instruction.

Development Tools

20-36 ADSP-BF54x Blackfin Processor Hardware Reference

Coupled with many features more often seen on micro-controllers, this
instruction set is very efficient when compiling C and C++ source code. In
addition, the architecture supports both user (algorithm/application code)
and supervisor (O/S kernel, device drivers, debuggers, ISRs) modes of
operation, allowing multiple levels of access to core resources.

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU plus two load/store plus
two pointer updates per cycle

• All registers, I/O, and memory-mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools
The processor is supported with a complete set of CrossCore® software
and hardware development tools, including Analog Devices emulators and
the VisualDSP++ development environment. The same emulator hard-
ware that supports other Analog Devices products also fully emulates the
ADSP-BF54x processor family.

ADSP-BF54x Blackfin Processor Hardware Reference 20-37

Introduction

The VisualDSP++ project management environment lets programmers
develop and debug an application. This environment includes an
easy-to-use assembler that is based on an algebraic syntax, an archiver
(librarian/library builder), a linker, a loader, a cycle-accurate instruc-
tion-level simulator, a C/C++ compiler, and a C/C++ runtime library that
includes DSP and mathematical functions. A key point for these tools is
C/C++ code efficiency. The compiler is developed for efficient translation
of C/C++ code to Blackfin processor assembly. The Blackfin processor has
architectural features that improve the efficiency of compiled C/C++ code.

Debugging both C/C++ and assembly programs with the VisualDSP++
debugger, programmers can:

• View mixed C/C++ and assembly code (interleaved source and
object information)

• Insert breakpoints

• Set conditional breakpoints on registers, memory, and stacks

• Trace instruction execution

• Perform linear or statistical profiling of program execution

• Fill, dump, and graphically plot the contents of memory

• Perform source-level debugging

• Create custom debugger windows

Development Tools

20-38 ADSP-BF54x Blackfin Processor Hardware Reference

The VisualDSP++ Integrated Debug and Development Environment
(IDDE) lets programmers define and manage software development. Its
dialog boxes and property pages let programmers configure and manage all
development tools, including color syntax highlighting in the Visu-
alDSP++ editor. These capabilities permit programmers to:

• Control how the development tools process inputs and generate
outputs

• Maintain a one-to-one correspondence with the tool’s com-
mand-line switches

The VisualDSP++ Kernel (VDK) incorporates scheduling and resource
management tailored specifically to address the memory and timing con-
straints of DSP programming. These capabilities enable engineers to
develop code more effectively, eliminating the need to start from the very
beginning, when developing new application code. The VDK features
include threads, critical and unscheduled regions, semaphores, events, and
device flags. The VDK also supports priority-based, preemptive, coopera-
tive and time-sliced scheduling approaches. In addition, the VDK was
designed to be scalable. If the application does not use a specific feature,
the support code for that feature is excluded from the target system.

Because the VDK is a library, a developer can decide whether to use it or
not. The VDK is integrated into the VisualDSP++ development environ-
ment but can also be used with standard command-line tools. The VDK
development environment assists in managing system resources, automat-
ing the generation of various VDK-based objects, and visualizing the
system state during application debug.

Analog Devices emulators use the IEEE 1149.1 JTAG test access port of
the processor to monitor and control the target board processor during
emulation. The emulator provides full speed emulation, allowing inspec-
tion and modification of memory, registers, and processor stacks.

ADSP-BF54x Blackfin Processor Hardware Reference 20-39

Introduction

Nonintrusive in-circuit emulation is assured by the use of the processor’s
JTAG interface—the emulator does not affect target system loading or
timing.

In addition to the software and hardware development tools available
from Analog Devices, third parties provide a wide range of tools support-
ing the Blackfin processor family. Hardware tools include the
ADSP-BF54x EZ-KIT Lite standalone evaluation/development cards.
Third party software tools include DSP libraries, real-time operating sys-
tems, and block diagram design tools.

Development Tools

20-40 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 21-1

Media Transceiver Module (MXVR)

21 MEDIA TRANSCEIVER
MODULE (MXVR)

Among the ADSP-BF54x Blackfin processors, the MXVR is only available
on the ADSP-BF549 processor.

This chapter includes the following sections:

• “Overview” on page 21-1

• “Interface Signals” on page 21-3

• “MXVR Memory Map” on page 21-5

• “MXVR Registers” on page 21-6

• “General Operation” on page 21-115

Overview
The media transceiver module (MXVR) serves as the network interface to
a media-oriented system transport (MOST®) ring network for the
ADSP-BF54x Blackfin processor. The MXVR can be directly connected
to an optical PHY. The optical PHY, the MXVR module and the MXVR
device driver (network services layer 1) together implement the MOST
net interface.

Overview

21-2 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR is capable of transmitting and receiving synchronous data
streams, asynchronous packet data, and control messages on the MOST®
bus. The MXVR is fully compatible with industry standard MOST® net-
work transceiver devices. The MXVR can simultaneously transmit and
receive the full bandwidth of the bus (24M bps). The MXVR offers fast
lock times, greater jitter immunity, and a sophisticated DMA scheme for
data transfers.

The DMA capabilities of the MXVR make transmission and reception of
data (synchronous data, asynchronous packets, and control messages) easy.
All data to be transmitted and all data received is stored in L1 memory.
This gives the ADSP-BF54x core fast and easy access to the data. Data is
transferred from L1 memory to the MXVR for transmission on the
MOST bus and data received from the MOST bus by the MXVR is
DMA’ed into L1 memory.

The MXVR has 14 dedicated DMA channels that work autonomously
from the ADSP-BF54x processor core. Synchronous data can be trans-
ferred to and from synchronous channels through eight DMA channels.
Two more DMA channels support the transmission and reception of asyn-
chronous packet data and another two DMA channels support the
transmission and reception of control messages. Also, two additional
DMA channels support remote read and remote write control messages.

The MXVR can act as the network master or as a network slave in a
MOST network containing other ADSP-BF54x nodes or other MOST
transceivers.

ADSP-BF54x Blackfin Processor Hardware Reference 21-3

Media Transceiver Module (MXVR)

Interface Signals
Table 21-1 on page 21-4 lists the MXVR signal pins. All output pins are
3.3V compliant. The MRX and MRXON input pins are 5V tolerant. All signal
pins except for the dedicated crystal oscillator pins MXI and MXO, the MFS
output pin, and the analog MLF_P and MLF_M pin are multiplexed with
GPIO and other peripheral functions. The selection of whether the pin
has the MXVR functionality or has GPIO or other peripheral functional-
ity is set within the ADSP-BF54x GPIO module. For more information,
see the “General Purpose Ports” chapter in the ADSP-BF54x Blackfin Pro-
cessor Hardware Reference (Volume 1 of 2).

Interface Signals

21-4 ADSP-BF54x Blackfin Processor Hardware Reference

Table 21-1. MXVR Signal Pins

Pin Name MXVR Signal Name MXVR Signal Function MXVR Signal Direction

MXI MXI MXVR Crystal Input Input

MXO MXO MXVR Crystal Output Output

PH6 MRX MXVR Receive Data Input (5V tolerant)

PH5 MTX MXVR Transmit Data Output

PC1 MMCLK MXVR Master Clock Output

PC5 MBCLK MXVR Bit Clock Output

MFS MFS MXVR Frame Sync Output

PG11 MTXON MXVR Transmit PHY On Output (5V tolerant)

PH7 MRXON MXVR Receive PHY On Input (5V tolerant)

MLF_P MLF_P MXVR Loop Filter Plus Analog

MLF_M MLF_M MXVR Loop Filter Minus Analog

ADSP-BF54x Blackfin Processor Hardware Reference 21-5

Media Transceiver Module (MXVR)

Table 21-2 lists the special power and ground pins needed for the MXVR.
These supply pins are routed out to signal pins on the package for noise
isolation.

MXVR Memory Map
Table A-1 on page A-7 shows the memory map for the MXVR. All MXVR
MMRs appear on the PAB bus. All MMR addresses are aligned to 32-bit
address boundaries. An incorrectly sized or misaligned read to an MMR
generates a bus error exception and the data returned will be unknown. An
incorrectly sized or misaligned write to an MMR generates a hardware
error interrupt and the write does not modify the MMR.

Table 21-2. MXVR Supply Pins

Signal Name Function Supply

VDDMC MXVR Crystal Power Supply 3.3 V

GNDMC MXVR Crystal Ground Ground

VDDMX MXVR I/O Power Supply 3.3 V

GNDMX MXVR I/O Ground Ground

VDDMP MXVR PLL Power Supply 1.2 V

GNDMP MXVR PLL Ground Ground

MXVR Registers

21-6 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Registers
Table 21-3 lists the MXVR registers.

Table 21-3. MXVR Registers

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

0xFFC0 2700 MXVR_CONFIG MXVR configuration register
on page 21-12

16 R/W 0x1FCA

0xFFC0 2704 Reserved – – –

0xFFC0 2708
0xFFC0 270C

MXVR_STATE_0
MXVR_STATE_1

MXVR state registers
on page 21-19

32 RO 0x0000 0000

0xFFC0 2710
0xFFC0 2714

MXVR_INT_STAT_0
MXVR_INT_STAT_1

MXVR interrupt registers
on page 21-29

32 R/W 0x0000 0000

0xFFC0 2718
0xFFC0 271C

MXVR_INT_EN_0
MXVR_INT_EN_1

MXVR interrupt enable
registers on page 21-43

32 R/W 0x0000 0000

0xFFC0 2720 MXVR_POSITION MXVR node position register
on page 21-48

16 RO 0x8000

0xFFC0 2724 MXVR_MAX_POSITION MXVR maximum node posi-
tion register on page 21-50

16 RO 0x0000

0xFFC0 2728 MXVR_DELAY MXVR node frame delay
register on page 21-51

16 RO 0x8000

0xFFC0 272C MXVR_MAX_DELAY MXVR maximum node frame
delay register on page 21-53

16 RO 0x0000

0xFFC0 2730 MXVR_LADDR MXVR logical address register
on page 21-54

32 R/W 0x0000 0FFF

0xFFC0 2734 MXVR_GADDR MXVR group address register
on page 21-55

16 R/W 0x0000

0xFFC0 2738 MXVR_AADDR MXVR alternate address regis-
ter on page 21-56

32 R/W 0x0000 0FFF

ADSP-BF54x Blackfin Processor Hardware Reference 21-7

Media Transceiver Module (MXVR)

0xFFC0 273C
0xFFC0 2740
0xFFC0 2744
0xFFC0 2748
0xFFC0 274C
0xFFC0 2750
0xFFC0 2754
0xFFC0 2758
0xFFC0 275C
0xFFC0 2760
0xFFC0 2764
0xFFC0 2768
0xFFC0 276C
0xFFC0 2770
0xFFC0 2774

MXVR_ALLOC_0
MXVR_ALLOC_1
MXVR_ALLOC_2
MXVR_ALLOC_3
MXVR_ALLOC_4
MXVR_ALLOC_5
MXVR_ALLOC_6
MXVR_ALLOC_7
MXVR_ALLOC_8
MXVR_ALLOC_9
MXVR_ALLOC_10
MXVR_ALLOC_11
MXVR_ALLOC_12
MXVR_ALLOC_13
MXVR_ALLOC_14

MXVR allocation table regis-
ters on page 21-56

32 RO 0xXXXX XXXX

0xFFC0 2778
0xFFC0 277C
0xFFC0 2780
0xFFC0 2784
0xFFC0 2788
0xFFC0 278C
0xFFC0 2790
0xFFC0 2794

MXVR_SYNC_LCHAN_0
MXVR_SYNC_LCHAN_1
MXVR_SYNC_LCHAN_2
MXVR_SYNC_LCHAN_3
MXVR_SYNC_LCHAN_4
MXVR_SYNC_LCHAN_5
MXVR_SYNC_LCHAN_6
MXVR_SYNC_LCHAN_7

MXVR synchronous data logi-
cal channel assignment regis-
ters on page 21-58

32 R/W 0xFFFF FFFF

0xFFC0 2798
0xFFC0 27AC
0xFFC0 27C0
0xFFC0 27D4
0xFFC0 27E8
0xFFC0 27FC
0xFFC0 2810
0xFFC0 2824

MXVR_DMA0_CONFIG
MXVR_DMA1_CONFIG
MXVR_DMA2_CONFIG
MXVR_DMA3_CONFIG
MXVR_DMA4_CONFIG
MXVR_DMA5_CONFIG
MXVR_DMA6_CONFIG
MXVR_DMA7_CONFIG

MXVR DMA configuration
registers on page 21-60

32 R/W 0x0000 0000

Table 21-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

21-8 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 279C
0xFFC0 27B0
0xFFC0 27C4
0xFFC0 27D8
0xFFC0 27EC
0xFFC0 2800
0xFFC0 2814
0xFFC0 2828

MXVR_DMA0_START_ADDR
MXVR_DMA1_START_ADDR
MXVR_DMA2_START_ADDR
MXVR_DMA3_START_ADDR
MXVR_DMA4_START_ADDR
MXVR_DMA5_START_ADDR
MXVR_DMA6_START_ADDR
MXVR_DMA7_START_ADDR

MXVR DMA channel start
address registers
on page 21-70

32 R/W 0xFF00 0000

0xFFC0 27A0
0xFFC0 27B4
0xFFC0 27C8
0xFFC0 27DC
0xFFC0 27F0
0xFFC0 2804
0xFFC0 2718
0xFFC0 272C

MXVR_DMA0_COUNT
MXVR_DMA1_COUNT
MXVR_DMA2_COUNT
MXVR_DMA3_COUNT
MXVR_DMA4_COUNT
MXVR_DMA5_COUNT
MXVR_DMA6_COUNT
MXVR_DMA7_COUNT

MXVR DMA channel transfer
count registers on page 21-73

16 R/W 0x0001

0xFFC0 27A4
0xFFC0 27B8
0xFFC0 27CC
0xFFC0 27E0
0xFFC0 27F4
0xFFC0 2808
0xFFC0 281C
0xFFC0 2830

MXVR_DMA0_CURR_ADDR
MXVR_DMA1_CURR_ADDR
MXVR_DMA2_CURR_ADDR
MXVR_DMA3_CURR_ADDR
MXVR_DMA4_CURR_ADDR
MXVR_DMA5_CURR_ADDR
MXVR_DMA6_CURR_ADDR
MXVR_DMA7_CURR_ADDR

MXVR DMA channel cur-
rent address registers
on page 21-72

32 RO 0xFF00 0000

0xFFC0 27A8
0xFFC0 27BC
0xFFC0 27D0
0xFFC0 27E4
0xFFC0 27F8
0xFFC0 280C
0xFFC0 2820
0xFFC0 2834

MXVR_DMA0_CURR_COUNT
MXVR_DMA1_CURR_COUNT
MXVR_DMA2_CURR_COUNT
MXVR_DMA3_CURR_COUNT
MXVR_DMA4_CURR_COUNT
MXVR_DMA5_CURR_COUNT
MXVR_DMA6_CURR_COUNT
MXVR_DMA7_CURR_COUNT

MXVR DMA channel cur-
rent transfer count registers
on page 21-76

16 RO 0x0000

0xFFC0 2838 MXVR_AP_CTL MXVR asynchronous packet
control register on page 21-77

16 R/W 0x0000

Table 21-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 21-9

Media Transceiver Module (MXVR)

0xFFC0 283C MXVR_APRB_START_ADDR MXVR asynchronous packet
receive buffer start address
register
on page 21-82

32 R/W 0xFF00 0000

0xFFC0 2840 MXVR_APRB_CURR_ADDR MXVR asynchronous packet
receive buffer current address
register
on page 21-81

32 RO 0xFF00 0000

0xFFC0 2844 MXVR_APTB_START_ADDR MXVR asynchronous packet
transmit buffer start address
register
on page 21-82

32 R/W 0xFF00 0000

0xFFC0 2848 MXVR_APTB_CURR_ADDR MXVR asynchronous packet
transmit buffer current
address register
on page 21-83

32 RO 0xFF00 0000

0xFFC0 284C MXVR_CM_CTL MXVR control message con-
trol register
on page 21-83

32 R/W 0x0000 0000

0xFFC0 2850 MXVR_CMRB_START_ADDR MXVR control message
receive buffer start address
register
on page 21-86

32 R/W 0xFF00 0000

0xFFC0 2854 MXVR_CMRB_CURR_ADDR MXVR control message
receive buffer current address
register
on page 21-87

32 RO 0xFF00 0000

0xFFC0 2858 MXVR_CMTB_START_ADDR MXVR control message trans-
mit buffer start address regis-
ter
on page 21-88

32 R/W 0xFF00 0000

0xFFC0 285C MXVR_CMTB_CURR_ADDR MXVR control message trans-
mit buffer current address reg-
ister
on page 21-89

32 RO 0xFF00 0000

Table 21-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

21-10 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2860 MXVR_RRDB_START_ADDR MXVR remote read buffer
start address register
on page 21-90

32 R/W 0xFF00 0000

0xFFC0 2864 MXVR_RRDB_CURR_ADDR MXVR remote read buffer
current address register
on page 21-91

32 RO 0xFF00 0000

0xFFC0 2868
0xFFC0 2870

MXVR_PAT_DATA_0
MXVR_PAT_DATA_1

MXVR pattern data registers
on page 21-92

32 R/W 0x0000 0000

0xFFC0 286C
0xFFC0 2874

MXVR_PAT_EN_0
MXVR_PAT_EN_1

MXVR pattern enable regis-
ters
on page 21-93

32 R/W 0x0000 0000

0xFFC0 2878
0xFFC0 287C

MXVR_FRAME_CNT_0
MXVR_FRAME_CNT_1

MXVR frame counter registers
on page 21-94

16 R/W 0x0000

0xFFC0 2880
0xFFC0 2884
0xFFC0 2888
0xFFC0 288C
0xFFC0 2890
0xFFC0 2894
0xFFC0 2898
0xFFC0 289C
0xFFC0 28C0
0xFFC0 28A4
0xFFC0 28A8
0xFFC0 28AC
0xFFC0 28B0
0xFFC0 28B4
0xFFC0 28B8

MXVR_ROUTING_0
MXVR_ROUTING_1
MXVR_ROUTING_2
MXVR_ROUTING_3
MXVR_ROUTING_4
MXVR_ROUTING_5
MXVR_ROUTING_6
MXVR_ROUTING_7
MXVR_ROUTING_8
MXVR_ROUTING_9
MXVR_ROUTING_10
MXVR_ROUTING_11
MXVR_ROUTING_12
MXVR_ROUTING_13
MXVR_ROUTING_14

MXVR routing registers
on page 21-95

32 WO 0xXXXX XXXX

0xFFC0 28BC Reserved – – –

0xFFC0 28C0 MXVR_BLOCK_CNT MXVR block counter register
on page 21-98

16 R/W 0x0000

0xFFC0 28C4
 to
0xFFC0 28CC

Reserved – – –

0xFFC0 28D0 MXVR_CLK_CTL MXVR clock control register
on page 21-100

32 R/W 0x0202 0003

Table 21-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 21-11

Media Transceiver Module (MXVR)

0xFFC0 28D4 MXVR_CDRPLL_CTL MXVR clock/data recovery
PLL control register
on page 21-107

32 R/W 0x0502 0820

0xFFC0 28D8 MXVR_FMPLL_CTL MXVR frequency multiply
PLL control register
on page 21-110

32 R/W 0x1900 1020

0xFFC0 28DC MXVR_PIN_CTL MXVR pin control register
on page 21-112

16 R/W 0x0000

0xFFC0 28E0 MXVR_SCLK_CNT MXVR system clock counter
register on page 21-113

16 R/W 0x0000

0xFFC0 28E4
 to
0xFFC0 28FF

Reserved – – –

Table 21-3. MXVR Registers (Cont’d)

Register
Address

Register Name Register Description Size
(Bits)

Reset Value

MXVR Registers

21-12 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Configuration Register (MXVR_CONFIG)
The MXVR_CONFIG register sets the configuration of the MXVR node.

The MXVR enable (MXVREN) bit enables or disables the MXVR. When the
MXVREN bit is set to 0, the MXVR is disabled and is effectively held in a
reset state. Disabling the MXVR resets all the MXVR state machines,
resets all status bits, and causes the MXVR to enter all bypass-MXVR dis-
abled mode. When the MXVR is in all bypass - MXVR disabled mode the
MRX input pin is directly connected to MTX output pin and the MXVR can-
not receive or transmit data. When the MXVREN bit is set to 1, the MXVR is
enabled and operates based on how the node is configured in the MXVR
MMR registers. Note that the MXVR should never be enabled without

Figure 21-1. MXVR Configuration Register (MXVR_CONFIG)

APRXEN

LMECH

WAKEUP

0 - Lock Mechanism 0
1 - Lock Mechanism 1

0 - No Effect
1 - Trigger Wakeup Preamble
Always reads as 0

0 - AP Receive Disabled
1 - AP Receive Enabled

MSB

0000 to 0101 - Reserved
0110 - 6 Quadlets Sync Data
0111 - 7 Quadlets Sync Data
...
1111 - 15 Quadlets Sync Data

Reset = 0x1FCA

MXVREN
0 - MXVR disabled
1 - MXVR enabled

0 - Slave Mode
1 - Master Mode

ACTIVE
0 - All Bypass Mode
1 - Active Mode

0 - No Synchronous Delay
1 - 2 Frame Synchronous Delay

NCMRXEN
0 - Normal CM RX Disabled
1 - Normal CM RX Enabled

0 - Remote Write RX Disabled
1 - Remote Write RX Enabled

MTXEN
0 - TX Output Disabled
1 - TX Output Enabled

MTXONB
0 - MTXON Output Low
1 - MTXON Output High

EPARITY
0 - Odd Parity
1 - Even Parity

SDELAY

RWRRXEN

MMSM

MXVR Configuration Register (MXVR_CONFIG)

0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

123456789101112131415 0

0xFFC0 2700

ADSP-BF54x Blackfin Processor Hardware Reference 21-13

Media Transceiver Module (MXVR)

the MXVR PLLs enabled and at frequency. Also note that all synchronous
data DMA channels should be disabled (by setting MDMAENx = 0) and soft-
ware should wait until all synchronous data DMA channels are inactive
(DMAACTIVEx == 0 and DMAPMENx == 0) before disabling the MXVR.

The MXVR Master Mode/Slave Mode Select (MMSM) bit determines
whether the MXVR is the network timing master or is a network slave
node. If the MMSM bit is set to 1, the MXVR will be in Master Mode. When
in Master Mode, the transmit clock is supplied by the MXVR FMPLL.
The transmit clock is then used to generate the data stream transmitted on
the MTX pin. In addition, MXVR CDRPLL recovers the receive clock from
the incoming data stream received on the MRX pin. The receive clock is
then used by the MXVR to sample the incoming data stream.

If the MMSM bit is set to 0, the MXVR will be in Slave Mode. When in Slave
Mode, MXVR CDRPLL recovers the receive clock from the incoming
data stream received on the MRX pin. The receive clock is then used by the
MXVR to sample the incoming data stream. In addition, the receive clock
is used to generate the data stream transmitted on the MTX pin.

The Active Mode (ACTIVE) bit determines whether the MXVR will operate
in Active Mode or in All Bypass - MXVR Enabled Mode once the MXVR
is enabled. When in Active Mode the MXVR can transmit and receive
data. When in All Bypass - MXVR Enabled Mode, the MRX input pin is
directly connected to MTX and the MXVR can only receive data. When the
MXVREN bit is set to 1 and the ACTIVE bit is set to 1, the MXVR will operate
in Active Mode. When the MXVREN bit is set to 1 and the ACTIVE bit is set
to 0, the MXVR will operate in All Bypass - MXVR Enabled Mode. When
the MXVREN bit is set to 0, the ACTIVE bit has no meaning.

The Synchronous Data Delay (SDELAY) bit determines whether the syn-
chronous data field will be delayed by two frames (SDELAY=1) or zero
frames (SDELAY=0) passing through the MXVR. In the zero frame delay
case the synchronous data will only be delayed by a few bit periods passing
through the MXVR. If the MXVR is in All Bypass - MXVR Disabled
Mode (MXVREN = 0) or in All Bypass - MXVR Enabled Mode (MXVREN = 1

MXVR Registers

21-14 ADSP-BF54x Blackfin Processor Hardware Reference

and ACTIVE = 0), the SDELAY bit has no meaning. If the MXVR is in Active
Mode (MXVREN = 1 and ACTIVE = 1) and Master Mode (MMSM = 1), there will
always be two frame delays for synchronous data and the SDELAY bit will
always read as 1. If the MXVR is in Active Mode (MXVREN = 1 and ACTIVE
= 1), Slave Mode (MMSM = 0), and the SDELAY bit is set to 1, there will be
two frame delays for synchronous data. If the MXVR is in Active Mode
(MXVREN = 1 and ACTIVE = 1), Slave Mode (MMSM = 0), and the SDELAY bit is
set to 0, there will only be a few bit delays for synchronous data. Note that
synchronous data routing can only be done if the MXVR is the Master
and is in Active Mode or if the MXVR is a Slave and is in Active Mode
with the SDELAY bit is set to 1.

Table 21-4 on page 21-14 lists all possible operating modes of the MXVR,
the bit encodings to select the modes, and the functionality in the modes.

Table 21-4. MXVR Operating Modes

Mode

M
X

V
R

E
N

M
M

SM

A
C

T
IV

E

SD
E

L
A

Y Functionality

All Bypass -
MXVR Disabled

0 X X X -Bypassed from MRX to MTX
-Cannot receive or transmit SD, AP, and CM
-Cannot route or mute SD

Slave Node
All Bypass -
MXVR Enabled

1 0 0 X -Bypassed from MRX to MTX
-Can only receive SD, AP, and CM
-Cannot route or mute SD

Slave Node
Active Mode -
Zero Frame Delay

1 0 1 0 -SD delayed by few bit periods
-Can receive and transmit SD, AP, and CM
-Cannot route SD, Can mute SD

SD = Synchronous Data, AP = Asynchronous Packets, CM = Control Messages

ADSP-BF54x Blackfin Processor Hardware Reference 21-15

Media Transceiver Module (MXVR)

The Normal Control Message Receive Enable (NCMRXEN) bit determines
whether the MXVR is enabled to receive Normal control messages. If the
MXVR receives a Normal control message and the NCMRXEN bit is set to 1,
the MXVR will write the received data into the Control Message Receive
Buffer. If the MXVR receives a Normal control message when the NCMRXEN
bit is set to 0, the MXVR will not respond to the Normal control message
and will not write to the Control Message Receive Buffer. The NCMRXEN bit
is reset to 0.

The Remote Write Receive Enable (RWRRXEN) bit determines whether the
MXVR is enabled to receive Remote Write control messages. If the
MXVR receives a Remote Write control message and the RWRRXEN bit is set
to 1, the MXVR will write the received data into the Remote Read Buffer
and will store the MAP and Length values. If the MXVR receives a
Remote Write control message when the RWRRXEN bit is set to 0, the
MXVR will not write the received data to the Remote Read Buffer and
will not write the MAP or Length value. In addition the MXVR will
respond to the Remote Write control message with Transmission Status of
0x11 (Not Supported). The RWRRXEN bit is reset to 0.

Slave Node
Active Mode -
Two Frame Delay

1 0 1 1 -SD delayed by 2 frame periods
-Can receive and transmit SD, AP, and CM
-Can route and mute SD

Master Node
Active Mode -
Two Frame Delay

1 1 1 1 -SD delayed by 2 frame periods
-Can receive and transmit SD, AP, and CM
-Can route and mute SD

Table 21-4. MXVR Operating Modes (Cont’d)

Mode

M
X

V
R

E
N

M
M

SM

A
C

T
IV

E

SD
E

L
A

Y Functionality

SD = Synchronous Data, AP = Asynchronous Packets, CM = Control Messages

MXVR Registers

21-16 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR Transmit Data Enable (MTXEN) bit enables or disables the data
stream transmitted on the MTX pin when the MXVR is enabled. If the
MXVREN bit is set to 1 and the MTXEN bit is set to 0, the MTX pin will remain
at a logic low level. If the MXVREN bit is set to 1 and the MTXEN bit is set to 1,
the MTX pin will output the transmitted data stream. If the MXVREN bit is set
to 0, the MXVR will be in All Bypass - MXVR Disabled Mode and the
MTXEN bit has no meaning.

The MXVR Transmit PHY (MTXONB) bit sets the state of the MTXON output
pin. The MTXON output pin can be used to gate on and off the power sup-
plied to the Transmit PHY (in the case of MOST®, the Transmit FOT).
The MTXON pin can either be operated as a 3.3V compliant output or as an
open drain output depending on the state of the MTXONBOD bit in the
MXVR_PIN_CTL register. If the MTXONB bit is set to a 0, the MTXON output pin
will be driven to a 0V logic-low level. If the MTXONB bit is set to a 1 and the
MTXONBOD bit is set to a 0, the MTXON output pin will be driven to a 3.3V
logic-high level. If the MTXONB bit is set to a 1 and the MTXONBOD bit is set to
a 1, the MTXON output pin will be three-stated (allowing a pull-up resistor
to pull the MTXON output pin to a 5V logic-high level). The MTXONB bit is
reset to 1.

The MXVR Even Parity Select (EPARITY) bit indicates whether the parity
bit in the frame should be generated with Even Parity or Odd Parity. If
the EPARITY bit is set to 0, Odd Parity will be selected. If the EPARITY bit is
set to 1, Even Parity will be selected. For MOST®, Even Parity should
always be selected. The EPARITY bit is reset to 1.

The synchronous boundary value transmitted by the Master node in a net-
work determines how many quadlets in the frame are dedicated to
synchronous data and how many quadlets are dedicated to asynchronous
packet data. A quadlet is 4 bytes of data or 4 physical channels in the
frame. There are a total of 15 quadlets for synchronous and asynchronous
data in the frame. If the synchronous boundary is 6, then 24 bytes will be
dedicated to synchronous data and 36 bytes will be dedicated to asynchro-

ADSP-BF54x Blackfin Processor Hardware Reference 21-17

Media Transceiver Module (MXVR)

nous packet data. The MXVR is capable of operating with a synchronous
boundary from 0 to 15; however, the MOST® specification limits the syn-
chronous boundary to the range 6 to 14.

When the MXVR is in Master Mode, the value written to the MSB field
will be transmitted over the network to all of the slaves as the synchronous
boundary. When the MXVR is in Slave Mode, the MSB field is not used.
When the MXVR is in either Master Mode or Slave Mode, the synchro-
nous boundary value which was received by the node over the network can
be observed as the RSB field in MXVR_STATE_0 register.

The Synchronous Boundary (MSB) field is writable if the MXVR is in Mas-
ter Mode (MMSM = 1) and is read-only if the MXVR is in Slave Mode (MMSM
= 0). Writes to the MSB while in Slave Mode will be ignored and the MSB
value will not be effected. Note that a particular procedure must be fol-
lowed to dynamically change the synchronous boundary for the network
to ensure that no data is corrupted and the asynchronous packet channel
does not hang.

The Asynchronous Packet Receive Enable (APRXEN) bit determines
whether the MXVR is enabled to receive Asynchronous Packets. If the
MXVR receives an Asynchronous Packet and the APRXEN bit is set to 1, the
MXVR will write the received data into the Asynchronous Packet Receive
Buffer. If the MXVR receives an Asynchronous Packet when the APRXEN
bit is set to 0, the MXVR will not write the packet to the Asynchronous
Packet Receive Buffer. The APRXEN bit is reset to 0.

The Wake-Up (WAKEUP) bit is used to trigger the MXVR when in Master
Mode to send the wake-up preamble which will indicate to any node in
low-power mode to wake-up. If the MMSM bit is set to 1, writing a 1 to the
WAKEUP bit will trigger the MXVR to send the wake-up preamble on the
network. If MMSM is set to 0, writing a 1 to the WAKEUP bit will have no
effect. Writing a 0 to the WAKEUP bit will have no effect. The WAKEUP bit
will always read as 0.

MXVR Registers

21-18 ADSP-BF54x Blackfin Processor Hardware Reference

The Lock Mechanism Select (LMECH) bit determines in what order the
MXVR Master will send network preambles while locking the network.
Lock Mechanism 0 provides the fastest lock time from the completely
unlocked state to the super block locked state in a network with only
MXVR nodes. Lock Mechanism 1 takes longer than Lock Mechanism 0 to
go from the completely unlocked state to the super block locked state;
however, if a node in the ring causes an unlock (for example, a node going
from All Bypass to Active or vice-versa), only nodes downstream from that
node will go unlocked while upstream nodes will remain at their same lock
level. Lock Mechanism 1 is generally a better choice for mixed networks
which include transceivers other than the MXVR. If the LMECH bit is set to
0, Lock Mechanism 0 is selected. If the LMECH bit is set to 1, Lock Mecha-
nism 1 is selected. When the MXVR is in Slave Mode (MMSM = 0), the
LMECH bit has no meaning. The LMECH bit is reset to 0.

ADSP-BF54x Blackfin Processor Hardware Reference 21-19

Media Transceiver Module (MXVR)

MXVR State Registers (MXVR_STATE_0,
MXVR_STATE_1)

The MXVR_STATE_x registers indicate the current state of the MXVR. All
bits in the MXVR_STATE_x registers are read-only bits.

Figure 21-2. MXVR State Register (MXVR_STATE_0)

MXVR State Register 0 (MXVR_STATE_0)

For all bits,
0 - State Event is not occurring
1 - State Event is occurring

DERRNUM

RSB

MRXONB

RGSIP

DALIP

ALIP

RRDIP

RWRIP

FLOCK

BLOCK

NACT

SBLOCK

FMPLLST

CMRX

CMTX

CMARB

CMBSY

APRX

APTX

APARB

APBSY

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

Reset = 0x0000 0000

CDRPLLST

0xFFC0 2708

MXVR Registers

21-20 ADSP-BF54x Blackfin Processor Hardware Reference

The Network Active (NACT) bit is a read-only bit which indicates whether
the MRX input pin is active. If a single rising edge or falling edge of the MRX
pin is detected by the MXVR, the NACT bit will change to a 1. If no rising
or falling edges are detected on the MRX input pin for 40 SCLK periods (300
ns for 133 MHz SCLK), the NACT bit will change to a 0. Note that if SCLK is
operating at frequency less than 50 MHz, not every edge will be detected.

The Super Block Lock (SBLOCK) bit is a read-only bit which indicates
whether the MXVR has locked onto the incoming data stream being
received on the MRX input pin and all the preambles are occurring in the
right positions. Once the CDRPLL is started-up and the MXVR is
enabled, the MXVR will attempt to Super Block Lock. Once the MXVR
has Frame Locked, Block Locked, and received the Allocation Table in the
correct position in the incoming data stream, the MXVR will be Super
Block Locked and the SBLOCK bit will change to 1. If a single preamble is
missed or occurs at the wrong position, the MXVR will immediately lose

Figure 21-3. MXVR State Register (MXVR_STATE_1)

MXVR State Register 1 (MXVR_STATE_1)

DMAPMEN7
DMAPMEN6
DMAPMEN5
DMAPMEN4
DMAPMEN3
DMAPMEN2
DMAPMEN1
DMAPMEN0

OBERRNUM

Reset = 0x0000 0000

DMAACTIVE0
DMAACTIVE1
DMAACTIVE2
DMAACTIVE3

0xFFC0 270C

DMAACTIVE5
DMAACTIVE6
DMAACTIVE7

SRXNUMB
Sync RX FIFO Number of Bytes
0000 - FIFO Empty
1000 - FIFO Full (8 bytes)

Reserved

Sync TX FIFO Number of Bytes
0000 - FIFO Empty
1000 - FIFO Full (8 bytes)

STXNUMB

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

APCONT

DMAACTIVE4

ADSP-BF54x Blackfin Processor Hardware Reference 21-21

Media Transceiver Module (MXVR)

Super Block Lock and the SBLOCK bit will change to 0. Note that the
MXVR can be Super Block Locked when the MXVR is in All Bypass -
MXVR Enabled Mode or in Active Mode; however, the MXVR cannot
Super Block Lock when the MXVR is in All Bypass - MXVR Disabled
Mode.

The MXVR Frequency Multiply PLL State Machine State (FMPLLST) field
is a read-only field which gives the current state of the FMPLL State
Machine. The FMPLL state encodings are given in Table 21-5.

The MXVR Clock/Data Recovery PLL State Machine State (CDRPLLST)
field is a read-only field which gives the current state of the CDRPLL
State Machine. The CDRPLL state encodings are given in Table 21-6.

Table 21-5. FMPLL State Machine States

FMPLLST FMPLL State Machine State

b#00 FMPLL_RESET

b#01 FMPLL_RAMP

b#10 FMPLL_FMUL

b#11 FMPLL_LOCKED

Table 21-6. CDRPLL State Machine States

CDRPLLST CDRPLL State Machine State

b#000 CDRPLL_RESET

b#001 CDRPLL_RAMP

b#010 CDRPLL_FMUL

b#011 CDRPLL_LOCKED

b#100 CDRPLL_FHOLD

b#101 CDRPLL_ACQUIRE

b#110 - b#111 Reserved

MXVR Registers

21-22 ADSP-BF54x Blackfin Processor Hardware Reference

The Asynchronous Packet Transmit Buffer Busy (APBSY) bit is a read-only
bit that indicates when the Asynchronous Packet Transmit Buffer is busy
transmitting an Asynchronous Packet. The APBSY bit will change to 1
when the STARTAP bit in the MXVR_AP_CTL register is written to 1 which
starts the transmission of the packet in the Asynchronous Packet Transmit
Buffer. The APBSY bit will change to 0 once the Asynchronous Packet is
transmitted or once the Asynchronous Packet being transmitted is success-
fully cancelled. Note that the Asynchronous Packet Transmit Buffer
should never be modified when the APBSY bit is a 1.

The Asynchronous Packet Arbitrating (APARB) bit is a read-only bit that
indicates when the MXVR is arbitrating for the asynchronous packet
channel so that an asynchronous packet can be transmitted. If the APARB
bit is a 1, the MXVR is arbitrating for the asynchronous packet channel. If
the APARB bit is a 0, the MXVR is not arbitrating for the asynchronous
packet channel. While the MXVR is arbitrating for the asynchronous
packet channel, the current asynchronous packet transmission can be can-
celled. However, once the MXVR has won arbitration and the
asynchronous packet is being transmitted, the transmission cannot be can-
celled. Note that when an attempt is made to cancel an asynchronous
packet, due to delays in clock synchronization and delays in reading and
writing MMRs, the APTS and APTC bits in the MXVR_INT_STAT_1 register
should be used to verify whether or not the asynchronous packet was suc-
cessfully cancelled.

The Asynchronous Packet Transmitting (APTX) bit is a read-only bit that
indicates when the MXVR is actively transmitting an asynchronous
packet. If the APTX bit is a 1, the MXVR has won arbitration and is in the
process of transmitting an asynchronous packet. If the APTX bit is a 0, the
MXVR is not in the process of transmitting an asynchronous packet.
Once the MXVR has started transmitting an asynchronous packet, the
current asynchronous packet transmission cannot be cancelled.

ADSP-BF54x Blackfin Processor Hardware Reference 21-23

Media Transceiver Module (MXVR)

The Asynchronous Packet Receiving (APRX) bit is a read-only bit that indi-
cates when the MXVR is actively receiving an asynchronous packet. If the
APRX bit is a 1, the MXVR is in the process of receiving an asynchronous
packet. If the APRX bit is a 0, the MXVR is not in the process of receiving
an asynchronous packet. Note that the Asynchronous Packet Received
(APR) bit in the MXVR_INT_STAT_1 register will change to 1 when the recep-
tion of an asynchronous packet has completed and can optionally generate
an interrupt.

The Control Message Transmit Buffer Busy (CMBSY) bit is a read-only bit
that indicates when the Control Message Transmit Buffer is busy in the
process of transmitting a Control Message. The CMBSY bit will change to 1
when the STARTCM bit in the MXVR_CM_CTL register is written to 1 which
starts the process of transmitting the Control Message in the Control Mes-
sage Transmit Buffer. The CMBSY bit will change to a 0 once the Control
Message is transmitted or once the Control Message being transmitted is
successfully cancelled. Note that the Control Message Transmit Buffer
should never be modified when the CMBSY bit is a 1.

The Control Message Arbitrating (CMARB) bit is a read-only bit that indi-
cates when the MXVR is arbitrating for the control message channel so
that a control message can be transmitted. If the CMARB bit is a 1, the
MXVR is arbitrating for the control message channel. If the CMARB bit is a
0, the MXVR is not arbitrating for the control message channel. While the
MXVR is arbitrating for the control message channel, the current control
message transmission can be cancelled. However, once the MXVR has
won arbitration and the control message is being transmitted, the trans-
mission cannot be cancelled. Note that when an attempt is made to cancel
a control message, due to delays in clock synchronization and delays in
reading and writing MMRs, the CMTS and CMTC bits in the
MXVR_INT_STAT_1 register should be used to verify whether or not the con-
trol message was successfully cancelled.

MXVR Registers

21-24 ADSP-BF54x Blackfin Processor Hardware Reference

The Control Message Transmitting (CMTX) bit is a read-only bit that indi-
cates when the MXVR is actively transmitting a control message. If the
CMTX bit is a 1, the MXVR has won arbitration and is in the process of
transmitting a control message. If the CMTX bit is a 0, the MXVR is not in
the process of transmitting a control message. Once the MXVR has started
transmitting a control message, the current control message transmission
cannot be cancelled.

The Receiving Control Message (CMRX) bit is a read-only bit that indicates
when the MXVR is actively receiving a Normal control message. If the
CMRX bit is a 1, the MXVR is in the process of receiving a Normal control
message. If the CMRX bit is a 0, the MXVR is not in the process of receiving
a Normal control message. Note that the Control Message Received (CMR)
bit in the MXVR_INT_STAT_0 register will change to 1 when the reception of
a Normal control message has successfully completed and can optionally
generate an interrupt.

The MRXON Input Pin State (MRXONB) bit is a read-only bit which gives the
current state of the MRXON input pin. The MRXON input pin should be con-
nected to the optical or electrical PHY status output which indicates
whether the PHY is currently receiving data. If the PHY is receiving data,
the MRXON input pin will be driven to 0, If the PHY is not receiving data,
the MRXON input pin will be driven to 1. A transition from 0 to 1 on the
MRXON input pin causes the assertion of the ML2H interrupt event and a tran-
sition from 1 to 0 causes the assertion of the MH2L interrupt event. A
transition from 1 to 0 on the MRXON input pin can also be used to wake the
ADSP-BF54x from hibernate state.

The Remote Get Source In Progress (RGSIP) bit is a read-only bit which
indicates whether a Remote Get Source system control message is being
received and processed by the MXVR.

The Resource De-Allocate In Progress (DALIP) bit is a read-only bit which
indicates whether a Resource De-Allocate system control message is being
received and processed by the MXVR.

ADSP-BF54x Blackfin Processor Hardware Reference 21-25

Media Transceiver Module (MXVR)

The Resource Allocate In Progress (ALIP) bit is a read-only bit which indi-
cates whether a Resource Allocate system control message is being received
and processed by the MXVR.

The Remote Read In Progress (RRDIP) bit is a read-only bit which indi-
cates whether a Remote Read system control message is being received and
processed by the MXVR. Note that while a Remote Read is in progress,
software should not modify the Remote Read Buffer.

The Remote Write In Progress (RWRIP) bit is a read-only bit which indi-
cates whether a Remote Write system control message is being received
and processed by the MXVR. Note that while a Remote Write is in
progress, software should not modify the Remote Read Buffer.

The Frame Locked (FLOCK) bit is a read-only bit which indicates whether
the MXVR is Frame Locked. Frame Lock is achieved when the CDRPLL
has locked onto the received data and the MXVR has detected preambles
occurring at the start of every frame. When the FLOCK bit is a 1, the
MXVR is Frame Locked and when the FLOCK bit is a 0, the MXVR is not
Frame Locked. Once the MXVR Master is Frame Locked and the ring is
closed, synchronous data and asynchronous packets can be reliably trans-
mitted and received by all nodes in the ring. Note that the MXVR can be
Frame Locked even if the ring network is not closed.

The Block Locked (BLOCK) bit is a read-only bit which indicates whether
the MXVR is Block Locked. Block Lock is achieved when the CDRPLL
has locked onto the received data, the MXVR has Frame Locked, and the
MXVR has received two block preambles in the correct position. When
the BLOCK bit is a 1, the MXVR is Block Locked and when the BLOCK bit is
a 0, the MXVR is not Block Locked. Once an MXVR node is Block
Locked and the ring is closed, control messages can be reliably transmitted
and received by all nodes in the ring. Note that the MXVR can be Block
Locked even if the ring network is not closed.

MXVR Registers

21-26 ADSP-BF54x Blackfin Processor Hardware Reference

The Receive Synchronous Boundary (RSB) field is a read-only field which
gives the synchronous boundary value received in the incoming datas-
tream by the MXVR. The RSB value is only valid when the MXVR is
Frame Locked.

The DMA Error Channel Number (DERRNUM) field is a read-only field
which indicates which DMA Channel caused the last DMA Error (DERR)
interrupt event. Table 21-7 gives the DERRNUM encodings and the corre-
sponding DMA channel names. If there are multiple DMA channels
causing errors, the DERRNUM will give the value representing the last chan-
nel to error prior to the MXVR_STATE_0 register being read.

Table 21-7. DMA Error Number Encodings

DERRNUM DMA Channel Causing Error

b#0000 Synchronous Data DMA Channel 0

b#0001 Synchronous Data DMA Channel 1

b#0010 Synchronous Data DMA Channel 2

b#0011 Synchronous Data DMA Channel 3

b#0100 Synchronous Data DMA Channel 4

b#0101 Synchronous Data DMA Channel 5

b#0110 Synchronous Data DMA Channel 6

b#0111 Synchronous Data DMA Channel 7

b#1000 Asynchronous Packet Receive DMA Channel

b#1001 Asynchronous Packet Transmit DMA Channel

b#1010 Normal Control Message Receive DMA Channel

b#1011 Control Message Transmit DMA Channel

b#1100 Remote Read Control Message DMA Channel

b#1101 Remote Write Control Message DMA Channel

ADSP-BF54x Blackfin Processor Hardware Reference 21-27

Media Transceiver Module (MXVR)

The Synchronous Receive FIFO Number of Bytes (SRXNUMB) field is a
read-only field that indicates how many bytes of data are currently stored
in the Synchronous Receive FIFO. The number of bytes can range from 0
(FIFO empty) to 8 (FIFO full).

The Synchronous Transmit FIFO Number of Bytes (STXNUMB) field is a
read-only field that indicates how many bytes of data are currently stored
in the Synchronous Transmit FIFO. The number of bytes can range from
0 (FIFO empty) to 8 (FIFO full).

The Asynchronous Packet Continuation (APCONT) bit is a read-only bit
which indicates the state of the last asynchronous packet continuation bit
received over the network. The APCONT bit indicates when the asynchro-
nous packet channel is free and arbitration can occur in the next frame
(when APCONT = 0) or when the current asynchronous packet will continue
in the next frame (when APCONT = 1).

The DMA Out of Bounds Error Channel Number (OBERRNUM) field is a
read-only field which indicates which Synchronous DMA channel caused
the last DMA Out of Bounds (OBERR) interrupt event. Table 21-8 gives
the OBERRNUM encodings and the corresponding DMA channel names. If
there are multiple DMA channels causing errors, the OBERRNUM will give
the value representing the last channel to error prior to the MXVR_STATE_0
register being read.

Table 21-8. DMA Out of Bounds Error Number Encodings

OBERRNUM DMA Channel Causing Error

b#000 Synchronous Data DMA Channel 0

b#001 Synchronous Data DMA Channel 1

b#010 Synchronous Data DMA Channel 2

b#011 Synchronous Data DMA Channel 3

b#100 Synchronous Data DMA Channel 4

b#101 Synchronous Data DMA Channel 5

MXVR Registers

21-28 ADSP-BF54x Blackfin Processor Hardware Reference

The DMAACTIVEx bits indicate whether the DMA channel is active or inac-
tive. When the DMAACTIVEx bit is 1, DMA channel x is active and when the
DMAACTIVEx bit is 0, DMA channel x is inactive. Once the MDMAENx bit
is set to 1, the exact time when the DMA goes active depends on the Flow
Mode selected. When the MDMAENx bit is set to 1 in Stop Mode, the DMA
channel will go active on the next frame boundary reached and will stop
when the number of programmed transfers is complete. When the
MDMAENx bit is set to 1 in Autobuffer Mode, the DMA channel will go
active on the next frame boundary and will continue indefinitely. When
the MDMAENx bit is set to 1 in Packet-Fixed Count Mode, Packet-Variable
Count Mode, or Packet-Start/Stop Mode, the DMA will go active once
DMAPMENx is 1 and the “start pattern” is found. When the DMA channel is
active in Packet-Fixed Count Mode, the DMA channel will go inactive
when the programmed number of transfers is done, When the DMA chan-
nel is active in Packet-Fixed Count Mode, the DMA channel will go
inactive when the number of transfers specified in the packet are done.
When the DMA channel is active in Packet-Start/Stop Mode, the DMA
channel will go inactive when the “stop pattern” is found
(Packet-Start/Stop). In any flow mode if the MDMAENx bit is set to 0, the
DMA channel will go inactive and disable on the next frame boundary
reached.

The DMAPMENx bits indicate whether the DMA channel is enabled for Pat-
tern Matching. In Packet-Fixed Count Mode, Packet-Variable Count
Mode, or Packet-Start/Stop Mode, when the MDMAENx bit is set to 1, the
DMA channel will be enabled for pattern matching on the next frame

b#110 Synchronous Data DMA Channel 6

b#111 Synchronous Data DMA Channel 7

Table 21-8. DMA Out of Bounds Error Number Encodings

OBERRNUM DMA Channel Causing Error

ADSP-BF54x Blackfin Processor Hardware Reference 21-29

Media Transceiver Module (MXVR)

boundary reached. The DMA channel will remain enabled for pattern
matching until the MDMAENx bit is set to 0. Once the MDMAENx bit is set to 0,
the DMA channel will be disabled on the next frame boundary reached.

MXVR Interrupt Status Register 0
(MXVR_INT_STAT_0)

The MXVR_INT_STAT_0 register indicates the current status of all events that
can generate a Status Change Interrupt or a Control Message Interrupt in
the MXVR. Each bit in the MXVR_INT_STAT_0 indicates whether a particu-
lar event has occurred. If the corresponding interrupt enable bit in the
MXVR_INT_EN_0 is set to 1, the occurrence of that event will generate an
interrupt.

MXVR Registers

21-30 ADSP-BF54x Blackfin Processor Hardware Reference

The following status events generate the Status Change Interrupt: NI2A,
NA2I, SBU2L, SBL2U, PRU, MPRU, DRU, MDRU, SBU, ATU, FCZ0, FCZ1, PERR, MH2L,
ML2H, WUP, FU2L, FL2U, BU2L, BL2U, OBERR, PFL, SCZ, FERR, BCZ, BMERR and
DERR.

The following status events generate the Control Message Interrupt: CMR,
CMROF, CMTS, and CMTC, and RWRC.

All bits in the MXVR_INT_STAT_0 register are sticky bits. The sticky bits are
set to 1 when an event occurs, but must be written with a 1 in order to
clear the bit.

Figure 21-4. MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0)

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

FERR

MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0)

For all bits,
0 - Status Event has not occurred
1 - Status Event has occurred
All bits are sticky. Must write 1 to bit position to clear sticky bit.

OBERR

DERR

BMERR

BCZ

RWRC

CMTC

CMTS

CMROF

CMR

WUP
ML2H
MH2L
PERR
FCZ1
FCZ0
ATU
SBU

Reset = 0x0000 0000

FU2L

FL2U

BU2L

BL2U

SCZ

NI2A

NA2Il

SBU2L

SBL2U

PRU

MPRU

DRU

MDRU

0xFFC0 2710

PFL

ADSP-BF54x Blackfin Processor Hardware Reference 21-31

Media Transceiver Module (MXVR)

The Network Inactive to Active (NI2A) interrupt event will change to 1
when the Network Activity (NACT) bit changes from Inactive (NACT = 0) to
Active (NACT = 1). If the NI2AEN bit is set to 1 in the MXVR_INT_EN_0 regis-
ter, the assertion of NI2A will generate a Status Change Interrupt. The
NI2A bit can be cleared by writing a 1 to the NI2A bit position.

The Network Active to Inactive (NA2I) interrupt event will change to 1
when the Network Activity State (NACT) bit changes from Active (NACT =
1) to Inactive (NACT = 0). If the NA2IEN bit is set to 1 in the MXVR_INT_EN_0
register, the assertion of NA2I will generate a Status Change Interrupt. The
NA2I bit can be cleared by writing a 1 to the NA2I bit position.

The Super Block Unlocked to Locked (SBU2L) interrupt event will change
to 1 when the Super Block Locked State (SBLOCK) bit changes from Super
Block Unlocked (SBLOCK = 0) to Super Block Locked (SBLOCK = 1). If the
SBU2LEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of SBU2L
will generate a Status Change Interrupt. The SBU2L bit can be cleared by
writing a 1 to the SBU2L bit position.

The Super Block Locked to Unlocked (SBL2U) interrupt event will change
to 1 when the Super Block Locked State (SBLOCK) bit changes from Super
Block Locked (SBLOCK = 1) to Super Block Unlocked (SBLOCK = 0). If the
SBL2UEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of SBL2U
will generate a Status Change Interrupt. The SBL2U bit can be cleared by
writing a 1 to the SBL2U bit position.

The Position Register Updated (PRU) interrupt event will change to 1
when the node position becomes valid after lock or whenever the node
position changes once valid. PRU will assert when the PVALID bit in the
MXVR_POSITION register changes from 0 to 1 or when the POSITION field in
the MXVR_POSITION register changes when the PVALID bit is a 1. If the
PRUEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of PRU will
generate a Status Change Interrupt. The PRU bit can be cleared by writing
a 1 to the PRU bit position. Note that the PRU interrupt event will never

MXVR Registers

21-32 ADSP-BF54x Blackfin Processor Hardware Reference

occur when the MXVR is enabled in Master Mode. In Master Mode, the
PVALID bit will be set to 1 immediately after the MXVR is enabled, but no
PRU interrupt event will be generated.

The Maximum Position Register Updated (MPRU) interrupt event will
change to 1 when the maximum position becomes valid after lock or
whenever the maximum position changes once valid. MPRU will assert when
the MPVALID bit in the MXVR_MAX_POSITION register changes from 0 to 1 or
when the MPOSITION field in the MXVR_MAX_POSITION register changes when
the MPVALID bit is a 1. If the MPRUEN bit is set to 1 in the MXVR_INT_EN_0
register, the assertion of MPRU will generate a Status Change Interrupt. The
MPRU bit can be cleared by writing a 1 to the MPRU bit position.

The Delay Register Updated (DRU) interrupt event will change to 1 when
the delay becomes valid after lock or whenever the delay changes once
valid. DRU will assert when the DVALID bit in the MXVR_DELAY register
changes from 0 to 1 or when the DELAY field in the MXVR_DELAY register
changes when the DVALID bit is a 1. If the DRUEN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of DRU will generate a Status Change
Interrupt. The DRU bit can be cleared by writing a 1 to the DRU bit position.
Note that the DRU interrupt event will never occur when the MXVR is
enabled in Master Mode. In Master Mode, the DVALID bit will be set to 1
immediately after the MXVR is enabled, but no DRU interrupt event will
be generated.

The Maximum Delay Register Updated (MDRU) interrupt event will change
to 1 when the maximum delay becomes valid after lock or when the maxi-
mum delay changes once valid. MDRU will assert when the MDVALID bit in
the MXVR_MAX_DELAY register changes from 0 to 1 or when the MDELAY field
in the MXVR_MAX_DELAY register changes when the MDVALID bit is a 1. If the
MDRUEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of MDRU
will generate a Status Change Interrupt. The MDRU bit can be cleared by
writing a 1 to the MDRU bit position.

ADSP-BF54x Blackfin Processor Hardware Reference 21-33

Media Transceiver Module (MXVR)

The Synchronous Boundary Updated (SBU) interrupt event will change to
1 when the MXVR is Frame Locked and the Synchronous Boundary
information received over the network changes. When the Synchronous
Boundary information received over the network changes, the Received
Synchronous Boundary (RSB) field in the MXVR_STATE_0 register will be
updated. The SBU bit will only change to 1 in a node in Slave Mode (MMSM
= 0). If the SBUEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion
of SBU will generate a Status Change Interrupt. The SBU bit can be cleared
by writing a 1 to the SBU bit position.

The Allocation Table Updated (ATU) interrupt event indicates when the
allocation table is updated. When the MXVR is in Master Mode (MMSM =
1), ATU will change to 1 whenever a Resource Allocate or a Resource
De-Allocate control message is received and processed or when the Alloca-
tion Table is received over the network (once every 1024 frames). When
in Slave Mode (MMSM = 0), ATU will assert when the Allocation Table is
received over the network (once every 1024 frames). The MXVR does not
determine whether the Allocation Table has changed—only that the Allo-
cation Table is received. Software must read the Allocation Table registers
to determine if any changes have been made. If the ATUEN bit is set to 1 in
the MXVR_INT_EN_0 register, the assertion of ATU will generate a Status
Change Interrupt. The ATU bit can be cleared by writing a 1 to the ATU bit
position. Note that it is recommended to only read the Allocation Table
(MXVR_ALLOC_x registers) either immediately following an ATU event or
immediately following a BCZ event to avoid the possibility of reading the
Allocation Table while it is in the process of being updated.

The Parity Error (PERR) interrupt event will change to 1 whenever the cal-
culated parity of the received frame does not match the parity bit in that
frame. If the PERREN bit is set to 1 in the MXVR_INT_EN_1 register, the asser-
tion of PERR will generate an Status Change Interrupt. The PERR bit can be
cleared by writing a 1 to the PERR bit position.

MXVR Registers

21-34 ADSP-BF54x Blackfin Processor Hardware Reference

The MRXONB Low to High (ML2H) interrupt event will change to 1 when the
MRXONB bit in the MXVR_STATE_0 register changes from low to high, indicat-
ing that the MRXON input pin has changed from low to high (“light on” to
“light off”). If the ML2HEN bit is set to 1 in the MXVR_INT_EN_0 register, the
assertion of ML2H will generate a Status Change Interrupt. The ML2H bit can
be cleared by writing a 1 to the ML2H bit position.

The MRXONB High to Low (MH2L) interrupt event will change to 1 when the
MRXONB bit in the MXVR_STATE_0 register changes from high to low, indicat-
ing that the MRXON input pin has changed from high to low (“light off” to
“light on”). If the MH2LEN bit is set to 1 in the MXVR_INT_EN_0 register, the
assertion of MH2L will generate a Status Change Interrupt. The MH2L bit can
be cleared by writing a 1 to the MH2L bit position.

The Wake-Up Preamble Received (WUP) interrupt event will change to 1
when a Wake-Up Preamble is received over the network by the MXVR.
The WUP bit will assert regardless of the current operating mode of the
MXVR. If the WUPEN bit is set to 1 in the MXVR_INT_EN_0 register, the asser-
tion of WUP will generate a Status Change Interrupt. The WUP bit can be
cleared by writing a 1 to the WUP bit position.

The Frame Counter 0 Zero (FCZ0) interrupt event will change to 1 when
Frame Counter 0 is started by writing a value to the MXVR_FRAME_CNT_0
register and Frame Counter 0 has decremented down to zero. If the
FCZ0EN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of FCZ0
will generate an Status Change Interrupt. The FCZ0 bit can be cleared by
writing a 1 to the FCZ0 bit position.

The Frame Counter 1 Zero (FCZ1) interrupt event will change to 1 when
Frame Counter 1 is started by writing a value to the MXVR_FRAME_CNT_1
register and Frame Counter 1 has decremented down to zero. If the
FCZ1EN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of FCZ1
will generate an Status Change Interrupt. The FCZ1 bit can be cleared by
writing a 1 to the FCZ1 bit position.

ADSP-BF54x Blackfin Processor Hardware Reference 21-35

Media Transceiver Module (MXVR)

The Frame Unlocked to Locked (FU2L) interrupt event will change to 1
when the Frame Locked (FLOCK) bit in the MXVR_STATE_0 register changes
from Frame Unlocked (FLOCK=0) to Frame Locked (FLOCK=0). If the
FU2LEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the
FU2L will generate a Status Change Interrupt. The FU2L bit can be cleared
by writing a 1 to the FU2L bit position.

The Frame Locked to Unlocked (FL2U) interrupt event will change to 1
when the Frame Locked (FLOCK) bit in the MXVR_STATE_0 register changes
from Frame Locked (FLOCK=1) to Frame Unlocked (FLOCK=0). If the
FL2UEN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the
FL2U will generate a Status Change Interrupt. The FL2U bit can be cleared
by writing a 1 to the FL2U bit position.

The Block Unlocked to Locked (BU2L) interrupt event will change to 1
when the Block Locked (BLOCK) bit in the MXVR_STATE_0 register changes
from Block Unlocked (BLOCK=0) to Block Locked (BLOCK=0). If the BU2LEN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the BU2L will
generate a Status Change Interrupt. The BU2L bit can be cleared by writing
a 1 to the BU2L bit position.

The Block Locked to Unlocked (BL2U) interrupt event will change to 1
when the Block Locked (BLOCK) bit in the MXVR_STATE_0 register changes
from Block Locked (BLOCK=1) to Block Unlocked (BLOCK=0). If the BL2UEN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of the BL2U will
generate a Status Change Interrupt. The BL2U bit can be cleared by writing
a 1 to the BL2U bit position.

The DMA Out of Bounds Error (OBERR) interrupt event indicates when a
Synchronous DMA channel attempts to move outside its allocated mem-
ory buffer. A DMA Out of Bounds Error can only occur for channels
operating in the Synchronous Packet-Variable Count mode or the Syn-
chronous Packet-Stat/Stop mode. The allocated memory buffer is defined
by the values programmed in the MXVR_DMAx_START_ADDR register and the
MXVR_DMAx_COUNT register. A DMA Out of Bounds Error is either a result
of a bit error occurring in data being received (for example, a bit error

MXVR Registers

21-36 ADSP-BF54x Blackfin Processor Hardware Reference

causing the variable count value to be received incorrectly or a bit error
causing the stop pattern to be missed) or a result of the synchronous
packet being transmitted incorrectly (for example, the transmitted syn-
chronous packet being larger than the allocated memory buffer). When a
DMA Out of Bounds Error is detected, the DMA channel is automatically
disabled, the OBERR bit is set to 1, and the OBERRNUM field in the
MXVR_STATE_0 register indicates the channel which generated the error. If
the OBERREN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of
OBERR will generate an Status Change Interrupt. The OBERR bit can be
cleared by writing a 1 to the OBERR bit position.

The PLL Frequency Locked (PFL) interrupt event indicates when the
FMPLL or the CDRPLL transition to their frequency locked states. When
the FMPLL State Machine State (FMPLLST) transitions from the
FMPLL_FMUL state to the FMPLL_LOCKED state or the CDRPLL State
Machine State (CDRPLLST) transitions from the CDRPLL_FMUL state to the
CDRPLL_FHOLD state, the PFL bit will be set to 1. The FMPLLST and the
CDRPLLST can be read in the MXVR_STATE_0 register. If the PFLEN bit is set to
1 in the MXVR_INT_EN_0 register, the assertion of PFL will generate an Sta-
tus Change Interrupt. The PFL bit can be cleared by writing a 1 to the PFL
bit position.

The System Clock Counter Zero (SCZ) interrupt event will change to 1
when the System Clock Counter is started by writing a value to the
MXVR_SCLK_CNT register and System Clock Counter has decremented down
to zero. If the SCZEN bit is set to 1 in the MXVR_INT_EN_0 register, the asser-
tion of SCZ will generate an Status Change Interrupt. The SCZ bit can be
cleared by writing a 1 to the SCZ bit position.

The FIFO Error (FERR) interrupt event will change to 1 when one of the
MXVR internal FIFO’s overflows or underflows. This condition will most
likely cause data corruption. This is a catastrophic event and the MXVR
will automatically disable the effected transmit DMA channels. The inter-
nal FIFO underflows and overflows occur when the MXVR DMA
channels cannot get enough internal DMA bus bandwidth for transfers to

ADSP-BF54x Blackfin Processor Hardware Reference 21-37

Media Transceiver Module (MXVR)

and from L1 to support the network interface. This normally would only
happen if the system clock and/or the core clock frequency are lowered to
a point where the internal busses cannot provide enough bandwidth to
support all the enabled peripherals. If the FERREN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of FERR will generate a Status Change
Interrupt. The FERR bit can be cleared by writing a 1 to the FERR bit posi-
tion. If the FERR occurs due to the Synchronous Transmit FIFO
underflowing all Synchronous Data Transmit DMA channels will auto-
matically be disabled. If the FERR occurs due to the Asynchronous Packet
Transmit FIFO underflowing, the Asynchronous Packet Transmit DMA
channel will be disabled. If the FERR occurs due to the Synchronous
Receive FIFO or the Asynchronous Packet Receive FIFO overflowing, the
associated DMA channels will not automatically be disabled; however, the
data received should be assumed to be corrupted.

If the FERR event ever occurs when running an application, the
application code should be changed (the system clock and/or core
clock frequency should be increased or the amount of DMA band-
width being used should be decreased). The FERR event should
never be allowed to occur in an application as this event indicates
that data corruption may be occurring. In addition, if the FERR
event occurs the MXVR must be disabled and re-enabled in order
to reset the internal FIFOs prior to re-enabling DMA channels.

The Control Message Received (CMR) interrupt event will change to 1 once
a complete control message is received by the MXVR and stored into the
Control Message Receive Buffer. The CMR bit will not be set for System
control messages or Normal control messages that fail the CRC check. If
the CMREN bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of CMR
will generate a Control Message Interrupt. The CMR bit can be cleared by
writing a 1 to the CMR bit position.

The Control Message Receive Buffer Overflow (CMROF) interrupt event
will change to 1 when the Control Message Receive Buffer is full and a
new control message is received over the network by the MXVR. The con-

MXVR Registers

21-38 ADSP-BF54x Blackfin Processor Hardware Reference

trol message that is received by the MXVR when the Control Message
Receive Buffer is full will be completely lost (the MXVR will respond with
“Buffer Full” transmission status). If the CMROFEN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of CMROF will generate a Control
Message Interrupt. The CMROF bit can be cleared by writing a 1 to the
CMROF bit position.

The Control Message Transmit Buffer Successfully Sent (CMTS) interrupt
event will change to 1 when the complete control message in the Control
Message Transmit Buffer is transmitted and the Transmission Status
received back after the message has circled the network is updated in the
Control Message Transmit Buffer. If the CMTSEN bit is set to 1 in the
MXVR_INT_EN_0 register, the assertion of CMTS will generate a Control Mes-
sage Interrupt. The CMTS bit can be cleared by writing a 1 to the CMTS bit
position.

The Control Message Transmit Buffer Successfully Cancelled (CMTC)
interrupt event will change to 1 when the transmission of the control mes-
sage in the Control Message Transmit Buffer is cancelled. The
transmission of the control message can only be cancelled while the
MXVR is arbitrating for the control message channel. Once the MXVR
has won arbitration, the transmission cannot be cancelled. If the CMTCEN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of CMTC will gen-
erate a Control Message Interrupt. The CMTC bit can be cleared by writing
a 1 to the CMTC bit position.

The Remote Write Control Message Complete (RWRC) interrupt event will
change to 1 when an incoming Remote Write Control Message is pro-
cessed and the received data is DMA'd to the Remote Read Buffer and the
received write address and write length have also been DMA'd to the
Remote Read Buffer. If the RWRCEN bit is set to 1 in the MXVR_INT_EN_0
register, the assertion of RWRC will generate a Control Message Interrupt.
The RWRC bit can be cleared by writing a 1 to the RWRC bit position. The
RWRC bit used by software to know when the Remote Read Buffer is writ-
ten to by another node.

ADSP-BF54x Blackfin Processor Hardware Reference 21-39

Media Transceiver Module (MXVR)

The Block Counter Zero (BCZ) interrupt event will change to 1 when the
Block Counter is started by writing a value to the MXVR_BLOCK_CNT register
and Block Counter has decremented down to zero. If the BCZEN bit is set
to 1 in the MXVR_INT_EN_0 register, the assertion of BCZ will generate an
Status Change Interrupt. The BCZ bit can be cleared by writing a 1 to the
BCZ bit position. Note that the Block Counter only decrements at the
beginning of Normal Blocks and not on the blocks containing the Alloca-
tion Table.

The Biphase Mark Coding Error (BMERR) interrupt event will change to 1
when there is a biphase mark code violation in any part of the frame other
than the expected code violations in the preambles. If the BMERREN bit is
set to 1 in the MXVR_INT_EN_0 register, the assertion of BMERR will generate
a Status Change Interrupt. The BMERR bit can be cleared by writing a 1 to
the BMERR bit position.

The DMA Error (DERR) interrupt event will change to 1 when one of the
DMA channels encounters an error. DMA errors occur when the DMA
channel attempts to access an illegal address in L1 or L2 memory. The
DMA Error Number (DERRNUM) field in the MXVR_STATE_0 register gives a
value which indicates which DMA channel was the last to cause a DMA
error. When a DMA channel encounters an error, the channel will be dis-
abled automatically at the point where the error occurred. If the DERREN
bit is set to 1 in the MXVR_INT_EN_0 register, the assertion of DERR will gen-
erate a Status Change Interrupt. The DERR bit can be cleared by writing a 1
to the DERR bit position.

MXVR Registers

21-40 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Interrupt Status Register_1
(MXVR_INT_STAT_1)

The MXVR_INT_STAT_1 register indicates the current status of all events that
can generate a Synchronous Data Interrupt or an Asynchronous Packet
Interrupt.

Each bit in the MXVR_INT_STAT_1 indicates whether a particular event has
occurred. If the corresponding interrupt enable bit in the MXVR_INT_EN_1
is set to 1, the occurrence of that event will generate an interrupt.

Figure 21-5. MXVR Interrupt Status Register_1 (MXVR_INT_STAT_1)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0
171819202122232425262728293031 16

DONE7

HDONE7

DONE6

HDONE6

DONE3

HDONE3

DONE2

APRPE

APRCE

HDONE2

HDONE0

DONE0

APR

APROF

HDONE1

DONE1

APTS

APTC

Reset = 0x0000 0000

HDONE4

DONE4

HDONE5

Reserved

Reserved

Reserved

Reserved

Reserved

DONE5

MXVR Interrupt Status Register 1 (MXVR_INT_STAT_1

For all bits,
0 - Status Event has not occurred
1 - Status Event has occurred.
All bits are sticky. Must write 1 to bit position to clear sticky bit.

0xFFC0 2714

ADSP-BF54x Blackfin Processor Hardware Reference 21-41

Media Transceiver Module (MXVR)

The following status events will generate a Synchronous Data Interrupt:
HDONE0, DONE0, HDONE1, DONE1, HDONE2, DONE2, HDONE3, DONE3, HDONE4,
DONE4, HDONE5, DONE5, HDONE6, DONE6, HDONE7, and DONE7. The following
status events will generate an Asynchronous Packet Interrupt: APR, APROF,
APTS, APTC, APRCE, and APRPE.

All bits in the MXVR_INT_STAT_1 register are sticky bits. The sticky bits are
set to 1 when an event occurs, but must be written with a 1 in order to
clear the bit.

The DMAx Half-Done (HDONEx) interrupt event will change to 1 when
DMA channel x has completed half of the programmed transfers for the
current block in Stop or Autobuffer Mode or when DMA channel x has
completed an odd numbered packet in one of the Synchronous Packet
Modes. If the HDONEx bit is set to 1 in the MXVR_INT_EN_1 register, the
assertion of HDONEx will generate a Synchronous Data DMA Interrupt.
The HDONEx bit can be cleared by writing a 1 to the HDONEx bit position.

The DMAx Done (DONEx) interrupt event will change to 1 when DMA
channel x has completed all of the programmed transfers for the current
block in Stop or Autobuffer Mode or when DMA channel x has com-
pleted an even numbered packet in one of the Synchronous Packet Modes.
If the DONEx bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of
DONEx will generate a Synchronous Data DMA Interrupt. The DONEx bit
can be cleared by writing a 1 to the DONEx bit position.

The Asynchronous Packet Received (APR) interrupt event will change to 1
once a complete asynchronous packet is received by the MXVR and stored
into the Asynchronous Packet Receive Buffer. If the APREN bit is set to 1 in
the MXVR_INT_EN_1 register, the assertion of APR will generate an Asynchro-
nous Packet Interrupt. The APR bit can be cleared by writing a 1 to the APR
bit position.

The Asynchronous Packet Receive Buffer Overflow (APROF) interrupt
event will change to 1 when the Asynchronous Packet Receive Buffer is
full and a new asynchronous packet is received over the network by the

MXVR Registers

21-42 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR. The asynchronous packet that is received by the MXVR when the
Asynchronous Packet Receive Buffer is full will be completely lost. If the
APROFEN bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of APROF
will generate an Asynchronous Packet Interrupt. The APROF bit can be
cleared by writing a 1 to the APROF bit position.

The Asynchronous Packet Transmit Buffer Successfully Sent (APTS) inter-
rupt event will change to 1 when the complete asynchronous packet in the
Asynchronous Packet Transmit Buffer is transmitted. If the APTSEN bit is
set to 1 in the MXVR_INT_EN_1 register, the assertion of APTS will generate
an Asynchronous Packet Interrupt. The APTS bit can be cleared by writing
a 1 to the APTS bit position.

The Asynchronous Packet Transmit Buffer Successfully Cancelled (APTC)
interrupt event will change to 1 when the transmission of the asynchro-
nous packet in the Asynchronous Packet Transmit Buffer is cancelled. The
transmission of the asynchronous packet can only be cancelled while the
MXVR is arbitrating for the asynchronous packet channel. Once the
MXVR has won arbitration, the transmission cannot be cancelled. If the
APTCEN bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of APTC
will generate an Asynchronous Packet Interrupt. The APTC bit can be
cleared by writing a 1 to the APTC bit position.

The Asynchronous Packet Receive CRC Error (APRCE) interrupt event will
change to 1 when an Asynchronous Packet was received with a CRC
Error. The Asynchronous Packet that was received by the MXVR with a
CRC error will not be stored into the Asynchronous Packet Receive
Buffer. If the APRCEEN bit is set to 1 in the MXVR_INT_EN_1 register, the
assertion of APRCE will generate an Asynchronous Packet Interrupt. The
APRCE bit can be cleared by writing a 1 to the APRCE bit position.

The Asynchronous Packet Receive Packet Error (APRPE) interrupt event
will change to 1 when an Asynchronous Packet was received and the
Length stored as part of the Asynchronous Packet did not match the
length of the Asynchronous Packet which was actually received or if the
Asynchronous Packet Continuation (APCONT) bit gets corrupted. If a

ADSP-BF54x Blackfin Processor Hardware Reference 21-43

Media Transceiver Module (MXVR)

Packet Error is detected, and there is an Asynchronous Packet which is
started and is waiting to win arbitration, the MXVR will automatically
cancel the transmission and the APTC will be set to 1. In addition, the
Asynchronous Packet which was being received when the Packet Error
occurred will not be stored in the Asynchronous Packet Receive Buffer. If
the APRPEEN bit is set to 1 in the MXVR_INT_EN_1 register, the assertion of
APRPE will generate an Asynchronous Packet Interrupt. The APRPE bit can
be cleared by writing a 1 to the APRPE bit position. Note that the MXVR
Master can resolve packet errors by asserting the RESETAP bit in the
MXVR_AP_CTL register.

MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0)
The MXVR_INT_EN_0 register is used to enable or disable the generation of
an interrupt when a particular event occurs in MXVR_INT_STAT_0. The
interrupt enables in the MXVR_INT_EN_0 register correspond on a bit-to-bit
basis with the events in the MXVR_INT_STAT_0 register. If an interrupt
enable bit is set to 1, whenever the corresponding event bit in the
MXVR_INT_STAT_0 register is asserted, the associated MXVR interrupt will
be asserted and whenever the event bit is negated, the associated MXVR

MXVR Registers

21-44 ADSP-BF54x Blackfin Processor Hardware Reference

interrupt will be negated (assuming no other events are causing that inter-
rupt to be asserted). If the interrupt enable bit is set to 0, the associated
interrupt output will not assert when the corresponding event bit asserts.

Note that interrupt outputs remain asserted as long as the event bit and
the interrupt enable bit are asserted. For the event bits which are sticky
bits, the Interrupt Service Routine must write a 1 to the asserted event bit
position in the MXVR_INT_STAT_0 register in order to clear the event bit.

The MXVR_INT_EN_0 register contains the following interrupt enables:

• Network Inactive to Active interrupt enable (NI2AEN)

• Network Active to Inactive interrupt enable (NA2IEN)

Figure 21-6. MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0)

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16

Reset = 0x0000 0000

MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0)

For all bits,
0 - Do not interrupt when Status Event occurs
1 - Interrupt when Status Event occurs

DERREN
BMERREN
BCZEN
RWRCEN
CMTCEN
CMTSEN
CMROFEN
CMREN

FU2LEN

FL2UEN

BU2LEN

BL2UEN

OBERREN

SCZEN

FERREN

NI2AEN
NA2IlEN
SBU2LEN
SBL2UEN
PRUEN
MPRUEN
DRUEN
MDRUEN

WUPEN
ML2HEN
MH2LEN
PERREN
FCZ1EN
FCZ0EN
ATUEN
SBUEN

0xFFC0 2718

PFLEN

ADSP-BF54x Blackfin Processor Hardware Reference 21-45

Media Transceiver Module (MXVR)

• Super Block Unlocked to Locked interrupt enable (SBU2LEN)

• Super Block Locked to Unlocked interrupt enable (SBL2UEN)

• Position Register Updated interrupt enable (PRUEN)

• Maximum Position Register Updated interrupt enable (MPRUEN)

• Delay Register Updated interrupt enable (DRUEN)

• Maximum Delay Register Updated interrupt enable (MDRUEN)

• Synchronous Boundary Updated interrupt enable (SBUEN)

• Allocation Table Updated interrupt enable (ATUEN)

• Parity Error interrupt enable (PERREN)

• MRXONB High to Low interrupt enable (MH2LEN)

• MRXONB Low to High interrupt enable (ML2HEN)

• Wakeup Preamble Detected interrupt enable (WUPEN)

• Frame Unlocked To Locked interrupt enable (FU2LEN)

• Frame Locked to Unlocked interrupt enable (FU2UEN)

• Block Unlocked to Locked interrupt enable (BU2LEN)

• Block Locked to Unlocked interrupt enable (BL2UEN)

• DMA Out of Bounds Error interrupt enable (OBERREN)

• PLL Frequency Locked interrupt enable (PFLEN)

• System Clock Counter Zero interrupt enable (SCZEN)

• FIFO Error interrupt enable (FERREN)

• Frame Counter 0 Zero interrupt enable (FCZ0EN)

MXVR Registers

21-46 ADSP-BF54x Blackfin Processor Hardware Reference

• Frame Counter 1 Zero interrupt enable (FCZ1EN)

• Control Message Received interrupt enable (CMREN)

• Control Message Receive Buffer Overflow interrupt enable

• Control Message Transmit Buffer Successfully Sent interrupt
enable (CMTSEN)

• Control Message Transmit Buffer Successfully Cancelled interrupt
enable (CMTCEN)

• Remote Write Complete interrupt enable (RWRCEN)

• Block Counter Zero interrupt enable (BCZEN)

• Biphase Mark Coding Error interrupt enable (BMERREN)

• DMA Error interrupt enable (DERREN)

MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1)
The MXVR_INT_EN_1 register is used to enable or disable the generation of
an interrupt when a particular event occurs in MXVR_INT_STAT_1. The
interrupt enables in the MXVR_INT_EN_1 register correspond on a bit-to-bit
basis with the events in the MXVR_INT_STAT_1 register. If an interrupt
enable bit is set to 1, whenever the corresponding event bit in the
MXVR_INT_STAT_1 register is asserted, the associated MXVR interrupt will
be asserted and whenever the event bit is negated, the associated MXVR

ADSP-BF54x Blackfin Processor Hardware Reference 21-47

Media Transceiver Module (MXVR)

interrupt will be negated (assuming no other events are causing that inter-
rupt to be asserted). If the interrupt enable bit is set to 0, the associated
interrupt output will not assert when the corresponding event bit asserts.

Note that interrupt outputs remain asserted as long as the event bit and
the interrupt enable bit are asserted. For the event bits which are sticky
bits, the Interrupt Service Routine must write a 1 to the asserted event bit
position in the MXVR_INT_STAT_1 register in order to clear the event bit.

Figure 21-7. MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1)

MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1)

DONEEN7

DONEEN6

HDONEEN7

HDONEEN6

DONEEN3

HDONEEN3

DONEEN2

APRPEEN

APREN

APROFEN

APTSEN

APTCEN

APRCEEN

HDONEEN2

HDONEEN0

DONEEN0

HDONEEN1

DONEEN1

DONEEN5

HDONEEN5

DONEEN4

HDONEEN4

Reset = 0x0000 0000

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

171819202122232425262728293031 16

For all bits,
0 - Status Event has not occurred
1 - Status Event has occurred.
All bits are sticky. Must write 1 to bit position to clear sticky bit.

Reserved

Reserved

Reserved

Reserved

Reserved

0xFFC0 271C

MXVR Registers

21-48 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR_INT_EN_1 register contains the following interrupt enables:

• DMA Channel x Half Done interrupt enable (HDONEENx)

• DMA Channel x Done interrupt enable (DONEENx)

• Asynchronous Packet Received interrupt enable (APREN)

• Asynchronous Packet Receive Buffer Overflow interrupt enable
(APROFEN)

• Asynchronous Packet Transmit Buffer Successfully Sent interrupt
enable (APTSEN)

• Asynchronous Packet Transmit Buffer Successfully Cancelled
interrupt enable (APTCEN)

• Asynchronous Packet Receive CRC Error interrupt enable
(APRCEEN)

• Asynchronous Packet Receive Packet Error interrupt enable
(APRPEEN)

MXVR Node Position Register (MXVR_POSITION)
The MXVR_POSITION register is a read-only register that indicates the
MXVR’s physical node position within the ring network. The Master
node is always at position 0. The Slave nodes in the network have their
physical positions checked constantly over the network. If the PVALID bit

ADSP-BF54x Blackfin Processor Hardware Reference 21-49

Media Transceiver Module (MXVR)

is a 1, then the POSITION field is valid and indicates the MXVR’s physical
node position. If the PVALID bit is a 0, then the POSITION field is not valid.
The physical node position can range from 0 to 63.

When the MXVR is disabled, the PVALID bit will be 0. When the MXVR
is enabled in Master Mode, the PVALID bit will be 1 and the POSITION field
will be 0. Once the MXVR is enabled in Master Mode and the PVALID bit
is 1, only asserting reset or disabling the MXVR will cause the PVALID bit
to change to 0. When the MXVR is enabled in Slave Mode, the PVALID bit
will be 0 until the MXVR has reached a lock level at which the node posi-
tion can be correctly determined from the incoming datastream. Once the
node position is correctly determined, the PVALID bit will change to a 1
and the POSITION field will contain the physical node position. Subse-
quent changes to the node position (for example, upstream nodes entering
or exiting All Bypass) will cause the POSITION field to update, but the
PVALID bit will remain a 1 as long the MXVR remains locked throughout
the change. Once the MXVR is enabled in Slave Mode and the PVALID bit
is 1, only asserting reset, disabling the MXVR, or losing lock will cause the
PVALID bit to change to 0.

Figure 21-8. MXVR Node Position Register (MXVR_POSITION)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Node Position Register (MXVR_POSITION)

PVALID
0 - Position Invalid
1 - Position Valid

POSITION

Node Physical Position
0x00 - Timing Master Position
0x01 to 0x3F - Slave Positions

Reset = 0x0000
0xFFC0 2724

MXVR Registers

21-50 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Maximum Node Position Register
(MXVR_MAX_POSITION)

The MXVR_MAX_POSITION register is a read-only register that indicates the
total number of Active nodes within the ring network. The Slave nodes in
the network have the MPOSITION field updated once every 1024 frames. If
the MPVALID bit is a 1, then the MPOSITION field is valid. If the MPVALID bit
is a 0, then the MPOSITION field is not valid. The maximum physical node
position can range from 1 (MPOSITION= b#000001) to 64
(MPOSITION=b#000000).

Once the Master has achieved a lock level at which the total number of
nodes in the network can accurately be determined, the MPOSITION field
will be updated, the MPVALID bit will change to a 1 in the Master. At that
point the Master will distribute the MPOSITION value to all the Slave nodes
ever 1024 frames. Once the Slave nodes have achieved a lock level at
which the MPOSITION value distributed by the Master can be accurately
received, the MPOSITION field will be updated and the MPVALID bit will
change to a 1 in the Slave nodes. Subsequent changes to the total number
of nodes in the network (for example, nodes entering or exiting All
Bypass) will cause the MPOSITION field to update, but the MPVALID bit will
remain a 1 as long as the MXVR remains locked throughout the change.

Figure 21-9. MXVR Maximum Node Position Register
(MXVR_MAX_POSITION)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Maximum Node Position Register (MXVR_MAX_POSITION)

0 - Maximum Position Invalid
1 - Maximum Position Valid

MPOSITION

Maximum Node Position
0x010 to 0x3F - Valid Maximum Node Positio

Reset = 0x0000

MPVALID

0xFFC0 2724

ADSP-BF54x Blackfin Processor Hardware Reference 21-51

Media Transceiver Module (MXVR)

Once MPVALID is set to 1, only asserting reset, disabling the MXVR, or los-
ing lock will cause the MPVALID to change to a 0.

MXVR Node Frame Delay Register (MXVR_DELAY)
The MXVR_DELAY register is a read-only register that indicates the number
of nodes with 2 frame delays that synchronous data will pass through
when going from the transmit output of the Master over the network to
the receive input of the MXVR. The DELAY field value is calculated by
determining the number of Slave nodes operating in Active Mode with 2
frame delays between the Master the MXVR node. The DELAY field value
is calculated once every 1024 frames.

If the DVALID bit is a 1, then the DELAY field is valid. If the DVALID bit is a
0, then the DELAY field is not valid. The DELAY field can range from 0 to 63
(representing from 0 to 126 frame delays for synchronous data).

When the MXVR is disabled, the DVALID bit will be 0. When the MXVR
is enabled in Master Mode, the DVALID bit will be 1 and the DELAY field
will be 0. When the MXVR is enabled in Master Mode and the DVALID bit
is 1, only asserting reset or disabling the MXVR will cause the DVALID bit
to change to 0. When the MXVR is enabled in Slave Mode, the DVALID bit
will be 0 until the MXVR has reached a lock level at which the node delay
can be correctly determined from the incoming datastream. Once the
node delay is correctly determined, the DVALID bit will change to a 1 and
the DELAY field will contain the node delay value. Subsequent changes to

Figure 21-10. MXVR Node Frame Delay Register (MXVR_DELAY)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Node Delay Register (MXVR_DELAY)

0 - Delay Invalid
1 - Delay Valid

DELAY

Delay from Master
0x00 to 0x3F - Valid Delays

Reset = 0x0000

DVALID

0xFFC0 2728

MXVR Registers

21-52 ADSP-BF54x Blackfin Processor Hardware Reference

the node delay (for example, other nodes changing from 2 frame delays to
0 frame delays) will cause the DELAY field to update, but the DVALID bit will
remain a 1 as long as the MXVR remains locked. Once the MXVR is
enabled in Slave Mode and the DVALID bit is 1, only asserting reset, dis-
abling the MXVR, or losing lock will cause the DVALID bit to change to 0.

Note that synchronous data received by the MXVR and DMA’ed to L1 or
L2 memory is not frame delayed in the process of transferring the data and
synchronous data that is DMA’ed from L1 or L2 memory to the MXVR
for transmit is not frame delayed in the process of transferring the data.

To determine the actual time delay of data transmitted from L1 or L2
memory of one MXVR node “A” to the L1 or L2 memory of MXVR node
“B” can be calculated using one of three formulas:

If (POSITIONA < POSITIONB),

tdelay = 2 * (DELAYA - DELAYB) * (1 / Fs)

If (POSITIONA > POSITIONB) and (SDELAYA == ”0”),

tdelay = 2 * (MDELAY - DELAYA + DELAYB) * (1 / Fs)

If (POSITIONA > POSITIONB) and (SDELAYA == ”1”),

tdelay = 2 * (MDELAY - DELAYA + DELAYB - 1) * (1 / Fs)

ADSP-BF54x Blackfin Processor Hardware Reference 21-53

Media Transceiver Module (MXVR)

MXVR Maximum Node Frame Delay Register
(MXVR_MAX_DELAY)

The MXVR_MAX_DELAY register is a read-only register that indicates the total
number of nodes with two frame delays that synchronous data will pass
through when circling the network. The total number of node delays is
calculated by the Master once every 1024 frames. Then the Master distrib-
utes the MDELAY value to all the Slave nodes once every 1024 frames.

If the MDVALID bit is a 1, then the MDELAY field is valid. If the MDVALID bit is
a 0, then the MDELAY field is not valid. The MDELAY field can range from 0
to 63 (representing from 0 to 126 frame delays for synchronous data).

When the MXVR is disabled, the MDVALID bit will be 0. When the MXVR
is enabled in Master Mode, the MDVALID bit will be 0 until the Master
reaches a lock level at which the total number of node delays in the net-
work can be determined. Once the total number of node delays is
correctly determined, the MDVALID bit will change to a 1 and the MDELAY
field will contain the total number of node delays. Then the Master will
distribute the total number of delays in the network to the Slave nodes
once every 1024 frames.

When the MXVR is enabled in Slave Mode, the MDVALID bit will be 0 until
the MXVR has reached a lock level at which the total number of node
delays can correctly received from the Master. Once the total number of

Figure 21-11. MXVR Maximum Node Frame Delay Register
(MXVR_MAX_DELAY)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Maximum Node Frame Delay Register (MXVR_MAX_DELAY)

0 - Maximum Delay Invalid
1 - Maximum Delay Valid

MDELAY

Maximum Frame Delay
0x00 to 0x3F - Valid Delays

Reset = 0x0000

MDVALID

0xFFC0 272C

MXVR Registers

21-54 ADSP-BF54x Blackfin Processor Hardware Reference

node delays is correctly received, the MDVALID bit will change to a 1 and
the MDELAY field will contain the total number of node delays in the net-
work. Subsequent changes to the total number of node delays (for
example, other nodes changing from 2 frame delays to 0 frame delays) will
cause the MDELAY field to update, but the MDVALID bit will remain a 1 as
long as the MXVR remains locked.

Once MDVALID is set to 1, only asserting reset, disabling the MXVR, or los-
ing lock will cause the MDVALID to change to 0.

MXVR Logical Address Register (MXVR_LADDR)
The MXVR_LADDR register sets the MXVR node's logical address. The logical
address may be programmed to any value; however, address 0x0000 is not
allowed by the protocol, addresses 0x3000 to 0x03FF are reserved for group
and broadcast addresses and addresses 0x0400 to 0x04FF are reserved for
position addresses. In addition, software must determine the uniqueness
of any logical address.

Figure 21-12. MXVR Logical Address Register (MXVR_LADDR)

123456789101112131415 0

1 1 1 1 1 1 11 1 1 1 1 1 1 1 1

MXVR Logical Address Register (MXVR_LADDR)

0 - Logical Address Not Valid
1 - Logical Address Valid

LADDR
Logical Address
0x0000 - Illegal
0x0001 to 0x02FF - Valid
0x0300 to 0x04FF - Reserved
0x0500 to 0xFFFF - Valid

Reset = 0x0000 FFFF

LVALID

Reserved

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

171819202122232425262728293031 16

0xFFC0 2730

ADSP-BF54x Blackfin Processor Hardware Reference 21-55

Media Transceiver Module (MXVR)

There is an LVALID bit which should be written to a 1 once the LADDR field
is written. When the LVALID bit is set to a 1, the MXVR will use the value
of the LADDR field as the Logical Address for checking the Destination
Address field of incoming Asynchronous Packets and Control Messages. If
the LVALID bit is set to 0, the MXVR will only use the Alternate Address
from the MXVR_AADDR register for checking the Destination Address field of
incoming Asynchronous Packets. If the LVALID bit is set to 0, the MXVR
will only use the Physical Address from the MXVR_POSITION register and the
Group Address from the MXVR_GADDR register for checking the Destination
Address field of incoming Control Messages.

MXVR Group Address Register (MXVR_GADDR)
The MXVR_ADDR register sets the MXVR node's group address. This address
may be programmed to any value and software must determine the suit-
ability of any group address. The lower byte of the Group Address can be
written to the GADDRL field. The upper byte is assumed to be 0x03. There is
a GVALID bit which should be written to a 1 once the GADDRL field is writ-
ten. When the GVALID bit is set to a 1, the MXVR will use the value of the
GADDRL field to form the Group Address for checking the Destination
Address field of incoming Control Messages. If the GVALID bit is set to 0,
the MXVR will only use the Physical Address from the MXVR_POSITION
register and the Logical Address from the MXVR_LADDR register for checking
the Destination Address field of incoming Control Messages.

Figure 21-13. MXVR Group Address Register (MXVR_GADDR)

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

MXVR Group Address Register (MXVR_GADDR)

0 - Group Address Not Valid
1 - Group Address Valid

GADDRL

Group Address Lower Byte
0x00 to 0xC7 - Valid
0xC8 - Reserved (Broadcast)
0xC9 to 0xFF - Valid

Reset = 0x0000

GVALID

123456789101112131415 0

0xFFC0 2734

MXVR Registers

21-56 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Alternate Address Register (MXVR_AADDR)
The MXVR_AADDR register sets the MXVR node's alternate address. The
alternate address may be programmed to any value and software must
determine the suitability of any alternate address. There is a AVALID bit
which should be written to a 1 once the AADDR field is written. When the
AVALID bit is set to a 1, the MXVR will use the value of the AADDR field as
the Alternate Address for checking the Destination Address field of
incoming Asynchronous Packets. If the AVALID bit is set to 0, the MXVR
will only use the AADDR field as the Alternate Address for checking the Des-
tination Address field of incoming Asynchronous Packets.

MXVR Allocation Table Registers (MXVR_ALLOC_0
– MXVR_ALLOC_14)

The MXVR_ALLOC_x registers contain the Allocation Table for the network’s
synchronous physical channels. The Master services all allocation and
de-allocation requests, maintains the complete Allocation Table, and

Figure 21-14. MXVR Alternate Address Register (MXVR_AADDR)

123456789101112131415 0

0 0 0 1 1 1 10 1 1 1 1 1 1 1 1

MXVRAlternateAddressRegister(MXVR_AADDR)

0 - Alternate Address Not Valid
1 - Alternate Address Valid

AADDR
Alternate Address
0x0000 to 0xFFFF - Valid

Reset = 0x0000 0FFF

AVALID

171819202122232425262728293031 16

Reserved

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 21-57

Media Transceiver Module (MXVR)

sends the Allocation Table out to all the Slave nodes once every 1024
frames. All Allocation Table related processing is handled by the MXVR
Master in hardware (without interaction from software).

The Allocation Table appears in fifteen read-only registers (MXVR_ALLOC_0
to MXVR_ALLOC_14). The 60 synchronous physical channels each have an
8-bit section in one of the 32-bit MXVR_ALLOC_x registers. Figure 8-17
shows MXVR_ALLOC_0 register as an example of one of the Allocation Table
registers. All other Allocation Table registers have the same format.

The Connection Label (CLx) field indicates which physical channels are
associated with a particular Connection Label value. When the CLx field
value is 0x70, physical channel x has not been allocated. When the CLx
field value is between 0x00 and 0x3B, physical channel x is allocated and
is associated with all other physical channels which have the same CLx field
value.

Figure 21-15. MXVR Allocation Table Register (MXVR_ALLOC_0)

123456789101112131415 0

x x x x x x xx x x x x x x x x

x x x x x x xx x x x x x x x x

MXVR Allocation Table Register 0 (MXVR_ALLOC_0)

CIU0

CL0

CIU2

CL2

CL1

CIU1

CL3

CIU3

Reset = 0xXXXX XXXX

171819202122232425262728293031 16

For CIUx
0 = Channel Not In Use
1 = Channel In Use

For CLx
0x70 = Not Allocated
0x00 - 0x3B = Legal Connection Labels

0xFFC0 273C

MXVR Registers

21-58 ADSP-BF54x Blackfin Processor Hardware Reference

The Channel-In-Use (CIUx) bit indicates whether a particular physical
channel is “In-Use” by a node in the network. If the CIUx bit is 0, physical
channel x is not “In-Use”. If the CIUx bit is 1, physical channel x is
“In-Use”.

The Master node modifies its Allocation Table based on Allocate and
De-Allocate system control messages from itself and from the Slave nodes
in the ring. The Master node distributes the Allocation Table to all Slaves
in the ring over the control message channel once every 1024 frames. As
each Slave node receives the Allocation Table, the Slave node updates its
own copy of the Allocation Table and also sets the CIUx bit for each phys-
ical channel that Slave node is using. In this way, once the Allocation
Table returns back to the Master, the Master’s Allocation Table will show
which channels are “In-Use” for the entire network. Note that in each
Slave node, the CIUx bits only reflect which channels are “In-Use” by
upstream nodes (nodes with lower POSITION values).

MXVR Synchronous Logical Channel Assignment
Registers (MXVR_SYNC_LCHAN_0 –
MXVR_SYNC_LCHAN_7)

The MXVR_SYNC_LCHAN_x registers are used to assign logical channel num-
bers to each of the 60 synchronous physical channels. These logical
channel numbers are then used when programming the 8 synchronous
data DMA channels.

There are eight Synchronous Logical Channel Assignment registers
(MXVR_SYNC_LCHAN_0 to MXVR_SYNC_LCHAN_7). The 60 synchronous physi-
cal channels each have an 4-bit field in one of the eight 32-bit
MXVR_SYNC_LCHAN_x registers. Figure 8-18 shows MXVR_SYNC_LCHAN_0 regis-

ADSP-BF54x Blackfin Processor Hardware Reference 21-59

Media Transceiver Module (MXVR)

ter as an example of one of the Synchronous Logical Channel Assignment
registers. All other Synchronous Logical Channel Assignment registers
have the same format.

The Logical Channel for Physical Channel x (LCHANPCx) field gives the
logical channel number assigned to physical channel x. All LCHANPCx fields
will reset to b#1111 which indicates that the physical channel has not
been assigned to a logical channel. Each physical channel which will be
used for receiving data or transmitting data should have the LCHANPCx field
assigned a logical channel value between b#0000 and b#0111. Logical
channel values between b#1000 and b#1110 are reserved.

All physical channels which have the same logical channel value pro-
grammed to their LCHANPCx fields will be DMA'd together. For example, if
LCHANPC5, LCHANPC8, and LCHANPC30 each have been written with b#0110
and Synchronous DMA Channel 3 is programmed to receive data from

Figure 21-16. MXVR Synchronous Logical Channel Assignment Register
(MXVR_SYNC_LCHAN_0)

123456789101112131415 0

MXVR Synchronous Logical Channel Assignment Register 0 (MXVR_SYNC_LCHAN_0)

LCHANPC1

LCHANPC0

LCHANPC5

LCHANPC4

LCHANPC2

LCHANPC3

LCHANPC6

LCHANPC7

Reset = 0xFFFF FFFF

171819202122232425262728293031 16

For LCHANPCx
0000 - 0111= Logical Channels 0 to 7
1000 - 1110 = Reserved
1111 = Unassigned

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0xFFC0 2778

MXVR Registers

21-60 ADSP-BF54x Blackfin Processor Hardware Reference

logical channel 6 (LCHAN3=b#0110), then Synchronous Data DMA Chan-
nel 3 will DMA data received on physical channels 5, 8, and 30 into L1
memory.

Note that the logical channel numbers assigned to the LCHANPCx fields
have no meaning other than to associate physical channels with each other
and assign them to DMA channels. These logical channel numbers are
completely independent of the Connection Label numbers in the Alloca-
tion Table.

MXVR DMAx Configuration Registers
(MXVR_DMA0_CONFIG – MXVR_DMA7_CONFIG)

The MXVR_DMAx_CONFIG registers set the operating mode for the eight Syn-
chronous Data DMA channels. Each Synchronous Data DMA channel
can transfer synchronous data received by the MXVR from the network to
L1 or L2 memory or can transfer synchronous data stored in L1 or L2
memory to the MXVR to be transmitted over the network. The physical
channels allocated for transferring synchronous data can be grouped into
logical channels by programming the MXVR_SYNC_LCHAN_x registers. The
Synchronous Data DMA channels can then be assigned to a particular log-
ical channel for transmit or receive. In this way synchronous data can
easily be moved from any set of received channels to L1 or L2 memory or
from L1 or L2 memory to any set of transmitted channels.

The DMA channel is enabled by setting the DMAx Enable (MDMAENx) bit
to 1 or disabled by setting the MDMAEN bit to 0. When the MDMAENx bit is set
to 1, the MXVR_DMAx_START_ADDR and MXVR_DMAx_COUNT registers should not
be written. In addition when the MDMAENx bit is set to 1, all bits in the
MXVR_DMAx_CONFIG register except for the MDMAENx bit will be read-only and
writes to other bits in the MXVR_DMAx_CONFIG register will have no effect.

ADSP-BF54x Blackfin Processor Hardware Reference 21-61

Media Transceiver Module (MXVR)

The transfer direction for the DMA channel is set by writing the DMAx
Direction (DDx) bit. When the DDx bit is set to 1, the DMA channel will
transfer data received by the MXVR to an L1 or L2 memory buffer. When
the DDx bit is set to 0, the DMA channel will transfer data from an L1 or
L2 memory buffer to the MXVR to be transmitted.

The DMAx Four Byte Swap Enable (BY4SWAPENx) bit enables or disables
four byte swapping of the data that is DMA'd to/from L1 or L2 memory.
If BY4SWAPENx is set to 1, the data byte 0 will be swapped with data byte 3
and data byte 1 will be swapped with data byte 2. If BY4SWAPENx is set to 0,
four byte swapping will not take place. For example, data value
0x54987536 when four byte swapped becomes 0x36759854. Four byte
swapping is done by reading and writing the L1 or L2 memory in a differ-
ent order if four byte swapping is enabled. For example, normally data will
be read from/written to L1 or L2 in the following address order: 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, etc. If four byte swapping is enabled, data
will be read from/written to L1 or L2 in the following address order: 0x03,
0x02, 0x01, 0x00, 0x07, 0x06, 0x05, 0x04, etc. Note that when four byte
swapping is enabled, the MXVR_DMAx_CURR_ADDR will reflect the normal
address incrementing (0x00, 0x01, 0x02, 0x03, etc.) even though the L1 or
L2 memory accesses will be occurring in the four byte swapping address
order. Note that bit-swapping and four byte-swapping may be used in
conjunction. However, two byte-swapping and four byte-swapping may
not be used at the same time.

The DMAx Logical Channel (LCHANx) field determines which logical
channel in the incoming frame will be received and DMA'd to L1 or L2
memory or which logical channel in the outgoing frame will be DMA'd
from L1 or L2 memory and transmitted. The logical channels are defined
in the MXVR_SYNC_LCHAN_x registers. Two DMA channels can have the
same LCHANx field set as long as the data direction for the two channels is
different (one for receive, one for transmit). Programming more than one
DMA channel with the same data direction and the same LCHANx value is
illegal.

MXVR Registers

21-62 ADSP-BF54x Blackfin Processor Hardware Reference

The DMAx Bit-Swap Enable (BITSWAPENx) bit enables or disables bit
swapping of the data that is DMA'd to and from L1 memory. If BITSWAP-
ENx is set to 1, the data bits will be swapped on a byte-wise basis as follows:

bit 7 => bit 0 and bit 0 => bit 7

bit 6 => bit 1 and bit 1 => bit 6

bit 5 => bit 2 and bit 2 => bit 5

bit 4 => bit 3 and bit 3 => bit 4

For example, data value 0x35 when bit-swapped becomes 0xAC. If
BITSWAPEN is set to 0, no bit swapping will take place. Note that bit-swap-
ping and byte-swapping may be used in conjunction.

The DMAx Two Byte Swap Enable (BY2SWAPENx) bit enables or disables
two byte swapping of the data that is DMA'd to/from L1 or L2 memory.
If BY2SWAPENx is set to 1, the data byte 0 will be swapped with data byte 1.
If BY2SWAPENx is set to 0, two byte swapping will not take place. For exam-
ple, data value 0x3586 when two byte swapped becomes 0x8635. Two byte
swapping is done by reading and writing the L1 or L2 memory in a differ-
ent order if two byte swapping is enabled. For example, normally data will
be read from/written to L1 or L2 in the following address order: 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, etc. If two byte swapping is enabled, data
will be read from/written to L1 or L2 in the following address order: 0x01,
0x00, 0x03, 0x02, 0x05, 0x04, etc. Note that when two byte swapping is
enabled, the MXVR_DMAx_CURR_ADDR will reflect the normal address incre-
menting (0x00, 0x01, 0x02, 0x03, etc.) even though the L1 or L2 memory
accesses will be occurring in the two byte swapping address order. Note
that bit-swapping and two byte-swapping may be used in conjunction.
However, two byte-swapping and four byte-swapping may not be used at
the same time.

ADSP-BF54x Blackfin Processor Hardware Reference 21-63

Media Transceiver Module (MXVR)

The DMAx Operation Flow (MFLOWx) field determines the operating mode
of the DMA channel. Each DMA channel can operate in Stop Mode,
Autobuffer Mode, Synchronous Packet-Fixed Count Mode, Synchronous
Packet-Variable Count Mode, and Synchronous Packet-Start/Stop Mode.

In Stop Mode, once the DMA is enabled a fixed number of bytes of data
will be transferred from the logical channel to an L1 or L2 memory buffer
(receive) or from an L1 or L2 memory buffer to the logical channel (trans-
mit). The starting address of the L1 or L2 memory buffer is programmed
in the MXVR_DMAx_START_ADDR register and the number of bytes to be trans-
ferred is programmed in the MXVR_DMAx_COUNT register. The DMA channel
will set the HDONEx status event when half of the total number of bytes are
completed, and will set the DONEx status event when the total number of
bytes are completed. Once all the transfers are done the DMA channel will
disable itself. Disabling the DMA channel manually before the DMA has
completed the total number of bytes will halt the DMA transfers and the
values in the MXVR_DMAx_CURR_ADDR and MXVR_DMAx_CURR_COUNT will indi-
cate where the DMA channel stopped. However, when the channel is
re-enabled, the current address and count will reset back to the values pro-
grammed into the MXVR_DMAx_START_ADDR and MXVR_DMAx_COUNT.

In Autobuffer Mode, once the DMA is enabled a fixed number of bytes of
data will be transferred from the logical channel and to an L1 or L2 mem-
ory buffer (receive) or from an L1 or L2 memory buffer to the logical
channel (transmit). The starting address of the L1 or L2 memory buffer is
programmed in the MXVR_DMAx_START_ADDR register and the number of
bytes to be transferred is programmed in the MXVR_DMAx_COUNT register.
The DMA channel will set the HDONEx status event when half of the total
number of bytes are completed, and will set the DONEx status event when
the total number of bytes are completed. Once all the transfers are done
the DMA will remain enabled and will restart from the address specified
in the MXVR_DMAx_START_ADDR register and with the transfer count in the
MXVR_DMAx_COUNT register. Disabling the DMA channel manually when
the DMA is programmed for Autobuffer Mode will halt the DMA trans-
fers and the values in the MXVR_DMAx_CURR_ADDR and

MXVR Registers

21-64 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR_DMAx_CURR_COUNT will indicate where the DMA channel stopped.
However, when the channel is re-enabled, the current address and count
will reset back to the values programmed into the MXVR_DMAx_START_ADDR
and MXVR_DMAx_COUNT.

The DMA channels have three Synchronous Packet Autobuffer Modes
which allow the DMA channels to receive packetized data over the syn-
chronous data channels. The three modes are Synchronous
Packet-Variable Count Mode, Synchronous Packet-Start/Stop Mode, and
Synchronous Packet-Fixed Count Mode. These DMA modes are only
used when the MXVR is receiving data and the DMA channel is writing
the data to L1 or L2 memory. These Synchronous Packet Autobuffer
Modes allow the data being received to trigger the DMA channel to start
at the beginning of a packet and trigger the DMA channel to stop at the
end of the packet. Note that the Synchronous Packet Autobuffer Modes
which allow the DMA channels to receive packets of data over the syn-
chronous data portion of the network frame should not be confused with
Asynchronous Packets which are transmitted and received over the asyn-
chronous data portion of the network frame.

When the DMA channel is set for Synchronous Packet-Variable Count
Mode and once the DMA channel is enabled, the DMA channel will
search the data in a logical channel in the received data stream for the
“start pattern”. The logical channel which the DMA channel will search in
and DMA from is defined by the LCHANx field and the “start pattern” is
selected by the STARTPATx field. Once the “start pattern” is found, the
DMA channel will start transferring data received in the logical channel to
L1 or L2 memory and at the same time will search for the transfer count (a
16-bit value representing the number of bytes to be transferred) in the log-
ical channel data stream. The position of the transfer count with respect to
the “start pattern” is programmed in the COUNTPOSx field. The
MXVR_DMAx_CURR_COUNT will initially be set to 0xFFFF when the “start pat-
tern” is found and will decrement with every transfer done prior to
receiving the transfer count. Once the transfer count is received, the
MXVR_DMAx_CURR_COUNT will be based on transfer count from the datas-

ADSP-BF54x Blackfin Processor Hardware Reference 21-65

Media Transceiver Module (MXVR)

tream. Once the DMA channel transfers the number of bytes based on the
transfer count to L1 or L2 memory, the DMA will stop transferring data.
The DMA channel will then repeat the process and start looking for the
“start pattern” again.

The first packet of data (and subsequent odd packet numbers) received
will be written to the address specified in the MXVR_DMAx_START_ADDR. The
DMA transfers will continue until the transfer count expires. When the
transfer count expires, the HDONEx bit in the MXVR_INT_STAT_1 register will
be set to 1. The second packet of data (and subsequent even packet num-
bers) received will be written to an address that is defined by the
MXVR_DMAx_START_ADDR plus the value programmed in the
MXVR_DMAx_COUNT. The DMA transfers will continue until the transfer
count expires. When the transfer count expires, the DONEx bit in the
MXVR_INT_STAT_1 register will be set to 1. Subsequent received packets will
ping-pong between these two L1 or L2 memory buffers. Note that the
value programmed to the MXVR_DMAx_COUNT should be sufficiently large
enough to accommodate the largest packet size that will be received.

Synchronous Packet-Variable Count Mode operation will continue until
the MDMAENx is set to 0 or until a DMA Error occurs. Note that DMA
Enable/Disable always occur at the start of a new frame.

When the DMA channel is set for Synchronous Packet-Start/Stop Mode
and once the DMA channel is enabled, the DMA channel will be search-
ing the data in a logical channel in the received data stream for the “start
pattern”. The logical channel which the DMA channel will search in and
DMA from is defined by the LCHANx field and the “start pattern” is
selected by the STARTPATx field. Once the “start pattern” is found, the
DMA channel start transferring data received in the logical channel to L1
or L2 memory and at the same time will search for the “stop pattern” in
the logical channel data stream. The “stop pattern” is selected by the
STOPPATx field. The MXVR_DMAx_CURR_COUNT will initially be set to 0xFFFF
when the “start pattern” is found and will decrement with every transfer
done prior to receiving “stop pattern”. Once the DMA channel receives

MXVR Registers

21-66 ADSP-BF54x Blackfin Processor Hardware Reference

the “stop pattern”, the DMA will stop transferring data. The DMA chan-
nel will then repeat the process and start looking for the “start pattern”
again.

The first packet (and subsequent odd packet numbers) of data received
will be written to the address specified in the MXVR_DMAx_START_ADDR. The
DMA transfers will continue until the “stop pattern” is found. Once the
“stop pattern” is found, the HDONEx bit in the MXVR_INT_STAT_1 register
will be set to 1. The second packet (and subsequent even packet numbers)
of data received will be written to an address that is defined by the
MXVR_DMAx_START_ADDR plus the value programmed in the
MXVR_DMAx_COUNT. The DMA transfers will continue until the “stop pat-
tern” is found. Once the “stop pattern” is found, the DONEx bit in the
MXVR_INT_STAT_1 register will be set to 1. Received packets will ping-pong
between these two L1 or L2 memory buffers. Note that the value pro-
grammed to the MXVR_DMAx_COUNT should be sufficiently large enough to
accommodate the largest packet size that will be received.

The Synchronous Packet-Start/Stop Mode operation will continue until
the MDMAENx is set to 0 or until a DMA Error occurs. Note that DMA
Enable/Disable always occur at the start of a new frame.

When the DMA channel is set for Packet-Fixed Count Mode and once the
DMA channel is enabled, the DMA channel will be searching the data in a
logical channel in the received data stream for the “start pattern”. The log-
ical channel which the DMA channel will search in and DMA from is
defined by the LCHANx field and the “start pattern” is selected by the
STARTPATx field. Once the “start pattern” is found, the DMA channel start
transferring data received in the logical channel to L1 or L2 memory using
the transfer count programmed in the MXVR_DMAx_COUNT register (the fixed
transfer count). Once the DMA channel transfers the number of bytes
based on the transfer count to L1 or L2 memory, the DMA will stop
transferring data. The DMA channel will then repeat the process and start
looking for the “start pattern” again.

ADSP-BF54x Blackfin Processor Hardware Reference 21-67

Media Transceiver Module (MXVR)

The first packet (and subsequent odd packet numbers) of data received
will be written to the address specified in the MXVR_DMAx_START_ADDR. The
DMA transfers will continue until the transfer count expires. Once the
transfer count expires, the HDONEx bit in the MXVR_INT_STAT_1 register will
be set to 1. The second packet (and subsequent even packet numbers)
received will be written to an address that is defined by the
MXVR_DMAx_START_ADDR plus the value programmed in the
MXVR_DMAx_COUNT. The DMA transfers will continue until the transfer
count expires. When the transfer count expires, the DONEx bit in the
MXVR_INT_STAT_1 register will be set to 1. Received packets will ping-pong
between these two L1 or L2 memory buffers.

The Synchronous Packet-Fixed Count Mode operation will continue until
the MDMAENx is set to 0 or until a DMA Error occurs. Note that DMA
Enable/Disable always occur at the start of a new frame.

The Fixed Pattern Matching select (FIXEDPM) bit determines whether a
pattern match can occur on any byte or bytes in a logical channel or if the
pattern must match the first byte or bytes of the logical channel. If the
FIXEDPM is set to 0, the “start pattern” or “stop pattern” can match any
byte or bytes in the logical channel. If the FIXEDPM is set to 1, the “start
pattern” or “stop pattern” will only match if the first byte of the pattern
matches the first byte in the logical channel (and so on depending on how
many bytes are being matched). For example, if the pattern is two bytes
long and the logical channel is defined as physical channels 8 to 11 and if
FIXEDPM is set to 1, then byte 0 of the pattern must match physical channel
8 and byte 1 of the pattern must match physical channel 9 for there to be
a match. In the same example if FIXEDPM is set to 0, bytes 0 and 1 could
match physical channels 8 and 9, 9 and 10, 10 and 11, 11 in the current
frame and 8 in the next frame, or 11 from the previous frame and 8 in the
current frame.

The Start Pattern select (STARTPATx) field determines which set of pattern
registers will specify the “start pattern”. If the STARTPATx is set to b#00,
pattern registers MXVR_PAT_DATA_0 and MXVR_PAT_EN_0 will specify the

MXVR Registers

21-68 ADSP-BF54x Blackfin Processor Hardware Reference

“start pattern”. If the STARTPAT is set to b#01, pattern registers
MXVR_PAT_DATA_1 and MXVR_PAT_EN_1 will specify the “start pattern”. All
other values of STARTPATx are reserved. Note that the “start pattern” itself
will not be DMA’ed to L1 or L2 memory.

The Stop Pattern select (STOPPATx) field determines which set of pattern
registers will specify the “stop pattern”. If the STOPPATx is set to b#00, pat-
tern registers MXVR_PAT_DATA_0 and MXVR_PAT_EN_0 will specify the “stop
pattern”. If the STOPPATx is set to b#01, pattern registers MXVR_PAT_DATA_1
and MXVR_PAT_EN_1 will specify the “stop pattern”. All other values of
STOPPATx are reserved. Note that the “stop pattern” itself will be DMA’ed
to L1 or L2 memory.

The Count Position (COUNTPOSx) field indicates where the 16-bit transfer
count can be found in the received data stream once the “start pattern” is
found when operating in Synchronous Packet-Variable Count Mode. The
COUNTPOSx indicates the position of the transfer count by giving the num-
ber of bytes between the last byte of the “start pattern” to the first byte of
the transfer count. The COUNTPOSx can range from 0 bytes after the end of
the “start pattern” to 7 bytes after the end of the “start pattern.” For exam-
ple, if the COUNTPOSx was set to 0, then the transfer count would be found
in the first two bytes in the logical channel after the end of the “start pat-
tern”. If the COUNTPOSx was set to 7, then the transfer count would be
found in the eight and ninth bytes in the logical channel after the end of
the “start pattern”. The most significant byte of the transfer count is
received first, and followed by the least significant byte of the transfer
count. Note that the number of bytes set by the COUNTPOSx field is with
respect to the logical channel data stream. In other words, the “start pat-
tern” and transfer count will be in the same logical channel but may be in

ADSP-BF54x Blackfin Processor Hardware Reference 21-69

Media Transceiver Module (MXVR)

different frames. Note that the bytes of data between the “start pattern”
and the transfer count, and the transfer count itself will be DMA’ed to L1
or L2 memory.

Figure 21-17. MXVR DMAx Configuration Register
(MXVR_DMA0_CONFIG)

123456789101112131415 0

MXVR DMAx Configuration Register (MXVR_DMA0_CONFIG)

DD

MDMAEN

STARTPAT

FIXEDPM

MFLOW

COUNTPOS

Reset = 0x0000 0000

171819202122232425262728293031 16

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 - Pat Match on Any Byte
 in Logical Channel
1 - Pat Match Only on First
 Byte of Logical Channel

00 - Start Pat from PR0
01 - Start Pat from PR1
10 - 11 Reserved

STOPPAT
00 - Stop Pat from PR0
01 - Stop Pat from PR1
10 - 11 Reserved

0 - Disable DMA Channel
1 - Enable DMA Channel

0 - DMA reads L1 (Transmit)
1 - DMA writes L1 (Receive)

000 - Stop
001 - Autobuffer
010 - Sync Packet-Variable Count
011 - Sync Packet-Start/Stop
100 - Sync Packet-Fixed Count
101 to 111 - Reserved

BY2SWAPEN
0 - Disable Two Byte Swap
1 - Swap Two Bytes (0:1)

BITSWAPEN
0 - Disable Byte-wise Bit Swap
1 - MSB...LSB => LSB...MSB

LCHAN
0000 - Logical Channel 0
0001 - Logical Channel 1
...
0111 - Logical Channel 7
1000 to 1111 - Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

000 - Count is 0 bytes after SP
001 - Count is 1 byte after SP
001 - Count is 2 bytes after SP
...
001 - Count is 7 bytes after SP

0xFFC0 27AC

Reserved

BY4SWAPEN
0 - Disable Four Byte Swap
1 - Swap Four Bytes (0:3 and 1:2)

MXVR Registers

21-70 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR DMA Channel x Start Address Registers
(MXVR_DMA0_START_ADDR –
MXVR_DMA7_START_ADDR)

The MXVR_DMAx_START_ADDR registers set the starting address for the syn-
chronous data DMA channels. The synchronous data DMA channels can
only DMA to or from L1 or L2 memory. Therefore, bits 31-25 are fixed
to 1s.

Once the DMA is enabled, data will begin to be DMA'd to or from the
address given in the MXVR_DMAx_START_ADDR for that channel. The opera-
tion of the DMA channel depends on which DMA mode is selected with
the MFLOWx field:

If the DMA is operating in Stop Mode, once all the transfers specified in
the corresponding MXVR_DMAx_COUNT have been done, the DMA will auto-
matically disable.

Figure 21-18. MXVR DMA Channel x Start Address Registers
(MXVR_DMAx_START_ADDR)

MXVR DMA Channelx Start Address Register (MXVR_DMA0_START_ADDR)

Reset = 0xFF00 0000

DMA Start Address [23:16]

DMA Start Address [15:0]

Bits 31-24 are fixed to 0xFF
All other bits are Read/Write when channel is disabled Read-Only when channel is enabled

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0xFFC0 279C

ADSP-BF54x Blackfin Processor Hardware Reference 21-71

Media Transceiver Module (MXVR)

If the DMA channel is operating in Autobuffer Mode, once all of the
transfers specified in the corresponding MXVR_DMAx_COUNT have been done,
the DMA will then jump back to the start address programmed in the
MXVR_DMAx_START_ADDR and DMA operations will continue from there. In
this way the data received will alternate between being written to the first
memory buffer at MXVR_DMAx_START_ADDR and the second memory buffer
at MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT/2.

If the DMA channel is operating in Synchronous Packet-Variable Count
Mode, the first packet received will be written to the
MXVR_DMAx_START_ADDR. Once all of the transfers specified by the transfer
count field in the packet itself have been done, the second packet received
will be written to MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. Once all of
the transfers specified by the transfer count field in the packet itself have
been done, the third packet received will be written to
MXVR_DMAx_START_ADDR. In this way the packets received will alternate
between being written to the first memory buffer at
MXVR_DMAx_START_ADDR and the second memory buffer at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

If the DMA channel is operating in Synchronous Packet-Start/Stop Mode,
the first packet received will be written to the MXVR_DMAx_START_ADDR.
Once all of the transfers specified by the amount of data received between
the "start pattern" and the "stop pattern" have been done, the second
packet received will be written to MXVR_DMAx_START_ADDR +
MXVR_DMAx_COUNT. Once all of the transfers specified by the amount of data
received between the "start pattern" and the "stop pattern" have been
done, the third packet received will be written to MXVR_DMAx_START_ADDR.
In this way the packets received will alternate between being written to the
first memory buffer at MXVR_DMAx_START_ADDR and the second memory
buffer at MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

If the DMA channel is operating in Synchronous Packet-Fixed Count
Mode, the first packet received will be written to the
MXVR_DMAx_START_ADDR. Once all of the transfers specified by the fixed

MXVR Registers

21-72 ADSP-BF54x Blackfin Processor Hardware Reference

count in the MXVR_DMAx_COUNT have been done, the second packet received
will be written to MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. Once all of
the transfers specified by the fixed count in the MXVR_DMAx_COUNT have
been done, the third packet received will be written to
MXVR_DMAx_START_ADDR. In this way the packets received will alternate
between being written to the first memory buffer at
MXVR_DMAx_START_ADDR and the second memory buffer at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

MXVR DMA Channel x Current Address Registers
(MXVR_DMA0_CURR_ADDR –
MXVR_DMA7_CURR_ADDR)

The MXVR_DMAx_CURR_ADDR registers are read-only registers which give the
current address that the synchronous data DMA channels are accessing.
The synchronous data DMA channels can only DMA to or from L1 or L2
memory. Therefore, bits 31–25 are fixed to 1s. Once the DMA is enabled,
data will begin to be DMA'd to or from the address given in the

ADSP-BF54x Blackfin Processor Hardware Reference 21-73

Media Transceiver Module (MXVR)

MXVR_DMAx_START_ADDR for that channel. The MXVR_DMAx_CURR_ADDR will
always show the address which is being DMA'd to or from or the address
that was DMA'd to or from previously for each channel.

MXVR DMA Channel x Transfer Count Registers
(MXVR_DMA0_COUNT – MXVR_DMA7_COUNT)

The MXVR_DMAx_COUNT registers set the number of bytes that the synchro-
nous data DMA channels will transfer. The synchronous data DMA
channels can only DMA to or from L1 or L2 memory. The maximum

Figure 21-19. MXVR DMA Channel x Current Address Register
(MXVR_DMAx_CURR_ADDR)

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR DMA Channel x Current Address Register (MXVR_DMA0_CURR_ADDR)

All bits are Read-Only

Reset = 0xFF00 0000

DMA Current Address[31:1

DMA Current Address[15:0

0xFFC0 27A4

MXVR Registers

21-74 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR_DMAx_COUNT value is 65535 (giving a maximum data block size to be
DMA'd of 64K bytes). The value 0x0000 is illegal and should not be writ-
ten to the MXVR_DMAx_COUNT register.

Once the DMA is enabled, data will begin to be DMA'd to or from the
address given in the MXVR_DMAx_START_ADDR for that channel. The meaning
of the MXVR_DMAx_COUNT and the operation of the DMA channel depend
on which DMA mode is selected with the MFLOWx field:

If the DMA is operating in Stop Mode, the MXVR_DMAx_COUNT value is the
total number of bytes to be transferred. Once half of the transfers specified
have been completed, the HDONE interrupt event will be generated. Once
all the transfers specified have completed, the DONE interrupt event will be
generated and the DMA will automatically be disabled.

If the DMA channel is operating in Autobuffer Mode, the
MXVR_DMAx_COUNT value is the total number of bytes to be transferred
before the address is reset back to the MXVR_DMAx_START_ADDR. Once half of
the transfers specified have completed, the HDONE interrupt event will be
generated. Once all the transfers specified have completed, the DONE inter-
rupt event will be generated and the DMA will jump back to the start
address programmed in the MXVR_DMAx_START_ADDR and DMA operations
will continue from there.

Figure 21-20. MXVR DMA Channel x Transfer Count Registers
(MXVR_DMAx_COUNT)

MXVR DMA Channel x Transfer Count Register (MXVR_DMA0_COUNT)

Read/Write when channel is disabled Read-Only when channel is enabled

Reset = 0x0001

DMA Transfer Count
0x0000 - Reserved
0x0001 - 1Transfer
0xFFFF - 65,535 Transfers

123456789101112131415 0

0 0 0 0 0 0 10 0 0 0 0 0 0 0 00xFFC0 27A0

ADSP-BF54x Blackfin Processor Hardware Reference 21-75

Media Transceiver Module (MXVR)

If the DMA channel is operating in Synchronous Packet-Variable Count
Mode, the MXVR_DMAx_COUNT value is the offset from the
MXVR_DMAx_START_ADDR where every other packet will be written to. The
first packet (third packet, fifth packet, seventh packet, etc.) received will
be written starting at MXVR_DMAx_START_ADDR, while the second packet
(fourth packet, sixth packet, eight packet, etc.) will be written starting at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. The transfer count for each
packet is included in the packet itself. Therefore, the MXVR_DMAx_COUNT
value should be larger than the length of the largest packet to be received.

If the DMA channel is operating in Synchronous Packet-Start/Stop Mode,
the MXVR_DMAx_COUNT value is the offset from the MXVR_DMAx_START_ADDR
where every other packet will be written to. The first packet (third packet,
fifth packet, seventh packet, etc.) received will be written starting at
MXVR_DMAx_START_ADDR, while the second packet (fourth packet, sixth
packet, eight packet, etc.) will be written starting at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT. The number of transfers to be
done for each packet is determined by the packet itself based on the num-
ber of bytes between the “start pattern” and the “stop pattern”. Therefore,
the MXVR_DMAx_COUNT value should be sufficiently large to hold the longest
packet to be received.

If the DMA channel is operating in Synchronous Packet-Fixed Count
Mode, the MXVR_DMAx_COUNT value is the number of bytes that will be
transferred to store one packet. All packets will be of the same length. The
first packet (third packet, fifth packet, seventh packet, etc.) received will
be written starting at MXVR_DMAx_START_ADDR, while the second packet
(fourth packet, sixth packet, eight packet, etc.) will be written starting at
MXVR_DMAx_START_ADDR + MXVR_DMAx_COUNT.

MXVR Registers

21-76 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR DMA Channel x Current Transfer Count
Registers (MXVR_DMA0_CURR_COUNT –
MXVR_DMA7_CURR_COUNT)

The MXVR_DMAx_CURR_COUNT registers are read-only registers which give an
indication of the current number of bytes remaining to be transferred for
that synchronous data DMA channel. The meaning of the value in the
MXVR_DMAx_CURR_COUNT depends which DMA mode is selected with the
MFLOWx field.

In Stop Mode, Autobuffer Mode, and Synchronous Packet-Fixed Count
Mode, the MXVR_DMAx_CURR_COUNT will always show the number of bytes
which still need to be transferred. When all the transfers that were speci-
fied are done, the MXVR_DMAx_CURR_COUNT will be 0x0000.

In Synchronous Packet-Variable Count Mode, the number of bytes to be
transferred is not known until the transfer count is found in the packet.
Therefore, prior to finding the transfer count the MXVR_DMAx_CURR_COUNT
will decrement from 0xFFFF. Once the transfer count is found, the
MXVR_DMAx_CURR_COUNT will show the number of bytes which still need to
be transferred. When all the transfers that were specified are done, the
MXVR_DMAx_CURR_COUNT will be 0x0000.

Figure 21-21. MXVR DMA Channel x Current Transfer Count Registers
(MXVR_DMAx_CURR_COUNT)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR DMA Channel x Current Transfer Count Register (MXVR_DMA0_CURR_COUNT)

Read-Only

Reset = 0x0000

DMA Current Transfer Count
0x0000 - All Transfers Complete
0x0001 - 1 Transfer Remaining
0xFFFF - 65,535 Transfers Remainin

0xFFC0 27A8

ADSP-BF54x Blackfin Processor Hardware Reference 21-77

Media Transceiver Module (MXVR)

In Synchronous Packet-Start/Stop Mode, the number of bytes to be trans-
ferred is not known until the “stop pattern” is found. Therefore, the
MXVR_DMAx_CURR_COUNT will decrement from 0xFFFF.and will stop when
the “stop pattern” is found.

MXVR Asynchronous Packet Control Register
(MXVR_AP_CTL)

The MXVR_AP_CTL register is a 16-bit register that is used to control the
transmission and reception of Asynchronous Packets. The MXVR has an
Asynchronous Packet Transmit Buffer (APTB) and an Asynchronous
Packet Receive Buffer (APRB). The APRB is capable of holding two received
Asynchronous Packets.

The Start Asynchronous Packet Transmission (STARTAP) bit should be set
to 1 once an asynchronous packet to be transmitted is written to the APTB
and the asynchronous packet is ready to be sent. Once the STARTAP bit is
set to 1, arbitration for the asynchronous channel begins and continues

Figure 21-22. MXVR Asynchronous Packet Control Register
(MXVR_AP_CTL)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Asynchronous Packet Control Register (MXVR_AP_CTL)

Reset = 0x0000

Reserved

STARTAP
0 - No effect
1 - Start Sending Packet
Always Reads 0

CANCELAP
0 - No Effect
1 - Cancel Packet Being Sent
Always Reads 0

RESETAP
0 - No effect
1 - Reset AP Channel
 Always Reads 0

APRBE1
0 - AP RX Buffer Entry 1 Empty
1 - AP RX Buffer Entry 1 Full
Write 1 to Clear

APRBE0
0 - AP RX Buffer Entry 0 Empty
1 - AP RX Buffer Entry 0 Full
Write 1 to Clear

0xFFC0 2838

MXVR Registers

21-78 ADSP-BF54x Blackfin Processor Hardware Reference

until arbitration is won or until the asynchronous packet is cancelled with
the CANCELAP bit. The STARTAP bit always reads as 0 and writing a 0 to the
STARTAP bit has no effect.

The Cancel Asynchronous Packet Transmission (CANCELAP) bit allows an
asynchronous packet transmission which is arbitrating for the asynchro-
nous channel to be cancelled. Once arbitration is won, the asynchronous
packet being sent cannot be cancelled. To cancel the asynchronous packet
transmission, the CANCELAP bit should be set to 1. Writing a 1 to the CAN-
CELAP bit after arbitration is won and the asynchronous packet is already
being sent will have no effect. The CANCELAP bit always reads as 0 and writ-
ing a 0 to the CANCELAP bit has no effect.

The Reset Asynchronous Packet Arbitration (RESETAP) bit allows the Mas-
ter to reset the asynchronous packet arbitration if an Asynchronous Packet
Error (APRPE) is detected. Asynchronous packet errors can occur when the
arbitration mechanism gets hung due to a bit error or when the transmit-
ting node does not properly terminate its asynchronous packet
transmission (for example, if a node is reset or disabled during an asyn-
chronous packet transmission).

Before the Master asserts the RESETAP, the Master should allow enough
time for all nodes in the ring to recognize that an asynchronous packet
error has occurred or the Master should notify all slave nodes in the ring
that it will be resetting the asynchronous packet arbitration, so that no
node will attempt transmission during the reset. The asynchronous packet
arbitration reset can take up to 3 frames to complete. The Master should
notify the slave nodes in the ring that the reset of the asynchronous packet
arbitration has completed.

Resetting the asynchronous packet arbitration while a packet is being
transmitted will block the packet from being received by nodes with posi-
tions less than the position of the transmitting node. Transmitting
asynchronous packets while the Master is resetting the asynchronous
packet arbitration could cause packet collisions and could cause further
packet errors.

ADSP-BF54x Blackfin Processor Hardware Reference 21-79

Media Transceiver Module (MXVR)

To reset the asynchronous packet arbitration, the RESETAP bit should be
set to 1. Only the Master (MMSM = 1) can cause a reset of the asynchronous
packet arbitration. Attempting to write the RESETAP bit to a 0 in a Master
node will have no effect. In a Slave node, the RESETAP bit will always be set
to 0. Attempting to write the RESETAP bit to a 1 or 0 in a Slave node will
have no effect.

The Asynchronous Packet Receive Buffer Entry x (APRBEx) bits indicate
whether entry x in the APRB is full or empty. The APRBEx bits are sticky bits
which must be written with a 1 to clear. Writing a 0 to the APRBEx bit will
have no effect. When a received asynchronous packet is DMA'd to an APRB
entry, the corresponding APRBEx bit will be set to 1. Once software has
read the Asynchronous Packet stored in that entry, a 1 should be written
to the corresponding APRBEx bit in order to clear the bit and to indicate
that the entry is empty and can be used for another incoming asynchro-
nous packet. The MXVR will always attempt to DMA an incoming
asynchronous packets to the next sequential APRB buffer entry (first asyn-
chronous packet to APRBE0, second to APRBE1, third to APRBE0, etc.). An
overflow will occur if the next sequential APRBEx bit is 1 when a new asyn-
chronous packet is being received, and the APROF bit in the
MXVR_INT_STAT_0 register will be set to 1.

MXVR Registers

21-80 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Asynchronous Packet Receive Buffer Start
Address Register (MXVR_APRB_START_ADDR)

The MXVR_APRB_START_ADDR register set the starting address for the Asyn-
chronous Packet Receive Buffer in L1 or L2 memory. The APRB must be
allocated 2048 bytes. The APRB can only reside in L1 or L2 memory and
the APRB must be word aligned. Therefore, bits 31-25 are fixed to 1s and
bit 0 is fixed to 0

Figure 21-23. MXVR APRB Start Address Register
(MXVR_APRB_START_ADDR)

APRB Start Address[15:1]

APRB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

MXVR Asynchronous Packet Receive Buffer Start Address Register (MXVR_APRB_START_ADDR)

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

0xFFC0 283C

ADSP-BF54x Blackfin Processor Hardware Reference 21-81

Media Transceiver Module (MXVR)

MXVR Asynchronous Packet Receive Buffer
Current Address Register
(MXVR_APRB_CURR_ADDR)

The MXVR_APRB_CURR_ADDR register is a read-only register which gives the
current address that the Asynchronous Packet Receive DMA channel is
writing to in the APRB. The APRB can only reside in L1 or L2 memory.
Therefore, bits 31-25 will always be 1s and bit 0 will always be 0.

Figure 21-24. MXVR Asynchronous Packet Receive Buffer Current
Address Register (MXVR_APRB_CURR_ADDR)

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Asynchronous Packet Receive Buffer Current Address Register (MXVR_APRB_CURR_ADDR)

All bits are Read-Only

APRB Current Address[31:16]

APRB Current Address[15:0]

0xFFC0 2840

MXVR Registers

21-82 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Asynchronous Packet Transmit Buffer Start
Address Register (MXVR_APTB_START_ADDR)

The MXVR_APTB_START_ADDR registers set the starting address for the Asyn-
chronous Packet Transmit Buffer in L1 or L2 memory. Enough memory
should be allocated to the APTB based on the largest packet to be transmit-
ted. The APTB can only reside in L1 or L2 memory and the APTB must be
word aligned. Therefore, bits 31-25 are fixed to 1s and bit 0 is fixed to 0.

Figure 21-25. MXVR Asynchronous Packet Transmit Buffer Start Address
Register (MXVR_APTB_START_ADDR)

MXVR Asynchronous Packet Transmit Buffer Start Address Register (MXVR_APTB_START_ADDR)

APTB Start Address[15:1]

APTB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

0xFFC0 2844

ADSP-BF54x Blackfin Processor Hardware Reference 21-83

Media Transceiver Module (MXVR)

MXVR Asynchronous Packet Transmit Buffer
Current Address Register
(MXVR_APTB_CURR_ADDR)

The MXVR_APTB_CURR_ADDR register is read-only register which gives the
current address that the Asynchronous Packet Transmit DMA channel is
reading from in the APTB. The APTB can only reside in L1 or L2 memory.
Therefore, bits 31-24 will always be 1s, and bit 0 will always be 0.

MXVR Control Message Control Register
(MXVR_CM_CTL)

The MXVR_CM_CTL register is a 32-bit register that is used to control the
transmission and reception of control messages. The MXVR uses a Con-
trol Message Transmit Buffer (CMTB) which resides in L1 or L2 memory

Figure 21-26. MXVR Asynchronous Packet Transmit Buffer Current
Address Register (MXVR_APTB_CURR_ADDR)

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Asynchronous Packet Transmit Buffer Current Address Register (MXVR_APTB_CURR_ADDR)

All bits are Read-Only

APTB Current Address[31:16]

APTB Current Address[15:0]

0xFFC0 2848

MXVR Registers

21-84 ADSP-BF54x Blackfin Processor Hardware Reference

and holds one control message (system or normal) to be transmitted. The
MXVR also uses a Control Message Receive Buffer (CMRB) which resides in
L1 or L2 memory and holds up to 16 received normal control messages.

The Start Control Message Transmission (STARTCM) bit should be set to 1
when a control message is written to the CMTB and the control message is
ready to be sent. Once the STARTCM bit is set to 1, arbitration for the con-
trol message channel begins and continues until arbitration is won for the
control message to be sent or until the control message is cancelled with
the CANCELCM bit. The STARTCM bit always reads as 0 and writing a 0 to the
STARTCM bit has no effect.

Figure 21-27. MXVR Control Message Control Register
(MXVR_CM_CTL)

MXVR Control Message Control Register (MXVR_CM_CTL)

For all CMRBEx bits:
0 - CMRX Buffer Entry x Empty
1 - CMRX Buffer Entry x Full (Write 1 to Clear)

Reset = 0x0000 0000

CANCELCM
0 - No effect
1 - Cancel Started CM
Always Reads 0

STARTCM
0 - No effect
1 - Start Sending Control Messag
Always Reads 0

CMRBE0

CMRBE1

CMRBE2

CMRBE3

CMRBE4

CMRBE5

CMRBE6

CMRBE7

CMRBE15

CMRBE14

CMRBE13

CMRBE12

CMRBE11

CMRBE10

CMRBE9

CMRBE8

123456789101112131415 0

171819202122232425262728293031 16

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0xFFC0 284C

ADSP-BF54x Blackfin Processor Hardware Reference 21-85

Media Transceiver Module (MXVR)

The Cancel Control Message Transmission (CANCELCM) bit allows a control
message (normal or system) which is arbitrating for the control message
channel to be cancelled. Once arbitration is won, the control message
being sent cannot be cancelled. To cancel the control message transmis-
sion, the CANCELCM bit should be set to 1. Writing a 1 to the CANCELCM bit
after arbitration is won and the control message is already being sent will
have no effect. The CANCELCM bit always reads as 0 and writing a 0 to the
CANCELCM bit has no effect.

The Control Message Receive Buffer Entry x (CMRBEx) bits indicate
whether entry x in the CMRB is full or empty. The CMRBEx bits are sticky bits
which must be written with a 1 to clear. When a received normal control
message is DMA'd to the CMRB entry, the corresponding CMRBEx bit will be
set to 1. Once software has read the normal control message stored in that
entry, a 1 should be written to the corresponding CMRBEx bit in order to
clear the bit and to indicate that the entry is empty and can be used for
another incoming normal control message. The MXVR will always
attempt to DMA an incoming normal control message to the next sequen-
tial CMRB entry (first normal control message to CMRBE0, second to CMRBE1,
... , sixteenth to CMRBE15, seventeenth to CMRBE0, etc.). An overflow will
occur if the next sequential CMRBEx bit is 1 when a new normal control
message is arriving, and the CMRBOF bit in the MXVR_INT_STAT_0 register
will be set to 1. In addition, when an overflow occurs the Transmission
Status will be returned to the transmitter indicating “Receive Buffer Full”.

MXVR Registers

21-86 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Control Message Receive Buffer Start
Address Register (MXVR_CMRB_START_ADDR)

The MXVR_CMRB_START_ADDR register sets the starting address for the Con-
trol Message Receive Buffer (CMRB) in L1 or L2 memory. The CMRB must be
allocated 384 bytes. The CMRB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 are fixed to 1s and bit 0 is
fixed to 0.

Figure 21-28. MXVR Control Message Receive Buffer Start Address Reg-
ister (MXVR_CMRB_START_ADDR)

CMRB Start Address[15:1]

CMRB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

MXVR Control Message Receive Buffer Start Address Register (MXVR_CMRB_START_ADDR)

0xFFC0 2850

ADSP-BF54x Blackfin Processor Hardware Reference 21-87

Media Transceiver Module (MXVR)

MXVR Control Message Receive Buffer Current
Address Register (MXVR_CMRB_CURR_ADDR)

The MXVR_CMRB_CURR_ADDR register is a read-only register which gives the
current address that the Normal Control Message Receive DMA channel
is writing to in the CMRB. The CMRB can only reside in L1 or L2 memory
and must be word aligned. Therefore, bits 31–25 will always be 1s and bit
0 will always be 0.

Figure 21-29. MXVR Control Message Receive Buffer Current Address
Register (MXVR_CMRB_CURR_ADDR)

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

All bits are Read-Only

CMRB Current Address[31:16]

CMRB Current Address[15:0]

MXVR Control Message Receive Buffer Current Address Register (MXVR_CMRB_CURR_ADDR)

0xFFC0 2854

MXVR Registers

21-88 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Control Message Transmit Buffer Start
Address Register (MXVR_CMTB_START_ADDR)

The MXVR_CMTB_START_ADDR register sets the starting address for the Con-
trol Message Transmit Buffer (CMTB) in L1 or L2 memory. The CMTB must
be allocated 26 bytes. The CMTB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 are fixed to 1s and bit 0 is
fixed to 0.

Figure 21-30. MXVR Control Message Transmit Buffer Start Address Reg-
isters (MXVR_CMTB_START_ADDR)

CMTB Start Address[15:1]

CMTB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

MXVR Control Message Transmit Buffer Start Address Register (MXVR_CMTB_START_ADDR)

0xFFC0 2858

ADSP-BF54x Blackfin Processor Hardware Reference 21-89

Media Transceiver Module (MXVR)

MXVR Control Message Transmit Buffer Current
Address Register (MXVR_CMTB_CURR_ADDR)

The MXVR_CMTB_CURR_ADDR register is a read-only register which gives the
current address that the Control Message Transmit DMA channel is read-
ing from in the CMTB. The CMTB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 will always be 1s and bit 0
will always be 0.

Figure 21-31. MXVR Control Message Transmit Buffer Current Address
Register (MXVR_CMTB_CURR_ADDR)

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

All bits are Read-Only

CMTB Current Address[31:16]

CMTB Current Address[15:0]

MXVR Control Message Transmit Buffer Current Address Register (MXVR_CMTB_CURR_ADDR)

0xFFC0 285C

MXVR Registers

21-90 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Remote Read Buffer Start Address Register
(MXVR_RRDB_START_ADDR)

The MXVR_RRDB_START_ADDR register sets the starting address for the
Remote Read Buffer (RRDB) in L1 or L2 memory. The RRDB must be allo-
cated 258 bytes. The RRDB can only reside in L1 or L2 memory and must
be word aligned. Therefore, bits 31–25 are fixed to 1s and bit 0 is fixed to
0.

Figure 21-32. MXVR Remote Read Buffer Start Address Register
(MXVR_RRDB_START_ADDR)

RRDB Start Address[15:1]

RRDB Start Address[23:16]

Reset = 0xFF00 0000

Bits 31-24 are fixed to 0xFF, bit 0 is fixed to 0

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Reserved

Reserved

MXVR Remote Read Buffer Start Address Register (MXVR_RRDB_START_ADDR)

0xFFC0 2860

ADSP-BF54x Blackfin Processor Hardware Reference 21-91

Media Transceiver Module (MXVR)

MXVR Remote Read Buffer Current Address
Register (MXVR_RRDB_CURR_ADDR)

The MXVR_RRDB_CURR_ADDR register is a read-only register which gives the
current address that the Remote Read Buffer DMA channel is reading or
writing in the RRDB. The RRDB can only reside in L1 or L2 memory and
must be word aligned. Therefore, bits 31–25 will always be 1s and bit 0
will always be 0.

MXVR Pattern Registers
The MXVR has two sets of Pattern Registers: Pattern 0 Registers (PR0)
and Pattern 1 Registers (PR1). Each set of Pattern Registers contains a data
register and an enable register. The pattern matching registers define a
pattern which a synchronous DMA channel will search for in the incom-
ing datastream when the DMA channel is in one of the Synchronous
Packet modes. The MXVR_DMAx_CONFIG registers allow the “start pattern” to
be defined by either PR0 or PR1 and the “stop pattern” to be defined by
either PR0 or PR1. The patterns can be from one to four bytes long and can
be enabled in a bit-wise manner to allow “don't cares”.

Figure 21-33. MXVR Remote Read Buffer Current Address Register
(MXVR_RRDB_CURR_ADDR)

Reset = 0xFF00 0000

123456789101112131415 0

171819202122232425262728293031 16

1 1 1 0 0 0 01 1 1 1 1 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

All bits are Read-Only

RRDB Current Address[31:16]

RRDB Current Address[15:0]

MXVR Remote Read Buffer Current Address Register (MXVR_RRDB_CURR_ADDR)

0xFFC0 2854

MXVR Registers

21-92 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Pattern Data Registers (MXVR_PAT_DATA_0,
MXVR_PAT_DATA_1)

The MXVR_PAT_DATA_x registers contain the data value to be used in the
comparison with received synchronous data in a logical channel while
checking for the occurrence of a “start pattern” or a “stop pattern” when a
DMA channel is in one of the Synchronous Packet modes. The data regis-
ter is four bytes long. Pattern matching will only be checked on byte
boundaries and can match across frames within the same logical channel.
The programming of the MXVR_PAT_EN_x registers determines which of the
bits in each of the four bytes will be used to check for a pattern match and
controls the number of bytes to be matched.

Figure 21-34. MXVR Pattern Data Registers (MXVR_PAT_DATA_0,
MXVR_PAT_DATA_1)

123456789101112131415 0

Reset = 0x0000 0000
171819202122232425262728293031 16

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Pattern Data Registers (MXVR_PAT_DATA_0, MXVR_PAT_DATA_1)

Match Data Byte3

Match Data Byte1

Match Data Byte2

Match Data Byte0

MXVR_PAT_DATA_0 0xFFC0 2868

MXVR_PAT_DATA_1 0xFFC0 2870

ADSP-BF54x Blackfin Processor Hardware Reference 21-93

Media Transceiver Module (MXVR)

MXVR Pattern Enable Registers (MXVR_PAT_EN_0,
MXVR_PAT_EN_1)

The MXVR_PAT_EN_x registers contain bit enables that allow individual bits
within a Match Data Byte to be selectively enabled (a “care”) or disabled
(a “don't care”) in the comparison with the incoming synchronous data
bytes in a logical channel while checking for the occurrence of a “start pat-
tern” or a “stop pattern” when a DMA channel is in one of the
Synchronous Packet modes.

Figure 21-35. MXVR Pattern Enable Registers (MXVR_PAT_EN_0,
MXVR_PAT_EN_1)

MXVR Pattern Enable Registers (MXVR_PAT_EN_0, MXVR_PAT_EN_1)

For all bits
0 - Corresponding pattern data bit is not used in pattern matching
1 - Corresponding pattern data bit is used in pattern matching

Reset = 0x0000 0000

Byte2 - Bit0 Match En

Byte2 - Bit1 Match En

Byte2 - Bit2 Match En

Byte2 - Bit3 Match En

Byte2 - Bit4 Match En

Byte2 - Bit5 Match En

Byte2 - Bit6 Match En

Byte2 - Bit7 Match En

Byte0 - Bit0 Match En

Byte0 - Bit1 Match En

Byte0 - Bit2 Match En

Byte0 - Bit3 Match En

Byte0 - Bit4 Match En

Byte0 - Bit5 Match En

Byte0 - Bit6 Match En

Byte0 - Bit7 Match En

Byte3 - Bit0 Match En

Byte3 - Bit1 Match En

Byte3 - Bit2 Match En

Byte3 - Bit3 Match En

Byte3 - Bit4 Match En

Byte3 - Bit5 Match En

Byte3 - Bit6 Match En

Byte3 - Bit7 Match En

Byte1 - Bit0 Match En

Byte1 - Bit1 Match En

Byte1 - Bit2 Match En

Byte1 - Bit3 Match En

Byte1 - Bit4 Match En

Byte1 - Bit5 Match En

Byte1 - Bit6 Match En

Byte1 - Bit7 Match En

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

123456789101112131415 0

171819202122232425262728293031 16MXVR_PAT_EN_0 0xFFC0 286C

MXVR_PAT_EN_1 0xFFC0 2874

MXVR Registers

21-94 ADSP-BF54x Blackfin Processor Hardware Reference

For example, if the Byte0-Bit 7 Match Enable is set to 1 and all the other
bit match enables are set to 0, then only bit 7 of Match Data Byte 0 is
used in the comparison and bits 6–0 of Match Data Byte 0 are “don't
cares”. Therefore, for a pattern match to occur, only bit 7 of the received
synchronous data byte in the logical channel must match bit 7 of Match
Data Byte 0.

The number of bytes to be used in pattern matching is also determined by
the MXVR_PAT_EN_x. The number of bytes to be used in matching is deter-
mined by the highest byte number to have at least one bit enabled in the
MXVR_PAT_EN_x. For example, if any bit in Data Byte 3 is enabled for
matching then all 4 bytes will be used in pattern matching. If no bits are
enabled in Data Byte 3, Data Byte 2 and Data Byte 1, and some bits are
enabled in Data Byte 0 then only one byte (Data Byte 0) will be used in
pattern matching.

MXVR Frame Counter Registers
(MXVR_FRAME_CNT_0, MXVR_FRAME_CNT_1)

The MXVR has two completely independent frame counters which each
have an interrupt. Each frame counter is a down-counter which decre-
ments when the MXVR is frame locked and whenever a preamble is
received (at the beginning of every frame). The frame counter can option-
ally generate an interrupt when the counter reaches zero. The frame
counter decrements on all types of preambles. The frame counter is con-
trolled by accessing the MXVR_FRAME_CNT_x register. Writing the
MXVR_FRAME_CNT_x register reloads the frame counter with the 16-bit value
written and starts the counter decrementing when the MXVR is frame
locked and a preamble is received. If the MXVR loses frame lock after the
frame counter is started, the frame counter will pause until the MXVR is
back in frame lock. The value written must be between 0x0001 and
0xFFFFF. Once the frame counter decrements to zero, the corresponding
Frame Counter Zero (FCZ0 or FCZ1) bit in the MXVR_INT_STAT_0 register
will change to 1 and the Status Change Interrupt will assert if the corre-

ADSP-BF54x Blackfin Processor Hardware Reference 21-95

Media Transceiver Module (MXVR)

sponding Frame Counter Zero Interrupt Enable (FCZ0EN, or FCZ1EN) bit in
the MXVR_INT_EN_0 register is set to 1. The FCZ0 and FCZ1 bits in the
MXVR_INT_STAT_0 register are sticky bits which must be written with a 1 in
order to clear the bit and clear the interrupt. The frame counters can be
stopped and reset at any time by writing 0x0000 to the MXVR_FRAME_CNT_x
register and no interrupt will be generated. Reading the MXVR_FRAME_CNT_x
will return the current value of the frame counter.

MXVR Routing Registers (MXVR_ROUTING_0 –
MXVR_ROUTING_14)

The MXVR_ROUTING_x registers are used to route data from one synchro-
nous data channel to another or to mute particular synchronous channels.
The MXVR can route synchronous data received on one physical channel
so that it is transmitted on one or more other physical channel. In addi-

Figure 21-36. MXVR Frame Counter Registers
(MXVR_FRAME_CNT_0, MXVR_FRAME_CNT_1)

MXVR_FRAME_CNT_1 0xFFC0 287C

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Frame Counter Registers (MXVR_FRAME_CNT_0, MXVR_FRAME_CNT_1)

Reset = 0x0000

FCNT
(Frame Count Value)
Write 0x0000 - Stop Counter
Write 0x0001 to 0xFFFF - Start Counter
Read Returns Current Count Value

MXVR_FRAME_CNT_0 0xFFC0 2878

MXVR Registers

21-96 ADSP-BF54x Blackfin Processor Hardware Reference

tion, the MXVR_ROUTING_x registers may be used to mute one or more
transmitted physical channels. When a synchronous data channel is
muted, the data transmitted on that channel will be 0x00.

All the Routing registers (MXVR_ROUTING_0 - MXVR_ROUTING_14) have the
same register format but each contain routing and muting control for dif-
ferent channels. MXVR_ROUTING_0 contains channels 0 to 3, contains
channels 4 to 7, and so on. Figure 21-37 shows MXVR_ROUTING_0 as an
example of the register format.

The routing function can only be used for synchronous data channels
(channel numbers less than 4 * RSB) when the MXVR is enabled and trans-
mitting in Active Mode with a Synchronous Delay of two frames (when
MXVREN = 1, MTXEN = 1, ACTIVE = 1 and SDELAY = 1 in the MXVR_CONFIG reg-
ister). The muting function can be used for synchronous data channels
when the MXVR is enabled and transmitting in Active Mode (MXVREN=1,
MTXEN=1, and ACTIVE=1).

Figure 21-37. MXVR Routing Registers (MXVR_ROUTING_0)

123456789101112131415 0

171819202122232425262728293031 16

x x x x x x xx x x x x x x x x

x x x x x x xx x x x x x x x x

MXVR Routing Register 0 (MXVR_ROUTING_0)

Write-only

Reset = 0xXXXX XXXX

Transmit Channel 3

Mute Channel 3

Reserved

Reserved

Reserved

Reserved

Transmit Channel 1

Mute Channel 1 Transmit Channel 0

Mute Channel 0

Transmit Channel 2

Mute Channel 2

0xFFC0 2880

ADSP-BF54x Blackfin Processor Hardware Reference 21-97

Media Transceiver Module (MXVR)

The MXVR_ROUTING_x registers must be programmed to a known value after
reset. In normal applications the data received on a particular physical
channel should be routed to the same physical channel for transmission.
Therefore, each Transmit Channel x entry will normally be programmed
with the corresponding received channel number.

Synchronous data received on a particular physical channel can also be
routed onto one or more different physical channels for transmission. For
example, synchronous data received on physical channel 0x00 can be
transmitted on physical channel 0x01 and synchronous data received on
physical channel 0x01 can be transmitted on physical channel 0x00 by
programming the Transmit Channel 0 to 0x01 and the Transmit Channel
1 to 0x00. The synchronous data received on a physical channel can also
be transmitted on multiple channels. For example, synchronous data
received on physical channel 0x05 can be transmitted on physical channels
8, 18, and 28 by programming Transmit Channel 8 to 0x05, Transmit
Channel 18 to 0x05, and Transmit Channel 28 to 0x05.

In addition, the MXVR_ROUTING_x registers allow individual physical chan-
nels to be muted (causing the channel to transmit 0x00 regardless of what
was received on that channel). When the Channel Mute bit for a particu-
lar channel is set to 1, the channel will transmit 0x00 data regardless of the
routing value programmed in the Transmit Channel x entry. In other
words, the muting function takes precedence over the routing function.

The MXVR synchronous data DMA channels take precedence over the
channel routing and channel muting functions. If a synchronous data
DMA channel is enabled for transmit, the DMA'd data will be transmit-
ted on the physical channels defined by the LCHAN field overriding any
value programmed into the Transmit Channel entries or Channel Mute
entries for those physical channels. When the DMA channel is disabled,
however, the channel routing or channel muting function specified in the
Transmit Channel entries and Channel Mute entries for those channels
will be active. For example, if physical channels 0x04 and 0x05 have the
Channel Mute bit set, they will output 0x00 data. If a Logical Channel 0 is

MXVR Registers

21-98 ADSP-BF54x Blackfin Processor Hardware Reference

defined as physical channels 0x04 and 0x05 and a synchronous data DMA
channel is setup to transmit on Logical Channel 0, once the DMA channel
is enabled the DMA'd data will be transmitted on physical channels 0x04
and 0x05. Once the synchronous data DMA channel is disabled, physical
channels 0x04 and 0x05 will transmit 0x00 data again. This is particularly
useful when transmitting synchronous packets in that the muting for the
channels the synchronous packet is being sent on can be enabled so that
before and after the synchronous packet data is set the synchronous chan-
nels will have all 0x00 data.

The MXVR_ROUTING_x registers are write-only. Reading any of the
MXVR_ROUTING_x registers will result in a bus error exception and will
return unknown data.

The routing and muting fields serve an additional purpose. The fields
determine whether the MXVR will report a physical channel as being
“In-Use”. If MXVR is muting a particular physical channel or if the
MXVR is routing data from another channel onto that physical channel,
the MXVR will report that physical channel is “In-Use” to the Master. If
the MXVR is not muting a particular physical channel or is not routing
data from another channel onto that physical channel, the MXVR will
report that physical channel is not “In-Use”. If The Master determines
which channels are “In-Use” when the Allocation Table is distributed and
the “Channel-In-Use” bits for all the nodes in the ring are available in the
Master’s MXVR_ALLOC_x registers.

MXVR Block Counter Register (MXVR_BLOCK_CNT)
The MXVR has a Block Counter which has an associated interrupt. The
Block Counter is a down-counter which decrements when the MXVR is
block locked and a normal block is received and can optionally generate
an interrupt when the counter reaches zero. The block counter does not
decrement when the MXVR is not block locked or when the block pream-

ADSP-BF54x Blackfin Processor Hardware Reference 21-99

Media Transceiver Module (MXVR)

bles are received when the Allocation Table is being distributed over the
control message channel. Two block preambles out of every sixty-four
block preambles are for Allocation Table distribution blocks.

The block counter is controlled by accessing the MXVR_BLOCK_CNT register.
Writing the MXVR_BLOCK_CNT register reloads the block counter with the
16-bit value written and starts the counter decrementing when the MXVR
is block locked and a normal block preamble received. The value written
must be between 0x0001 and 0xFFFF. If the MXVR loses block lock after
the block counter is started, the block counter will pause until the MXVR
is back in block lock. Once the block counter decrements to zero, the
Block Counter Zero (BCZ) bit in the MXVR_INT_STAT_0 register will change
to 1 and the Status Change Interrupt will assert if the Block Counter Zero
Interrupt Enable (BCZEN) bit in the MXVR_INT_EN_0 register is set to 1. The
BCZ bit in the MXVR_INT_STAT_0 register is a sticky bit which must be writ-
ten with a 1 in order to clear the bit and clear the interrupt. The block
counter can be stopped and reset at any time by writing 0x0000 to the
MXVR_BLOCK_CNT register and no interrupt will be generated. Reading the
MXVR_BLOCK_CNT will return the current value of the block counter.

Figure 21-38. MXVR Block Counter Register (MXVR_BLOCK_CNT)

123456789101112131415 0

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

MXVR Block Counter Register (MXVR_BLOCK_CNT)

Reset = 0x0000

BCNT
(Block Count Value)
Write 0x0000 - Stop Counter
Write 0x0001 to 0xFFFF - Start Count
Read Returns Current Count Value

0xFFC0 28C0

MXVR Registers

21-100 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Clock Control Register (MXVR_CLK_CTL)
The MXVR_CLK_CTL register controls the MXVR Crystal Oscillator and the
MXVR clock outputs.

Figure 21-39. MXVR Clock Control Register (MXVR_CLK_CTL)

MXVR Clock Control Register (MXVR_CLK_CTL)

R/W

Reset = 0x0202 00030xFFC0 28D0 00 0 0 0 1 0 0 0 0 0 0 0 10 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 10 0

31 30 29 28 27 1617181920212223242526

MXTALCEN
(MXVR Crystal Osc. Clock Enable)
0 – Disable clock
1 – Enable clock

MXTALFEN
(MXVR Crystal Osc. Feedback Enable)
0 – Disable feedback
1 – Enable feedback

MXTALMUL
(MXVR Crystal Multiplier)
00 - Crystal Freq = 256 * Fs
01 - Crystal Freq = 384 * Fs
10 - Crystal Freq = 512 * Fs
11 - Crystal Freq = 1024 * Fs
(See Table 21-9 for examples)

CLKX3SEL
(Clock Generation Source Select)
0 – Output clocks by the CDRPLL
1 – Output clocks generated by the FMPLL

PLLSMPS
(MXVR PLL State Machine Prescaler)
See Table 21-10 for prescale values.

MMCLKMUL
(Master Clock Multiplication Factor)
Set to n * Fs, where n can be 1, 2, 4, 8, 16, 32,
64, 128, 256, 384, 512, 768, 1024, and 1536

MMCLKEN
(Master Clock Enable)
0 – Disable MMCLK output pin
1 – Enable MMCLK output pin

MBCLKEN
(Bit Clock Enable)
0 – Disable MBCLK output pin
1 – Enable MBCLK output pin

MBCLKDIV
(Bit Clock Divide Factor)
Set to fMMCLK / n, where n can be 2, 4,
8, 16, 32, 64, 128, 256, 512, or 1024

INVRX
(Invert Receive Data)
0 – No invert
1 – Invert MRX pin input to CDRPLL

MFSEN
(Frame Sync Enable)
0 – Disable MFS output pin
1 – Enable MFS output pin

MFSDIV
(Frame Sync Divide Factor)
Set to fMBCLK / n, where n can be 2, 4, 8,
16, 32, 64, 128, 256, 512, or 1024

MFSSYNC
(Frame Sync Select Sync)
See Table 21-11 for select
sync values

MFSSEL
(Frame Sync Select)
See Table 21-11 for sync
values

ADSP-BF54x Blackfin Processor Hardware Reference 21-101

Media Transceiver Module (MXVR)

The MXVR Crystal Oscillator Clock Enable (MXTALCEN) bit enables or dis-
ables the clock output by the MXVR Crystal Oscillator which is used by
the MXVR PLLs. The MXTALCEN bit enables or disables the clock regardless
of whether a crystal is used between the MXI and MXO pins or whether a
clock is directly driven into the MXI pin. When MXTALCEN is set to 1, the
clock supplied by the MXVR Crystal Oscillator is enabled, and when
MXTALCEN is set to 0, the clock supplied by the MXVR Crystal Oscillator is
disabled. The MXTALCEN is set to 1 by reset. The MXTALCEN can be used to
gate off the clock to the MXVR in order to save power when the network
is not in operation. Note that the crystal should be at frequency and
MXTALCEN should be enabled, or the clock driven on the MXI input should
be at frequency and the MXTALCEN should be enabled prior to starting up
the MXVR PLLs.

The MXVR Crystal Oscillator Feedback Enable (MXTALFEN) bit enables or
disables the resistive feedback between the MXVR Crystal Input pin (MXI)
and the MXVR Crystal Output pin (MXO). The MXVR Crystal Oscillator
supplies a clock which is used by the MXVR PLLs. A crystal can be placed
between the MXI and MXO pins (along with the appropriate capacitors) or a
clock may be driven directly into the MXI pin and the MXO pin can be left
unconnected. When using a crystal, if the MXTALFEN is set to 1, the resistive
feedback between MXI and MXO is enabled and the crystal will oscillate.
When using a crystal, if MXTALFEN is set to 0, the resistive feedback is dis-
abled and the crystal will not oscillate. If a crystal is not used and a clock is
driven directly onto the MXI pin, the MXTALFEN must be set to 1 for proper
operation. The MXTALFEN is set to 1 by reset, so that if a crystal is used, the
crystal will start up during the reset time and software boot time.

The MXVR must either be supplied with an externally generated clock
driven on the MXI pin or must have a crystal (and appropriate external
components) connected between the MXI and MXO pins. In either case, the
frequency should be 256 * Fs, 384 * Fs, 512 * Fs, or 1024 * Fs. The fre-
quency that is being supplied should be programmed into the MXTALMUL
bits in the MXVR_CLK_CTL register. If a crystal is placed between MXI and
MXO, and the network will be disabled for an extended period of time, the

MXVR Registers

21-102 ADSP-BF54x Blackfin Processor Hardware Reference

MXTALFEN and the MXTALCEN can be set to 0 to decrease power consump-
tion. If a clock is being directly driven to the MXI pin, and the network will
be disabled for an extended period of time, the MXTALCEN can be set to 0 to
decrease power consumption. However, the clock or crystal must be stable
at frequency prior to starting up the MXVR PLLs in order to lock the
network.

The MXVR Crystal Multiplier (MXTALMUL) field determines the multiplica-
tion factor that will be used when the MXVR PLLs are configured to
multiply the crystal or input clock frequency up to the transmit clock fre-
quency (1024 * Fs). Table 21-9 shows all the crystal frequencies (256 * Fs,
384 * Fs, 512 * Fs, or 1024 * Fs) which can be used to multiply up to the
transmit clock frequency for sample frequencies of 38 kHz, 44.1 kHz, and
48 kHz.

The Clock Generation Source Select (CLKX3SEL) bit selects whether the
MMCLK, MBCLK, and MFS output clocks are generated by the FMPLL or by
the CDRPLL. If the CLKX3SEL bit is set to 1, the FMPLL will generate the
MMCLK, MBCLK, and MFS output clocks. If the CLKX3SEL bit is set to 0, the
CDRPLL will generate the MMCLK, MBCLK, and MFS output clocks.The
CLKX3SEL bit is set to 0 by reset.

The Master Clock Enable (MMCLKEN) bit enables or disables the MXVR
Master Clock output pin (MMCLK). If the MMCLKEN bit is set to 0, the MMCLK
pin will remain at a logic low level. If the MMCLKEN bit is set to 1, the MMCLK

Table 21-9. Crystal Input Frequencies

MXTALMUL Multiply
Factor

Crystal
Frequency

Crystal Frequency Needed for Desired Fs

Fs = 38 kHz Fs = 44.1 kHz Fs = 48 kHz

b#00 8/2 256 * Fs 9.728 MHz 11.2896 MHz 12.288 MHz

b#01 8/3 384 * Fs 14.592 MHz 16.9344 MHz 16.432 MHz

b#10 8/4 512 * Fs 19.456 MHz 22.5792 MHz 24.576 MHz

b#11 8/8 1024 * Fs 38.912 MHz 45.1584 MHz 49.152 MHz

ADSP-BF54x Blackfin Processor Hardware Reference 21-103

Media Transceiver Module (MXVR)

pin will supply a clock at a frequency determined by the MMCLKMUL field.
The MMCLKEN bit is set to 1 by reset. After reset is negated the MMCLK output
pin will remain low and will not toggle until the MXVR PLL which is
selected to generate the output clocks is started-up and the MMCLKEN bit is
set to 1.

The Master Clock Multiplication Factor (MMCLKMUL) field determines the
frequency of the MXVR Master Clock output pin (MMCLK). The MMCLK
clock frequency can be specified as a multiplication of the sample rate
(Fs). The frequency can be set to be n * Fs where n can be 1, 2, 4, 8, 16,
32, 64, 128, 256, 384, 512, 768, 1024, and 1536. When MMCLKMUL is set
to any value except 1024 * Fs or 1536 * Fs, the MMCLK duty cycle will be
50%. When MMCLKMUL is set to 1024 * Fs or 1536 * Fs, the MMCLK duty
cycle will be 33%. Note that the frequency of MMCLK should only be
changed when MMCLKEN, MBCLKEN, and MFSEN are all set to 0.

The MXVR PLL State Machine Prescaler (PLLSMPS) field is a prescale
value used by the FMPLL and CDRPLL lock counters in order to adjust
the lock times based on the SCLK frequency. Table 21-10 shows how the
PLLSMPS field should be programmed based on the SCLK frequency.

Table 21-10. PLLSMPS Encoding Selection

SCLK Frequency Range PLLSMPS

116MHz < fSCLK <= 133MHz b#000

99MHz < fSCLK <= 116MHz b#001

83MHz < fSCLK <= 99MHz b#010

66MHz < fSCLK <= 83MHz b#011

49MHz < fSCLK <= 66MHz b#100

33MHz < fSCLK <= 49MHz b#101

16MHz < fSCLK <= 33MHz b#110

fSCLK <= 16MHz b#111

MXVR Registers

21-104 ADSP-BF54x Blackfin Processor Hardware Reference

The Bit Clock Enable (MBCLKEN) bit enables or disables the MXVR Bit
Clock output pin (MBCLK). If the MBCLKEN bit is set to 0, the MBCLK pin will
remain at a logic low level. If the MBCLKEN bit is set to 1, the MBCLK pin will
supply a clock at a frequency determined by the MBCLKDIV field. MBCLKEN is
set to 0 by reset. After reset is negated, the MBCLK output pin will remain
low and will not toggle until the MXVR PLL which is selected to generate
the output clocks is started-up and the MBCLKEN bit is set to 1.

The Bit Clock Divide Factor (MBCLKDIV) field determines the frequency of
the MXVR Bit Clock output pin (MBCLK). The clock output on the MBCLK
pin is generated by the MXVR Master Clock. The MBCLK clock frequency
can be specified as a division of the MXVR Master Clock frequency. The
frequency can be set to be fMMCLK / n where n can be 2, 4, 8, 16, 32, 64,
128, 256, 512, or 1024. When MMCLKMUL is set to any value except 1024 *
Fs or 1536 * Fs, the rising edge of MBCLK occurs in sync with the rising
edge of MMCLK. When MMCLKMUL is set to 1024 * Fs or 1536 * Fs, the rising
edge of MBCLK occurs in sync with the falling edge of MMCLK. Note that he
frequency of MBCLK should only be changed when MMCLKEN, MBCLKEN, and
MFSEN are all set to 0.

The Invert Receive (INVRX) bit determines whether the incoming data
stream on the MXVR Receive Data input pin (MRX) will feed into the
CDRPLL as is or whether the data stream will be inverted before feeding
into the CDRPLL. If the INVRX bit is set to 0, the data stream will feed
into the CDRPLL as is. If the INVRX bit is set to a 1, the data stream will
be inverted prior to being fed into the CDRPLL.

The Frame Sync Enable (MFSEN) bit enables or disables the MXVR Frame
Sync output pin (MFS). If the MFSEN bit is set to 0 and MFSSEL is set to b#00
(Clock Mode), the MFS pin will remain at a logic low level. If the MFSEN bit
is set to 0 and MFSSEL is set to b#01 (Active-High Pulse Mode), the MFS
pin will remain at a logic low level. If the MFSEN bit is set to 0 and MFSSEL
is set to b#10 (Active-Low Pulse Mode), the MFS pin will remain at a logic
high level. If the MFSEN bit is set to 1, the MFS pin will supply a clock or
pulse at a frequency determined by the MFSDIV field. MFSEN is set to 0 by

ADSP-BF54x Blackfin Processor Hardware Reference 21-105

Media Transceiver Module (MXVR)

reset. After reset is negated the MFS output pin will remain in its inactive
state and will not toggle until the MXVR PLL which is selected to gener-
ate the output clocks is started-up and the MFSEN bit is set to 1.

The Frame Sync Divide Factor (MFSDIV) field determines the frequency of
the MXVR Frame Sync output pin (MFS). The clock output on the MFS pin
is generated by the MXVR Bit Clock. The MFS clock frequency can be
specified as a division of the MXVR Bit Clock frequency. The frequency
can be set to be fMBCLK / n where n can be 2, 4, 8, 16, 32, 64, 128, 256,
512, or 1024. Note that the MFSDIV should only be changed when
MMCLKEN, MBCLKEN, and MFSEN are all set to 0.

The Frame Sync Select (MFSSEL) field determines whether the MXVR
Frame Sync output pin (MFS) will generate a 50% duty cycle clock, an
active-high pulse, or an active-low pulse. If the MFSSEL field is set to b#00,
the MFS will generate a 50% duty cycle clock. If the MFSSEL field is set to
b#01, the MFS will generate an active-high pulse with a pulse length equal
to the MBCLK period. If the MFSSEL field is set to 10, the MFS will generate
an active-low pulse with a pulse length equal to the MBCLK period. Note
that the MFSSEL should only be changed when MMCLKEN, MBCLKEN, and
MFSEN are all set to 0.

The Frame Sync Synchronization Select (MFSSYNC) bit determines the syn-
chronization between the MFS and MBCLK output pins. If the MFS is
programmed to be a 50% duty cycle clock (MFSSEL = b#00) or an
active-high pulse (MFSSEL = 01) and the MFSSYNC is set to 0, the rising edge
of MFS occurs in sync with the falling edge of the MBCLK. If the MFS is pro-
grammed to be a 50% duty cycle clock (MCLKSEL = b#00) or an active-high
pulse (MCLKSEL = b#01) and the MFSSYNC is set to 1, the rising edge of MFS
occurs in sync with the rising edge of the MBCLK. If MFS is programmed to
be a active-low pulse (MFSSEL = b#10) and the MFSSYNC is set to 0, the fall-
ing edge of MFS occurs in sync with the falling edge of MBCLK. If MFS is

MXVR Registers

21-106 ADSP-BF54x Blackfin Processor Hardware Reference

programmed to be a active-low pulse (MFSSEL = b#10) and the MFSSYNC is
set to 1, the falling edge of MFS occurs in sync with the rising edge of
MBCLK.

Table 21-11. Frame Sync Synchronization (MFSSYNC) Selections

MFSSYNC MFSSEL Frame Sync Synchronization

0

b#00 The rising edge of MFS occurs in sync with the falling edge of the MBCLK

b#01 The rising edge of MFS occurs in sync with the falling edge of the MBCLK

b#10 The falling edge of MFS occurs in sync with the falling edge of MBCLK

1

b#00 The rising edge of MFS occurs in sync with the rising edge of the MBCLK

b#01 The rising edge of MFS occurs in sync with the rising edge of the MBCLK

b#10 The falling edge of MFS occurs in sync with the rising edge of MBCLK

ADSP-BF54x Blackfin Processor Hardware Reference 21-107

Media Transceiver Module (MXVR)

MXVR Clock/Data Recovery PLL Control Register
(MXVR_CDRPLL_CTL)

The MXVR Clock/Data Recovery PLL State Machine Enable (CDRSMEN)
bit enables or disables the state machine which controls the CDRPLL.
When CDRSMEN bit is set to a 1, the CDRPLL state machine will start up
the CDRPLL and control its operation. When the CDRSMEN bit is set to a 0,
the CDRPLL state machine is disabled and the CDRRSTB, CDRSVCO, and
CDRMODE bits directly control the operation of the CDRPLL. The CDRSMEN
bit is set to 0 by reset.

Figure 21-40. MXVR Clock/Data Recovery PLL Control Register
(MXVR_CDRPLL_CTL)

MXVR Clock/Data Recovery PLL Control Register (MXVR_CDRPLL_CTL)

R/W

Reset = 0x0502 08200xFFC0 28D4 00 0 0 1 0 1 0 0 0 0 0 0 10 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 0 0 0 0 1 0 0 0 00 0

31 30 29 28 27 1617181920212223242526

CDRSMEN
(MXVR CDRPLL State Machine En.)
0 – Disable state machine
1 – Enable state machine

CDRRSTB
(MXVR CDRPLL Reset)
0 – CDRPLL held in reset
1 – CDRPLL released from reset

CDRSVCO
(MXVR CDRPLL Start VCO)
0 – Disable CDRPLL VCO
1 – Enable CDRPLL VCO

CDRLCNT
(MXVR CDRPLL Lock Counter)
(Do NOT change from default setting.)

CDRSCNT
(MXVR CDRPLL Start Counter)
(Do NOT change from default setting.)

CDRMODE
(MXVR CDRPLL CDR Mode Select)
0 – CDRPLL operates in Frequency Multiply Mode
1 – CDRPLL operates in Clock/Data Recovery Mode

CDRSHPSEL
(MXVR CDRPLL Shaper Select)
Pulse width distortion correction
value

CDRSHPEN
(MXVR CDRPLL Shaper Enable)
0 – Disable Shaper
1 – Enable Shaper

CDRCPSEL
(MXVR CDRPLL Charge Pump Current Select)
Selects value for charge pump current in the
CDRPLL

MXVR Registers

21-108 ADSP-BF54x Blackfin Processor Hardware Reference

The MXVR Clock/Data Recovery PLL Reset (CDRRSTB) bit controls the
reset to the CDRPLL if the CDRPLL state machine is disabled. When the
CDRPLL state machine is disabled and the CDRRSTB bit is set to a 0, the
CDRPLL is held in reset. When the CDRPLL state machine is disabled
and the CDRRSTB bit is set to a 1, the CDRPLL is released from reset.When
the CDRPLL state machine is enabled, the CDRPLL state machine con-
trols the CDRPLL and therefore the CDRRSTB bit has no effect. It is
recommended that the CDRPLL state machine be used to control the
CDRPLL rather than directly controlling the CDRRSTB bit. The CDRRSTB
bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL Start VCO (CDRSVCO) bit controls
the startup of the VCO in the CDRPLL if the CDRPLL state machine is
disabled. When the CDRPLL state machine is disabled and the CDRSVO bit
is set to a 0, the CDRPLL VCO is disabled. When the CDRPLL state
machine is disabled and the CDRSVCO bit is set to a 1, the CDRPLL VCO is
enabled.When the CDRPLL state machine is enabled, the CDRPLL state
machine controls the CDRPLL and therefore the CDRSVCO bit has no
effect. It is recommended that the CDRPLL state machine be used to con-
trol the CDRPLL rather than directly controlling the CDRSVCO bit. The
CDRSVCO bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL CDR Mode Select (CDRMODE) bit
controls whether the CDRPLL is in Frequency Multiply Mode or
Clock/Data Recovery Mode if the CDRPLL state machine is disabled.
When the CDRPLL state machine is disabled and the CDRMODE bit is set to
a 0, the CDRPLL operates in Frequency Multiply Mode. When the
CDRPLL state machine is disabled and the CDRMODE bit is set to a 1, the
CDRPLL operates in Clock/Data Recovery Mode. When the CDRPLL
state machine is enabled, the CDRPLL state machine controls the
CDRPLL and therefore the CDRMODE bit has no effect. It is recommended
that the CDRPLL state machine be used to control the CDRPLL rather
than directly controlling the CDRMODE bit. The CDRMODE bit is set to 0 by
reset.

ADSP-BF54x Blackfin Processor Hardware Reference 21-109

Media Transceiver Module (MXVR)

The MXVR Clock/Data Recovery PLL Start Counter (CDRSCNT) field con-
trols the start-up time of the CDRPLL if the CDRPLL state machine is
enabled. The CDRSCNT field is set to b#000010 by reset. It is recom-
mended that the CDRSCNT field not be changed from its reset value.

The MXVR Clock/Data Recovery PLL Lock Counter (CDRLCNT) field con-
trols the lock time of the CDRPLL if the CDRPLL state machine is
enabled. The CDRLCNT field is set to b#000010 by reset. It is recom-
mended that the CDRLCNT field not be changed from its reset value.

The MXVR Clock/Data Recovery PLL Shaper Select (CDRSHPSEL) field
controls the amount of pulse width distortion correction to be made to the
incoming data stream when the CDRPLL Shaper is enabled. The
CDRSHPSEL field is set to b#000000 by reset.

The MXVR Clock/Data Recovery PLL Shaper Enable (CDRSHPEN) bit
enables or disables the CDRPLL Shaper which corrects pulse width distor-
tion in the incoming data stream. The CDRSHPSEL bit is set to 0 by reset.

The MXVR Clock/Data Recovery PLL Charge Pump Current Select
(CDRCPSEL) field controls the charge pump current in the CDRPLL.The
CDRCPSEL field is set to 0x05 by reset.

MXVR Registers

21-110 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Frequency Multiply PLL Control Register
(MXVR_FMPLL_CTL)

The MXVR Frequency Multiply PLL State Machine Enable (FMSMEN) bit
enables or disables the state machine which controls the FMPLL. When
FMSMEN bit is set to a 1, the FMPLL state machine will start up the FMPLL
and control its operation. When the FMSMEN bit is set to a 0, the FMPLL
state machine is disabled and the FMRSTB and FMSVCO bits directly control
the operation of the FMPLL. The FMSMEN bit is set to 0 by reset.

The MXVR Frequency Multiply PLL Reset (FMRSTB) bit controls the reset
to the FMPLL if the FMPLL state machine is disabled. When the FMPLL
state machine is disabled and the FMRSTB bit is set to a 0, the FMPLL is
held in reset. When the FMPLL state machine is disabled and the FMRSTB

Figure 21-41. MXVR Frequency Multiply PLL Control Register
(MXVR_FMPLL_CTL)

MXVR Frequency Multiply PLL Control Register (MXVR_FMPLL_CTL)

R/W

Reset = 0x1900 10200xFFC0 28D8 00 1 1 0 0 1 0 0 0 0 0 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 0 0 0 1 0 0 0 00 0

31 30 29 28 27 1617181920212223242526

FMSMEN
(MXVR FMPLL State Machine Enable)
0 – Disable state machine
1 – Enable state machine

FMRSTB
(MXVR FMPLL Reset)
0 – FMPLL held in reset
1 – FMPLL released from reset

FMSVCO
(MXVR FMPLL Start VCO)
0 – Disable FMPLL VCO
1 – Enable FMPLL VCO

FMLCNT
(MXVR FMPLL Lock Counter)
(Do NOT change from default setting.)

FMSCNT
(MXVR FMPLL Start Counter)
(Do NOT change from default setting.)

FMCPSEL
(MXVR FMPLL Charge Pump Current Select)
Selects value for charge pump current in the
FMPLL

ADSP-BF54x Blackfin Processor Hardware Reference 21-111

Media Transceiver Module (MXVR)

bit is set to a 1, the FMPLL is released from reset.When the FMPLL state
machine is enabled, the FMPLL state machine controls the FMPLL and
therefore the FMRSTB bit has no effect. It is recommended that the FMPLL
state machine be used to control the FMPLL rather than directly control-
ling the FMRSTB bit. The FMRSTB bit is set to 0 by reset.

The MXVR Frequency Multiply PLL Start VCO (FMSVCO) bit controls the
startup of the VCO in the FMPLL if the FMPLL state machine is dis-
abled. When the FMPLL state machine is disabled and the FMSVO bit is set
to a 0, the FMPLL VCO is disabled. When the FMPLL state machine is
disabled and the FMSVCO bit is set to a 1, the FMPLL VCO is
enabled.When the FMPLL state machine is enabled, the FMPLL state
machine controls the FMPLL and therefore the FMSVCO bit has no effect. It
is recommended that the FMPLL state machine be used to control the
FMPLL rather than directly controlling the FMSVCO bit. The FMSVCO bit is
set to 0 by reset.

The MXVR Frequency Multiply PLL Start Counter (FMSCNT) field con-
trols the start-up time of the FMPLL if the FMPLL state machine is
enabled. The FMSCNT field is set to b#000001 by reset. It is recommended
that the FMSCNT field not be changed from its reset value.

The MXVR Frequency Multiply PLL Lock Counter (FMLCNT) field con-
trols the lock time of the FMPLL if the FMPLL state machine is enabled.
The FMLCNT field is set to b#000100 by reset. It is recommended that the
FMLCNT field not be changed from its reset value.

The MXVR Frequency Multiply PLL Charge Pump Current Select
(FMCPSEL) field controls the charge pump current in the FMPLL.The
FMCPSEL field is set to 0x19 by reset.

MXVR Registers

21-112 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Pin Control Register (MXVR_PIN_CTL)

The MTXON Open Drain Select (MTXONBOD) bit controls whether the MTXON
pin operates as a 3V compliant output or as a 5V tolerant open drain out-
put. Normally, the MTXON pin is connected to a transistor to turn on and
off the power supply to the Transmit PHY. If the Transmit PHY has a 3V
power supply, the MTXONBOD can be set so that the MTXON pin operates as a
3V compliant output and can be connected to the transistor. If the Trans-
mit PHY has a 5V power supply, the MTXONBOD can be set so that the MTXON
pin operates as a 5V tolerant open drain output and can be connected to
the transistor with a pull-up resistor to 5V. When the MTXONBOD is set to
0, the MTXON pin operates as a 3V compliant output. When the MTXONBOD is
set to 1, the MTXON pin operates as a 5V tolerant open drain output.The
MTXONBOD bit is set to 0 by reset.

The MTXONB Gates MTX Select (MTXONBG) bit controls whether the MTX pin is
gated based on the state of the MTXONB bit in the MXVR_CONFIG register.
When the MTXONBG bit is set to 0, the MTX pin can toggle regardless of the
state of the MTXONB bit in the MXVR_CONFIG register. When the MTXONBG bit
is set to 1 and the MTXONB bit in the MXVR_CONFIG register is set to 1, the

Figure 21-42. MXVR Pin Control Register (MXVR_PIN_CTL)

MXVR Pin Control Register (MXVR_PIN_CTL)

R/W

Reset = 0x00000xFFC0 28DC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MTXONBOD
(MTXON Open Drain Select)
0 – 3V compliant output
1 – Open drain output

MTXONBG
(MTXONB Gates MTX Select)
0 – MTX pin not gated
1 – MTX pin gated by MTXONB

MFSOE
(MFS Output Enable)
0 – MFS pin three-stated
1 – MFS pin output enabled

MFSGPDAT
(MFS General Purpose Output Data)
0 – MFS pin GP output low
1 – MFS pin GP output high

MFSGPSEL
(MFS General Purpose Output Select)
0 – MFS pin is FS clock output
1 – MFS pin is GP output

ADSP-BF54x Blackfin Processor Hardware Reference 21-113

Media Transceiver Module (MXVR)

MTX pin will be driven to a logic low level. When the MTXONBG bit is set to 1
and the MTXONB bit in the MXVR_CONFIG register is 0, the MTX pin is allowed
to toggle. Gating the MTX pin with the MTXONB bit may be desirable since
some Transmit Phys may partially power up when the MTX pin toggles
even when the power is turned off to the Transmit PHY. The MTXONBG bit
is set to 0 by reset.

The MFS Pin Output Enable (MFSOE) bit controls whether the MFS output
pin is three-stated or output enabled. When the MFSOE bit is set to 0, the
MFS output pin will three-state. When the MFSOE bit is set to 1, the MFS
output pin will be output enabled. The MFSOE bit is set to 0 by reset.

The MFS Pin General Purpose Output Select (MFSGPSEL) bit controls
whether the MFS pin outputs the MXVR Frame Sync clock output or acts
as a general purpose output. When the MFSGPSEL bit is set to 0, the MFS pin
will output the MXVR Frame Sync clock output. When the MFSGPSEL bit
is set to 1, the MFS pin will act as a general purpose output pin controlled
by the MFSGPDAT bit. The MFSGPSEL bit is set to 0 by reset.

The MFS Pin General Purpose Output Data (MFSGPDAT) bit controls the
logic state of the MFS pin when the MFS is acting as a general purpose out-
put. When the MFSGPSEL bit is set to 1 and the MFSGPDAT bit is set to 0, the
MFS pin will output a logic low level. When the MFSGPSEL bit is set to 1 and
the MFSGPDAT bit is set to 1, the MFS pin will output a logic high level.
When the MFSGPSEL bit is set to 0, the state of the MFSGPDAT bit has no
effect on the MFS pin. The MFSGPDAT bit is set to 0 by reset.

MXVR System Clock Counter Register
(MXVR_SCLK_CNT)

The MXVR has a System Clock Counter which has an associated inter-
rupt. The System Clock Counter is a down-counter which decrements
once every 64 SCLK cycles and can optionally generate an interrupt when

MXVR Registers

21-114 ADSP-BF54x Blackfin Processor Hardware Reference

the counter reaches zero. The System Clock Counter decrements regard-
less of the state of the MXVR (for example, regardless of whether the
MXVR is enabled or disabled).

The System Clock Counter is controlled by accessing the MXVR_SCLK_CNT
register. Writing the MXVR_SCLK_CNT register reloads the System Clock
Counter with the 16-bit value written and starts the counter decrement-
ing. The value written must be between 0x0001 and 0xFFFF. Once the
System Clock Counter decrements to zero, the System Clock Counter
Zero (SCZ) bit in the MXVR_INT_STAT_0 register will change to 1 and the
Status Change Interrupt will assert if the System Clock Counter Zero
Interrupt Enable (SCZEN) bit in the MXVR_INT_EN_0 register is set to 1. The
SCZ bit in the MXVR_INT_STAT_0 register is a sticky bit which must be writ-
ten with a 1 in order to clear the bit and clear the interrupt. The System
Clock Counter can be stopped and reset at any time by writing 0x0000 to
the MXVR_SCLK_CNT register and no interrupt will be generated. Reading
the MXVR_SCLK_CNT will return the current value of the System Clock
Counter.

Figure 21-43. MXVR System Clock Count Register
(MXVR_SCLK_CNT)

MXVR System Clock Count Register (MXVR_SCLK_CNT)

R/W

Reset = 0x00000xFFC0 28E0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SCNT
(System Clock Count Value)
Write 0x0000 - Stop Counter
Write 0x0001 to 0xFFFF - Start Counter
Read Returns Current Count Value

ADSP-BF54x Blackfin Processor Hardware Reference 21-115

Media Transceiver Module (MXVR)

General Operation
The following sections describe MXVR general operations.

Network Services Software
Network Services Layer 1 and Layer 2 software is developed for the
MXVR on the ADSP-BF54x which meets the MOST Core Compliance
specification. It is recommended that this software be used if the MXVR is
to be operated in a MOST compliant network. Contact Analog Devices
for more information on the Network Services software stack.

Network Activity Detection
Network activity detection is done to indicate whether a node is receiving
an active data stream. Typically an ADSP-BF54x MXVR master node will
be triggered to start up the network based on an external event (for exam-
ple, car ignition, power switch, etc.), while an ADSP-BF54x MXVR slave
node would normally operate in a low-power state until there is incoming
network activity. Once incoming network activity is detected by the slave
node, the MXVR will be started up, the Transmit PHY will be turned on,
and the MXVR slave node will lock onto the incoming data stream. Once
incoming network activity (circling the ring network) is detected by the
master node, the MXVR master will lock onto the incoming data stream.

The MXVR has three methods for detecting network activity. One
method monitors the state of the MRXON input, a second method detects
edges on the MRX input, and a third method assumes that when
ADSP-BF54x is powered-on that there is network activity. Note that the
first two network activity detection methods can be utilized to generate
interrupts even when the MXVR is disabled

General Operation

21-116 ADSP-BF54x Blackfin Processor Hardware Reference

The first method can be used in the case where the active-low status out-
put of the Receive PHY is connected to the MXVR MRXON input. When
the Receive PHY detects no network activity, the status output is set to 0
and when the Receive PHY detects network activity, the status output is
set to 1.

When the Receive PHY first detects network activity, the MRXON input will
transition from high to low. The high to low transition on the MRXON input
can wake the ADSP-BF54x from the hibernate state if the MXVRWE bit in
the VR_CTL register is set to 1. For more information on the VR_CTL regis-
ter, see the “Dynamic Power Management” chapter in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2). A high to low tran-
sition on the MRXON input will set the MH2L bit in the MXVR_INT_STAT_0
register to 1 and if the MH2LEN bit in the MXVR_INT_EN_0 register is set to 1,
an MXVR Status interrupt will be generated. The MXVR Status interrupt
can also be programmed in the SIC_IWR1 register to wake the core from
the Idle state.

When the Receive PHY detects a cessation of network activity, the MRXON
input will transition from low to high. The low to high transition on the
MRXON input will set the ML2H bit in the MXVR_INT_STAT_0 register to 1 and
if the ML2HEN bit in the MXVR_INT_EN_0 register is set to 1, an MXVR Status
interrupt will be generated. This interrupt on the cessation of network
activity could be used to trigger the ADSP-BF54x to enter a low-power
state.

In the second method for detecting network activity the MXVR detects
edges on the MRX input. If a single rising or falling edge is detected on the
MRX input, the MXVR will set the NACT bit in the MXVR_STATE_0 register to
1 indicating that there is network activity. If there are no rising or falling
edges detected on the MRX input for 40 SCLK cycles, the MXVR will set the
NACT bit to 0 indicating there is no network activity.

When the MXVR first detects network activity, the NACT bit will transition
from low to high. The low to high transition of the NACT bit will set the
NI2A bit in the MXVR_INT_STAT_0 register to 1 and if the NI2AEN bit in the

ADSP-BF54x Blackfin Processor Hardware Reference 21-117

Media Transceiver Module (MXVR)

MXVR_INT_EN_0 register is set to 1, an MXVR Status interrupt will be gen-
erated. The MXVR Status interrupt can also be programmed in the
SIC_IWR1 to wake the core from the Idle state.

When the MXVR detects a cessation of network activity, the NACT bit will
transition from high to low. The high to low transition of the NACT bit will
set the NA2I bit in the MXVR_INT_STAT_0 register to 1 and if the NA2IEN bit
in the MXVR_INT_EN_0 register is set to 1, an MXVR Status interrupt will
be generated. This interrupt on the cessation of network activity could be
used to trigger the ADSP-BF54x to enter a low-power state.

The third method for network activity detection is handled completely
outside of the ADSP-BF54x. In this method the Receive PHY status out-
put controls the power supply for the ADSP-BF54x. When the Receive
PHY status output indicates that there is no network activity, the power
supply for the ADSP-BF54x is gated off. When the Receive PHY status
output indicates that there is network activity, the power supply for the
ADSP-BF54x is turned on. Once the reset to the ADSP-BF54x negates
after the power-on-reset, the software can assume that there is network
activity.

Node Initialization
Prior to starting up the MXVR PLL and enabling the MXVR
ADSP-BF54x pin multiplexing, the MXVR_CONFIG register, the
MXVR_CLK_CTL register, the MXVR_ROUTING_x registers, and the buffer state
address registers must be initialized. The initialization of the MXVR_CONFIG
register differs between a node to be started up in Master mode and a node
to be started up in Slave mode. The initialization of the MXVR_CLK_CTL and
the MXVR_ROUTING_x registers is the same for Master and Slave mode.

General Operation

21-118 ADSP-BF54x Blackfin Processor Hardware Reference

Initialization of Processor Pin Multiplexing

The GPIO_x_FER and GPIO_x_MUX registers for ports C, H, and G must be
programmed to select the MXVR pins. See the “General-Purpose Ports”
chapter in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume
1 of 2) for details on how the GPIO registers should be programmed.

Master mode initialization of the MXVR_CONFIG register

The MXVREN bit should remain 0 (keeping the MXVR disabled) until the
MXVR PLL is started up. The MMSM bit should be set to 1, the ACTIVE bit
should be set to 1, the SDELAY bit should be set to 1, the NCMRXEN should be
set to 0, and the RWRRXEN should be set to 0. The MTXEN bit should be set to
0 and the MTXONB bit should be set to 1 to keep the Transmit PHY turned
off until the MXVR is enabled. The EPARITY bit should normally be set to
1 to select Even Parity. The MSB field should be set to a value less than
b#0110 to indicate the ring is not yet locked. The APRXEN should be set to
0. The LMECH bit should be set to 0 or 1 depending on the desired locking
mechanism.

Slave mode initialization of the MXVR_CONFIG register

The MXVREN bit should remain 0 (keeping the MXVR disabled). The MMSM
bit should be set to 0, the ACTIVE bit should be set to 1, the SDELAY bit can
be set to either 0 or 1, the NCMRXEN should be set to 0, and the RWRRXEN
should be set to 0. The MTXEN bit should be set to 0 and the MTXONB bit
should be set to 1 to keep the Transmit PHY turned off until the MXVR
is enabled. The EPARITY bit should normally be set to 1 to select Even Par-
ity. The MSB field is a don’t care in slave mode. The APRXEN should be set
to 0 and the WAKEUP bit should be set to 0. The LMECH bit is a don’t care in
slave mode.

ADSP-BF54x Blackfin Processor Hardware Reference 21-119

Media Transceiver Module (MXVR)

Initialization of the MXVR_CLK_CTL register

The MXTALCEN and MXTALFEN bits are both reset to 1 to allow a crystal con-
nected between MXI and MXO to start-up immediately following the
negation of reset. If either or both of these bits were set to 0 to save power,
they must be set to 1 prior to starting up the MXVR PLLs. If a crystal is
used, enough time should be allowed for the crystal to start-up prior to
enabling the MXVR PLLs. The MXTALMUL bits should be set based on the
frequency of the crystal or clock driven into MXI. The MMCLKEN, MBCLKEN,
and MFSEN bits should be set to 0. The state of the other bits in the
MXVR_CLK_CTL register do not matter until the MXVR PLLs are started up.

Initialization of the MXVR_ROUTING_x registers

Unless specific rerouting of synchronous data between received and trans-
mitted physical channels is desired once the MXVR is enabled and
activated, the Transmit Channel x fields should be written to forward each
received channel to the corresponding transmitted channel. In addition,
unless specific channel muting is desired, the Mute Channel x fields
should be programmed to disable muting. For example, the
MXVR_ROUTING_x registers could be written to forward all channels and dis-
able all muting as follows:

*pMXVR_ROUTING_0 = 0x0302 0100;

*pMXVR_ROUTING_1 = 0x0706 0504;

*pMXVR_ROUTING_2 = 0x0B0A 0908;

…

*pMXVR_ROUTING_13 = 0x3736 3534;

*pMXVR_ROUTING_14 = 0x3B3A 3938;

General Operation

21-120 ADSP-BF54x Blackfin Processor Hardware Reference

Initialization of the buffer start address registers

The control message transmit and receive buffers, the asynchronous
packet transmit and receive buffers, and the remote read buffer should be
allocated space in L1 or L2 memory. The starting address of these buffers
should then be programmed into the MXVR_CMTB_START_ADDR,
MXVR_CMRB_START_ADDR, MXVR_APTB_START_ADDR, MXVR_APRB_START_ADDR,
and MXVR_RRDB_START_ADDR registers.

Enabling the MXVR PLLs
{Description TBD.}

Enabling MXVR Output Clocks
Once the FMPLL or the CDRPLL have been started up and are frequency
locked, the MXVR output clocks MMCLK, MBCLK, and MFS can programmed
and enabled. The MXVR output clocks can either be generated by the
FMPLL or by the CDRPLL depending on how the CLKX3SEL bit in the
MXVR_CLK_CTL register is programmed. If the CLKX3SEL bit is set to 1, the
MXVR output clocks are generated by the FMPLL which is locked to the
frequency of the MXI input clock. If the CLKX3SEL bit is set to 0, the
MXVR output clocks are generated by the CDRPLL which is either
locked to the frequency of the MXI input clock (when the CDRPLL is in
frequency multiply mode) or locked to the frequency of the incoming data
stream (when the CDRPLL is in clock/data recovery mode).

ADSP-BF54x Blackfin Processor Hardware Reference 21-121

Media Transceiver Module (MXVR)

The following steps should be followed to program the MXVR output
clocks once MXVR PLL which is to generate the clocks is frequency
locked:

1. MMCLKEN, MBCLKEN, and MFSEN in the MXVR_CLK_CTL register should
all be set to 0 (disabling the MXVR output clocks).

2. Ensure that the MXVR is selected in the GPIO pin multiplexing
for the PORTC_1 (MMCLK) and PORTC_5 (MBCLK) pins. Also, ensure that
the MFSGPSEL bit is set to 0 and the MFSOE bit is set to 1 in the
MXVR_PIN_CTL register.

3. Write the MMCLKMUL, MBCLKDIV, MFSDIV, MFSSEL, and MFSSYNC fields
in the MXVR_CLK_CTL register to define the frequency and relation-
ship of the MXVR output clocks.

4. Wait 1 µsec.

5. Write to the MMCLKEN, MBCLKEN, and MFSEN bits in the MXVR_CLK_CTL
register to enable the individual MXVR output clocks to start tog-
gling as desired. Set MMCLKEN to 1 to enable MMCLK. Set MBCLKEN to 1
to enable MBCLK. Set MFSEN to 1 to enable MFS.

Network Lock
Summary description TBD.

Network Initialization
Once the network is locked, the Master node typically changes the value
of the MSB in the MXVR_CONFIG register. Once the MSB field is changed, the
Master will distribute the new synchronous boundary over the network.
The update of the RSB value in each of the slave nodes and in the master
node is used to indicate that the network lock is stable and the ring is
closed. In the slave nodes, the update of the RSB value will cause the SBU

General Operation

21-122 ADSP-BF54x Blackfin Processor Hardware Reference

interrupt event to be asserted. Note that once the network is in operation,
a special procedure must be followed to dynamically change the synchro-
nous boundary without disrupting the asynchronous packet channel.

The MXVR will automatically determine the node position, node delay,
maximum node position, and maximum node delay from the network.
Once the lock level of the MXVR is such that these values can be deter-
mined, the fields and valid bits in the MXVR_POSITION, MXVR_DELAY,
MXVR_MAX_POSITION, and MXVR_MAX_DELAY registers will be updated. In
addition, the PRU, DRU, MPRU, and MDRU interrupt events in the
MXVR_INT_STAT_0 register will assert when these values become valid or
change.

The MXVR will also automatically receive the Allocation Table distrib-
uted by the Master node in the MXVR_ALLOC_x registers. The Master node
in the network distributes its Allocation Table once every 1024 frames.
Once the distribution of the Allocation Table has completed, the ATU
interrupt event will assert. The assertion of the ATU interrupt event only
indicates that the Allocation Table distribution is received and does not
indicate whether the Allocation Table has changed since the last distribu-
tion. In the Master node, the ATU interrupt event also asserts when a
Resource Allocate or Resource De-Allocate control message has caused the
Allocation Table to be updated.

For the logical address to be used in the address comparison for received
control messages and receive asynchronous packets, the LADDR field should
be written and the LVALID bit should be set to 1 in the MXVR_LADDR register.
Note that software must determine the uniqueness of the logical address.

For the group address to be used in the address comparison for received
control messages, the GADDRL field should be written and the GVALID bit
should be set to 1 in the MXVR_AADDR register.

For the alternate address to be used in the address comparison for received
asynchronous packets, the AADDR field should be written and the AVALID
bit should be set to 1 in the MXVR_GADDR register.

ADSP-BF54x Blackfin Processor Hardware Reference 21-123

Media Transceiver Module (MXVR)

To enable the reception of normal control messages the NCMRXEN bit in the
MXVR_CONFIG register must be set to 1. Any normal control message
addressed to the MXVR while the NCMRXEN bit is set to 0 will not be
received in the CMRB and the transmission status response “Not Supported”
will be given.

To enable the reception of remote write control messages, the RWRRXEN bit
in the MXVR_CONFIG register must be set to 1. Any remote write control
message addressed to the MXVR while the RWRRXEN bit is set to 0 will not
update the RRDB and the transmission status response “Not Supported”
will be given.

To enable the reception of asynchronous packets, the APRXEN bit in the
MXVR_CONFIG register must be set to 1. Any asynchronous packet addressed
to the MXVR while the APRXEN bit is set to 0 will not be received in the
APRB.

Synchronous Data Routing, Muting, and
Transmission

The MXVR has 8 dedicated DMA channels for synchronous data trans-
mission and reception. These 8 DMA channels can be programmed
individually for transmission or reception and can be mapped to logical
channels composed of any number of physical channels in the synchro-
nous data field of the frame. The MXVR can mute individual physical
channels and can automatically mute physical channels when a DMA
channel has completed transmission. The MXVR can also route incoming
synchronous data from one physical channel to one or more outgoing
physical channels based on the Routing registers when 2 frames of syn-
chronous data delay is selected. For an MXVR Master node, incoming
synchronous data (on physical channels which the MXVR is not transmit-
ting synchronous data on) will always be routed with 2 frames of delay.
For an MXVR Slave node, incoming synchronous data (on physical chan-
nels which the MXVR is not transmitting data on) can either be routed

General Operation

21-124 ADSP-BF54x Blackfin Processor Hardware Reference

with 2 frame delays or with 0 frame delays. In addition, the MXVR Slave
node is capable of transmitting synchronous data on any physical channel
regardless of whether 2 frames of delay or 0 frames of delay is selected.

The MXVR Routing registers must always be initialized prior to enabling
the MXVR. All outgoing synchronous data physical channels which will
not have data routed onto them, should be programmed to forward the
data from the corresponding incoming synchronous data physical channel.
In order to forward data from incoming synchronous data physical chan-
nel m to outgoing synchronous data physical channel m, the Transmit
Channel m field in the appropriate MXVR_ROUTING_x register must be pro-
grammed with the value m. For example, to forward the incoming data on
physical channel 5 to the outgoing physical channel 5, the Transmit
Channel 5 field in MXVR_ROUTING_1 should be written with 0x05.

In order to use the Routing registers to route data from one incoming syn-
chronous data physical channel to one or more outgoing synchronous data
physical channels, the MXVR must be a Master enabled in Active Mode
(MXVREN=1, MMSM=1, and ACTIVE=1) or must be a Slave enabled in Active
Mode with the Synchronous Data Delay set to 2 frames (MXVREN=1,
MMSM=0, ACTIVE=1, and SDELAY=1). In addition, a DMA channel transmit-
ting data onto a synchronous data physical channel or the muting of a
synchronous data physical channel takes precedence over any programmed
routing for that physical channel. To route data from incoming synchro-
nous data physical channel m onto outgoing synchronous data physical
channel n, the Transmit Channel n field in the appropriate
MXVR_ROUTING_x register must be programmed with the value m. For
example, to route the incoming data on physical channel 20 to the outgo-
ing physical channel 30, the Transmit Channel 30 field in the
MXVR_ROUTING_5 register should be written with 0x14.

The Routing registers also control the muting of individual synchronous
data physical channels. In order to use the muting function, the MXVR
must be enabled in Active Mode (MXVREN=1 and ACTIVE=1). In addition, a
DMA channel transmitting data onto a synchronous data physical channel

ADSP-BF54x Blackfin Processor Hardware Reference 21-125

Media Transceiver Module (MXVR)

takes precedence over muting for that physical channel. However, when
the DMA channel is stopped, the synchronous data physical channel will
be muted if muting is enabled for that physical channel. Enabling muting
for channels which will be transmitted on keeps junk data from echoing
on the bus when the transmission stops and indicates that the channel is in
use even when the DMA is not actively transmitting data. To enable mut-
ing for synchronous data physical channel m, the Mute Channel m bit in
the appropriate MXVR_ROUTING_x register should be set to 1. To disable
muting the Mute Channel m bit should be set to 0. For example, to mute
physical channel 33, the Mute Channel 33 bit in the MXVR_ROUTING_9
should be set to 1.

In order to set up a DMA channel for data transmission, a Logical Chan-
nel must first be defined. A Logical Channel is a set of synchronous data
physical channels on which the data will be transmitted. A Logical Chan-
nel can include from one physical channel up to (RSB * 4) physical
channels in size. The MXVR supports up to 8 defined Logical Channels
and the Logical Channels are identified by a number from 0 to 7. Logical
Channel m is defined by writing the number m into one or more LCHANPCx
fields in the MXVR_SYNC_LCHAN_x which represent the synchronous data
physical channels. All LCHANPCx fields which have the number m written to
them are part of Logical Channel m.

Once the Logical Channel which data will be transmitted in is defined,
the DMA channel can be configured. The MXVR has 8 DMA channels
dedicated for synchronous data transmission and reception. All 8 DMA
channels have the same functionality and any number of them can be used
simultaneously. In order to configure DMA channel x for transmission,
the bits in the MXVR_DMAx_CONFIG register should be programmed. The
MDMAENx bit should be set to 0 until the DMA channel is completely pro-
grammed, the DDx bit should be set to 0 to transmit data, the LCHANx
field should be programmed with the defined Logical Channel number,
the BITSWAPENx and BYSWAPENx bits should be set to select any data manip-
ulation prior to transmission, and the MFLOWx should be programmed to
either Stop Mode or Autobuffer Mode.

General Operation

21-126 ADSP-BF54x Blackfin Processor Hardware Reference

Note that the Synchronous Packet DMA Mode encodings of the MFLOWx
field and the FIXEDPMx, STARTPATx, STOPPATx and COUNTPOSx fields are only
used when the DMA channel is receiving data.

The address of the data buffer in L1 or L2 memory to be transmitted
should be programmed to the MXVR_DMAx_START_ADDR register and the
number of bytes to be transmitted should be programmed to the
MXVR_DMAx_COUNT register.

Synchronous Data Reception
DMA

Pattern Matching

Asynchronous Packet Transmission
The MXVR Asynchronous Packet Transmit Buffer (APTB) is an area of
memory that is allocated to hold an asynchronous packet to be transmit-
ted. The APTB must reside in L1 or L2 memory and the starting address of
the APTB is programmed in the MXVR_APTB_START_ADDR register. Enough
memory should be allocated for the largest asynchronous packet to be
transmitted. The largest allowed asynchronous packet data length is 1014
bytes and with 12 bytes for packet priority, addressing, and length fields,
the APTB must be 1026 bytes.

Once the asynchronous packet to be transmitted is written to the APTB,
the STARTAP bit in the MXVR_AP_CTL register should be set to 1 to trigger
the MXVR to begin arbitration and transmission of the asynchronous
packet. At that point the MXVR will start DMA’ing the asynchronous
packet from the APTB into the MXVR and will begin arbitrating for the
asynchronous packet channel.

ADSP-BF54x Blackfin Processor Hardware Reference 21-127

Media Transceiver Module (MXVR)

While the MXVR is still arbitrating for the asynchronous packet channel,
the asynchronous packet transmission can be cancelled by setting the
CANCELAP bit to 1 in the MXVR_AP_CTL register. Once the STARTAP bit is set
to 1, the APTB cannot be written until either the asynchronous packet is
successfully sent or is successfully cancelled.

The asynchronous packet is said to be successfully sent if the MXVR wins
the arbitration for the asynchronous packet channel, and transmits the
packet. Once the packet is transmitted, the MXVR will set the APTS bit in
the MXVR_INT_STAT_1 register and an interrupt can be conditionally
generated.

The asynchronous packet is said to be successfully cancelled if the
CANCELAP bit is set to 1 prior to the MXVR winning arbitration for the
asynchronous packet channel. If the asynchronous packet is successfully
cancelled, the MXVR will set the APTC bit in the MXVR_INT_STAT_1 register
and an interrupt can conditionally be generated.

An asynchronous packet to be transmitted is DMA'd from the APTB in L1
or L2 memory to the MXVR. The asynchronous packet contains the fol-
lowing fields: AP Priority, AP Destination Address, AP Length, AP
Source Address, and AP Data. These asynchronous packet fields will be
stored at the address offsets given in Table 21-12.

Table 21-12. Asynchronous Packet Transmit Buffer Field Offsets

APTB Address Offsets Field Name

0x000 AP Priority

0x001 Reserved

0x002 AP Destination Address (Upper Byte)

0x003 AP Destination Address (Lower Byte)

0x004 AP Length (in quadlets)

0x005 Reserved

0x006 AP Source Address (Upper Byte)

General Operation

21-128 ADSP-BF54x Blackfin Processor Hardware Reference

The AP Priority can be any value from 0x01 to 0x0F with 0x01 being the
highest priority and 0x0F being the lowest priority. The AP Priority value
determines how soon after winning arbitration and transmitting an asyn-
chronous packet will the node attempt to win arbitration again. The AP
Priority value indicates the number of free frames the node will allow to
pass before attempting to arbitrate again. Note that the AP Priority value
self-limits the maximum possible bandwidth a node will get on the asyn-
chronous packet channel. For example, if a node sends repeated
asynchronous packets with an AP Priority value of 0x0F, the node will get
15 times less bandwidth on the asynchronous packet channel than if the
AP Priority value was 0x01

In the actual arbitration process itself when more than one node is arbi-
trating for the asynchronous packet channel and the asynchronous packet
channel is free for more than one frame, the node with the lowest POSI-
TION will win arbitration. A node which has won arbitration is not allowed
to arbitrate on the first free frame after it has transmitted. In the case
when more than one node is arbitrating for the asynchronous packet chan-
nel after another node has just completed transmitting an asynchronous
packet, the next downstream node which is arbitrating will win the
arbitration.

The AP Destination Address should be programmed to be the logical
address or alternate address of the node that will receive the asynchronous
packet.

Software must calculate the AP Length field based on the length of the
asynchronous packet data being transmitted. The AP Length field is a
length in quadlets and the value includes 6 bytes for the AP Source

0x007 AP Source Address (Lower Byte)

0x008 to AP Data End Offset AP Data

Table 21-12. Asynchronous Packet Transmit Buffer Field Offsets

APTB Address Offsets Field Name

ADSP-BF54x Blackfin Processor Hardware Reference 21-129

Media Transceiver Module (MXVR)

Address (2 bytes) and AP CRC (4 bytes). The AP Length field can be calcu-
lated based on the length of the AP Data field (in bytes) using the
following formula:

The AP Source Address can be programmed to be any address represent-
ing the transmitting node. However, it is recommended that the logical
address of the transmitting node be use.

The AP Data field contains the data to be transmitted in the asynchronous
packet. The amount of data transmitted can be from 1 byte to 1014 bytes.

Asynchronous Packet Reception
The MXVR Asynchronous Packet Receive Buffer (APRB) is an area of
memory that is allocated to hold received asynchronous packets. The APRB
must reside in L1 Memory and the starting address of the APRB is pro-
grammed in the MXVR_APRB_START_ADDR register. Enough memory should
be allocated for two 1024-byte asynchronous packets to be stored (2048
total bytes). The asynchronous packets are of variable length (ranging
from 8 bytes to 1024 bytes) so the Length of Data field must be read to
determine where the end of each asynchronous packet is located.

As asynchronous packets are received by the MXVR the packets will be
DMA'd into the APRB in a sequential manner (wrapping from the end back
to the start). For example, APRB Entry 0 will be filled first, then APRB Entry
1, and then APRB Entry 0, etc. As each message is received, the correspond-
ing APRBEx bit in the MXVR_AP_CTL register will be set to 1 by the MXVR
indicating that receive buffer entry number x is full. Once software has
read the asynchronous packet, the APRBEx bit should be cleared by writing
a 1 to the corresponding bit position indicating that receive buffer entry x
is now empty.

AP Length Length AP Data()() 6+() 4÷=

General Operation

21-130 ADSP-BF54x Blackfin Processor Hardware Reference

If a new asynchronous packet is arriving and the next sequential entry is
full, the Asynchronous Packet Receive Buffer Overflow (APROF) bit in the
MXVR_INT_STAT_0 register will be set to 1 and can conditionally generate
an interrupt. The incoming packet which caused the overflow will be lost.

The two APRB entries are stored as address offsets to the APRB start address
programmed in MXVR_APRB_START_ADDR register. The address offsets for
the two APRB Entries are given in Table 21-13.

Received asynchronous packets are DMA'd to the next sequential APRB
entry in L1 or L2 memory. The asynchronous packet contains the follow-
ing fields: AP Destination Address, AP Length, AP Source Address, and
AP Data. These asynchronous packet fields will be stored at the address
offsets given in Table 21-14. Note that the end of the AP Data field is
determined by the AP Length field that was received in the packet. The AP
Length field is a length in quadlets and the value includes 6 bytes for the
AP Source Address (2 bytes) and AP CRC (4 bytes). The address offset of
the final byte of the AP Data field is calculated as follows:

Table 21-13. Asynchronous Packet Receive Buffer Entry Offsets

APRB Entry Offset APRB Entry Number

MXVR_APRB_START_ADDR + 0x000 AP Receive Buffer Entry 0

MXVR_APRB_START_ADDR + 0x400 AP Receive Buffer Entry 1

Table 21-14. Asynchronous Packet Receive Buffer Entry Field Offsets

APRB Entry Address Offsets Field Name

0x00 AP Destination Address (Upper Byte)

0x01 AP Destination Address (Lower Byte)

0x02 AP Length (in quadlets)

0x03 Reserved

AP Data End Offset 4 AP Length×() 3+=

ADSP-BF54x Blackfin Processor Hardware Reference 21-131

Media Transceiver Module (MXVR)

Control Message Transmission
The MXVR Control Message Transmit Buffer (CMTB) is an area of mem-
ory that is allocated to hold a control message to be transmitted. The CMTB
must reside in L1 or L2 memory and the starting address of the CMTB is
programmed in the MXVR_CMTB_START_ADDR register. The CMTB must be
allocated 26 bytes.

Once the control message to be transmitted is written to the CMTB, the
Start Control Message Transmission (STARTCM) bit in the MXVR_CM_CTL reg-
ister should be set to 1 to trigger the MXVR to begin arbitration and
transmission of the control message. At that point the MXVR will DMA
the control message from the CMTB into the MXVR and will begin arbitrat-
ing for the control message channel.

While the MXVR is still arbitrating for the control message channel, the
control message transmission can be cancelled by setting the CANCELCM bit
in the MXVR_CM_CTL register. Once the STARTCM bit is set to 1, the CMTB
should not be written until either the control message is successfully sent
or is successfully cancelled.

The control message is said to be successfully sent if the MXVR wins arbi-
tration for the control message channel, transmits the message, and
receives a response back from the destination node or nodes. The response
received back will depend on the type of control message that was trans-
mitted. The response received back from the destination node or nodes
will be DMA'd back to the CMTB. Once the response is DMA'd back to the
CMTB, the MXVR will set the CMTS bit in the MXVR_INT_STAT_0 register to 1

0x04 AP Source Address (Upper Byte)

0x05 AP Source Address (Lower Byte)

0x06 to AP Data End Offset AP Data

Table 21-14. Asynchronous Packet Receive Buffer Entry Field Offsets

APRB Entry Address Offsets Field Name

General Operation

21-132 ADSP-BF54x Blackfin Processor Hardware Reference

and an interrupt can be conditionally generated. Note that regardless of
the actual response value (for example, Transmission Status) received
back, the MXVR will set the CMTS bit to 1.

The control message is said to be successfully cancelled if the CANCELCM bit
is set to 1 prior to the MXVR winning the arbitration for the control mes-
sage channel. If the control message is successfully cancelled, the MXVR
will set the CMTC bit to in the MXVR_INT_STAT_0 register to 1 and an inter-
rupt can conditionally be generated.

There are six types of control messages: Normal, Remote Read, Remote
Write, Resource Allocate, Resource De-Allocate, and Remote Get Source.
All six types of control message contain the following fields: CM Priority,
CM Destination Address, CM Source Address, CM Message Type, and
CM Transmission Status.

The CM Priority is used in the control message arbitration process. The
CM Priority can range from 0x00 to 0x0F with 0x00 being the lowest pri-
ority and 0x0F being the highest priority. If more than one node is
arbitrating for the control messages channel at the same time, the control
message being sent with the highest CM Priority will win the arbitration.
If the control messages being sent have the same CM Priority, the node
which has won arbitration the least will win the arbitration. If the control
messages have the same CM Priority and the nodes sending the control
messages have won arbitration an equal amount, then the node with the
lowest POSITION value will win the arbitration.

The CM Destination Address should be programmed to be the logical
address, physical address, or group address of the node that will receive the
control message. The byte order of the CM Destination Address is such
that it can be written with a word write.

The CM Source Address can be programmed to be any address represent-
ing the transmitting node. However, it is recommended that the logical
address of the transmitting node be use. The byte order of the CM Source
Address is such that it can be written with a word write.

ADSP-BF54x Blackfin Processor Hardware Reference 21-133

Media Transceiver Module (MXVR)

The CM Message Type field determines which type of control message is
being sent. Table 21-15 gives the encodings for the six types of control
messages. All other values are illegal. Message types 0x01 to 0x05 are
referred to as system control messages and are handled by the receiving
node completely in hardware.

The CM Transmission Status field indicates whether the destination node
successfully received the control message that was transmitted. The
MXVR will take DMA the Transmission Status that was received back
from the destination over the bus into the CM Transmission Status field
in the CMTB. Table 21-16 gives the meaning of the transmission status val-
ues received back when single cast addressing is used.

Table 21-15. CM Message Type Encodings

CM Message Type Type of Message

0x00 Normal Control Message

0x01 Remote Read Control Message

0x02 Remote Write Control Message

0x03 Allocate Control Message

0x04 De-Allocate Control Message

0x05 Remote GetSource Control Message

Table 21-16. Single cast Transmission Status Encodings

CM Transmission Status Meaning of Transmission Status

0x0000 No Response

0x1010 Transmission Successful

0x1111 Not Supported

0x2020 CRC Error

0x2121 Receive Buffer Full

General Operation

21-134 ADSP-BF54x Blackfin Processor Hardware Reference

Table 21-17 gives the possible meanings of the transmission status when
group cast or broadcast addressing is used (since the transmission status
from each of the addressed nodes is OR’d together).

Table 21-17. Group cast/Broadcast Transmission Status Encodings

CM Transmission
Status

Meaning of Transmission Status

0x0000 No Response

0x1010 Transmission Successful

Transmission Successful and No Response

0x1111 Not Supported

Not Supported and No Response

Not Supported and Transmission Successful

Not Supported and No Response and Transmission Successful

0x2020 CRC Error

CRC Error and No Response

0x2121 Receive Buffer Full

Receive Buffer Full and No Response

Receive Buffer Full and CRC Error

Receive Buffer Full and CRC Error and No Response

0x3030 CRC Error and Transmission Successful

CRC Error and Transmission Successful and No Response

ADSP-BF54x Blackfin Processor Hardware Reference 21-135

Media Transceiver Module (MXVR)

Normal Control Message Transmission
The normal control message is used to transmit data between nodes. The
CM Priority, CM Destination Address, CM Source Address, CM Message
Type (0x00), and CM Data fields should be written to the CMTB at the
address offsets given in Table 21-18.

The CM Data field contains the data payload to be sent from the source to
the destination. For normal control messages sent using single cast
addressing all 17 bytes of the CM Data field may be used for data transmis-
sion. For normal control messages sent using group cast or broadcast
addressing, only the first 16 bytes of the CM Data field should be used for
data transmission. The 17th byte should be used as a unique message ID
so that the destination nodes can ignore retries once they have successfully
received the normal control message. Note that software must handle the

0x3131 Transmission Successful and Receive Buffer Full

Not Supported and CRC Error

Not Supported and Receive Buffer Full

Transmission Successful and Receive Buffer Full and No Response

Not Supported and CRC Error and No Response

Not Supported and Receive Buffer Full and No Response

Transmission Successful and Not Supported and CRC Error

Transmission Successful and Not Supported and Receive Buffer Full

Transmission Successful and Not Supported and CRC Error and No
Response

Transmission Successful and Not Supported and Receive Buffer Full
and No Response

Table 21-17. Group cast/Broadcast Transmission Status Encodings

CM Transmission
Status

Meaning of Transmission Status

General Operation

21-136 ADSP-BF54x Blackfin Processor Hardware Reference

transmission of retries by retransmitting the same normal control message
with the same message ID and checking the transmission status received
back.

Once a normal control message is written to the CMTB and the STARTCM bit
is set to 1, the CM Priority, CM Destination Address, CM Source
Address, CM Message Type and CM Data fields are DMA’ed from the CMTB
to the MXVR. Once the MXVR wins arbitration the normal control mes-
sage is sent over the control message channel. The transmission status
from the destination node or nodes is received back by the MXVR and is
DMA’ed back to the CMTB. The transmission status for the normal control
message will be stored in the CM Transmission Status field of the CMTB at
the address offset given in Table 21-18.

If the destination node successfully receives the normal control message,
the normal control message will be written into one of the CMRB entries
and the transmission status of “Transmission Successful” will be returned.
If the destination node has reception of normal control messages disabled
(NCMRXEN=0), the normal control message will not be written to the CMRB
and the transmission status of “Not Supported” will be returned. If the
destination node detects a CRC error in the normal control message, the

Table 21-18. Normal Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x00)

0x07 - 0x17 CM Data

0x18 CM Transmission Status

ADSP-BF54x Blackfin Processor Hardware Reference 21-137

Media Transceiver Module (MXVR)

normal control message will not be written to the CMRB and the transmis-
sion status of “CRC Error” will be returned. If the destination nodes CMRB
if full, the normal control message will not be written to the CMRB and the
transmission status of “Receive Buffer Full” will be returned. If no node
responds to the normal control message, the transmission status of “No
Response” will be returned.

Remote Read Control Message Transmission
The remote read control message is used to read data from memory or reg-
isters in another node without disturbing the node’s operation. When a
remote read control message is sent to another MXVR node, data is read
from the destination nodes’s Remote Read Buffer (RRDB). The
CM Priority, CM Destination Address, CM Source Address, CM Message
Type (0x01), and CM Read Address fields should be written to the CMTB at
the address offsets given in Table 21-19.

For remote read control messages, the CM Destination Address field
should be restricted to single cast addresses.

The CM Read Address field contains the address offset in the RRDB of the
destination node where data should be read from. A remote read control
message always reads 8 bytes of data at a time. Since the RRDB is 256 bytes
long the CM Read Address can range from 0x00 to 0xFF. If the CM Read
Address is in the range 0xF9 to 0xFF, the reads will wrap around to the
start of the RRDB. For example, if the CM Read Address is 0xFE, the 8 bytes
of data returned will be from address offsets 0xFE, 0xFF, 0x00, 0x01, 0x02,
0x03, 0x04, 0x05 in the destination node’s RRDB.

Once a remote read control message is written to the CMTB and the STARTCM
bit is set to 1, the CM Priority, CM Destination Address, CM Source

Address, CM Message Type and CM Read Address fields are DMA’ed from
the CMTB to the MXVR. Once the MXVR wins arbitration the remote read
control message is sent over the control message channel. The data read
from the RRDB and the transmission status from the destination node is

General Operation

21-138 ADSP-BF54x Blackfin Processor Hardware Reference

received back by the MXVR and is DMA’ed back to the CMTB. The remote
read data will be stored in the CM Read Data field and the transmission sta-
tus for the remote read control message will be stored in the CM
Transmission Status field of the CMTB at the address offsets given in
Table 21-19.

If the destination node successfully receives the remote read control mes-
sage and returns the data from its RRDB, the transmission status of
“Transmission Successful” will be returned. If there is a CRC error in the
remote read control message, the data from its RRDB will not be returned
and the transmission status of “CRC Error” will be returned. If no node
responds to the remote read control message, the transmission status of
“No Response” will be returned.

Table 21-19. Remote Read Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x01)

0x07 Reserved (Write 0x00)

0x08 CM Read Address

0x07 Reserved (Write 0x00)

0x0A - 0x11 CM Read Data

0x12 - 0x13 Reserved

0x14 CM Transmission Status

0x16 - 0x19 Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 21-139

Media Transceiver Module (MXVR)

Remote Write Control Message Transmission
The remote write control message is used to write data to memory or reg-
isters in another node without disturbing the node’s operation. When a
remote write control message is sent to another MXVR node, data is writ-
ten to the destination node’s Remote Read Buffer (RRDB). The CM
Priority, CM Destination Address, CM Source Address, CM Message
Type (0x02), and CM Write Address and CM Write Length fields should be
written to the CMTB at the address offsets given in Table 21-20.

The CM Write Address field contains the address offset in the RRDB of the
destination node where data should be written to. A remote write control
message can write from 1 to 8 bytes of data at a time. Since the RRDB is 256
bytes long the CM Write Address can range from 0x00 to 0xFF. If the
CM Write Address is in the range 0xF9 to 0xFF, the writes will wrap
around to the start of the RRDB if the number of bytes being written causes
the address to go past 0xFF. For example, if the CM Write Address is 0xFE
and 6 bytes of data are to be written, then the data will be written to
address offsets 0xFE, 0xFF, 0x00, 0x01, 0x02, and 0x03 in the destination
node’s RRDB.

The CM Write Length field contains the number of bytes of data to be
written in the RRDB of the destination node. The CM Write Length field
should be in the range from 0x01 to 0x08 (indicating the number of bytes
to be written). Note that if the CM Write Length field is outside the range
0x01 to 0x08, destination node will not write the data to its RRDB.

The CM Write Data field contains the data that is to be written into the
RRDB of the destination node. Regardless of whether 1 byte or 8 bytes of
data are to be written to the RRDB of the destination node, the specified
number of bytes of data should be written starting at the address offset
given for CM Write Data.

Once a remote write control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address,
CM Source Address, CM Message Type, CM Write Address,

General Operation

21-140 ADSP-BF54x Blackfin Processor Hardware Reference

CM Write Length and CM Write Data fields are DMA’ed from the CMTB to
the MXVR. Once the MXVR wins arbitration the remote write control
message is sent over the control message channel. The transmission status
from the destination node is received back by the MXVR and is DMA’ed
back to the CMTB. The transmission status for the remote write control
message will be stored in the CM Transmission Status field of the CMTB at
the address offset given in Table 21-20.

If the destination node successfully receives the remote write control mes-
sage, the CM Write Data will be written to its RRDB, the CM Write Address
will be written to its RRDB Write Address field, and the CM Write Length
will be written to its RRDB Write Length field, and the transmission status
of “Transmission Successful” will be returned. If the destination node has
the reception of remote write control messages disabled (RWRRXEN=”0”) or

Table 21-20. Remote Write Control Message Transmit Buffer Entry Field
Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x02)

0x07 Reserved (Write 0x00)

0x08 CM Write Address

0x07 CM Write Length

0x0A - 0x11 CM Write Data

0x12 - 0x13 Reserved

0x14 CM Transmission Status

0x16 - 0x19 Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 21-141

Media Transceiver Module (MXVR)

if the CM Write Length is not in the range from 0x01 to 0x08, the RRDB will
not be written and the transmission status of “Not Supported” will be
returned. If the destination node detects a CRC error in the remote write
control message, the RRDB will not be written and the transmission status
of “CRC Error” will be returned. If no node responds to the remote write
control message, the transmission status of “No Response” will be
returned.

Resource Allocate Control Message Transmission
The resource allocate control message is used to request dynamic alloca-
tion of synchronous channels from the Master node. When a resource
allocate control message is sent to the Master to request a certain number
of channels, the Master determines whether there are enough channels
available and if so allocates the channels by assigning a connection label to
the channels in the Allocation Table. The connection label and the chan-
nel numbers allocated are returned to the transmitting node. All nodes in
the network (including the Master itself), send resource allocate control
messages to the Master to allocate channels. The CM Priority,
CM Destination Address, CM Source Address, CM Message Type (0x03),
and CM Allocate Number Channels fields should be written to the CMTB at
the address offsets given in Table 21-21.

For resource allocate control messages, the CM Destination Address field
should be restricted to either the logical address or the physical address of
the Master node.

The CM Allocate Number Requested field contains the number of chan-
nels that the transmitting node is requesting to be allocated. The CM
Allocate Number Requested should be in the range from 0x01 to 0x08.
(indicating the number of channels being requested). If more than 8 chan-
nels are needed, more than one resource allocate control message should
be sent to the Master.

General Operation

21-142 ADSP-BF54x Blackfin Processor Hardware Reference

Once a resource allocate control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address, CM
Source Address, CM Message Type, and CM Allocate Number Requested
fields are DMA’ed from the CMTB to the MXVR. Once the MXVR wins
arbitration the resource allocate control message is sent over the control
message channel. The response and transmission status from the destina-
tion node is received back by the MXVR and is DMA’ed back to the CMTB.
The response will be stored in the CM Allocate Status, CM Allocate Num-
ber Free, and CM Allocate Channel List and the transmission status will
be stored in the CM Transmission Status field of the CMTB at the address
offsets given in Table 21-21.

Table 21-21. Resource Allocate Control Message Transmit Buffer Entry
Field Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x03)

0x07 Reserved (Write 0x00)

0x08 CM Allocate Number Requested

0x07 Reserved (Write 0x00)

0x0A CM Allocate Status

0x0B CM Allocate Number Free

0x0C - 0x13 CM Allocate Channel List

0x14 - 0x15 Reserved

0x16 CM Transmission Status

0x18 - 0x19 Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 21-143

Media Transceiver Module (MXVR)

The destination node will return the status of the allocation request in the
CM Allocate Status. Table 21-22 gives the meaning of the CM Allocate
Status values. If the “Allocation Successful” response is given and there
was not a CRC error in the resource allocate control message, the
requested number of channels have been allocated. If the “Destination
Busy” response is given the Master node is incapable of processing the
allocation request at this time and the allocation request should be re-sent.
If the “Insufficient Free Channels” response is given, then there are not
enough free channels to satisfy the allocation request and therefore, the
allocation was not done. If the “Allocation Request Incorrect” response is
given, then the CM Allocate Request value was out of range (0x00 or
greater than 0x08) and the allocation was not done. If the “Wrong Desti-
nation” response is given, then the resource allocate control message was
sent to a Slave node and the allocation was not done. Note that an MXVR
Master will never respond with “Destination Busy”; however, Master
nodes implemented with other transceivers may do so.

The CM Allocate Number Free field will contain the number of channels
which are still free after the current allocation request is processed and
available to be allocated. If the resource allocate control message is sent to
a Slave node, the CM Allocate Number Free response will be 0x00.

Table 21-22. CM Allocate Status Encodings

CM Allocate Status Meaning of CM Allocate Status

0x01 Allocation Successful

0x02 Destination Busy

0x03 Insufficient Free Channels

0x04 Allocation Request Incorrect

0x05 Wrong Destination

General Operation

21-144 ADSP-BF54x Blackfin Processor Hardware Reference

The CM Allocate Channel List field will contain 8 bytes representing
physical channel numbers. If the CM Allocate Status response was “Allo-
cation Successful”, then the first byte of the CM Allocate Channel List
will be the first of the channels that was allocated and will be the Connec-
tion Label. If n channels were requested to be allocated (CM Allocate
Requested = n), then the first n bytes in the CM Allocate Channel List
will be the actual channels allocated. For example, if 3 channels were
requested to be allocated and the allocation was successful, then the chan-
nel numbers stored in the CM Allocate Channel List at address offsets
0x0C, 0x0D, and 0x0E are the channels that were allocated.

If the destination node successfully receives the resource allocate control
message, the transmission status of “Transmission Successful” will be
returned. If the destination node detects a CRC error in the resource allo-
cate control message, the allocation will not take place (even if the CM
Allocate Status response was “Allocation Successful”) and the transmission
status of “CRC Error” will be returned. If no node responds to the
resource allocate control message, the transmission status of “No
Response” will be returned.

Resource De-Allocate Control Message
Transmission

The resource de-allocate control message is used to request dynamic
de-allocation of synchronous channels from the Master node. A resource
de-allocate control message can be sent to the Master to either de-allocate
all the channels that are currently allocated or to de-allocate all the chan-
nels associated with a particular Connection Label. When a resource
de-allocate control message is sent to the Master, the Master determines
whether or not the request is valid, responds with the de-allocate status
and updates the Allocation Table. All nodes in the network (including the
Master itself), send resource de-allocate control messages to the Master to
de-allocate channels. The CM Priority, CM Destination Address, CM

ADSP-BF54x Blackfin Processor Hardware Reference 21-145

Media Transceiver Module (MXVR)

Source Address, CM Message Type (0x04), and CM De-Allocate Connec-
tion Label fields should be written to the CMTB at the address offsets given
in Table 21-23.

For resource de-allocate control messages, the CM Destination Address
field should be restricted to either the logical address or the physical
address of the Master node.

The CM De-Allocate Connection Label field contains either the Connec-
tion Label for the channels to be de-allocated or contains 0x7F if all
channels are to be de-allocated. The CM De-Allocate Number Requested
should be in the range from 0x00 to the uppermost synchronous channel
number or can be 0x7F. The uppermost synchronous channel number can
be determined by the following formula:

Uppermost Synchronous Channel Number = (4 * RSB) - 1

Once a resource de-allocate control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address, CM
Source Address, CM Message Type, and CM De-Allocate Connection
Label fields are DMA’ed from the CMTB to the MXVR. Once the MXVR
wins arbitration the resource de-allocate control message is sent over the
control message channel. The response and transmission status from the
destination node is received back by the MXVR and is DMA’ed back to
the CMTB. The response will be stored in the CM De-Allocate Status field
and the transmission status will be stored in the CM Transmission Status
field of the CMTB at the address offsets given in Table 21-23.

Table 21-23. Resource De-Allocate Control Message Transmit Buffer
Entry Field Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

General Operation

21-146 ADSP-BF54x Blackfin Processor Hardware Reference

The destination node will return the status of the de-allocation request in
the CM De-Allocate Status. Table 21-24 gives the meaning of the CM
De-Allocate Status values. If the “De-Allocation Successful” response is
given and there was not a CRC error in the resource de-allocate control
message, the channels requested to be de-allocated have been successfully
de-allocated. If the “Destination Busy” response is given the Master node
is incapable of processing the de-allocation request at this time and the
de-allocation request should be re-sent. If the “De-Allocation Request
Incorrect” response is given, then the CM De-Allocate Connection Label
value was out of range (greater than 0x7F) and the de-allocation was not
done. If the “Wrong Destination” response is given, then the resource
de-allocate control message was sent to a Slave node and the de-allocation

0x04 CM Source Address

0x06 CM Message Type (Write 0x03)

0x07 Reserved (Write 0x00)

0x08 CM De-Allocate Connection Label

0x07 Reserved (Write 0x00)

0x0A CM De-Allocate Status

0x0B -0x0D Reserved

0x0E CM Transmission Status

0x10 - 0x19 Reserved

Table 21-23. Resource De-Allocate Control Message Transmit Buffer
Entry Field Offsets

CMTB Address Offsets Field Name

ADSP-BF54x Blackfin Processor Hardware Reference 21-147

Media Transceiver Module (MXVR)

was not done. Note that an MXVR Master will never respond with “Des-
tination Busy”; however, Master nodes implemented with other
transceivers may do so.

If the destination node successfully receives the resource de-allocate con-
trol message, the transmission status of “Transmission Successful” will be
returned. If the destination node detects a CRC error in the resource
de-allocate control message, the de-allocation will not take place (even if
the CM De-Allocate Status response was “De-Allocation Successful”) and
the transmission status of “CRC Error” will be returned. If no node
responds to the resource de-allocate control message, the transmission sta-
tus of “No Response” will be returned.

Remote Get Source Control Message Transmission
The remote get source control message is used to determine which node is
transmitting data on a particular physical channel. A remote get source
control message can be sent using broadcast addressing and the node
which is transmitting on the channel specified in the CM Get Source
Channel field will respond with its physical address, logical address and
group address. In addition, by setting the CM Get Source Channel field to
0xFF and sending a remote get source control message to a node using sin-
gle cast addressing, the destination node will respond with its physical
address, logical address, and group address. The CM Priority, CM Desti-

Table 21-24. CM De-Allocate Status Encodings

CM De-Allocate Status Meaning of CM De-Allocate Status

0x01 De-Allocation Successful

0x02 Destination Busy

0x04 De-Allocation Request Incorrect

0x05 Wrong Destination

General Operation

21-148 ADSP-BF54x Blackfin Processor Hardware Reference

nation Address, CM Source Address, CM Message Type (0x04), and CM Get
Source Channel fields should be written to the CMTB at the address offsets
given in Table 21-25.

For remote get source control messages, the CM Destination Address
field should normally be sent using broadcast addressing; however, single
cast addressing may be used to request a particular node to return its phys-
ical, logical and group addresses by sending 0xFF in the CM Get Source
Channel field.

The CM Get Source Channel field contains a physical channel number.
The CM Get Source Channel should be in the range from 0x00 to the
uppermost synchronous channel number or can be 0xFF. The uppermost
synchronous channel number can be determined by the following
formula:

Uppermost Synchronous Channel Number = (4 * RSB) - 1

Once a remote get source control message is written to the CMTB and the
STARTCM bit is set to 1, the CM Priority, CM Destination Address, CM
Source Address, CM Message Type, and CM Get Source Channel fields are
DMA’ed from the CMTB to the MXVR. Once the MXVR wins arbitration
the remote get source control message is sent over the control message
channel. The response and transmission status from the destination node
is received back by the MXVR and is DMA’ed back to the CMTB. The
response will be stored in the CM Get Source Physical Address (Low), CM
Get Source Group Address (Low), CM Get Source Logical Address

ADSP-BF54x Blackfin Processor Hardware Reference 21-149

Media Transceiver Module (MXVR)

(Low) and CM Get Source Logical Address (High) fields and the trans-
mission status will be stored in the CM Transmission Status field of the
CMTB at the address offsets given in Table 21-25.

Table 21-25. Remote GetSource Control Message Transmit Buffer Entry
Field Offsets

CMTB Address Offsets Field Name

0x00 CM Priority

0x01 Reserved

0x02 CM Destination Address

0x04 CM Source Address

0x06 CM Message Type (Write 0x03)

0x07 Reserved (Write 0x00)

0x08 CM GetSoruce Channel

0x07 Reserved (Write 0x00)

0x0A - 0x0C Reserved

0x0D CM GetSource Physical Address
(Low)

0x0E Reserved

0x0F CM GetSource Group Address (Low)

0x10 CM GetSource Logical Address
(High)

0x11 CM GetSource Logical Address
(Low)

0x12 - 0x13 Reserved

0x14 CM Transmission Status

0x16 - 0x19 Reserved

General Operation

21-150 ADSP-BF54x Blackfin Processor Hardware Reference

If the destination node is an MXVR, the destination node will respond to
the remote get source control message if the destination node is routing
data onto or is muting the channel specified in the CM Get Source Chan-
nel field or if the CM Get Source Channel field is 0xFF. Other types of
transceivers respond when the specified channel is routed.

If the destination node responds to the remote get source control message,
the node will return the low byte of its physical address (POSITION) in the
CM Get Source Physical Address (Low) field.

If the destination node responds to the remote get source control message,
the node will return the low byte of its group address (GADDRL) in the CM
Get Source Group Address (Low) field.

If the destination node responds to the remote get source control message,
the node will return its logical address (LADDR) in the CM Get Source Log-
ical Address (High) and CM Get Source Logical Address (Low) fields.

If the remote get source control message was sent and a response was
received back and there was not a CRC error, the transmission status of
“Transmission Successful” will be returned. If the remote get source con-
trol message was sent and a response was received back but there was a
CRC error, the transmission status of “CRC Error” will be returned. If the
remote get source control message was sent and no node responded, the
transmission status of “No Response” will be returned. Note that since
broadcast addressing is normally used when sending a remote get source
control message, it is possible that multiple nodes may respond and there-
fore, the transmitting node will receive back the response sent from the
closest upstream node that responded.

Control Message Reception
The following sections describe control message reception operations.

ADSP-BF54x Blackfin Processor Hardware Reference 21-151

Media Transceiver Module (MXVR)

Normal Control Message Reception

The MXVR Control Message Receive Buffer (CMRB) is an area of memory
that is allocated to hold received control messages. The CMRB must reside
in L1 or L2 memory and the starting address of the CMRB is programmed in
the MXVR_CMRB_START_ADDR register. Enough memory should be allocated
for sixteen 24-byte messages to be stored (384 total bytes).

As normal control messages are received by the MXVR the normal control
messages will be DMA'd into the CMRB in a sequential manner (wrapping
from the end back to the start). For example, CMRBE0 will be filled first,
then CMRBE1, ... , then CMRB15, then CMRE0, etc. As each message is received,
the corresponding CMRBEx bit in the MXVR_CM_CTL register will be set to 1
by the MXVR indicating that receive buffer entry number x is full. Once
software has read the normal control message, the CMRBEx bit should be
cleared by writing a 1 to the corresponding bit position indicating that
receive buffer entry x is now empty.

If a new normal control message is arriving and the next sequential entry is
full, the Control Message Receive Buffer Overflow (CMRBOF) bit in the
MXVR_INT_STAT_0 register will be set to 1 and can conditionally generate
an interrupt. The incoming message which caused the overflow will be lost
and the Transmission Status will be returned to the transmitter indicating
that the receive buffer was full. Note that an overflow will occur if the
next sequential entry is full regardless of whether other entries in the CMRB
are empty.

General Operation

21-152 ADSP-BF54x Blackfin Processor Hardware Reference

The 16 CMRB Entries are stored as address offsets to the CMRB start address
programmed in the MXVR_CMRB_START_ADDR register. The address offsets
for the 16 CMRB Entries are given in Table 21-26.

Received normal control messages are DMA'd to the next sequential CMRB
Entry in L1 or L2 memory. The normal control message contains the fol-
lowing fields: CM Destination Address, CM Source Address, CM Message
Type, and CM Data. The byte order of the CM Destination Address and CM
Source Address will be swapped from the order that they were received,
so that the addresses can be read properly with a word access. These nor-
mal control message fields will be stored at the address offsets given in
Table 21-27.

Table 21-26. Control Message Receive Buffer Entry Offsets

CMRB Entry Offset CMRB Entry Number

MXVR_CMRB_START_ADDR + 0x000 CM Receive Buffer Entry 0

MXVR_CMRB_START_ADDR + 0x016 CM Receive Buffer Entry 1

MXVR_CMRB_START_ADDR + 0x02C CM Receive Buffer Entry 2

MXVR_CMRB_START_ADDR + 0x16 * x CM Receive Buffer Entry x

MXVR_CMRB_START_ADDR + 0x14A CM Receive Buffer Entry 15

Table 21-27. Control Message Receive Buffer Entry Field Offsets

CMRB Entry Address Offsets Field Name

0x00 CM Destination Address

0x02 CM Source Address

0x04 CM Message Type

0x05 - 0x15 CM Data

ADSP-BF54x Blackfin Processor Hardware Reference 21-153

Media Transceiver Module (MXVR)

Remote Read and Remote Write Reception

The MXVR Remote Read Buffer (RRDB) is a buffer in L1 or L2 memory
that is allocated to allow other nodes to remotely read from and write to
the ADSP-BF54x over the network. When a remote read control message
is received by the MXVR, the 8 bytes of data requested will be DMA’ed
from the RRDB into the MXVR so that the data can be sent out in response
to the remote read control message. When a remote write control message
is received by the MXVR, the up to 8 bytes of write data will be DMA’ed
to the addresses specified in the remote write control message. In addition,
the write address and write data length will also be written into fields in
the RRDB.

The RRDB must reside in L1 or L2 memory and the starting address of the
RRDB is programmed in the MXVR_RRDB_START_ADDR register. The RRDB must
be allocated 258 bytes in L1 or L2 memory (256 bytes for data, one byte
for the RRDB Write Address field and one byte for the RRDB Write Length
field.

It is the responsibility of the software to ensure that a remote read control
message is not in progress when updating the RRDB. When a remote read
control message is being received, the RRDIP state bit will be asserted. Soft-
ware should not write the RRDB while the RRDIP bit is asserted. The RRDIP
bit asserts microseconds before the actual data read occurs and remains
asserted for microseconds after the data read occurs.

When a remote write control message is being received, the Remote Write
In Progress (RWRIP) bit in the MXVR_STATE_0 register will be asserted. The
RWRIP bit will assert microseconds before the actual data write occurs.
When the received CM Write Data, CM Write Address, and CM Write
Length have been DMA'ed to the RRDB, the Remote Write Complete
(RWRC) status bit will assert and an interrupt can be conditionally
generated.

General Operation

21-154 ADSP-BF54x Blackfin Processor Hardware Reference

The start address of the RRDB is programmed in MXVR_RRDB_START_ADDR
register. The received CM Write Data will be written into the RRDB Data
field at the offset specified by the received CM Write Address. The
received CM Write Address will be written into the RRDB Write Address
field and the received CM Write Length will be written into the RRDB
Write Length field so that when the remote write completes, software can
easily determine which bytes have been remotely written. Table 21-28
gives the offsets of the RRDB Data, the RRDB Write Address, and the RRDB
Write Length fields in the RRDB.

Resource Allocate Reception

The reception of Resource Allocate control messages by the MXVR is han-
dled completely in hardware. No software intervention is required other
than to observe changes to the Allocation Table once the Resource Allo-
cate control message is processed by the MXVR.

If a Resource Allocate control message is received by the MXVR when in
Master mode, the ALIP bit in the MXVR_STATE_0 register will change to 1 to
indicate a Resource Allocate control message is being processed. While the
ALIP bit is a 1, the Allocation Table should not be read since the Alloca-
tion Table may be only partially updated. The MXVR will first determine
whether the allocation request is correct, which channels are currently free
in the Allocation Table, and whether there are enough channels available
to satisfy the request. The MXVR will respond with the appropriate CM
Allocate Status, CM Allocate Number Free, and CM Allocate Channel
List. If no CRC error occurs during the Resource Allocate control mes-

Table 21-28. Remote Read Buffer Field Offsets

RRDB Address Offsets Field Name

0x000 - 0x0FF RRDB Data

0x100 RRDB Write Address

0x101 RRDB Write Length

ADSP-BF54x Blackfin Processor Hardware Reference 21-155

Media Transceiver Module (MXVR)

sage, the MXVR will update its Allocation Table to reflect the allocation
request. Once the Allocation Table is updated in the Master, the ATU bit in
the MXVR_INT_STAT_0 register will change to 1. Note that the Master only
distributes its Allocation Table to the Slave nodes once every 1024 frames.

If a Resource Allocate control message is received by the MXVR when in
Slave mode, the MXVR will respond with the CM Allocate Status of
“Wrong Destination”.

Resource De-Allocate Reception

The reception of Resource De-Allocate control messages by the MXVR is
handled completely in hardware. No software intervention is required
other than to observe changes to the Allocation Table once the Resource
De-Allocate control message is processed by the MXVR.

If a Resource De-Allocate control message is received by the MXVR when
in Master mode, the DALIP bit in the MXVR_STATE_0 register will change to
1 to indicate a Resource De-Allocate control message is being processed.
While the DALIP bit is a 1, the Allocation Table should not be read since
the Allocation Table may be only partially updated. The MXVR will first
determine whether the de-allocation request is correct, and which chan-
nels are currently allocated to the connection label in the request. The
MXVR will respond with the appropriate CM De-Allocate Status. If no
CRC error occurs during the Resource De-Allocate control message, the
MXVR will update its Allocation Table to reflect the de-allocation
request. Once the Allocation Table is updated in the Master, the ATU bit in
the MXVR_INT_STAT_0 register will change to 1. Note that the Master only
distributes its Allocation Table to the Slave nodes once every 1024 frames.

If a Resource De-Allocate control message is received by the MXVR when
in Slave mode, the MXVR will respond with the CM De-Allocate Status
of “Wrong Destination”.

General Operation

21-156 ADSP-BF54x Blackfin Processor Hardware Reference

Remote Get Source Reception

The reception of Remote Get Source control messages by the MXVR is
handled completely in hardware. No software intervention is required.

If a Remote Get Source control message is received by the MXVR, the
RGSIP bit in the MXVR_STATE_0 register will change to 1 to indicate a
Remote Get Source control message is being processed. The MXVR will
first determine whether it should respond to the Remote Get Source con-
trol message. The MXVR will respond if the MXVR is muting or routing
data onto the channel specified in the CM Get Source Channel field or if
the CM Get Source Channel field is 0xFF. The MXVR is muting channel n
when the Channel Mute n bit in the appropriate MXVR_ROUTING_x register is
set to 1. The MXVR is routing data onto channel n when the Transmit
Channel n bit in the appropriate MXVR_ROUTING_x register is set to any
value other than n. If the CM Get Source Channel field is 0xFF, the MXVR
will always respond regardless of what channels are being muted or routed.
The MXVR will not respond if the CM Get Source Channel field has a
value between 4 * RSB and 0xFE.

When the MXVR responds to a Remote Get Source control message, the
MXVR returns the low byte of its Physical Address, the low byte of its
Group Address, and the high and low bytes of its Logical Address. Note
that values in the POSITION, GADDRL, and LADDR fields are returned in the
response regardless of whether the corresponding valid bits are set to 1.
Note that the Remote Get Source control message is normally sent as a
broadcast message, so it is possible that more than one node could respond
with one response overwriting another.

MXVR Low Power Operation
The ADSP-BF54x processor provides a number of mechanisms for
dynamically controlling performance and power dissipation. The main
mechanisms are controlling the voltage level of the processor through the
on-chip voltage regulator, controlling the core clock and system clock fre-

ADSP-BF54x Blackfin Processor Hardware Reference 21-157

Media Transceiver Module (MXVR)

quencies, and controlling the operating mode of the core and the system
PLL. See the “Dynamic Power Management” chapter in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2). Within the
ADSP-BF54x dynamic power management framework, the MXVR has six
general power/functionality states as shown in Table 21-29.

These power/functionality states are listed in order from least power sav-
ings (Full On Mode) to greatest power savings (Power Gated Off). The
functionality of the MXVR in each of these states is described in the fol-
lowing sections.

Table 21-29. ADSP-BF54x Power/MXVR Functionality States

ADSP-BF54x
Power State

MXVR
State

MXVR
Data
Rx/Tx

Core
Clock

System
Clock

Wake-up
Source

MOST
Network

Full-on Mode Any Yes1

1 Core Clock frequency and System Clock frequency must be operated at a high enough frequency
to support MXVR and other system DMA bandwidth to L1 or L2 memory.

From PLL From PLL Active

Active Mode Any Yes1 From
CLKIN

From
CLKIN

Active

Sleep Mode Any Yes Disabled From PLL Any Inter-
rupt

Active

Deep Sleep
Mode

All Bypass -
MXVR Dis-
abled

No Disabled Disabled Reset or
RTC

Active

Hibernate State Powered
Down

No Powered
Down

Powered
Down

Reset, RTC,
MRXON,
CANRX

Not Active

Power Gated
Off
to ADSP-BF54x

Powered
Down

No Powered
Down

Powered
Down

Handled on
Board-Level

Not Active

General Operation

21-158 ADSP-BF54x Blackfin Processor Hardware Reference

Full On Mode

When the ADSP-BF54x is operated in the Full On mode, the MXVR is
fully functional and can be operated in any of its modes. While in the Full
On mode, the system PLL generates the core clock and system clock. For
power savings the core clock frequency can be reduced based on the mini-
mum core processing performance required by the application and the
system clock frequency can be reduced based on the minimum internal
and external bus bandwidth required by the application. Once the mini-
mum core clock frequency and system clock frequency required for the
application is known, the voltage level of the on-chip voltage regulator
may be lowered to further reduce power consumption. The tables giving
the minimum operating voltage level for a given core clock/system clock
frequency combination can be found in the ADSP-BF54x Blackfin Embed-
ded Processor data sheet.

The MXVR utilizes its DMA channels to transfer data to and from L1 or
L2 memory in order to transmit and receive synchronous data, asynchro-
nous packets, and control messages. This means that the core clock and
system clock frequency must be operated at a high enough frequency to
support the bandwidth and latency requirements of the MXVR DMA
channels in conjunction with all other L1 or L2 memory bandwidth used
in the system (for example, memory DMA operations to/from L1 or L2,
other peripheral DMA to/from L1 or L2, and core accesses to/from L1 or
L2). Therefore, performance analysis must be done on a given application
when choosing the minimum core clock and system clock frequencies.
During this analysis, the MXVR’s FIFO Error interrupt event (FERR)
should be monitored. If the FERR interrupt ever asserts, the MXVR DMAs
are being starved and data corruption may have occurred due to the lack
of DMA bandwidth. If this occurs, the core clock and/or system clock fre-
quency should be increased or other traffic to L1 or L2 memory should be
reduced.

ADSP-BF54x Blackfin Processor Hardware Reference 21-159

Media Transceiver Module (MXVR)

If the MXVR is going to be operated in All Bypass-MXVR Disabled mode
for long periods of time while in Full On mode, the MXVR CDRPLL, the
FMPLL, and the MXVR Crystal Oscillator or MXI clock input can be dis-
abled to reduce power consumption. To disable the CDRPLL, the
CDRSMEN bit should be set to 0 in the MXVR_CDRPLL_CTL register. To disable
the FMPLL, the FMSMEN bit should be set to 0 in the MXVR_FMPLL_CTL reg-
ister. If a crystal is connected between MXI and MXO, to disable the MXVR
Crystal Oscillator the MXTALFEN and MXTALCEN bits should be set to 0 in the
MXVR_CLK_CTL register to 0. If an external oscillator is used to supply the
MXI clock, the external oscillator should be disabled or the MXTALCEN bit
should be set to 0 in the MXVR_CLK_CTL register to gate off the MXI clock in
the pad.

Active Mode

When the ADSP-BF54x is operated in the Active Mode, the MXVR is
fully functional and can be operated in any of its modes. While in the
Active Mode the system PLL is bypassed and the core clock and system
clock run at the frequency of CLKIN. The core clock frequency must be
operated at a high enough frequency to support the core processing per-
formance required by the application and the system clock frequency must
be operated at a high enough frequency to support the internal and exter-
nal bus bandwidth required by the application. Based on the core clock
frequency and system clock frequency, the voltage level of the on-chip
voltage regulator may be lowered to further reduce power consumption.
The tables giving the minimum operating voltage level for a given core
clock/system clock frequency combination can be found in the
ADSP-BF54x Blackfin Embedded Processor data sheet.

The MXVR utilizes its DMA channels to transfer data to and from L1 or
L2 memory in order to transmit and receive synchronous data, asynchro-
nous packets, and control messages. This means that the core clock and
system clock frequency must be operated at a high enough frequency to
support the bandwidth and latency requirements of the MXVR DMA
channels in conjunction with all other L1 or L2 memory bandwidth used

General Operation

21-160 ADSP-BF54x Blackfin Processor Hardware Reference

in the system (for example, memory DMA operations to/from L1 or L2,
other peripheral DMA to/from L1 or L2, and core accesses to/from L1 or
L2). Therefore, performance analysis must be done on a given application
when choosing the minimum core clock and system clock frequencies.
During this analysis, the MXVR’s FIFO Error interrupt event (FERR)
should be monitored. If the FERR interrupt ever asserts, the MXVR DMAs
are being starved and data corruption may have occurred due to the lack
of DMA bandwidth. If this occurs, the core clock and/or the system clock
frequency should be increased or other traffic to L1 or L2 memory should
be reduced.

If the MXVR is going to be operated in All Bypass-MXVR Disabled mode
for long periods of time while in Active Mode, the MXVR CDRPLL, the
FMPLL, and the MXVR Crystal Oscillator or MXI clock input can be dis-
abled to reduce power consumption. To disable the CDRPLL, the
CDRSMEN bit should be set to 0 in the MXVR_CDRPLL_CTL register. To disable
the FMPLL, the FMSMEN bit should be set to 0 in the MXVR_FMPLL_CTL reg-
ister. If a crystal is connected between MXI and MXO, to disable the MXVR
Crystal Oscillator the MXTALFEN and MXTALCEN bits should be set to 0 in the
MXVR_CLK_CTL register to 0. If an external oscillator is used to supply the
MXI clock, the external oscillator should be disabled or the MXTALCEN bit
should be set to 0 in the MXVR_CLK_CTL register to gate off the MXI clock in
the pad.

Sleep Mode

When the ADSP-BF54x is operated in Sleep Mode and the MXVR may
be operated in any of its modes. The MXVR can transmit and receive syn-
chronous data, asynchronous packets, and control messages as long as
their associated memory buffers are located in L2 memory (accesses to L1
memory while in Sleep Mode is not allowed). Since the MOST bus proto-
col is handled in hardware, the MXVR may be operated as either a master
or a slave while in Sleep Mode. As the MOST network master, the MXVR
can continue to handle allocation and de-allocation system control mes-
sages and other background network functions.

ADSP-BF54x Blackfin Processor Hardware Reference 21-161

Media Transceiver Module (MXVR)

Once the ADSP-BF54x has entered Sleep Mode, it can be woken up back
into either the Full On mode or Active Mode by any system interrupt.
The wake-up interrupt should be enabled within the peripheral and
within the SIC_IWRx registers. Within the MXVR the interrupt sources
that typically would be used to wake-up from Sleep Mode are:

• Reception of a Wake-up Preamble on the MOST network (WUP)

• Detection of edges the MRXON input which is typically connected to
the MOST FOR Status Output (MH2L, ML2H)

• Detection of network activity changes on the MRX input (NI2A,
NA2I)

• System Clock Counter, Frame Counter, or Block Counter
time-outs (SCZ, FCZx, BCZ)

• Detection of network lock changes (SBU2L, SBL2U, BU2L, BL2U, FU2L,
FL2U)

• Detection of network status changes (PRU, MPRU, DRU, MDRU, SBU,
ATU)

• Reception of synchronous data, a control message or an asynchro-
nous packet (HDONEx, DONEx, CMR, RWRC, APR)

Some examples of other interrupt sources that may typically be used to
wake-up from Sleep Mode are:

• Real Time Clock events

• Timer time-out

• PFx pin edge or level

• Peripheral data reception or transmission

General Operation

21-162 ADSP-BF54x Blackfin Processor Hardware Reference

If the MXVR is going to be operated in All Bypass-MXVR Disabled mode
while in Sleep Mode, the CDRPLL, the FMPLL, and the MXVR Crystal
Oscillator or MXI clock input can be disabled to reduce power consump-
tion. To disable the CDRPLL the CDRSMEN bit should be set to 0 in the
MXVR_CDRPLL_CTL register. To disable the FMPLL, the FMSMEN bit should
be set to 0 in the MXVR_FMPLL_CTL register. If a crystal is connected
between MXI and MXO, to disable the MXVR Crystal Oscillator the MXTAL-
FEN and MXTALCEN bits should be set to 0 in the MXVR_CLK_CTL register. If
an external oscillator is used to supply the MXI clock, the external oscillator
should be disabled or the MXTALCEN bit should be set to 0 in the
MXVR_CLK_CTL register to gate off the MXI clock in the pad.

Deep Sleep Mode

When the ADSP-BF54x is operated in Deep Sleep Mode, the core clock
and the system clock are disabled, therefore, the MXVR may only be oper-
ated in All Bypass-MXVR Disabled mode. The MXVR is by default in the
All Bypass-MXVR Disabled mode after reset, or the All Bypass-MXVR
Disabled mode may be entered by writing the MXVREN bit to 0. Within the
All Bypass-MXVR Disabled mode, the MRX input is directly connected to
the MTX output, so the MOST network can still be active while an
ADSP-BF54x slave node is in Deep Sleep Mode.

Deep Sleep Mode can be exited only by a Real Time Clock interrupt or
hardware reset. A Real Time Clock interrupt causes the ADSP-BF54x to
transition to the Active Mode and the core will continue executing the
code following the idle instruction. A hardware reset will cause the
ADSP-BF54x to exit Deep Sleep Mode and begin the hardware reset boot-
ing sequence.

If a crystal is connected between MXI and MXO, the MXVR Crystal Oscilla-
tor may also be disabled to eliminate the power consumption of the crystal
oscillator during Deep Sleep Mode. This is accomplished by setting the
MXTALFEN and MXTALCEN bits to 0 in the MXVR_CLK_CTL register before exe-
cuting the idle instruction that causes the ADSP-BF54x to enter Deep

ADSP-BF54x Blackfin Processor Hardware Reference 21-163

Media Transceiver Module (MXVR)

Sleep Mode. The reset sequence when exiting from deep sleep mode will
cause the MXTALFEN and MXTALCEN bits to be reset to 1, so the MXVR Crys-
tal Oscillator will start up during the reset sequence. If an external
oscillator is used to supply the MXI clock, the external oscillator should be
disabled or the MXTALCEN bit should be set to 0 in the MXVR_CLK_CTL regis-
ter to gate off the MXI clock in the pad.

Hibernate State

When the ADSP-BF54x is operated in Hibernate State, the on-chip volt-
age regulator is turned off and the internal power supplies (VDDINT, VDDMP)
transition to 0V. The only power that is used in this mode is the leakage
current on the external power supplies (VDDEXT, VDDDDR, VDDUSB, VDDMC,
VDDMX) and the current used by the Real Time Clock. In Hibernate State,
the MXVR is completely powered off, so there is no longer a connection
between the MRX input and the MTX output. Therefore, the MOST network
cannot be active while the ADSP-BF54x is in Hibernate State.

There are four wake-up sources that can wake the ADSP-BF54x from
Hibernate State:

• Real Time Clock Interrupt

• Asserting Hardware Reset

• Asserting the MRXON input low (typically connected to the MOST
FOR Status output)

• Asserting the CANRX input low

Hardware reset always wakes up the ADSP-BF54x from hibernate state.
The other hibernate wake-up sources can be individually enabled by set-
ting bits in the VR_CTL register before executing the idle instruction that
causes the ADSP-BF54x to enter hibernate state. In the VR_CTL register,
the WAKE bit should be set to 1 to allow wake-up on Real Time Clock
interrupts, the MXVRWE bit should be set to 1 to allow wake-up on the asser-

General Operation

21-164 ADSP-BF54x Blackfin Processor Hardware Reference

tion of MRXON. When any one of the enabled wake-up source events occurs,
the on-chip voltage regulator will turn on and the ADSP-BF54x will begin
the hardware reset booting sequence.

If a crystal is connected between MXI and MXO, the MXVR Crystal Oscilla-
tor may also be disabled to eliminate the power consumption of the crystal
oscillator during Hibernate State. This is accomplished by setting the
MXTALFEN and MXTALCEN bits in the MXVR_CLK_CTL register to 0 before exe-
cuting the idle instruction that causes the ADSP-BF54x to enter
Hibernate State. The reset sequence when exiting from Hibernate State
will cause the MXTALFEN and MXTALCEN bits to be reset to 1, so the MXVR
Crystal Oscillator will start up during the reset sequence. If an external
oscillator is used to supply the MXI clock, the external oscillator should be
disabled or the MXTALCEN bit should be set to 0 in the MXVR_CLK_CTL regis-
ter to gate off the MXI clock in the pad.

Power Gating the ADSP-BF54x

To achieve the lowest possible power consumption for a MOST node, the
external power supplies (VDDEXT, VDDDDR, VDDUSB, VDDMC, VDDMX, VDDRTC) to
the ADSP-BF54x should be gated off and pulled to 0V. This effectively
reduces the ADSP-BF54x power consumption to zero. Typically the
MOST FOR status output would be used to gate the ADSP-BF54x power
supplies on and off based on the reception of modulated light.

ADSP-BF54x Blackfin Processor Hardware Reference 22-1

22 KEYPAD INTERFACE

This chapter describes the 16-pin programmable keypad interface and
includes the following sections:

• “Interface Overview” on page 22-1

• “Description of Operation” on page 22-2

• “Functional Description” on page 22-7

• “Programming Model” on page 22-9

• “Keypad Registers” on page 22-10

• “Programming Examples” on page 22-22

Interface Overview
The 16-pin programmable keypad interface features:

• Programmable input keypad matrix size

• Programmable debounce filter width

• Press-release-press mode support

• Interrupt on any key pressed capability

• Multiple key pressed detection and limited multiple key resolution
capability

Description of Operation

22-2 ADSP-BF54x Blackfin Processor Hardware Reference

The keypad is a 16-pin interface module that is used to detect the key
pressed in an 8x8 (maximum) keypad matrix. The size of the input keypad
matrix is software programmable. The interface is capable of filtering the
bounce on the input pins with a programmable width of the filtered
bounce. The keypad module supports two modes of operation,
press-release-press mode and Press-Hold mode. The press-release-press
mode identifies a press-release-press sequence of a key as two consecutive
presses of the same key. The Press-Hold mode checks the input key's state
in periodic intervals to determine the number of times the same key is
meant to be pressed.

The keypad interface module can be programmed to generate an interrupt
request when it identifies that any key is pressed. Software can be pro-
grammed to detect simultaneous multiple key presses with limited
multiple key resolution capability.

Description of Operation

Keypad Operation
A keypad interface consists of a matrix with two sets of wires, one set that
runs horizontally (rows), and another that runs vertically (columns) with a
pushbutton switch at each intersection. The row and column wires do not
touch, but run over each other. When the pushbutton is pressed, a contact
is established at the intersection of a given row and column serving as a
switch. The number of switches for a given matrix depends on the number
of rows and columns. For example, a 4x4 matrix can support up to 16
switches. A block diagram of the keypad interface is shown in Figure 22-1.

As shown in the figure, the column wires are connected to the column
outputs of the keypad interface while the row wires are connected to the
row inputs. Each row wire of the keypad has a pull-up resistor that pulls
the row wires high. When no key is pressed, there is no contact between
any of the column drivers to the row inputs. As a result, all row inputs are

ADSP-BF54x Blackfin Processor Hardware Reference 22-3

Keypad Interface

read as 1. When a pushbutton is pressed, a contact is established between
each corresponding row and column wire. Row inputs will sense the value
driven by the column drivers. To determine which key is pressed, the col-
umn drivers drive zero. On a key press, the zero will be visible on the row
inputs. The interface being aware of which column was driven with what
value along with reading the row inputs, it could determine which key is
pressed. The rest of the pages define and explain the infrastructure to
determine the keys pressed.

Figure 22-1. ADSP-BF54x Blackfin Processor Keypad Interface

10K 10K10K 10K

KEY_COLO[0]

KEY_COLO[1]

KEY_COLO[2]

KEY_COLO[3]

KEY_ROWI[0]

KEY_ROWI[1]

KEY_ROWI[2]

KEY_ROWI[3]

COL0 COL1 COL2 COL3

ROW0

ROW1

ROW2

ROW3

Pullup
Resistor

 4x4
Keypad
 Matrix

Description of Operation

22-4 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Enable/Disable
The keypad module is enabled by setting the KPAD_EN field of the KPAD_CTL
register. Once enabled, the keypad module state machine drives all col-
umn outputs with a value of 0 and scans the row inputs for a key press.

The keypad module is disabled by clearing the KPAD_EN field. Clearing this
field clears all input enables, counters, and drivers, and resets the state of
keypad module. When the KPAD_EN field is cleared, the keypad module
loses the capability to generate an interrupt request to the core.

Input Keypad Matrix Programmability

The keypad module can support a maximum of an 8x8 matrix, for a total
of 64 buttons. The input keypad matrix is programmable through the
KPAD_ROWEN and KPAD_COLEN fields of the KPAD_CTL register. The
KPAD_ROWEN bit field is used to program the number of active rows, while
KPAD_COLEN programs the number of active columns. The value of the
(KPAD_ROWEN + 1) determines the number of rows enabled in the input key-
pad matrix. Similarly, the value of the (KPAD_COLEN + 1) determines the
number of active columns.

Waking Up on Keypad Press
When the processor is in hibernation, it can be waken up by the activity
on the keypad row pins. To do that, before the processor is put into hiber-
nation, the keypad wakeup enable (KPADWE) control bit of VR_CTL register

Table 22-1. Input Keypad Matrix Programmability

KPAD_ROWEN Value KPAD_COLEN Value Input Keypad Matrix

b#011 b#001 4 Rows and 2 Columns

b#010 b#001 3 Rows and 2 Columns

b#111 b#111 8 Rows and 8 Columns

ADSP-BF54x Blackfin Processor Hardware Reference 22-5

Keypad Interface

must be set. To use the row pin KEY_ROWx to wake up the processor, its
corresponding bit in PORTx_FER register must be set to 0 (GPIO mode)
and its corresponding bit in PORTx must be set to 1. Then, when an active
low state is detected on the KEY_ROWx pin, a wakeup event is generated and
wakes up the processor from hibernation. For more details about hiberna-
tion and GPIO, see the “Dynamic Power Management” and
“General-Purpose Ports” chapter of the ADSP-BF4x Blackfin Processor
Hardware Reference (Volume 1 of 2).

Sensitivity of Keypad Interface
The sensitivity of the keypad interface to key presses is programmable
through KPAD_PRESCALE and KPAD_MSEL registers. Together with the
DBON_SCALE and COLDRV_SCALE fields in the KPAD_MSEL register, the value in
the prescale register is used to calculate the debounce period (Tdb) and col-
umn drive period (Tcw).

Once a key press shorts the column and row wires, the debounce counter
in the keypad module is triggered. The row inputs are sampled after the
programmable (DBON_SCALE) debounce time of Tdb. If any of the sampled
row inputs is zero, this kicks off evaluate state. The Keypad interface logic
three-states all the column outputs (except one) for a pre-programmed
column drive width of Tcw. With external pull-up resistors pulling up all
row inputs, the Keypad interface logic pulls down one column at a time
for Tcw and samples the row inputs to determine which key is pressed.

Limited Multiple Key Resolution
The keypad interface can be programmed to generate an interrupt for
multiple key press detection by writing b#10 to the KPAD_IRQMODE bit field
of the KPAD_CTL register (single key presses will also generate an interrupt
in this mode). The KPAD_ROWCOL register records the keys pressed and can

Description of Operation

22-6 ADSP-BF54x Blackfin Processor Hardware Reference

be read in the interrupt service routine for data on keys pressed. It must be
noted that only certain key press combinations can be exactly resolved by
reading the KPAD_ROWCOL register as follows:

• Keys pressed in a single row and a single column

• Keys pressed in a single row and a multiple columns

• Keys pressed in multiple rows and a single column

In case of keys pressed in multiple rows and multiple columns, it is not
possible to predict the exact keys pressed with the existing hardware. The
KPAD_MROWCOL bit field of the KPAD_STAT can be used to distinguish this
scenario from the others. This bit field is set by the keypad interface when
it detects key presses on multiple rows and multiple columns, allowing the
user to define an action for this condition.

Keypad Interrupt Modes
The keypad interface module can be programmed to interrupt the core
when it detects a key press based on the KPAD_IRQMODE bit field in the
KPAD_CTL register. The KPAD_IRQMODE provides programmability to sup-
press interrupt generation on multiple key presses (single key presses will
still generate an interrupt in this mode). Alternately, the keypad module
can be programmed to interrupt the core on any key press (single or mul-
tiple key presses) on any row or column.

Implementing Press-Hold Feature
In some applications, it might be desirable to detect prolonged key presses
and interpret them as multiple key presses. This feature is referred to as
press-hold in this manual. The keypad module provides the KPAD_PRESSED
bit field of the KPAD_STAT register to implement this feature.

ADSP-BF54x Blackfin Processor Hardware Reference 22-7

Keypad Interface

After a key press is detected and the module has completed scanning for
keys pressed, the keypad module interface asserts KPAD_PRESSED until the
pressed key is released. If the interrupt generation is enabled (by setting
the KPAD_IRQMODE bit field in the KPAD_CTL register to either b#01 or
b#10), the core is interrupted when a single key press or multiple key
presses are detected, depending on the interrupt mode chosen. In the
interrupt service routine for the keypad peripheral, the user can choose to
read the KPAD_PRESSED bit of the KPAD_STAT register in periodic intervals to
determine the number of times the key was meant to be pressed. During
this state, all other key presses are ignored by the keypad interface. Once
the key is released, the interface clears the KPAD_PRESSED bit. The
KPAD_PRESSED bit indicates the state of the pressed key after the evaluation
phase has ended.

Functional Description
The state diagram section describes the 16-pin programmable keypad
interface.

State Diagram
The illustration shown in Figure 22-2 shows the different states of the
keypad module. Once the KPAD_EN bit in the KPAD_CTL register is set, the
keypad module goes into the Scan_Inputs state. In this state, all
column outputs are driven with a value of 0 and the inputs are constantly
read. If a key is pressed, it pulls down the corresponding row line which is
read as 0. This event triggers the debounce counter and pushes the module
into the Evaluate_Key_Pressed state.

In the Evaluate_Key_Pressed state, the state encoder drives a 0 on one
column at a time and samples the input. If any of the inputs happen to be
0, then the inputs are sampled in a temporary register. This process is
repeated for all valid columns (determined by the COLEN field of the
KPAD_CTL register). Every time a 0 is observed on the row input, it is added

Functional Description

22-8 ADSP-BF54x Blackfin Processor Hardware Reference

with the previously added temporary register value. This is to register mul-
tiple keys pressed at the same time. Once all the columns are driven with
one single 0 at a time, the interface moves the data in the temporary regis-
ter to the KPAD_ROWCOL register. Once the data is sampled into the
KPAD_ROWCOL register, its KPAD_ROW and KPAD_COL fields are checked for
multiple 1s. If multiple 1s are found, then based on the KPAD_IRQMODE bits
in the KPAD_CTL register, an interrupt to the core is asserted. If no 1s are
found, no interrupt is asserted. Next, the interface goes into the wait state
where it checks for the pressed key to be released. Once the pressed key is
released, it jumps to the Scan_Inputs state to detect the next key pressed.
No matter which state the keypad is currently in, clearing the keypad
enable bit of the KPAD_CTL register pushes the module into the disabled
state.

Figure 22-2. State Diagram

 Keypad
Disabled

 Scan
Inputs

 Evaluate
Key Pressed

 Wait for
 pressed key
to be released

KPAD_EN = 0

KPAD_EN = 1

KPAD_EN = 0
KPAD_EN = 0

KPAD_EN = 0

Pressed key
released

 Key not released
Evaluation process
is not done

Key pressed

No key pressed

Evaulation process is done

ADSP-BF54x Blackfin Processor Hardware Reference 22-9

Keypad Interface

Programming Model
The following sections describe the programming model. The general pro-
cedure of programming the keypad module is:

1. Based on the characteristics of the keypad and application conditions,
determine the column drive width and debounce time.

2. Use the actual SCLK and the formulae introduced in “KPAD_PRESCALE
Register” and “KPAD_MSEL Register” subsections to calculate the register
fields KPAD_PRESCALE_VAL, COLDRV_SCALE, and DBON_SCALE.

3. Write KPAD_PRESCALE and KPAD_MSEL registers based on the values
obtained in step 2.

4. Write KPAD_CTL register to define the size of the keypad and the IRQ
mode, and enable the keypad module.

5. In the interrupt service routine, read KPAD_STAT register to determine
the status of the pressed key, and W1C to clear the bit KPAD_IRQ. Then
read KPAD_ROWCOL to determine which key(s) is pressed, and then take
application-specific actions accordingly.

Keypad Registers

22-10 ADSP-BF54x Blackfin Processor Hardware Reference

Keypad Registers
Descriptions and bit diagrams for each of the memory-mapped registers
(MMRs) are provided in the following subsections.

Keypad Control Register (KPAD_CTL)
The keypad control (KPAD_CTL) register, shown in Figure 22-3 and
Table 22-3 is used to enable the keypad Interface module. This register
programs the size of the input keypad matrix and interrupt modes, and
controls the enabling/disabling of the Keypad module.

On reset, a read of this register returns a value of 0x0000, which implies
that the keypad interface module is mapped onto a 1x1 keypad matrix.
Reserved bits are read as 0s.

Table 22-2. Control/Status/Data Registers

Name Address Offset Access Description

KPAD_CTL 0xFFC04100 R/W Keypad control register
on page 22-10

KPAD_PRESCALE 0xFFC04104 R/W Keypad prescale register
on page 22-14

KPAD_MSEL 0xFFC04108 R/W Keypad multiplier select register
on page 22-15

KPAD_ROWCOL 0xFFC0410c R/WC Keypad row-column register
on page 22-16

KPAD_STAT 0xFFC04110 R/W1C Keypad status register
on page 22-19

KPAD_SOFTEVAL 0xFFC04114 R/W Keypad software evaluate register
on page 22-21

ADSP-BF54x Blackfin Processor Hardware Reference 22-11

Keypad Interface

Figure 22-3. Keypad Control Register (KPAD_CTL)

Keypad Control Register (KPAD_CTL)

Reset = 0x0000 0xFFC04100

KPAD_EN (Keypad Enable)
0 - Disabled
1 - Enabled

KPAD_IRQMODE (Multikey
Press interrupt Enable)
00 - Interrupt Disabled
01 - Single key (single row,
 single column) press
 interrupt enable
10 - Single key press multiple
 key press interrupt enable
11 - Reserved

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

KPAD_ROWEN (Row Enable
width)

KPAD_COLEN
(Column Enable Width)
000 - 0 column enabled
001 - 0-1 columns enabled
010 - 0-2 columns enabled
011 - 0-3 columns enabled
100 - 0-4 columns enabled
101 - 0-5 columns enabled
110 - 0-6 columns enabled
111 - 0-7 columns enabled

0 0

000 - 0 row enabled
001 - 0-1 rows enabled
010 - 0-2 rows enabled
011 - 0-3 rows enabled
100 - 0-4 rows enabled
101 - 0-5 rows enabled
110 - 0-6 rows enabled
111 - 0-7 rows enabled

Keypad Registers

22-12 ADSP-BF54x Blackfin Processor Hardware Reference

Table 22-3. Keypad Control Register Bit Descriptions

Item Bit(s) Value Description

KPAD_EN 0 Keypad enable bit.

0 Disables the Keypad Interface module. Clearing this bit
clears all the input enables, counters, drivers, resets the
state of Keypad Interface module, and disables the device.
When this bit is cleared, the Keypad Interface module
loses the capability to generate interrupt request to the
core.

1 Enables the Keypad Interface module. Once this bit is
enabled, the rest of the bits in this register are not allowed
to change. When KPAD_EN bit is enabled, the only way to
change any other bits is to clear KPAD_EN and reprogram
rest of the bits.

KPAD_IRQMODE 1-2 Multikey press interrupt enable bits.
Enable the interrupt generation capability of the periph-
eral. These bits control the interrupt generation, based on
the number of keys pressed simultaneously.

b#00 Disables interrupts. Regardless of any input key of the
keypad matrix being pressed, this causes the keypad inter-
face module to lose the capability to generate interrupt
requests to the core.

b#01 A single key press generates an interrupt. Simultaneous
multiple key presses do not generate an interrupt.

b#10 A single key press (or multiple keys pressed in any row and
column) generates an interrupt.

b#11 Reserved. The keypad interface behavior becomes unpre-
dictable if the user programs 11 into KPAD_IRQMODE.

Reserved 3-9 Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 22-13

Keypad Interface

When keys are pressed in a single-row, multiple-column scenario (or a
multiple-row, single-column scenario), it is possible to predict the pressed
keys by reading the KPAD_ROWCOL register. When multiple keys in multiple
rows (or multiple columns) are pressed simultaneously, it is not possible to
predict the exact keys pressed with the existing hardware. The
KPAD_MROWCOL bit of the KPAD_STAT register is used to make the distinction
between the above two scenarios. It is up to the program to define the
actions to take if it recognizes that multiple rows and multiple column
keys are pressed simultaneously.

Examples

b#011 in KPAD_ROWEN and b#001 in KPAD_COLEN yields a 4-row, 2-column
matrix.

b#010 in KPAD_ROWEN and b#001 in KPAD_COLEN yields a 3-row, 2-column
matrix.

b#111 in KPAD_ROWEN and b#111 in KPAD_COLEN yields an 8-row, 8-column
matrix.

KPAD_COLEN 13-15 Column enable width.
This three-bit field programs the number of active col-
umns. The value in this field + 1 determines the number
of columns enabled in the input keypad matrix.

KPAD_ROWEN 10-12 Row enable width.
This three-bit field programs the number of active rows.
The value in this field + 1 determines the number of rows
enabled in the input keypad matrix.

Table 22-3. Keypad Control Register Bit Descriptions (Cont’d)

Item Bit(s) Value Description

Keypad Registers

22-14 ADSP-BF54x Blackfin Processor Hardware Reference

KPAD_PRESCALE Register
The KPAD_PRESCALE register, shown in Figure 22-4, is used to program the
pre-scale value that would be used in deriving delay parameters that the
interface module should be sensitive to.

The KPAD_PRESCALE is a 16-bit register. The lower 6 bits are programmable
and the rest of the bits are reserved. This makes the dynamic range of the
prescale = 1 - 64. The value in the prescale register is used to calculate
both debounce period (Tdb) and column drive period (Tcw).

The KPAD_PRESCALE register is used to establish a convenient time base so
that the user could use the KPAD_MSEL register to generate the necessary
time delays.

The formula to get a timescale of T follows:

Figure 22-4. Key Prescale Register (KPAD_PRESCALE)

Keypad Prescale Register (KPAD_PRESCALE)

Reset = 0x0000 0xFFC04104

KPAD_PRESCALE_VAL
(Key Prescale)
Key Prescale Value (5:0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 0

Prescale Value SCLK Frequency〈 〉 T×
1024

--- 1–=

ADSP-BF54x Blackfin Processor Hardware Reference 22-15

Keypad Interface

When using this formula, please note the unit of SCLK and the time scale
must agree. For example, to generate a 0.1 ms timescale, the formula is:

Taking some real numbers of SCLK:

SCLK = 133 MHz, to generate 0.1 ms time base, KPAD_PRESCALE[5:0] = 12

SCLK = 50 MHz, to generate 0.1 ms time base, KPAD_PRESCALE[5:0] = 4

SCLK = 10 MHz, to generate 0.1 ms time base, KPAD_PRESCALE[5:0] = 0

This register cannot be written once the keypad is enabled.

KPAD_MSEL Register
The KPAD_MSEL register, shown in Figure 22-5, is used to program differ-
ent delay parameters (column drive width Tcw and debounce time Tdb)
that the keypad module should be sensitive to.

The settings (COLDRV_SCALE, DBON_SCALE) of KPAD_MSEL register are deter-
mined by the values of Tcw and Tdb. They can be calculated as follows:

COLDRV_SCALE = [(Tcw * SCLK)/ (KPAD_PRESCALE +1) * 1024)]-1

DBON_SCALE = [(Tdb * SCLK)/ (KPAD_PRESCALE +1) * 1024)]-1

Prescale Value SCLK Frequency in MHz〈 〉 100�s×
1024

-- 1–=

Keypad Registers

22-16 ADSP-BF54x Blackfin Processor Hardware Reference

KPAD_ROWCOL Register
The KPAD_ROWCOL register, shown in Figure 22-6, is used to register the
input row values and column output values once the Interface logic gets to
a valid state.

The KPAD_ROWCOL register is used to determine the keys pressed. In the
Evaluate_Key_Pressed state, each column is driven with a low value and
the rest of the columns are tri-stated. Row inputs are read and, if at least
one input is found to be zero, the corresponding row inputs and column
outputs are accumulated in the temporary register. This process is

Figure 22-5. Keypad Multiplier Select Register (KPAD_MSEL)

Figure 22-6. Keypad Row-Column Register (KPAD_ROWCOL)

Keypad Multiplier Select Register (KPAD_MSEL)

Reset = 0x0000 0xFFC04108

DBON_SCALE
(Debounce Scale)
Debounce Delay
Multiplier Select [7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

COLDRV_SCALE
(Column Driver Scale)
Column Driver Period
Multiplier Select [15:8]

0 0

Keypad Row-Column Register (KPAD_ROWCOL)

Reset = 0x0000 0xFFC0410c

KPAD_ROW (Key
Row)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

KPAD_COL (Key Column)

0 0

ADSP-BF54x Blackfin Processor Hardware Reference 22-17

Keypad Interface

repeated for all of the columns, one at a time. Once all of the columns are
individually driven with a low value, then the interface moves data con-
tents in the temporary register into the KPAD_ROWCOL register. By the end
of the evaluation state, the KPAD_ROWCOL register has information about
whether a single key is pressed, multiple keys have been pressed, or no key
is pressed. Based on the values of the KPAD_IRQMODE bits in the KPAD_CTL
register and the number of keys pressed, an interrupt to the core is
asserted. A value of 1 in KPAD_ROW implies that a key is pressed, and a
value of 0 implies that a key has not been pressed.

A write to the KPAD_ROWCOL register clears the register (loads with a value
of 0x0000). A read of this register on reset returns a value of 0x0000.

Keypad Registers

22-18 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 22-7. Interrupt Generation When X-Key Pressed

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

Case 1 (Single key press)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X X X

Case 2 (Multiple keys in same
 row pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

X

Case 3 (Multiple keys in same
 columns pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

Case 4 (Multiple keys in multiple rows
 and multiple columns pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

Case 5 (Multiple keys in multiple rows
 and multiple columns pressed)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X

X

X

X

Case 6 (Multiple keys in multiple rows
 and multiple columns pressed)

ADSP-BF54x Blackfin Processor Hardware Reference 22-19

Keypad Interface

Figure 22-7 provides an explanation of the KPAD_ROWCOL register and inter-
rupt generation when key x is pressed. Case 6 shows the situation where it
is not possible to distinguish the keys when they are pressed in multiple
rows and columns.

KPAD_STAT Register
The KPAD_STAT register, shown in Figure 22-8, is used to hold and clear
the status of the interrupt generated by the keypad module. It is also help-
ful in resolving the pressed keys when multiple keys are pressed
simultaneously.

The KPAD_IRQ bit in the KPAD_STAT register is used to indicate that there is
an interrupt request generated by the Keypad Interface module. The
KPAD_IRQMODE bits in KPAD_CTL are the interrupt enable bits of the keypad
interface. If KPAD_IRQMODE = b#00, the peripheral loses the capability to
generate an interrupt. The KPAD_IRQ is asserted once the module evaluates
the keys pressed, based on the KPAD_IRQMODE bits and the number of keys
pressed. Assertion of this bit signifies that an interrupt request to the core
is asserted. This bit is a sticky bit, which means that, once asserted, it
remains asserted until the user clears it. This bit is cleared on reset, when
the KPAD_EN bit in the KPAD_CTL register is cleared or by writing a 1 to the
KPAD_IRQ bit in the KPAD_STAT register.

Keypad Registers

22-20 ADSP-BF54x Blackfin Processor Hardware Reference

The KPAD_MROWCOL bits are used to indicate whether multiple rows and col-
umns in the KPAD_ROWCOL register are asserted at the same time. Physically,
this would mean that more than one row key and more than one column
key have been pressed simultaneously. In this scenario, it becomes impos-
sible to predict the exact keys pressed with the existing hardware. The user
could choose to ignore the key press action. These bits become particu-
larly handy when one row and multiple columns or one column and
multiple rows of the KPAD_ROWCOL register are pressed simultaneously. In
these scenarios it is possible to detect the exact keys pressed by reading the
KPAD_ROWCOL register. Interrupt generation in this situation is enabled by
KPAD_IRQMODE bits in the KPAD_CTL register. In the interrupt service routine
the user can read the status of the KPAD_MROWCOL bits in the KPAD_STAT reg-
ister to determine multiple row and multiple column keys have been
pressed or not and appropriate action can be taken. These bits get number
of keys pressed information from the KPAD_ROWCOL register. These bits are
cleared when the KPAD_ROWCOL register is cleared. The KPAD_ROWCOL register
is cleared by doing a PAB write to the KEY_ROWCOL register.

Figure 22-8. Keypad Status Register (KPAD_STAT)

Keypad Status Register (KPAD_STAT)

Reset = 0x0000 0xFFC04110

KPAD_IRQ
(Keypad Interrupt)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 0

KPAD_PRESSED (Key Pressed)
0 = Pressed key is currently
 released
1 = Key is currently pressed

0 = No interrupt
1 = Interrupt Pending (sticky)

KPAD_MROWCOL
(Key Multiple Row Column)
00 - No key pressed
01 - Single key pressed
10 - Multiple keys in the
 same row or column
11 - Multiple keys in the
 same multiple rows and
 multiple columns
 pressed

ADSP-BF54x Blackfin Processor Hardware Reference 22-21

Keypad Interface

The KPAD_PRESSED bit indicates the state of the pressed key after the evalu-
ation phase has ended. This bit remains high until the pressed key is
released. This bit could be used by the customer to implement the
Press-Hold feature. Once the key is pressed, the keypad interface generates
an interrupt provided the KPAD_IRQMODE bits in the KPAD_CTL register are
set appropriately. The user could choose to read the KPAD_PRESSED bit of
the status register in the interrupt service retinue to determine if the
pressed key is released or not and then take the appropriate action. This
bit is cleared once the interface gets into the scan inputs state.

On reset, a read of this register returns a value of 0x0000.

KPAD_SOFTEVAL Register
The KPAD_SOFTEVAL register, shown in Figure 22-9, is used to force the
interface into the evaluate state.

Enabling the SOFTEVAL bit forces the interface to go through the evaluate
phase. If the interface is either in the Scan_Inputs state or Wait state, a
write to the SOFTEVAL bit in the KPAD_SOFTEVAL register causes the interface
to jump to the evaluate phase. At the end of the evaluation phase, an inter-
rupt to the core is asserted based on the value in the KPAD_ROWCOL register
and KPAD_IRQMODE. The SOFTEVAL bit is cleared at the end of the evaluate
phase. If the write to the SOFTEVAL bit happens when the module is in the

Figure 22-9. Key Software Evaluate Register (KPAD_SOFTEVAL)

Keypad Software Evaluate Register (KPAD_SOFTEVAL)

Reset = 0x0000 0xFFC04114

KPAD_SOFTEVAL_E
(Key Programmable
Force Evaluate)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

0 0

0 - Normal Mode
1 - Force Evaluate Mode

Programming Examples

22-22 ADSP-BF54x Blackfin Processor Hardware Reference

evaluation phase, the interface proceeds with its normal sequence of
actions except that at the end of the evaluation phase, the SOFTEVAL bit is
cleared.

Programming Examples
Listing 22-1 describes the configuration of the keypad module.

Listing 22-1. Configure Keypad Module

/* Configure the prescale register KPAD_PRESCALE */

P0.L = LO(KPAD_PRESCALE);

P0.H = HI(KPAD_PRESCALE);

R0.L = 4; /*0.1 MS WITH 50MHz SCLK */

W[P0] = R0.L;

/* Configure the column drive width and debounce time */

P0.L = LO(KPAD_MSEL);

P0.H = HI(KPAD_MSEL);

R0.L = 0x0909 /* 1 MS WITH 50MHz SCLK, for both column drive

width and debounce time */

W[P0] = R0.L;

/* Configure the KPAD_CTL register to set keypad size to 5 rows

by 6 columns, multiple key press interrupt enabled, keypad module

enabled */

P0.L = LO(KPAD_CTL);

P0.H = HI(KPAD_CTL);

R0.L = 0xB005;

W[P0] = R0.L;

SSYNC;

ADSP-BF54x Blackfin Processor Hardware Reference 23-1

23 SECURE DIGITAL HOST

This chapter describes the ADSP-BF54x Blackfin processor’s secure digital
host (SDH) interface and includes the following sections:

• “Overview” on page 23-1

• “Interface Overview” on page 23-2

• “Description of Operation” on page 23-3

• “Functional Description” on page 23-4

• “Programming Model” on page 23-19

• “SDH Registers” on page 23-19

• “Programming Examples” on page 23-39

Overview
The ADSP-BF54x Blackfin processors provide an SDH interface for mul-
timedia Cards (MMC), secure digital memory cards (SD Card), and
secure digital input/output cards (SDIO). All of these cards use similar
interface protocols. The main difference between MMC and SD support
is the initialization sequence. The main difference between SD card and
SDIO support is the use of interrupt and read wait signals for SDIO.

Interface Overview

23-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features of the SDH interface include:

• Support for a single MMC, SD Card or SDIO

• Support for 1-bit and 4-bit SD modes (SPI mode is not supported)

• A six-pin external interface with clock, command, and up to 4 data
lines

• Card detection using one of the data pins

• Card interface clock generation from SCLK

• SDIO interrupt and read wait features

Interface Overview
The SDH interface handles the multimedia and secure digital card func-
tions. This includes clock generation, power management, command
transfer, and data transfer. The bus interface contains 32-bit mem-
ory-mapped registers, converts 16-bit PAB accesses to 32-bit register
accesses, and generates interrupt requests to the processor core and system.
Figure 23-1 shows a block diagram of the SDH interface.

ADSP-BF54x Blackfin Processor Hardware Reference 23-3

Secure Digital Host

Description of Operation
Table 23-1 lists the six pins in the SDH and their uses in each supported
mode.

Figure 23-1. SDH Interface Block Diagram

Table 23-1. SDH Interface

Signal
Name

MMC SD
(1-bit)

SD
(4-bit)

SDIO
(1-bit)

SDIO
(4-bit)

Default Direction

SD_DATA3 Not Used Not Used Data bit 3/
Card Detect

Not Used Data bit 3 Input Bi-direc-
tional

SD_DATA2 Not Used Not Used Data bit 2 Read Wait Data bit 2
or Read Wait

Input Bi-direc-
tional

SD_DATA1 Not Used Not Used Data bit 1 Interrupt Data bit 1
or Interrupt

Input Bi-direc-
tional

SD_DATA0 Data Data Data bit 0 Data Data bit 0 Input Bi-direc-
tional

PAB

DAB

SECURE
SD_CMD

SD_DATA3–0

SD_CLK

DIGITAL
HOST

Functional Description

23-4 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the MMC, SD, and SDIO functionality.

SDH Clocking
The SDH is a fast, synchronous peripheral. Its peripheral bus interface
operates at SCLK frequency.

Communication between the clock domains is accomplished using syn-
chronizers in the SDH module.

The clock divider ratio is modified by writing to the SDH clock control
register (SDH_CLK_CTL). It generates the card clock SD_CLK from SCLK
according to the following formula, where CLKDIV is the 8-bit division
factor from the SDH_CLK_CTL register.

SD_CMD Command/
Response

Command/
Response

Command/
Response

Command Command Input Bi-direc-
tional

SD_CLK Clock Clock Clock Clock Clock Input Bi-direc-
tional

Table 23-1. SDH Interface (Cont’d)

Signal
Name

MMC SD
(1-bit)

SD
(4-bit)

SDIO
(1-bit)

SDIO
(4-bit)

Default Direction

SD_CLK frequency
SCLK frequency

2 CLKDIV 1+()×
--=

ADSP-BF54x Blackfin Processor Hardware Reference 23-5

Secure Digital Host

SDH Operation
The SDH sends commands to and receives commands from the multime-
dia cards. Figure 23-2 shows the command path state machine.

When the command register (see “SDH Command Register
(SDH_COMMAND)” on page 23-24) is written and the enable bit is set,
a command transfer starts.

When the command is sent, the state machine sets the status flags (see
“SDH Status Register (SDH_STATUS)” on page 23-30) and enters the
IDLE state if a response is not required. If a response is required, the state

Figure 23-2. Command Path State Machine

IDLE

RECEIVE

ENABLED AND
PENDING COMMAND

PEND

SEND

WAIT

LAST
DATA

WAIT FOR
RESPONSE

RESPONSE
STARTED

RESPONSE RECEIVED/DISABLED
OR CRC FAILED

DISABLED
OR TIMEOUT

DISABLED
OR NO RESPONSE

ENABLED AND
COMMAND START

Functional Description

23-6 ADSP-BF54x Blackfin Processor Hardware Reference

machine waits for the response and then, when it is received, a Cyclical
Redundancy Code (CRC) is compared to the internally generated code
and the appropriate flags are set.

When the WAIT state is entered, a command timer starts running. If the
time-out is reached before the state machine moves to the RECEIVE state,
the time-out flag is set and the IDLE state is entered. The time-out period
has a fixed value of 64 SD_CLK clock periods.

If the interrupt bit is set in the command register, the SDH’s internal
timer is disabled and the state machine waits for an interrupt request from
one of the memory cards. If a pending bit is set in the command register,
the state machine enters the PEND state, and waits for a signal from the
data path sub block that makes the state machine to move to the SEND
state. This enables the data counter to trigger the stop command
transmission.

Figure 23-3 describes the command transfer.

The state machine remains in the IDLE state for at least eight
SD_CLK periods.

Figure 23-3. SDH Command Transfer

STATE RECEIVE

Hi - Z

COMMAND

SEND WAIT

SD_CLK

SD_CMD
Controller

Drives

Min 8

IDLE IDLE SEND

RECEIVE COMMAND

Hi - Z
Card

Drives Hi - Z
Controller

Drives

SD_CLK

ADSP-BF54x Blackfin Processor Hardware Reference 23-7

Secure Digital Host

The command path operates in a half-duplex mode, so that commands
and responses can either be sent or received. If the state machine is not in
the SEND state, the SD_CMD output is in high impedence state. Data on
SD_CMD is synchronous to the rising edge of SD_CLK. All commands have a
fixed length of 48 bits. Table 23-2 shows the command format.

The SDH supports two response types:

• 48-bit short response (see Table 23-3)

• 136-bit long response (see Table 23-4)

Both response types use CRC error checking. Note that if the response
does not contain CRC (CMD1 response), the device driver must ignore
the CRC failed status.

Table 23-2. 48-bit Command Format

Bit Position Value Width Description

47 0 1 Start bit

46 1 1 Transmission bit

[45:40] – 6 Command index

[39:8] – 32 Argument

[7:1] – 7 CRC7

0 1 1 End bit

Table 23-3. 48-Bit Short Response Format

Bit Position Value Width Description

47 0 1 Start bit

46 0 1 Transmission bit

[45:40] – 6 Command index

[39:8] – 32 Argument

Functional Description

23-8 ADSP-BF54x Blackfin Processor Hardware Reference

The command register contains the command index (six bits sent to the
card) and the command type. These determine whether the command
requires a response, and whether the response is 48 bits or 136 bits long.
The command path implements the status flags of the status register as
shown in Table 23-5.

[7:1] – 7 CRC7 (or b#1111111)

0 1 1 End bit

Table 23-4. 136-bit Long Response Format

Bit Position Value Width Description

135 0 1 Start bit

134 1 1 Transmission bit

[133:128] b#111111 6 Reserved

[127:1] – 127 CID or CSD (Including internal
CRC7)

0 1 1 End bit

Table 23-5. Command Path Status Flag

Flag Description

CmdRespEnd Set if response CRC is successful

CmdCrcFail Set if response CRC fails

CmdSent Set when command is sent (if command does not
require response)

CmdTimeOut Response time-out

CmdActive Command transfer in progress

Table 23-3. 48-Bit Short Response Format (Cont’d)

Bit Position Value Width Description

ADSP-BF54x Blackfin Processor Hardware Reference 23-9

Secure Digital Host

The command CRC generator calculates the CRC checksum for all bits
before the CRC code. This includes the start bit, transmitter bit, com-
mand index, and command argument (or card status). The CRC
checksum is calculated for the first 120 bits of CID or CSD for the long
response format. Note that the start bit, transmitter bit, and the six
reserved bits are not used in the CRC calculation. The command CRC
checksum is a 7-bit value:

with:

and:

or:

CRC[6:0] Remainder
x7 M× x()

G x()
------------------------=

G x() x7 x3 1+ +=

M x() x39 (start bit)× ... x0 (last bit before CRC)×+ +=

M x() x119 (start bit)× ... x0 (last bit before CRC)×+ +=

Functional Description

23-10 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Data
The SDH data bus width can be programmed using the clock control reg-
ister (see “SDH Clock Control Register (SDH_CLK_CTL)” on
page 23-23). By setting the WideBus bit in the SDH_CLK_CTL register, bus
mode is enabled, and data is transferred at four bits per clock cycle over all
four data signals SD_DATA3–0. If the wide bus mode is disabled, only one
bit per clock cycle is transferred over SD_DATA0.

The data path state machine operates at SD_CLK frequency. Data on the
card bus signals is synchronous to the rising edge of SD_CLK. The state
machine has a number of send/receive states as shown in Figure 23-4.

Figure 23-4. SDH Data Path State Machine

IDLE

RECEIVE

ENABLED AND
SEND

WAIT_S

SEND

WAIT_R

DATA
READY

RESET

DISABLED
OR CRC FAIL

END OF
PACKET

NOT

BUSY

ENABLED AND
NOT SEND

START
BIT

OR TIME-OUT

DISABLED
OR CRC FAIL

END OF PACKET
OR END OF DATA

OR FIFO OVERRUN

BUSY

DISABLED
OR FIFO UNDERRUN

OR END OF DATA
OR CRC FAIL

DISABLED
OR END OF DATA

DISABLED
OR RX FIFO EMPTY

OR TIME-OUT
OR START BIT ERROR

ADSP-BF54x Blackfin Processor Hardware Reference 23-11

Secure Digital Host

WAIT_R

The processor waits for a start bit on SD_DATA. The processor starts receiv-
ing data if it receives a start bit before a time-out, and loads the data block
counter. If it reaches a time-out before it detects a start bit, or a start bit
error occurs, the processor moves to the IDLE state and sets the time-out
status flag.

RECEIVE

Serial data received from a card is packed in bytes and written to the data
FIFO. Depending on the transfer mode bit in the data control register, the
data transfer mode can be either block or stream.

In block mode, when the data block counter reaches zero, the processor
waits until it receives the CRC code. If the received code matches the
internally-generated CRC code, the state machine moves to the WAIT_R
state. If not, the CRC fail status flag is set and the state machine moves to
IDLE state.

In stream mode, the processor receives data while the data counter is not
zero. When the counter is zero, the remaining data in the shift register is
written to the data FIFO, and the state machine moves to the WAIT_R
state.

If a FIFO overrun error occurs, the state machine sets the FIFO error flag
and moves to WAIT_R state.

Functional Description

23-12 ADSP-BF54x Blackfin Processor Hardware Reference

SEND

The processor starts sending data to a card. Depending on the transfer
mode bit in the data control register, the data transfer mode can be either
block or stream:

• In block mode, when the data block counter reaches zero, the pro-
cessor sends an internally generated CRC code and end bit, and
moves to the BUSY state.

• In stream mode, the processor sends data to a card while the enable
bit is high and the data counter is not zero. It then moves to the
IDLE state.

If a FIFO underrun error occurs, the state machine sets the FIFO error
flag and moves to the IDLE state.

The data timer is enabled when the state machine is in the WAIT_R or
BUSY state and generates the data time-out error:

• When transmitting data, the time-out occurs if the state machine
stays in the BUSY state for longer than the programmed time-out
period.

• When receiving data, the time-out occurs if the end of the data is
not true and if the state machine stays in the WAIT_R state for
longer than the programmed time-out period.

ADSP-BF54x Blackfin Processor Hardware Reference 23-13

Secure Digital Host

The data counter has two functions:

• To stop a data transfer when it reaches zero. This is the end of the
data condition.

• To start transferring a pending command. This is used to send the
stop command for a stream data transfer.

The SDH module offers several bus modes. In wide bus mode, all four sig-
nals SD_DATA3–0 are used to transfer data, and the CRC code is calculated
separately for each data signal. While transmitting data clocks to a card,
only SD_DATA0 is used for CRC token and busy signaling. The start bit
must be transmitted on all four data signals at the same time (during the
same clock period). If the start bit is not detected on all signals on the
same clock edge while receiving data, the state machine sets the start bit
error flag and moves to the IDLE state.

Figure 23-5. Pending Command Start

SD_DATA0

SD_CLK

CMD

SD_CMD

DATA

CMD

STATE

COUNTER

PEND

3 2 1 0 7 6 5 4 3 2 1

7 6

PEND SEND

Z Z Z Z Z CMD CMD CMD CMD CMDS

Functional Description

23-14 ADSP-BF54x Blackfin Processor Hardware Reference

The data path also operates in half duplex mode, where data is either sent
to a card or received from a card. While no data is being transferred,
SD_DATA3–0 are held high by a pull-up in the pads. Data on these signals is
synchronous to the rising edge of the clock.

The CRC token status follows each write data block and determines
whether a card has received the data block correctly. When the token is
received, the card asserts a busy signal by driving SD_DATA0 low.
Table 23-6 shows the CRC token status values.

Table 23-7 lists the data path status flags.

Table 23-6. CRC Token Status Values

Token Description

b#010 Card has received error-free data block

b#101 Card has detected a CRC error

Table 23-7. SDH Data Path Status Flags

Flag Description

TxFifoFull Transmit FIFO is full

TxFifoEmpty Transmit FIFO is empty

TxFifoHalfEmpty Transmit FIFO is half empty

TxDataAvlbl Transmit FIFO data available

TxUnderrun Transmit FIFO underrun error

RxFifoFull Receive FIFO is full

RxFifoEmpty Receive FIFO is empty

RxFifoHalfFull Receive FIFO is half full

RxDataAvlbl Receive FIFO data available

RxOverrun Receive FIFO overrun error

DataBlockEnd Data block sent/received

ADSP-BF54x Blackfin Processor Hardware Reference 23-15

Secure Digital Host

The data path CRC generator calculates the CRC checksum only for the
data bits in a single block, and it is bypassed in data stream mode. The
checksum is a 16-bit value:

with:

where:

or:

StartBitErr Start bit not detected on all data signals
in wide bus mode

DataCrcFail Data packet CRC failed

DataEnd Data end (data counter is zero)

DataTimeout Data time-out

TxActive Data transmission in progress

RxActive Data reception in progress

Table 23-7. SDH Data Path Status Flags (Cont’d)

Flag Description

CRC[15:0] Remainder
x15 M x()×

G x()
--------------------------=

G x() x16 x12 x5 1+ + +=

M x() x39 (start bit)× ... x0 (last bit before CRC)×+ +=

M x() xn (first data bit)× ... x0 (last data bit)×+ +=

Functional Description

23-16 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Data FIFO
The data FIFO is a data buffer with transmit and receive logic. The FIFO
contains a 32-bit wide, 16-word deep data buffer and transmit and receive
logic. Depending on TxActive and RxActive, the FIFO can be disabled,
transmit enabled or receive enabled.

TxActive and RxActive are mutually exclusive:

• The transmit FIFO refers to the transmit logic and data buffer
when TxActive is asserted

• The receive FIFO refers to the receive logic and data buffer when
RxActive is asserted.

Transmit FIFO
If the transmit FIFO is disabled, all status flags are deasserted, and the
read and write pointers are reset. The processor asserts TxActive when it
transmits data. The table below lists the transmit FIFO status flags.

Table 23-8. Transmit FIFO Status Flags

Flag Description

TxFifoFull Set to HIGH when all 16 transmit FIFO words contain valid data

TxFifoEmpty Set to HIGH when the transmit FIFO does not contain valid data

TxFifoHalfEmpty Set to HIGH when 8 or more transmit FIFO words are empty.
This flag is used as DMA request.

TxDataAvbl Set to HIGH when the transmit FIFO contains valid data. This
flag is the inverse of the TxFifoEmpty flag.

TxUnderrun Set to HIGH when an underrun error occurs. This flag is cleared
by writing to the SDH status clear register.

ADSP-BF54x Blackfin Processor Hardware Reference 23-17

Secure Digital Host

Receive FIFO
If the receive FIFO is disabled, all status flags are deasserted, and the read
and write pointers are reset. The processor asserts RxActive when it
receives data.

SDIO Interrupt and Read Wait Support
The SDH accepts interrupt requests from the SDIO card on the SD_DATA1
pin and generates a read wait interrupt to the card on the SD_DATA2 pin.
There may be multiple interrupt sources within the SDIO card which map
to a single interrupt line. Once asserted, the SDIO interrupt remains
asserted until the processor determines the source of the interrupt on the
SDIO card and clears it. The SDIO interrupt status is indicated in the
SDH_E_STATUS register (see “SDH Exception Status Register
(SDH_E_STATUS)” on page 23-35). The status can be used to generate a
processor interrupt. The SDH can also output a read wait interrupt to
cause the SDIO to stop a block transfer of data. Once the transfer is
stopped, the SDH is able to send commands to the SDIO card. The read
wait interrupt is generated by writing to the SDH_RD_WAIT_EN register (see
“SDH Read Wait Enable Register (SDH_RD_WAIT_EN)” on
page 23-38).

Table 23-9. Receive FIFO Status Flags

Flag Description

RxFifoFull Set to HIGH when all 16 receive FIFO words contain valid data

RxFifoEmpty Set to HIGH when the receive FIFO does not contain valid data

RxFifoHalfFull Set to HIGH when 8 or more receive FIFO words contains valid data.
This flag is used as DMA request.

RxDataAvbl Set to HIGH when the receive FIFO is not empty. This flag is the
inverse of the RxFifoEmpty flag.

RxOverrun Set to HIGH when an overrun error occurs. This flag is cleared by writ-
ing to the SDH status clear register.

Functional Description

23-18 ADSP-BF54x Blackfin Processor Hardware Reference

In 1-bit SDIO mode, the interrupt and read wait signals use dedicated
pins. As a result, the interrupt and read wait requests can occur at any
time.

In 4-bit SDIO mode, the interrupt and read wait signals are sent over
SD_DATA pins. As a result, there are only certain windows of time during
which these requests can be asserted. This window of time is referred to as
the Interrupt Period. The SDIO interrupt is only sampled and updated in
the status register during the Interrupt Period. An interrupt is indicated by
a b#1101 on the SD_DATA3–0 pins and is terminated by a b#1111 on the
same pins. Likewise, the read wait interrupt is only sent during the Inter-
rupt Period, as indicated by a b#1011 on the SD_DATA3–0 pins. If both
interrupt and read wait are requested at the same time, SD_DATA3–0 is
B31001 with SD_DATA1 driven by the SDIO card and SD_DATA2 driven by
the MMCI.

The timing of the Interrupt Period is mode dependent. In the case of nor-
mal single data block transmission, the Interrupt Period is the time
between two clocks after the completion of a data pack end bit and the
end bit of the next command that will use the DATA lines. In the case of
multiple block data transfers, the Interrupt Period is restricted to the two
clock period beginning 2 clocks after the end bit of a data block.

MMC/SD Card Detection
The SDH allows software to detect a card when it is inserted into its slot.
The SD_DATA3 pin powers up low due to a special pull-down resistor.
When an SD Card is inserted in its slot, the resistance increases and a ris-
ing edge is detected by the SDH module. This detection sets the card
detect bit in the SDH_E_STATUS register and causes an exception to be gen-
erated on the SDH interrupt line. Once the card is detected, the SDH
pull- down is disabled and the standard pull-up on the pad is enabled.
When this pad is used as an alternate pin or a GPIO, the SDH pull-down
resistance on the pad can be isolated by programming the pad configura-

ADSP-BF54x Blackfin Processor Hardware Reference 23-19

Secure Digital Host

tion register. This card detect logic is active even in MMC mode. In this
mode, SDH_E_STATUS bit 4 must be cleared to disable interrupts from card
detection.

SDH DMA Transfers
The DMA controller can be programmed to transfer data between mem-
ory and the SDH’s FIFO buffers. This is initiated based on interrupts
from the SDH module.

Programming Model
The following sections describe the SDH programming model.

SDH Registers
The SDH interface has memory-mapped registers (MMRs) that regulate
its operation. Descriptions and bit diagrams for each of these MMRs are
provided in the following sections.

Table 23-10 lists the SDH memory-mapped registers. All functional regis-
ter bits reset to zero, except the SDH_E_MASKx registers (which reset to 0x40)
and SDH_CFG register (which resets to 0xA0).

Table 23-10. SDH Functional Registers

Address
Offset

NAME Type Access Description

0xFFC03900 SDH_PWR_CTL Read/
write

Single SDH power control register
on page 23-22

0xFFC03904 SDH_CLK_CTL Read/
write

Single SDH clock control register
on page 23-23

SDH Registers

23-20 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC03908 SDH_ARGUMENT Read/
write

Double SDH argument register
on page 23-24

0xFFC0390C SDH_COMMAND Read/
write

Single SDH command register
on page 23-24

0xFFC03910 SDH_RESP_CMD Read
only

Single SDH response command register
on page 23-26

0xFFC03914 SDH_RESPONSE0 Read
only

Double SDH response 0 register
on page 23-26

0xFFC03918 SDH_RESPONSE1 Read
only

Double SDH response 1 register
on page 23-26

0xFFC0391C SDH_RESPONSE2 Read
only

Double SDH response 2 register
on page 23-26

0xFFC03920 SDH_RESPONSE3 Read
only

Double SDH response 3 register
on page 23-26

0xFFC03924 SDH_DATA_TIMER Read/
write

Double SDH data timer register
on page 23-26

0xFFC03928 SDH_DATA_LGTH Read/
write

Single SDH data length register
on page 23-27

0xFFC0392C SDH_DATA_CTL Read/
write

Single SDH data control register
on page 23-27

0xFFC03930 SDH_DATA_CNT Read
only

Single SDH data counter register
on page 23-29

0xFFC03934 SDH_STATUS Read
only

Double SDH status register
on page 23-30

0xFFC03938 SDH_STATUS_CLR Write
only

Single SDH status clear register
on page 23-32

0xFFC0393C SDH_MASK0 Read/
write

Double SDH interrupt 0 mask register
on page 23-33

0xFFC03940 SDH_MASK1 Read/
write

Double SDH interrupt 1 mask register
on page 23-33

0xFFC03944 Reserved – – –

Table 23-10. SDH Functional Registers (Cont’d)

Address
Offset

NAME Type Access Description

ADSP-BF54x Blackfin Processor Hardware Reference 23-21

Secure Digital Host

0xFFC03948 SDH_FIFO_CNT Read
only

Single SDH FIFO counter register
on page 23-34

0xFFC0394C
...
0xFFC0397C

Reserved – – –

0xFFC03980 SDH_FIFOx Read/
write

Double SDH data FIFO registers
on page 23-35

0xFFC03984
...
0xFFC03988

Reserved – – –

0xFFC039c0 SDH_E_STATUS Read/
write

Single SDH exception status register
on page 23-35

0xFFC039C4 SDH_E_MASK Read/
write

Single SDH exception mask register
on page 23-35

0xFFC039C8 SDH_CFG Read/
write

Single SDH configuration register
on page 23-36

0xFFC039CC SDH_RD_WAIT_EN Read/
write

Single SDH read wait enable register
on page 23-38

0xFFC039D0
...
0xFFC039EC

SDH_PIDx Read
only

Single SDH peripheral identification
registers (8-bit values)
on page 23-38

Table 23-10. SDH Functional Registers (Cont’d)

Address
Offset

NAME Type Access Description

SDH Registers

23-22 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Power Control Register (SDH_PWR_CTL)
The SDH_PWR_CTL register (see Figure 23-6) contains bits that control the
power consumption by the SDH module. After a data write, data cannot
be written to this register for five SCLK cycles.

Figure 23-6. SDH Power Control Register (SDH_PWR_CTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Power Control Register (SDH_PWR_CTL)

00 - Power on
01 - Reserved
10 - Reserved
11 - Reserved

Power On (PWR_ON)

Reset = 0x0000

Read/Write

0xFF C03900

0 - Disable rod control
1 - Enable rod control

Rod Control (ROD_CTL)

0 - Normal operation
1 - SD_CMD open drain output

Open Drain Output (SD_CMD_OD)

NOTE:
Bits 32–16 (not shown) are reserved

ADSP-BF54x Blackfin Processor Hardware Reference 23-23

Secure Digital Host

SDH Clock Control Register (SDH_CLK_CTL)
The SDH_CLK_CTL register (see Figure 23-6) contains bits that control the
SDH clock.

While the SDH module is in identification mode, the SD_CLK frequency
must be less than 400 kHz. The clock frequency can be changed to the
maximum card bus frequency when relative card addresses are assigned to
all cards. The CLKDIV bit field value determines the SDH clock frequency
as shown in Equation 23-1.

Equation 23-1. SD_CLK Frequency Calculation

After a data write, data cannot be written to the SDH_CLK_CTL register for
five SCLK cycles.

Figure 23-7. SDH Clock Control Register (SDH_CLK_CTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Clock Control Register (SDH_CLK_CTL)

0xFF - 0x00 (see Equation 23-1)
SD_CLK Divisor (CLKDIV)

Reset = 0x0000

Read/Write

0 - Disable bus clock
1 - Enable bus clock

SD_CLK Bus Clock Enable (CLK_E)

0xFFC03904

0 - Disable bypass
1 - Enable bypass
 (SD_CLK driven from SCLK)

Bypass Divisor (CLKDIV_BYPASS)

0 = Standard bus (only SD_DATA0 used)
1 = Enable wide bus mode

Wide Bus Mode Enable (WIDE_BUS)

NOTE:
Bits 32–16 (not shown) are reserved

(disables SD_CLK bus clock output
when bus is idle)
0 - Always enabled
1 - Enable clock when bus active

Power Save Enable (PWR_SV_E)

SD_CLK frequency
SCLK frequency

2 CLKDIV 1+()×
--=

SDH Registers

23-24 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Argument Register (SDH_ARGUMENT)
The SDH_ARGUMENT register—a read-write register located at offset
0xFFC03908 with reset value 0x0000—contains a 32-bit command argu-
ment, which is sent to a card as part of a command message. If a command
contains an argument, it must be loaded into the argument register before
writing a command to the command register. For more information on
commands and arguments, see “SDH Command Register
(SDH_COMMAND)”.

SDH Command Register (SDH_COMMAND)
The SDH_COMMAND register (see Figure 23-8) contains the command index
and command type bits. The command index is sent to a card as part of a
command message. The command type bits control the command path
state machine. Writing a 1 to the enable bit starts the command send
operation, while clearing the bit disables the command state machine.

Figure 23-8. SDH Command Register (SDH_COMMAND)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Command Register (SDH_COMMAND)

0x3F - 0x00 (see Table 23-11)
Command Index (CMD_IDX)

Reset = 0x0000

Read/Write

0 - No response, use CmdSent flag
1 - Waits for a response
 (see Table 23-11)

Response (CMD_RSP)

0xFFC0390c

0 - Send command immediately
1 - Wait for CmdPend before
 sending a command

Command Pending (CMD_PEND_E)

0 - Disable commands
1 - Enable commands

Command Enable (CMD_E)

NOTE:
Bits 32–16 (not shown) are reserved

0 - Receives a short response
1 - Receives a 136-bit long response

Long Response (CMD_L_RSP)

0 - Do not wait for interrupt;
 use command timer
1 - Disable command timer and
 wait for interrupt request

Command Interrupt (CMD_INT_E)

ADSP-BF54x Blackfin Processor Hardware Reference 23-25

Secure Digital Host

After a data write, data cannot be written to the SDH_COMMAND register for
five SCLK cycles.

The SDH command argument values are loaded into the SDH_ARGUMENT
register before loading the command value in the SDH_COMMAND register.

Table 23-11 lists the SDH command response values.

SDH Response Command Register
(SDH_RESP_CMD)

The SDH_RESP_CMD register (see Figure 23-8) contains the command index
field of the last command response received. If the command response
transmission does not contain the command index field (long response),
the RESP_CMD field is unknown, although it must contain b#111111 (the
value of the reserved field from the response).

Table 23-11. SDH Command Response Type Values

Response LongRsp Description

0 0 No response, expect CmdSent flag

0 1 No response, expect CmdSent flag

1 0 Short response, expect CmdRespEnd or CmdCrcFail flag

1 1 Long response, expect CmdRespEnd or CmdCrcFail flag

Figure 23-9. SDH Command Response Register (SDH_RESP_CMD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Command Response Register (SDH_RESP_CMD)

0x3F - 0x00 (see Table 23-14)
Response Command (RESP_CMD)

Reset = 0x0000

Read only

0xFFC03910

NOTE:
Bits 32–16 (not shown) are reserved

SDH Registers

23-26 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Response Registers (SDH_RESPONSEx)
The SDH_RESPONSE3–0 registers—read-only registers located at offsets
0xFFC03914 through 0xFFC03920 with reset value 0x0000—contain
32-bit values for the read-only status of the card, which is part of the
received response. (See Table 23-12.) The card status size can be 32 or
127 bits, depending on the response type. The most significant bit of the
card status is received first. The SDH_RESPONSE3 register least significant bit
is always zero.

SDH Data Timer Register (SDH_DATA_TIMER)
The SDH_DATA_TIMER register—a read-write register located at offset
0xFFC03924 with reset value 0x0000—contains a 32-bit value for the
data timeout period, in card bus clock periods. A counter loads the value
from the data timer register, and starts to decrement when the data path
state machine enters the WAIT_R or BUSY state. If the timer reaches zero
while the state machine is in either of these states, the timeout flag is set. A
data transfer must be written to the data timer register and the data length
register before being written to the data control register.

Table 23-12. SDH_RESPONSE3–0 Response Register Types

Description Short response Long response

SDH_RESPONSE0 Card status [31:0] Card status [127:96]

SDH_RESPONSE1 Unused Card status [95:64]

SDH_RESPONSE2 Unused Card status [63:32]

SDH_RESPONSE3 Unused Card status [31:0]

ADSP-BF54x Blackfin Processor Hardware Reference 23-27

Secure Digital Host

SDH Data Length Register (SDH_DATA_LGTH)
The SDH_DATA_LGTH register (see Figure 23-10) contains a 16-bit value for
the number of data bytes to be transferred The value is loaded into the
data counter when the transfer starts.

SDH Data Control Register (SDH_DATA_CTL)
The SDH_DATA_CTL register (see Figure 23-11) controls the data path state
machine. After a data write, data cannot be written to this register for five
SCLK cycles.

Figure 23-10. SDH Data Length Register (SDH_DATA_LGTH)

Figure 23-11. SDH Data Control Register (SDH_DATA_CTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Length Register (SDH_DATA_LGTH)

0xFF - 0x00
Data Length (DATA_LENGTH)

Reset = 0x0000

Read/Write

0xFFC03928

NOTE:
Bits 32–16 (not shown) are reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Control Register (SDH_DATA_CTL)

0 - Disable data transfer
1 - Enable data transfer

Data Trans Enable (DTX_E)

Reset = 0x0000

Read/Write

0 - From controller to card
1 - From card to controller

Data Trans Direction (DTX_DIR)

0xFFC0392c

0 - Disable DMA
1 - Enable DMA

Data Trans DMA Enable (DTX_DMA_E)

Data block length from 0 to 11 - 2n bytes
(see Table 23-13)

Data Trans Block Length (DTX_BLK_LGTH)

NOTE:
Bits 32–16 (not shown) are reserved

0 - Block transfer
1 - Stream transfer

Data Trans Mode (DTX_MODE)

SDH Registers

23-28 ADSP-BF54x Blackfin Processor Hardware Reference

Data transfer starts if a 1 is written to the enable bit. Depending on the
direction bit, the data path state machine moves to the WAIT_S or the
WAIT_R state. There is no need to clear the enable bit after data transfer.
Table 23-13 describes the data block length if block data transfer mode is
selected.

After a data write, data cannot be written to the SDH_DATA_CTL register for
five SCLK cycles.

Table 23-13. Data Block Length

Block size Block length

0 20= 1 byte card status [127:96]

1 21 = 2 bytes

... –

11 211= 2048 bytes

12–15 reserved

ADSP-BF54x Blackfin Processor Hardware Reference 23-29

Secure Digital Host

SDH Data Counter Register (SDH_DATA_CNT)
The SDH_DATA_CNT register (see Figure 23-12) loads the 16-bit value from
the data length register when the data path state machine moves from the
IDLE state to the WAIT_S or WAIT_R state. As data is transferred, the
counter decrements the value until it reaches 0. The state machine then
moves to IDLE state and the data status end flag is set.

Only read the SDH_DATA_CNT register when the data transfer is complete.

Figure 23-12. SDH Data Counter Register (SDH_DATA_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Data Counter Register (SDH_DATA_CNT)

0xFF - 0x00
Data Count (DATA_COUNT)

Reset = 0x0000

Read only

0xFFC03930

NOTE:
Bits 32–16 (not shown) are reserved

SDH Registers

23-30 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Status Register (SDH_STATUS)
The SDH_STATUS register (see Figure 23-13 and Figure 23-14) is read-only.
It contains two types of flags: static and dynamic.

Figure 23-13. SDH Status (SDH_STATUS) Register, Bits [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Status Register (SDH_STATUS), Bits [15:0]

0 - No CRC recv on CMD resp.
1 - CRC fail on CMD resp.

CMD CRC Fail (CMD_CRC_FAIL)

Reset = 0x0000

Read Only

0 - No CRC recv. on data block Rx/Tx
1 - CRC fail on data block Rx/Tx

Data CRC Fail (DAT_CRC_FAIL)

0xFFC03934

For the upper 16 bits of this register,
see Figure 23-14.

0 - CMD resp. not timed out
1 - CMD resp. time out

CMD Time Out (CMD_TIMEOUT)

0 - Data not timed out
1 - Data time out

Data Time Out (DAT_TIMEOUT)

0 - No error
1 - Tx FIFO underrun error

Trans. Under Run (TX_UNDERRRUN)

0 - No error
1 - Rx FIFO overrun error

Recv. Overrun (RX_OVERRUN)

0 - No response received
1 - CMD resp recv. (CRC passed)

CMD Resp End (CMD_RESP_END)

0 - No CMD sent
1 - CMD sent (no response required)

CMD Sent (CMD_SENT)

0 - No FIFO watermark detected
1 - Receive FIFO half full

Recv. FIFO Status (RX_FIFO_STAT)

0 - No FIFO watermark detected
1 - Transmit FIFO half empty

Trans. FIFO Status (TX_FIFO_STAT)

0 - No data receive in progress
1 - Data receive in progress

Recv. Active (RX_ACT)

0 - No transmit in progress
1 - Data transmit in progress

Trans. Active (TX_ACT)

0 - No command in progress
1 - Command transfer in progress

CMD Active (CMD_ACT)

0 - No end detected
1 - Data block Tx/Rx (CRC passed)

Data Block End (DAT_BLK_END)

0 - No error detected
1 - Start bit error (missing from a signal)

Start Bit Error (START_BIT_ERR)

0 - No data end
1 - Data end (data counter is zero)

Data End (DAT_END)

ADSP-BF54x Blackfin Processor Hardware Reference 23-31

Secure Digital Host

The static flags (bits [10:0]) remain asserted until they have been cleared
by writing to the Clear register. the dynamic flags (bits [21:11]) change
state depending on the state of the underlying logic. For example, FIFO
full and empty flags are asserted and deasserted as data is written to or read
from the FIFO.

Figure 23-14. SDH Status Register (SDH_STATUS), Bits [31:16]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Status Register (SDH_STATUS). Bits [31:16]

0 - Not full
1 - Transmit FIFO full

Trans. FIFO Full (TX_FIFO_FULL)

Reset = 0x0000

Read Only

0 - Not full
1 - Receive FIFO full

Recv. FIFO Full (RX_FIFO_FULL)

0xFFC03934

For the lower 16 bits of this register,
see Figure 23-13.

0 - Not empty
1 - Transmit FIFO empty

Trans. FIFO Empty (TX_FIFO_ZERO)

0 - No data
1 - Data available in receive FIFO

Recv. Data Avail. (RX_FIFO_RDY)

0 - No data
1 - Data available in transmit FIFO

Trans. Data Avail. (TX_DAT_RDY)

0 - Not empty
1 - Receive FIFO empty

Recv. FIFO Empty (RX_DAT_ZERO)

SDH Registers

23-32 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Status Clear Register (SDH_STATUS_CLR)
The SDH_STATUS_CLR register (see Figure 23-15) is write-only. The corre-
sponding static status flag can be cleared by writing a 1 to the
corresponding bit in the register.

Figure 23-15. SDH Status Clear Register (SDH_STATUS_CLR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Status Clear Register (SDH_STATUS_CLR)

0 - No effect
1 - Clear CMD_CRC_FAIL bit

CMD CRC Fail Status
(CMD_CRC_FAIL_STAT)

Reset = 0x0000

Write Only (W1C)

0 - No effect
1 - Clear DAT_CRC_FAIL bit

Data CRC Fail Status
(DAT_CRC_FAIL_STAT)

0xFFC03938

0 - No effect
1 - Clear CMD_TIMEOUT bit

CMD Time Out Status
(CMD_TIMEOUT_STAT)

0 - No effect
1 - Clear DAT_TIMEOUT bit

Data Time Out Status
(DAT_TIMEOUT_STAT)

0 - No effect
1 - Clear TX_UNDERRRUN bit

Trans. Underrun Status
(TX_UNDERRUN_STAT)

0 - No effect
1 - Clear RX_OVERRUN bit

Recv. Overrun Status
(RX_OVERRUN_STAT)

0 - No effect
1 - Clear CMD_RESP_END bit

CMD Resp End Status
(CMD_RESP_END_STAT)

0 - No effect
1 - Clear CMD_SENT bit

CMD Sent Status
(CMD_SENT_STAT)

0 - No effect
1 - Clear DAT_BLK_END bit

Data Block End Status
(DAT_BLK_END_STAT)

0 - No effect
1 - Clear START_BIT_ERR bit

Start Bit Error Status
(START_BIT_ERR_STAT)

0 - No effect
1 - Clear DAT_END bit

Data End Status
(DAT_END_STAT)

NOTE:
Bits 32–16 (not shown) are reserved

ADSP-BF54x Blackfin Processor Hardware Reference 23-33

Secure Digital Host

SDH Interrupt Mask Registers (SDH_MASKx)
The SDH_MASKx registers (see Figure 23-16 and Figure 23-17) are
read-write. The bits in the SDH_MASK0 register determine which status flags
in the SDH_STATUS register generate an interrupt request. To enable an
interrupt for a status flag, set the corresponding mask bit to 1.

Figure 23-16. SDH Interrupt Mask Registers (SDH_MASKx), Bits [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Interrupt Mask Registers (SDH_MASKx), Bits [15:0]

0 - Disable interrupt
1 - Enable interrupt for status bit

CMD CRC Fail (CMD_CRC_FAIL)

Reset = 0x0000

Read/Write

0 - Disable interrupt
1 - Enable interrupt for status bit

Data CRC Fail (DAT_CRC_FAIL)

0xFFC0393c
0xFFC03940

For the upper 16 bits of this register,
see Figure 23-17.

0 - Disable interrupt
1 - Enable interrupt for status bit

CMD Time Out (CMD_TIMEOUT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Data Time Out (DAT_TIMEOUT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Trans. Under Run (TX_UNDERRRUN)

0 - Disable interrupt
1 - Enable interrupt for status bit

Recv. Over run (RX_OVERRUN)

0 - Disable interrupt
1 - Enable interrupt for status bit

CMD Resp End (CMD_RESP_END)

0 - Disable interrupt
1 - Enable interrupt for status bit

CMD Sent (CMD_SENT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Recv. FIFO Status (RX_FIFO_STAT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Trans. FIFO Status (TX_FIFO_STAT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Recv. Active (RX_ACT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Trans. Active (TX_ACT)

0 - Disable interrupt
1 - Enable interrupt for status bit

CMD Active (CMD_ACT)

0 - Disable interrupt
1 - Enable interrupt for status bit

Data Block End (DAT_BLK_END)

0 - Disable interrupt
1 - Enable interrupt for status bit

Start Bit Error (START_BIT_ERR)

0 - Disable interrupt
1 - Enable interrupt for status bit

Data End (DAT_END)

SDH Registers

23-34 ADSP-BF54x Blackfin Processor Hardware Reference

SDH FIFO Counter Register (SDH_FIFO_CNT)
The SDH_FIFO_CNT register contains a value indicating the remaining num-
ber of words to be written to or read from the FIFO. The FIFO counter
loads the value from the SDH_DATA_LGTH register when the DTX_E enable bit
is set in the SDH_DATA_CTL register. If the data length is not word-aligned
(multiple of 4), the remaining 1 to 3 bytes are regarded as word.

Figure 23-17. SDH Interrupt Mask Registers (SDH_MASKx),
Bits [31:16]

Figure 23-18. SDH FIFO Counter Register (SDH_FIFO_CNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Interrupt Mask Registers (SDH_MASKx), Bits [31:16]

0 - Disable interrupt
1 - Enable interrupt for status bit

Trans. FIFO Full (TX_FIFO_FULL)

Reset = 0x0000

Read/Write

0 - Disable interrupt
1 - Enable interrupt for status bit

Recv. FIFO Full (RX_FIFO_FULL)

0xFFC0393c
0xFFC03940

For the lower 16 bits of this register,
see Figure 23-16.

0 - Disable interrupt
1 - Enable interrupt for status bit

Trans. FIFO Empty (TX_FIFO_ZERO)

0 - Disable interrupt
1 - Enable interrupt for status bit

Recv. Data Avail. (RX_DAT_RDY)

0 - Disable interrupt
1 - Enable interrupt for status bit

Trans. Data Avail. (TX_DAT_RDY)

0 - Disable interrupt
1 - Enable interrupt for status bit

Recv. FIFO Empty (RX_FIFO_ZERO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH FIFO Counter Register (SDH_FIFO_CNT)

0x7F - 0x00
FIFO Count (FIFO_COUNT)

Reset = 0x0000

Read only

0x0xFFC0 3948

NOTE:
Bits 32–16 (not shown) are reserved

ADSP-BF54x Blackfin Processor Hardware Reference 23-35

Secure Digital Host

SDH Data FIFO (SDH_FIFOx) Registers
The SDH_FIFOx receive and transmit FIFO registers—read/write registers
located starting at offset 0xFFC03980 with reset value 0x0000—can be
read or written as 32-bit registers. The FIFOs contain 16 entries on 16
sequential addresses. This allows the processor to read from and write to
the FIFOs.

SDH Exception Status Register (SDH_E_STATUS)
The SDH_E_STATUS register (see Figure 23-19) contains bits that indicate
exceptions, SD card detection, and FIFO accesses. These bits can be used
to generate interrupts to the processor if unmasked in the SDH_E_MASK
register.

SDH Exception Mask Register (SDH_E_MASK)
The SDH_E_MASK register (see Figure 23-20) contains mask bits for SDH
error and status signals. When the mask bits are set, these signals generate
interrupts. All error conditions are combined into a single interrupt line

Figure 23-19. SDH Exception Status Register (SDH_E_STATUS)

0 - No card detect
1 - Card detected

SD Card Detect (SD_CARD_DET)
0 - No interrupt
1 - Interrupt detected

SDIO Int Detect (SDIO_INT_DET)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Exception Status Register (SDH_E_STATUS)

Reset = 0x0000

Read only/W1C

0xFFC039c0

SDH Registers

23-36 ADSP-BF54x Blackfin Processor Hardware Reference

that is routed to the processor core and system interrupt controllers. The
RXFIFOEMPTY and TXFIFOFULL interrupts can trigger the processor core or
DMA to move data in or out of the SDH FIFOs.

SDH Configuration Register (SDH_CFG)
The SDH_CFG register (see Figure 23-21) contains bits that enable and dis-
able portions of the SDH module. The clock enable bit must be set to
enable the SDH for operation. In addition, the underflow and overflow
errors as well as 4-bit SDIO mode may be individually enabled or dis-
abled. The MWE bit can be set to allow SDIO interrupts outside the
specified one cycle window. The SDMMC reset bit is included to reset the
SDH module for debug purposes. This bit is a Write-1-to-Action (W1A)
bit, and always reads as 0. The PUP_SDDAT, PUP_SDDAT3, and PD_SDDAT3 bits
enable pull-up and pull-down resistors for the SD_DATAx and SD_CMD pins.

Figure 23-20. SDH Exception Mask Register (SDH_E_MASK)

0 - Mask card detect
1 - Enable card detect

Mask Card Detect (SCD_MSK)
0 - No Interrupt Detected
1 - Interrupt Detected

Mask SDIO Int Dtctd (SDIO_MSK)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SDH Exception Mask Register (SDH_E_MASK)

Reset = 0x0040

Read/Write

0xFFC039c4

ADSP-BF54x Blackfin Processor Hardware Reference 23-37

Secure Digital Host

Do not set PD_SDDAT3 and PUP_SDDAT3 at the same time.

Figure 23-21. SDH Configuration Register (SDH_CFG)

0 - Disable pull-down
1 - Enable pull-down on SD_DATA3

Pull-down SD_DAT3 (PD_SDDAT3)

0 - Normal operation
1 - Reset SDMMC

SDMMC Reset (SD_RST) W1A

0 - Disable moving window
1 - Enable moving window

Moving Window Enable (MWE)

0 - Disable SDIO 4-bit
1 - Enable SDIO 4-bit

SDIO 4-Bit Enable (SD4E)

0 - Disable pull-up
1 - Enable pull-up on SD_DATA2–0 and SD_CMD

Pull-up SD_DAT (PUP_SDDAT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 1 0 0 0 0

SDH Configuration Register (SDH_CFG)

0 - Disable SDH clocks
1 - Enable SDH clocks

Clocks Enable (CLKS_EN)

Reset = 0x0A00

Read/Write, Write-1-Act

0xFFC039c8

0 - Disable pull-up
1 - Enable pull-up on SD_DATA3

Pull-up SD_DAT3 (PUP_SDDAT3)

SDH Registers

23-38 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Read Wait Enable Register (SDH_RD_WAIT_EN)
The SDH_RD_WAIT_EN register (see Figure 23-22) contains one bit that,
when set, issues a read wait request to an SDIO card. Once software is
ready to resume data transfer, this bit must be cleared. This functionality
applies to both 1-bit and 4-bit SDIO cards.

SDH Identification Registers (SDH_PIDx)
The SDH_PIDx registers (see Table 23-14) contain a fixed value at reset
used to identify the peripheral, its configuration, and revision. There are a
total of eight 8-bit identification registers.

Figure 23-22. SDH Read Wait Enable Register (SDH_RD_WAIT_EN)

Table 23-14. SDH ID Registers (SDH_PIDx)

Address Name Width Value Type Access Description

0xFFC039D0 SDH_PID0 8 0x80 Read only Double SDH Peripheral Identification

0xFFC039D4 SDH_PID1 8 0x11 Read only Double SDH Peripheral Identification

0xFFC039D8 SDH_PID2 8 0x04 Read only Double SDH Peripheral Identification

0xFFC039DC SDH_PID3 8 0x00 Read only Double SDH Peripheral Identification

0xFFC039E0 SDH_PID4 8 0x0D Read only Double SDH Peripheral Identification

0xFFC039E4 SDH_PID5 8 0xF0 Read only Double SDH Peripheral Identification

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDH Read Wait Enable Register (SDH_RD_WAIT_EN)

0 - Normal operation
1 - Issue read wait request
 to SDIO card

Read Wait Request (RWR)

Reset = 0x0000

Read/Write

0xFFC039cc

ADSP-BF54x Blackfin Processor Hardware Reference 23-39

Secure Digital Host

The SDH_PIDx registers are read-only. The values of the bits can be
grouped into two 32-bit words—the first word comprehends SDH_PID[3:0]
of value 0x00041180, and the second word comprehends SDH_PID[7:4] of
value 0xB105F00D.

Programming Examples
The following programming examples describe the programmable features
of the ADSP-BF54x processor’s secure digital I/O.

Listing 23-1. Secure Digital I/O Programming Example

/* TBD ... TBD ... TBD ... TBD */

0xFFC039E8 SDH_PID6 8 0x05 Read only Double SDH Peripheral Identification

0xFFC039EC SDH_PID7 8 0xB1 Read only Double SDH Peripheral Identification

Table 23-14. SDH ID Registers (SDH_PIDx) (Cont’d)

Address Name Width Value Type Access Description

Programming Examples

23-40 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 24-1

24 ATAPI INTERFACE

This chapter describes the processor’s advanced technology attachment
packet interface (ATAPI). This interface is an ATA/ATAPI-6 compliant
host implementation. The ATA interface, also known as the IDE (Inte-
grated Drive Electronics) interface, provides a simple interface to low-cost
non-volatile memories like hard-disk drives, DVD players, CDROM play-
ers/writers, and compact flash and PC-card devices. The ATAPI interface
supports all ATA hardware protocol transfers and the complete set of 80
ATAPI commands.

This chapter includes the following sections:

• “Interface Overview” on page 24-1

• “Description of Operation” on page 24-4

• “Functional Description” on page 24-19

• “Programming Model” on page 24-43

• “ATAPI Registers” on page 24-48

• “ATAPI Standards Reference” on page 24-74

Interface Overview
The ATAPI interface supports all ATA hardware protocol transfers and
the complete set of 80 ATAPI commands.

Interface Overview

24-2 ADSP-BF54x Blackfin Processor Hardware Reference

The ATAPI includes these features:

• ATA/ATAPI-6 compliant core supports:

• PIO modes 0, 1, 2, 3, 4

• Multiword DMA modes 0, 1, 2

• Ultra DMA modes 0, 1, 2, 3, 4, 5 (up to UDMA 100)

• Programmable timing parameters to support ATA interface timing
at any processor clock frequency

• Interface to compact flash (CF) configured in True-IDE mode

Figure 24-1 shows a block diagram of the ATAPI block. The ATAPI host
interfaces to the rest of the system through the PAB and DAB buses. The
PAB bus is used for programming the control and status registers. The
DAB buses are used for transmitting and receiving ATAPI packets

Figure 24-1. ATAPI Block Diagram

ATAPI HOST

ATAPI_CS1–0

ATAPI_DIOR

ATAPI_DIOW

ATAPI_DMACK

ATAPI_DMARQ

ATAPI_INTRQ

ATAPI_IORDY

ATAPI_RESET

ATAPI_D15–0

PAB BUS

DAB0 BUS

DAB1 BUS

ATAPI_A2-0

ATAPI_PDIAG

ADSP-BF54x Blackfin Processor Hardware Reference 24-3

ATAPI Interface

The ATAPI shares its pins with other peripherals on chip. Please refer to
the “General-Purpose Ports” chapter in the ADSP-BF54x Blackfin Proces-
sor Hardware Reference (Volume 1 of 2) for more information.

Table 24-1 lists the signal pins for the ATAPI block.

Table 24-1. ATAPI Signals Summary

Signal Dir Description

ATAPI_CS1–0 O Chip select signals from the host used to select the command block
or control block registers. When DMACK is asserted, ATAPI_
CS1–0 is negated and transfers are 16 bits wide.

ATAPI_A2-0 O This is a 3-bit binary code address asserted by the host to access the
register or data port in the device.

ATAPI_DIOR
ATAPI_HDMARDY
ATAPI_HSTROBE

O ATAPI_DIOR is the strobe signal asserted by the host to read the
device register or data port.

ATAPI_DIOW
ATAPI_STOP

O ATAPI_DIOW is the strobe signal asserted by the host to write the
device register or data port

ATAPI_DMACK O This signal is used in response to ATAPI_DMARQ to initiate
DMA transfers

ATAPI_DMARQ I Asserted by the device during DMA transfers and held until
acknowledged by the host via /ATAPI_DMACK. The host can
pause the DMA transfer by deasserting ATAPI_DMARQ. At the
same time, ATAPI_DMACK can be continuously asserted if more
DMA data is available from the host.

ATAPI_INTRQ I Used by the selected device to interrupt the host when interrupt is
pending.

ATAPI_IORDY
ATAPI_DDMARDY
ATAPI_DSTROBE

I The device can create wait state when it is not ready to respond for
any host register access (read or write).

ATAPI_RESET O Used by the host as a hard reset to reset the devices connected on
the ATAPI bus.

ATAPI_D15–0 I/O Data Bus for ATAPI interface

ATAPI_PDIAG I Used to determine if an 80-pin cable is connected to the host.

Description of Operation

24-4 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The complete set of ATAPI commands (80) can be categorized into the
following transfer types:

• Programmable IO

• Device register IO

• Multi-word DMA mode

Host PIO/Register Transfers
A write or a read from an address in the 0x00 to 0x0F range to the ATAPI_
DEV_ADDR register with PIO_START set initiates a PIO or a Register transfer.
For address 0x00, PIO data port transfers are initiated; whereas for all
other address values, a register access transfer is initiated.

ADSP-BF54x Blackfin Processor Hardware Reference 24-5

ATAPI Interface

The sequence of operation for any register transfer is as follows:

• Program the PIO and register timing registers based on the mode
supported by device (decoded by IDENTIFY DEVICE COMMAND)

• For device register write

• Program the ATAPI_DEV_TXBUF register with write data (to be
written into the device).

• Program the ATAPI_DEV_ADDR register with address of the
device register (0x01 to 0x0F).

• Set the appropriate interrupt mask (PIO_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with XFER_DIR set to
write (1) and PIO_START set to 1.

• Wait for the interrupt to indicate the end of the transfer.

• Alternately, the software can poll the PIO_XFER_ON bit in
ATAPI_STATUS register to wait for the completion of the
transfer.

Description of Operation

24-6 ADSP-BF54x Blackfin Processor Hardware Reference

• For device register read

• Program the ATAPI_DEV_ADDR register with address of device
register (0x01 to 0x0F)

• Set the appropriate interrupt mask (PIO_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with XFER_DIR bit set to
read (0) and PIO_START set to 1.

• Wait for the interrupt to indicate the end of the read
operation.

• Alternatively, the software can poll the PIO_XFER_ON bit in
ATAPI_STATUS register to wait for the completion of the
transfer.

• Read the ATAPI_DEV_RXBUF register to obtain the device reg-
ister value.

PIO Data-Out Transfers (Device Write)

This class includes the following commands:

• CFA WRITE MULTIPLE WITHOUT ERASE

• CFA WRITE SECTORS WITHOUT ERASE

• DOWNLOAD MICROCODE

• SECURITY DISABLE PASSWORD

• SECURITY ERASE UNIT

• SECURITY SET PASSWORD

• SECURITY UNLOCK

• WRITE BUFFER

ADSP-BF54x Blackfin Processor Hardware Reference 24-7

ATAPI Interface

• WRITE MULTIPLE

• WRITE SECTOR(S)

Execution of this class of command includes transfer of one or more
blocks of data from host to device (See Figure 24-2).

Figure 24-2. PIO Data-Out Protocol State Machine (Device Write)

IDLE

CMD TO DEVICE SELECTED

BSY=0, DRQ=0, AND DEVICE NOT SELECTED

WRITE

WRITE

CHECK

DATA REG
TRANSFER

INTRQ_WAIT

SELECT

SECTOR COUNT, FEATURES,

COMMAND OPCODE

BSY=0,

ATAPI_INTRQ

BSY=0, DATA REG WRITTTEN

STATUS

CHECK
STATUS

PARAMETERS

COMMAND

DATA

DEVICE

INITIATE

DEVICE
SELECTED

LBA(H), LBA(M), LBA(LOW)

DRQ=0

DATA REGISTER WRITTEN
AND DATA FOR THE

COMMAND TRANSFERRED

DRQ=1

ASSERTED

AND DRQ DATA BLOCK
TRANSFERRED

 WRITTEN AND
 DRQ DATA BLOCK

AND NIEN=0

 TRANSFERRED AND NIEN=1

Description of Operation

24-8 ADSP-BF54x Blackfin Processor Hardware Reference

A basic PIO data-out command protocol involves the following sequence:

• Program the ATAPI_XFER_LEN register with the number of ATA
words (1 sector = 256 ATA words) to be transfer. The following
sequence is required on interrupt: (1) set ATAPI_DEV_TXBUF with the
next word to transfer; (2) reset PIO_START to 1. This is similar with
the PIO read sequence except that the ATAPI_DEV_RXBUF is read
after each interrupt.

• Program the ATAPI_DEV_ADDR register with device PIO data port
address (0x00).

• Program the ATAPI_CONTROL register with XFER_DIR bit set to write
(1).

• Set the ATAPI_DEV_TXBUF register with the first word to transfer.

• Enable the appropriate interrupt (PIO_DONE_INT) in the ATAPI_INT_
MASK register.

• Set the ATAPI_DEV_TXBUF register with the first word to transfer.

• Set PIO_START to 1 to start the PIO transfer.

• Wait for the interrupt to indicate the completion of the PIO
transfer.

• Alternatively, the software can poll the PIO_XFER_ON bit in ATAPI_
STATUS register to wait for the completion of the transfer.

PIO Data-In Transfers (Device Read)

This class includes:

• CFA TRANSLATE SECTOR

• IDENTIFY DEVICE

• IDENTIFY PACKET DEVICE

ADSP-BF54x Blackfin Processor Hardware Reference 24-9

ATAPI Interface

• READ BUFFER

• READ MULTIPLE

• READ SECTOR (S)

• SMART READ DATA

Execution of this class of command includes transfer of one or more
blocks of data from device to the host (See Figure 24-3).

Description of Operation

24-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-3. PIO Data-In State Machine (Device Read)

IDLE

CMD TO DEVICE SELECTED

BSY=0, DRQ=0, AND DEVICE NOT SELECTED

WRITE

WRITE

CHECK

TRANSFER

INTRQ_WAIT

SELECT

WRITE SC, LBA(H), LBA(M), LBA(LOW)

BSY=0,

BSY=0,

STATUS

CHECK
STATUS

PARAMETERS

COMMAND

DATA

DEVICE

INITIATE

DEVICE
SELECTED

DRQ=0

DRQ=1

DATA REGISTER READ
AND ALL DATA FOR

COMMAND COMPLETE

ERROR
RECOVERY

DATA REGISTER READ
 AND DRQ DATA BLOCK

 TRANSFERRED AND ALL
 DATA FOR COMMAND NOT
TRANSFERRED AND NIEN=1

DATA REGISTER READ
 AND DRQ DATA BLOCK

 TRANSFERRED AND ALL
 DATA FOR COMMAND NOT
TRANSFERRED AND NIEN=0

PIO
READ

WAIT ON ATAPI_INTRQ

READ
STATUS REG

ADSP-BF54x Blackfin Processor Hardware Reference 24-11

ATAPI Interface

A basic PIO data-in command protocol transfer involves the following
sequence:

• Program the ATAPI_XFER_LEN register with number of ATA words
(1 sector = 256 ATA words) that need to be transferred.

• Program the ATAPI_DEV_ADDR register with device PIO data port
address (0x00).

• Program the ATAPI_CONTROL register with XFER_DIR bit set to read
(0).

• Enable the appropriate interrupt (PIO_DONE_INT) in the ATAPI_INT_
MASK register.

• Set the ATAPI_DEV_RXBUF register with the first word to transfer.

• Set PIO_START to 1 to start PIO transfer.

• Wait for the interrupt to indicate the completion of the PIO
transfer.

• Alternatively, the software can poll the PIO_XFER_ON bit in ATAPI_
STATUS register to wait for the completion of the transfer.

Host Multiword DMA Transfers
This class includes:

• READ DMA

• WRITE DMA

Execution of this class of command includes the transfer of one or more
blocks of data from the host to device or device to host using multi DMA
command protocol. The host should initialize the DMA channel prior to
transferring data by executing SET_FEATURE command.

Description of Operation

24-12 ADSP-BF54x Blackfin Processor Hardware Reference

A single interrupt is issued by the device at the completion of successful
transfer of all data required by the command or when the transfer is
aborted due to error, whereas in case of PIO command protocol transfers,
interrupt is issued after the end of every DRQ block of data transfer.

Each operation involves the following sequence:

• Program the multiword DMA Timing Registers (Based on the
mode detected by IDENTIFY DEVICE command).

• For a block of DMA data write transfer.

• Program ATAPI_XFER_LEN register with the number of ATA
words to be transferred.

• Program ATAPI_CONTROL register with XFER_DIR bit set to
write (1).

• Set the appropriate interrupt mask (MULTI_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Set MULTI_START bit to 1.

• Wait for the interrupt to indicate the completion of the
transfer.

• For a block of DMA data read transfer.

• Program ATAPI_XFER_LEN register with number of ATA
words to be transferred.

• Program ATAPI_CONTROL register with XFER_DIR bit set to
read (0).

• Set the appropriate interrupt mask (MULTI_DONE_INT) in the
ATAPI_INT_MASK register to enable interrupts.

• Set MULTI_START bit to 1.

ADSP-BF54x Blackfin Processor Hardware Reference 24-13

ATAPI Interface

• Wait for the interrupt to indicate the end of the transfer.

For second device: Reprogram the DMA Timing Registers, select the sec-
ond device by writing in to device register and start DMA read/write
operations.

Figure 24-4. Host DMA State Machine

IDLE

CMD TO DEVICE SELECTED

BSY=0, DRQ=0, AND DEVICE NOT SELECTED

WRITE

WRITE

CHECK

TRANSFER

INTRQ_WAIT

SELECT

SECTOR COUNT, FEATURES,

COMMAND OPCODE

BSY=0,

ATAPI_INTRQ

STATUS

CHECK
STATUS

PARAMETERS

COMMAND

DATA

DEVICE

INITIATE

DEVICE
SELECTED

LBA(H), LBA(M), LBA(LOW)

DRQ=0

ASSERTED

BSY=0, DRQ=1,
AND ATAPI_DMARQ=1

 OR
BSY=1, DRQ=0

AND ATAPI_DMARQ=1

ALL DATA

ALL DATA FOR COMMAND
TRANSFERRED AND NIEN=1 OR

DMA BURST TERMINATED

 FOR COMMAND
 TRANSFERRED

AND MORE DATA TO TRANSFER

 AND NIEN=0

Description of Operation

24-14 ADSP-BF54x Blackfin Processor Hardware Reference

Host Pausing the Multi-DMA Transfer

The ATAPI host pauses any current multi-DMA transfer when data may
not be immediately available from the system. This is accomplished by not
generating further ATAPI_DIOR/ATAPI_DIOW pulses and at same time keep-
ing the ATAPI_DMACK asserted so that the device does not go for
termination. Once the host is ready, it starts the remaining transfers by
generating the ATAPI_DIOW/ATAPI_DIOR pulses.

Host Terminating the Multi DMA Transfer

The host can terminate the current multi-DMA data transfer (based on
detecting that the current on-going transfer is erroneous) before data
transfer is completed by setting the ATAPI_TERMINATE register bit. The
ATAPI host initiates the termination by negating ATAPI_DMACK within tJ
after an ATAPI_DIOR/ATAPI_DIOW pulse. If the device is able to continue the
transfer of data, the device may leave ATAPI_DMARQ asserted and wait for
the host to reassert ATAPI_DMACK or may negate ATAPI_DMARQ at any time
after detecting that ATAPI_DMACK is negated.

The ATAPI host needs to check the ATAPI_DMARQ line status in the ATAPI_
LINE_STATUS register before issuing any new command. If it detects that
the device is still waiting for the ATAPI_DMACK to assert for the current
transfer, the ATAPI host should either soft reset or hard reset the device.

Device Pausing the Multi-DMA Transfer

To pause the multi-DMA burst, the device negates the ATAPI_DMARQ line
within tL after assertion of the current ATAPI_DIOR/ATAPI_DIOW pulse. In
multiword DMA mode, the device uses the same mechanism (negating
ATAPI_DMARQ line) to indicate a pause or a termination. The ATAPI host
by default gives control back to the firmware by generating a MULTI_TERM_
INT interrupt. It is the responsibility of the firmware to determine if the
transfer is paused or terminated.

ADSP-BF54x Blackfin Processor Hardware Reference 24-15

ATAPI Interface

The number of pause interrupts to service can be reduced considerably by
setting the END_ON_TERM bit in the ATA_CONTROL register to 1. This allows
the ATAPI host to go into a pause state until the device is ready to transfer
the data.

If the Host Automatic Pause Handling is not used, the user needs to
restart the multiword DMA transfer by setting MULTI_START to 1 to con-
tinue the transfer after determining that the device has paused.

When using the END_ON_TERM bit, it is mandatory to request and
interrupt from the device by setting the nIEN bit. This enables
catching any error conditions that might occur during a multiword
transfer.

Once the device asserts back the ATAPI_DMARQ, the host restarts generating
ATAPI_DIOW/ATAPI_DIOR pulses and completes the transfer of the remain-
ing blocks of data.

Device Terminating the Multi-DMA Transfer

To terminate the multi-DMA burst, the device negates the ATAPI_DMARQ
within tL after the assertion of the current ATAPI_DIOR/ATAPI_DIOW pulse.
The last word for the burst is then transferred by the negation of the cur-
rent ATAPI_DIOR or ATAPI_DIOW pulse. If all the data for the command has
not been transferred, the device re-asserts ATAPI_DMARQ again at any later
time to resume multi-DMA operation. Under this condition, the ATAPI
host goes into pause state waiting for the ATAPI_DMARQ line to be asserted.
The ATAPI host can wait for a certain period and terminate the DMA
transfer by setting ATAPI_TERMINATE register bit or by a soft reset of the
ATAPI state machine by setting the SOFT_RESET register bit. After setting
these bits, the host should check back to see if the ATAPI_TERMINATE regis-
ter bit got cleared.

Description of Operation

24-16 ADSP-BF54x Blackfin Processor Hardware Reference

Host Ultra DMA Command Protocol Transfers
The Ultra DMA transfers are similar to DMA transfers with respect to the
host software. It is only the hardware timing specification and signal-level
handshaking protocol within the device that is different.

The sequence of operation for Ultra DMA transfers is:

• Program the Ultra DMA timing registers with the mode supported
by the device (decoded after the INDENTIFY DEVICE
command)

• For Ultra DMA data-out (Device Writes)

• Program the ATAPI_XFER_LEN register with the number of
ATA words to be transferred.

• Set the appropriate interrupt mask (ULTRA_OUT_DONE_INT) in
the ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with the XFER_DIR bit
set to write (1) and ULTRA_START set to 1.

• Wait for the interrupt to indicate the end of the transfer.

• For Ultra DMA data-in (Device Reads)

• Program the ATAPI_XFER_LEN register with the number of
ATA words to be transferred.

• Set the appropriate interrupt mask (ULTRA_OUT_DONE_INT) in
the ATAPI_INT_MASK register to enable interrupts.

• Program the ATAPI_CONTROL register with the XFER_DIR bit
set to read (0) and ULTRA_START set to 1.

• Wait for the interrupt to indicate the end of the transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 24-17

ATAPI Interface

Host Pausing the Ultra DMA Data-In Transfer

The ATAPI host pauses any current Ultra DMA transfer when data may
not be immediately available from the system. The ATAPI host pauses the
Ultra DMA data-in transfers by negating ATAPI_HDMARDY. The device stops
generating the ATAPI_DSTROBE edges with in tRFS -(75ns mode0 to 50ns
mode2) of the host negating ATAPI_HDMARDY. After this host waits for
another zero, one, two, or three additional data words and then releases
the ATAPI_DD data pins by three-stating it. The additional data words are a
result of cable round trip delay and tRFS timing for the device.

According to the specification, the host should never pause an Ultra DMA
burst until at least one data word of an Ultra DMA burst is transferred.

Host Terminating the Ultra DMA Data-In Transfer

The host terminates the current Ultra DMA data-in transfer (based on
detecting that the current on going transfer is erroneous) before the trans-
fer is completed by setting the ATAPI_TERMINATE register bit. The ATAPI
host initiates Ultra DMA burst termination by negating ATAPI_HDMARDY
and following the sequence as given in Specification Sec 9.13.4.2 of
ATAPI 4.0. The turn around time for complete termination can vary
depending on the device behavior, as the host should be able to receive
zero, one, and two additional data words after negating ATAPI_HDMARDY.

According to the specification, the host should never initiate Ultra DMA
burst termination until at least one data word of Ultra DMA burst is
transferred.

Device Pausing the Ultra DMA Data-In Transfer

The device can pause the Ultra DMA data-in burst by not generating
additional ATAPI_DSTROBE edges.

Description of Operation

24-18 ADSP-BF54x Blackfin Processor Hardware Reference

Device Terminating the Ultra DMA Data-In Transfer

The device can terminate the Ultra DMA data-in burst sequence before
the data for the current command is complete. This causes the ULTRA_IN_
TERMINATED bit to set in the ATAPI_INT_STATUS register. This event is to be
transferred to higher layer software, which can be validated by reading the
device error register.

Host Pausing Ultra DMA Data-Out Transfer

The ATAPI host pauses the Ultra DMA data-out transfers by not generat-
ing ATAPI_HSTROBE edges and three-stating the ATAPI_Dx data pins in
response to PIN release for higher priority peripherals. At same time, the
ATAPI host keeps the ATAPI_DMACK asserted and the HSTOP de-asserted.
This should not make the device start a termination sequence, as the
ATAPI_DMACK is still kept asserted.

Host Terminating Ultra DMA Data-Out Transfer

The host terminates the current Ultra DMA data-out transfer before the
transfer is completed by setting the TERMINATE bit in the ATAPI_CONTROL
register. The ATAPI host starts the termination sequence by not generat-
ing ATAPI_HSTROBE edges, followed by asserting HSTOP, followed by
de-asserting ATAPI_DMACK.

Device Pausing the Ultra DMA Data-Out Transfer

The device can pause an Ultra DMA data-out burst by negating ATAPI_
DDMARDY. The ATAPI host enters into a pause state and waits until the
device asserts ATAPI_DDMARDY.

Device Terminating the Ultra DMA Data-Out Transfer

The device terminates the Ultra DMA data-out sequence by negating
ATAPI_DDMARDY before complete data is transferred and then negating
ATAPI_DMARQ after tRP. The ATAPI host enters the pause state once it sees

ADSP-BF54x Blackfin Processor Hardware Reference 24-19

ATAPI Interface

the ATAPI_DDMARDY getting de-asserted. During pause state, if it sees the
ATAPI_DMARQ getting de-asserted, it goes into the termination sequence.
This results in the ULTRA_OUT_TERMINATED bit getting set in ATAPI_INT_
STATUS register.

Functional Description
The following sections describe the function of the various protocols and
functions in the ATAPI controller. For more detailed information on
exact timing parameters, please refer to the ATA/ATAPI-6 Specification
and ADSP-BF54x Blackfin Embedded Processor data sheet.

Power-on and Hardware Reset Protocol
The ATAPI host can use the DEV_RST bit in the ATAPI_CONTROL register to
drive the ATAPI_RESET pin of the device. When the ATAPI_RESET signal is
asserted, the connected devices execute the hardware reset protocol. The
host should respond as described below:

1. Assert ATAPI_RESET for at least 25µs by writing a value of 1 to the
DEV_RST bit (can use one of the system timers).

2. Negate ATAPI_RESET by writing a 0 to the DEV_RST bit and wait at
least 2ms.

3. Read the device status register or the alternate status register.

4. Wait for the busy flag (BSY) to be cleared.

5. Perform an IDENTIFY DEVICE or IDENTIFY PACKET
DEVICE command for each connected device.

Functional Description

24-20 ADSP-BF54x Blackfin Processor Hardware Reference

6. Read the device parameters from each connected device.

7. Program the ATAPI host’s timing registers depending on the data
read from the device(s).

Figure 24-5. Power-On and Hardware Reset Protocol

IDLE

ASSERT

NEGATE

CHECK READ STATUS/

BSY=0

STATUS

ATAPI_RESET

WAIT

ALT STATUS REG

BSY=1

ASSERT ATAPI_RESET,
NEGATE ATAPI_CS1–0,

ATAPI_A2-0, ATAPI_DMACK,
ATAPI_DIOR, ATAPI_DIOW,
AND RELEASE ATAPI_D15–0

NEGATE

HOST WANTS
RESET OR
POWER ON

ATAPI_RESET

ADSP-BF54x Blackfin Processor Hardware Reference 24-21

ATAPI Interface

Device Selection Protocol
Before issuing any command to a device except the DEVICE RESET
command, the host should ensure that the selected device is no longer
busy, select the desired device, and insure that it is ready to accept a com-
mand. Figure 24-6 below describes the protocol for device selection.

Figure 24-6. Device Selection Protocol

START

READ

WRITE

HOST:

YES

BSY=0

STATUS

DEVICE VALUE

NO

HOST WANTS
RESET OR
POWER ON

HOST: READ STATUS
OR ALTERNATE

DRQ=0
?

HOST: WRITE THE
DEVICE/HEAD REGISTER

 WITH APPROPRIATE
DEV BIT VALUE

READ
STATUS

HOST: READ STATUS
OR ALTERNATE

HOST:

YES

BSY=0 NO

DRQ=0
?

END

STATUS REGISTER

STATUS REGISTER

Functional Description

24-22 ADSP-BF54x Blackfin Processor Hardware Reference

Programmed I/O (PIO)
A write to or a read from an address in the 0x00 to 0x0F range initiates a
PIO write or read transfer respectively. The PIO registers of the device are
mapped into this range. When the core detects a read or write access in
this address range, with the PIO_START bit set, it executes a PIO Transfer
cycle or Device IO register transfer cycle as shown in Figure 24-7. The fol-
lowing notes apply to Figure 24-7.

• ADDR consists of signals: ATAPI_CS1–0 and ATAPI_A2-0.

• DATA consists of ATAPI_D15–0 for all devices except devices imple-
menting the CFA feature set when 8-bit transfers are enabled. In
that case, DATA consists of ATAPI_D7–0.

• The negation of ATAPI_IORDY by the device is used to extend the
PIO cycle. The determination of whether the cycle is to be
extended is made by the host after tA from the assertion of ATAPI_
DIOR or ATAPI_DIOW. The assertion and negation of ATAPI_IORDY are
described in the following three cases:

• Device never negates ATAPI_IORDY, devices keep ATAPI_
IORDY released: no wait is generated.

• Device negates ATAPI_IORDY before tA, but causes ATAPI_
IORDY to be asserted before tA. ATAPI_IORDY is released prior
to negation and may be asserted for no more than 5 ns
before release: no wait is generated.

• Device negates ATAPI_IORDY before tA. ATAPI_IORDY is
released prior to negation and may be asserted for no more
than 5 ns before release: wait is generated. The cycle com-
pletes after ATAPI_IORDY is reasserted. For cycles where a

ADSP-BF54x Blackfin Processor Hardware Reference 24-23

ATAPI Interface

wait is generated and ATAPI_DIOR is asserted, the device
places read data on ATAPI_D7–0 for the tRD before asserting
ATAPI_IORDY.

• ATAPI_DMACK is negated during a PIO data transfer.

Host Multi DMA Block Implementation
The ATAPI device initiates a multi DMA transfer by asserting the ATAPI_
DMARQ line. It does so in response to READ DMA, WRITE DMA, READ
DMA QUEUED, WRITE DMA QUEUED and PACKET commands.
When the multiword DMA timing registers are programmed, and the

Figure 24-7. PIO Data Transfer to/from the Device Timing Diagram

ADDR3–1

WRITE
ATAPI_D15–0
ATAPI_D7–0

READ
ATAPI_D15–0
ATAPI_D7–0

ATAPI_IORDY

ATAPI_IORDY

ATAPI_IORDY

tA

ATAPI_IORDY

SETUP

ATAPI_DIOR/
ATAPI_DIOW

Functional Description

24-24 ADSP-BF54x Blackfin Processor Hardware Reference

MULTI_START bit is set, the host responds to the assertion of ATAPI_DMARQ
by starting a multi DMA transfer cycle as shown in Figure 24-8. Either
the device or the host can terminate the transfer cycle. The device termi-
nates the cycle by negating ATAPI_DMARQ; the host terminates the cycle by
negating ATAPI_DMACK.

The direction of the data transfer is controlled by the command issued to
the ATAPI devices and the XFER_DIR bit in the ATAPI_CONTROL register.
When set (1), the core’s response is a multi-DMA write cycle. When
cleared (0), the core’s response is a multi-DMA read cycle.

Figure 24-8. Initiating a Multiword DMA Burst

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

ATAPI_DIOR/

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOW

DMACK TO
ATAPI_DIOR

DATA
SETUP

READ/WRITE
DATA
HOLD

ATAPI_DIOW
SETUP

ADSP-BF54x Blackfin Processor Hardware Reference 24-25

ATAPI Interface

Setting the XFER_DIR bit to write (1) while a READ DMA (QUEUED)
command is issued or setting the XFER_DIR bit to read (0) while a WRITE
DMA (QUEUED) command is issued can lead to unpredictable results
and a deadlock condition (see Figure 24-9).

Table 24-2. Multiword DMA Transfer Timing Table

Multiword DMA Timing Parameters

t0 Cycle time1

1. For exact timing information, please refer to the ATA/ATAPI-6 Specification and BF54x Blackfin
Embedded Processor data sheet.

tD ATAPI_DIOR/ATAPI_DIOW asserted pulse width1

tE ATAPI_DIOR data access

tF ATAPI_DIOR data hold

tG ATAPI_DIOR/ATAPI_DIOW data setup

tH ATAPI_DIOW data hold

tI ATAPI_DMACK to ATAPI_DIOR/ATAPI_DIOW setup

tJ ATAPI_DIOR/ATAPI_DIOW to ATAPI_DMACK hold

tKR ATAPI_DIOR negated pulse width1

tKW ATAPI_DIOW negated pulse width1

tLR ATAPI_DIOR to ATAPI_DMARQ delay

tLW ATAPI_DIOW to ATAPI_DMARQ delay

tM ATAPI_CS1–0 valid to ATAPI_DIOR/ATAPI_DIOW

tN ATAPI_CS1–0 hold

tZ ATAPI_DMACK to read data released

Functional Description

24-26 ADSP-BF54x Blackfin Processor Hardware Reference

To terminate the data burst, the device negates the ATAPI_DMARQ within tL
of the assertion of the current ATAPI_DIOR or ATAPI_DIOW pulse. The last
data word for the burst is then transferred by the negation of the current
ATAPI_DIOR or ATAPI_DIOW pulse. If all data for the command has not been
transferred, the device re-asserts the ATAPI_DMARQ again at a later time to
resume the DMA operation as shown in Figure 24-10.

Figure 24-9. Sustaining a Multiword DMA Data Burst

ATAPI_DIOR
ATAPI_DIOW
DATA HOLD

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOR

ATAPI_DIOR/
ATAPI_DIOW

ATAPI_DIOW
DATA SETUP

ATAPI_DIOR
ATAPI_DIOW
DATA SETUP

ATAPI_DIOR
ATAPI_DIOW
DATA HOLD

ADSP-BF54x Blackfin Processor Hardware Reference 24-27

ATAPI Interface

Figure 24-10. Device Terminating a Multiword DMA Burst

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

ATAPI_DIOR/

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOW

ATAPI_DIOR / ATAPI_DIOW
TO ATAPI_DMARQ DELAY

Functional Description

24-28 ADSP-BF54x Blackfin Processor Hardware Reference

To terminate the transmission of a data burst, the host negates ATAPI_
DMACK within tJ after a ATAPI_DIOR or ATAPI_DIOW pulse. No further ATAPI_
DIOR or ATAPI_DIOW pulses are asserted for this burst. If the device is able
to continue the transfer of data, the device leaves the ATAPI_DMARQ asserted
and waits for the host to re-assert ATAPI_DMACK or negates ATAPI_DMARQ at
any time after detecting that ATAPI_DMACK is negated.

Figure 24-11. Host Terminating a Multiword DMA

ATAPI_CS1–0

ATAPI_DMARQ

ATAPI_DMACK

ATAPI_DIOR/

READ

WRITE

ATAPI_D15–0

ATAPI_D15–0

ATAPI_DIOW

ATAPI_DIOR / ATAPI_DIOW
TO ATAPI_DMACK HOLD

ADSP-BF54x Blackfin Processor Hardware Reference 24-29

ATAPI Interface

Host Ultra DMA Block Implementation
The following steps occur during Ultra DMA-IN transfers.

Initiating an Ultra DMA Data-In Burst

1. The host keeps ATAPI_DMACK in the negated state before an Ultra
DMA burst is initiated.

2. The device asserts ATAPI_DMARQ to initiate an Ultra DMA burst
when ATAPI_DMACK is negated. After assertion of ATAPI_DMARQ the
device does not negate ATAPI_DMARQ until after the first negation of
ATAPI_DSTROBE.

3. Steps (c), (d), and (e) may occur in any order or at the same time.
The host asserts ATAPI_STOP.

4. The host negates ATAPI_HDMARDY.

5. The host negates ATAPI_CS1–0 and ADDR3–1. The host keeps ATAPI_
CS1–0 and ADDR3–1 negated until after negating ATAPI_DMACK at the
end of the burst.

6. Steps (c), (d), and (e) occurred at least tACK before the host asserts
ATAPI_DMACK. The host keeps ATAPI_DMACK asserted until the end of
an Ultra DMA burst.

7. The host releases D15–0 within tAZ after asserting ATAPI_DMACK.

8. The device may assert ATAPI_DSTROBE tZIORDY after the host has
asserted ATAPI_DMACK. Once the device has driven ATAPI_DSTROBE
the device does not release ATAPI_DSTROBE until after the host has
negated ATAPI_DMACK at the end of an Ultra DMA burst.

Functional Description

24-30 ADSP-BF54x Blackfin Processor Hardware Reference

9. The host negates ATAPI_STOP and assert ATAPI_HDMARDY within
tENV after asserting ATAPI_DMACK. After negating ATAPI_STOP and
asserting ATAPI_HDMARDY, the host does not change the state of
either signal until after receiving the first negation of ATAPI_
DSTROBE from the device (for example, after the first data word is
received).

10.The device drives ATAPI_D15–0 no sooner than tZAD after the host
has asserted ATAPI_DMACK, negated ATAPI_STOP, and asserted ATAPI_
HDMARDY.

11.The device drives the first word of the data transfer onto D15–0.
This step may occur when the device first drives D15–0 in step (j).

12.To transfer the first word of data the device negates ATAPI_DSTROBE
within tFS after the host has negated ATAPI_STOP and asserted
ATAPI_HDMARDY. The device negates ATAPI_DSTROBE no sooner than
tDVS after driving the first word of data onto ATAPI_D15–0.

ADSP-BF54x Blackfin Processor Hardware Reference 24-31

ATAPI Interface

In Figure 24-12, the definitions for the ATAPI_DIOW, ATAPI_STOP, ATAPI_
DIOR, ATAPI_HDMARDY, ATAPI_HSTROBE, ATAPI_IORDY, ATAPI_DDMARDY, and
ATAPI_DSTROBE signal lines are not in effect until ATAPI_DMARQ and ATAPI_
DMACK are asserted.

Figure 24-12. Initiating an Ultra DMA Data-In Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

ATAPI_ADDR3–1

ATAPI_D15–0

ATAPI_CS1–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

ATAPI_DMACK TOATAPI_DMACK
SETUP ATAPI_STOP/ATAPI_HDMARDY

Functional Description

24-32 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 24-13, the ATAPI_D15–0 and ATAPI_DSTROBE signals are shown at
both the host and the device to emphasize that cable settling time, as well
as cable propagation delay does not allow the data signals to be considered
stable at the host until some time after they are driven by the device. See
“Data-In Transfer” on page 24-32.

Data-In Transfer

1. The device drives a data word onto ATAPI_D15–0.

2. The device generates a ATAPI_DSTROBE edge to latch the new word
no sooner than tDVS after changing the state of ATAPI_D15–0. The
device generates a ATAPI_DSTROBE edge no more frequently than
tCYC for the selected Ultra DMA mode. The device does not gener-
ate two rising or two falling ATAPI_DSTROBE edges more frequently
than t2CYC for the selected Ultra DMA mode.

3. The device does not change the state of ATAPI_D15–0 until at least
tDVH after generating a ATAPI_DSTROBE edge to latch the data.

4. The device repeats steps (a), (b), and (c) until the Ultra DMA burst
is paused or terminated by the device or host.

Figure 24-13. Sustaining a Ultra DMA Data IN Burst

ATAPI_DSTROBE

ATAPI_D15–0

ATAPI_DSTROBE

ATAPI_D15–0

(at host)

(at device)

(at device)

(at host)

ADSP-BF54x Blackfin Processor Hardware Reference 24-33

ATAPI Interface

Device pausing an Ultra DMA Data-In Burst

1. The device does not pause an Ultra DMA burst until at least one
data word of an Ultra DMA burst is transferred.

2. The device pauses an Ultra DMA burst by not generating addi-
tional ATAPI_DSTROBE edges

3. The device resumes an Ultra DMA burst by generating a ATAPI_
DSTROBE edge.

Host pausing an Ultra DMA Data-In Burst

1. The host does not pause an Ultra DMA burst until at least one data
word of an Ultra DMA burst is transferred.

2. The host pauses an Ultra DMA burst by negating ATAPI_HDMARDY.

3. The device stops generating ATAPI_DSTROBE edges within tRFS of
the host negating ATAPI_HDMARDY.

4. When operating in Ultra DMA modes 2, 1, or 0, the host is pre-
pared to receive zero, one, or two additional data words after
negating ATAPI_HDMARDY. While operating in Ultra DMA modes 5,
4, or 3, the host can receive zero, one, two, or three additional data
words after negating ATAPI_HDMARDY.The additional data words are
a result of cable round trip delay and tRFS timing for the device.

5. The host resumes an Ultra DMA burst by asserting ATAPI_HDMARDY.

Functional Description

24-34 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 24-14, the host may assert ATAPI_STOP to request termination of
the ultra DMA burst no sooner than tRP after ATAPI_HDMARDY is negated.
After negating ATAPI_HDMARDY, the host may receive zero, one, two, or
three more data words from the device.

Figure 24-14. Host Pausing an Ultra DMA Data-In Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

D15–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

READY-TO-FINAL
STROBE

ADSP-BF54x Blackfin Processor Hardware Reference 24-35

ATAPI Interface

Ultra DMA Timing

Table 24-3. Ultra DMA Sender and Recipient Timing Parameters

Name Description

t2CYCTYP Typical sustained average two-cycle time

tCYC Cycle time allowing for asymmetry and clock variations (from STROBE edge to
STROBE edge)

t2CYC Two cycle time allowing for variations (from rising edge to next rising edge or from fall-
ing edge to next falling edge of STROBE)

tDS Data setup time at recipient (from data valid until STROBE edge)1,2

tDH Data hold time at recipient (from STROBE edge until data may become invalid)1,2

tDVS Data valid setup time at sender (from data valid until STROBE edge)3

tDVH Data valid hold time at sender (from STROBE edge until data may become invalid)3

tCS CRC word setup time at device1

tCH CRC word hold time device1

tCVS CRC word valid setup time at host (from CRC valid until ATAPI_DMACK negation)3

tCVH CRC word valid hold time at sender (from DMAC negation until CRC may become
invalid)3

tZFS Time from STROBE output released-to-driving until the first transition of critical tim-
ing

tDZFS Time from data output released-to-driving until the first transition of critical timing

tFS First STROBE time (for device to first negate ATAPI_DSTROBE from ATAPI_STOP
during a data burst)

tLI Limited interlock time4

tMLI Interlock time with minimum4

tUI Unlimited interlock time4

tAZ Maximum time allowed for output drivers to release (from asserted or negated)

tZAH Minimum delay time required for output

tZAD Drivers to assert or negate (from released)

tENV Envelope time (from ATAPI_DMACK to ATAPI_STOP and ATAPI_HDMARDY dur-
ing data-in burst initiation and from ATAPI_DMACK to ATAPI_STOP during
data-out burst initiation)

Functional Description

24-36 ADSP-BF54x Blackfin Processor Hardware Reference

tRFS Ready-to-final-STROBE time (no STROBE edges are sent this long after negation of
ATAPI_DDMARDY)

tRP Ready-to-pause time (that recipient waits to pause after negating ATAPI_DDMARDY)

tIORDYZ Maximum time before releasing ATAPI_IORDY

tZIORDY Minimum time before driving ATAPI_IORDY5

tACK Setup and hold times for ATAPI_DMACK (before assertion or negation)

tSS Time from STROBE edge to negation of ATAPI_DMARQ or assertion of ATAPI_
STOP (when sender terminates a burst)

tDSIC Recipient IC data setup time (from data valid until STROBE edge)6

tDH Recipient IC data hold time (from STROBE edge until data becomes invalid)6

tDVS Sender IC data valid setup time (from data valid until STROBE edge)7

tDVH Sender IC data valid hold time (from STROBE edge until data becomes invalid)7

1. 80-conductor cabling (see Annex A) IS required in order to meet setup (tDS,tCS) and hold
(tDH,tCH) time in modes greater than 2.

2. The parameters tDS and tDH for mode 5 are defined for a recipient at the end of the cable on line
in a configuration with one device at the end of the cable.

3. Timing for tDVS, tDVH, tCVS, and tCVH shall be met for lumped capacitive loads of 15 and 40 pF
at the connector where the Data and STROBE signals have the same capacitive load value. Due
to reflections on the cable, these timing measurements are not valid in a normally functioning
system.

4. The parameters tUI, tMLI and tLI indicate sender-to-recipient or recipient-to-sender interlocks.
For example, one agent (either sender or recipient) is waiting for the other agent to respond with
a signal before proceeding. tUI is an unlimited interlock that has no maximum time value. tMLI
is a limited time-out that has a defined minimum. tLI is a limited time-out that has a defined
maximum.

5. For all modes the parameter tZIORDY may be greater than tENV due to the fact that the host has
a pull-up on ATAPI_IORDY giving it a known state when released.

6. The correct data value is captured by the recipient given input data with a slew rate of 0.4 V/ns
(rising and falling) and the input STROBE with a slew rate of 0.4 V/ns (rising and falling) at
tDSIC and tDHIC timing (as measured through 1.5 V).

7. The parameters tDVSIC and tDVHIC are met for lumped capacitive loads of 15 and 40 pF at the
IC where all signals have the same capacitive load value. Noise that may couple onto the output
signals by external sources in a normally functioning system has not been included in these val-
ues.

Table 24-3. Ultra DMA Sender and Recipient Timing Parameters

Name Description

ADSP-BF54x Blackfin Processor Hardware Reference 24-37

ATAPI Interface

In Figure 24-15, the definitions for the ATAPI_STOP, ATAPI_HDMARDY, and
ATAPI_DSTROBE signal lines are not in effect after ATAPI_DMARQ and ATAPI_
DMACK are negated. See“Device Terminating the Ultra DMA Data-In
Transfer” on page 24-18

Figure 24-15. Device Terminating Ultra DMA Data-In Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

ATAPI_DMARQ TO

ATAPI_STOP/ATAPI_HDMARDY

ATAPI_DSTROBE TO

INTERLOCK
TIME

ATAPI_DMARQ
NEGATION

Functional Description

24-38 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 24-16, the definitions for the ATAPI_STOP, ATAPI_HDMARDY, and
ATAPI_DSTROBE signal lines are not in effect after ATAPI_DMARQ and ATAPI_
DMACK are negated. See “Host Terminating the Ultra DMA Data-In Trans-
fer” on page 24-17.

Figure 24-16. Host Terminating Ultra DMA Data-In Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_HDMARDY

ATAPI_DSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(DEVICE)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(HOST)

READY TO
PAUSE TIME

READY TO
FINAL STROBE

LIMITED
INTERLOCK

TIME

ADSP-BF54x Blackfin Processor Hardware Reference 24-39

ATAPI Interface

Ultra DMA-Out Timing

Figure 24-17. Initiating Ultra DMA Data-Out Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

(HOST)

LIMITED
INTERLOCK

TIME

UNLIMITED
INTERLOCK

TIME

Functional Description

24-40 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 24-18. Sustaining Ultra DMA Data-Out Burst

Figure 24-19. Device Pausing Ultra DMA Data-Out Burst

ATAPI_HSTROBE

D15–0

ATAPI_HSTROBE

D15–0

(at device)

(at host)

(at host)

(at device)

DATA
SETUP

DATA
HOLD

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

D15–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

READY-TO-FINAL
STROBE

ADSP-BF54x Blackfin Processor Hardware Reference 24-41

ATAPI Interface

In Figure 24-20, the definitions for the ATAPI_STOP, ATAPI_DDMARDY, and
ATAPI_HSTROBE signal lines are no longer in effect after ATAPI_DMARQ and
ATAPI_DMACK are negated. See “Host Terminating Ultra DMA Data-Out
Transfer” on page 24-18.

Figure 24-20. Host Terminating Ultra DMA Data-Out Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

ATAPI_DSTROBE TO
ATAPI_STOP
ASSERTION

LIMITED
INTERLOCK

ATAPI_DMACK
HOLD

Functional Description

24-42 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 24-21, the definitions for the ATAPI_STOP, ATAPI_DDMARDY, and
ATAPI_HSTROBE signal lines are no longer in effect after ATAPI_DMARQ and
ATAPI_DMACK are negated. See “Device Terminating the Ultra DMA
Data-Out Transfer” on page 24-18.

Figure 24-21. Device Terminating Ultra DMA Data OUT Burst

ATAPI_DMACK

ATAPI_STOP

ATAPI_DDMARDY

ATAPI_HSTROBE

ADDR3–1

D15–0

ATAPI_CS1–0

(HOST)

ATAPI_DMARQ
(DEVICE)

(HOST)

(HOST)

(DEVICE)

READY TO
PAUSE TIME

INTERLOCK TIME
WITH MINIMUM

LIMITED
INTERLOCK

TIME
ATAPI_DMACK

HOLD

ADSP-BF54x Blackfin Processor Hardware Reference 24-43

ATAPI Interface

Programming Model
The following sections describe the ATAPI peripheral’s programming
model.

ATAPI Device Configuration and Setup
1. Detection of devices on ATAPI Cable

• Power-On–Reset protocol

• Execute device diagnostic command & hardware
initialization

• Read the device signature

2. Identifying the features of devices on ATAPI Cable

• Select each device & execute IDENTIFY DEVICE
Command

• Read the signature of each device and decode the features
supported

3. Selecting a Device, configuring the device and executing the
commands

• Select a device

• Configure the device with the mode supported (PIO, DMA,
ultra DMA)

• Prepare the device, deliver & execute the command.

Programming Model

24-44 ADSP-BF54x Blackfin Processor Hardware Reference

The basic data flow operation from ATAPI host to ATAPI device is
described as follows:

• ATAPI host reads a pre-defined buffer descriptor, decodes it, and
gets the length and start address.

• Fetches the data and processes it.

• Selects a device by doing a register write transfer for setting the DEV
bit in the device control register.

• Writes all device command block parameters for the command
(such as, sector count, LBA, features, among others)

Figure 24-22. ATAPI Device and Host Configuration

ATAPI DEVICE 0

CONTROL BLOCK

COMMAND BLOCK

SECTOR BUFFERSTORAGE MEMORYGND

DASP-

ATAPI HOST

ATAPI DEVICE 1

CONTROL BLOCK

COMMAND BLOCK

SECTOR BUFFERSTORAGE MEMORY

ATAPI_DD15–0CONTROL

CABLE
SELECT

CABLE
SELECT

ATAPI_PDIAG

ADSP-BF54x Blackfin Processor Hardware Reference 24-45

ATAPI Interface

• Splits the complete data for the current command in terms of
DRQ blocks

• Polls the device status register (BSY bit) to check if device is ready
for transfer (interrupt of device is disabled) or else waits for inter-
rupt (ATAPI_INTRQ) from device and then reads the status register.

• Triggers the ATAPI controller for DMA transfers equal to the
length of the DRQ block size to/from device data port (using
PIO/DMA/Ultra DMA transfers) or vice-versa. This is repeated
until all the data for the current command is completed.

PIO Data-out Transfers Pseudo-code
//Select the Device

Read Device register (Device Control, Dev bit);

If (not selected)

 Write device register (Device Control, Dev bit);

 Read Device register (Device Control, Dev bit);

// Initialize the Device parameters for the command

Write Device Parameters

 (Sector count Register: Command Data size;

 Feature Register: Specific Data;

 LBA High Register: yy;

 LBA Mid Register: xx;

 LBA Low Register: zz;

)

// Write Device Command

Write Device Register (Command Register, WRITE SECTOR);

// Start Data Transfer

 // Check if the device is ready for data transfer

 Check Device Register (Status Register, bsy=0, drq = 1);

Programming Model

24-46 ADSP-BF54x Blackfin Processor Hardware Reference

 Start DMA (length: DRQ blockn, addr: x0,

pio_start: 1, xfer_dir: 1)

 Check Device Register (Status Register, bsy =0, drq =0);

// Command Completed

Host Multiword DMA Transfers Pseudo-code
// Select the Device

Read Device register (Device Status);

If (not selected)

Write device register (Device Control, Dev bit);

Read Device register (Device Status);

// Initialize the Device parameters for the command

Write Device Parameters (Sector count Register: Command Data

size;

Feature Register: Specific Data;

LBA High Register: yy;

LBA Mid Register: xx;

LBA Low Register: zz;

)

// Write Device Command

Write Device Register (Command Register, WRITE DMA);

// Start Data Transfer

While (Data Transferred < command data size)

{

// Check the device is ready for data transfer

Check Device Register (Status Register, (bsy=0, drq = 1) or

(bsy=1,drq=0));

Start DMA (length: DRQ block1, addr: xxxx,

ultra_start: 1, xfer_dir: 1)

}

ADSP-BF54x Blackfin Processor Hardware Reference 24-47

ATAPI Interface

Wait for INTRQ_wait () // Host input flag checking

Check Device Register (Status Register, (bsy=0, drq = 0) ;

Host Ultra DMA Command Protocol Transfers
Pseudo-code

Prepare_device (cmd, length, tfr_type);

 {

device_register_write (sector_count_reg, length);

device_register_write (lbah_reg, lbah);

device_register_write (lbam_reg, lbam);

device_register_write (lbal_reg, lbal);

device_register_write (command_reg, cmd);

}

cur_len = length;

while(cur_len > cur_dmasize)

{

 {

 do_tx (cur_dmasize , cur_dmem_addr, tfr_type, last_

burst=0);

write_pio (DEV_ADDR, 0);

write_pio (DMEM_LEN, cur_dmasize);

write_pio (DMEM_ADDR, cur_dmem_addr);

write_pio (ATAPI_CONTROL,

xfer_dir_bit,ULTRA_OUT_START);

wait for ATAPI_DONE_FLAG;

}

 cur_len = cur_len – cur_dmasize);

 cur_dmem_addr = cur_dmem_addr + cur_dmasize;

}

ATAPI Registers

24-48 ADSP-BF54x Blackfin Processor Hardware Reference

 if (cur_len != 0)

 do_tx (cur_dmasize , cur_dmem_addr, tfr_type, last_burst=1);

ATAPI Registers
The ATAPI interface’s memory-mapped registers (MMRs) regulate its
operation. Descriptions and bit diagrams for each of these MMRs are pro-
vided in the following sections.

Table 24-4 on page 24-48 lists the ATAPI memory-mapped registers,
starting at base address 0xFFC03800. Register addresses are given relative
to the base address.

Table 24-4. ATAPI Core Registers

Register Name ADDRESS Description

ATAPI control registers

ATAPI_CONTROL 0xFFC03800 ATAPI control on page 24-50

ATAPI_STATUS 0xFFC03804 ATAPI status on page 24-52

ATAPI_DEV_ADDR 0xFFC03808 ATAPI device address on page 24-53

ATAPI_DEV_TXBUF 0xFFC0380C ATAPI device transmit buffer on page 24-54

ATAPI_DEV_RXBUF 0xFFC03810 ATAPI device receive buffer on page 24-55

ATAPI_INT_MASK 0xFFC03814 ATAPI interrupt mask on page 24-56

ATAPI_INT_STATUS 0xFFC03818 ATAPI interrupt status on page 24-57

ATAPI_XFER_LEN 0xFFC0381C ATAPI transfer length on page 24-59

ATAPI_LINE_STATUS 0xFFC03820 ATAPI line status on page 24-60

ATAPI_SM_STATE 0xFFC03824 ATAPI state machine status on page 24-61

ATAPI_TERMINATE 0xFFC03828 ATAPI terminate on page 24-61

ATAPI_PIO_TFRCNT 0xFFC0382C ATAPI PIO transfer count on page 24-62

ADSP-BF54x Blackfin Processor Hardware Reference 24-49

ATAPI Interface

ATAPI Control and Status Registers
This section describes the details of the ATAPI core registers.

ATAPI_DMA_TFRCNT 0xFFC03830 ATAPI multi-word DMA transfer count
on page 24-62

ATAPI_ULTRA_IN_
TFRCNT

 0xFFC03834 ATAPI ultra-DMA in transfer count
on page 24-63

ATAPI_ULTRA_OUT_
TFRCNT

 0xFFC03838 ATAPI ultra-DMA out transfer count
on page 24-64

PIO and REG Mode Registers

ATAPI_REG_TIM_0 0xFFC03840 ATAPI register transfer timing 0 on page 24-64

ATAPI_PIO_TIM_0 0xFFC03844 ATAPI programmed I/O timing 0 on page 24-65

ATAPI_PIO_TIM_1 0xFFC03848 ATAPI programmed I/O timing 1 on page 24-65

Multi-DMA mode registers

ATAPI_MULTI_TIM_0 0xFFC03850 ATAPI multi-DMA timing 0 on page 24-66

ATAPI_MULTI_TIM_1 0xFFC03854 ATAPI multi-DMA timing 1 on page 24-66

ATAPI_MULTI_TIM_2 0xFFC03858 ATAPI multi-DMA timing 2 on page 24-67

Ultra-DMA mode registers

ATAPI_ULTRA_TIM_0 0xFFC03860 ATAPI ultra-DMA timing 0 on page 24-67

ATAPI_ULTRA_TIM_1 0xFFC03864 ATAPI ultra-DMA timing 1 on page 24-68

ATAPI_ULTRA_TIM_2 0xFFC03868 ATAPI ultra-DMA timing 2 on page 24-68

ATAPI_ULTRA_TIM_3 0xFFC0386C ATAPI ultra-DMA timing 3 on page 24-69

Table 24-4. ATAPI Core Registers (Cont’d)

Register Name ADDRESS Description

ATAPI Registers

24-50 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Control Register (ATAPI_CONTROL)

The ATAPI_CONTROL register (see Figure 24-23) starts, stops, and selects
termination handling for ATAPI data transfers.

Figure 24-23. ATAPI Control Register (ATAPI_CONTROL)

ATAPI Control Register (ATAPI_CONTROL)

Reset = 0x0000

Read/Write

 0xFFC03800

PIO_START (Start PIO/Reg Op)

0 - Complete data transferred to
 ATAPI device
1 - Starts the PIO/register op

MULTI_START (Start Multi DMA Op)

0 - Complete data transferred to
 ATAPI device
1 - Starts the multiword DMA op

XFER_DIR (Transfer Direction)

0 - Read from Device (dev to host)
1 - Write to Device (host to dev)

ULTRA_START (Start Ultra DMA Op)

0 - Complete data transferred to
 ATAPI device
1 - Starts the ultra DMA operation

IORDY_EN (IORDY Enable)

0 - Using PIO mode2 and below
1 - Using PIO mode3 and above

FIFO_FLUSH (Flush FIFOs)

0 - Enable buffers (second, to
 re-start transfers)
1 - Flush buffers (first)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_IN_FIFO_THRS
(Ultra DMA-IN FIFO Threshold)

If the FIFO level reaches the thresh-
old value, the ultra DMA IN Engine
asserts ATAPI_HDMARDY

PIO_USE_DMA (PIO-DMA Enable)

0 - Disable PIO mode DMA
1 - Enable PIO mode to use DMA

TFRCNT_RST (Trans Count Reset)

0 - Cleared on cycle after reset (by hwr)
1 - Resets all the transfer counts

DETECT_TERM (End/Terminate Select)

0 - Flow terminate or Fatal Terminate
 (ATAPI firmware control)
1 - Pause/Re-start Flow
 (ATAPI state machine control)

DEV_RST (Device Reset)

0 - De-asserts the Reset to the
 Device
1 - Asserts Reset to the Device

SOFT_RST (Soft Reset)

0 - Enable state machines (second,
 to re-start transfers)
1 - Reset all state machines (first)

ADSP-BF54x Blackfin Processor Hardware Reference 24-51

ATAPI Interface

The PIO_START, MULTI_START, and ULTRA_START bits start transfer opera-
tions. These bits are reset by the ATAPI host only after the complete data
is transferred on the ATAPI device or when an error occurs during the
transfer.

The FIFO_FLUSH bit flushes the various FIFOs in the system to a known
state. This flush may be required if some data remains in the FIFO
because of early termination of transfers. The bit should be set to flush the
FIFO and then cleared by the firmware to restart the transfers.

The ATAPI_CONTROL register includes a number of reset bits. The SOFT_RST
bit resets all state machines of the ATAPI host independent of the ATAPI
device state. Firmware sets the SOFT_RST bit to reset all state machines,
then firmware clears the SOFT_RST bit to restart the transfers. The DEV_RST
bit, when set, asserts a reset to the ATAPI device. The DEV_RST bit must be
cleared to deassert the reset. The TFRCNT_RST bit resets all the transfer
counts. The host firmware asserts TFRCNT_RST to reset all the transfer
counts, and the hardware clears the TFRCNT_RST bit in the next cycle.

The END_ON_TERM bit selects operation when a device terminate sequence
occurs and selects whether the ATAPI host or firmware controls the restart
of the transfer. When END_ON_TERM is set (=1), if the device initiates the
terminate sequence before the complete data for the command is trans-
ferred, the ATAPI host state machine waits in its intermediate state for the
device response to restart the transfer for the remaining data to be trans-
ferred. If END_ON_TERM is cleared (=0), if the device initiates the terminate
sequence before the complete data for the command is transferred, the
ATAPI host state machine goes to the idle state and asserts the MULTI_
TERM_INT flag in the ATAPI interrupt status register along and updates the
corresponding transfer count. This gives control to the ATAPI firmware
to decide further operation. The ATAPI firmware can then read the device
status register to know whether it was a flow terminate or a fatal
terminate.

ATAPI Registers

24-52 ADSP-BF54x Blackfin Processor Hardware Reference

The PIO_USE_DMA bit is set to enable PIO mode to use DMA. By default,
PIO DMA usage is disabled and data transfer in PIO mode happens by
writing into the ATAPI_DEV_TXBUF register and performing one transfer at a
time.

The ULTRA_IN_FIFO_THRS bits select the ultra DMA input FIFO threshold.
If the FIFO level reaches the threshold value, the ultra DMA input engine
asserts the ATAPI_HDMARDY pin to signal to the device to stop transferring
the data.

ATAPI Status Register (ATAPI_STATUS)

The ATAPI_STATUS register (see Figure 24-24) provides status information
on ATAPI data transfers in progress.

Figure 24-24. ATAPI Status Register (ATAPI_STATUS)

ATAPI Status Register (ATAPI_STATUS)

Reset = 0x0000

Read-only

 0xFFC03804

PIO_XFER_ON (PIO transfer in
progress) - RO

0 - No PIO transfer
1 - Indicates that a PIO transfer
 is in progress

MULTI_XFER_ON (multi-word
DMA transfer in progress) - RO
0 - No multi DMA transfer
1 - Indicates that a multi DMA
 transfer is in progress

ULTRA_XFER_ON (ultra DMA
transfer in progress) - RO
0 - No ultra DMA transfer
1 - Indicates that a ultra DMA
 transfer is in progress

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_IN_FL (ultra DMA
input FIFO level) - RO
Indicates current number of
words in the ultra DMA input
FIFO

ULTRA_IN_FIFO_EMPTY - RO
Indicates if the ultra DMA input
FIFO is empty

ADSP-BF54x Blackfin Processor Hardware Reference 24-53

ATAPI Interface

ATAPI Device Address Register (ATAPI_DEV_ADDR)

The ATAPI_DEV_ADDR register (see Figure 24-25) selects the ATAPI device
address.

The DEV_ADDR bits contain the address of the device register or the device
PIO data port. Based on this address, the ATAPI block decides whether to
perform a PIO data port operation or device register operation.

Figure 24-25. ATAPI Device Address Register (ATAPI_DEV_ADDR)

Table 24-5. DEV_ADDR Bit Field Value Ranges

Address Value Description

0x00 PIO / DMA /Ultra DMA Data port

0x01 – 0x07 Device Command Block Registers

0x08 – 0x0F Device Control Block Registers

ATAPI Device Address Register (ATAPI_DEV_ADDR)

Reset = 0x0000

Read/Write

0xFFC03808

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DEV_ADDR (device address)
Indicates address of the device
register or the device PIO data
port

ATAPI Registers

24-54 ADSP-BF54x Blackfin Processor Hardware Reference

The ATAPI host firmware should program the ATAPI_DEV_ADDR register
with the address of the device register, which is being accessed.

ATAPI Device Transmit Buffer Register (ATAPI_DEV_TXBUF)

The ATAPI_DEV_TXBUF register (see Figure 24-26) holds write data for the
ATAPI device register write transfers.

Table 24-6. ATAPI_DEV_ADDR Register Address Values

Address Value Description

0x01 Error/Feature

0x02 Sector Count

0x03 LBA (low)

0x04 LBA (mid)

0x05 LBA (high)

0x06 Device

0x07 Status/Command

0x0E Alternate Status/Device Control

Figure 24-26. ATAPI Device Transmit Buffer (ATAPI_DEV_TXBUF)

ATAPI Device Transmit Buffer Register (ATAPI_DEV_TXBUF)

Reset = 0x0000

Read/Write

0xFFC0380c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

REG_TXBUFFER (device trans buffer)
Write data for the device regis-
ter write transfers. This register
needs to be programmed with
the data to be written in to the
device register.

ADSP-BF54x Blackfin Processor Hardware Reference 24-55

ATAPI Interface

ATAPI Device Receive Buffer Register (ATAPI_DEV_RXBUF)

The ATAPI_DEV_RXBUF register (see Figure 24-26) holds receive data for the
ATAPI device register read transfers.

Figure 24-27. ATAPI Device Receive Buffer (ATAPI_DEV_RXBUF)

ATAPI Device Receive Buffer Register (ATAPI_DEV_RXBUF)

Reset = 0x0000

Read/Write

0xFFC03810

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

REG_RXBUFFER (device Rx buffer)
Read data for the device regis-
ter read transfers. After device
register read operation, ATAPI
host updates this register with
the data read from the device.

ATAPI Registers

24-56 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Interrupt Mask (ATAPI_INT_MASK) Register

The ATAPI_INT_MASK register (see Figure 24-28) enables interrupt sources
to assert the interrupt output. Each mask bit corresponds to one interrupt
source bit in the ATAPI interrupt status (ATAPI_INT_STAT) register. For
more information about these interrupts, see “ATAPI Interrupt Status
Register (ATAPI_INT_STATUS)” on page 24-57.

Figure 24-28. ATAPI Interrupt Mask Register (ATAPI_INT_MASK)

ATAPI Interrupt Mask Register (ATAPI_INT_MASK)

Reset = 0x0000

Read/Write

0xFFC03814

ATAPI_DEV_INT_MASK

Indicates device interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

PIO_DONE_MASK

PIO transfer done interrupt
mask
0 - Mask interrupt
1 - Unmask interrupt

ULTRA_IN_DONE_MASK

ULTRA_IN transfer done
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

MULTI_DONE_MASK

Multi DMA transfer done interrupt
mask
0 - Mask interrupt
1 - Unmask interrupt

ULTRA_OUT_DONE_MASK

ULTRA_OUT transfer done
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_OUT_TERM_MASK

Device terminate ultra DMA-out transfer
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

MULTI_TERM_MASK

Device terminate Multi DMA transfer
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

ULTRA_IN_TERM_MASK

Device terminate ultra DMA-in transfer
interrupt mask
0 - Mask interrupt
1 - Unmask interrupt

HOST_TERM_XFER_MASK

Host terminate current transfer interrupt
mask
0 - Mask interrupt
1 - Unmask interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 24-57

ATAPI Interface

ATAPI Interrupt Status Register (ATAPI_INT_STATUS)

The ATAPI_INT_STATUS register (see Figure 24-29) contains information
about functional areas that require service.

After servicing the interrupt source associated with a bit, the user must
clear that interrupt source bit. ATA_DEV_INT is the interrupt generated by
the device. The rest of the interrupts are generated by the host. Either the

Figure 24-29. ATAPI Interrupt Status Register (ATAPI_INT_STATUS)

ATAPI Interrupt Status Register (ATAPI_INT_STATUS)

Reset = 0x0000

Read-only/Write-1-to-Clear

0xFFC03818

ATAPI_DEV_INT (W1C)

Indicates device interrupt status

0 - No interrupt latched
1 - Interrupt latched

PIO_DONE_INT (W1C)

PIO transfer done interrupt
status

0 - No interrupt latched
1 - Interrupt latched

ULTRA_IN_DONE_INT (W1C)

ULTRA_IN transfer done interrupt
status
0 - No interrupt latched
1 - Interrupt latched

MULTI_DONE_INT (W1C)

Multi DMA transfer done interrupt
status

0 - No interrupt latched
1 - Interrupt latched

ULTRA_OUT_DONE_INT (W1C)

ULTRA_OUT transfer done interrupt
status
0 - No interrupt latched
1 - Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_OUT_TERM_iNT (W1C)

Device terminate ultra DMA-out transfer
interrupt status
0 - No interrupt latched
1 - Interrupt latched

MULTI_TERM_INT (W1C)

Device terminate Multi DMA transfer
interrupt status
0 - No interrupt latched
1 - Interrupt latched

ULTRA_IN_TERM_INT (W1C)

Device terminate ultra DMA-in transfer
interrupt status
0 - No interrupt latched
1 - Interrupt latched

HOST_TERM_XFER_INT (W1C)

Host terminate current transfer interrupt
status
0 - No interrupt latched
1 - Interrupt latched

ATAPI Registers

24-58 ADSP-BF54x Blackfin Processor Hardware Reference

device or the host interrupt can be used by the firmware. If the corre-
sponding interrupt mask bit in the ATAPI_INT_STAT register is not set,
there is no interrupt generated. For more information about masking
these interrupts, see “ATAPI Interrupt Mask (ATAPI_INT_MASK) Reg-
ister” on page 24-56.

The ATAPI_DEV_INT (W1C) bit indicates an ATAPI device interrupt is
asserted on the ATAPI interface by the device. It is cleared by writing a 1.

The PIO_DONE_INT, MULTI_DONE_INT, ULTRA_IN_DONE_INT, and ULTRA_OUT_
DONE_INT (W1C) bits indicate that interrupts have been asserted on com-
pletion of various types of transfers.

The HOST_TERM_XFER_INT (W1C) bit indicates that the interrupt is
asserted on host termination of the current transfer.

The MULTI_TERM_INT (W1C) bit indicates that the interrupt is asserted on
device termination of the multiword DMA transfer. The MULTI_TERM_INT
bit is set when the device initiates a termination sequence before the com-
plete data is transferred in multiword DMA mode (for example, when
programmed XFER_LEN of ATA words have not been transferred across the
device). If DETECT_TERM is not set, the control is passed on to the firmware,
and the firmware can read the device status register to detect the reason for
early termination.

The ULTRA_IN_TERM_INT and ULTRA_OUT_TERM_INT (W1C) bits indicate
that interrupts have been asserted on device termination of ultra DMA in
or out transfers. The ULTRA_IN_TERM_INT or ULTRA_OUT_TERM_INT bits are
set when the device initiates a termination sequence before the complete
data is transferred in ultra DMA in or out mode (for example, when pro-
grammed XFER_LEN of ATA words have not been transferred across the
device). If DETECT_TERM is not set, control is passed on to the firmware,
and the firmware can read the device status register to detect the reason for
early termination.

ADSP-BF54x Blackfin Processor Hardware Reference 24-59

ATAPI Interface

ATAPI Transfer Length Register (ATAPI_XFER_LEN)

The ATAPI_XFER_LEN register (see Figure 24-30) holds the transfer length
in number of ATA words (1 ATA word = 2 bytes). This register needs to
be programmed with the number of ATA words that need to be trans-
ferred from device to host or vice versa. This register value is used for all
three transfer modes – PIO, DMA, and ultra DMA. As the transfer
progresses, this register is constantly updated with the number of ATA
words that are pending to be transferred.

Figure 24-30. ATAPI Transfer Length Register (ATAPI_XFER_LEN)

ATAPI Transfer Length Register (ATAPI_XFER_LEN)

Reset = 0x0000

Read/Write

0xFFC0381c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

XFER_LENGTH (transfer length)
The transfer length (in number of ATA
words) needs to be programmed with the
number of sectors to be transferred from
device to host or vice versa.

ATAPI Registers

24-60 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Line Status Register (ATAPI_LINE_STATUS)

The ATAPI_LINE_STATUS register (see Figure 24-31) provides line status
information on the ATAPI interface activity.

Figure 24-31. ATAPI Line Status Register (ATAPI_LINE_STATUS)

ATAPI Line Status Register (ATAPI_LINE_STATUS)

Reset = 0x0000

Read-only

0xFFC03820

ATAPI_INTR (RO)

Device interrupt to host
line status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ATAPI_DASP (RO)

Device DASP to host
line status

ATAPI_CS0N (RO)

ATAPI chip select-0
line status

ATAPI_CS1N (RO)

ATAPI chip select-1
line status

ATAPI_ADDR[2:0] (RO)

ATAPI address
line status

ATAPI_IORDY (RO)

ATAPI I/O ready
line status

ATAPI_DIORN (RO)

ATAPI read
line status

ATAPI_DIOWN (RO)

ATAPI write
line status

ATAPI_DMACKN (RO)

ATAPI DMA acknowledge
line status

ATAPI_DMARQ (RO)

ATAPI DMA request
line status

ADSP-BF54x Blackfin Processor Hardware Reference 24-61

ATAPI Interface

ATAPI State Machine Status Register (ATAPI_SM_STATE)

The ATAPI_SM_STATE register (see Figure 24-32) provides state machine
status information on the ATAPI interface.

ATAPI Host Terminate Register (ATAPI_TERMINATE)

When set to 1, the ATAPI_TERMINATE register (see Figure 24-33) initiates a
terminate sequence on the device. Once the termination sequence is over,
bit 0 is reset by the hardware. The ATAPI host firmware should wait until
this bit is cleared before taking any further operation, as the termination
sequence takes some time depending upon the device response.

Figure 24-32. ATAPI State Machine Status Register (ATAPI_SM_STATE)

Figure 24-33. ATAPI Terminate Register (ATAPI_TERMINATE)

ATAPI State Machine Status Register (ATAPI_SM_STATE)

Reset = 0x0000

Read-only

0xFFC03824

PIO_CSTATE [3:0] (RO)

PIO mode state machine
current state

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DMA_CSTATE [3:0] (RO)

DMA mode state machine
current state

ULTRA_OUT_CSTATE [3:0] (RO)

Ultra DMA out mode state
machine current state

ULTRA_IN_CSTATE [3:0] (RO)

Ultra DMA in mode state
machine current state

ATAPI Terminate Register (ATAPI_TERMINATE)

Reset = 0x0000

Read/Write

0xFFC03828

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ATAPI_HOST_TERM
0 – No termination in progress
1 – Termination by host in progress

ATAPI Registers

24-62 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI PIO Transfer Count Register (ATAPI_PIO_TFRCNT)

The ATAPI_PIO_TFRCNT register (see Figure 24-34) indicates the PIO trans-
fer count. This count indicates the transfer count of ATA words
transferred across the device for the current DMA burst in PIO mode.
The count gets cleared by setting the TFRCNT_RST bit in the ATAPI_CONTROL
register. If the TFRCNT_RST bit was not set with the start of DMA burst, the
transfer count continues from the previous value.

ATAPI Multiword DMA Transfer Count (ATAPI_MULTI_TFRCNT)

The ATAPI_MULTI_TFRCNT register (see Figure 24-35) indicates the transfer
count of ATA words transferred across the device for the current DMA
burst in multiword DMA mode. The count gets cleared by setting the
TFRCNT_RST bit in the ATAPI_CONTROL register. If the TFRCNT_RST bit is not
set with the start of the DMA burst, the transfer count continues from the
previous value.

Figure 24-34. ATAPI PIO Transfer Count (ATAPI_PIO_TFRCNT)

ATAPI PIO Transfer Count Register (ATAPI_PIO_TFRCNT)

Reset = 0x0000

Read-only

0xFFC0382c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIO_TFRCNT (PIO trans count) - RO
PIO mode transfer count indicates the
transfer count of ATA words transferred
across the device for the current DMA
burst in PIO mode.

ADSP-BF54x Blackfin Processor Hardware Reference 24-63

ATAPI Interface

ATAPI Ultra DMA Transfer Count (ATAPI_ULTRA_IN_TFRCNT)

The ATAPI_ULTRA_IN_TFRCNT register (see Figure 24-36) indicates ultra
DMA in mode transfer count of ATA words transferred across the device
for the current DMA burst in ultra DMA in mode. The count gets cleared
by setting the TFRCNT_RST bit in the ATAPI_CONTROL register. If the TFRCNT_
RST bit is not set with the start of DMA burst, the transfer count continues
from the previous value.

Figure 24-35. ATAPI DMA Transfer Count (ATAPI_DMA_TFRCNT)

Figure 24-36. ATAPI Ultra DMA Transfer Count (ATAPI_ULTRA_IN_
TFRCNT) Register

ATAPI DMA Transfer Count Register (ATAPI_DMA_TFRCNT)

Reset = 0x0000

Read-only

0xFFC03830

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MULTI_TFRCNT (Multi DMA trans count) - RO
DMA mode transfer count indicates the trans-
fer count of ATA words transferred across the
device for the current DMA burst in multi
DMA mode.

ATAPI Ultra DMA Transfer Count Register (ATAPI_ULTRA_IN_TFRCNT)

Reset = 0x0000

Read-only

0xFFC03834

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_IN_TFRCNT (Ultra DMA In trans count) - RO
Ultra DMA-IN mode transfer count indicates
the transfer count of ATA words transferred
across the device for the current DMA burst
in Ultra DMA IN mode.

ATAPI Registers

24-64 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Ultra DMA OUT Transfer Count (ATAPI_ULTRA_OUT_
TFRCNT)

The ATAPI_ULTRA_OUT_TFRCNT register (see Figure 24-37) indicates ultra
DMA in mode transfer count of ATA words transferred across the device
for the current DMA burst in ultra DMA in mode. The count gets cleared
by setting the TFRCNT_RST bit in the ATAPI_CONTROL register. If the TFRCNT_
RST bit is not set with the start of DMA burst, the transfer count continues
from the previous value.

ATAPI Register Transfer Timing 0 (ATAPI_REG_TIM_0)

The ATAPI_REG_TIM_0 register (see Figure 24-38) holds timing parameter
settings (in terms of system clock counts) for register transfer operations.

Figure 24-37. ATAPI ULTRA_OUT Transfer Count (ATAPI_ULTRA_
OUT_TFRCNT)

Figure 24-38. ATAPI Register Transfer Timing 0 (ATAPI_REG_TIM_0)

ATAPI Ultra DMA Transfer Count Register (ATAPI_ULTRA_OUT_TFRCNT)

Reset = 0x0000

Read-only

0xFFC03838

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ULTRA_OUT_TFRCNT (Ultra DMA Out trans count) - RO
Ultra DMA OUT mode transfer count indi-
cates the transfer count of ATA words
transferred across the device for the current
DMA burst in Ultra DMA OUT mode.

ATAPI Register Transfer Timing 0 Register (ATAPI_REG_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03840

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TEOC_REG
End of cycle time for register
access transfers.

T2_REG
Selects ATAPI_DIOR and
ATAPI_DIOW pulsewidth.

ADSP-BF54x Blackfin Processor Hardware Reference 24-65

ATAPI Interface

ATAPI Programmed I/O Timing 0 (ATAPI_PIO_TIM_0)

The ATAPI_PIO_TIM_0 register (see Figure 24-39) holds timing parameter
settings (in terms of system clock counts) for programmed I/O operations.

ATAPI Programmed I/O Timing 1 (ATAPI_PIO_TIM_1)

The ATAPI_PIO_TIM_1 register (see Figure 24-40) holds timing parameter
settings (in terms of system clock counts) for programmed I/O operations.
The value of TEOC is T0-T2.

Figure 24-39. ATAPI Programmed I/O Timing 0 (ATAPI_PIO_TIM_0)

Figure 24-40. ATAPI Programmed I/O Timing 0 (ATAPI_PIO_TIM_1)

ATAPI Programmed I/O Timing 0 Register (ATAPI_PIO_TIM_0)

Reset = 0x3117

Read/Write

0xFFC03844

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 0 0 0 1 0 0 0 1 0 1 10 0

T4
Selects ATAPI_DIOW data hold

T1
Selects time from address valid
to ATAPI_DIOR / ATAPI_DIOW

T2_PIO
Selects ATAPI_DIOR / ATAPI_
DIOW pulsewidth

ATAPI Programmed I/O Timing 1 Register (ATAPI_PIO_TIM_1)

0x002C

Read/Write

0xFFC03848

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 1 1 00 0

TEOC_PIO
End of cycle time for PIO
access transfers.

ATAPI Registers

24-66 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Multi DMA Timing 0 (ATAPI_MULTI_TIM_0)

The ATAPI_MULTI_TIM_0 register (see Figure 24-41) holds timing parame-
ter settings (in terms of system clock counts) for multi-word DMA
operations.

ATAPI Multi DMA Timing 1 (ATAPI_MULTI_TIM_1)

The ATAPI_MULTI_TIM_1 register (see Figure 24-42) holds timing parame-
ter settings (in terms of system clock counts) for multi-word DMA
operations.

Figure 24-41. ATAPI Multi DMA Timing 0 (ATAPI_MULTI_TIM_0)

Figure 24-42. ATAPI Multi DMA Timing 1 (ATAPI_MULTI_TIM_1)

ATAPI Multi DMA Timing 0 Register (ATAPI_MULTI_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03850

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TM
Selects time from address valid to
ATAPI_DIOR/ATAPI_DIOW

TD
Selects ATAPI_DIOR / ATAPI_
DIOW asserted pulsewidth

ATAPI Multi DMA Timing 1 Register (ATAPI_MULTI_TIM_1)

Reset = 0x0000

Read/Write

0xFFC03854

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TKR
Selects ATAPI_DIOR negated
pulsewidth

TKW
Selects ATAPI_DIOW negated
pulsewidth

ADSP-BF54x Blackfin Processor Hardware Reference 24-67

ATAPI Interface

ATAPI Multi DMA Timing 2 (ATAPI_MULTI_TIM_2)

The ATAPI_MULTI_TIM_2 register (see Figure 24-43) holds timing parame-
ter settings (in terms of system clock counts) for multi-word DMA
operations. The value of TEOC is Tj.

ATAPI Ultra DMA Timing 0 (ATAPI_ULTRA_TIM_0)

The ATAPI_ULTRA_TIM_0 register (see Figure 24-44) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

Figure 24-43. ATAPI Multi DMA Timing 2 (ATAPI_MULTI_TIM_2)

Figure 24-44. ATAPI Ultra DMA Timing 0 (ATAPI_ULTRA_TIM_0)

ATAPI Multi DMA Timing 2 Register (ATAPI_MULTI_TIM_2)

Reset = 0x0000

Read/Write

0xFFC03858

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TEOC
Selects End of Cycle for DMA
transfers

TH
Selects ATAPI_DIOW data
hold

ATAPI Ultra DMA Timing 0 Register (ATAPI_ULTRA_TIM_0)

Reset = 0x0000

Read/Write

0xFFC03860

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TENV
Selects envelope time

TACK
Selects setup and hold times
for TACK

ATAPI Registers

24-68 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Ultra DMA Timing 1 (ATAPI_ULTRA_TIM_1)

The ATAPI_ULTRA_TIM_1 register (see Figure 24-45) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

ATAPI Ultra DMA Timing 2 Register (ATAPI_ULTRA_TIM_2)

The ATAPI_ULTRA_TIM_2 register (see Figure 24-46) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

Figure 24-45. ATAPI Ultra DMA Timing 1 (ATAPI_ULTRA_TIM_1)

Figure 24-46. ATAPI Ultra DMA Timing 2 (ATAPI_ULTRA_TIM_2)
Register

ATAPI Ultra DMA Timing 1 Register (ATAPI_ULTRA_TIM_1)

Reset = 0x0000

Read/Write

0xFFC03864

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TCYC_TDVS
Selects cycle time – TDVS time
(min value allowed is 2)

TDVS
Selects data valid setup time
(min value allowed is 2)

ATAPI Ultra DMA Timing 2 Register (ATAPI_ULTRA_TIM_2)

Reset = 0x0000

Read/Write

0xFFC03868

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TMLI
Selects Interlock time

TSS
Selects Time from STROBE
edge to negation of ATAPI_
DMARQ or assertion of
ATAPI_STOP

ADSP-BF54x Blackfin Processor Hardware Reference 24-69

ATAPI Interface

ATAPI Ultra DMA Timing 3 (ATAPI_ULTRA_TIM_3) Register

The ATAPI_ULTRA_TIM_3 register (see Figure 24-47) holds timing parame-
ter settings (in terms of system clock counts) for ultra DMA operations.

Ultra DMA mode 5 can be used only when SCLK = 133 MHz. Ultra
DMA mode 4 requires SCLK = 100 MHz and above. The other
Ultra DMA modes can used at SCLK frequencies lower than 100
MHz.

ATAPI Device I/O Registers
These are the registers present in an ATAPI-compliant device.

Table 24-7 shows a list of ATAPI device I/O registers present on
ATAPI-compliant devices.

Figure 24-47. ATAPI Ultra DMA Timing 3 (ATAPI_ULTRA_TIM_3)

Table 24-7. ATAPI Device I/O Registers

ATAPI_CS1–0 ADDR3–1 READ (ATAPI_DIOR) WRITE (ATAPI_DIOW)

NN XXX Data Bus (Z) Not Used

Control Block Registers

AN 0XX Data Bus (Z) Not Used

AN 10X Data Bus (Z) Not Used

ATAPI Ultra DMA Timing 3 Register (ATAPI_ULTRA_TIM_3)

Reset = 0x0000

Read/Write

0xFFC0386c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TRP
Selects ready to pause

TZAH
Selects minimum delay
required for output

ATAPI Registers

24-70 ADSP-BF54x Blackfin Processor Hardware Reference

(A: Asserted N: Negated)

The ATAPI I/O registers are all accessed using PIO transfers. When an
access is made to an 8-bit register, the data is expected on ATAPI_D7–0 for a
write access and presented on ATAPI_D7–0 for a read access. When an
access is made to a 16-bit register, the data is expected on ATAPI_D15–0 for
a write access and presented on ATAPI_D15–0 for a read access.

The ATAPI I/O registers are addressed using the ATAPI_CS1–0 and ADDR3–
1 lines. These lines are mapped into the core’s address range using the
DEV_ADDR register of the ATAPI host, making them transparent for
any software wanting to access them. The registers can be mapped into the
0x00 to 0x0F address range, according to the following scheme.

ATAPI_CS0 <= ADR_I (3)

ATAPI_CS1 <= not ADR_I (3)

AN 110 (0x0E) Alternate Status Device Control

AN 111 Not Used Not Used

Command Block Registers

NA 000 (0x00) PIO Data PIO Data

NA 001 (0x01) Error Feature

NA 010 (0x02) Sector Count Sector Count

NA 011 (0x03) LBA (low 0-7) LBA (low 0-7)

NA 100 (0x04) LBA (mid 8-15) LBA (mid 8-15)

NA 101 (0x05) LBA (high 16-23) LBA (high16-23)

NA 110 (0x06) Device Device

NA 111 (0x07) Status Command

Table 24-7. ATAPI Device I/O Registers

ATAPI_CS1–0 ADDR3–1 READ (ATAPI_DIOR) WRITE (ATAPI_DIOW)

ADSP-BF54x Blackfin Processor Hardware Reference 24-71

ATAPI Interface

ADDR2–0 <= ADR_I (2:0)

ATAPI_CS1–0 reflect the ADR_(3) signal state.

ATAPI_CS0 is asserted (low level) when ADR_I (3) is negated (‘0’).

ATAPI_CS1 is asserted (low level) when ADR_I (3) is asserted (‘1’).

ADDR3–1 reflects the ADR_I (2:0) state.

This makes Device Address map as follows:

0x00: Device PIO Data Port/DMA Data Port/Ultra DMA Port

0x01 – 0x07: Device Command Block Registers

0x08 -- 0x0F: Device Control Block Registers

The various device registers addressable are detailed as follows.

Command Register (R/W)

The command register contains the command code being sent to the
device. command execution begins immediately after this register is writ-
ten. The contents of the command block registers become parameters of
the command when this register is written. Writing this register clears any
pending interrupt condition. For all commands except DEVICE RESET,
this register shall only be written when BSY and DRQ are both cleared to
zero and DMACK is not asserted.

Device Control Register (WO)

The device control register allows a host to perform a software reset of
attached devices and to enable or disable the assertion of the INTRQ sig-
nal by a selected device. It contains Software Reset (SRST), Interrupt
Enable (nIEN), and High Order Byte (HOB) bits for the 48-bit address
feature set, as shown in Figure 24-48. When the Device Control register is
written, both devices respond to the write regardless of which device is

ATAPI Registers

24-72 ADSP-BF54x Blackfin Processor Hardware Reference

selected. When the SRST bit is set to 1, both devices shall perform the
software reset protocol. This register contains software reset, Interrupt
Enable & High Order Byte bits for 48-bit address feature set.

Bit 1: nIEN: If nIEN is set, the device should release INTRQ. If
it is clear, INTRQ should be enabled.

Features Register (WO)

The contents of this register becomes a command parameter after the
command is written and the meaning of this parameter is command
dependent.

Sector Count Register (R/W)

The sector count register holds the number of sectors to be read or
written.

Status Register (RO)

The status register contains the device status. The register’s contents are
updated to reflect the current state of the device and the progress of any
command being executed by the device. Reading the status register clears
any pending interrupt. The host should not read the status register when
an interrupt is expected as this may clear the interrupt pending before the
ATAPI_INTRQ can be recognized. The host should generally read the alter-

Figure 24-48. Device Control Register

7 6 5 4 3 2 1 0

HOB r r r r SRST nIEN 0

ADSP-BF54x Blackfin Processor Hardware Reference 24-73

ATAPI Interface

nate status register to prevent unwanted clearing of pending interrupts.
When INTRQ is asserted, the host can read the Status register to know
the current status.

Bit 7: BSY bit is set by the device during the following events:

• After a command is written (if DRQ is not set).

• Between blocks of data transfer during PIO data-in (before DRQ is
cleared).

• After transfer of data block during PIO data-out (before DRQ is
cleared).

• During data transfer of DMA commands:

If BSY = 1, device is in control of status register

If BSY = 0, host is in control of status register

Alternate Status Register (RO)

The alternate status register contains the same information as the status
register, but a pending interrupt is not cleared when this register is read.

Error Register (RO)

The error register contents are valid, when ERR bit in the status register is
set (BSY = 0 & DRQ = 0) at the end of command completion (except EXE-
CUTE DEVICE DIAGNOSTICS or DEVICE RESET).

Figure 24-49. Status Register

7 6 5 4 3 2 1 0

BSY DRDY # # DRQ obsolete obsolete ERR

ATAPI Standards Reference

24-74 ADSP-BF54x Blackfin Processor Hardware Reference

The register contains a diagnostic code following a power-on, hardware or
software reset or command completion of EXECUTE DEVICE DIAG-
NOSTIC OR DEVICE RESET.

Bit 2: ABORT: Says that the particular command is not supported.

All other bit commands are dependent.

ATAPI Standards Reference
The following ATA standards contribute to the ATAPI standard. Please
refer to the ATAPI specification for full details. In addition to these terms,
this reference section provides:

• “Summary of IDE/ATA Standards” on page 24-78

• “ATAPI Timing Summary” on page 24-79

• “IDE/ATA Transfer Modes and Protocols” on page 24-79

• “ATAPI Device Selection” on page 24-81

ATA (ATA-1)

The original IDE/ATA standard defines the following features and trans-
fer modes:

• Two Hard Disks: The specification calls for a single channel in a
PC, shared by two devices that are configured as master and slave.

• PIO Modes: ATA includes support for PIO modes 0, 1 and 2.

• DMA Modes: ATA includes support for single word DMA modes
0, 1 and 2, and multiword DMA mode 0.

ADSP-BF54x Blackfin Processor Hardware Reference 24-75

ATAPI Interface

ATA-2

ATA-2 was a significant enhancement of the original ATA standard. It
defines the following improvements over the base ATA standard (with
which it is backward compatible):

• Faster PIO Modes: ATA-2 adds the faster PIO modes 3 and 4 to
those supported by ATA.

• Faster DMA Modes: ATA-2 adds multiword DMA modes 1 and 2
to the ATA modes.

• Block Transfers: ATA-2 adds commands to allow block transfers
for improved performance.

• Logical Block Addressing (LBA): ATA-2 defines support (by the
hard disk) for logical block addressing. Using LBA requires BIOS
support on the other end of the interface as well.

• Improved Identify Drive Command: This command allows hard
disks to respond to inquiries from software, with more accurate
information about their geometry and other characteristics.

ATAPI Standards Reference

24-76 ADSP-BF54x Blackfin Processor Hardware Reference

ATA-3

The ATA-3 standard is a minor revision of ATA-2, which was published
in 1997 as ANSI standard X3.298-1997, AT Attachment 3 Interface. It
defines the following improvements compared to ATA-2 (with which it is
backward compatible):

• Improved Reliability: ATA-3 improves the reliability of the
higher-speed transfer modes, which can be an issue due to the
low-performance standard cable used up to that point in
IDE/ATA. (An improved cable was defined as part of
ATA/ATAPI-4.)

• Self-Monitoring Analysis and Reporting Technology (SMART):
ATA-3 introduced this reliability feature.

• Security Feature: ATA-3 defined security mode, which allows
devices to be protected with a password.

ATA/ATAPI-4

• Ultra DMA Modes: High-speed Ultra DMA modes 0, 1 and 2,
defining transfer rates of 16.7, 25 and 33.3 MB/s were created.

• High-Performance IDE Cable: An improved, 80-conductor IDE
cable was first defined in this standard. It was thought that the
higher-speed Ultra DMA modes would require the use of this cable
in order to eliminate interference caused by their higher speed. In
the end, the use of this cable was left “optional” for these modes.
(It became mandatory under the still faster Ultra DMA modes
defined in ATA/ATAPI-5.)

• Cyclical Redundancy Checking (CRC): This feature was added to
ensure the integrity of data sent using the faster Ultra DMA modes.

ADSP-BF54x Blackfin Processor Hardware Reference 24-77

ATAPI Interface

• Advanced Commands Defined: Special command queuing and
overlapping protocols were defined.

• Command Removal: The command set was “cleaned up”, with sev-
eral older, obsolete commands removed.

ATA/ATAPI-5

The changes defined in ATA/ATAPI-5 include:

• New Ultra DMA Modes: Higher-speed Ultra DMA modes 3 and
4, defining transfer rates of 44.4 and 66.7 MB/s were specified.

• Mandatory 80-Conductor IDE Cable Use: The improved 80-con-
ductor IDE cable first defined in ATA/ATAPI-4 for optional use is
made mandatory for Ultra DMA modes 3 and 4. ATA/ATAPI-5
also defines a method by which a host system can detect if an
80-conductor cable is in use, so it can determine whether or not to
enable the higher speed transfer modes.

• Miscellaneous Command Changes: A few interface commands
were changed, and some old ones deleted.

ATA/ATAPI-6

• New Ultra DMA Modes: Higher-speed Ultra DMA mode 5, defin-
ing a transfer rate of 100 MB/s was specified.

• Mandatory LBA Mode Usage: CHS mode operation not
supported.

ATAPI Standards Reference

24-78 ADSP-BF54x Blackfin Processor Hardware Reference

Summary of IDE/ATA Standards

Table 24-8. IDE/ATA Standards

In
te

rf
ac

e
St

an
da

rd

AN
SI

 S
ta

nd
ar

d
Nu

mb
er

(i
nc

lu
de

s
da

te
)

PI
O

Mo
de

s
Ad

de
d

DM
A

Mo
de

s
Ad

de
d

Ul
tr

a
DM

A
Mo

de
s

Ad
de

d

No
ta

bl
e

Fe
at

ur
es

 o
r

En
ha

nc
em

en
ts

In
tr

od
uc

ed

ATA-1 X3.221-1994 0, 1, 2 Single word
0, 1, 2; mul-
tiword 0

-- --

ATA-2 X3.279-1996 3, 4 Multiword 1,
2

-- Block transfers, Logi-
cal block addressing,
Improved identify
drive command

ATA-3 X3.298-1997 -- -- -- Improved reliability,
SMART, Drive secu-
rity

ATA/ATAPI-4 NCITS 317-1998 -- -- 0, 1, 2 Ultra DMA, 80-con-
ductor IDE cable,
CRC

ATA/ATAPI-5 NCITS 340-2000 -- -- 3, 4 --

ATA/ATAPI-6 -- -- 5 LBA expansion,
Acoustic manage-
ment, Multimedia
streaming

ADSP-BF54x Blackfin Processor Hardware Reference 24-79

ATAPI Interface

ATAPI Timing Summary
The timings mentioned below are the minimum timings. The maximum
timing is dependent on the devices and is usually using the ACK signal.

• Ultra DMA (M5, M4, M3, M2, M1, M0)- 40, 60, 90, 120, 160,
240 ns

• Multi DMA (M2, M1. M0)- 120, 150, 480 ns

• PIO Access (M4, M3, M2, M1, M0)- 120, 180, 240, 383, 600 ns

IDE/ATA Transfer Modes and Protocols

Programmed (I/O) PIO Modes

The maximum transfer rate is double the reciprocal of the cycle time, dou-
bled because the IDE/ATA interface is two bytes (16 bits) wide.

Table 24-9. Programmed I/O Modes

PIO Mode Cycle Time (ns) Maximum Transfer
Rate (MB/s)

Defining Standard

Mode 0 600 3.3 ATA

Mode 1 383 5.2 ATA

Mode 2 240 8.3 ATA

Mode 3 180 11.1 ATA-2

Mode 4 120 16.7 ATA-2

ATAPI Standards Reference

24-80 ADSP-BF54x Blackfin Processor Hardware Reference

Direct Memory Access (DMA) Modes

Ultra Direct Memory Access (DMA) Modes

The first implementation of Ultra DMA was specified in the
ATA/ATAPI-4 standard and included three Ultra DMA modes, providing
up to 33 MB/s of throughput. Several newer, faster Ultra DMA modes
were added in subsequent years. The table shows all of the current Ultra
DMA modes, along with their cycle times and maximum transfer rates.

Table 24-10. Multiword DMA Modes

DMA Mode Cycle Time (ns) Maximum Transfer
Rate (MB/s)

Defining Standard

Multiword
Mode 0

480 4.2 ATA

Multiword
Mode 1

150 13.3 ATA-2

Multiword
Mode 2

120 16.7 ATA-2

Table 24-11. Ultra DMA Modes

Ultra DMA
Mode

Cycle Time (ns) Maximum Transfer
Rate (MB/s)

Defining Standard

Mode 0 240 16.7 ATA/ATAPI-4

Mode 1 160 25.0 ATA/ATAPI-4

Mode 2 120 33.3 ATA/ATAPI-4

Mode 3 90 44.4 ATA/ATAPI-5

Mode 4 60 66.7 ATA/ATAPI-5

Mode 5 40 100.0 ATA/ATAPI-6

ADSP-BF54x Blackfin Processor Hardware Reference 24-81

ATAPI Interface

The cycle time shows the speed of the interface clock. Double transition
clocking is what allows Ultra DMA mode 2 to have a maximum transfer
rate of 33.3 MB/s despite having a clock cycle time identical to “regular
DMA” multiword mode 2, which has half that maximum.

Even with the advantage of double transition clocking, going above 33
MB/s finally exceeded the capabilities of the old 40-conductor standard
IDE cable. To use Ultra DMA modes over 2, a special, 80-conductor IDE
cable is required. This cable uses the same 40 pins as the old cables, but
adds 40 ground lines between the original 40 signals to separate those lines
from each other and prevent interference and data corruption. (The
80-conductor cable was actually specified in ATA/ATAPI-4 along with
the first Ultra DMA modes, but it was “optional” for modes 0, 1 and 2.)

ATAPI Device Selection
DEV0: CSEL is negated.

If the CSEL (cable select) of the device is connected to the CSEL of the
cable and ground, the device recognizes itself as DEV0.

DEV1: CSEL is asserted.

 If the CSEL of the device is not connected, it recognizes as DEV1

The host discriminates the two devices by writing the DEV bit in device
register. When two devices are connected on the cable, commands are
written in parallel to both devices. For all commands except EXECUTE
DEVICE DIAGNOSTICS, only the selected device executes the com-
mand. Both devices shall execute an EXECUTE DEVICE DIAGNOSTIC
regardless of which device is selected and DEV1 will post status to DEV0
through ATAPI_PDIAG.

ATAPI Standards Reference

24-82 ADSP-BF54x Blackfin Processor Hardware Reference

When the DEV bit is set to 0, DEV0 is selected. When the DEV bit is set to
1, DEV1 is selected

Figure 24-50. ATAPI Device Selection

ADSP-BF54x Blackfin Processor Hardware Reference 25-1

25 NAND FLASH CONTROLLER

The ADSP-BF54x Blackfin processors provide a NAND flash controller
(NFC) interface.

The NFC on ADSP-BF54x processors provides the hardware support for
the combination of hardware and software necessary to interface
ADSP-BF54x processors with NAND flash devices. The NFC provides
device access timing control and hardware error checking.

This chapter includes the following sections:

• “Overview” on page 25-2

• “Interface Overview” on page 25-4

• “Description of Operation” on page 25-5

• “Functional Description” on page 25-7

• “Programming Model” on page 25-15

• “NFC Registers” on page 25-17

• “NFC Programming Examples” on page 25-30

Overview

25-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview
The NFC provides the following hardware features:

• Support for page program, page read, and block erase of NAND
flash devices, with accesses aligned to page boundaries.

• Error checking and correction (ECC) hardware that facilitates error
detection and correction

• A single 8-bit/16-bit external bus interface for commands,
addresses and data

• Support for SLC (single level cell) NAND flash devices unlimited
in size, with page sizes of 256 and 512 bytes. Larger page sizes can
be supported in software

• Capability of releasing external bus interface pins during long
accesses

• DMA interface to transfer data between internal memory and
NAND flash device

NAND flash devices provide high-density, low-cost memory. However,
NAND flash devices also have long random access times, invalid blocks,
and lower reliability over device lifetimes.

Because of these characteristics, NAND flash is often used for read-only
code storage. In this case, all processor code can be stored in NAND flash
and then transferred to a faster memory (such as SDRAM or SRAM)
before execution.

Another common use of NAND flash is for storage of multimedia files or
other large data segments. In this case, a software file system may be used
to manage the reading and writing of the NAND flash device.

ADSP-BF54x Blackfin Processor Hardware Reference 25-3

NAND Flash Controller

The file system selects memory segments for storage with the goal of
avoiding bad blocks and equally distributing memory accesses across all
address locations.

Bad block management includes both initial bad block detection and
acquired bad block mapping. NAND flash devices contain bad blocks that
are marked by the manufacturer. Software reads the bad block informa-
tion, creates a table of bad block locations, and prevents use of the bad
blocks. As additional blocks corrupt over time, they can be detected by the
hardware and added to the bad block table by software. Software must
provide bad block management, wear-leveling functions, and error correc-
tion. (See “NFC Error Detection” on page 25-11 for details on error
correction.)

When NAND flash is used for read/write data storage, software wear-lev-
eling is required. Wear-leveling increases the life span of NAND flash by
generating an evenly distributed number of program and erase operations
across the entire memory space. Software does this by translating logical
addresses into different physical addresses for each write.

Interface Overview

25-4 ADSP-BF54x Blackfin Processor Hardware Reference

Interface Overview
Figure 25-1 shows the NFC interface.

The port pins used for NFC are shown in Table 25-1. The D15–0 bus,
ND_CLE, ND_ALE, ARE, and AWE pins are shared with the asynchronous mem-
ory controller. In addition, the data bus D15-0 is also shared with the
ATAPI peripheral.

Figure 25-1. NFC Interface Block Diagram

Table 25-1. NFC External Interface

Signal Name Function Default Direction

D15–0 Data and Commands Bus low I/O

ND_CLE Command Latch Enable low O

ND_ALE Address Latch Enable low O

ARE Read Enable high O

AWE Write Enable high O

EBIU

NAND_BUS

ATA_BUS

SRAM

NOR FLASH

PADS

ND_CLE

ND_ALE

ARE

AWE

ND_RB

ND_CE

CONTROL

CONTROL

D15–0

ADSP-BF54x Blackfin Processor Hardware Reference 25-5

NAND Flash Controller

Description of Operation

Internal Bus Interfaces
The NFC interfaces to both the PAB and DAB buses on ADSP-BF54x
Blackfin processors.

Page reads and page writes occur over DAB. The DAB interface consists of
two separate 4-word FIFOs, one for page reads and one for page writes.
Each FIFO is 32-bits wide in 32-bit DMA mode. Page reads and page
writes cannot be triggered at the same time.

All other accesses occur over PAB. PAB accesses always go through the
NFC write buffer. In 8-bit mode, this buffer is 8 bits wide, and, in 16-bit
mode, this buffer is 16 bits wide. In both modes, it is 4 words deep. Soft-
ware must prevent overflow of the buffer. Write buffer entries are not
removed until the access is completed on the external interface. In the case
of a read data request, the entry is not removed until the returned data is
read from the NFC_READ register. After the fourth write to the write buffer,
software must poll WB_FULL or WB_EMPTY in NFC_STAT to determine when
there is additional space in the write buffer or use the WB_EDGE interrupt to
detect when the write buffer has emptied.

After reset, the PAB write buffer has priority over the DAB FIFOs for
access to the NFC external interface. If a page access is initiated while
there are transfers in the write buffer, the page access does not start until
the write buffer is empty. Likewise, once a page access starts, transfers in
the write buffer do not begin until the page access is complete.

ND_RB Ready/nBusy Request I

ND_CE Chip Enable high O

Table 25-1. NFC External Interface (Cont’d)

Signal Name Function Default Direction

Description of Operation

25-6 ADSP-BF54x Blackfin Processor Hardware Reference

Bus Access Types
The NFC supports 8-bit or 16-bit NAND flash devices. PAB accesses
cause only one transfer per bus access. For DAB access, the NFC automat-
ically breaks up 32-bit DAB transfers into multiple NAND flash access
cycles. Table 25-2 describes all the valid access types for both 8- and
16-bit devices as well as the number of NAND flash accesses it takes to
complete the transaction.

Access Timing
The NFC provides configurable access timing control for both read and
write transactions through the NFC_CTL register.

The write enable pulse width (tWP) is the WR_DLY + 1 SCLK. The WR_DLY
selection should be configured such that:

tWP >= Max (tWPmin , (tCS – 1 SCLK))

where tWP is the time for which AWE is driven low, tWPmin is the minimum
write pulse duration from the NAND flash datasheet, and tCS is the chip
enable setup time from the NAND flash datasheet. See NAND Flash
Controller Interface Timing in the ADSP-BF54x Blackfin Embedded Pro-
cessor datasheet.

Table 25-2. NFC Accesses

Bus Bus Width NAND Flash Width NAND Flash Access Cycles Required

PAB 16-bit 8-bit 1

PAB 16-bit 16-bit 1

DAB 32-bit 8-bit 4

DAB 32-bit 16-bit 2

ADSP-BF54x Blackfin Processor Hardware Reference 25-7

NAND Flash Controller

Likewise, the setup time for read data is configurable by changing RD_DLY
in the NFC_CTL register. The RD_DLY selection should be configured such
that:

tRP > Max (tRPmin , tREAmax , (tCEAmax – 1 SCLK))

where tRP is the time for which ARE is driven low, tRPmin is the minimum
read pulse duration from the NAND flash data sheet, tREAmax is the maxi-
mum read enable access time from the NAND flash datasheet, and
tCEAmax is the maximum chip enable access time from the NAND flash
datasheet. See NAND Flash Controller Interface Timing in the
ADSP-BF54x Blackfin Embedded Processor datasheet.

Pin Sharing
The NFC shares the ADSP-BF54x processors’ pins with the AMC and
ATAPI blocks. There is an asynchronous pin control module (APCM)
that controls and arbitrates the asynchronous interface between the AMC,
NAND, and ATA controllers. When an NFC transfer starts, the NFC
requests the pins. Once the pins are granted, the NFC performs multiple
transfers before releasing the pins. If the transfer is from the write buffer,
NFC retains the pins until the write buffer is empty. If the transfer is a
page access, the NFC performs eight external bus cycles, then checks to
see if the AMC requires the pins. If the AMC does require the pins, NFC
releases them. Otherwise, the NFC continues conducting transfers until
the page is complete or an AMC request occurs.

Functional Description
The following sections describe the function of the NAND flash control-
ler. NFC operation include:

• “Page Write” on page 25-8

• “Page Read” on page 25-9

Functional Description

25-8 ADSP-BF54x Blackfin Processor Hardware Reference

• “Additional Operations” on page 25-10

• “Write Protection” on page 25-11

• “Chip Enable Don’t Care” on page 25-11

• “NFC Error Detection” on page 25-11

• “NFC SmartMedia Support” on page 25-15

Page Write
To store data in NAND flash, first write the program command to the
NFC_CMD register. Then, write a sequence of address bits to the NFC_ADDR
register. For example, a 1Gbit x8 small page NAND flash device, consist-
ing of 512 bytes per page, 32 pages per block and 8192 blocks requires 27
address bits in order to address the full range of memory. In this case,
address bits [7:0] are written to address the column within the page to
access. This is then followed by writing address bits[16:9], [24:17] and
finally [26:24]. Note that for small page NAND flash devices, address bit
[8] is generated automatically by the NAND flash device. Once the DMA
channel has been configured, the next step is to set the page write start bit
in the NFC_PGCTL register. This initiates DMA transfers to complete the
page write. After writing all of the data, software can append the ECC val-
ues from the ECC registers to store them in the spare area of the NAND
flash. Finally, the page program confirm command is written to NFC_CMD
to initiate the NAND flash programming process. The NAND flash
asserts ND_RB until the page is completely programmed. At that time, the
write status bit in the NAND flash device may be checked. Figure 25-2
shows the timing of a NAND flash write access for a device requiring only
three address cycles.

ADSP-BF54x Blackfin Processor Hardware Reference 25-9

NAND Flash Controller

Page Read
To read data from NAND flash, first write the read command to the
NFC_CMD register. Then write a sequence of address bits to the NFC_ADDR
register. For a 1Gbit x8 small page NAND flash device, consisting of 512
bytes per page, 32 pages per block and 8192 blocks, 27 address bits are
required in order to address the full range of memory. Address bits [7:0]
are written first in order to address the column to access. This is then fol-
lowed by the address bits [16:9], [24:17] and [26:24]. Not that for small
page devices [A8] is generated automatically by the NAND flash device
and is determined by the read command that is issued prior to the address
cycles. Once all the address cycles have been issued the NAND flash
device becomes busy and software should wait for the rising edge of ND_RB,
indicating that the requested data is available. Once the DMA channel has
been configured, set the page read start bit in NFC_PGCTL. This initiates the
DMA transfers for a page read. As each read occurs, new ECC values are
calculated for each 256 or 512 byte page. When the page read is complete,
the core may complete final data read requests to obtain the stored ECC
values which were written in the spare area when the page was pro-

Figure 25-2. NAND Flash Program Operation

CMD A0 A1 A2 D1 D2 D3 CMD

ND_RB

ND_CLE

ND_CE

AWE

ND_ALE

ARE

D0 DN
D15–0

Functional Description

25-10 ADSP-BF54x Blackfin Processor Hardware Reference

grammed. Software can compare this to the new ECC values to determine
if any bit errors have occurred. Figure 25-3 shows the timing of a NAND
flash read access for a device requiring only three address cycles.

Additional Operations
The core may execute data read and write transactions directly without the
requirement of DMA. Commands must be written to NFC_CMD, addresses
must be written to NFC_ADDR. For data write transactions, the data to be
written to the NAND flash must go via the NFC_DATA_WR register. Data
reads are requested by first writing to NFC_DATA_RD in order to issue the
read transaction on the NFC interface and then reading back the received
data from NFC_READ after the RD_RDY interrupt has been generated.

To check that an operation is complete, ND_RB may be polled in the
NFC_STAT register or used to trigger an interrupt. Software must always
poll or wait for the ND_RB before performing an operation.

For 8-bit NAND flash devices, only the lower 8 bits of the NFC_CMD,
NFC_ADDR, NFC_DATA_WR, and NFC_READ registers are valid; the higher bytes
are ignored.

Figure 25-3. NAND Flash Read Operation

CMD A0 A1 A2 D0 D1 D2 D3 DN

ND_RB

ND_CLE

ND_CE

AWE

ND_ALE

ARE

D15–0

ADSP-BF54x Blackfin Processor Hardware Reference 25-11

NAND Flash Controller

All SLC NAND flash device operations are supported via writing to or
reading from the various NFC registers. For example, erasing a block on
the NAND flash requires the issuing of a specific block erase command
followed by a number of address cycles followed by a block erase confir-
mation command. More advanced operations such as cache program
operations are also supported.

See NAND flash device datasheets for examples of these operations.

Write Protection
NAND flash devices require a write protection input signal (nWP) to pre-
vent inadvertent write or erase operations. A GPIO can be used for this
purpose.

Chip Enable Don’t Care
Some NAND flash devices ignore the read enable, write enable, command
latch enable, and address latch enable control signals when chip select is
deasserted during page reads and page programs. These devices are called
chip enable don’t care (CEDC) NAND flash devices. This is the only type
of device supported by the NFC.

NFC Error Detection
The NFC error checking and correction (ECC) logic can detect one bit of
correctable error or multiple bits of non-correctable error. The NFC
employs a Hamming code algorithm, which generates two sets of parity
bits for every 256 bytes of data. For 512-byte pages, the page is split into
two halves, and separate ECC values are calculated for each half.

Functional Description

25-12 ADSP-BF54x Blackfin Processor Hardware Reference

For every 256 bytes of data, 22 bits of ECC parity data are generated as
follows:

P1 = D[1] ^ D[3] ^ D[5] ^ D[7] ^ D[9] …^ D[2047];

P2 = D[2] ^ D[3] ^ D[6] ^ D[7] ^ D[10] ^ D[11] … ^ D[2042] ^

D[2043] ^ D[2046] ^ D[2047];

P4 = D[4] ^ D[5] ^ D[6] ^ D[7] ^ D[12] ^ D[13] ^ D[14] ^ D[15] ^

D[20] ^ D[21] ^ D[22] ^ D[23] … ^ D[2044] ^ D[2045] ^ D[2046] ^

D[2047];

P8 = D[8] ^ D[9] ^ D[10] ^ D[11] ^ D[12] ^ D[13] ^ D[14] ^ D[15]

^ D[24] ^ D[25] ^ D[26] D[27] ^ D[28] ^ D[29] ^ D[30] ^ D[31] … ^

D[2040] ^ D[2041] ^ D[2042] ^ D[2043] ^ D[2044] ^ D[2045] ^

D[2046] ^ D[2047];

…

…

P1’ = D[0] ^ D[2] ^ D[4] ^ D[6] ^ D[8] … ^ D[2046];

P2’ = D[0] ^ D[1] ^ D[4] ^ D[5] ^ D[8] ^ D[9] … ^ D[2040] ^

D[2041] ^ D[2044] ^ D[2045];

P4’ = D[0] ^ D[1] ^ D[2] ^ D[3] ^ D[8] ^ D[9] ^ D[10] ^ D[11] ^

D[16] ^ D[17] ^ D[18] ^ D[19] … ^ D[2040] ^ D[2041] ^ D[2042] ^

D[2043];

…

…

ADSP-BF54x Blackfin Processor Hardware Reference 25-13

NAND Flash Controller

In this way, P1, P2, P4, P8, P16, P32, P64, P128, P256, P512, and
P1024 as well as P1’, P2’, P4’, P8’, P16’, P32’, P64’, P128’, P256’, P512’,
and P1024’ are calculated, producing a total of 22 parity bits for each 256
bytes (2048 bits) of data.

The NFC writes this 22-bit ECC value into the NFC_ECCx registers. Soft-
ware can store these values in the spare area of the NAND flash device for
later comparison. When reading back data, the NFC automatically calcu-
lates new ECC values from the received data. Software can generate error
syndromes by exclusive OR’ing the stored and newly calculated ECC
values.

Error Analysis

Analyzing the ECC values lets you determine the error syndrome. The
resulting error syndromes indicate what type of data errors have occurred.

For example, when a 256 byte page is read back, ECC0(stored) contains
the parity bits stored read from the spare area. ECC1(stored) contains the
parity’ bits read from the spare area. Similarly, ECC0(calculated) and
ECC1(calculated) contain the newly calculated parity and parity’ bits,
respectively. To interpret the ECC values, software generates the follow-
ing error syndromes:

syndrome0[21:0] = {ECC0calculated[10:0],ECC1calculated[10:0]} ^

{ECC0stored[10:0],ECC1stored[10:0]}

syndrome1[10:0] = ECC0calculated[10:0] ^ ECC0stored[10:0]

syndrome2[10:0] = ECC0calculated[10:0] ^ ECC1calculated[10:0]

syndrome3[10:0] = ECC0stored[10:0] ^ ECC1stored[10:0]

syndrome4[10:0] = syndrome2[10:0] ^ syndrome3[10:0]

Functional Description

25-14 ADSP-BF54x Blackfin Processor Hardware Reference

Syndrome 0 indicates whether there is an error in the data. Syndrome 4
indicates whether the error is a 1-bit correctable error. Syndrome 1 indi-
cates the bit location of any 1-bit errors. After calculating these
syndromes, software must examine their values and take the appropriate
actions.

• If Syndrome 0 is 0x000, the data is valid and no actions are
required.

• If Syndrome 0 has exactly 11 bits that are 1 and Syndrome 4 is
0x7FF, there is a 1-bit correctable error. Syndrome 1 gives the fail-
ing bit number. For example, if Syndrome 1 is 46, bit 6 in the sixth
word transferred needs to be inverted.

• If Syndrome 0 has only 1 bit that is 1, there is an error in the ECC
data itself. No action is required, since ECC data is discarded after
each page read, but no error checking can be done.

• If Syndrome 0 has any other value, there is a multiple-bit, unrecov-
erable error. Software should mark the block containing this page
as a bad block.

Examples of possible Syndrome 0 values are shown in Table 25-3.

Table 25-3. ECC Syndrome Examples

Syndrome 0 Type of Value Meaning Action Required

0x000000 All zero No error in data None

0x2CCA66 Exactly 11 bits are 1, each
parity and parity’ pair is 1
& 0 or 0 & 1

1-bit correctable error Correct error

0x000040 Only 1 bit is 1 ECC data was incorrect None

0x06B35A Random data More than 1-bit error,
non-correctable error

Discard data, mark bad
block

ADSP-BF54x Blackfin Processor Hardware Reference 25-15

NAND Flash Controller

Large Page Size Support

Page sizes larger than 512 bytes can be supported by NFC as long as they
require only 1-bit error correction per 512 Bytes. For example, a 2K byte
page can be accessed by treating it as four 512-byte pages. The page pro-
gram and page reads must be conducted as four 512-byte accesses, and the
ECC values for each 512 bytes of data must be read back from the ECC
registers and then temporarily stored. The ECC registers must be reset
before the next 512 bytes are transferred. Once ECC values from all four
512-byte pages are calculated, they are typically written into the NAND
flash spare area for a page write or compared to those in the spare area for
a page program.

NFC SmartMedia Support
NAND flash and SmartMedia devices have nearly identical interfaces. The
main difference is that SmartMedia devices are removable, and, therefore,
require card insertion, card ejection and write protection signals. On
ADSP-BF54x Blackfin processors, these features can be supported using
GPIOs.

Programming Model
The following sections describe the NAND flash controller’s program-
ming model.

Before using the NFC, pins with GPIO functions must be configured to
select the NFC functionality. This causes a rising edge detect on ND_RB,
which must be cleared before beginning NFC programming sequences.

Programming Model

25-16 ADSP-BF54x Blackfin Processor Hardware Reference

To conduct a page read, the core may use the following procedure:

1. The core writes to the appropriate DMA registers to enable the
NFC DMA channel for receive mode and to configure the correct
number of transfers for a single page.

2. The core sets up the appropriate configuration by writing the
NFC_CTL register.

3. The core clears the NFC_ECCx registers by setting the ECC_RST bit in
the NFC_RST register.

4. The core writes the page read commands to NFC_CMD register and
the page addresses to the NFC_ADDR register (maximum of four
writes at a time).

5. The core waits for a rising edge detection on ND_RB.

6. The core sets the page read start bit in the NFC_PGCTL register.

7. When the DMA generates an interrupt on completion, the core
reads the remaining spare bytes.

8. The core compares ECC information stored in the spare bytes to
the ECC register values calculated during the page read.

9. If there is an ECC error, the core must correct the corrupted data.

To conduct a page write, the core may use the following procedure:

1. The core writes to the appropriate DMA registers to enable the
NFC DMA channel for transmit mode and to configure the correct
number of transfers for a single page.

2. The core sets up the appropriate configuration by writing the
NFC_CTL register.

3. The core clears the NFC_ECCx registers by setting the ECC_RST bit in
the NFC_RST register.

ADSP-BF54x Blackfin Processor Hardware Reference 25-17

NAND Flash Controller

4. The core writes the page write commands to NFC_CMD register and
the page addresses to the NFC_ADDR register (maximum of 4 writes
at a time).

5. The core waits for the write buffer to be empty by either polling
the status bit or waiting for the WB_EDGE interrupt.

6. The core sets the page write start bit in the NFC_PGCTL register.

7. When the DMA generates an interrupt on completion, the WR_DONE
bit should be checked to verify the last transfer is complete, then
the core reads the ECC register values and writes those values to
the spare bytes of the page.

8. The core writes the page program confirm command to the
NFC_CMD register.

9. The core waits for the write buffer to empty and for a subsequent
rising edge detection on ND_RB.

NFC Registers
The NFC has a group of memory-mapped registers (MMRs) that regulate
its operation. These registers are listed in Table 25-4.

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections. The NFC MMRs start at a base address of
0xFFC0 3B00.

The NFC contains control, status, interrupt and ECC registers at address
offsets 0x00�0x2C. The NFC also contains write-only registers at address
offsets 0x40�0x4C that insert commands, address, or data access requests
into a write buffer.

NFC Registers

25-18 ADSP-BF54x Blackfin Processor Hardware Reference

The NFC_ECCx and NFC_COUNT registers should not be read while an access
to NAND flash is happening on the EBIU. Otherwise, the registers may
be updating during a read and coherency of the register bits is not
guaranteed.

Table 25-4 lists all of the NFC memory-mapped registers.

Table 25-4. NFC Memory-Mapped Registers

Register Name Address Description

NFC_CTL 0xFFC0 3B00 NFC control register
on page 25-19

NFC_STAT 0xFFC0 3B04 NFC status register
on page 25-20

NFC_IRQSTAT 0xFFC0 3B08 NFC interrupt status register
on page 25-21

NFC_IRQMASK 0xFFC0 3B0C NFC interrupt mask register
on page 25-23

NFC_ECC0 0xFFC0 3B10 NFC ECC register 0
on page 25-23

NFC_ECC1 0xFFC0 3B14 NFC ECC register 1
on page 25-23

NFC_ECC2 0xFFC0 3B18 NFC ECC register 2
on page 25-23

NFC_ECC3 0xFFC0 3B1C NCF ECC register 3
on page 25-23

NFC_COUNT 0xFFC0 3B20 NFC count register
on page 25-25

NFC_RST 0xFFC0 3B24 NFC reset register
on page 25-25

NFC_PGCTL 0xFFC0 3B28 NFC page control register
on page 25-26

NFC_READ 0xFCC0 3B2C NFC read data register
on page 25-26

ADSP-BF54x Blackfin Processor Hardware Reference 25-19

NAND Flash Controller

NFC Control Register (NFC_CTL)
The NFC_CTL register (see Figure 25-4) contains timing and mode configu-
ration fields. The read strobe delay (RD_DLY) and write strobe delay
(WR_DLY) fields extend the ARE and AWE strobes, respectively, by the speci-
fied number of cycles. If no extension is specified, ARE and AWE assert for a
single SCLK cycle. The NAND data width (NWIDTH) bit selects the data bus
width size of the external NAND flash device. The page size (PG_SIZE) bit
determines where the ECC data values are written. For a 256-byte page,
ECC values are always calculated in NFC_ECC0 and NFC_ECC1. For a
512-byte page, the first ECC value is calculated in NFC_ECC0 and NFC_ECC1
while the next ECC value is calculated in NFC_ECC2 and NFC_ECC3.

NFC_ADDR 0xFFC0 3B40 NFC address register
on page 25-27

NFC_CMD 0xFFC0 3B44 NCF command register
on page 25-28

NFC_DATA_WR 0xFFC0 3B48 NFC data write register
on page 25-29

NFC_DATA_RD 0xFFC0 3B4C NFC data read register
on page 25-29

Table 25-4. NFC Memory-Mapped Registers (Cont’d)

Register Name Address Description

NFC Registers

25-20 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Status Register (NFC_STAT)
The NFC_STAT register (see Figure 25-5) contains status information. The
NBUSY bit contains the synchronized value of the ND_RB pin. The write
buffer empty (WB_EMPTY) and write buffer full (WB_FULL) status bits contain
write buffer status information. When WB_FULL is set, writes to any write
buffer register are ignored and cause the WB_OVF bit in the NFC_IRQSTAT

Figure 25-4. NFC Control Register (NFC_CTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

NFC Control Register (NFC_CTL)

0x0 to 0xF - The number of
SCLK cycles to extend AWE

Write Strobe Delay (WR_DLY)

Reset = 0x0200

Read/Write

0x0 to 0xF - The number of
SCLK cycles to extend ARE

Read Strobe Delay (RD_DLY)0 - 8-bit NAND Flash
1 - 16-bit NAND Flash

NAND Data Width (NWIDTH)

0 - 256 Bytes
1 - 512 Bytes

Page Size (PG_SIZE)

0xFFC0 3B00

ADSP-BF54x Blackfin Processor Hardware Reference 25-21

NAND Flash Controller

register to be set. The page write pending (PG_WR_STAT) and page read
pending (PG_RD_STAT) bits show indicate that a page write (or read) is
started and not completed.

As soon as the ND_RB signal has been enabled via PORTJ_FER and the
signal is sampled as high. The NBUSY bit is set in NFC_STAT and the
NBUSYIRQ interrupt is generated

NFC Interrupt Status Register (NFC_IRQSTAT)
The NFC_IRQSTAT register (see Figure 25-6) reports the status of additional
NFC interrupt sources. All bits in this register are write-1-to-clear (W1C).
The NBUSYIRQ sticky bit is asserted when a rising edge is detected on the
ND_RB signal. This bit must be cleared (W1C) before starting a new access.
The WB_OVF bit is asserted when the write buffer overflows and indicates
an error condition. The write buffer edge detect (WB_EDGE) bit is set when
the write buffer transitions from not empty to empty. The read data ready
(RD_RDY) bit indicates that a read data command has completed and that

Figure 25-5. NFC Status Register (NFC_STAT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0

NFC Status Register (NFC_STAT)

0 - Busy Request
1 - Not Busy

Not Busy (NBUSY)

Reset = 0x0010

Read Only

0 - Write Buffer Not Empty
1 - Write Buffer Empty

Write Buffer Empty (WB_EMPTY)

0 - No Page Read Pending
1 - Page Read Pending

Page Read Pending (PG_RD_STAT)

0 - No Page Write Pending
1 - Page Write Pending

Page Write Pending (PG_WR_STAT)

0 - Write Buffer Not Full
1 - Write Buffer Full

Write Buffer Full (WB_FULL)

0xFFC0 3B04

NFC Registers

25-22 ADSP-BF54x Blackfin Processor Hardware Reference

data is available for reading from the NFC_READ register. The page write
done (WR_DONE) bit indicates a completed page write and that the last
access in the page was transferred on the external bus.

As soon as the ND_RB signal has been enabled via PORTJ_FER and the
signal is sampled as high. The NBUSY bit is set in NFC_STAT and the
NBUSYIRQ interrupt is generated

Figure 25-6. NFC Interrupt Status Register (NFC_IRQSTAT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Interrupt Status Register (NFC_IRQSTAT)

Reset = 0x0000

Read/W1C (all bits)

0 - No rising edge of nBUSY detected
1 - Rising edge of nBUSY detected

Not Busy IRQ (NBUSYIRQ)
0 - No Page Write Completed
1 - Page Write Completed

Page Write Done (WR_DONE)

0 - No write buffer overflow detected
1 - Write buffer overflow detected

Write Buffer Overflow (WB_OVF)
0 - No Read Data Read
1 - Read Data in NFC_READ

Read Data Ready (RD_RDY)

0 - No rising edge of Write Buffer Empty
1 - Rising edge of Write Buffer Empty

Write Buffer Edge Detect (WB_EDGE)

0xFFC0 3B08

ADSP-BF54x Blackfin Processor Hardware Reference 25-23

NAND Flash Controller

NFC Interrupt Mask Register (NFC_IRQMASK)
The NFC_IRQMASK register (see Figure 25-7) contains individual mask bits
for each NFC interrupt source. After masking, the bits are OR’ed together
and routed to the system interrupt controller.

NFC ECC Registers (NFC_ECCx)
The NFC_ECCx registers (see Figure 25-8) contain the 22-bit ECC parity
values calculated for data read from or written to the NAND flash device.
When data is written, the processor must store these values in the spare
area of the NAND flash device. When data is read, the ECC values are cal-
culated for comparison with the values stored in the spare area.

The four 16-bit ECC registers are used to hold the ECC data as it is calcu-
lated by the ECC logic. The registers NFC_ECC0 and NFC_ECC1 are used to
hold the 22-bit ECC value for the first 256 bytes of the page. For
512-byte pages, the registers NFC_ECC2 and NFC_ECC3 hold the 22-bit ECC
value for the second half-page (256 bytes). The page size is configured in
NFC_CTL register.

Figure 25-7. NFC Interrupt Mask Register (NFC_IRQMASK)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

NFC Interrupt Mask Register (NFC_IRQMASK)

0 - Unmask nBUSY interrupt
1 - Mask nBUSY interrupt

MASK_BUSYIRQ

Reset = 0x001F

Read/Write

0 - Unmask WB_OVF interrupt
1 - Mask WB_OVF interrupt

MASK_WBOVF

0 - Unmask WR_DONE interrupt
1 - Mask WR_DONE interrupt

MASK_WRDONE

0 - Unmask RD_RDY interrupt
1 - Mask RD_RDY interrupt

MASK_RDRDY

0 - Unmask WB_EDGE interrupt
1 - Mask WB_EDGE interrupt

MASK_WBEDGE

0xFFC0 3B0C

NFC Registers

25-24 ADSP-BF54x Blackfin Processor Hardware Reference

The values in the ECC registers are updated on every cycle that data is
transferred. They are not updated when spare area bytes are read or writ-
ten. The registers NFC_ECC0 and NFC_ECC1 are valid after the transfer of the
256th byte in a page. the registers NFC_ECC2 and NFC_ECC3 are valid after
the transfer of the 512th byte in a page.

Note that the ECC registers are 16 bits each. When writing the ECC value
to an 8-bit NAND flash device, the lower 8 bits must be written first, fol-
lowed by the upper 8 bits.

Figure 25-8. NFC ECC Registers (NFC_ECCx)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC ECC Registers (NFC_ECCx)

P1024,P512,P256,P128,P64,P32,P16,P8,P4,P2,P1
ECC0 (Parity Calculation Result)

Reset = 0x0000

Read -only

P1024’,P512’,P256’,P128’,P64’,P32’,P16’,P8’,P4’,P2’,P1’
ECC1 (Parity Calculation Result)

Reset = 0x0000

Reset = 0x0000

Reset = 0x0000

P1024’,P512’,P256’,P128’,P64’,P32’,P16’,P8’,P4’,P2’,P1’
ECC3 (Parity Calculation Result)

P1024,P512,P256,P128,P64,P32,P16,P8,P4,P2,P1
ECC2 (Parity Calculation Result)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 00xFFC0 3B1C

0xFFC0 3B18

0xFFC0 3B14

0xFFC0 3B10

ADSP-BF54x Blackfin Processor Hardware Reference 25-25

NAND Flash Controller

NFC Count Register (NFC_COUNT)
The NFC_COUNT register (see Figure 25-9) reports the number of bytes
transferred in the current page. The count starts at 1 and increments up to
512 for a 512-byte page. This register is used primarily for debugging pur-
poses. The counter is reset when the ECC_RST bit in the NFC_RST register is
set.

NFC Reset Register (NFC_RST)
The NFC_RST register (see Figure 25-10) allows software to reset the ECC
registers and the NFC counters. This register must be written before each
page is transferred to generate the correct ECC register values. The ECC
reset bit is automatically cleared by the NFC on completion of the reset.

Figure 25-9. NFC Count Register (NFC_COUNT) Register

Figure 25-10. NFC Reset Register (NFC_RST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Count Register (NFC_COUNT)

Reset = 0x0000

Read Only

0x000-0x3FF - Byte transfer
count, excluding spare bytes

Transfer Count (ECCCNT)

0xFFC0 3B20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Reset Register (NFC_RST)

0 - No Reset
1 - Reset registers/counters

ECC and NFC counters Reset
(ECC_RST)

Reset = 0x0000

Read/Write

0xFFC0 3B24

NFC Registers

25-26 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Page Control Register (NFC_PGCTL)
The NFC_PGCTL register (see Figure 25-11) allows the processor to initiate
page reads or writes. All bits in the register are write only. The page data is
always transferred using the DAB bus. When either a page read or page
write is pending, page read start (PG_RD_START) and page write start
(PG_WR_START) are ignored.

NFC Read Data Register (NFC_READ)
The NFC_READ register (see Figure 25-12) contains read data returned from
the NAND flash after a read is requested using the NFC_DATA_RD register. If
NWIDTH is configured for 8 bits, only the eight LSB have valid data, other-
wise all 16 bits have valid data. The RD_RDY status bit and interrupt
indicate when new data is available for reading.

Figure 25-11. NFC Page Control Register (NFC_PGCTL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Page Control Register (NFC_PGCTL)

0 - No effect
1 - Start page read

Page Read Start

Reset = undefined

Write-only

0 - No effect
1 - Start page write

Page Write Start

0xFFC0 3B28

ADSP-BF54x Blackfin Processor Hardware Reference 25-27

NAND Flash Controller

To prevent overflow of NFC_READ, the read data request is not removed
from the write buffer until the returned data is read back from NFC_READ.
As a result, no other commands, address or data are sent to the NAND
flash while the read data request is active in the write buffer.

NFC Address Register (NFC_ADDR)
The NFC_ADDR register (see Figure 25-13) contains address bits to send to
the NAND flash device. The number of address bits (8 or 16) sent to the
NAND flash device is determined by the NWIDTH bit in the NFC_CTL regis-
ter. Values written to this register are stored in the NFC write buffer.

If the user is connecting to a 16-bit NAND flash that requires 8-bit
addresses, the user can program bits 0-7 of this register with the address
and zero-out bits 8-15.

Figure 25-12. NFC Read Data Register (NFC_READ)

Figure 25-13. NFC Address Register (NFC_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Data Register (NFC_READ)

Read data from NAND Flash
READ DATA

Reset = 0x0000

Read-only

0xFFC0 3B2C

NFC Address Register (NFC_ADDR)
Write-only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8-bit or 16-bit address value
Address

Reset = undefined0xFFC0 3B40

NFC Registers

25-28 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Command Register (NFC_CMD)
The NFC_CMD register (see Figure 25-14) contains commands to write to
the NAND flash device. The number of command bits (8 or 16) sent to
the NAND flash device is determined by the NWIDTH bit in the NFC_CTL
register. Values written to this register are stored in the NFC write buffer

If the user is connecting to a 16-bit NAND flash that requires 8-bit com-
mands, the user can program bits 0-7 of this register with the command
and zero-out bits 8-15.

Figure 25-14. NFC Command Register (NFC_CMD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Command Register (NFC_CMD)

8-bit or 16-bit command value
Command

Reset = undefined

Write-only

0xFFC0 3B44

ADSP-BF54x Blackfin Processor Hardware Reference 25-29

NAND Flash Controller

NFC Data Write Register (NFC_DATA_WR)
The NFC_DATA_WR register (see Figure 25-15) contains data to write to the
NAND flash device. The number of data bits (8 or 16) sent to the NAND
flash device is determined by the NWIDTH bit in the NFC_CTL register. Values
written to this register are stored in the NFC write buffer.

NFC Data Read Register (NFC_DATA_RD)
The NFC_DATA_RD register (see Figure 25-16) triggers a read request to the
NAND flash device. The data written is ignored. The number of data bits
(8 or 16) sent to the NAND flash device is determined by the NWIDTH bit
in the NFC_CTL register. The read request from this register is stored in the
NFC write buffer.

Figure 25-15. NFC Data Write Register (NFC_DATA_WR)

Figure 25-16. NFC Data Read Register (NFC_DATA_RD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Data Write Register (NFC_DATA_WR)

8- or 16-bit data value
Data Write

Reset = undefined

Write-only

0xFFC0 3B48

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFC Data Read Register (NFC_DATA_RD)

8- or 16-bit data value
Data Read

Reset = undefined

Write-only

0xFFC0 3B4C

NFC Programming Examples

25-30 ADSP-BF54x Blackfin Processor Hardware Reference

NFC Programming Examples
Listing 25-1 illustrates an example initialization sequence to enable the
use of the NFC.

Listing 25-1. NFC Port Register Configuration

/* Bit macros for NFC Read and Write Strobe Delays */

#define SET_NFC_WR_STROBE(x) ((x)&0xF)

#define SET_NFC_RD_STROBE(x) (((x)&0xF)<<4)

/***

 Mask out all NFC IRQs

**/

P5.L = lo(NFC_IRQMASK);

P5.H = hi(NFC_IRQMASK);

R7.L = MASK_WRDONE | MASK_RDRDY | MASK_WBEDGE | MASK_WBOVF |

MASK_BUSYIRQ;

w[P5] = R7.L;

/***

 Configure port J NFC features

**/

P5.L = lo(PORTJ_FER);

P5.H = hi(PORTJ_FER);

R7.L = nPJ15 | nPJ14 | nPJ13 | nPJ12 | nPJ11 | nPJ10 | nPJ9 |

nPJ8 | nPJ7 |

 nPJ6 | nPJ5 | nPJ4 | nPJ3 | PJ2 | PJ1 | nPJ0;

w[P5] = R7.L;

/***

 Configure port J MUX for NFC use

**/

ADSP-BF54x Blackfin Processor Hardware Reference 25-31

NAND Flash Controller

P5.L = lo(PORTJ_MUX);

P5.H = hi(PORTJ_MUX);

R7.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

R7.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

[P5] = R7;

/***

 Configure NFC Control register

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

R7.L = nPG_SIZE | nNWIDTH | SET_NFC_RD_STROBE(3) |

SET_NFC_WR_STROBE(3);

w[P5] = R7.L;

/**

 Clear any IRQs that may be pending for the NFC.

***/

P5.L = lo(NFC_IRQSTAT);

P5.H = hi(NFC_IRQSTAT);

R7.L = WR_DONE | RD_RDY | WB_EDGE | WB_OVF | NBUSYIRQ;

w[P5] = R7.L;

ssync;

/**

 Enable required NFC IRQs

***/

P5.L = lo(NFC_IRQMASK);

P5.H = hi(NFC_IRQMASK);

R7.L = nWR_DONE | nRD_RDY | nWB_EDGE | nWB_OVF | nNBUSYIRQ;

w[P5] = R7.L;

ssync;

NFC Programming Examples

25-32 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 25-2 illustrates one method on how to perform a page read from
the NAND flash through core read transactions. This example assumes
that only NFC wakeup interrupts are being used to bring the processor
out of idle.

The attached NAND flash is a large page device that requires the issuing
of 5 address cycles for a read operation, the page size of the device is 2048
bytes excluding the spare area. It is assumed that the NAND flash may not
be in read mode already. For a byte read transaction to take place the
NAND flash must first of all be configured for read mode. The address
cycles must then be issued for the data that we wish to access. As it is a
large page device the last address cycle is typically followed by a page read
confirmation command. Once the NAND flash accepts the page read con-
firmation command the device enters a busy state while it transfers the
data to be accessed from the main array into the read buffer where it can
then be accessed through core read transactions.

The data is read from within 2 loops. The outer loop is executed 8 times
in this example.

Outer loop count = NAND Page Size / NFC Page Size

The inner loop is configured for 256 bytes.

Inner loop count = NFC Page Size

Each execution of the inner loop reads one byte from the NAND flash by
issuing a read transaction through the NFC_DATA_RD register. The
received data is then read from the NFC_READ register and stored to a
buffer in internal memory named “_Buffer”. At the end of every 256 byte
block the 22-bit parity data is read from the NFC_ECC1 and
NFC_ECC0 registers and stored to a second buffer in internal memory
named “_CalculatedECC” before resetting the NFC ready for the next
256 byte block.

ADSP-BF54x Blackfin Processor Hardware Reference 25-33

NAND Flash Controller

Upon completion of reading all 2048 bytes, the spare area is then read and
stored at the bottom of the available 2112 byte buffer. This data would be
used along with the newly calculated error correction parity data within
the error correction routine to ensure all read data is correct.

Listing 25-2. Page Read through core read transactions

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

_check_write_buffer_empty:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Read Command (0x00) to NAND Flash

**/

R7 = 0(x);

w[P5+ lo(NFC_CMD - NFC_CTL)] = R7;

/***

 In order to avoid a write buffer overflow error issue 3

 of the 5 address cycles to the NAND flash.

 **/

R7 = 0(x);

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

/***

NFC Programming Examples

25-34 ADSP-BF54x Blackfin Processor Hardware Reference

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_again:

 R6 = w[P5 + lo(NFC_STAT-NFC_CTL)](z);

 CC = bittst(R6, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 3 address cycles followed by the

 Read Confirmation command

**/

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

R7 = 0x30(z);

w[P5+lo(NFC_CMD - NFC_CTL)] = R7;

/***

 Wait for the NFC not busy wakeup interrupt

**/

_wait_for_ready:

 IDLE;

 R7 = w[P5+lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(NBUSYIRQ));

_wait_for_ready.END: IF !CC JUMP _wait_for_ready;

R7 = NBUSYIRQ(z);

w[P5+lo(NFC_IRQSTAT - NFC_CTL)] = R7;

/***

 The page we wish to access is now ready to be read from

 the NAND flash. Set up the pointers to the data buffer

 and the buffer where we will store the calculated error

 correction parity data.

 **/

ADSP-BF54x Blackfin Processor Hardware Reference 25-35

NAND Flash Controller

P4.L = lo(_Buffer);

P4.H = hi(_Buffer);

P3.L = lo(_CalculatedECC);

P3.H = hi(_CalculatedECC);

P2 = (2048/256)(z);

LSETUP(_read_data_begin, _read_data_end) LC0 = P2;

P2= 256(z);

_read_data_begin: /* Outer loop */

 /* Reset the NFC */

 R7 = ECC_RST(z);

 w[P5 + lo(NFC_RST - NFC_CTL)] = R7;

 ssync;

 _wait_for_nfc_reset_completion:

 R7 = w[P5 + lo(NFC_RST - NFC_CTL)](z);

 CC = bittst(R7, bitpos(ECC_RST));

 _wait_for_nfc_reset_completion.END:

 if CC jump _wait_for_nfc_reset_completion;

 LSETUP(_read_nfc_page_begin, _read_nfc_page_end) LC1 = P2;

 _read_nfc_page_begin: /* Inner loop */

 w[P5+ lo(NFC_DATA_RD - NFC_CTL)] = R7;

 _wait_for_data_ready:

 IDLE;

 R7 = w[P5+ lo(NFC_IRQSTAT - NFC_CTL)];

 CC = bittst(R7, bitpos(RD_RDY));

 IF !CC JUMP _wait_for_data_ready;

 _wait_for_data_ready.END:

/***

NFC Programming Examples

25-36 ADSP-BF54x Blackfin Processor Hardware Reference

 The byte is now available in the NFC_READ register.

 We need to read the byte which results in the read

 transaction then being removed from the write buffer.

 We need to ensure that this transaction completes before

 clearing the IRQ

**/

 R7 = RD_RDY(z);

 R6 = w[P5+ lo(NFC_READ - NFC_CTL)](z);

 ssync;

 w[P5+ lo(NFC_IRQSTAT - NFC_CTL)] = R7;

 _read_nfc_page_end: b[P4++] = R6;

 /* Read and store the error correction parity data */

 R7 = w[P5+ lo(NFC_ECC0 - NFC_CTL)](z);

 R6 = w[P5+ lo(NFC_ECC1 - NFC_CTL)](z);

 R6 <<= 11;

 R7 = R7 | R6;

_read_data_end: [P3++] = R7;

Listing 25-3 illustrates one method on how to perform a page program
operation to the NAND flash through core write transactions. This exam-
ple assumes that only NFC wakeup interrupts are being used to bring the
processor out of idle.

The attached NAND flash is a large page device that requires the issuing
of 5 address cycles for a program operation, the page size of the device is
2048 bytes excluding the spare area. It is assumed that the NAND flash
may not be in program mode already.

For a byte write transaction to take place the NAND flash must first of all
be configured for page program mode. The address cycles must then be
issued followed by the page data. This is followed by a page program con-

ADSP-BF54x Blackfin Processor Hardware Reference 25-37

NAND Flash Controller

firmation command. Once the NAND flash accepts the page program
confirmation command the device enters a busy state while it transfers the
data to be written into the main NAND flash array.

The data is written from within 2 loops. The outer loop is executed 8
times in this example.

Outer loop count = NAND Page Size / NFC Page Size

The inner loop is configured for the writing of 4 bytes per iteration and is
executed 64 times in order to write a 256 byte block.

Inner loop count = NFC Page Size/4

At the end of every 256 byte block the 22-bit parity data is stored at the
end of the 2112 byte buffer ready to be written after the main 2048 byte
area is written.

Listing 25-3. Page program through core write transactions

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_STAT);

P5.H = hi(NFC_STAT);

_check_write_buffer_empty:

 R7.L = w[P5];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Program Command (0x80) to NAND Flash

**/

P5.L = lo(NFC_CMD);

P5.H = hi(NFC_CMD);

NFC Programming Examples

25-38 ADSP-BF54x Blackfin Processor Hardware Reference

R7.L = 0x0080;

w[P5] = R7.L;

/***

 In order to avoid a write buffer overflow error

 Issue 3 of the 5 address cycles to the NAND flash

 The read command and the three address cycles are enough

 to fill up the NFC write buffer.

**/

P5.L = lo(NFC_ADDR);

P5.H = hi(NFC_ADDR);

R7.L = 0x0000;

w[P5] = R7.L;

w[P5] = R7.L;

w[P5] = R7.L;

/***

 Wait for write buffer to become empty

**/

P5.L = lo(NFC_STAT);

P5.H = hi(NFC_STAT);

_check_write_buffer_empty_again:

 R7.L = w[P5];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 2 address cycles

**/

P5.L = lo(NFC_ADDR);

P5.H = hi(NFC_ADDR);

R7.L = 0x0000;

w[P5] = R7.L;

ADSP-BF54x Blackfin Processor Hardware Reference 25-39

NAND Flash Controller

w[P5] = R7.L;

/***

 We are now ready to start programming the page with data.

 This routine will program all 2112 bytes of the page. Four

 Bytes are programmed every iteration of the loop to make

 Most efficient use of the 4 deep write buffer

**/

P5.L = lo(NFC_STAT);

P5.H = hi(NFC_STAT);

P4.L = lo(NFC_DATA_WR);

P4.H = hi(NFC_DATA_WR);

P3.L = lo(_Buffer);

P3.H = hi(_Buffer);

P2.L = lo(2112/4);

P2.H = hi(2112/4);

LSETUP(_write_data_begin, _write_data_end) LC0 = P2;

_write_data_begin:

 R7 = b[P3++](z);

 w[P4] = R7.L;

 R7 = b[P3++](z);

 w[P4] = R7.L;

 R7 = b[P3++](z);

 w[P4] = R7.L;

 R7 = b[P3++](z);

 w[P4] = R7.L;

 _check_writes_completed:

 R7.L = w[P5];

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_writes_completed;

 _check_writes_completed.END:

NFC Programming Examples

25-40 ADSP-BF54x Blackfin Processor Hardware Reference

_write_data_end:nop;

/***

 Issue Program Confirm Command (0x10) to NAND Flash

**/

P5.L = lo(NFC_CMD);

P5.H = hi(NFC_CMD);

R7.L = 0x0010;

w[P5] = R7.L;

/***

 Wait for the NFC not busy wakeup interrupt

**/

P5.L = lo(NFC_IRQSTAT);

P5.H = hi(NFC_IRQSTAT);

_wait_for_ready:

 IDLE;

 R7.L = w[P5];

 CC = bittst(R7, bitpos(NBUSYIRQ));

 IF !CC JUMP _wait_for_ready;

_wait_for_ready.END:

w[P5] = R7;

Listing 25-4 illustrates one method on how to perform a page read from
the NAND flash through DMA.

This example assumes that only NFC wakeup interrupts are being used to
bring the processor out of idle. The attached NAND flash is a large page
device that requires the issuing of 5 address cycles for a read operation, the
page size of the device is 2048 bytes excluding the spare area.It is assumed
that the NAND flash may not be in read mode already.

ADSP-BF54x Blackfin Processor Hardware Reference 25-41

NAND Flash Controller

Once the NAND flash is ready after the acceptance of the read confirm
command DMA channel 22 is used to transfer the 2048 bytes of the main
area into internal memory. This involves a single loop that is executed 8
times. Each iterations configures the DMA channel for a 256 byte read
transfer and uses the DMA completion wakeup as an indication that the
block read has completed.

At the end of every 256 byte block the 22-bit parity data is read from the
NFC_ECC1 and NFC_ECC0 registers and stored to a second buffer in
internal memory named “_CalculatedECC” before resetting the NFC
ready for the next 256 byte block.

Upon completion of reading all 2048 bytes, the spare area is then read and
stored at the bottom of the available 2112 byte buffer. The spare area is
read through core transactions as the DMA channel can only be config-
ured for a number of transfers that is an integer multiple of the configured
NFC page size.

Listing 25-4. Page read using DMA

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

_check_write_buffer_empty:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Read Command (0x00) to NAND Flash

**/

R7 = 0(x);

NFC Programming Examples

25-42 ADSP-BF54x Blackfin Processor Hardware Reference

w[P5+ lo(NFC_CMD - NFC_CTL)] = R7;

/***

 In order to avoid a write buffer overflow error

 Issue 3 of the 5 address cycles to the NAND flash

 The read command and the three address cycles are enough

 to fill up the NFC write buffer.

**/

R7 = 0(x);

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

/***

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_again:

 R6 = w[P5 + lo(NFC_STAT-NFC_CTL)](z);

 CC = bittst(R6, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 2 address cycles followed by the

 Read Confirmation command

**/

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5+lo(NFC_ADDR - NFC_CTL)] = R7;

R7 = 0x30(z);

w[P5+lo(NFC_CMD - NFC_CTL)] = R7;

/***

 Wait for the NFC not busy wakeup interrupt

**/

ADSP-BF54x Blackfin Processor Hardware Reference 25-43

NAND Flash Controller

_wait_for_ready:

 IDLE;

 R7 = w[P5+lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(NBUSYIRQ));

_wait_for_ready.END: IF !CC JUMP _wait_for_ready;

R7 = NBUSYIRQ(z);

w[P5+lo(NFC_IRQSTAT - NFC_CTL)] = R7;

/***

 The page we wish to access is now ready to be read from

 the NAND flash. Set up the pointers to the data buffer

 and the buffer where we will store the calculated error

 correction parity data.

**/

P4.L = lo(DMA22_CONFIG);

P4.H = hi(DMA22_CONFIG);

P3.L = lo(_CalculatedECC);

P3.H = hi(_CalculatedECC);

P2 = (2048/256)(z);

R3.L = lo(_Buffer);

R3.H = hi(_Buffer);

R4 = (256/4)(z);

R5 = 0x4(x);

LSETUP(_read_data_begin, _read_data_end) LC0 = P2;

_read_data_begin: /* Outer loop */

 /* Reset the NFC */

 R7 = ECC_RST(z);

 w[P5 + lo(NFC_RST - NFC_CTL)] = R7;

 ssync;

NFC Programming Examples

25-44 ADSP-BF54x Blackfin Processor Hardware Reference

 _wait_for_nfc_reset_completion:

 R7 = w[P5 + lo(NFC_RST - NFC_CTL)](z);

 CC = bittst(R7, bitpos(ECC_RST));

 _wait_for_nfc_reset_completion.END:

 if CC jump _wait_for_nfc_reset_completion;

 R7 = 0x00(x);

 w[P4] = R7;

 [P4 + (DMA22_START_ADDR - DMA22_CONFIG)] = R3;

 w[P4 + lo(DMA22_X_COUNT - DMA22_CONFIG)] = R4;

 w[P4 + lo(DMA22_X_MODIFY - DMA22_CONFIG)] = R5;

 R7 = 256(z);

 R3 = R3 + R7;

 R7 = 0x8B(z);

 w[P4] = R7;

 csync;

 R7 = PG_RD_START(x);

 w[P5 + lo(NFC_PGCTL - NFC_CTL)] = R7;

 _wait_for_dma_complete:

 IDLE;

 R7 = w[P4 + lo(DMA22_IRQ_STATUS - DMA22_CONFIG)](z);

 CC = bittst(R7, bitpos(DMA_DONE));

 _wait_for_dma_complete.END: IF !CC JUMP

_wait_for_dma_complete;

 R7 = DMA_DONE(z);

 w[P4 + lo(DMA22_IRQ_STATUS - DMA22_CONFIG)] = R7;

 /* Read and store the error correction parity data */

 R7 = w[P5+ lo(NFC_ECC0 - NFC_CTL)](z);

 R6 = w[P5+ lo(NFC_ECC1 - NFC_CTL)](z);

 R0 = w[P5+ lo(NFC_COUNT - NFC_CTL)](z);

 R6 <<= 11;

ADSP-BF54x Blackfin Processor Hardware Reference 25-45

NAND Flash Controller

 R7 = R7 | R6;

_read_data_end: [P3++] = R7;

/***

 We now wish to read the spare area of the page that

 contains the expected error correction parity data to

 use with the newly calculated parity data

**/

P2 = 0x40(z);

P4.L = lo(_Buffer+2048);

P4.H = hi(_Buffer+2048);

LSETUP(_read_page_spare_begin, _read_page_spare_end) LC1 = P2;

_read_page_spare_begin:

 w[P5+ lo(NFC_DATA_RD - NFC_CTL)] = R7;

 _wait_for_spare_data_ready:

 IDLE;

 R7 = w[P5+ lo(NFC_IRQSTAT - NFC_CTL)];

 CC = bittst(R7, bitpos(RD_RDY));

 IF !CC JUMP _wait_for_spare_data_ready;

 _wait_for_spare_data_ready.END:

/***

 The byte is now available in the NFC_READ register.

 We need to read the byte which results in the read

 transaction then being removed from the write buffer.

 We need to ensure that this transaction completes before

 clearing the IRQ

**/

 R7 = RD_RDY(z);

 R6 = w[P5+ lo(NFC_READ - NFC_CTL)](z);

NFC Programming Examples

25-46 ADSP-BF54x Blackfin Processor Hardware Reference

 ssync;

 w[P5+ lo(NFC_IRQSTAT - NFC_CTL)] = R7;

 _read_page_spare_end: b[P4++] = R6;

Listing 25-5 illustrates one method on how to perform a page program to
the NAND flash through DMA. This example assumes that only NFC
wakeup interrupts are being used to bring the processor out of idle.

The attached NAND flash is a large page device that requires the issuing
of 5 address cycles for a read operation, the page size of the device is 2048
bytes excluding the spare area. It is assumed that the NAND flash may not
be in program mode already.

Once the page program command and address cycles have been issued to
the NAND flash the data cycles are then initiated through DMA channel
22 to transfer the 2048 bytes of the main area.

This example works differently from the read example through DMA in
that multiple DMA sequences are not configured. For a page write trans-
action a full 2048 byte DMA can be configured. The PG_WR_START
bit in the NFC_PGCTL register is then used to start each smaller DMA
sequence. As the NFC is assumed to be configured for 256 byte page size
in the NFC_CTL register, each issue of the page write start will only allow
the DMA to transfer 256 bytes. This is performed within the single loop
executed 8 times to transfer the 2048 byte page.

At the end of every 256 byte block the 22-bit parity data is read from the
NFC_ECC1 and NFC_ECC0 registers and stored at the end of the 2112
byte buffer.

Upon completion of the 2048 byte DMA, the spare area is then written
through core write transaction before issuing a page program confirmation
command.

ADSP-BF54x Blackfin Processor Hardware Reference 25-47

NAND Flash Controller

Listing 25-5. Page program using DMA

/***

 Ensure the NFC write buffer is empty

**/

P5.L = lo(NFC_CTL);

P5.H = hi(NFC_CTL);

_check_write_buffer_empty:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty;

_check_write_buffer_empty.END:

/***

 Issue Program Command (0x80) to NAND Flash

**/

R7 = 0x80(z);

w[P5 + lo(NFC_CMD - NFC_CTL)] = R7;

/***

 In order to avoid a write buffer overflow error

 Issue 3 of the 5 address cycles to the NAND flash

 The read command and the three address cycles are enough

 to fill up the NFC write buffer.

**/

R7 = 0x00(x);

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

/***

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_again:

NFC Programming Examples

25-48 ADSP-BF54x Blackfin Processor Hardware Reference

 R6 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R6, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_again;

_check_write_buffer_empty_again.END:

/***

 Issue the remaining 2 address cycles

**/

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

w[P5 + lo(NFC_ADDR - NFC_CTL)] = R7;

/***

 Wait for write buffer to become empty

**/

_check_write_buffer_empty_yet_again:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_write_buffer_empty_yet_again;

_check_write_buffer_empty_yet_again.END:

/***

 We are now ready to start programming the page with data.

 This routine will program all 2048bytes of the page

**/

P4.L = lo(DMA22_CONFIG);

P4.H = hi(DMA22_CONFIG);

P2.L = lo(_Buffer+2048);

P2.H = hi(_Buffer+2048);

R7 = 0(x);

w[P4] = R7;

P1 = (2048/256)(z);

R3.L = lo(_Buffer);

ADSP-BF54x Blackfin Processor Hardware Reference 25-49

NAND Flash Controller

R3.H = hi(_Buffer);

R4 = (2048/4)(z);

R5 = 0x4(x);

[P4 + (DMA22_START_ADDR - DMA22_CONFIG)] = R3;

w[P4 + lo(DMA22_X_COUNT - DMA22_CONFIG)] = R4;

w[P4 + lo(DMA22_X_MODIFY - DMA22_CONFIG)] = R5;

R7 = 0x89(z);

w[P4] = R7;

LSETUP(_write_data_begin, _write_data_end) LC0 = P1;

_write_data_begin:

 P1 = (256/4)(z);

 /* Reset the NFC */

 R7 = ECC_RST(z);

 w[P5 + lo(NFC_RST - NFC_CTL)] = R7;

 ssync;

 _wait_for_nfc_reset_completion:

 R7 = w[P5 + lo(NFC_RST - NFC_CTL)](z);

 CC = bittst(R7, bitpos(ECC_RST));

 _wait_for_nfc_reset_completion.END:

 if CC jump _wait_for_nfc_reset_completion;

 R7 = PG_WR_START(x);

 w[P5 + lo(NFC_PGCTL - NFC_CTL)] = R7;

 _wait_for_page_write_complete:

 IDLE;

 R7 = w[P5 + lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(WR_DONE));

 _wait_for_page_write_complete.END: IF !CC JUMP

_wait_for_page_write_complete;

 R7 = WR_DONE(z);

NFC Programming Examples

25-50 ADSP-BF54x Blackfin Processor Hardware Reference

 w[P5 + lo(NFC_IRQSTAT - NFC_CTL)] = R7;

 /* Read and store the error correction parity data */

 R7 = w[P5+ lo(NFC_ECC0 - NFC_CTL)](z);

 R6 = w[P5+ lo(NFC_ECC1 - NFC_CTL)](z);

 R6 <<= 11;

 R7 = R7 | R6;

 [P2++] = R7;

_write_data_end: P2+=4;

R7 = DMA_DONE(z);

w[P4 + (DMA22_IRQ_STATUS - DMA22_CONFIG)] = R7;

/***

 We are now ready to start writing the spare area of the

 page now we have collected all the parity data

**/

P1 = (64/4)(z);

P4.L = lo(_Buffer+2048);

P4.H = hi(_Buffer+2048);

LSETUP(_write_data_spare_begin, _write_data_spare_end) LC0 = P1;

_write_data_spare_begin:

 R7 = b[P4++](z);

 R6 = b[P4++](z);

 R5 = b[P4++](z);

 R4 = b[P4++](z);

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R7;

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R6;

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R5;

 w[P5 + lo(NFC_DATA_WR - NFC_CTL)] = R4;

 _check_writes_spare_completed:

 R7 = w[P5 + lo(NFC_STAT - NFC_CTL)];

ADSP-BF54x Blackfin Processor Hardware Reference 25-51

NAND Flash Controller

 CC = bittst(R7, bitpos(WB_EMPTY));

 If !CC JUMP _check_writes_spare_completed;

_write_data_spare_end:nop;

/***

 Issue Program Confirm Command (0x10) to NAND Flash

**/

R7 = 0x10(z);

w[P5+ lo(NFC_CMD - NFC_CTL)] = R7;

/***

 Wait for the NFC not busy wakeup interrupt

**/

_wait_for_ready:

 IDLE;

 R7= w[P5 + lo(NFC_IRQSTAT - NFC_CTL)](z);

 CC = bittst(R7, bitpos(NBUSYIRQ));

 IF !CC JUMP _wait_for_ready;

_wait_for_ready.END:

R7 = NBUSYIRQ(z);

w[P5+lo(NFC_IRQSTAT - NFC_CTL)] = R7;

NFC Programming Examples

25-52 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 26-1

26 ENHANCED PARALLEL
PERIPHERAL INTERFACE

This chapter describes the enhanced parallel peripheral interface (EPPI)
and includes the following sections:

• “Overview” on page 26-1

• “Interface Overview” on page 26-5

• “Description of Operation” on page 26-7

• “Functional Description” on page 26-11

• “EPPI Data Path Options” on page 26-29

• “Programming Model” on page 26-66

• “EPPI Registers” on page 26-76

Overview
The ADSP-BF54x Blackfin processor provides up to three enhanced paral-
lel peripheral interfaces (EPPIs), supporting data widths up to 24 bits
wide. The EPPI supports direct connection to active TFT LCD, parallel
A/D and D/A converters, video encoders and decoders, image sensor mod-
ules and other general-purpose peripherals.

Overview

26-2 ADSP-BF54x Blackfin Processor Hardware Reference

The following features are supported in the EPPI module.

• Programmable data length: 8, 10, 12, 14, 16, 18 and 24 bits per
clock cycle.

• Bidirectional and half-duplex port.

• Clock can be provided externally or can be generated internally.

• Various framed and non-framed operating modes. Frame syncs can
be generated internally or can be supplied by an external device.

• Various general-purpose modes with one frame sync, two frame
syncs, three frame syncs and zero frame sync modes for both
receive and transmit.

• ITU-656 status word error detection and correction for ITU-656
Receive modes.

• ITU-656 preamble and status word decode.

• Three different modes for ITU-656 receive modes: active video
only, vertical blanking only, and entire field.

• Horizontal and vertical windowing for GP 2 and 3 frame sync
modes.

• Optional packing and unpacking of data to/from 32 bits from/to 8,
16 and 24 bits. If packing/unpacking is enabled, endianness can be
altered to change the order of packing/unpacking of bytes/words.

ADSP-BF54x Blackfin Processor Hardware Reference 26-3

Enhanced Parallel Peripheral Interface

• Optional sign extension or zero-fill for receive modes.

• During receive modes, alternate even or odd data samples can be
filtered out.

• Programmable clipping of data values for 8-bit and 16-bit transmit
modes.

• RGB888 can be converted to RGB666 or RGB565 for transmit
modes.

• Various de-interleaving/interleaving modes for receiving/transmit-
ting 4:2:2 YCrCb data.

• FIFO watermarks and urgent DMA features.

• Clock gating by an external device asserting the clock gating con-
trol signal.

• Configurable LCD data enable (DEN) output available on frame
sync 3.

Each EPPI is a half-duplex, bidirectional port with a dedicated clock pin
and three frame sync (FS) pins. Each EPPI has a DMA channel associated
with it. Moreover, in some modes, an EPPI may use an additional DMA
channel.

The EPPI supports direct connection to LCD panels, parallel A/D and
D/A converters, video encoders and decoders, CMOS sensors and other
general-purpose peripherals.

The ADSP-BF54x Blackfin processors feature up to three separate (but
functionally identical) EPPI modules. The ADSP-BF544, ADSP-BF547,
ADSP-BF548 and ADSP-BF549 processors feature three EPPIs, referred
to as EPPI0, EPPI1, and EPPI2. EPPI0 is not present on the
ADSP-BF542 processor.

Overview

26-4 ADSP-BF54x Blackfin Processor Hardware Reference

To reduce pin count, some EPPI module pins are multiplexed with other
EPPI pins and peripheral pins. (See Figure 26-8 on page 26-30 for more
details.)

The maximum data widths are:

• EPPI0 supports up to 24 bits of data, 3 frame syncs and a clock.

• EPPI1 supports up to 16 bits of data, 3 frame syncs and a clock.

• EPPI2 supports up to 8 bits of data, 3 frame syncs and a clock.

For simplicity, discussions that apply to all EPPI blocks are denoted as
PPIx, which refers to any/all EPPI modules. The abbreviations RX and
TX are also used in order to denote receive and transmit modes,
respectively.

ADSP-BF54x Blackfin Processor Hardware Reference 26-5

Enhanced Parallel Peripheral Interface

Interface Overview
 A block diagram of the EPPI is shown in Figure 26-1.

Figure 26-1. EPPI Block Diagram

PORTS

EPPI0_CLK_TIMER

EPPI0_FS1_TIMER

EPPI0_FS2_TIMER

EPPI0_CLKDIV

EPPI0_STATUS

EPPI0_FS1_...

EPPI0_FS2_...

EPPI0_CONTROL

EPPI0_CLIP

EPPI0_LINE

EPPI0_FRAME

EPPI0_V/HCOUNT

DATA RE-ARRANGE
AND CONTROL UNIT

2416
16

HI

LO

16

SCLK

CLK

FS1

FS2

FS3

DMA CONTR.
(DMAC 1)

SIC
CONTROLLER

FIFO
4

32

REQUEST

GRANT

PAB

DAB

32

32

0 17

23

0

5

8

15

0

7

EPPI0_V/HDELAY

EPPI0-2
ERROR

DMA12_EPPI0
DEFAULT

DMA13_EPPI1
DEFAULT

DMA14_EPPI2
DEFAULT

3

SCLK

SCLK

32

32

32

16

16

EPPI CORE

32
FIFO

16

8

FIFO
4

FIFO
4

EPPI 0

EPPI 1

EPPI 2

E
P

P
I 0

E
P

P
I 1

E
P

P
I 2

Interface Overview

26-6 ADSP-BF54x Blackfin Processor Hardware Reference

The EPPI can be supplied with an external clock, or the clock can be gen-
erated internally and supplied to external devices. When using the internal
clock, the maximum frequency possible for PPIx_CLK is SCLK/2. When
using an external clock, the maximum frequency for PPIx_CLK is 75 MHz.

When using an external PPIx_CLK, there may be up to two cycles
latency before valid data is received or transmitted.

The internal clock can be generated from SCLK if the ICLKGEN bit in the
PPIx_CONTROL register is set. The generated clock frequency is then deter-
mined by the value in the PPIx_CLKDIV register.

ADSP-BF54x Blackfin Processor Hardware Reference 26-7

Enhanced Parallel Peripheral Interface

Description of Operation
The following sections provide descriptions of EPPI operations.

Table 26-1. Operating Modes and Generic EPPI Operation

How to configure Useful for How to
configure in ITU
R 656 TX Mode

ITU-R
BT.656 RX

Entire Field DIR=0,
XFR_TYPE=b#01

Active
Video

DIR=0,
XFR_TYPE=b#00

Blanking
Only

DIR=0,
XFR_TYPE=b#10

GP 0 FS TX DIR=1,
XFR_TYPE=b#11FS_
CFG=b#00

Applications where
periodic frame syncs
are not used to frame
the data

BLANKGEN=1,
DLEN=(b#000,
b#001 or b#100)

RX DIR=0,
XFR_TYPE=b#11FS_
CFG=b#00

GP 1 FS TX DIR=1,
XFR_TYPE=11FS_C
FG=01

Interfacing with
ADCs, DACs and
other general-pur-
pose devices

BLANKGEN=1,
DLEN=(b#000,
b#001 or b#100)

RX DIR=0,
XFR_TYPE=b#11FS_
CFG=b#01

GP 2 FS TX DIR=1,
XFR_TYPE=b#11FS_
CFG=b#10

Video applications
that use two hard-
ware synchroniza-
tion signals, HSYNC
and VSYNC

BLANKGEN=1,
DLEN=(b#000,
b#001 or b#100)

RX DIR=0,
XFR_TYPE=b#11FS_
CFG=b#10

Description of Operation

26-8 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI Reset
On a hardware reset, the entire EPPI is reset. All MMRs return to their
default values. EPPI interrupt and DMA requests go inactive. Internally
generated PPIx_CLK and frame syncs are aborted.

In software, the EPPI can be reset and re-configured by writing 0 to the
PPIx_EN bit in the PPIx_CONTROL register. On disabling the EPPI in this
manner, only PPIx_STATUS is cleared to its reset value. EPPI interrupt and
DMA requests go inactive, and internally generated clock and frame syncs
are aborted.

Clock Gating

In ITU-R BT.656 and GP 0/1/2 FS modes, PPIx_FS3 becomes a
clock-gating input. This is valid for both internally and externally sourced
PPIx_CLK, in both RX and TX modes. This clock gating signal must be
synchronous with PPIx_CLK and must be driven by the external device on
the rising edge of PPIx_CLK. Its function is to hold the sync and data lines
in their current state until PPIx_FS3 is driven low. There are no additional
latency cycles upon coming out of clock gating mode.

'If clock gating is not required, the PPIx_FS3 pin must either be
tied to ground, or configured to operate as another of its multi-
plexed functions.

GP 3 FS TX DIR=1,
XFR_TYPE=b#11FS_
CFG=b#11

Video applications
that use three hard-
ware sync signals,
HSYNC, VSYNC,
and FIELD

BLANKGEN=1,
DLEN=(b#000,
b#001 or b#100)

RX DIR=0,
XFR_TYPE=b#11FS_
CFG=b#11

Table 26-1. Operating Modes and Generic EPPI Operation (Cont’d)

How to configure Useful for How to
configure in ITU
R 656 TX Mode

ADSP-BF54x Blackfin Processor Hardware Reference 26-9

Enhanced Parallel Peripheral Interface

In GP 2 FS transmit mode with internally generated frame syncs,
PPIx_FS3 functions as a data enable (DEN) pin. Refer to the DEN functional-
ity in the section “GP 2 FS Mode” on page 26-26” for more details on this
functionality.

Frame Sync Polarity & Sampling Edge

The POLS and POLC bits provide a mechanism to select the active level of
the frame syncs and the sampling/driving edge of the EPPI clock, respec-
tively. This allows the EPPI to connect to data sources and receivers with a
wide array of control signal polarities. Often, the remote data
source/receiver also offers configurable signal polarities; in these cases, the
POLS and POLC bits simply add increased flexibility.

Description of Operation

26-10 ADSP-BF54x Blackfin Processor Hardware Reference

PPIx_FS3 is always active high and starts out as low. In all modes
other than GP 3 FS mode, it is used as a clock-gating input, with
the exception of when it is configured as a “Data Enable” output in
GP 2 FS mode.

Interrupts

The EPPI generates an interrupt to the System Interrupt Controller under
the following conditions:

• FIFO Overflow

• FIFO Underflow

• Line Track Overflow

Table 26-2. Different Settings for POLS

Frame Sync 2 Frame Sync 1

POLS = b#00 Active high/ starts out low Active high/ starts out low

POLS = b#01 Active high/ starts out low Active low/ starts out high

POLS = b#10 Active low/ starts out high Active high/ starts out low

POLS = b#11 Active low/ starts out high Active low/ starts out high

Table 26-3. Different Settings for POLC

RX TX

Sample Data Sample/drive
syncs

Drive Data Sample/drive
syncs

POLC = b#00 Falling edge Falling edge Rising edge Rising edge

POLC = b#01 Falling edge Rising edge Rising edge Falling edge

POLC = b#10 Rising edge Falling edge Falling edge Rising edge

POLC = b#11 Rising edge Rising edge Falling edge Falling edge

ADSP-BF54x Blackfin Processor Hardware Reference 26-11

Enhanced Parallel Peripheral Interface

• Line Track Underflow

• Frame Track Overflow

• Frame Track Underflow

• Preamble Error not corrected in ITU-R 656 receive modes

The interrupt remains high until software clears the particular interrupt in
the PPIx_STATUS register.

There is only one interrupt line from each EPPI. An EPPI will
therefore internally OR all the above interrupts and send a single
interrupt to the core. The PPIx_STATUS register must then be read
to find out which error occurred.

Functional Description
The following sections describe the function of the EPPI.

ITU-R 656 Modes
The EPPI supports three input modes and one output mode for ITU-R
656-framed data. These modes are described in this section.

ITU-R 656 Background
In ITU-656 mode, the horizontal (H), vertical (V), and field (F) signals are
sent as an embedded part of the video datastream in a series of bytes that
form a control word.

The letter H is used to distinguish between the start of active video (SAV)
and end of active video (EAV) signals, which indicate the beginning and
end of active video data in each line. SAV occurs on a 1-to-0 transition of
H, and EAV occurs on a 0-to-1 transition of H. The space between EAV

Functional Description

26-12 ADSP-BF54x Blackfin Processor Hardware Reference

and SAV is filled with horizontal blanking data. Therefore H=1 during the
horizontal blanking portion of the data stream and H=0 during the active
video portion of the data stream.

The letter V is used to denote the vertical blanking portion of the data
stream. A transition in V can occur only in the EAV sequence. When V=1,
the data stream contains vertical blanking data and when V=0, the data
stream contains active video data.

The letter F is used to distinguish Field 1 from Field 2. Interlaced video
has two fields in a frame of data. It requires each field to be handled
uniquely, and alternate rows of each field combined to create the actual
video image.

For interlaced video, F=0 represents Field 1 and F=1 represents Field 2.
Progressive video makes no distinction between Field 1 and Field 2, and F
is always 0 for progressive video.

According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 26-2 and Figure 26-3 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported. In this mode, the
horizontal (H), vertical (V), and field (F) signals are sent as an embedded
part of the video datastream in a series of bytes that form a control word.
The start of active video (SAV) and end of active video (EAV) signals indi-
cate the beginning and end of data elements to read in on each line. SAV
occurs on a 1-to-0 transition of H, and EAV occurs on a 0-to-1 transition
of H. An entire field of video is comprised of active video + horizontal
blanking (the space between an EAV and SAV code) and vertical blanking
(the space where V = 1). A field of video commences on a transition of the
F bit. An “odd field” is denoted by a value of F = 0, whereas F = 1 denotes
an even field. Progressive video makes no distinction between Field 1 and

ADSP-BF54x Blackfin Processor Hardware Reference 26-13

Enhanced Parallel Peripheral Interface

Field 2, whereas interlaced video requires each field to be handled
uniquely, because alternate rows of each field combine to create the actual
video image.

Figure 26-2. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y1
0

C
R

Y F
F

4 268 (280 FOR PAL) 4 1440

1716 (1728 FOR PAL)

END OF ACTIVE VIDEO START OF ACTIVE VIDEO START OF
NEXT LINE

DIGITAL
VIDEO
STREAM

EAV
CODE
(H=1)

HORIZONTAL
BLANKING

SAV
CODE
(H=0)

~ ~
~ ~

Functional Description

26-14 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-3. Typical Video Frame Partitioning for NTSC/PAL Systems in
Interlaced and Progressive ITU-R BT.656 Systems

LINE
NUMBER

F V H
(EAV)

H
(SAV)

LINE
NUMBER

F V H
(EAV)

H
(SAV)

1-3
266-282

4-19
264-265

1-22
311-312

313-335,
624-625

20-263

283-525

23-310

336-623

1 1 1 0

0 01 1

0 0 01

1 0 1 0

0 1 1 0

0 0 1 0

1 1 1 0

1 0 1 0

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

VERTICAL
BLANKING

FIELD 1
ACTIVE VIDEO

VERTICAL
BLANKING

FIELD 2
ACTIVE VIDEO

VERTICAL
BLANKING

FIELD 1
ACTIVE VIDEO

VERTICAL
BLANKING

FIELD 2
ACTIVE VIDEO

VERTICAL
BLANKING

1

20

264

283

525

1

23

311

336

624

625

EAV SAV

EAV SAV

LINE #

LINE 4

FIELD 1

FIELD 2

LINE 266

LINE 3

LINE 1

LINE 313

LINE 625

FIELD 1

FIELD 2

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

VERTICAL
BLANKING

ACTIVE VIDEO

1

46

525

EAV SAV

H
O

R
IZ

O
N

T
A

L
 B

L
A

N
K

IN
G

VERTICAL
BLANKING

ACTIVE VIDEO

1

45

625

EAV SAV

VERTICAL
BLANKING

LINE
NUMBER

F V H
(EAV)

H
(SAV)

1-45

46-525

0 1 1 0

0 0 1 0

LINE
NUMBER

F V H
(EAV)

H
(SAV)

45-620

0 1 1 0

0 0 1 0

1-44,
621-625

LINE #
PROGRESSIVE VIDEO

INTERLACED VIDEO

NTSC

NTSC

PAL

PAL

621

ADSP-BF54x Blackfin Processor Hardware Reference 26-15

Enhanced Parallel Peripheral Interface

The SAV and EAV codes are shown in more detail in Table 26-4. Note
there is a defined preamble of three data elements (for example, in the case
of 8-bit video: 0xFF, 0x00, 0x00), followed by the XY status word, which,
aside from the F (field), V (vertical blanking) and H (horizontal blanking)
bits, contains four protection bits for error detection and correction. Note
F and V are only allowed to change as part of EAV sequences (that is,
transition from H = 0 to H = 1).

The bit definitions are as follows:

• F = 0 for field 1

• F = 1 for field 2

• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

Functional Description

26-16 ADSP-BF54x Blackfin Processor Hardware Reference

• P1 = F XOR V

• P0 = F XOR V XOR H

P3-P0 are protection bits and enable one- and two-bit errors to be
detected, and one-bit errors to be corrected, at the receiver. The EPPI
does this correction if it detects one-bit errors in F, V or H. Errors in the
protection bits themselves are detected but not corrected.

The PPIx_STATUS register contains two bits, ERR_DET and ERR_NCOR, used
to report the statuses of Error Detected and Error Not Corrected,
respectively.

The ERR_DET bit is set whenever an error is detected in the status word.
However, this bit does not generate an interrupt. The ERR_NCOR bit is set
when more than a 1-bit error is detected in the status word. An interrupt
is generated when the ERR_NCOR bit is set. It can be cleared by clearing the
ERR_NCOR and ERR_DET bits in the PPIx_STATUS register. Both bits are sticky
and W1C.

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the EPPI can read it in. In other words, a CIF image

Table 26-4. Control Sequences for 8-Bit and 10-Bit ITU-R 656 Video

8-Bit Data 10-Bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-17

Enhanced Parallel Peripheral Interface

could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes are used
to delimit fields and frames.

ITU-R 656 Input Modes
Figure 26-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

There are three sub-modes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 26-5 shows
these three sub-modes.

Entire Field

In this mode, the entire incoming bit stream is read in through the EPPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals

Data transfer starts immediately after synchronization to Field 1 occurs,
but does not include the first EAV code that contains the F = 0 assignment
for interlaced video, or V = 0 assignment for progressive video.

Figure 26-4. ITU-R 656 Input Modes

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

EPPI

PPIx

PPIx_CLK

ITU-R 656 INPUT MODE

 656
 COMPATIBLE
VIDEOSOURCE

CLK

Functional Description

26-18 ADSP-BF54x Blackfin Processor Hardware Reference

Active Video

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The EPPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the EPPI. After synchronizing to the start of Field 1, the
EPPI ignores incoming samples until it sees an SAV.

In this mode, the user must specify the number of total (active plus
vertical blanking) lines per frame in the PPIx_FRAME MMR, and the
number of total (active plus horizontal blanking plus 8) samples
per line in the PPIx_LINE MMR.

Vertical Blanking Interval (VBI) only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the Verti-
cal Blanking Interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for

Figure 26-5. ITU-R 656 Input Sub-modes

BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

FIELD 2
ACTIVE VIDEO

BLANKING

BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

FIELD 2
ACTIVE VIDEO

BLANKING

BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

FIELD 2
ACTIVE VIDEO

BLANKING

ENTIRE FIELD SENT ACTIVE VIDEO ONLY SENT BLANKING ONLY SENT

ADSP-BF54x Blackfin Processor Hardware Reference 26-19

Enhanced Parallel Peripheral Interface

these ancillary data packets, but the EPPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.

The VBI is split into two regions within each field. From the EPPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of Field 1, which doesn't necessarily correspond to the start of verti-
cal blanking. For instance, in 525/60 systems, the start of Field 1 (F = 0)
corresponds to line 4 of the VBI.

In this mode, the user must specify the number of total (active plus
vertical blanking) lines per frame in the PPIx_FRAME MMR, and the
number of total (active plus horizontal blanking plus 8) samples
per line in the PPIx_LINE MMR.

ITU-R 656 Output in GP Transmit Modes
In GP transmit mode, the EPPI provides the functionality to frame an
ITU-R 656 output stream with the proper preambles and blanking inter-
vals. This is done by setting the BLANKGEN bit in the PPIx_CONTROL register.
The EPPI then only needs to fetch active data from memory through the
DMA channel, thus saving DMA bandwidth. The PPIx_AVPL, PPIx_LVB,
PPIx_LAVF and PPIx_HBL registers (shown in Figure 26-7) need to be pro-
grammed correctly in order for the EPPI to internally generate and embed
the proper preamble, status word (EAV and SAV sequences) and blanking
data along with the active video from memory. The EPPI can also drive
out the frame syncs based on the FS_CFG setting.

Figure 26-6 shows the bit stream format in 16-bit transmit modes with
blanking generation (BLANKGEN enabled). Each 16-bit data sample consists
of 8-bit Luma (Y) and 8-bit Chroma (Cr or Cb) components.

Functional Description

26-20 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-6. 16-Bit Transmit with Internal Blanking Generation

F
F

0
0

0
0

A
B

1
0

1
0

1
0

1
0

1
0

F
F

0
0

0
0

A
B

Y Y Y Y1
0

Y Y F
F

END OF ACTIVE VIDEO START OF ACTIVE VIDEO START OF
NEXT LINE

DIGITAL
VIDEO
STREAM

EAV
CODE
(H=1)

HORIZONTAL
BLANKING

SAV
CODE
(H=0)

~ ~
~ ~

F
F

0
0

0
0

A
B

8
0

8
0

8
0

8
0

8
0

F
F

0
0

0
0

A
B

C
B

C C
B

C8
0

C
B

C F
F

DIGITAL
VIDEO
STREAM

~ ~
~ ~

R B R

ADSP-BF54x Blackfin Processor Hardware Reference 26-21

Enhanced Parallel Peripheral Interface

Figure 26-7 shows the data transmitted by the EPPI in this mode. After
the EPPI is enabled and if the EPPI FIFO is not empty, the transmission
starts by sending out a EAV sequence for a vertical blanking line. For
interlaced video, F starts at 1. For progressive video, F is always 0.

Figure 26-7. Internally Generated Blanking and Preamble Sequence with
F, V, and H Signals

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

EAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

SAV

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

HORIZONTAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

ACTIVE DATA

VERTICAL BLANKING

VERTICAL BLANKING

VERTICAL BLANKING

F1VB_BD

F1_ACT

F1VB_AD

F2VB_BD

F2VB_AD

F2_ACT

X

X

X

X

X

H
F V

PPIx_HBL PPIx_AVPL

Functional Description

26-22 ADSP-BF54x Blackfin Processor Hardware Reference

Note that the internal blanking generation functionality is valid only
when the data length is 8, 10, or 16 bits and when the EPPI is in GP
transmit modes. BLANKGEN generates preambles even in GP 2FS mode.

The ITU-R 656 Output mode's internal blanking generation functional-
ity can also be bypassed (for instance, if it is desired to send ancillary data
in the blanking interval) by clearing the BLANKGEN bit in the PPIx_CONTROL
register. BLANKGEN generates preambles even in GP 2FS mode.

Frame Synchronization in ITU-R 656 Modes
For interlaced video, start of frame synchronization happens when a
high-to-low transition is detected in F, the field indicator. For progressive
video, start of frame synchronization happens when a high-to-low transi-
tion is detected in V, the vertical blanking indicator. These transitions in
F and V can occur only in the EAV sequence. A start of line is detected on
a low-to-high transition in H, the horizontal blanking indicator, and this
happens in the EAV sequence as well.

For interlaced video, start of frame corresponds to the start of field 1.
Consequently, up to two fields might be ignored (for example, if field 1
just started before the EPPI-to-camera channel was established) before
data is received into the EPPI. For progressive video, start of frame corre-
sponds to the start of active video.

Because all H and V signaling is embedded in the data stream in ITU-R
656 modes, the PPIx_COUNT registers are ignored. However, the
PPIx_FRAME register is still used in order to check for synchronization
errors. Therefore, this MMR must be programmed with the number of
lines expected in each frame of video, and the EPPI will keep track of the
number of EAV-to-SAV transitions that occur from the start of a frame
until it decodes the end-of-frame condition (transition from F = 1 to F = 0
in the case of interlaced video and transition from V = 1 to V = 0 in the
case of progressive video).

ADSP-BF54x Blackfin Processor Hardware Reference 26-23

Enhanced Parallel Peripheral Interface

At this time, the actual number of lines processed is compared against the
value in PPIx_FRAME. If there is a mismatch, a frame track error is asserted
in the PPIx_STATUS register. For instance, if an SAV transition was missed,
the current field will only have NUM_ROWS - 1 rows, but resynchronization
will reoccur at the start of the next frame. Upon completing reception of
an entire field, the field status bit is toggled in the PPIx_STATUS register.
This way, an interrupt service routine (ISR) can discern which field was
just read in.

General-Purpose EPPI Modes
The general-purpose (GP) EPPI modes are intended to suit a wide variety
of data capture and transmission applications. Each EPPI has three bidi-
rectional frame sync pins. Frame syncs can be generated internally by the
EPPI, or by an external device communicating with the EPPI.

GP modes can be distinguished based on the number of frame syncs used.
The EPPI supports the following GP modes:

• GP 0 FS mode

• GP 1 FS mode

• GP 2 FS mode

• GP 3 FS mode

GP 0 FS RX mode may be triggered internally or externally. GP 0 FS TX
mode is always internally triggered.

Functional Description

26-24 ADSP-BF54x Blackfin Processor Hardware Reference

All the GP modes, except 0 FS modes, support horizontal windowing. GP
modes with 2 and 3 frame syncs also support vertical windowing.

For GP TX modes with internal clock or internal frame syncs, the
EPPI will start generating the clock or frame syncs only when the
EPPI FIFO has become full for the first time. For GP 0 FS TX
mode, the EPPI will only start the transmission when the EPPI
FIFO has become full for the first time.

GP 0 FS Mode
GP 0 FS mode is useful for applications where periodic frame syncs are
not used to frame the data.

The EPPI can be configured in GP 0 FS mode by setting XFR_TYPE=b#11
and FS_CFG=b#00 in the PPIx_CONTROL register.

GP 0 FS receive mode is further divided into two sub-modes: Internal
Trigger (FLD_SEL=1) and external trigger (FLD_SEL=0), based on how the
data transmission/reception is to be initiated. GP 0 FS transmit mode is
always internally triggered. All subsequent data manipulation is handled
through DMA.

After initial trigger, the EPPI receives/transmits data samples on every
clock cycle. However, if SKIPEN is set for receive mode, the EPPI receives
only alternate data samples.

The PPIx_LINE, PPIx_FRAME, PPIx_HCOUNT, PPIx_HDELAY,
PPIx_VCOUNT and PPIx_VDELAY registers are not valid for GP 0 FS
mode. Therefore windowing is not possible in this mode. Also, line
and frame track errors are not applicable in this mode.

ADSP-BF54x Blackfin Processor Hardware Reference 26-25

Enhanced Parallel Peripheral Interface

Frame Synchronization in GP 0 FS External Trigger Mode

When the EPPI is programmed in External Trigger mode, the EPPI will
not generate PPIx_FS1 and a trigger must be provided by the external
device. The EPPI starts receiving the data as soon as an PPIx_FS1 assertion
is detected. After that, all subsequent data manipulation is handled by way
of DMA and any activity on PPIx_FS1 is ignored.

Frame Synchronization in GP 0 FS Internal Trigger Mode

When the EPPI is programmed in internal trigger mode, the EPPI starts
receiving/transmitting data as soon as the EPPI clock is enabled and
synchronized.

Note that GP 0 FS transmit mode is always internally triggered. The EPPI
starts transmitting valid data when the EPPI FIFO becomes full and the
EPPI clock is enabled. Care should be taken that the clock is enabled only
after the EPPI FIFO becomes full.

There may be up to two cycles latency before valid data is received
or transmitted.

GP 1 FS Mode
GP 1 FS mode is useful for interfacing the EPPI with analog-to-digital
converters (ADCs), digital-to-analog converters (DACs) and other gen-
eral- purpose devices. This mode works for both transmit and receive.

The EPPI can be configured in GP 1 FS mode by setting XFR_TYPE=b#11
and FS_CFG=b#01 in the PPIx_CONTROL register. The frame sync may be
provided by an external device or it can be sourced by the EPPI itself.

Functional Description

26-26 ADSP-BF54x Blackfin Processor Hardware Reference

The EPPI windowing registers must be carefully programmed in GP 1 FS
mode such that:

• The PPIx_LINE register contains the number of clock cycles
expected between two assertions of PPIx_FS1. This is used to keep
track of Line Track errors. It must be programmed before the
PPIx_HCOUNT register.

• The PPIx_HDELAY register contains the number of clock cycles to
wait after the assertion of PPIx_FS1, for example, start of frame.

• The PPIx_HCOUNT register contains the number of data samples to
receive or transmit for each frame.

The PPIx_FRAME, PPIx_VDELAY and PPIx_VCOUNT registers have no effect in
GP 1 FS mode. As a result, frame track errors and vertical windowing are
not possible in this mode.

GP 2 FS Mode
GP 2 FS mode is useful for video applications that use two hardware syn-
chronization signals, HSYNC and VSYNC. The HSYNC can be connected to
PPIx_FS1 and VSYNC can be connected to PPIx_FS2.

The EPPI can be configured in GP 2 FS mode by setting XFR_TYPE=b#11
and FS_CFG=b#10 in the PPIx_CONTROL register. The frame syncs may be
provided by an external device or they can be sourced by the EPPI itself.

The EPPI windowing registers must be programmed for GP2 FS
mode in the sequence listed below.

ADSP-BF54x Blackfin Processor Hardware Reference 26-27

Enhanced Parallel Peripheral Interface

The EPPI windowing registers must be carefully programmed in GP 2 FS
mode such that:

• The PPIx_FRAME register contains the number of expected lines per
frame. It should be equal to the number of PPIx_FS1 assertions
expected between start of frame syncs and is used to keep track of
frame track errors. It must be programmed before the PPIx_VCOUNT
register.

• The PPIx_LINE register contains the number of clock cycles
expected between two assertions of PPIx_FS1. This is used to keep
track of line track errors. It must be programmed before the
PPIx_HCOUNT register.

• The PPIx_HDELAY register contains the number of clock cycles to
wait after the assertion of PPIx_FS1, for example, start of line.

• The PPIx_HCOUNT register contains the number of data samples to
receive or transmit for each line.

• The PPIx_VDELAY register contains the number of lines to wait after
the start of frame is detected.

• The PPIx_VCOUNT register contains the number of lines to receive or
transmit.

DEN functionality in GP 2 FS Transmit Mode

When EPPI is configured in GP 2 FS TX mode and when the EPPI is
configured for internal frame sync generation, the PPIx_FS3 pin functions
as a data enable (DEN) pin. The functionality of the DEN pin is described in
the following two cases:

Case 1 - When blanking generation (BLANKGEN) is enabled and the EPPI
data length (DLEN) is configured for 8-, 10-, or 16-bit transfers:

Functional Description

26-28 ADSP-BF54x Blackfin Processor Hardware Reference

The PPIx_FS3 pin will assert during the “active data” regions, aligned with
PPIx_CLK according to the clock polarity (POLC) settings. The frame sync
polarity (POLS) setting does not apply here -- PPIx_FS3 will always be
active high in this mode.

Case 2 - When blanking generation (BLANKGEN) is disabled or it is enabled
but the EPPI data length (DLEN) is configured for a transfer size different
from 8-, 10-, or 16-bits:

The PPIx_FS3 pin will assert at the start of the valid data region on each
line, aligned with PPIx_CLK according to the clock polarity (POLC) settings.
The frame sync polarity (POLS) setting does not apply here -- PPIx_FS3 will
always be active high in this mode. Once asserted, PPIx_FS3 will stay
asserted for PPIx_HCOUNT number of clock cycles per line, and then it will
de-assert. This behavior on each line will continue for the total number of
lines programmed in PPIx_VCOUNT per frame, and repeat at the start of
subsequent video frames.

In case 2, if transmission of valid data is held off due to delays pro-
grammed in the PPIx_HDELAY and/or PPIx_VDELAY registers, the assertion
of PPIx_FS3 will also be held off accordingly, on a per-line and/or
per-frame basis.

GP 3 FS Mode
GP 3 FS mode is useful for video applications that use three hardware
synchronization signals, HSYNC, VSYNC, and FIELD. The HSYNC can be con-
nected to PPIx_FS1, VSYNC can be connected to PPIx_FS2, and FIELD can
be connected to PPIx_FS3.

The EPPI can be configured in GP 3 FS mode by setting XFR_TYPE=b#11
and FS_CFG=b#11 in the PPIx_CONTROL register. The frame syncs may be
provided by an external device or they can be sourced by the EPPI itself.

ADSP-BF54x Blackfin Processor Hardware Reference 26-29

Enhanced Parallel Peripheral Interface

GP 3 FS mode is very much similar in operation to GP 2 FS mode, except
that the Start of Frame synchronization in GP 3 FS mode also takes into
account PPIx_FS3. All the windowing register (PPIx_FRAME, PPIx_LINE,
PPIx_HDELAY, PPIx_HCOUNT, PPIx_VDELAY and PPIx_VCOUNT) settings, as
well as data reception/transmission and error generation are the same as
for GP 2 FS mode. In addition, for GP 3 FS mode with internal frame
syncs, the FLD_SEL bit setting specifies the condition under which the
transfer should begin.

EPPI Data Path Options
The EPPI data path options are described in this section.

EPPI Data Lengths
EPPI data lengths are configured by setting the DLEN bits in the
PPIx_CONTROL register.

EPPI0 can be configured for data lengths of 8, 10, 12, 14, 16, 18 or 24
bits.

EPPI1 can be configured for data lengths of 8, 10, 12, 14, or 16 bits.

EPPI2 supports only 8-bit data.

EPPI Data Path Options

26-30 ADSP-BF54x Blackfin Processor Hardware Reference

The EPPI1 data pins are multiplexed with EPPI2 data pins and some
EPPI0 data pins (This is shown visually in Figure 26-8). See the PORT_MUX
register description in the “General-Purpose Ports” chapter in
ADSP-BF54x Blackfin Hardware Reference (Volume 1 of 2).

EPPI DMA Channels
Each EPPI has a 32-bit DMA channel connected to it. In addition, if
EPPI2 is unused, EPPI1 may use that DMA channel as an additional
DMA channel. Similarly, if EPPI1 is unused, EPPI2 may use that DMA
channel as an additional DMA channel. However, this second channel is
enabled only when the DMACFG bit is set in the PPIx_CONTROL register.

Data Packing For Receive Modes
For receive modes, if PACKEN is set in PPIx_CONTROL, the DMA is a 32-bit
DMA and the EPPI packs the incoming data into 32-bit words based on
the DLEN and SWAPEN bit settings. When SWAPEN=0, the EPPI puts the first

Figure 26-8. EPPI Pin Muxing

015

7 0 23 17 0

HOSTDP

EPPI 1

EPPI 2 EPPI 0

ATAPI

ADSP-BF54x Blackfin Processor Hardware Reference 26-31

Enhanced Parallel Peripheral Interface

data in the least significant bits and when SWAPEN=1, the EPPI puts the
first data in the most significant bits. Following are the packing options
based on the DLEN bits:

• When DLEN=8, four 8-bit words can be packed into one 32-bit
word.

• When DLEN=16, two 16-bit words can be packed into one 32-bit
word.

• For DLEN values that are more than 8 bits but less than 16 bits, two
such words are either sign-extended or zero-filled, and packed into
one 32-bit word.

• When DLEN=18, the EPPI sign-extends or zero-fills the 18-bit data
to 24 bits and packs four 24-bit words into three 32-bit words.

• When DLEN=24, the EPPI packs four 24-bit words into three 32-bit
words.

When PACKEN is cleared in the PPIx_CONTROL register, the EPPI
receives the incoming data and sends it on the DAB bus as-is. If
DLEN is less than or equal to 16 bits, the DMA is a 16-bit DMA;
otherwise it is a 32-bit DMA. Examples of data packing are pro-
vided in “Data Transfer Examples” on page 26-35.

Data Unpacking For Transmit Modes
For transmit modes, if PACKEN is set in PPIx_CONTROL, the DMA is a 32-bit
DMA and the EPPI unpacks the 32-bit word according to the DLEN and
SWAPEN bit settings.

EPPI Data Path Options

26-32 ADSP-BF54x Blackfin Processor Hardware Reference

If SWAPEN=1, the EPPI transmits the most significant bits as the first data,
and if SWAPEN=0, the EPPI transmits the least significant bits as the first
data. Following are the various unpacking modes, based on the DLEN bits:

• When DLEN=8, the EPPI transmits one 32-bit word from memory
as four 8-bit data words.

• For DLEN values greater than 8 bits but less than or equal to 16 bits,
the EPPI transmits one 32-bit word from memory as two data
words.

• When DLEN=18 or DLEN=24, the EPPI transmits three 32-bit words
from memory as four data words. Examples of data unpacking are
provided in “Data Transfer Examples” on page 26-35.

Sign-Extension and Zero-Filling
For DLEN equal to 10, 12 or 14, data is zero-filled or sign-extended to 16
bits.

For DLEN equal to 18 bits, data is zero-filled or sign-extended to 24 bits if
packing is enabled, and zero-filled or sign-extended to 32 bits if packing is
disabled.

For DLEN equal to 24 bits, data is zero-filled or sign-extended to 32 bits if
packing is disabled.

For DLEN equal to 8 bits, data is zero-filled or sign-extended to 16 bits if
packing is disabled.

If the SIGN_EXT bit in the PPIx_CONTROL register is set (SIGN_EXT=1), then
the data is sign-extended, otherwise it is zero-filled.

ADSP-BF54x Blackfin Processor Hardware Reference 26-33

Enhanced Parallel Peripheral Interface

Split Receive Modes
The PPIx_CONTROL register has three control bits for Split receive modes.
These are SPLT_EVEN_ODD, SUBSPLT_ODD and DMACFG. PACKEN is not valid in
Split modes.

If SPLT_EVEN_ODD is set, the EPPI splits the incoming data stream into two
sub-streams, an even stream and an odd stream, and packs them
separately.

SUBSPLT_ODD is valid only if SPLT_EVEN_ODD is set. If SUBSPLT_ODD is set, the
EPPI sub-splits the odd sub-stream, and packs them separately.

DMACFG is also valid only if SPLT_EVEN_ODD is set. If DMACFG is set, the EPPI
uses two DMA channels and if DMACFG is cleared, the EPPI uses only one
DMA channel.

Split mode can only be used on EPPI1 or EPPI2. Examples are provided
in “Data Transfer Examples” on page 26-35.

Split Transmit Modes
The PPIx_CONTROL register has three control bits for Split transmit modes.
These are SPLT_EVEN_ODD, SUBSPLT_ODD and DMACFG. The DMA is always a
32-bit DMA. PACKEN is not valid in Split modes.

If SPLT_EVEN_ODD is set, the EPPI receives the Luma (Y3Y2Y1Y0) and inter-
leaved Chroma (Cr1Cb1Cr0Cb0) data as 32 bits from the DMA channel
and interleaves them to form a 4:2:2 YCrCb data stream to be transmitted
out.

SUBSPLT_ODD is valid only if SPLT_EVEN_ODD is set. If SUBSPLT_ODD is set, the
EPPI receives the Luma (Y3Y2Y1Y0) and de-interleaved Chroma
(Cb3Cb2Cb1Cb0 and Cr3Cr2Cr1Cr0) and interleaves them to form a
4:2:2 YCrCb data stream to be transmitted out.

EPPI Data Path Options

26-34 ADSP-BF54x Blackfin Processor Hardware Reference

DMACFG is also valid only if SPLT_EVEN_ODD is set. If DMACFG is set, the EPPI
uses two DMA channels and if DMACFG is cleared, the EPPI uses only one
DMA channel.

Split mode can only be used on EPPI1 or EPPI2. Examples are provided
in “Data Transfer Examples” on page 26-35.

RGB Data Formats
For transmit modes, the EPPI can convert RGB888 data in memory to
RGB666 at the output if the RGB_FMT_EN bit is set in the PPIx_CONTROL
register and if DLEN is equal to 18 bits. Similarly, the EPPI can convert
RGB888 data in memory to RGB565 at the output if the RGB_FMT_EN bit
is set in the PPIx_CONTROL register and if DLEN is equal to 16 bits.

This conversion is done as follows: if PACKEN=1, the EPPI first unpacks,
according to the SWAPEN settings, the three 32-bit data words from the
DMA into four 24-bit data words to be transmitted out as described ear-
lier. If PACKEN=0, then the EPPI takes the lower 24 bits of the 32-bit DMA
as the data to be transmitted. Then the EPPI truncates this 24-bit data
word to the required data width by removing the lower 2 bits of G and the
lower 2 or 3 bits of R and B.

SPLT_EVEN_ODD and RGB_FMT_EN should never be set simultaneously.

Programmed Clipping and Thresholding of Data
Values

The EPPI supports clipping and thresholding of data values for transmit
modes. This feature is valid only when the data length is 8 or 16 bits.

The PPIx_CLIP register is used to define the lower and upper limits for the
Luma and Chroma components.

ADSP-BF54x Blackfin Processor Hardware Reference 26-35

Enhanced Parallel Peripheral Interface

The bit definitions of this register are shown in Table 26-5.

For the 4:2:2 YCrCb color space, Luma and Chroma typically have differ-
ent lower and upper thresholds, which is why separate thresholds may be
required for even and odd data samples. In the case of monochrome (Y
only) or some non-video clipping applications, LOW_ODD should be the
same as LOW_EVEN, and HIGH_ODD should be the same as HIGH_EVEN.

For 16-bit data lengths, the EPPI will separate each word into upper and
lower bytes, and will consider the lower bytes as odd bytes and the upper
bytes as even bytes during clipping.

Data Transfer Examples
The following sections provide EPPI data transfer examples.

8-Bit Receive Mode

For 8-bit non-split receive mode, the EPPI will pack four bytes of incom-
ing data into one 32-bit word, if PACKEN=1 in the PPIx_CONTROL register.
Alternate even or odd samples may be skipped based on the SKIP_EN and
SKIP_EO bits. The first incoming data can be placed either in the least sig-
nificant bit positions or in the most significant bit positions, based on the
SWAPEN bit setting.

Table 26-5. PPIx_CLIP Memory Mapped Register

Bits Name Description

7:0 LOW_ODD Lower Limit for Odd Bytes (Chroma)

15:8 HIGH_ODD Upper Limit for Odd Bytes (Chroma)

23:16 LOW_EVEN Lower Limit for Even Bytes (Luma)

31:24 HIGH_EVEN Upper Limit for Even Bytes (Luma)

EPPI Data Path Options

26-36 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-6 shows an 8-bit receive mode example when PACKEN=1.

If PACKEN=0, the DMA is a 16-bit DMA and the EPPI either sign-extends
or zero-fills the bytes of incoming data into a 16-bit word. SWAPEN has no
effect if PACKEN=0.

Table 26-6. Data Received in 8-Bit Receive Mode with Packing Enabled

Pin
Data
(8
bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=0
SIGN_EXT=X

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=1
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=0
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=0
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=1
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=1
SIGN_EXT=X

0x11

0x22

0x33

0x44 0x44332211 0x11223344

0x55

0x66

0x77 0x77553311 0x11335577

0x88 0x88776655 0x55667788 0x88664422 0x22446688

0x99

0xAA

0xBB

0xCC 0xCCBBAA99 0x99AABBCC

0xDD

0xEE

0xFF 0xFFDDBB99 0x99BBDDFF

0x00 0x00FFEEDD 0xDDEEFF00 0x00EECCAA 0xAACCEE00

ADSP-BF54x Blackfin Processor Hardware Reference 26-37

Enhanced Parallel Peripheral Interface

Table 26-7 shows an 8-bit receive mode example when PACKEN=0:

10/12/14-Bit Receive Modes

For 10-, 12-, or 14-bit non-split receive modes, the EPPI will first either
zero-fill or sign-extend the incoming data (depending on the SIGN_EXT bit)
into a 16-bit word. If PACKEN=1, the EPPI will then pack two of these
words into one 32-bit word. Alternate even or odd samples may be
skipped based on the SKIP_EN and SKIP_EO bits. The first incoming data
can be placed either in the least significant bit positions or in the most sig-
nificant bit positions, based on the SWAPEN bit setting.

Table 26-7. Data Received in 8-Bit Receive Mode with Packing Disabled

Pin
Data
(8
bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=1

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X
SIGN_EXT=1

0x44 0x0044 0x0044 0x0044

0x55 0x0055 0x0055 0x0055

0x66 0x0066 0x0066 0x0066

0x77 0x0077 0x0077 0x0077

0x88 0x0088 0xFF88 0x0088

0x99 0x0099 0xFF99 0xFF99

0xAA 0x00AA 0xFFAA 0x00AA

0xBB 0x00BB 0xFFBB 0xFFBB

EPPI Data Path Options

26-38 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-8 shows a 10-Bit receive mode example when PACKEN=1 and
SIGN_EXT=1:

Table 26-8. Data Received in 10-Bit Receive Mode with Sign Extension,
with Packing Enabled

Pin
Data
(10
bits)

MSB DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=0
SIGN_EXT=1

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=1
SIGN_EXT=1

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=0
SIGN_EXT=1

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=0
SIGN_EXT=1

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=1
SIGN_EXT=1

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=1
SIGN_EXT=1

0x111 0

0x222 1 0xFE220111 0x0111FE22

0x333 1 0xFF330111 0x0011FF33

0x044 0 0x0044FF33 0xff330044 0x0044FE22 0xFE220044

0x155 0

0x266 1 0xFE660155 0x0155FE66

0x377 1 0xFF770155 0x0155FF77

0x088 0 0x0088FF77 0xFF770088 0x0088FE66 0xFE660088

ADSP-BF54x Blackfin Processor Hardware Reference 26-39

Enhanced Parallel Peripheral Interface

Table 26-9 Shows a 10-Bit Receive Mode Example when PACKEN=1 and
SIGN_EXT=0:

Table 26-9. Data Received in 10-Bit Receive Mode, with Zero-Fill, with
Packing Enabled

Pin
Data
(10
bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=0
SIGN_EXT=0

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=1
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=0
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=0
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=1
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=1
SIGN_EXT=0

0x111

0x222 0x02220111 0x01110222

0x333 0x03330111 0x00110333

0x044 0x00440333 0x03330044 0x00440222 0x02220044

0x155

0x266 0x02660155 0x01550266

0x377 0x03770155 0x01550377

0x088 0x00880377 0x03770088 0x00880266 0x02660088

EPPI Data Path Options

26-40 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-10 shows a 10-bit receive mode example when PACKEN=0:

16-Bit Receive Mode

For 16-bit non-split receive mode, the EPPI will pack two 16-bit incom-
ing data into one 32-bit word, if PACKEN=1. Alternate even or odd samples
may be skipped based on the SKIP_EN and SKIP_EO bits. The first incom-
ing data can be placed either in the least significant bit positions or in the
most significant bit positions, based on the SWAPEN bit setting.

Table 26-10. Data Received in 10-bit Receive Mode with Packing
Disabled

Pin
Data
(10
bits)

MSB DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=1

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X
SIGN_EXT=1

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X
SIGN_EXT=0

0x111 0 0x0111 0x0111 0x0111

0x222 1 0xfe22 0x0222 0x0222

0x333 1 0xff33 0x0333 0xff33

0x044 0 0x0044 0x0444 0x0444

0x155 0 0x0155 0x0155 0x0155

0x266 1 0xfe66 0x0266 0x0266

0x377 1 0xff77 0x0377 0xff77

0x088 0 0x0088 0x0088 0x088

ADSP-BF54x Blackfin Processor Hardware Reference 26-41

Enhanced Parallel Peripheral Interface

Table 26-11 shows a 16-bit receive mode example when PACKEN=1.

Table 26-11. Table 6: Data Received in 16-Bit Receive Mode with Packing
Enabled

Pin
Data
(16
bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=0
SIGN_EXT=X

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=1
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=0
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=0
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=1
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=1
SIGN_EXT=X

0x1111

0x2222 0x22221111 0x11112222

0x3333 0x33331111 0x11113333

0x4444 0x44443333 0x33334444 0x44442222 0x22224444

0x5555

0x6666 0x66665555 0x55556666

0x7777 0x77775555 0x55557777

0x8888 0x88887777 0x77778888 0x88886666 0x66668888

EPPI Data Path Options

26-42 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-12 shows a 16-bit receive mode example when PACKEN=0:

18-Bit Receive Mode

For 18-bit non-split receive mode, the EPPI will zero-fill or sign-extend
the incoming data into a 32-bit word, if PACKEN=0. If PACKEN=1, the EPPI
will first zero-fill or sign-extend the incoming data to 24 bits, and then
pack four such 24-bit data words into three 32-bit words. Alternate even
or odd samples may be skipped based on the SKIP_EN and SKIP_EO bits.
The SWAPEN bit has no effect.

Table 26-12. Data Received in 16-bit Receive Mode with Packing
Disabled

Pin
Data
(16 bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X
SIGN_EXT=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X
SIGN_EXT=X

0x1111 0x1111 0x1111

0x2222 0x2222 0x2222

0x3333 0x3333 0x3333

0x4444 0x4444 0x4444

0x5555 0x5555 0x5555

0x6666 0x6666 0x6666

0x7777 0x7777 0x7777

0x8888 0x8888 0x8888

ADSP-BF54x Blackfin Processor Hardware Reference 26-43

Enhanced Parallel Peripheral Interface

Table 26-13 shows an 18-bit receive mode example when PACKEN=0:

Table 26-14 shows an 18-bit receive mode example when PACKEN=1:

Table 26-13. Data Received in 18-bit Receive Mode with Packing
Disabled

Pin
Data
(18 bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X
SIGN_EXT=0

0x06666 0x00006666 0x00006666

0x17777 0x00017777 0x00017777

0x28888 0x00028888 0x00028888

0x39999 0x00039999 0x00039999

Table 26-14. Data Received in 18-bit Receive Mode with Packing Enabled

Pin
Data
(18 bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X
SIGN_EXT=0

0x01122

0x13344 0x44001122

0x25566 0x55660133 0x66001122

0x37788 0x03778802 0x88013344

0x099AA 0x99AA0255

0x1BBCC 0xCC0099aa 0xBBCC0377

0x2DDEE 0xDDEE01bb 0x02DDEE00

0x3FF12 0x03ff122d 0x03FF1201

EPPI Data Path Options

26-44 ADSP-BF54x Blackfin Processor Hardware Reference

24-Bit Receive Mode

For 24-bit non-split receive mode, the EPPI will zero-fill or sign-extend
the incoming data into a 32-bit word, if PACKEN=0. If PACKEN=1, the EPPI
will pack four incoming 24-bit data words into three 32-bit words. Alter-
nate even or odd samples may be skipped based on the SKIP_EN and
SKIP_EO bits. The SWAPEN bit has no effect.

Table 26-15 shows a 24-bit receive mode example when PACKEN=0:

Table 26-15. Data Received in 24-bit Receive Mode with Packing
Disabled

Pin
Data
(24 bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X
SIGN_EXT=0

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X
SIGN_EXT=0

0x66666 0x00666666 0x00666666

0x77777 0x00777777 0x00777777

0x88888 0x00888888 0x00888888

0x99999 0x00999999 0x00999999

ADSP-BF54x Blackfin Processor Hardware Reference 26-45

Enhanced Parallel Peripheral Interface

Table 26-16 shows a 24-bit receive mode example when PACKEN=1:

8-Bit Split Receive Mode

For 8-bit split receive mode, PACKEN and SIGN_EXT are not valid. The EPPI
always packs four bytes of data into one 32-bit word.

Table 26-16. Data Received in 24-bit Receive Mode with Packing Enabled

Pin Data (24
bits)

DMA DATA
when
SKIP_EN=0
SKIP_EO=X
SWAPEN=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=1
SWAPEN=X

DMA DATA
when
SKIP_EN=1
SKIP_EO=0
SWAPEN=X

0x112233

0x445566 0x66112233

0x778899 0x88994455 0x99112233

0x00aabb 0x00AABB77 0xBB445566

0xCCDDEE 0xDDEE7788

0xFF1234 0x34CCDDEE 0x123400AA

0x567890 0x7890FF12 0x567890CC

0xABCDEF 0xABCDEF56 0xABCDEFFF

EPPI Data Path Options

26-46 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-17 shows an 8-bit split receive mode example with SWAPEN=0 and
SKIP_EN=0:

Table 26-17. Data Received in 8-bit Split Receive Mode with SKIP_EN=0
and SWAPEN=0

Pin
Data
(8
bits)

SPLT_EVEN_ODD=1
SUBSPLT_ODD=0
SWAPEN=0
SKIP_EN=0
SKIP_EO=X

SPLT_EVEN_ODD=1
SUBSPLT_ODD=1
SWAPEN=0
SKIP_EN=0
SKIP_EO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0

Y1

V1

Y2

U1 U1V1U0V0 U1V1U0V0

Y3 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0

V2

Y4

U2

Y5

V3 V3V2V1V0 V3V2V1V0

Y6

U3 U3V3U2V2 U3V3U2V2 U3U2U1U0

Y7 Y7Y6Y5Y4 Y7Y6Y5Y4 Y7Y6Y5Y4 Y7Y6Y5Y4

V4 U3U2U1U0

ADSP-BF54x Blackfin Processor Hardware Reference 26-47

Enhanced Parallel Peripheral Interface

Table 26-18 shows an 8-bit split receive mode example with SWAPEN=1 and
SKIP_EN=0:

Table 26-18. Data Received in 8-bit Split Receive Mode with SKIP_EN=0
and SWAPEN=1

Pin
Data
(8
bits)

SPLT_EVEN_ODD=1
SUBSPLT_ODD=0
SWAPEN=1
SKIP_EN=0
SKIP_EO=X

SPLT_EVEN_ODD=1
SUBSPLT_ODD=1
SWAPEN=1
SKIP_EN=0
SKIP_EO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0

Y1

V1

Y2

U1 V0U0V1U1 V0U0V1U1

Y3 Y0Y1Y2Y3 Y0Y1Y2Y3 Y0Y1Y2Y3 Y0Y1Y2Y3

V2

Y4

U2

Y5

V3 V0V1V2V3 V0V1V2V3

Y6

U3 V2U2V3U3 V2U2V3U3 U0U1U2U3

Y7 Y4Y5Y6Y7 Y4Y5Y6Y7 Y4Y5Y6Y7 Y4Y5Y6Y7

V4 U0U1U2U3

EPPI Data Path Options

26-48 ADSP-BF54x Blackfin Processor Hardware Reference

For the case when SPLT_EVEN_ODD=1, SUBSPLT_ODD=1 and DMACFG=0, note
that although the second Chroma component (U0U1U2U3 in
Table 26-16) sent over the DMA bus is completely packed before the
Luma component (Y4Y5Y6Y7 in Table 26-16), it is intentionally held
until that previous word is moved out. This is done in order to enable the
separation of Luma and Chroma values into individual buffers when using
2D-DMA.

10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0

For 16-bit split receive mode, PACKEN is not valid. The EPPI always packs
two 16-bit words into one 32-bit word. For 10-, 12-, or 14-bit split
receive modes, the EPPI will first either sign-extend or zero-fill the incom-
ing data into a 16 bit word, and then pack two of these words into one
32-bit word to be sent to the DMA.

ADSP-BF54x Blackfin Processor Hardware Reference 26-49

Enhanced Parallel Peripheral Interface

Table 26-19 shows a 16-bit split receive mode example with SWAPEN=0 and
SKIP_EN=0:

Table 26-19. Data received in 16-bit split receive mode with SPLT_16=0,
SKIP_EN=0 and SWAPEN=0

Pin
Data
(16
bits)

SPLT_EVEN_ODD=1
SUBSPLT_ODD=0
SWAPEN=0
SKIP_EN=0
SKIP_EO=X

SPLT_EVEN_ODD=1
SUBSPLT_ODD=1
SWAPEN=0
SKIP_EN=0
SKIP_EO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0 U0V0 U0V0

Y1 Y1Y0 Y1Y0 Y1Y0 Y1Y0

V1 V1V0 V1V0

Y2

U1 U1V1 U1V1 U1U0

Y3 Y3Y2 Y3Y2 Y3Y2 Y3Y2

V2 U1U0

EPPI Data Path Options

26-50 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-20 shows an 16-bit split receive mode example with SWAPEN=1
and SKIP_EN=0:

16-Bit Split Receive Mode with SPLT_16 = 1

For 16-bit split receive mode, PACKEN is not valid. The EPPI always packs
two 16-bit words into one 32-bit word. The SPLT_16 bit is only valid
when DLEN=16 bits.

Table 26-20. Data received in 16-bit split receive mode with SPLT_16=0,
SKIP_EN=0 and SWAPEN=1

Pin
Data
(16
bits)

SPLT_EVEN_ODD=1
SUBSPLT_ODD=0
SWAPEN=1
SKIP_EN=0
SKIP_EO=X

SPLT_EVEN_ODD=1
SUBSPLT_ODD=1
SWAPEN=1
SKIP_EN=0
SKIP_EO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0

Y0

U0 V0U0 V0U0

Y1 Y0Y1 Y0Y1 Y0Y1 Y0Y1

V1 V0V1 V0V1

Y2

U1 V1U1 V1U1 U0U1

Y3 Y2Y3 Y2Y3 Y2Y3 Y2Y3

V2 U0U1

ADSP-BF54x Blackfin Processor Hardware Reference 26-51

Enhanced Parallel Peripheral Interface

Table 26-21 shows a 16-bit split receive mode example with SPLT_16=1,
SWAPEN=0 and SKIP_EN=0:

8-Bit Transmit Mode

For 8-bit non-split transmit mode, if PACKEN=1, the DMA is a 32-bit
DMA and the EPPI will unpack the 32-bit word from memory into four
bytes to be transmitted out. The EPPI transmits either the most signifi-
cant bits or the least significant bits as the first data, depending on the
SWAPEN bit setting. If PACKEN=0, the DMA is a 16-bit DMA and the EPPI
transmits the lower 8 bits. SWAPEN has no effect when PACKEN=0.

Table 26-21. Data Received in 16-bit Split Receive Mode with SPLT_16=1,
SKIP_EN=0 and SWAPEN=0

Pin
Data
(16
bits)

SPLT_EVEN_ODD=1
SUBSPLT_ODD=0
SWAPEN=0
SKIP_EN=0
SKIP_EO=X

SPLT_EVEN_ODD=1
SUBSPLT_ODD=1
SWAPEN=0
SKIP_EN=0
SKIP_EO=X

DMACFG=1 DMACFG=0 DMACFG=1 DMACFG=0

PRIMARY DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

SECONDARY
DMA
CHANNEL

PRIMARY
DMA
CHANNEL

V0Y0

U0Y1

V1Y2

U1Y3 Y3Y2Y1Y0 U1V1U0V0 Y3Y2Y1Y0 Y3Y2Y1Y0 Y3Y2Y1Y0

V2Y4 U1V1U0V0

U2Y5

V3Y6 V3V2V1V0 V3V2V1V0

U3Y7 Y7Y6Y5Y4 U3V3U2V2 Y7Y6Y5Y4 Y7Y6Y5Y4 U3U2U1U0 Y7Y6Y5Y4

V4Y8 U3V3U2V2 U3U2U1U0

EPPI Data Path Options

26-52 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-22 shows an 8-bit transmit mode example when PACKEN=1:

Table 26-23 shows a 8-bit transmit mode example when PACKEN=0:

10/12/14-Bit Transmit Modes

For 10-, 12-, or 14-bit non-split transmit modes, if PACKEN=1, the DMA is
a 32-bit DMA and the EPPI will unpack the 32-bit word from memory
into two 16-bit data words, then transmit the required least significant
bits from each. The EPPI transmits either the most significant word or the
least significant word as the first data, depending on the SWAPEN bit set-
ting. If PACKEN=0, the DMA is a 16-bit DMA and the EPPI transmits the
required least significant bits. SWAPEN has no effect when PACKEN=0.

Table 26-22. Data Sent in 8-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when
SWAPEN=0

Pin Data when
SWAPEN=1

0x11223344 0x44 0x11

0x55667788 0x33 0x22

0x22 0x33

0x11 0x44

0x88 0x55

0x77 0x66

0x66 0x77

0x55 0x88

Table 26-23. Data Sent in 8-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data
SWAPEN=X

0x1234 0x34

0x2345 0x45

0x3456 0x56

ADSP-BF54x Blackfin Processor Hardware Reference 26-53

Enhanced Parallel Peripheral Interface

Table 26-24 shows a 10-bit transmit mode example when PACKEN=1:

Table 26-25 shows a 10-bit transmit mode example when PACKEN=0:

16-Bit Transmit Mode

For 16-bit non-split transmit mode, if PACKEN=1, the DMA is a 32-bit
DMA and the EPPI will unpack the 32-bit word from memory into two
16-bit data words to be transmitted out. The EPPI transmits either the
most significant bits or the least significant bits as the first data, depend-
ing on the SWAPEN bit setting. If PACKEN=0, the DMA is a 16-bit DMA and
the EPPI transmits the data as-is. SWAPEN has no effect when PACKEN=0.

Table 26-24. Data Sent in 10-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when
SWAPEN=0

Pin Data when
SWAPEN=1

0x11112222 0x222 0x111

0x33334444 0x111 0x222

0x044 0x333

0x333 0x044

Table 26-25. Data Sent in 10-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data
SWAPEN=X

0x1234 0x234

0x2345 0x345

0x3456 0x056

0x4567 0x167

EPPI Data Path Options

26-54 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-26 shows a 16-bit transmit mode example when PACKEN=1:

Table 26-27 shows a 16-bit transmit mode example when PACKEN=0:

Table 26-26. Data Sent in 16-bit Transmit Mode with Packing Enabled

DMA Data (32 bits) Pin Data when
SWAPEN=0

Pin Data when
SWAPEN=1

0x11112222 0x2222 0x1111

0x33334444 0x1111 0x2222

0x4444 0x3333

0x3333 0x4444

Table 26-27. Data Sent in 16-bit Transmit Mode with Packing Disabled

DMA Data (16 bits) Pin Data
SWAPEN=X

0x1234 0x1234

0x2345 0x2345

0x3456 0x3456

ADSP-BF54x Blackfin Processor Hardware Reference 26-55

Enhanced Parallel Peripheral Interface

18-Bit Transmit Mode

For 18-bit transmit mode, if PACKEN=1, the DMA is a 32-bit DMA and
the EPPI will unpack the 32-bit word from memory.

Table 26-28 shows a 18-bit transmit mode example when PACKEN=1. Note
that when RGB_FMT_EN is set, the least significant bits of R, G, and B are
dropped.

Table 26-29 shows a 18-bit transmit mode example when PACKEN=0. Note
that when RGB_FMT_EN is set, the least significant bits of R, G, and B are
dropped.

Table 26-28. Data Sent, 18-bit Transmit Mode with Packing Enabled

DMA Data Pin Data (18-bits)

RGB_FMT_EN=0 RGB_FMT_EN=1

0x01234567 0x34567 0x08459

0x89ABCDEF 0x1EF01 0x33EC0

0x01234567 0x389AB 0x198AA

0x12345 0x00211

Table 26-29. Data Sent in 18-bit Transmit Mode with Packing Disabled

DMA Data Pin Data (18-bits)

RGB_FMT_EN=0 RGB_FMT_EN=1

0x01234566 0x34567 0x08459

0x89ABCDEF 0x3CDEF 0x2ACFB

0x01234567 0x34567 0x08459

EPPI Data Path Options

26-56 ADSP-BF54x Blackfin Processor Hardware Reference

24-Bit Transmit Mode

For 24-bit transmit mode, if PACKEN=1, the DMA is a 32-bit DMA and
the EPPI will unpack three 32-bit words from memory into four 24-bit
words to be transmitted out. The effect of the SWAPEN bit setting is shown
in the table below.

Table 26-30 shows a 24-bit transmit mode example when PACKEN=1:

8-Bit Split Transmit Mode

For 8-bit split transmit mode, PACKEN is not valid. The EPPI always
unpacks the 32-bit DMA data into four bytes to be transmitted out.

Table 26-30. Data Sent in 24-bit Transmit Mode

DMA Data (32 bits) Pin Data when
SWAPEN=0

Pin Data when
SWAPEN=1

R1B0G0R0 B0G0R0 R0G0B0

G2R2B1G1 B1G1R1 R1G1B1

B3G3R3B2 B2G2R2 R2G2B2

B3G3R3 R3G3B3

ADSP-BF54x Blackfin Processor Hardware Reference 26-57

Enhanced Parallel Peripheral Interface

Table 26-31 shows an 8-bit split transmit mode example with
SUBSPLT_ODD=0 and SWAPEN=0:

Table 26-31. Data sent in 8-bit Split Transmit Mode with SUBSPLT_ODD=0
and SWAPEN=0

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(8 bits)

DMA0 DATA
(32 bits)

Pin
Data
(8 bits)

Y3Y2Y1Y0 U1V1U0V0 V0 U1V1U0V0 V0

Y7Y6Y5Y4 U3V3U2V2 Y0 Y3Y2Y1Y0 Y0

U0 U3V3U2V2 U0

Y1 Y7Y6Y5Y4 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

V2 V2

Y4 Y4

U2 U2

Y5 Y5

V3 V3

Y6 Y6

U3 U3

Y7 Y7

EPPI Data Path Options

26-58 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-32 shows an 8-bit split transmit mode example with
SUBSPLT_ODD=1 and SWAPEN=0:

Table 26-32. Data Sent in 8-bit Split Transmit Mode with SUBSPLT_ODD=1
and SWAPEN=0

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(8 bits)

DMA0 DATA
(32 bits)

Pin
Data
(8 bits)

Y3Y2Y1Y0 V3V2V1V0 V0 V3V2V1V0 V0

Y7Y6Y5Y4 U3U2U1U0 Y0 Y3Y2Y1Y0 Y0

V7V6V5V4 U0 U3U2U1U0 U0

U7U6U5U4 Y1 Y7Y6Y5Y4 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

V2 V2

Y4 Y4

U2 U2

Y5 Y5

V3 V3

Y6 Y6

U3 U3

Y7 Y7

ADSP-BF54x Blackfin Processor Hardware Reference 26-59

Enhanced Parallel Peripheral Interface

Table 26-33 shows an 8-bit split transmit mode example with
SUBSPLT_ODD=0 and SWAPEN=1:

Table 26-33. Data Sent in 8-bit Split Transmit Mode with SUBSPLT_ODD=0
and SWAPEN=1

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 1

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(8 bits)

DMA0 DATA
(32 bits)

Pin
Data
(8 bits)

Y3Y2Y1Y0 U1V1U0V0 U1 U1V1U0V0 U1

Y7Y6Y5Y4 U3V3U2V2 Y3 Y3Y2Y1Y0 Y3

V1 U3V3U2V2 V1

Y2 Y7Y6Y5Y4 Y2

U0 U0

Y1 Y1

V0 V0

Y0 Y0

U3 U3

Y7 Y7

V3 V3

Y6 Y6

U2 U2

Y5 Y5

V2 V3

Y4 Y4

EPPI Data Path Options

26-60 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-34 shows an 8-bit split transmit mode example with
SUBSPLT_ODD=1 and SWAPEN=1:

Table 26-34. Data Sent in 8-bit Split Transmit Mode with SUBSPLT_ODD=1
and SWAPEN=1

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 1

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(8 bits)

DMA0 DATA
(32 bits)

Pin
Data
(8 bits)

Y3Y2Y1Y0 V3V2V1V0 V3 V3V2V1V0 V3

Y7Y6Y5Y4 U3U2U1U0 Y3 Y3Y2Y1Y0 Y3

V7V6V5V4 U3 U3V3U2V2 U3

U7U6U5U4 Y2 Y7Y6Y5Y4 Y2

V2 V2

Y1 Y1

U2 U2

Y0 Y0

V1 V1

Y7 Y7

U1 U1

Y6 Y6

V0 V0

Y5 Y5

U0 U0

Y4 Y4

ADSP-BF54x Blackfin Processor Hardware Reference 26-61

Enhanced Parallel Peripheral Interface

10/12/14/16-Bit Split Transmit Mode with SPLT_16 = 0

For 16-bit split transmit mode, PACKEN is not valid. The EPPI always
unpacks the 32-bit DMA data into two 16-bit words to be transmitted
out. For 10-, 12-, or 14-bit split transmit modes, the EPPI first unpacks
the data in the same way as for 16-bit transmit mode, but transmits only
the required number of least significant bits.

Table 26-35 shows a 16-bit split transmit mode example with
SUBSPLT_ODD=0 and SWAPEN=0:

Table 26-35. Data Sent in 16-bit Split Transmit Mode with
SUBSPLT_ODD=0 and SWAPEN=0

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(16 bits)

DMA0 DATA
(32 bits)

Pin
Data
(16 bits)

Y1Y0 U0V0 V0 U0V0 V0

Y3Y2 U1V1 Y0 Y1Y0 Y0

U0 U1V1 U0

Y1 Y3Y2 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

EPPI Data Path Options

26-62 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-36 shows a 16-bit split transmit mode example with
SUBSPLT_ODD=1 and SWAPEN=0:

Table 26-36. Data Sent in 16-bit Split Transmit Mode with
SUBSPLT_ODD=1 and SWAPEN=0

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(16 bits)

DMA0 DATA
(32 bits)

Pin
Data
(16 bits)

Y1Y0 V1V0 V0 V1V0 V0

Y3Y2 U1U0 Y0 Y1Y0 Y0

V3V2 U0 U1U0 U0

U3U2 Y1 Y3Y2 Y1

V1 V1

Y2 Y2

U1 U1

Y3 Y3

ADSP-BF54x Blackfin Processor Hardware Reference 26-63

Enhanced Parallel Peripheral Interface

Table 26-37 shows a 16-bit split transmit mode example with
SUBSPLT_ODD=0 and SWAPEN=1:

Table 26-37. Data Sent in 16-bit Split Transmit Mode with
SUBSPLT_ODD=0 and SWAPEN=1

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN = 1

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(16 bits)

DMA0 DATA
(32 bits)

Pin
Data
(16 bits)

Y1Y0 V0U0 V0 V0U0 V0

Y3Y2 V1U1 Y1 Y1Y0 Y1

U0 V1U1 U0

Y0 Y3Y2 Y0

V1 V1

Y3 Y3

U1 U1

Y2 Y2

EPPI Data Path Options

26-64 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-38 shows an 16-bit split transmit mode example with
SUBSPLT_ODD=1 and SWAPEN=1:

16-Bit Split Transmit Mode with SPLT_16 = 1

For 16-bit split transmit mode, PACKEN is not valid. The EPPI always
unpacks the 32-bit DMA data into two 16-bit words to be transmitted
out. The SPLT_16 bit is only valid when DLEN=16 bits.

Table 26-38. Data Sent in 16-bit Split Transmit Mode with
SUBSPLT_ODD=1 and SWAPEN=1

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN = 1

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(16 bits)

DMA0 DATA
(32 bits)

Pin
Data
(16 bits)

Y1Y0 V1V0 V1 V1V0 V1

Y3Y2 U1U0 Y1 Y1Y0 Y1

V3V2 U1 U1U0 U1

U3U2 Y0 Y0

V0 V0

Y3 Y1

U0 U0

Y2 Y2

ADSP-BF54x Blackfin Processor Hardware Reference 26-65

Enhanced Parallel Peripheral Interface

Table 26-39 shows a 16-bit split transmit mode example with
SUBSPLT_ODD=0 and SWAPEN=0:

Table 26-39. Data Sent in 16-bit Split Transmit Mode with SPLT_16=1,
SUBSPLT_ODD=0 and SWAPEN=0

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 0
SWAPEN=0

DMACFG=1 DMACFG=0

DMA0 DATA
(32 bits)

DMA1 DATA
(32 bits)

Pin
Data
(16 bits)

DMA0 DATA
(32 bits)

Pin
Data
(16 bits)

Y3Y2Y1Y0 U1V1U0V0 V0Y0 U1V1U0V0 V0Y0

Y7Y6Y5Y4 U3V3U2V2 U0Y1 Y3Y2Y1Y0 U0Y1

V1Y2 U3V3U2V2 V1Y2

U1Y3 Y7Y6Y5Y4 U1Y3

V2Y4 V2Y4

U2Y5 U2Y5

V3Y6 V3Y6

U3Y7 U3Y7

Programming Model

26-66 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-40 shows a 16-bit split transmit mode example with SPLT_16=1,
SUBSPLT_ODD=1 and SWAPEN=0:

Programming Model
The following sections describe the EPPI programming model.

DMA Operation
The EPPI must be used with the processor's DMA engine. This section
discusses how the two interact. For additional information about the
DMA engine, including default EPPI DMA channel mappings, refer to
the “Direct Memory Access” chapter in ADSP-BF54x Blackfin Hardware
Reference (Volume 1 of 2).

Table 26-40. Data Sent in 16-bit Split Transmit Mode with SPLT_16=1,
SUBSPLT_ODD=1 and SWAPEN=0

SPLT_EVEN_ODD = 1
SUBSPLT_ODD = 1
SWAPEN=0

DMACFG=1 DMACFG=0

PRIMARY DMA
DATA
(32 bits)

SECONDARY DMA
DATA
(32 bits)

Pin
Data
(16 bits)

DMA0 DATA
(32 bits)

Pin
Data
(16 bits)

Y3Y2Y1Y0 V3V2V1V0 V0Y0 V3V2V1V0 V0Y0

Y7Y6Y5Y4 U3U2U1U0 U0Y1 Y3Y2Y1Y0 U0Y1

V7V6V5V4 V1Y2 U3U2U1U0 V1Y2

U7U6U5U4 U1Y3 Y7Y6Y5Y4 U1Y3

V2Y4 V2Y4

U2Y5 U2Y5

V3Y6 V3Y6

U3Y7 U3Y7

ADSP-BF54x Blackfin Processor Hardware Reference 26-67

Enhanced Parallel Peripheral Interface

The EPPI connects to the DMA channels in the following manner:

• EPPI0 always connects to DMA Channel 12 only

• EPPI1 and EPPI2 share DMA Channels 13 and 14. Each EPPI can
connect to either or both of these DMA channels, depending on
the mode of operation

This is shown visually in Figure 26-8 on page 26-30.

The EPPI DMA channels can be configured for either transmit or receive
operation, and have a maximum throughput of (PPIx_CLK) x (32 bits/
transfer). In modes where data lengths permit, packing may be possible in
order to increase transfer bandwidth. The highest throughput is achieved
with 8-bit data and packing mode enabled.

Configuring the EPPI DMA channels is a necessary step toward using the
EPPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the EPPI.

The processor's 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video is transferred, or if a DMA
error occurs. In fact, the specification of the DMAx_XCOUNT and
DMAx_YCOUNT MMRs allows for flexible data interrupt points. For example,

Programming Model

26-68 ADSP-BF54x Blackfin Processor Hardware Reference

assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMAx_CONFIG) interrupts on every row transferred,
for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
causes an interrupt when half of the frame is transferred, and again
when the whole frame is transferred.

Following is the general procedure for setting up DMA operation with the
EPPI. For details regarding configuration of DMA, refer to the “Direct
Memory Access” chapter in ADSP-BF54x Blackfin Hardware Reference.

1. Configure the DMA registers as appropriate for the desired DMA
operating mode.

2. Enable the DMA channel for operation.

3. Configure appropriate EPPI registers.

4. Enable the EPPI by writing a 1 to bit 0 in PPIx_CONTROL.

In addition, there are two sets of DMA Watermark levels to be pro-
grammed in the PPIx_CONTROL register: Regular Watermark and Urgent
Watermark. Two examples are given below: one showing the operation of
the watermarks during transmit modes, the other showing their operation
during receive modes.

ADSP-BF54x Blackfin Processor Hardware Reference 26-69

Enhanced Parallel Peripheral Interface

For transmit modes

Let the urgent watermark be set to 25% Full (FIFO_UWM=b#11) and the
regular watermark be set to 75% Full (FIFO_RWM=b#01). When the EPPI is
enabled, the FIFO is initially empty. An urgent DMA request is asserted
until the FIFO reaches urgent level, for example, the FIFO becomes 25%
full. Then regular DMA requests are made until the FIFO becomes full.
After that, the following things can happen (refer to Figure 26-9):

1. State T0: Suppose, at the very beginning, before the EPPI has
moved out the first data, that the FIFO is full. (Note that a full
FIFO is not necessary to start moving data out, but is assumed here
for simplicity) No DMA request.

2. State T1: The EPPI has moved some data out and there are a few
spaces in the FIFO. No DMA request.

3. State T2: Because the data level is reduced to the regular water-
mark level, the DMA starts performing Regular DMA requests.
This will result in the following two cases:

4. State T3_0: Case 1. The DMA request is granted, and data is
moved into the FIFO from L3. Regular DMA requests will stop
when the FIFO is full. It returns to state T0.

5. State T3_1: Case 2. The regular DMA Request is not granted. The
EPPI continues moving data out and the data level continues to
decrease.

6. State T4: Because the data level is reduced to the urgent watermark
level, the regular DMA request is changed to an Urgent DMA
request. This will result in the following two cases:

Programming Model

26-70 ADSP-BF54x Blackfin Processor Hardware Reference

7. State T5_0: Case 1. The urgent DMA request is granted, and more
data is moved into the FIFO from L3. When the data level has
increased to the Regular Watermark level, the Urgent DMA
request is changed to a regular DMA request. It returns to state
T2.

8. State T5_1: Case 2. The urgent DMA request is not granted, and
the data level continues to decrease. When the EPPI has moved out
all of the data, an underflow error occurs.

For transmit modes, the numerical value of the urgent watermark should
be less than that of the regular watermark.

ADSP-BF54x Blackfin Processor Hardware Reference 26-71

Enhanced Parallel Peripheral Interface

Figure 26-9. FIFO States during Transmit Modes

REGULAR
WATER MARK

 URGENT
WATER MARK

DMA_IN

DMA_IN

T1

DMA_IN

DMA_IN

DMA_IN

DMA_IN

PPIx_OUT

PPIx_OUT

PPIx_OUT

T0

T2

DMA_IN PPIx_OUT

T3_0T3_1

PPIx_OUT

PPIx_OUT

DMA_IN PPIx_OUTPPIx_OUT

T4

T5_1T5_0

UNDERFLOW RETURN TO T2

RETURN TO T0

Programming Model

26-72 ADSP-BF54x Blackfin Processor Hardware Reference

For receive modes

Let the urgent watermark be set to 75% Full (FIFO_UWM=b#01) and the
regular watermark be set to 25% Full (FIFO_RWM=b#11). When the EPPI is
enabled, the FIFO is initially empty. After that, the following things can
happen (Refer to Figure 26-10):

1. State T0: Suppose, at the very beginning, before the EPPI receives
the first data, that the FIFO is empty. No DMA request.

2. State T1: The EPPI has moved some data in and there are a few
data in the FIFO. No DMA request.

3. State T2: Because the data level has reached the regular watermark
level, the DMA starts performing regular DMA requests. This will
result in the following two cases:

4. State T3_0: Case 1. The DMA request is granted, and data is
moved out of the FIFO to L3. Regular DMA requests will stop
when the FIFO is empty. It returns to state T0.

5. State T3_1: Case 2. The regular DMA request is not granted. The
EPPI continues moving data in and the data level continues to
increase.

6. State T4: Because the data level has reached the urgent watermark
level, the regular DMA request is changed to an Urgent DMA
request. This will result in one of the following two cases:

7. State T5_0: Case 1. The urgent DMA request is granted, and more
data is moved out of the FIFO to L3. When the data level has
decreased to the regular watermark level, the urgent DMA request
is changed to a regular DMA request. It returns to state T2.

8. State T5_1: Case 2. The urgent DMA request is not granted, and
the data level continues to increase. After the EPPI has filled all of
the available space in the FIFO, an overflow error occurs.

ADSP-BF54x Blackfin Processor Hardware Reference 26-73

Enhanced Parallel Peripheral Interface

For receive modes, the value of the Regular Watermark should be less than
that of the Urgent Watermark.

Figure 26-10. FIFO States during Receive Modes

REGULAR
WATER MARK

 URGENT
WATER MARK

DMA_IN

DMA_IN

T1

DMA_IN

DMA_OUT

DMA_OUT

DMA_OUT

PPIx_IN

PPIx_IN

PPIx_IN

T0

T2

DMA_OUT PPIx_IN

T3_0T3_1

PPIx_IN

PPIx_IN

DMA_OUT PPIx_INPPIx_OUT

T4

T5_1T5_0

OVERFLOW RETURN TO T2

RETURN TO T0

Programming Model

26-74 ADSP-BF54x Blackfin Processor Hardware Reference

Note the following:

• For transmit modes with 1, 2 or 3 frame syncs, the EPPI will not
start transmitting data until its FIFO has some valid data to trans-
mit. Therefore, the frame syncs should be sent only some time after
enabling the EPPI, so that by then, the EPPI FIFO contains suffi-
cient data.

• For transmit modes with internal frame syncs, the EPPI will not
start generating frame syncs until its FIFO is full.

• For GP 0 FS TX modes and for ITU-R 656 Output mode
(BLANKGEN=1), the EPPI will not start transmitting data until the
EPPI FIFO becomes full.

• When using two DMA channels (DMACFG=1), both FIFO should be
full.

Elevating EPPI Urgent requests at DDR controller
Interface

In addition to the Urgent watermarks that control the priority of EPPI,
the CORE_EPPI_PRIO and SYS_EPPI_PRIO bit in the HMDMA1_CONTROL register
(reference the register in chapter here) help to further elevate the priority
of EPPI (EPPI0/1/2) transactions at the DDR controller interface. Use of
this bit is required only under high DDR activity resulting from core and
several other DMA channels (including EPPI-DMA channels) simulta-
neously accessing the DDR memory.

Due to the pipelined nature of the requests at the DDR interface and the
DEB bus submitting a DDR request at a maximum of every other SCLK
cycle, lower priority resources can gain access of the DDR interface. These
two bits are provided to ensure that under EPPI urgent conditions, only
EPPI can gain access to the DDR memory, resulting in efficient use of the
external memory bus bandwidth.

ADSP-BF54x Blackfin Processor Hardware Reference 26-75

Enhanced Parallel Peripheral Interface

Setting CORE_EPPI_PRIO bit in the HMDMA1_CONTROL register, will block all
core accesses to the DDR memory as long as any EPPI's request stays
urgent or for a maximum period of 124 system clock cycles. After a period
of 124 system clock cycles, the core can gain access for a period of 4 sys-
tem clock cycles.

Setting SYS_EPPI_PRIO bit in the HMDMA1_CONTROL register will block all
DMA channels in DMAC0, as well as USB, PIXC and DMAC1 MDMA
channels as long as any EPPI's request stays urgent.

Note that while the EPPI request stays urgent , other peripherals on
DMAC1 are not blocked and any unused bandwidth is allocated to the
DMA channels on DMAC1 based on their priority levels.

Also, note that this feature can be individually enabled for each EPPI (0, 1
or 2) by enabling the urgent watermark in the respective EPPI control
register.

As an exception, a TESTSET instruction has higher priority than
EPPI-DMA urgent requests under all conditions. So even when
CORE_EPPI_PRIO bit of the HMDMA1_CONTROL register is set, a TESTSET
instruction will not be blocked under EPPI-DMA urgent condition.

Also, there may be an increase in the interrupt service latency when core
accesses to the DDR are blocked due to pending urgent EPPI accesses.

If one observes EPPI urgent conditions and if using the DMA in descrip-
tor mode, it is recommended to place the DMA descriptors in L2 or L1
memory.

For more information, please refer to section "Handshake MDMA Con-
trol (HMDMAx_CONTROL) Registers" in ADSP-BF54x Blackfin
Hardware Reference Volume 1 of 2.

EPPI Registers

26-76 ADSP-BF54x Blackfin Processor Hardware Reference

System Configuration
Due to pin muxing, there are restrictions on the possible system configu-
rations of the EPPI channels. Table 26-41 shows the possible system
configurations.

In addition, Split mode may be used with EPPI1 or EPPI2 in the last
three configurations. This is done by setting the EPPI's DMACFG bit, but is
only valid if the SPLT_EVEN_ODD bit is also set.

EPPI Registers
Table 26-42 contains a list of EPPI memory-mapped registers (MMRs).
Default values of all MMRs are 0x0, except PPIx_CLIP whose default value
is 0xFF00FF00.

Table 26-41. EPPI System Configurations

EPPI 0 EPPI 1 EPPI 2

8-24 bits Not supported Not supported

8-18 bits 8 bits 8 bits

8-18 bits 10-14 bits Not supported

8-18 bits 8 bits Not supported

8-18 bits 16 bits Not supported

8-24 bits Not supported 8 bits

Table 26-42. EPPI Memory-Mapped Registers

Symbol Name Width Address

PPIx_STATUS EPPI status registers
on page 26-86

16 0xFFC01000

PPIx_HCOUNT EPPI horizontal transfer count registers
on page 26-95

16 0xFFC01004

ADSP-BF54x Blackfin Processor Hardware Reference 26-77

Enhanced Parallel Peripheral Interface

The MMR addresses shown in Table 26-42 refer to the PPIx registers, that
start at a base address of 0xFFC01000. PPI1 and PPI2 have base addresses
of 0xFFC01300 and 0xFFC02900, respectively, and follow the same regis-
ter address increments as shown above for PPIx.

PPIx_HDELAY EPPI horizontal delay registers
on page 26-94

16 0xFFC01008

PPIx_VCOUNT EPPI vertical transfer count registers
on page 26-93

16 0xFFC0100C

PPIx_VDELAY EPPI vertical delay registers
on page 26-93

16 0xFFC01010

PPIx_FRAME EPPI lines per frame registers
on page 26-92

16 0xFFC01014

PPIx_LINE EPPI samples per line registers
on page 26-92

16 0xFFC01018

PPIx_CLKDIV EPPI clock divide registers
on page 26-95

16 0xFFC0101C

PPIx_CONTROL EPPI control registers
on page 26-79

32 0xFFC01020

PPIx_FS1W_HBL EPPI FS1 width register/ EPPI horizontal
blanking samples per line registers
on page 26-96

32 0xFFC01024

PPIx_FS1P_AVPL EPPI FS1 period register/ EPPI active video
samples per line registers
on page 26-98

32 0xFFC01028

PPIx_FS2W_LVB EPPI FS2 width register/ EPPI lines of verti-
cal blanking registers
on page 26-96

32 0xFFC0102C

PPIx_FS2P_LAVF EPPI FS2 period register/ EPPI lines of
active video per field registers
on page 26-99

32 0xFFC01030

PPIx_CLIP EPPI clipping registers
on page 26-101

32 0xFFC01034

Table 26-42. EPPI Memory-Mapped Registers (Cont’d)

Symbol Name Width Address

EPPI Registers

26-78 ADSP-BF54x Blackfin Processor Hardware Reference

Table 26-43 shows which of the MMRs are valid for which operating
modes (an “X” indicates that the register is valid for the particular mode):

PPIx_CLKDIV is valid for all modes when an internal clock is used
(ICLKEN = 1 in PPIx_CONTROL).

PPIx_CLIP is valid for all transmit modes with an 8-bit or 16-bit data
lengths.

The following registers have multiplexed operation. In GP 1/2/3 Frame
Sync modes, they are used for generation of PPIx_FS1/PPIx_FS2. In GP 0
FS transmit mode when BLANKGEN = 1, they are used as internal blanking
generation registers:

Table 26-43. MMR Usage Modes

MMR GP 1
Frame
Sync

Modes

GP 2
Frame
Sync

Modes

GP 3
Frame
Sync

Modes

GP 0
Frame
Sync

Modes

ITU
RX

Modes
E

xt
 F

S

In
t

FS

E
xt

 F
S

In
t

Fs

E
xt

 F
S

In
t

FS

E
xt

 T
ri

g

In
t

Tr
ig

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

PPIx_FRAME X X X X X X X X X

PPIx_LINE X X X X X X X X X X X X X

PPIx_HDELAY X X X X X X X X X X X X

PPIx_HCOUNT X X X X X X X X X X X X

PPIx_VDELAY X X X X X X X X

PPIx_VCOUNT X X X X X X X

PPIx_FS1W_HBL X X X X X X

PPIx_FS1P_AVPL X X X X X X

PPIx_FS2W_LVB X X X X

PPIx_FS2P_LAVF X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 26-79

Enhanced Parallel Peripheral Interface

PPIx_FS2_WIDTH = PPIx_LVB (Lines of Vertical Blanking)

PPIx_FS2_PERIOD = PPIx_LAVF (Lines of Active Video per Field)

PPIx_FS1_WIDTH = PPIx_HBL (Horizontal Blank Samples per Line)

PPIx_FS1_PERIOD = PPIx_AVPL (Active Video Samples per Line)

Each pair of the above registers has the same physical address.

PPIx_CONTROL Register
The PPIx_CONTROL register, shown in Figure 26-11 and Figure 26-12, is a
32-bit register that configures the EPPI for operating mode, control signal
polarities, and data width of the port.

Please be aware that Figure 26-11 and Figure 26-12 split the
PPIx_CONTROL register “halves” across nonstandard boundaries in
order to maintain the DLEN field intact.

The PPIx_EN when set, enables the EPPI for operation. On disabling the
EPPI by writing a 0 to the EN bit of PPIx_CONTROL, all EPPI MMRs, except
PPIx_STATUS, do not return to their reset values. EPPI Interrupt and DMA
requests go inactive. Internally generated PPIx_CLK and Frame Syncs are
aborted on disabling the EPPI.

Once the EPPI is enabled, none of the MMRs should be changed.
If any change is required, the EPPI should first be disabled and
then re-enabled after re-programming the MMRs.

DIR (Direction): Setting this bit configures the EPPI to transmit data. In
transmit mode, data is moved out from memory through the EPPI. Clear-
ing DIR configures the EPPI to receive data. In receive mode, data is
captured by EPPI and moved to memory.

EPPI Registers

26-80 ADSP-BF54x Blackfin Processor Hardware Reference

XFR_TYPE[1:0] (Operating Mode): The XFR_TYPE[1:0] field configures
the EPPI for various modes of operation in receive mode. Programming
XFR_TYPE with b#00, b#01, or b#10 configures the EPPI to receive data in
ITU-R 656 active video only, entire field, or vertical blanking only modes
respectively. Programming XFR_TYPE with 0x11 configures EPPI to oper-
ate in general purpose mode.

FS_CFG[1:0] (Frame Sync Configuration): The FS_CFG field is used to
configure the frame syncs of the EPPI.

In receive modes and in transmit modes with BLANKGEN set to 1, setting
this field to b#00, b#01, b#10, or b#11 configures EPPI for general pur-
pose 0, 1, 2, or 3 frame sync modes respectively.

In transmit modes with BLANKGEN cleared to 0, a value of b#00 in this field
means that frame syncs are not driven. A value of 0x01 means that HSYNC
is driven on PPIx_FS1. A value of b#10 means that HSYNC is driven on
PPIx_FS1 and that VSYNC is driven on PPIx_FS2. A value of b#11 means
that HSYNC is driven on PPIx_FS1, that VSYNC is driven on PPIx_FS2, and
that FIELD is driven on PPIx_FS3.

FLD_SEL (Field Select/Trigger): This bit is useful only in the ITU656
Active Video Only Mode and GP 0 FS RX Mode and GP 3 FS Mode with
Internal Frame Syncs.

In ITU656 Active Video Only Mode, this indicates whether only Field 1
is received (if cleared, =0) or both Field1 and Field2 are received (if set,
=1).

In GP 0 FS RX Mode, this indicates whether the trigger is external (if set,
=1) or internal (if cleared, =0).

In GP 3 FS Mode with Internal Frame Syncs, this bit indicates, if the
PPIx_FS3 is toggled on every assertion of PPIx_FS2 (if set, =1) or if the
PPIx_FS3 is toggled on every PPIx_FS1 assertion followed by PPIx_FS2
assertion (if cleared, =0)

ADSP-BF54x Blackfin Processor Hardware Reference 26-81

Enhanced Parallel Peripheral Interface

ITU_TYPE (ITU Interface or Progressive): This bit is useful only for ITU
receive modes. It indicates whether the ITU656 video is Interlaced (if
cleared, =0) or Progressive (if set, =1)

BLANKGEN (ITU Output with Internal Blanking): This bit is useful in GP
Transmit Mode when the data length is configured for 8-, 10-, or 16-bits.
BLACKGEN specifies whether or not to generate blanking and preamble data
and to insert it with the active data being transmitted from memory. If set,
blanking and preamble data is generated and inserted with the active data.
If cleared, the active data is transmitted from memory as is.

Frame syncs may be driven out along with the data based on the configu-
rations of BLANKGEN and FS_CFG.

ICLKGEN (Internal Clock Generation): This bit indicates if the PPIx_CLK is
generated internally (if set, =1) or is supplied by an external device (if
cleared, =0)

IFSGEN (Internal Frame Sync Generation): This bit indicates if the Frame
Syncs are generated internally (if set, =1) or are supplied by an external
device (if cleared, =0)

POLC[1:0] & POLS[1:0] (Clock Polarity & Frame Sync Polarity):The
POLC[1:0] and POLS[1:0] bits allow the selection of the active level of the
frame syncs and the sampling/driving edge of the EPPI clock, respectively.
This provides a mechanism to connect to data sources and receivers with a
wide array of control signal polarities.

DLEN[2:0] (Data Length): The DLEN[2:0] field is programmed to specify
the data width of the EPPI module. Note that due to pin muxing, there
are restrictions on the possible system configurations of the EPPI chan-
nels. Table 26-41 on page 26-76 shows the possible configurations. In
ITU-R 656 modes, the DLEN field should be configured for 8- or 10-bit
width.

EPPI Registers

26-82 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 26-11. PPIx Control Register, Lower Half

PPIx Control Register (PPIx_CONTROL), Lower Half

0 - EPPI disabled
1 - EPPI enabled

ITU_TYPE (Interlaced or Progressive)

DIR (Direction)

XFR_TYPE (Operating Mode)

FS_CFG (Frame Sync Configuration)

PPIx_EN (Enable)

POLC (FS, Data Driving, and
Sampling Edges)

0 - EPPI in Receive mode (input)
1 - EPPI in Transmit mode

In Receive modes:
00 - ITU-R 656, Active Video Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking Only
11 - Non-ITU-R 656, GP Only

Reset = 0x0000

For ITU656 Receive Mode:
0 - Interlaced
1 - Progressive

ICLKGEN (Internal Clock Generation)

IFSGEN (Internal FS Generation)
0 - Disabled (FS supplied externally)
1 - Enabled (FS generated internally)

0 - Disabled (supplied externally)
1 - Enabled (generated internally)

BLANKGEN
(ITU Output with Internal Blanking)
In GP 8, 10, and 16 bit transmit modes,
indicates Blanking and Preamble
generation and insertion with active data
from memory or not.
0 - Disabled
1 - Enabled

In all GP Rx modes and in GP Tx modes
with BLANKGEN=0
00 - GP 0 FS Mode
01 - GP 1 FS Mode
10 - GP 2 FS Mode
11 - GP 3 FS Mode
In Tx modes with BLANKGEN=1
00 - 0FS. Frame Syncs not driven
01 - 1FS. HSYNC sent on PPIx_FS1
10 - 2FS. HSYNC sent on PPIx_FS1 and
 VSYNC on FS2
11 - 3FS. HSYNC sent on PPIx_FS1,
VSYNC

on FS2, and FIELD on FS3

0xFFC0 1020

POLS
00 - FS1 and FS2 are active high
01 - FS1 is active low and FS2 is
 active high
10 - FS1 is active high and FS2 is
 active low
11 - FS1 and FS2 are active low

In ITU656 Active Video mode:
0 - Read Field 1
1 - Read Fields 1 and 2
In GP 0FS RX mode:
0 - Set Internal Trigger
1 - Set External Trigger
In GP 3FS mode with Internal Frame
Syncs:
0 - FS3 is toggled on FS2 assertion

followed by FS1 assertion
1 - FS3 is toggled on FS2 assertion

FLD_SEL (Field Select/Trigger)

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

For Receive mode:
00 - Sample data on falling edge and
 sample/drive syncs on falling edge
01 - Sample data on falling edge and
 sample/drive syncs on rising edge
10 - Sample data on rising edge and
 sample/drive syncs on falling edge
11 - Sample data on rising edge and
 sample/drive syncs on rising edge

For Transmit mode:
00 - Drive data on rising edge and
 sample/drive syncs on rising edge
01 - Drive data on rising edge and
 sample/drive syncs on falling edge
10 - Drive data on falling edge and
 sample/drive syncs on rising edge
11 - Drive data on falling edge and
 sample/drive syncs on falling edge

ADSP-BF54x Blackfin Processor Hardware Reference 26-83

Enhanced Parallel Peripheral Interface

Figure 26-12. PPIx Control Register, Upper Half

PPIx Control Register (PPIx_CONTROL) Upper Half

SUBSPLT_ODD
(Sub-Split Odd Samples)

DLEN (Data Length)

SKIP_EN (Skip Enable)

SKIP_EO (Skip Even/Odd)

FIFO_RWM (Regular Watermark)
For Transmit modes:
00 - FIFO Full
01 - FIFO 75% Full
10 - FIFO 50% Full
11 - FIFO 25% Full
For Receive Modes:
00 - FIFO Empty
01 - FIFO 75% Full
10 - FIFO 50% Full
11 - FIFO 25% Full

000 - 8 bits
001 - 10 bits
010 - 12 bits
011 - 14 bits
100 - 16 bits
101 - 18 bits
110 - 24 bits
111 - Reserved

For Receive mode Only
0 - Skipping disabled
1 - Skipping enabled

Reset = 0x0000

0 - Disabled
1 - Enabled

DMACFG
(One or Two DMA Channel Modes)

RGB_FMT_EN (Formatting Enable)
For Transmit modes Only:
0 - Disabled
1 - Enabled

Valid only on EPPI1 or EPPI-2, and
only when SPLT_EVEN_ODD is set
0 - One Channel mode
1 - Two Channel mode

For Receive modes Only
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

0xFFC0 1020

FIFO_UWM
(Urgent Watermark)
For Transmit/Receive modes:
00 - Urgent Request Disable
01 - FIFO 75% Full
10 - FIFO 50% Full
11 - FIFO 25% Full

SWAPEN (Swap Enable)
0 - Disabled
1 - Enabled

SIGN_EXT/SPLT_16
For Receive modes when DLEN
not equal to 16 bits:
0 - Cleared (Zero filled)
1 - Set (Sign extension)
For use when SPLT_EVEN_ODD
equals 1 and DLEN equals 16 bits:
0 - Cleared (16 bits of Y or Cr/Cb)
1 - Set (One 8-bit Y and One 8 bit
 Cr/Cb)SPLT_EVEN_ODD

(Split Even/Odd Samples)
0 - Disabled
1 - Enabled

PACKEN (Pack/Unpack Enable)
0 - Disabled
1 - Enabled

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00 0

1516171819202122232425

0

EPPI Registers

26-84 ADSP-BF54x Blackfin Processor Hardware Reference

SKIP_EN (skip enable, bit 18)

For receive modes, if this bit is set, alternate even or odd data elements
being read through the EPPI may be skipped based on the value pro-
grammed in the SKIP_EO bit.

SKIP_EO (skip even/odd, bit 19)

 This bit is meaningful only in receive mode and when SKIP_EN is set.
When SKIP_EO is zero, the odd numbered elements are skipped. When
SKIP_EO is one, the even numbered elements are skipped. Element num-
bering starts from 1. Hence, when SKIP_EO is not set, the first incoming
element is skipped, the third incoming element is skipped, and so on. This
is useful, for instance, when reading in a color video signal in YCbCr for-
mat (Cb, Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows
the EPPI to only read in the Luma (Y) or Chroma (Cr or Cb) values. This
could also be useful when synchronizing two processors to the same
incoming video stream. One processor could handle Luma processing
while the other (whose SKIP_EO bit is set differently from the first proces-
sor’s) could handle Chroma processing.

PACKEN/UNPACKEN (packing/unpacking enable, bit 20)

For receive modes this bit indicates if packing is enabled or not. For trans-
mit modes this indicates if unpacking is enabled or not. DMA is always 32
bits wide if this bit is set. If this bit is not set and the DLEN is less than or
equal to 16 bits, then the DMA is 16 bits wide.

For receive modes, if this bit is set, then the EPPI packs the incoming data
into 32-bit words. If this bit is cleared, then the EPPI does not do any
packing.

For transmit modes, if this bit is set, then the EPPI always unpacks the
32-bit data from DMA. If this bit is not set, the EPPI does not do any
unpacking.

ADSP-BF54x Blackfin Processor Hardware Reference 26-85

Enhanced Parallel Peripheral Interface

SWAPEN (swap enable, bit 21)

For receive modes, the EPPI puts the first data in the most significant bits
(if set, =1) or puts the first data in the least significant bits (if cleared, =0)
of the DMA word.

For transmit modes, the EPPI transmits the most significant bits in the
DMA word as the first data (if set, =1) or transmits the least significant
bits in the DMA word as the first data (if cleared, =0).

SIGN_EXT/SPLT_16 (sign extension or zero filled, bit 22)

This bit has two different functions. When DLEN is not equal to 16 bits it
acts as SIGN_EXT, and when DLEN is equal to 16 bits it acts as SPLT_16.

As SIGN_EXT, this bit is useful only for receive modes and indicates if the
data is sign extended (if set, =1) or zero filled (if cleared, =0). This is valid
only for data lengths of 8, 10, 12, 14, 18 or 24 bits.

As SPLT_16, this bit is useful only when SPLT_EVEN_ODD=1 and DLEN=16. If
set (=1), then this bit indicates that the 16-bit 4:2:2 YCrCb data has one
8-bit Y and one 8-bit of either Cr or Cb packed together. Note that Y is
on bits 7:0 and Cr/Cb on bits 15:8. If cleared (=0), then this bit indicates
that the 16 bits of 4:2:2 YCrCb data has 16 bits of Y or Cr/Cb.

SPLT_EVEN_ODD (Split Even and Odd Data Samples)

If it is set, EPPI will split even and odd samples. See “Split Receive
Modes” on page 26-33 and “Split Transmit Modes” on page 26-33 for
more details.

SUBSPLT_ODD (Sub-Split Odd Samples)

If it is set, EPPI will sub-split odd samples. It is valid only if
SPLT_EVEN_ODD is set.

EPPI Registers

26-86 ADSP-BF54x Blackfin Processor Hardware Reference

DMACFG (One or Two DMA Channels Mode)

If it is set, EPPI will use two DMA Channels, else EPPI will use only one
DMA Channel. It is valid only when SPLT_EVEN_ODD is set.

RGB_FMT_EN (RGB Formatting Enable)

This bit is valid only for 16-bit or 18-bit transmit modes. For 18-bit
transmit modes, if this is set EPPI converts the RGB888 from Memory
into RGB666 output data. For 16-bit transmit modes, if this is set, EPPI
converts RGB888 from Memory into RGB565 output data.

FIFO_RWM (FIFO Regular Watermarks) and FIFO_UWM (FIFO
Urgent Watermarks)

These bits indicate the regular and the urgent watermark level for the
FIFO respectively.

RGB_FMT_EN (RGB formatting enable, bit 26)

This bit is valid only for 16-bit or 18-bit transmit modes. For 18-bit
transmit modes, if this bit is set, the EPPI converts the RGB888 data from
memory into RGB666 output data. For 16-bit transmit modes, if this bit
is set, the EPPI converts RGB888 data from memory into RGB565 out-
put data.

SPLT_EVEN_ODD and RGB_FMT_EN should never be set simultaneously.

PPIx_STATUS Register
The PPIx_STATUS register, shown in Figure 26-13, is a 16-bit register that
indicates the status of the EPPI.

ADSP-BF54x Blackfin Processor Hardware Reference 26-87

Enhanced Parallel Peripheral Interface

CFIFO_ERR (Chroma FIFO Overflow/Underflow Error)

When set, this bit indicates that the Chroma FIFO has overflowed (in
receive mode) or underflowed (in transmit mode). This bit is sticky and
must be cleared in software by writing 1 to it.

In transmit mode, the CFIFO_ERR is set to indicate an underflow
condition only when DMACFG in PPIx_CONTROL is set.

YFIFO_ERR (Luma FIFO Overflow/Underflow Error)

When set, this bit indicates that the Luma FIFO has overflowed (in
receive mode) or underflowed (in transmit mode). This bit is sticky and
must be cleared in software by writing 1 to it.

When in transmit mode, a 1 in YFIFO_ERR or CFIFO_ERR indicates
that the FIFOs have underflowed. However, the EPPI may still be
transmitting data out the pins. Therefore, to avoid incomplete data
transmission, the EPPI should not be disabled immediately after
observing a 1 value in these bit. The time delay necessary depends
on the EPPI clock and on the EPPI data length.

LTERR_OVR (Line Track Overflow)

This bit indicates whether a Line Track Overflow Error has occurred (if
set, =1) or not (if clear, =0). This bit is sticky and must be cleared in soft-
ware by writing 1 to it.

LTERR_UNDR (Line Track Underflow)

This bit indicates whether a Line Track Underflow Error has occurred (if
set, =1) or not (if clear, =0). This bit is sticky and must be cleared in soft-
ware by writing 1 to it.

EPPI Registers

26-88 ADSP-BF54x Blackfin Processor Hardware Reference

FTERR_OVR (Frame Track Overflow)

This bit indicates whether a Frame Track Overflow Error has occurred (if
set, =1) or not (if clear, =0). This bit is sticky and must be cleared in soft-
ware by writing 1 to it.

FTERR_UNDR (Frame Track Underflow)

This bit indicates whether a Frame Track Underflow Error has occurred
(if set, =1) or not (if clear, =0). This bit is sticky and must be cleared in
software by writing 1 to it

ERR_NCOR (Preamble Error not Corrected)

This bit is useful only in the ITU receive modes and indicates if an error
in the status word of EAV or SAV sequences can not be cleared (if set, =1)
or not (if clear, =0). This bit is sticky and must be cleared in software by
writing 1 to it.

DMA1URQ (DMA1 Urgent Request)

This bit if set indicates that the EPPI is making an Urgent DMA Request.
If the PAB writes a 1 to this bit, it is cleared and the DMA Urgent Request
will go low in the next cycle.

DMA0URQ (DMA0 Urgent Request)

This bit if set indicates that the EPPI is making an Urgent DMA Request.
If the PAB writes a 1 to this bit, it is cleared and the DMA Urgent Request
will go low in the next cycle.

ERR_DET (Preamble Error Detected)

This bit is useful only in ITU receive modes and indicates if an error is
detected in the status word of EAV or SAV sequences (if set, =1) or not (if
clear, =0).

ADSP-BF54x Blackfin Processor Hardware Reference 26-89

Enhanced Parallel Peripheral Interface

If ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred
have been corrected. If ERR_NCOR = 1, an error in the preamble was
detected but not corrected. This situation generates an EPPI error inter-
rupt, unless this condition is masked off in the SICx_IMASK register.

FLD (Field)

This bit indicates if the current field being transferred is Field 1 (if clear,
=0) or Field 2 (if set, =1)

EPPI Registers

26-90 ADSP-BF54x Blackfin Processor Hardware Reference

Windowing Registers
Windowing is a useful feature for applications where the region of interest
is smaller than the active video stream (for example, sensor calibration,
auto-focusing, etc.). It can result in significant DMA bandwidth reduc-

Figure 26-13. EPPI Status Register

PPIx Status Register (PPIx_STATUS)

Reset = 0x00000xFFC0 1000

CFIFO_ERR (Chroma FIFO
Over/Underflow Error) - W1C

For RX mode, Chroma FIFO
overflow detection:
0 - No overflow error detected
1 - Overflow error has occurred
For TX mode, Chroma FIFO
underflow detection:
0 - No underflow error detected
1 - Underflow error has occurred

YFIFO_ERR (Luma FIFO
Over/Underflow Error) - W1C
For RX mode, Luma FIFO
overflow detection:
0 - No overflow error detected
1 - Overflow error has occurred
For TX mode, Luma FIFO
underflow detection:
0 - No underflow error detected
1 - Underflow error has occurred

LTERR_UNDR (Line Track
Underflow Error) - W1C
0 - No underflow error detected
1 - Underflow error has occurred

LTERR_OVR (Line Track
Overflow Error) - W1C
0 - No overflow error detected
1 - Overflow error has occurred

FTERR_OVR (Frame Track
Overflow Error) - W1C

0 - No overflow error detected
1 - Overflow error has occurred

FTERR_UNDR (Frame Track
Underflow Error) - W1C
0 - No underflow error detected
1 - Underflow error has occurred

ERR_NCOR (Preamble Error)
Not Corrected) - W1C
Used only in ITU Receive modes:
0 - No uncorrected preamble
 error has occurred
1 - Preamble error detected but
 not corrected

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

DMA0URQ (DMA0 Urgent
Request) - W1C
0 - No urgent DMA0 request
1 - Urgent DMA0 request

DMA1URQ (DMA1 Urgent
Request) - W1C

0 - No urgent DMA1 request
1 - Urgent DMA1 request

ERR_DET (Preamble
Error) not Detected) - RO
Used only in ITU modes:
0 - No preamble error detected
1 - Preamble error detected

FLD (Field) - RO
Current field received by
EPPI:
0 - Field 1
1 - Field 2

0 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-91

Enhanced Parallel Peripheral Interface

tion. Each EPPI supports windowing for GP Input modes and has six
MMRs that are used to define the video frame. A pictorial view of these
registers is shown in Figure 26-14.

The shaded portion in Figure 26-14 is the captured/transmitted data.
Note that windowing is valid for GP receive and transmit modes.

It is the user’s responsibility to ensure the following:

PPIx_VDELAY + PPIx_VCOUNT <= PPIx_FRAME

PPIx_HDELAY + PPIx_HCOUNT <= PPIx_LINE

Figure 26-14. Windowing Registers to define a Frame

Start of
 Line

Start of
Frame

P
P

Ix
_V

D
E

L
A

Y
P

P
Ix

_V
C

O
U

N
T

P
P

Ix
_F

R
A

M
E

PPIx_LINE

PPIx_HCOUNT
PPIx_HDELAY

EPPI Registers

26-92 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI Lines per Frame Register (PPIx_FRAME)

The PPIx_FRAME register, shown in Figure 26-15, is a 16-bit register used
to keep track of Frame Track Overflow and Underflow errors. It should be
programmed with the number of lines expected per frame. Any write to
the PPIx_FRAME register will also write the same value to the PPIx_VCOUNT
register. However, any write to PPIx_VCOUNT does not affect the
PPIx_FRAME register value. Therefore, the PPIx_FRAME register should be
programmed before the PPIx_VCOUNT register.

EPPI Samples per Line Register (PPIx_LINE)

The PPIx_LINE register, shown in Figure 26-16, is a 16-bit register used to
keep track of Line Track Overflow and Underflow Errors. It should be
programmed with the number of samples expected per line. Any write to
the PPIx_LINE register will also write the same value to the PPIx_HCOUNT
register. However, any write to PPIx_HCOUNT does not affect the PPIx_LINE
register value. Therefore, the PPIx_LINE register should be programmed
before the PPIx_HCOUNT register.

Figure 26-15. EPPI Lines per Frame Register

Lines per Frame Register (PPIx_FRAME)

Reset = 0x00000xFFC0 1014

PPIx_FRAME [15:0]

Holds the number of lines
expected per frame of data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-93

Enhanced Parallel Peripheral Interface

EPPI Vertical Delay Register (PPIx_VDELAY)

The PPIx_VDELAY register, shown in Figure 26-17, is a 16-bit register and
contains the number of lines to wait after the start of a new frame before
starting to read/transmit data.

EPPI Vertical Transfer Count Register (PPIx_VCOUNT)

The PPIx_VCOUNT register, shown in Figure 26-18, is a 16-bit register and
holds the number of lines to read in or write out, after PPIx_VDELAY num-
ber of lines from the start of frame. Any write to the PPIx_FRAME register

Figure 26-16. EPPI Samples per Line Register

Figure 26-17. EPPI Vertical Delay Count Register

Samples per Line Register (PPIx_LINE)

Reset = 0x00000xFFC0 1018

PPIx_LINE [15:0]

Holds the number of
samples expected per
line

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Vertical Delay Count Register (PPIx_VDELAY)

Reset = 0x00000xFFC0 0100C

PPIx_VDELAY [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Number of lines to wait
after the start of a new
frame before starting to
read/transmit data

EPPI Registers

26-94 ADSP-BF54x Blackfin Processor Hardware Reference

modifies the PPIx_VCOUNT register. However, any write to PPIx_VCOUNT
does not affect the PPIx_FRAME register value. Therefore, the EPPIO_VCOUNT
register should be programmed after the PPIx_FRAME register.

EPPI Horizontal Delay Register (PPIx_HDELAY)

The PPIx_HDELAY register, shown in Figure 26-19, is a 16-bit register and
contains the number of clock cycles to delay after the assertion of
PPIx_FS1 is detected before starting to read or write data.

Figure 26-18. EPPI Vertical Transfer Count Register

Figure 26-19. EPPI Horizontal Delay Register

Vertical Transfer Count Register (PPIx_VCOUNT)

Reset = 0x00000xFFC0 1010

PPIx_VCOUNT [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Holds the number of lines
to read in or write out,
after PPIx_VDELAY num-
ber of lines from the start
of frame

Horizontal Delay Register (PPIx_HDELAY)

Reset = 0x00000xFFC0 1004

PPIx_HDELAY [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Number of PPIx_CLK
cycles to delay after
assertion of PPIx_FS1
before starting to read or
write data

ADSP-BF54x Blackfin Processor Hardware Reference 26-95

Enhanced Parallel Peripheral Interface

EPPI Horizontal Transfer Count Register (PPIx_HCOUNT)

The PPIx_HCOUNT register, shown in Figure 26-20, is a 16-bit register and
holds the number of samples to read in or write out per line, after
PPIx_HDELAY number of cycles have expired since the assertion of
PPIx_FS1. Any write to the PPIx_LINE register modifies the PPIx_HCOUNT
register. However, any write to PPIx_HCOUNT does not affect the PPIx_LINE
register value. Therefore, the PPIx_HCOUNT register should be programmed
after the PPIx_LINE register.

EPPI Clock Divide Register (PPIx_CLKDIV)
The PPIx_CLKDIV register, shown in Figure 26-21, is a 16-bit register used
for internal clock generation. The generated clock frequency is given by
following formula:

PPIx_CLK = (SCLK) / (2 * (PPIx_CLKDIV[15:0] + 1))

Figure 26-20. EPPI Horizontal Transfer Count Register

Horizontal Transfer Count Register (PPIx_HCOUNT)

Reset = 0x00000xFFC0 1008

PPIx_HCOUNT [15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Holds the number of samples
to read in or write out per line,
after PPIx_HDELAY number
of cycles have expired since
the last assertion of
PPIx_FS1.

EPPI Registers

26-96 ADSP-BF54x Blackfin Processor Hardware Reference

Note that a value of 0xFFFF is invalid for PPIx_CLKDIV register.

Frame Sync/ Blanking Generation Registers
The following sections describe the sync and blanking generation registers.

EPPI FS1 Width Register / EPPI Horizontal Blanking Samples per
Line Register (PPIx_FS1W_HBL)

The PPIx_FS1W_HBL register, shown in Figure 26-22, is a 32-bit register.

In GP 1, 2 or 3 FS modes, it is used for the generation of Frame Sync 1. It
contains the width required for FS1. The reference clock is PPIx_CLK.

In GP Transmit mode with BLANKGEN = 1 in PPIx_CONTROL, it contains the
number of samples of horizontal blanking per line.

When used for blanking generation, only the lower 16 bits are valid.

A value of 0 for this register is illegal. If it is programmed as 0, the
EPPI will regard its value as 1.

EPPI FS2 Width Register/ EPPI Lines of Vertical Blanking
Register (PPIx_FS2W_LVB)

PPIx_FS2W_LVB, shown in Figure 26-23, is a 32-bit register.

Figure 26-21. EPPI Clock Divide Register (PPIx_CLK)

Clock Divide Register (PPIx_CLK)

Reset = 0x00000xFFC0 101C

PPIx_CLK Divide[15:0]

Internal clock divider

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-97

Enhanced Parallel Peripheral Interface

In GP 2 or 3 FS modes, it is used for the generation of Frame Sync 2. It
contains the width required for FS2. The reference clock is PPIx_CLK.

Figure 26-22. EPPI FS1 Width / Horizontal Blanking Samples per Line
Register

PPIx_FS1 Width / Horizontal Blanking Samples per Line Register (PPIx_FS1W_HBL)

Reset = 0x00000xFFC0 1024

PPIx_FS1W_HBL

In GP 1, 2, or 3 FS modes
used to generate PPIx_FS1
width (32-bit).
In GP Transmit mode, with
BLANKGEN=1, contains
the number of samples of
horizontal blanking per line
(16-bit).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

EPPI Registers

26-98 ADSP-BF54x Blackfin Processor Hardware Reference

In GP Transmit mode with BLANKGEN=1 in PPIx_CONTROL, it contains the
number or lines of vertical blanking.

For progressive video, F2VB_BD and F2VB_AD are ignored.

EPPI FS1 Period Register/EPPI Active Video Samples per Line
Register (PPIx_FS1P_AVPL)

The PPIx_FS1P_AVPL register, shown in Figure 26-24, is a 32-bit register.

In GP 1, 2, or 3 FS modes, it is used for the generation of Frame Sync 1.
It contains the period required for PPIx_FS1. The reference clock is
PPIx_CLK.

Figure 26-23. EPPI FS2 Width Register/EPPI Lines of Vertical Blanking
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

FS2 Width Register/EPPI Lines of Vertical Blanking Register (EPPIO_FS2W_LVB)

Reset = 0x00000xFFC0 102C

F2VB_BD

Number of lines of Vertical
Blanking before Field 2
Active Data

F2VB_AD

Number of lines of Vertical
Blanking after Field 2
Active Data

F1VB_AD

Number of lines of Vertical
Blanking after Field 1
Active Data

F1VB_BD

Number of lines of Vertical
Blanking before Field 1
Active Data

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

ADSP-BF54x Blackfin Processor Hardware Reference 26-99

Enhanced Parallel Peripheral Interface

In GP Transmit mode with BLANKGEN = 1 in PPIx_CONTROL, it contains the
number of samples of active video or vertical blanking samples per line.
When used for blanking generation, only the lower 16 bits are valid.

A value of 0 for this register is illegal. If it is programmed as 0, the
EPPI will regard its value as 1.

EPPI FS2 Period Register/EPPI Lines of Active Video per Frame
Register (PPIx_FS2P_LAVF)

The PPIx_FS2_PERIOD register, shown in Figure 26-25, is a 32-bit register.

In GP 2 or 3 FS modes, it is used for the generation of Frame Sync 2. It
contains the period required for FS2. The reference clock is PPIx_CLK.

Figure 26-24. EPPI FS1 Period Register / EPPI Active Video Samples per
Line Register (PPIx_FS1P_AVPL)

Reset = 0x00000xFFC0 1028

PPIx_FS1P_AVPL

In GP 1, 2, or 3 FS modes
used to generate PPIx_FS1
period (32-bit).
In GP Transmit mode, with
BLANKGEN=1, contains
the number of samples of
active video or vertical
blanking samples per line
(16-bit).

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

PPIx_FS1 Period Register / EPPI Active Video Samples per Line Register (PPIx_FS1P_AVPL)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 0

EPPI Registers

26-100 ADSP-BF54x Blackfin Processor Hardware Reference

In GP Transmit mode with BLANKGEN=1 in PPIx_CONTROL, it contains the
number of lines of active video per field.

For progressive video, F2_ACT is ignored.

A value of 0 for F1_ACT or F2_ACT is illegal. If any of them is set to
0, the EPPI will regard its value as 1.

Figure 26-25. EPPI FS2 Period Register/EPPI Lines of Active Video per
Frame Register (PPIx_FS2_LAVF)

Reset = 0x00000xFFC0 1030

F2_ACT

Number of lines of Active
Data in Field 2

F1_ACT

Number of lines of Active
Data in Field 1

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

FS2 Period Register / EPPI Lines of Active Video per Frame Register (PPIx_FS2_LVF)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 26-101

Enhanced Parallel Peripheral Interface

EPPI Clipping Register (PPIx_CLIP)
The PPIx_CLIP register, shown in Figure 26-26, is a 32-bit register used to
define the lower and upper limits for the Luma and Chroma components.
This is used for clipping of data values during 8-bit or 16-bit transmit
modes. Refer to Figure 26-26 for bit definitions.

All data values for odd samples which are less than LOW_ODD are replaced
with LOW_ODD and all data values for even samples which are less than
LOW_EVEN are replaced with LOW_EVEN.

In the same manner, all data values for odd samples which are more than
HIGH_ODD are replaced with HIGH_ODD and all data values for even samples
which are more than HIGH_EVEN are replaced with HIGH_EVEN.

Figure 26-26. EPPI Clipping Register (PPIx_CLIP)

Clipping Register (PPIx_CLIP)

Reset = 0xFF00FF000xFFC0 1034

LOW_EVEN

Lower limit for Even Bytes
(Luma)

HIGH_EVEN

Upper limit for Even Bytes (Luma)

HIGH_ODD

Upper limit for Odd Bytes (Chroma)

LOW_ODD

Lower limit for Odd Bytes
(Chroma)

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EPPI Registers

26-102 ADSP-BF54x Blackfin Processor Hardware Reference

For 16-bit data lengths, the EPPI will separate each word into upper and
lower bytes, and will consider the lower bytes as odd bytes and the upper
bytes as even bytes during clipping.

In GP 0 FS mode with internal blanking generation, clipping is
valid only for the active video part of the transmitted data. ITU-R
656 preambles, status words and blanking data bypass the clipping
logic.

ADSP-BF54x Blackfin Processor Hardware Reference 26-103

Enhanced Parallel Peripheral Interface

EPPI Registers

26-104 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 27-1

27 CAN MODULE

This chapter describes the controller area network (CAN) modules. Famil-
iarity with the CAN standard is assumed. Refer to Version 2.0 of CAN
Specification from Robert Bosch GmbH.

This chapter includes the following sections:

• “Overview” on page 27-1

• “Interface Overview” on page 27-2

• “CAN Operation” on page 27-10

• “Functional Operation” on page 27-25

• “CAN Registers” on page 27-41

• “Programming Examples” on page 27-91

Overview
The ADSP-BF544, ADSP-BF548, and ADSP-BF549 Blackfin processors
have two separate and identical CAN modules, referred to as CAN0 and
CAN1. The CAN1 module is not present on ADSP-BF542 derivatives.
There are no CAN modules present on the ADSP-BF547 Blackfin proces-
sor. Neither of the CAN modules may be available on commercial and/or
industrial grade products. Please see ADSP-BF54x Blackfin Embedded Pro-
cessor datasheet for more information.

Interface Overview

27-2 ADSP-BF54x Blackfin Processor Hardware Reference

Key features of the CAN module include:

• Conformity to the CAN 2.0B (active) standard

• Support for standard (11-bit) and extended (29-bit) identifiers

• Support for data rates of up to 1Mbit/s

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Dedicated acceptance mask for each mailbox

• Data filtering (first 2 bytes) can be used for acceptance filtering
(DeviceNet™ mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

The CAN module is a low bit rate serial interface intended for use in
applications where bit rates are typically up to 1Mbit/s. The CAN proto-
col incorporates a data CRC check, message error tracking and fault node
confinement as means to improve network reliability to the level required
for control applications.

Interface Overview
The interface to the CAN bus is a simple two-wire line. See Figure 27-1
for a symbolic representation of the CAN transceiver interconnection, and
Figure 27-2 for a block diagram. The Blackfin processor’s CANxTX output
and CANxRX input pins are connected to an external CAN transceiver’s TX

ADSP-BF54x Blackfin Processor Hardware Reference 27-3

CAN Module

and RX pins (respectively). The CANxTX and CANxRX pins operate with TTL
levels and are appropriate for operation with CAN bus transceivers
according to ISO/DIS 11898.

The CANxRX and CANxTX signals can be found on GPIO Port G, pins PG12–
PG15. By default, these pins are in GPIO mode. To enable CAN function-
ality, the appropriate bits must be set in the PORTG_FER register. If CAN0
is used, set bits 12 and 13. If CAN1 is used, set bits 14 and 15.

Additionally, the associated bit fields of the PORTG_MUX register must be
kept zero, which is their default value. CAN data is defined to be either
dominant (logic 0) or recessive (logic 1). The default state of the CANxTX
output is recessive.

Figure 27-1. Representation of CAN Transceiver Interconnection

BLACKFIN

CANxRX

CAN
TRANSCEIVER

RX

CANxTX TX

CANL

CANH
FIELD BUS

Interface Overview

27-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 27-2. CANx Block Diagram

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 2

MAILBOX INTERRUPT TRANSMIT 2

MAILBOX INTERRUPT MASK 2

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 2

OVERWRITE PROTECTION/SINGLE SHOT 2

AILBOX INTERRUPT RECEIVE 2

TRANSMIT REQUEST RESET 2

RECEIVE MESSAGE PENDING 2

MAILBOX DIRECTION 1

2TRANSMIT ACKNOWLEDGE 2
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 2

DATA

TIMESTAMP

DATA LENGTH

M
A

IL
B

O
X

 31

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 18

M
A

IL
B

O
X

 17

M
A

IL
B

O
X

 16

M
A

IL
B

O
X

 15

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 2

M
A

IL
B

O
X

 1

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 1

TRANSMIT

MAILBOX INTERRUPT TRANSMIT 1

MAILBOX INTERRUPT MASK 1

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 1

OVERWRITE PROTECTION/SINGLE SHOT 1

MAILBOX INTERRUPT RECEIVE 1

TRANSMIT REQUEST RESET 1

RECEIVE MESSAGE PENDING 1

MAILBOX DIRECTION 1

TRANSMIT ACKNOWLEDGE 1
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 1

IN
T

E
R

-
R

U
P

T
S

GLOBAL INTERRUPT MASK

GLOBAL INTERRUPT FLAG

GLOBAL INTERRUPT STATUS

E
R

R
O

R
H

A
N

D
L

E
R

C
O

U
N

T
E

R
G

L
O

B
A

L
C

O
N

T
R

O
LDEBUG

ERROR STATUS

ERROR COUNTERS

ERROR WARNING

MODE

COUNTER

RELOAD/CAPTURE

GLOBAL STATUS

GLOBAL CONTROL

T
IM

IN
GBIT TIMING

CLOCK DIVIDEM
A

IL
B

O
X

 0

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

RECEIVE

ACCEPTANCE
FILTER

...

...

...

...

INTERRUPT

SIC CONTROLLER

P
O

R
T

 G

T
R

A
N

S
C

E
IV

E
R

PA
B

16

CANx

BLACKFIN

ADSP-BF54x Blackfin Processor Hardware Reference 27-5

CAN Module

The PG13 pin (CAN0RX input pin) is also internally routed to the alternate
capture input TACI4 of the GP timer 4. Similarly, the PG15 pin (CAN1RX
input pin) also goes to the alternate capture input TACI5 of the GP timer
5. This way, GP timers 4 and 5 can be used to auto-detect or adjust the bit
rate on the CAN bus.

CAN Mailbox Area
The full-CAN controller features 32 message buffers, which are called
mailboxes. Eight mailboxes are dedicated for message transmission, eight
are for reception, and 16 are programmable in direction. See Figure 27-3.

Accordingly, the CAN module architecture is based around a 32-entry
mailbox RAM. The mailbox is accessed sequentially by the CAN serial
interface or the Blackfin core. Each mailbox consists of eight 16-bit con-
trol and data registers and two optional 16-bit acceptance mask registers,
all of which must be configured before the mailbox itself is enabled. Since

Figure 27-3. CAN Mailbox Area

FDF

EXTID_HI / DFC

AME

EXTID_HI / DFC

TSV

DLC

BASEIDAMIDEFMD

BYTE 6

CANx_AM00H

CANx_AM00L

CANx_MB00_ID1

CANx_MB00_ID0

CANx_MB00_TIMESTAMP

CANx_MB00_LENGTH

CANx_MB00_DATA3

CANx_MB00_DATA2

CANx_MB00_DATA1

CANx_MB00_DATA0BYTE 7

BYTE 4 BYTE 5

BYTE 2 BYTE 3

BYTE 0 BYTE 1

EXTID_LO

BASEIDIDERTR EXTID_LO

WORD9

WORD8

WORD7

WORD6

WORD5

WORD4

WORD3

WORD2

WORD1

WORD0

Interface Overview

27-6 ADSP-BF54x Blackfin Processor Hardware Reference

the mailbox area is implemented as RAM, the reset values of these registers
are undefined. The data is divided into fields, which includes a message
identifier, a time stamp, a byte count, up to 8 bytes of data, and several
control bits.

The CAN mailbox identification (CANx_MBxx_ID0/1) register pair includes:

• The 29 bit identifier (base part BASEID plus extended part
EXTID_LO/HI)

• The acceptance mask enable bit (AME)

• The remote transmission request bit (RTR)

• The identifier extension bit (IDE)

Do not write to the identifier of a message object while the mailbox
is enabled for the CAN module (the corresponding bit in CANx_MCx
is set).

The other mailbox area registers are:

• The data length code (DLC) in CANx_MBxx_LENGTH. The upper 12
bits of CANx_MBxx_LENGTH of each mailbox are marked as reserved.
These 12 bits should always be set to 0.

• Up to eight bytes for the data field, sent MSB first from the
CANx_MBxx_DATA3/2/1/0 registers, respectively, based on the number
of bytes defined in the DLC. For example, if only one byte is trans-
mitted or received (DLC = 1), then it is stored in the most significant
byte of the CANx_MBxx_DATA3 register.

• Two bytes for the time stamp value (TSV) in the
CANx_MBxx_TIMESTAMP register

The final registers in the mailbox area are the acceptance mask registers
(CANx_AMxxH and CANx_AMxxL). The acceptance mask is enabled when the
AME bit is set in the CANx_MBxx_ID1 register. If the “filtering on data field”

ADSP-BF54x Blackfin Processor Hardware Reference 27-7

CAN Module

option is enabled (DNM = 1 in the CANx_CONTROL register and FDF = 1 in the
corresponding acceptance mask), the EXTID_HI[15:0] bits of
CANx_MBxx_ID0 are reused as acceptance code (DFC) for the data field filter-
ing. For more details, see “Receive Operation” on page 27-16 of this
chapter.

CAN Mailbox Control
Mailbox control MMRs function as control and status registers for the 32
mailboxes. Each bit in these registers represents one specific mailbox.
Since CAN MMRs are all 16 bits wide, pairs of registers are required to
manage certain functionality for all 32 individual mailboxes. Mailboxes
0-15 are configured/monitored in registers with a suffix of 1. Similarly,
mailboxes 16-31 use the same named register with a suffix of 2. For exam-
ple, the CAN mailbox direction registers (CANx_MDx) would control
mailboxes as shown in Figure 27-4.

The mailbox control register area consists of these register pairs:

• CANx_MC1 and CANx_MC2 (mailbox enable registers)

• CANx_MD1 and CANx_MD2 (mailbox direction registers)

Figure 27-4. CAN Register Pairs

MD15

15

CANx_MD1

0

MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0

MD31

15

CANx_MD2

0

MD30 MD29 MD28 MD27 MD26 MD25 MD24 MD23 MD22 MD21 MD20 MD19 MD18 MD17 MD16

Interface Overview

27-8 ADSP-BF54x Blackfin Processor Hardware Reference

• CANx_TA1 and CANx_TA2 (transmit acknowledge registers)

• CANx_AA1 and CANx_AA2 (abort acknowledge registers)

• CANx_TRS1 and CANx_TRS2 (transmit request set registers)

• CANx_TRR1 and CANx_TRR2 (transmit request reset registers)

• CANx_RMP1 and CANx_RMP2 (receive message pending registers)

• CANx_RML1 and CANx_RML2 (receive message lost registers)

• CANx_RFH1 and CANx_RFH2 (remote frame handling registers)

• CANx_OPSS1 and CANx_OPSS2 (overwrite protection/single shot
transmission registers)

• CANx_MBIM1 and CANx_MBIM2 (mailbox interrupt mask registers)

• CANx_MBTIF1 and CANx_MBTIF2 (mailbox transmit interrupt flag
registers)

• CANx_MBRIF1 and CANx_MBRIF2 (mailbox receive interrupt flag
registers)

Since mailboxes 24–31 support transmit operation only and mailboxes
0–7 are receive-only mailboxes, the lower eight bits in the 1 registers and
the upper eight bits in the “2” registers are sometimes reserved or are
restricted in their usage.

CAN Protocol Basics
Although the CANxRX and CANxTX pins are TTL-compliant signals, the
CAN signals beyond the transceiver (see Figure 27-1 on page 27-3) have
asymmetric drivers. A low state on the CANxTX pin activates strong drivers
while a high state is driven weakly. Consequently, active low is called the

ADSP-BF54x Blackfin Processor Hardware Reference 27-9

CAN Module

“dominant” state and active high is called “recessive.” If the CAN module
is passive, the CANxTX pin is always high. If two CAN nodes transmit at the
same time, dominant bits overwrite recessive bits.

The CAN protocol defines that all nodes trying to send a message on the
CAN bus attempt to send a frame once the CAN bus becomes available.
The start of frame indicator (SOF) signals the beginning of a new frame.
Each CAN node then begins transmitting its message starting with the
message ID. While transmitting, the CAN controller samples the CANxRX
pin to verify that the logic level being driven is the value it just placed on
the CANxTX pin. This is where the names for the logic levels apply. If a
transmitting node places a recessive ‘1’ on CANxTX and detects a dominant
‘0’ on the CANxRX pin, it knows that another node has placed a dominant
bit on the bus, which means another node has higher priority. So, if the
value sensed on CANxRX is the value driven on CANxTX, transmission contin-
ues, otherwise the CAN controller senses that it has lost arbitration and
configuration determines what the next course of action is once arbitra-
tion is lost. See Figure 27-5 for more details regarding CAN frame
structure.

Figure 27-5. Standard CAN Frame

SOF IDENTIFIER RTR

1 11 1

ARBITRATION PHASE

CRCIDE ACK0...8 BYTESr0 DLC

1 41 0 ... 64 16 2 7 3

EOF IFS

SOF
RTR

CRC

IDE

ACK

r0
DLC

EOF
IFS

- START OF FRAME (SINGLE BIT = 0)
- REMOTE TRANSMISSION REQUEST (REMOTE FRAME = 1)
- IDENTIFIER EXTENSION (EXTENDED ID FRAME = 1)
- RESERVED FOR FUTURE EXPANSION
- DATA LENGTH CONTROL (NUMBER OF DATA BYTES IN FRAME)
- CYCLIC REDUNDANCY CHECK (ERROR BITS IN FRAME)
- ACKNOWLEDGE (RECEIVER DRIVES ONE DOMINANT BIT TO ACK)
- END OF FRAME (SERIES OF 7 RECESSIVE BITS = b#1111111)
- INTERFRAME SPACE (3 RECESSIVE BITS = b#111)

CAN Operation

27-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 27-5 is a basic 11-bit identifier frame. After the SOF and identifier
is the RTR bit, which indicates whether the frame contains data (data
frame) or is a request for data associated with the message identifier in the
frame being sent (remote frame).

Due to the inherent nature of the CAN protocol, a dominant bit in
the RTR field wins arbitration against a remote frame request
(RTR=1) for the same message ID, thereby defining a remote request
to be lower priority than a data frame.

The next field of interest is the IDE. When set, it indicates that the mes-
sage is an extended frame with a 29-bit identifier instead of an 11-bit
identifier. In an extended frame, the first part of the message resembles
Figure 27-6.

As could be concluded with regards to the RTR field, a dominant bit in the
IDE field wins arbitration against an extended frame with the same lower
11-bits, therefore, standard frames are higher priority than extended
frames. The substitute remote request bit (SRR, always sent as recessive),
the reserved bits r0 and r1 (always sent as dominant), and the checksum
(CRC) are generated automatically by the internal logic.

CAN Operation
The CAN controller is in configuration mode when coming out of proces-
sor reset or hibernate. It is only when the CAN is in configuration mode
that hardware behavior can be altered. Before initializing the mailboxes
themselves, the CAN bit timing must be set up to work on the CAN bus
that the controller is expected to connect to.

Figure 27-6. Extended CAN Frame

SOF IDENTIFIER SRR

1 11 1 1 18 1 1 4

RTRIDE r1

1

IDENTIFIER r0 DLC

ADSP-BF54x Blackfin Processor Hardware Reference 27-11

CAN Module

Bit Timing
The CAN controller does not have a dedicated clock. Instead, the CAN
clock is derived from the system clock (SCLK) based on a configurable
number of time quanta. The Time Quantum (TQ) is derived from the
formula TQ = (BRP+1)/SCLK, where BRP is the 10-bit BRP field in the
CANx_CLOCK register. Although the BRP field can be set to any value, it is
recommended that the value be greater than or equal to 4, as restrictions
apply to the bit timing configuration when BRP is less than 4.

The CANx_CLOCK register defines the TQ value, and multiple time quanta
make up the duration of a CAN bit on the bus. The CANx_TIMING register
controls the nominal bit time and the sample point of the individual bits
in the CAN protocol. Figure 27-7 shows the three phases of a CAN bit—
the synchronization segment, the segment before the sample point, and
the segment after the sample point.

The synchronization segment is fixed to one TQ. It is required to syn-
chronize the nodes on the bus. All signal edges are expected to occur
within this segment.

The TSEG1 and TSEG2 fields of CANx_TIMING control how many TQs the
CAN bits consist of, resulting in the CAN bit rate. The nominal bit time
is given by the formula tBIT = TQ x (1 + (1 + TSEG1) + (1 + TSEG2)). For safe
receive operation on given physical networks, the sample point is pro-

Figure 27-7. Three Phases of a CAN Bit

TQTQ

NOMINAL BIT TIME

TQ x (TSEG2 + 1)

TQ TQTQ TQ TQTQ TQTQ
t

TQTQTQ

SYNC
TQ x (TSEG1 + 1)

SAMPLE POINTTRANSMIT POINT

TQ TQ

CAN Operation

27-12 ADSP-BF54x Blackfin Processor Hardware Reference

grammable by the TSEG1 field. The TSEG2 field holds the number of TQs
needed to complete the bit time. Often, best sample reliability is achieved
with sample points in the high 80% range of the bit time. Never use sam-
ple points lower than 50%. Thus, TSEG1 should always be greater than or
equal to TSEG2.

The Blackfin CAN module does not distinguish between the propagation
segment and the phase segment 1 as defined by the standard. The TSEG1
value is intended to cover both of them. The TSEG2 value represents the
phase segment 2.

If the CAN module detects a recessive-to-dominant edge outside the syn-
chronization segment, it can automatically move the sampling point such
that the CAN bit is still handled properly. The synchronization jump
width (SJW) field specifies the maximum number of TQs, ranging from 1
to 4 (SJW + 1), allowed for such a re-synchronization attempt. The SJW
value should not exceed TSEG2 or TSEG1. Therefore, the fundamental rule
for writing CANx_TIMING is:

SJW <= TSEG2 <= TSEG1

In addition to this fundamental rule, phase segment 2 must also be greater
than or equal to the Information Processing Time (IPT). This is the time
required by the logic to sample CANxRX input. On the Blackfin CAN mod-
ule, this is 3 SCLK cycles. Because of this, restrictions apply to the minimal
value of TSEG2 if the clock prescaler BRP is lower than 2. If BRP is set to 0,
the TSEG2 field must be greater than or equal to 2. If the prescaler is set to
1, the minimum TSEG2 is 1.

All nodes on a CAN bus should use the same nominal bit rate.

With all the timing parameters set, the final consideration is how sam-
pling is performed. The default behavior of the CAN controller is to
sample the CAN bit once at the sampling point described by the
CANx_TIMING register, controlled by the SAM bit. If the SAM bit is set, how-

ADSP-BF54x Blackfin Processor Hardware Reference 27-13

CAN Module

ever, the input signal is oversampled three times at the SCLK rate. The
resulting value is generated by a majority decision of the three sample val-
ues. Always keep the SAM bit cleared if the BRP value is less than 4.

Do not modify the CANx_CLOCK or CANx_TIMING registers during normal
operation. Always enter configuration mode first. Writes to these registers
have no effect if not in configuration or debug mode. If not coming out or
processor reset or hibernate, enter configuration mode by setting the CCR
bit in the master control (CANx_CONTROL) register and poll the global CAN
status (CANx_STATUS) register until the CCA bit is set.

If the TSEG1 field of the CANx_TIMING register is programmed to ‘0,’
the module doesn’t leave the configuration mode.

During configuration mode, the module is not active on the CAN bus
line. The CANxTX output pin remains recessive and the module does not
receive/transmit messages or error frames. After leaving the configuration
mode, all CAN core internal registers and the CAN error counters are set
to their initial values.

A software reset does not change the values of CANx_CLOCK and
CANx_TIMING. Thus, an ongoing transfer through the CAN bus cannot be
corrupted by changing the bit timing parameter or initiating the software
reset (SRS = 1 in CANx_CONTROL).

Transmit Operation
Figure 27-8 shows the CAN transmit operation. Mailboxes 24-31 are ded-
icated transmitters. Mailboxes 8-23 can be configured as transmitters by
writing 0 to the corresponding bit in the CANx_MDx register. After writing
the data and the identifier into the mailbox area, the message is sent after
mailbox n is enabled (MCn = 1 in CANx_MCx) and, subsequently, the corre-
sponding transmit request bit is set (TRSn = 1 in CANx_TRSx).

CAN Operation

27-14 ADSP-BF54x Blackfin Processor Hardware Reference

When a transmission completes, the corresponding bits in the transmit
request set register and in the transmit request reset register (TRRn in
CANx_TRRx) are cleared. If transmission was successful, the corresponding
bit in the transmit acknowledge register (TAn in CANx_TAx) is set. If the
transmission was aborted due to lost arbitration or a CAN error, the corre-
sponding bit in the abort acknowledge register (AAn in CANx_AAx) is set. A
requested transmission can also be manually aborted by setting the corre-
sponding TRRn bit in CANx_TRRx.

Multiple CANx_TRSx bits can be set simultaneously by software, and these
bits are reset after either a successful or an aborted transmission. The TRSn
bits can also be set by the CAN hardware when using the auto-transmit
mode of the universal counter, when a message loses arbitration and the
single-shot bit is not set (OPSSn = 0 in CANx_OPSSx), or in the event of a
remote frame request. The latter is only possible for receive/transmit mail-
boxes if the automatic remote frame handling feature is enabled (RFHn = 1
in CANx_RFHx).

Special care should be given to mailbox area management when a TRSn bit
is set. Write access to the mailbox is permissible with TRSn set, but chang-
ing data in such a mailbox may lead to unexpected data during
transmission.

Enabling and disabling mailboxes has an impact on transmit requests. Set-
ting the TRSn bit associated with a disabled mailbox may result in
erroneous behavior. Similarly, disabling a mailbox before the associated
TRSn bit is reset by the internal logic can cause unpredictable results.

Retransmission

Normally, the current message object is sent again after arbitration is lost
or an error frame is detected on the CAN bus line. If there is more than
one transmit message object pending, the message object with the highest
mailbox is sent first (see Figure 27-8). The currently aborted transmission
is restarted after any messages with higher priority are sent.

ADSP-BF54x Blackfin Processor Hardware Reference 27-15

CAN Module

A message which is currently under preparation is not replaced by another
message which is written into the mailbox. The message under preparation
is one that is copied into the temporary transmit buffer when the internal
transmit request for the CAN core module is set. The message in the
buffer is not replaced until it is sent successfully, the arbitration on the
CAN bus line is lost, or there is an error frame on the CAN bus line.

Single Shot Transmission

If the single shot transmission feature is used (OPSSn = 1 in CANx_OPSSx),
the corresponding TRSn bit is cleared after the message is successfully sent
or if the transmission is aborted due to a lost arbitration or an error frame

Figure 27-8. CAN Transmit Operation Flow Chart

AT LEAST 1 BIT SET IN CANx_TRSx REGISTERS

STARTING WITH
MAILBOX 31,

FIND HIGHEST SET
TRSn BIT

MESSAGE
ABORTED?

YES NO

CLEAR TRSn
AND REPORT
ABORT ERROR

PLACE MESSAGE
n IN TEMPORARY

TRANSMIT BUFFER

EXIT EXIT

CLEAR TRSn
AND REPORT

TRANSMIT
SUCCESSFUL

CAN Operation

27-16 ADSP-BF54x Blackfin Processor Hardware Reference

on the CAN bus line. Thus, there is no further attempt to transmit the
message again if the initial try failed, and the abort error is reported (AAn =
1 in CANx_AAx)

Auto-Transmission

In auto-transmit mode, the message in mailbox 11 can be sent periodically
using the universal counter. This mode is often used to broadcast heart-
beats to all CAN nodes. Accordingly, messages sent this way usually have
high priority.

The period value is written to the CANx_UCRC register. When enabled in
this mode (set UCCNF[3:0] = 0x3 in CANx_UCCNF), the counter (CANx_UCCNT)
is loaded with the value in the CANx_UCRC register. The counter decrements
at the CAN bit clock rate down to 0 and is then reloaded from CANx_UCRC.
Each time the counter reaches a value of 0, the TRS11 bit is automatically
set by internal logic, and the corresponding message from mailbox 11 is
sent.

For proper auto-transmit operation, mailbox 11 must be configured as a
transmit mailbox and must contain valid data (identifier, control bits, and
data) before the counter first expires after this mode is enabled.

Receive Operation
The CAN hardware autonomously receives messages and discards invalid
messages. Once a valid message is successfully received, the receive logic
interrogates all enabled receive mailboxes sequentially, from mailbox 23
down to mailbox 0, whether the message is of interest to the local node or
not.

Each incoming data frame is compared to all identifiers stored in active
receive mailboxes (MDn = 1 and MCn = 1) and to all active transmit mail-
boxes with the remote frame handling feature enabled (RFHn = 1 in
CANx_RFHx).

ADSP-BF54x Blackfin Processor Hardware Reference 27-17

CAN Module

The message identifier of the received message, along with the identifier
extension (IDE) and remote transmission request (RTR) bits, are compared
against each mailbox’s register settings. In standard mode, the message is
compared to the content of the CANx_MByy_ID1 register. In extended
mode, the content of the CANx_MByy_ID0 register must also match.

If the AME bit is not set, a match is signalled only if IDE, RTR, and all (11 or
29) identifier bits are exact. If, however, AME is set, the acceptance mask
registers determine which of the identifier, IDE, and RTR bits need to
match.

The following logic applies:

• (Received Message ID XNOR CANx_MBxx_ID0/1)

or

• (AME and CANx_AMxxH/L).

This logic appears graphically in Figure 27-9.

Figure 27-9. CAN Receive Message Logic

MATCH

AME

CANx_AMyy_H/L

CANx_MByy_ID1/0

RECEIVED MESSAGE

CAN Operation

27-18 ADSP-BF54x Blackfin Processor Hardware Reference

A one at the respective bit position in the CAN_AMxxH/L mask registers
means that the bit does not need to match when AME=1. This way, a mail-
box can accept a group of messages.

If the acceptance filter finds a matching identifier, the content of the
received data frame is stored in that mailbox. A received message is stored
only once, even if multiple receive mailboxes match its identifier. If the
current identifier does not match any mailbox, the message is not stored.

Table 27-1. Mailbox Used for Acceptance Mask Filtering

Mailbox used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 x x Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling disabled

1 0 1 Used Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling enabled

1 1 x Used Mailbox n enabled
Mailbox n configured for receive

ADSP-BF54x Blackfin Processor Hardware Reference 27-19

CAN Module

Figure 27-10 illustrates the decision tree of the receive logic when process-
ing the individual mailboxes.

If a message is received for a mailbox and that mailbox still contains
unread data (RMPn = 1), the user has to decide whether the old message
should be overwritten or not. If OPSSn = 0, the receive message lost bit
(RMLn in CANx_RMLx) is set and the stored message is overwritten. This

Figure 27-10. CAN Receive Operation Flow Chart

MAILBOX
ENABLED?

AME?

Y

FROM MESSAGE RECEIVER/PREVIOUS MAILBOX

0COMPARE ALL
BITS

MATCH?

Y

N

EXIT

NEXT MAILBOX
N

1 COMPARE
UNMASKED
BITS ONLY

NEXT MAILBOX

MAILBOX
DIRECTION?

RECEIVE

MAILBOX
READY?

TRANSMIT

REMOTE
 MAILBOX?

N
NEXT MAILBOX

Y
OVERWRITE

PROTECTION?

N

N

Y

REPORT
OVERFLOW

ERROR

SAVE MESSAGE
TO MAILBOX

TRANSMIT
REMOTE

MESSAGE

Y
NEXT MAILBOX

EXIT EXIT

CAN Operation

27-20 ADSP-BF54x Blackfin Processor Hardware Reference

results in the receive message lost interrupt being raised in the global CAN
interrupt status register (RMLIS = 1 in CANx_GIS). If OPSSn = 1, the next
mailboxes are checked for another matching identifier. If no match is
found, the message is discarded and the next message is checked.

If a receive mailbox is disabled, an ongoing receive message for that
mailbox is lost even if a second mailbox is configured to receive the
same identifier.

Data Acceptance Filter

If DeviceNet mode is enabled (DNM = 1 in CANx_CONTROL) and the mailbox
is set up for filtering on data field, the filtering is done on the standard ID
of the message and data fields. The data field filtering can be programmed
for either the first byte only or the first two bytes, as shown in Table 27-2.

If the FDF bit is set in the corresponding CANx_AMxxH register, the
CANx_AMxxL register holds the data field mask (DFM[15:0]). If the FDF bit is
cleared in the corresponding CANx_AMxxH register, the CANx_AMxxL register
holds the extended identifier mask (EXTID_HI[15:0]).

Table 27-2. Data Field Filtering

FDF
Filter On Data Field

FMD
Full Mask Data Field

Description

0 0 Do not allow filtering on the data
field

0 1 Not allowed. FMD must be 0 if FDF
is 0.

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

ADSP-BF54x Blackfin Processor Hardware Reference 27-21

CAN Module

Watchdog Mode

Watchdog mode is used to make sure messages are received periodically. It
is often used to observe whether or not a certain node on the network is
alive and functioning properly, and, if not, to detect and manage its fail-
ure case accordingly.

Upon programming the universal counter to watchdog mode (set
UCCNF[3:0] = 0x2 in CANx_UCCNF), the counter in the CANx_UCCNT register is
loaded with the predefined value contained in the CAN universal counter
reload/capture register (CANx_UCRC). This counter then decrements at the
CAN bit rate. If the UCCT and UCRC bits in the CANx_UCCNF register are set
and a message is received in mailbox 4 before the counter counts down to
0, the counter is reloaded with the CANx_UCRC contents. If the counter has
counted down to 0 without receiving a message in mailbox 4, the UCEIS
bit in the global CAN interrupt status (CANx_GIS) register is set, and the
counter is automatically reloaded with the contents of the CANx_UCRC reg-
ister. If an interrupt is desired, the UCEIM bit in the CANx_GIM register must
also be set. With the mask bit set, when a watchdog interrupt occurs, the
UCEIF bit in the CANx_GIF register is also set.

The counter can be reloaded with the contents of CANx_UCRC or disabled
by writing to the CANx_UCCNF register.

The time period it takes for the watchdog interrupt to occur is controlled
by the value written into the CANx_UCRC register by the user.

Time Stamps
To get an indication of the time of reception or the time of transmission
for each message, program the CAN universal counter to time stamp
mode (set UCCNF[3:0] = 0x1 in CANx_UCCNF). The value of the 16-bit
free-running counter (CANx_UCCNT) is then written into the
CANx_MBxx_TIMESTAMP register of the corresponding mailbox when a
received message is stored or a message is transmitted.

CAN Operation

27-22 ADSP-BF54x Blackfin Processor Hardware Reference

The time stamp value is captured at the sample point of the start of frame
(SOF) bit of each incoming or outgoing message. Afterwards, this time
stamp value is copied to the CANx_MBxx_TIMESTAMP register of the corre-
sponding mailbox.

If the mailbox is configured for automatic remote frame handling, the
time stamp value is written for transmission of a data frame (mailbox con-
figured as transmit) or the reception of the requested data frame (mailbox
configured as receive).

The counter can be cleared (set UCRC bit to 1) or disabled (set UCE bit to 0)
by writing to the CANx_UCCNF register. The counter can also be loaded with
a value by writing to the counter register itself (CANx_UCCNT).

It is also possible to clear the counter (CANx_UCCNT) by reception of a mes-
sage in mailbox number 4 (synchronization of all time stamp counters in
the system). This is accomplished by setting the UCCT bit in the
CANx_UCCNF register.

An overflow of the counter sets a bit in the global CAN interrupt status
register (UCEIS in the CANx_GIS register). A global CAN interrupt can
optionally occur by unmasking the bit in the global CAN interrupt mask
register (UCEIM in the CANx_GIM register). If the interrupt source is
unmasked, a bit in the global CAN interrupt flag register is also set (UCEIF
in the CANx_GIF register).

Remote Frame Handling
Automatic handling of remote frames can be enabled for a transmit mail-
box by setting the corresponding bit in the remote frame handling
registers (CANx_RFHx).

ADSP-BF54x Blackfin Processor Hardware Reference 27-23

CAN Module

Remote frames are data frames with no data field and the RTR bit set. The
data length code of the data frame is equal to the DLC of the corresponding
remote frame. A data length code can be programmed with values in the
range of 0 to 15, but data length code values greater than 8 are considered
as 8. A remote frame contains:

• the identifier bits

• the control field DLC

• the remote transmission request (RTR) bit

Only configurable mailboxes 8–23 can process remote frames, but all
mailboxes can receive and transmit remote frame requests. When setup for
automatic remote frame handling, the CANx_OPSSx register has no effect.
All content of a mailbox is always overwritten by an incoming message.

If a remote frame is received, the DLC of the corresponding mailbox
is overwritten with the received value.

Erroneous behavior may result when the remote frame handling bit (RFHn)
is changed and the corresponding mailbox is currently processed.

To avoid the risk of inconsistent messages, it is recommended to tempo-
rarily disable the mailbox while its data registers are updated. See
“Temporarily Disabling Mailboxes”.

Temporarily Disabling Mailboxes
If a mailbox is enabled and configured as “transmit,” write accesses to the
data field should be guarded to avoid transmission of inconsistent mes-
sages. Special care must be taken if the mailbox is transmitting (or
attempting to transmit) repeatedly. Also, if this mailbox is used for auto-
matic remote frame handling, the data field must be updated without
losing an incoming remote request frame and without sending inconsis-

CAN Operation

27-24 ADSP-BF54x Blackfin Processor Hardware Reference

tent data. Therefore, the CAN controller allows for temporary mailbox
disabling, which can be enabled by programming the mailbox temporary
disable register (CANx_MBTD).

The pointer to the requested mailbox must be written to the TDPTR[4:0]
bits of the CANx_MBTD register and the mailbox temporary disable request
bit (TDR) must be set. The corresponding mailbox temporary disable flag
(TDA) is subsequently set by the internal logic.

If a mailbox is configured as “transmit” (MDn = 0) and TDA is set, the con-
tent of the data field of that mailbox can be updated. If there is an
incoming remote request frame while the mailbox is temporarily disabled,
the corresponding transmit request set bit (TRSn) is set by the internal
logic and the data length code of the incoming message is written to the
corresponding mailbox. However, the message being requested is not sent
until the temporary disable request is cleared (TDR = 0). Similarly, all trans-
mit requests for temporarily disabled mailboxes are ignored until TDR is
cleared. Additionally, transmission of a message is immediately aborted if
the mailbox is temporarily disabled and the corresponding TRRn bit for
this mailbox is set.

If a mailbox is configured as “receive” (MDn = 1), the temporary disable flag
is set and the mailbox is not processed. If there is an incoming message for
the mailbox n being temporarily disabled, the internal logic waits until the
reception is complete or there is an error on the CAN bus to set TDA. Once
TDA is set, the mailbox can then be completely disabled (MCn = 0) without
the risk of losing an incoming frame. The temporary disable request (TDR)
bit must then be reset as soon as possible.

When TDA is set for a given mailbox, only the data field of that mailbox
can be updated. Accesses to the control bits and the identifier are denied.

ADSP-BF54x Blackfin Processor Hardware Reference 27-25

CAN Module

Functional Operation
The following sections describe the functional operation of the CAN
module, including interrupts, the event counter, warnings and errors,
debug features, and low power features.

CAN Interrupts
The CAN module provides three independent interrupts: two mailbox
interrupts (mailbox receive interrupt MBRIRQ and mailbox transmit inter-
rupt MBTIRQ) and the global CAN interrupt GIRQ. The values of these three
interrupts can also be read back in the interrupt status registers.

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module may generate a receive or
transmit interrupt, depending on the mailbox configuration. To enable a
mailbox to generate an interrupt, set the corresponding MBIMn bit in
CANx_MBIMx.

If a mailbox is configured as a receive mailbox, the corresponding receive
interrupt flag is set (MBRIFn = 1 in CANx_MBRIFx) after a received message is
stored in mailbox n (RMPn = 1 in CANx_RMPx). If the automatic remote
frame handling feature is used, the receive interrupt flag is set after the
requested data frame is stored in the mailbox. If any MBRIFn bits are set in
CANx_MBRIFx, the MBRIRQ interrupt output is raised in CANx_INTR. In order
to clear the MBRIRQ interrupt request, all of the set MBRIFn bits must be
cleared by software by writing a 1 to those set bit locations in
CANx_MBRIFx. Prior to this, the RMPn bit must also be cleared by software.

If a mailbox is configured as a transmit mailbox, the corresponding trans-
mit interrupt flag is set (MBTIFn = 1 in CANx_MBTIFx) after the message in
mailbox n is sent correctly (TAn = 1 in CANx_TAx). The TAn bits maintain
state even after the corresponding mailbox n is disabled (MCn = 0). If the
automatic remote frame handling feature is used, the transmit interrupt

Functional Operation

27-26 ADSP-BF54x Blackfin Processor Hardware Reference

flag is set after the requested data frame is sent from the mailbox. If any
MBTIFn bits are set in CANx_MBTIFx, the MBTIRQ interrupt output is raised in
CANx_INTR. In order to clear the MBTIRQ interrupt request, all of the set
MBTIFn bits must be cleared by software by writing a 1 to those set bit loca-
tions in CANx_MBTIFx. Additionally, software must clear the associated TAn
bit or set the associated TRSn bit to clear the interrupt source that asserts
the MBTIFn bit.

Global CAN Interrupt

The global CAN interrupt logic is implemented with three registers—the
global CAN interrupt mask register (CANx_GIM), where each interrupt
source can be enabled or disabled separately; the global CAN interrupt
status register (CANx_GIS); and the global CAN interrupt flag register
(CANx_GIF). The interrupt mask bits only affect the content of the global
CAN interrupt flag register (CANx_GIF). If the mask bit is not set, the cor-
responding flag bit is not set when the event occurs. The interrupt status
bits in the global CAN interrupt status register, however, are always set if
the corresponding interrupt event occurs, independent of the mask bits.
Thus, the interrupt status bits can be used for polling of interrupt events.

The global CAN interrupt output (GIRQ) bit in the global CAN interrupt
status register is only asserted if a bit in the CANx_GIF register is set. The
GIRQ bit remains set as long as at least one bit in the interrupt flag register
CANx_GIF is set. All bits in the interrupt status and in the interrupt flag
registers remain set until cleared by software or a software reset has
occurred.

ADSP-BF54x Blackfin Processor Hardware Reference 27-27

CAN Module

There are several interrupt events that can activate this GIRQ interrupt:

• Access denied interrupt (ADIM, ADIS, ADIF)
At least one access to the mailbox RAM occurred during a data
update by internal logic.

• Universal counter exceeded interrupt (UCEIM, UCEIS, UCEIF)
There was an overflow of the universal counter (in time stamp
mode or event counter mode) or the counter has reached the value
0x0000 (in watchdog mode).

• Receive message lost interrupt (RMLIM, RMLIS, RMLIF)
A message is received for a mailbox that currently contains unread
data. At least one bit in the receive message lost register
(CANx_RMLx) is set. If the bit in CANx_GIS (and CANx_GIF) is reset
and there is at least one bit in CANx_RMLx still set, the bit in
CANx_GIS (and CANx_GIF) is not set again. The internal interrupt
source signal is only active if a new bit in CANx_RMLx is set.

• Abort acknowledge interrupt (AAIM, AAIS, AAIF)
At least one AAn bit in the abort acknowledge registers CANx_AAx is
set. If the bit in CANx_GIS (and CANx_GIF) is reset and there is at
least one bit in CANx_AAx still set, the bit in CANx_GIS (and
CANx_GIF) is not set again. The internal interrupt source signal is
only active if a new bit in CANx_AAx is set. The AAn bits maintain
state even after the corresponding mailbox n is disabled (MCn = 0).

• Access to unimplemented address interrupt (UIAIM, UIAIS, UIAIF)
There was a CPU access to an address which is not implemented in
the controller module.

• Wakeup interrupt (WUIM, WUIS, WUIF)
The CAN module has left the sleep mode because of detected activ-
ity on the CAN bus line.

Functional Operation

27-28 ADSP-BF54x Blackfin Processor Hardware Reference

• Bus-Off interrupt (BOIM, BOIS, BOIF)
The CAN module has entered the bus-off state. This interrupt
source is active if the status of the CAN core changes from normal
operation mode to the bus-off mode. If the bit in CANx_GIS (and
CANx_GIF) is reset and the bus-off mode is still active, this bit is not
set again. If the module leaves the bus-off mode, the bit in
CANx_GIS (and CANx_GIF) remains set.

• Error-Passive interrupt (EPIM, EPIS, EPIF)
The CAN module has entered the error-passive state. This inter-
rupt source is active if the status of the CAN module changes from
the error-active mode to the error-passive mode. If the bit in
CANx_GIS (and CANx_GIF) is reset and the error-passive mode is still
active, this bit is not set again. If the module leaves the error-pas-
sive mode, the bit in CANx_GIS (and CANx_GIF) remains set.

• Error warning receive interrupt (EWRIM, EWRIS, EWRIF)
The CAN receive error counter (RXECNT) has reached the warning
limit. If the bit in CANx_GIS (and CANx_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CANx_GIS (and CANx_GIF)
remains set.

• Error warning transmit interrupt (EWTIM, EWTIS, EWTIF)
The CAN transmit error counter (TXECNT) has reached the warning
limit. If the bit in CANx_GIS (and CANx_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CANx_GIS (and CANx_GIF)
remains set.

ADSP-BF54x Blackfin Processor Hardware Reference 27-29

CAN Module

Event Counter
For diagnostic functions, it is possible to use the universal counter as an
event counter. The counter can be programmed in the 4-bit UCCNF[3:0]
field of CANx_UCCNF to increment on one of these conditions:

• UCCNF[3:0] = 0x6 – CAN error frame. Counter is incremented if
there is an error frame on the CAN bus line.

• UCCNF[3:0] = 0x7 – CAN overload frame. Counter is incremented
if there is an overload frame on the CAN bus line.

• UCCNF[3:0] = 0x8 – Lost arbitration. Counter is incremented every
time arbitration on the CAN line is lost during transmission.

• UCCNF[3:0] = 0x9 – Transmission aborted. Counter is incre-
mented every time arbitration is lost or a transmit request is
cancelled (AAn is set).

• UCCNF[3:0] = 0xA – Transmission succeeded. Counter is incre-
mented every time a message sends without detected errors (TAn is
set).

• UCCNF[3:0] = 0xB – Receive message rejected. Counter is incre-
mented every time a message is received without detected errors
but not stored in a mailbox because there is no matching identifier
found.

• UCCNF[3:0] = 0xC – Receive message lost. Counter is incremented
every time a message is received without detected errors but not
stored in a mailbox because the mailbox contains unread data (RMLn
is set).

• UCCNF[3:0] = 0xD – Message received. Counter is incremented
every time a message is received without detected errors, whether
the received message is rejected or stored in a mailbox.

Functional Operation

27-30 ADSP-BF54x Blackfin Processor Hardware Reference

• UCCNF[3:0] = 0xE – Message stored. Counter is incremented every
time a message is received without detected errors, has an identifier
that matches an enabled receive mailbox, and is stored in the
receive mailbox (RMPn is set).

• UCCNF[3:0] = 0xF – Valid message. Counter is incremented every
time a valid transmit or receive message is detected on the CAN
bus line.

CAN Warnings and Errors
CAN warnings and errors are controlled using the CANx_CEC register, the
CANx_ESR register, and the CANx_EWR register.

Programmable Warning Limits

It is possible to program the warning level for EWTIS (error warning trans-
mit interrupt status) and EWRIS (error warning receive interrupt status)
separately by writing to the error warning level error count fields for
receive (EWLREC) and transmit (EWLTEC) in the CAN error counter warning
level (CANx_EWR) register. After powerup reset, the CANx_EWR register is set
to the default warning level of 96 for both error counters. After software
reset, the content of this register remains unchanged.

CAN Error Handling

Error management is an integral part of the CAN standard. Five different
kinds of bus errors may occur during transmissions:

• Bit error – A bit error can be detected by the transmitting node
only. Whenever a node is transmitting, it continuously monitors its
receive pin (CANxRX) and compares the received data with the trans-
mitted data. During the arbitration phase, the node simply
postpones the transmission if the received and transmitted data do
not match. However, after the arbitration phase (that is, once the

ADSP-BF54x Blackfin Processor Hardware Reference 27-31

CAN Module

RTR bit is sent successfully), a bit error is signaled any time the
value on CANxRX does not equal what is being transmitted on
CANxTX.

• Form error – A form error occurs any time a fixed-form bit posi-
tion in the CAN frame contains one or more illegal bits, that is,
when a dominant bit is detected at a delimiter or end-of-frame bit
position.

• Acknowledge error – An acknowledge error occurs whenever a
message is sent and no receivers drive an acknowledge bit.

• CRC error –A CRC error occurs whenever a receiver calculates the
CRC on the data it received and finds it different than the CRC
that was transmitted on the bus itself.

• Stuff error – The CAN specification requires the transmitter to
insert an extra stuff bit of opposite value after 5 bits have been
transmitted with the same value. The receiver disregards the value
of these stuff bits. However, it takes advantage of the signal edge to
re-synchronize itself. A stuff error occurs on receiving nodes when-
ever the 6th consecutive bit value is the same as the previous five
bits.

Once the CAN module detects any of the above errors, it updates the
error status register CANx_ESR as well as the error counter register
CANx_CEC. In addition to the standard errors, the CANx_ESR register features
a flag that signals when the CANxRX pin sticks at dominant level, indicating
that shorted wires are likely.

Error Frames

It is of central importance that all nodes on the CAN bus ignore data
frames that one single node failed to receive. To accomplish this, every
node sends an error frame as soon as it has detected an error. See
Figure 27-11.

Functional Operation

27-32 ADSP-BF54x Blackfin Processor Hardware Reference

Once a device has detected an error, it still completes the ongoing bit and
initiates an error frame by sending six dominant and eight recessive bits to
the bus. This is a violation to the bit stuffing rule and informs all nodes
that the ongoing frame needs to be discarded.

All receivers that did not detect the transmission error in the first instance
now detect a stuff bit error. The transmitter may detect a normal bit error
sooner. It aborts the transmission of the ongoing frame and tries sending
it again later.

Finally, all nodes on the bus have detected an error. Consequently, all of
them send 6 dominant and 8 recessive bits to the bus as well. The result-
ing error frame consists of two different fields. The first field is given by
the superposition of error flags contributed from the different stations,
which is a sequence of 6 to 12 dominant bits. The second field is the error
delimiter and consists of 8 recessive bits indicating the end of frame.

Figure 27-11. CAN Error Scenario Example

8 BITS

6 BITS

NODE 2 TX

NODE 1 TX

NODE 2 DETECTS
ANY ERROR AND
INITIATES ERROR
FRAME

NODE 1 DETECTS
A BIT EROR AND
SIGNALS THE
ERROR ALSO

NODE 1
WAS
TRANS-
MITTING
DATA

NEW START
BIT

NODE 3 TX

ERROR FRAME

RESULTING BUS

6 BITS

6 BITS

NODE 3 DETECTS
A STUFF BIT ERROR
AND SIGNALS THE
ERROR ALSO

ADSP-BF54x Blackfin Processor Hardware Reference 27-33

CAN Module

For CRC errors, the error frame is initiated at the end of the frame, rather
than immediately after the failing bit.

After having received 8 recessive bits, every node knows that the error con-
dition is resolved and starts transmission if messages are pending. The
former transmitter that had to abort its operation must win the new arbi-
tration again, otherwise its message is delayed as determined by priority.

Because the transmission of an error frame destroys the frame under trans-
mission, a faulty node erroneously detecting an error can block the bus.
Because of this, there are two node states which determine a node’s right
to signal an error—error active and error passive. Error active nodes are
those which have an error detection rate below a certain limit. These
nodes drive an ‘active error flag’ of 6 dominant bits.

Nodes with a higher error detection rate are suspected of having a local
problem and, therefore, have a limited right to signal errors. These error
passive nodes drive a ‘passive error flag’ consisting of 6 recessive bits.
Thus, an error passive transmitting node is still able to inform the other
nodes about the abortion of a self-transmitted frame, but it is no longer
able to destroy correctly received frames of other nodes.

Error Levels

The CAN specification requires each node in the system to operate in one
of three levels. See Table 27-3. This prevents nodes with high error rates
from blocking the entire network, as the errors might be caused by local
hardware. The Blackfin CAN module provides an error counter for trans-
mit (TEC) and an error counter for receive (REC). The CAN error count
register CANx_CEC houses each of these 8-bit counters.

After initialization, both the TEC and the REC counters are 0. Each time a
bus error occurs, one of the counters is incremented by either 1 or 8,
depending on the error situation (documented in Version 2.0 of CAN
Specification). Successful transmit and receive operations decrement the
respective counter by 1.

Functional Operation

27-34 ADSP-BF54x Blackfin Processor Hardware Reference

If either of the error counters exceeds 127, the CAN module goes into a
passive state and the CAN error passive mode (EP) bit in CANx_STATUS is
set. Then, it is not allowed to send any more active error frames. However,
it is still allowed to transmit messages and to signal passive error frames in
case the transmission fails because of a bit error.

If one of the counters exceeds 255 (that is, when the 8-bit counters over-
flow), the CAN module is disconnected from the bus. It goes into bus off
mode and the CAN error bus off mode (EBO) bit is set in CANx_STATUS.
Software intervention is required to recover from this state, unless the ABO
bit in the CANx_CONTROL register is enabled.

In addition to these levels, the CAN module also provides a warning
mechanism, which is an enhancement to the CAN specification. There are
separate warnings for transmit and receive. By default, when one of the
error counters exceeds 96, a warning is signaled and is represented in the
CANx_STATUS register by either the CAN receive warning flag (WR) or CAN
transmit warning flag (WT) bits. The error warning level can be pro-
grammed using the error warning register, CANx_EWR. More information is
available on page 27-90.

Table 27-3. CAN Error Level Description

Level Condition Description

Error active Transmit and receive error
counters < 128

This is the initial condition level. As
long as errors stay below 128, the
node will drive active error flags dur-
ing error frames.

Error passive Transmit or receive error
counters ≥ 128, but < 256

Errors have accumulated to a level
which requires the node to drive pas-
sive error flags during error frames.

Bus off Transmit or receive error
counters ≥ 256

CAN module goes into bus off mode

ADSP-BF54x Blackfin Processor Hardware Reference 27-35

CAN Module

Additionally, interrupts can occur for all of these levels by unmasking
them in the global CAN interrupt mask register (CANx_GIM) shown
on page 27-50. The interrupts include the bus off interrupt (BOIM), the
error-passive interrupt (EPIM), the error warning receive interrupt (EWRIM),
and the error warning transmit interrupt (EWTIM).

During the bus off recovery sequence, the configuration mode request bit
in the CANx_CONTROL register is set by the internal logic (CCR = 1), thus the
CAN core module does not automatically come out of the bus off mode.
The CCR bit cannot be reset until the bus off recovery sequence is finished.

This behavior can be over-ridden by setting the auto-bus on (ABO)
bit in the CANx_CONTROL register. After exiting the bus off or config-
uration modes, the CAN error counters are reset.

Debug and Test Modes
The CAN module contains test mode features that aid in the debugging of
the CAN software and system. Listing 27-1 provides an example of
enabling CAN debug features.

When these features are used, the CAN module may not be com-
pliant to the CAN specification. All test modes should be enabled
or disabled only when the module is in configuration mode (CCA =
1 in the CANx_STATUS register) or in suspend mode (CSA = 1 in
CANx_STATUS).

The CDE bit is used to gain access to all of the debug features. This bit
must be set to enable the test mode, and must be written first before sub-
sequent writes to the CANx_DEBUG register. When the CDE bit is cleared, all
debug features are disabled.

Functional Operation

27-36 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 27-1. Enabling CAN0 Debug Features in C on the ADSP-BF549

#include <cdefBF549.h>

/* Enable debug mode, CDE must be set before other flags can be

changed in register */

*pCAN0_DEBUG |= CDE ;

/* Set debug flags */

*pCAN0_DEBUG &= ~DTO ;

*pCAN0_DEBUG |= MRB | MAA | DIL ;

/* Run test code */

/* Disable debug mode */

*pCAN0_DEBUG &= ~CDE ;

When the CDE bit is set, it enables writes to the other bits of the
CANx_DEBUG register. It also enables these features, which are not compliant
with the CAN standard:

• Bit timing registers can be changed anytime, not only during con-
figuration mode. This includes the CANx_CLOCK and CANx_TIMING
registers.

• Allows write access to the read-only transmit/receive error counter
register CANx_CEC.

The mode read back bit (MRB) is used to enable the read back mode. In this
mode, a message transmitted on the CAN bus (or through an internal
loop back mode) is received back directly to the internal receive buffer.
After a correct transmission, the internal logic treats this as a normal
receive message. This feature allows the user to test most of the CAN fea-
tures without an external device.

ADSP-BF54x Blackfin Processor Hardware Reference 27-37

CAN Module

The mode auto acknowledge bit (MAA) allows the CAN module to generate
its own acknowledge during the ACK slot of the CAN frame. No external
devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal
receive buffer. In auto acknowledge mode, the module itself transmits the
acknowledge. This acknowledge can be programmed to appear on the
CANxTX pin if DIL=1 and DTO=0. If the acknowledge is only going to be used
internally, then these test mode bits should be set to DIL=0 and DTO=1.

The disable internal loop bit (DIL) is used to internally enable the transmit
output to be routed back to the receive input.

The disable transmit output bit (DTO) is used to disable the CANxTX output
pin. When this bit is set, the CANxTX pin continuously drives recessive bits.

The disable receive input bit (DRI) is used to disable the CANxRX input.
When set, the internal logic receives recessive bits or receives the internally
generated transmit value in the case of the internal loop enabled (DIL=0).
In either case, the value on the CANxRX input pin is ignored.

The disable error counters bit (DEC) is used to disable the transmit and
receive error counters in the CANx_CEC register. When this bit is set, the
CANx_CEC holds its current contents and is not allowed to increment or
decrement the error counters. This mode does not conform to the CAN
specification.

Writes to the error counters should be in debug mode only. Write
access during reception may lead to undefined values. The maxi-
mum value which can be written into the error counters is 255.
Thus, the error counter value of 256 which forces the module into
the bus off state can not be written into the error counters.

Table 27-4 shows several common combinations of test mode bits.

Functional Operation

27-38 ADSP-BF54x Blackfin Processor Hardware Reference

Table 27-4. CAN Test Modes

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode.

0 X X X X X No read back of transmit message.

1 0 1 0 0 1 Normal transmission on CAN bus
line.
Read back.
External acknowledge from external
device required.

1 1 1 0 0 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANxRX input is enabled.

1 1 0 0 0 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANxRX input and internal loop are
enabled (internal OR of TX and
RX).

1 1 0 0 1 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANxRX input is ignored.
Internal loop is enabled

ADSP-BF54x Blackfin Processor Hardware Reference 27-39

CAN Module

Low Power Features
The Blackfin processor provides a low power hibernate state, and the
CAN module includes built-in sleep and suspend modes to save power.
The behavior of the CAN module in these three modes is described in the
following sections.

CAN Built-In Suspend Mode

The most modest of power savings modes is the suspend mode. This mode
is entered by setting the suspend mode request (CSR) bit in the
CANx_CONTROL register. The module enters the suspend mode after the cur-
rent operation of the CAN bus is finished, at which point the internal
logic sets the suspend mode acknowledge (CSA) bit in CANx_STATUS. Once
this mode is entered, the module is no longer active on the CAN bus line,
slightly reducing power consumption. When the CAN module is in sus-
pend mode, the CANxTX output pin remains recessive and the module does
not receive/transmit messages or error frames. The content of the CAN
error counters remains unchanged.

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Neither transmit message nor
acknowledge are transmitted on
CANxTX.
CANxRX input is ignored.
Internal loop is enabled.

Table 27-4. CAN Test Modes (Cont’d)

MRB MAA DIL DTO DRI CDE Functional Description

Functional Operation

27-40 ADSP-BF54x Blackfin Processor Hardware Reference

The suspend mode can subsequently be exited by clearing the CSR bit in
CANx_CONTROL. The only differences between suspend mode and configura-
tion mode are that writes to the CANx_CLOCK and CANx_TIMING registers are
still locked in suspend mode and the CAN control and status registers are
not reset when exiting suspend mode.

CAN Built-In Sleep Mode

The next level of power savings can be realized by using the CAN mod-
ule’s built-in sleep mode. This mode is entered by setting the sleep mode
request (SMR) bit in the CANx_CONTROL register. The module enters the sleep
mode after the current operation of the CAN bus is finished. Once this
mode is entered, many of the internal CAN module clocks are shut off,
reducing power consumption, and the sleep mode acknowledge (SMACK)
bit is set in CANx_INTR. When the CAN module is in sleep mode, all regis-
ter reads return the contents of CANx_INTR instead of the usual contents.
All register writes, except to CANx_INTR, are ignored in sleep mode.

A small part of the module is clocked continuously to allow for wakeup
out of sleep mode. A write to the CANx_INTR register ends sleep mode. If
the WBA bit in the CANx_CONTROL register is set before entering sleep mode,
a dominant bit on the CANxRX pin also ends sleep mode.

CAN Wakeup From Hibernate State

For greatest power savings, the Blackfin processor provides a hibernate
state, where the internal voltage regulator shuts off the internal power sup-
ply to the chip, turning off the core and system clocks in the process. In
this mode, the only power drawn (roughly 50μA) is that used by the regu-
lator circuitry awaiting any of the possible hibernate wakeup events. One
such event is a wakeup due to CAN bus activity. After hibernation, the
CAN module must be re-initialized.

For low power designs, the external CAN bus transceiver is typically put
into standby mode through one of the Blackfin processor’s general pur-
pose I/O pins. While in standby mode, the CAN transceiver continually

ADSP-BF54x Blackfin Processor Hardware Reference 27-41

CAN Module

drives the recessive logic ‘1’ level onto the CANxRX pin. If the transceiver
then senses CAN bus activity, it will, in turn, drive the CANxRX pin to the
dominant logic ‘0’ level. This signals to the Blackfin processor that CAN
bus activity is detected. If the internal voltage regulator is programmed to
recognize CAN bus activity as an event to exit hibernate state, the part
responds appropriately. Otherwise, the activity on the CANxRX pin has no
effect on the processor state.

To enable this functionality, the voltage control register (VR_CTL) must be
programmed with the CAN wakeup enable bit set. The typical sequence
of events to use the CAN wakeup feature is:

1. Use a general-purpose I/O pin to put the external transceiver into
standby mode.

2. Program VR_CTL with the CAN wakeup enable bit (CANWE) set and
the FREQ field set to b#00.

CAN Registers
The following sections describe the CAN controller register definitions.

Table 27-5 through Table 27-9 show the functions of the CAN controller
registers.

Table 27-5. CAN Global Registers

Register Name Function Notes

CANx_CONTROL Master control registers
on page 27-46

Reserved bits 15:8 and 3 must
always be written as ‘0’

CANx_STATUS Global CAN status registers
on page 27-47

Write accesses have no effect

CANx_DEBUG CAN debug registers
on page 27-48

Use of these modes is not
CAN-compliant

CAN Registers

27-42 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_CLOCK CAN clock registers
on page 27-48

Accessible only in configuration
mode

CANx_TIMING CAN timing registers
on page 27-49

Accessible only in configuration
mode

CANx_INTR CAN interrupt register
on page 27-49

Reserved bits 15:8 and 5:4 must
always be written as ‘0’

CANx_GIM Global CAN interrupt mask
registers on page 27-50

Bits 15:11 and 9 are reserved

CANx_GIS Global CAN interrupt status
registers on page 27-51

Bits 15:11 and 9 are reserved

CANx_GIF Global CAN interrupt flag
registers on page 27-52

Bits 15:11 and 9 are reserved

Table 27-6. CAN Mailbox/Mask Registers

Register Name Function Notes

CANx_AMxxH
CANx_AMxxL

CAN mailbox acceptance regis-
ters on page 27-53

Do not write when mailbox
MBxx is enabled

CANx_MBxx_ID1
CANx_MBxx_ID0

CAN mailbox word 7 registers
CAN mailbox word 6 registers
on page 27-57

Do not write when mailbox
MBxx is enabled

CANx_MBxx_TIMESTAMP CAN mailbox word 5 registers
on page 27-61

Holds timestamp informa-
tion when timestamp mode
is active

CANx_MBxx_LENGTH CAN mailbox word 4 registers
on page 27-63

Values greater than 8 are
not allowed. Bits 15:4 are
reserved.

CANx_MBxx_DATA3
CANx_MBxx_DATA2
CANx_MBxx_DATA1
CANx_MBxx_DATA0

CAN mailbox word 3 registers
CAN mailbox word 2 registers
CAN mailbox word 1 registers
CAN mailbox word 0 registers
on page 27-65

Software controls reading
correct data, based on DLC

Table 27-5. CAN Global Registers (Cont’d)

Register Name Function Notes

ADSP-BF54x Blackfin Processor Hardware Reference 27-43

CAN Module

Table 27-7. CAN Mailbox Control Registers

Register Name Function Notes

CANx_MC1
CANx_MC2

CAN mailbox configuration
registers
on page 27-73

Always disable before modifying mailbox
area or direction

CANx_MD1
CANx_MD2

CAN mailbox direction regis-
ters
on page 27-74

Never change MDn direction when mail-
box n is enabled. MD[31:24] and
MD[7:0] are read only

CANx_RMP1
CANx_RMP2

CAN receive message pend-
ing registers
on page 27-75

Clearing RMPn bits also clears corre-
sponding RMLn bits

CANx_RML1
CANx_RML2

CAN receive message lost
registers
on page 27-76

Write accesses have no effect

CANx_OPSS1
CANx_OPSS2

CAN overwrite protection or
single-shot transmission
registers
on page 27-77

Function depends on mailbox direction.
Has no effect when RFHn = 1. Do not
modify OPSSn bit if mailbox n is enabled

CANx_TRS1
CANx_TRS2

CAN transmission request set
registers
on page 27-78

May by set by internal logic under certain
circumstances. TRS[7:0] are read-only

CANx_TRR1
CANx_TRR2

CAN transmission request
reset registers
on page 27-79

TRRn bits must not be set if mailbox n is
disabled or TRSn = 0

CANx_AA1
CANx_AA2

CAN abort acknowledge reg-
isters
on page 27-80

AAn bit is reset if TRSn bit is set manu-
ally, but not when TRSn is set by internal
logic

CANx_TA1
CANx_TA2

CAN transmission acknowl-
edge registers
on page 27-81

TAn bit is reset if TRSn bit is set manu-
ally, but not when TRSn is set by internal
logic

CANx_MBTD CAN temporary mailbox dis-
able registers
on page 27-82

Allows safe access to data field of an
enabled mailbox

CAN Registers

27-44 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_RFH1
CANx_RFH2

CAN remote frame handling
registers
on page 27-83

Available only to configurable mailboxes
23:8. RFH[31:24] and RFH[7:0] are
read-only

CANx_MBIM1
CANx_MBIM2

CAN mailbox interrupt mask
registers
on page 27-84

Mailbox interrupts are raised only if these
bits are set

CANx_MBTIF1
CANx_MBTIF2

CAN mailbox transmit inter-
rupt flag registers
on page 27-85

Can be cleared if mailbox or mailbox
interrupt is disabled. Changing direction
while MBTIFn = 1 results in MBRIFn =
1 and MBTIFn = 0

CANx_MBRIF1
CANx_MBRIF2

CAN mailbox receive inter-
rupt flag registers
on page 27-86

Can be cleared if mailbox or mailbox
interrupt is disabled. Changing direction
while MBRIFn = 1 results in MBTIFn =
1 and MBRIFn = 0

Table 27-8. CAN Universal Counter Registers

Register Name Function Notes

CANx_UCCNF CAN universal counter mode regis-
ters
on page 27-87

Bits 15:8 and bit 4 are reserved

CANx_UCCNT CAN universal counter registers
on page 27-88

Counts up or down based on uni-
versal counter mode

CANx_UCRC CAN universal counter reload/cap-
ture registers
on page 27-88

In timestamp mode, holds time of
last successful transmit or receive

Table 27-7. CAN Mailbox Control Registers (Cont’d)

Register Name Function Notes

ADSP-BF54x Blackfin Processor Hardware Reference 27-45

CAN Module

Table 27-9. CAN Error Registers

Register Name Function Notes

CANx_CEC CAN error counter registers
on page 27-89

Undefined while in bus off mode,
not affected by software reset

CANx_ESR CAN error status registers
on page 27-89

Only the first error is stored. SA0
flag is cleared by recessive bit on
CAN bus

CANx_EWR CAN error counter warning level regis-
ters
on page 27-90

Default is 96 for each counter

CAN Registers

27-46 ADSP-BF54x Blackfin Processor Hardware Reference

Global CAN Registers
Figure 27-12 through Figure 27-20 on page 27-52 show the CAN global
registers.

CANx_CONTROL Master Control Registers

Figure 27-12. Master Control Registers

Master Control Register (CANx_CONTROL)

SRS (Software Reset)
0 - No effect
1 - Reset

Reset = 0x0080

CAN0:
0xFFC0 2AA0
CAN1:
0xFFC0 32A0

DNM (DeviceNet Mode)
0 - Disable
1 - Enable
ABO (Auto Bus On)
0 - enter configuration

mode after BusOff
recovery sequence

1 - enter active mode
after BusOff recovery
sequence

CCR (CAN Configuration
Mode Request)
0 - Cancelled
1 - Requested
CSR (CAN Suspend Mode
Request)
0 - Cancelled
1 - Requested
SMR (Sleep Mode Request)
0 - Not requested
1 - Enters Sleep mode
WBA (Wake Up on CAN Bus
Activity)
0 - Stays in Sleep mode
1 - Can leave Sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-47

CAN Module

CANx_STATUS Global CAN Status Registers

• Mail box pointer (MBPTR[4:0])

Represents the mailbox number of the current transmit message.
After a successful transmission, these bits remain unchanged.

[b#11111] The message of mailbox 31 is currently being processed.

…

…

…

[b#00000] The message of mailbox 0 is currently being processed.

Figure 27-13. Global CAN Status Registers

Global CAN Status Register (CANx_STATUS)
RO

WT (CAN Transmit Warning
Flag)
0 - TXECNT below limit
1 - TXECNT at limit

Reset = 0x0000
CAN0:
0xFFC0 2A8C
CAN1:
0xFFC0 328C

WR (CAN Receive Warning
Flag)
0 - RXECNT below limit
1 - RXECNT at limit
EP (CAN Error Passive
Mode)
0 - Both TXECNT and
RXECNT < 128
1 - TXECNT or RXECNT >
error passive level

EBO (CAN Error Bus Off
Mode)
0 - TXECNT < 256
1 - TXECNT > bus off limit

REC (Receive
Mode)
0 - Not in receive mode
1 - In receive mode
TRM (Transmit
Mode)
0 - Not in transmit mode
1 - In transmit mode
MBPTR[4:0] (Mailbox Pointer)
See description below
CCA (CAN Configuration
Mode Acknowledge)
0 - Not in Configuration mode
1 - In Configuration mode
CSA (CAN Suspend Mode
Acknowledge)
0 - Not in Suspend mode
1 - In Suspend mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-48 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_DEBUG Registers

CANx_CLOCK Registers

Figure 27-14. CAN Debug Registers

Figure 27-15. CAN Clock Registers

CAN Debug Register (CANx_DEBUG)

Reset = 0x0008
0xFFC0 2A88

DEC (Disable Transmit and
Receive Error Counters)
0 - Enable CANx_CEC Tx
 and Rx error counters
1 - Disable CANx_CEC Tx
 and Rx error counters
DRI (Disable Receive
Input Pin, CANxRX)
0 - Enable CANxRX input pin
1 - Disable CANxRX input
 pin-drive recessive internally
DTO (Disable Transmit
Output Pin, CANxTX)
0 - Enable CANxTX output pin
1 - Disable CANxTX output
 pin-drive recessive

CDE (CAN Debug
Mode Enable)
0 - Debug mode disabled
1 - Debug mode enabled
MRB (Mode Read Back)
0 - Read back mode disabled
1 - Read back mode enabled
MAA (Mode Auto
Acknowledge)
0 - Auto acknowledge mode
 disabled
1 - Auto acknowledge mode
 enabled
DIL (Disable Internal Loop)
0 - Enable internal loop
1 - Disable internal loop

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 00 0

CAN Clock Register (CANx_CLOCK)

BRP[9:0] (Bit Rate Prescaler
Register) W/R

Reset = 0x00000xFFC0 2A80

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-49

CAN Module

CANx_TIMING Registers

CANx_INTR Interrupt Pending Registers

Figure 27-16. CAN Timing Registers

Figure 27-17. CAN Interrupt Registers

CAN Timing Register (CANx_TIMING)

TSEG1[3:0] (Time Segment 1)

Reset = 0x00000xFFC0 2A84

TSEG2[2:0] (Time Segment 2)
SJW[1:0] (Synchronization Jump Width)
SAM (Sampling)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Interrupt Register (CANx_INTR)
RO

MBRIRQ (Mailbox Receive
Interrupt Output)
0 - No receive flags set
1 - One or more receive

flags set

Reset = 0x00X0 (X = depen-
dent on pin values)

0xFFC0 2AA4

MBTIRQ (Mailbox Transmit
Interrupt Output)
0 - No transmit flags set
1 - One or more transmit

flags set
GIRQ (Global CAN Interrupt
Output)
0 - No global CAN flags set
1 - One or more global CAN

flags set

CANxRX (Serial Input From Transceiver) - RO

Serial input from CAN bus line from
transceiver
0 - Value is dominant
1 - Value is recessive
CANxTX (Serial Input To Transceiver) - RO

Serial input from CAN bus line
to transceiver
0 - Value is dominant
1 - Value is recessive
SMACK (Sleep Mode
Acknowledge)
0 - Not in sleep mode
1 - Full-CAN module in sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 X X 0 0 0 0 00 0

CAN Registers

27-50 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_GIM Global CAN Interrupt Mask Registers

Figure 27-18. Global CAN Interrupt Mask Registers

Global CAN Interrupt Mask Register (CANx_GIM)

EWTIM (Error Warning
Transmit Interrupt Mask)

Reset = 0x00800xFFC0 2A98

EWRIM (Error Warning
Receive Interrupt Mask)
EPIM (Error Passive
Interrupt Mask)
BOIM (Bus Off Interrupt Mask)

ADIM (Access Denied
Interrupt Mask)

UCEIM (Universal Counter
Exceeded Interrupt Mask)
RMLIM (Receive Message
Lost Interrupt Mask)
AAIM (Abort Acknowledge
Interrupt Mask)

WUIM (Wakeup Interrupt Mask)
UIAIM (Unimplemented
Address Interrupt Mask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-51

CAN Module

CANx_GIS Global CAN Interrupt Status Registers

Figure 27-19. Global CAN Interrupt Status Registers

Global CAN Interrupt Status Register (CANx_GIS)
All bits are W1C

EWTIS (Error Warning
Transmit Interrupt Status)

Reset = 0x00000xFFC0 2A94

EWRIS (Error Warning
Receive Interrupt Status)
EPIS (Error Passive Interrupt
Status)
BOIS (Bus Off Interrupt Status)

ADIS (Access Denied
Interrupt Status)

UCEIS (Universal Counter Exceeded
Interrupt Status)
RMLIS (Receive Message Lost
Interrupt Status)

AAIS (Abort Acknowledge
Interrupt Status)

WUIS (Wakeup Interrupt Status)
UIAIS (Unimplemented
Address Interrupt Status)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-52 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_GIF Global CAN Interrupt Flag Registers

Mailbox/Mask Registers
Figure 27-21 through Figure 27-30 on page 27-71 show the CAN mail-
box and mask registers.

Figure 27-20. Global CAN Interrupt Flag Registers

Global CAN Interrupt Flag Register (CANx_GIF)

All bits W1C

EWTIF (Error Warning Trans-
mit Interrupt Flag)

Reset = 0x00000xFFC0 2A9c

EWRIF (Error Warning
Receive Interrupt Flag)
EPIF (Error Passive Interrupt
Flag)
BOIF (Bus Off Interrupt Flag)

ADIF (Access Denied
Interrupt Flag)

UCEIF (Universal Counter
Exceeded Interrupt Flag)
RMLIF (Receive Message
Lost Interrupt Flag)
AAIF (Abort Acknowledge
Interrupt Flag)

WUIF (Wakeup Interrupt Flag)
UIAIF (Unimplemented
Address Interrupt Flag)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-53

CAN Module

CANx_AMxx Acceptance Mask Registers

The value of the acceptance mask register does not matter when the AME
bit is zero. If AME is set, only those bits that have the corresponding mask
bit cleared are compared to the received message ID. A bit position that is
one in the mask register does not need to match.

Figure 27-21. Acceptance Mask Registers (H)

Table 27-10. Acceptance Mask Registers (H) Memory-Mapped
Addresses

Register Name CAN0 Memory-mapped
Address

CAN1 Memory-mapped
Address

CANx_AM00H 0xFFC0 2B04 0xFFC0 3304

CANx_AM01H 0xFFC0 2B0C 0xFFC0 330C

CANx_AM02H 0xFFC0 2B14 0xFFC0 3314

CANx_AM03H 0xFFC0 2B1C 0xFFC0 331C

CANx_AM04H 0xFFC0 2B24 0xFFC0 3324

CANx_AM05H 0xFFC0 2B2C 0xFFC0 332C

CANx_AM06H 0xFFC0 2B34 0xFFC0 3334

CANx_AM07H 0xFFC0 2B3C 0xFFC0 333C

Acceptance Mask Register (CANx_AMxxH)

EXTID[17:16] (Extended
Identifier)

Undefined

BASEID[10:0] (Base Identifier)
AMIDE (Acceptance Mask
Identifier Extension)
FMD (Full Mask Data)
FDF (Filter on Data Field)

For Memory-
mapped addresses,
see Table 27-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-54 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_AM08H 0xFFC0 2B44 0xFFC0 3344

CANx_AM09H 0xFFC0 2B4C 0xFFC0 334C

CANx_AM10H 0xFFC0 2B54 0xFFC0 3354

CANx_AM11H 0xFFC0 2B5C 0xFFC0 335C

CANx_AM12H 0xFFC0 2B64 0xFFC0 3364

CANx_AM13H 0xFFC0 2B6C 0xFFC0 336C

CANx_AM14H 0xFFC0 2B74 0xFFC0 3374

CANx_AM15H 0xFFC0 2B7C 0xFFC0 337C

CANx_AM16H 0xFFC0 2B84 0xFFC0 3384

CANx_AM17H 0xFFC0 2B8C 0xFFC0 338C

CANx_AM18H 0xFFC0 2B94 0xFFC0 3394

CANx_AM19H 0xFFC0 2B9C 0xFFC0 339C

CANx_AM20H 0xFFC0 2BA4 0xFFC0 33A4

CANx_AM21H 0xFFC0 2BAC 0xFFC0 33AC

CANx_AM22H 0xFFC0 2BB4 0xFFC0 33B4

CANx_AM23H 0xFFC0 2BBC 0xFFC0 33BC

CANx_AM24H 0xFFC0 2BC4 0xFFC0 33C4

CANx_AM25H 0xFFC0 2BCC 0xFFC0 33CC

CANx_AM26H 0xFFC0 2BD4 0xFFC0 33D4

CANx_AM27H 0xFFC0 2BDC 0xFFC0 33DC

CANx_AM28H 0xFFC0 2BE4 0xFFC0 33E4

CANx_AM29H 0xFFC0 2BEC 0xFFC0 33EC

Table 27-10. Acceptance Mask Registers (H) Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped
Address

CAN1 Memory-mapped
Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-55

CAN Module

CANx_AM30H 0xFFC0 2BF4 0xFFC0 33F4

CANx_AM31H 0xFFC0 2BFC 0xFFC0 33FC

Figure 27-22. Acceptance Mask Registers (L)

Table 27-11. Acceptance Mask Registers (L) Memory-Mapped
Addresses

Register Name CAN0 Memory-mapped Address

CANx_AM00L 0xFFC0 2B00

CANx_AM01L 0xFFC0 2B08

CANx_AM02L 0xFFC0 2B10

CANx_AM03L 0xFFC0 2B18

CANx_AM04L 0xFFC0 2B20

CANx_AM05L 0xFFC0 2B28

CANx_AM06L 0xFFC0 2B30

CANx_AM07L 0xFFC0 2B38

CANx_AM08L 0xFFC0 2B40

CANx_AM09L 0xFFC0 2B48

Table 27-10. Acceptance Mask Registers (H) Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped
Address

CAN1 Memory-mapped
Address

Acceptance Mask Register (CANx_AMxxL)

EXTID[15:0]/DFM[15:0]
(Extended Identifier/Data Field
Mask)

UndefinedFor Memory-
mapped addresses,
see Table 27-11.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-56 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_AM10L 0xFFC0 2B50

CANx_AM11L 0xFFC0 2B58

CANx_AM12L 0xFFC0 2B60

CANx_AM13L 0xFFC0 2B68

CANx_AM14L 0xFFC0 2B70

CANx_AM15L 0xFFC0 2B78

CANx_AM16L 0xFFC0 2B80

CANx_AM17L 0xFFC0 2B88

CANx_AM18L 0xFFC0 2B90

CANx_AM19L 0xFFC0 2B98

CANx_AM20L 0xFFC0 2BA0

CANx_AM21L 0xFFC0 2BA8

CANx_AM22L 0xFFC0 2BB0

CANx_AM23L 0xFFC0 2BB8

CANx_AM24L 0xFFC0 2BC0

CANx_AM25L 0xFFC0 2BC8

CANx_AM26L 0xFFC0 2BD0

CANx_AM27L 0xFFC0 2BD8

CANx_AM28L 0xFFC0 2BE0

CANx_AM29L 0xFFC0 2BE8

CANx_AM30L 0xFFC0 2BF0

CANx_AM31L 0xFFC0 2BF8

Table 27-11. Acceptance Mask Registers (L) Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-57

CAN Module

CANx_MBxx_ID1 Registers

Figure 27-23. Mailbox Word 7 Register

Table 27-12. Mailbox Word 7 Register Memory-Mapped
Addresses

Register Name CAN0 Memory-mapped Address

CANx_MB00_ID1 0xFFC0 2C1C

CANx_MB01_ID1 0xFFC0 2C3C

CANx_MB02_ID1 0xFFC0 2C5C

CANx_MB03_ID1 0xFFC0 2C7C

CANx_MB04_ID1 0xFFC0 2C9C

CANx_MB05_ID1 0xFFC0 2CBC

CANx_MB06_ID1 0xFFC0 2CDC

CANx_MB07_ID1 0xFFC0 2CFC

CANx_MB08_ID1 0xFFC0 2D1C

CANx_MB09_ID1 0xFFC0 2D3C

CANx_MB10_ID1 0xFFC0 2D5C

CANx_MB11_ID1 0xFFC0 2D7C

Mailbox Word 7 Register (CANx_MBxx_ID1)

EXTID[17:16] (Extended
Identifier)

UndefinedFor Memory-
mapped addresses,
see Table 27-12.

BASEID[10:0] (Base Identifier)
IDE (Identifier Extension)
RTR (Remote Transmission
Request)
AME (Acceptance Mask Enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-58 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB12_ID1 0xFFC0 2D9C

CANx_MB13_ID1 0xFFC0 2DBC

CANx_MB14_ID1 0xFFC0 2DDC

CANx_MB15_ID1 0xFFC0 2DFC

CANx_MB16_ID1 0xFFC0 2E1C

CANx_MB17_ID1 0xFFC0 2E3C

CANx_MB18_ID1 0xFFC0 2E5C

CANx_MB19_ID1 0xFFC0 2E7C

CANx_MB20_ID1 0xFFC0 2E9C

CANx_MB21_ID1 0xFFC0 2EBC

CANx_MB22_ID1 0xFFC0 2EDC

CANx_MB23_ID1 0xFFC0 2EFC

CANx_MB24_ID1 0xFFC0 2F1C

CANx_MB25_ID1 0xFFC0 2F3C

CANx_MB26_ID1 0xFFC0 2F5C

CANx_MB27_ID1 0xFFC0 2F7C

CANx_MB28_ID1 0xFFC0 2F9C

CANx_MB29_ID1 0xFFC0 2FBC

CANx_MB30_ID1 0xFFC0 2FDC

CANx_MB31_ID1 0xFFC0 2FFC

Table 27-12. Mailbox Word 7 Register Memory-Mapped
Addresses (Cont’d)

Register Name CAN0 Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-59

CAN Module

CANx_MBxx_ID0 Registers

Figure 27-24. Mailbox Word 6 Register

Table 27-13. Mailbox Word 6 Register Memory-mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_ID0 0xFFC0 2C18

CANx_MB01_ID0 0xFFC0 2C38

CANx_MB02_ID0 0xFFC0 2C58

CANx_MB03_ID0 0xFFC0 2C78

CANx_MB04_ID0 0xFFC0 2C98

CANx_MB05_ID0 0xFFC0 2CB8

CANx_MB06_ID0 0xFFC0 2CD8

CANx_MB07_ID0 0xFFC0 2CF8

CANx_MB08_ID0 0xFFC0 2D18

CANx_MB09_ID0 0xFFC0 2D38

CANx_MB10_ID0 0xFFC0 2D58

CANx_MB11_ID0 0xFFC0 2D78

CANx_MB12_ID0 0xFFC0 2D98

CANx_MB13_ID0 0xFFC0 2DB8

Mailbox Word 6 Register (CANx_MBxx_ID0)

EXTID[15:0]/DFC[15:0]
(Extended Identifier/Data Field
Acceptance Code)

UndefinedFor Memory-
mapped addresses,
see Table 27-13.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-60 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB14_ID0 0xFFC0 2DD8

CANx_MB15_ID0 0xFFC0 2DF8

CANx_MB16_ID0 0xFFC0 2E18

CANx_MB17_ID0 0xFFC0 2E38

CANx_MB18_ID0 0xFFC0 2E58

CANx_MB19_ID0 0xFFC0 2E78

CANx_MB20_ID0 0xFFC0 2E98

CANx_MB21_ID0 0xFFC0 2EB8

CANx_MB22_ID0 0xFFC0 2ED8

CANx_MB23_ID0 0xFFC0 2EF8

CANx_MB24_ID0 0xFFC0 2F18

CANx_MB25_ID0 0xFFC0 2F38

CANx_MB26_ID0 0xFFC0 2F58

CANx_MB27_ID0 0xFFC0 2F78

CANx_MB28_ID0 0xFFC0 2F98

CANx_MB29_ID0 0xFFC0 2FB8

CANx_MB30_ID0 0xFFC0 2FD8

CANx_MB31_ID0 0xFFC0 2FF8

Table 27-13. Mailbox Word 6 Register Memory-mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-61

CAN Module

CANx_MBxx_TIMESTAMP Registers

Figure 27-25. Mailbox Word 5 Register

Table 27-14. Mailbox Word 5 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_TIMESTAMP 0xFFC0 2C14

CANx_MB01_TIMESTAMP 0xFFC0 2C34

CANx_MB02_TIMESTAMP 0xFFC0 2C54

CANx_MB03_TIMESTAMP 0xFFC0 2C74

CANx_MB04_TIMESTAMP 0xFFC0 2C94

CANx_MB05_TIMESTAMP 0xFFC0 2CB4

CANx_MB06_TIMESTAMP 0xFFC0 2CD4

CANx_MB07_TIMESTAMP 0xFFC0 2CF4

CANx_MB08_TIMESTAMP 0xFFC0 2D14

CANx_MB09_TIMESTAMP 0xFFC0 2D34

CANx_MB10_TIMESTAMP 0xFFC0 2D54

CANx_MB11_TIMESTAMP 0xFFC0 2D74

CANx_MB12_TIMESTAMP 0xFFC0 2D94

CANx_MB13_TIMESTAMP 0xFFC0 2DB4

CANx_MB14_TIMESTAMP 0xFFC0 2DD4

Mailbox Word 5 Register (CANx_MBxx_TIMESTAMP)

TSV[15:0] (Time Stamp Value)

UndefinedFor Memory-
mapped addresses,
see Table 27-14.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-62 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB15_TIMESTAMP 0xFFC0 2DF4

CANx_MB16_TIMESTAMP 0xFFC0 2E14

CANx_MB17_TIMESTAMP 0xFFC0 2E34

CANx_MB18_TIMESTAMP 0xFFC0 2E54

CANx_MB19_TIMESTAMP 0xFFC0 2E74

CANx_MB20_TIMESTAMP 0xFFC0 2E94

CANx_MB21_TIMESTAMP 0xFFC0 2EB4

CANx_MB22_TIMESTAMP 0xFFC0 2ED4

CANx_MB23_TIMESTAMP 0xFFC0 2EF4

CANx_MB24_TIMESTAMP 0xFFC0 2F14

CANx_MB25_TIMESTAMP 0xFFC0 2F34

CANx_MB26_TIMESTAMP 0xFFC0 2F54

CANx_MB27_TIMESTAMP 0xFFC0 2F74

CANx_MB28_TIMESTAMP 0xFFC0 2F94

CANx_MB29_TIMESTAMP 0xFFC0 2FB4

CANx_MB30_TIMESTAMP 0xFFC0 2FD4

CANx_MB31_TIMESTAMP 0xFFC0 2FF4

Table 27-14. Mailbox Word 5 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-63

CAN Module

CANx_MBxx_LENGTH Registers

Figure 27-26. Mailbox Word 4 Register

Table 27-15. Mailbox Word 4 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_LENGTH 0xFFC0 2C10

CANx_MB01_LENGTH 0xFFC0 2C30

CANx_MB02_LENGTH 0xFFC0 2C50

CANx_MB03_LENGTH 0xFFC0 2C70

CANx_MB04_LENGTH 0xFFC0 2C90

CANx_MB05_LENGTH 0xFFC0 2CB0

CANx_MB06_LENGTH 0xFFC0 2CD0

CANx_MB07_LENGTH 0xFFC0 2CF0

CANx_MB08_LENGTH 0xFFC0 2D10

CANx_MB09_LENGTH 0xFFC0 2D30

CANx_MB10_LENGTH 0xFFC0 2D50

CANx_MB11_LENGTH 0xFFC0 2D70

CANx_MB12_LENGTH 0xFFC0 2D90

CANx_MB13_LENGTH 0xFFC0 2DB0

CANx_MB14_LENGTH 0xFFC0 2DD0

Mailbox Word 4 Register (CANx_MBxx_LENGTH)

DLC[3:0] (Data Length Code)

UndefinedFor Memory-
mapped addresses,
see Table 27-26.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-64 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB15_LENGTH 0xFFC0 2DF0

CANx_MB16_LENGTH 0xFFC0 2E10

CANx_MB17_LENGTH 0xFFC0 2E30

CANx_MB18_LENGTH 0xFFC0 2E50

CANx_MB19_LENGTH 0xFFC0 2E70

CANx_MB20_LENGTH 0xFFC0 2E90

CANx_MB21_LENGTH 0xFFC0 2EB0

CANx_MB22_LENGTH 0xFFC0 2ED0

CANx_MB23_LENGTH 0xFFC0 2EF0

CANx_MB24_LENGTH 0xFFC0 2F10

CANx_MB25_LENGTH 0xFFC0 2F30

CANx_MB26_LENGTH 0xFFC0 2F50

CANx_MB27_LENGTH 0xFFC0 2F70

CANx_MB28_LENGTH 0xFFC0 2F90

CANx_MB29_LENGTH 0xFFC0 2FB0

CANx_MB30_LENGTH 0xFFC0 2FD0

CANx_MB31_LENGTH 0xFFC0 2FF0

Table 27-15. Mailbox Word 4 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-65

CAN Module

CANx_MBxx_DATAx Registers

The following are the descriptions of Mailbox Word registers
(CANx_MBxx_DATA3/2/1/0) and their appropriate memory-mapped
addresses.

Figure 27-27. Mailbox Word 3 Register

Table 27-16. Mailbox Word 3 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA3 0xFFC0 2C0C

CANx_MB01_DATA3 0xFFC0 2C2C

CANx_MB02_DATA3 0xFFC0 2C4C

CANx_MB03_DATA3 0xFFC0 2C6C

CANx_MB04_DATA3 0xFFC0 2C8C

CANx_MB05_DATA3 0xFFC0 2CAC

CANx_MB06_DATA3 0xFFC0 2CCC

CANx_MB07_DATA3 0xFFC0 2CEC

CANx_MB08_DATA3 0xFFC0 2D0C

CANx_MB09_DATA3 0xFFC0 2D2C

CANx_MB10_DATA3 0xFFC0 2D4C

CANx_MB11_DATA3 0xFFC0 2D6C

Mailbox Word 3 Register (CANx_MBxx_DATA3)

Data Field Byte 1[7:0]

UndefinedFor Memory-
mapped addresses,
see Table 27-16.

Data Field Byte 0[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-66 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB12_DATA3 0xFFC0 2D8C

CANx_MB13_DATA3 0xFFC0 2DAC

CANx_MB14_DATA3 0xFFC0 2DCC

CANx_MB15_DATA3 0xFFC0 2DEC

CANx_MB16_DATA3 0xFFC0 2E0C

CANx_MB17_DATA3 0xFFC0 2E2C

CANx_MB18_DATA3 0xFFC0 2E4C

CANx_MB19_DATA3 0xFFC0 2E6C

CANx_MB20_DATA3 0xFFC0 2E8C

CANx_MB21_DATA3 0xFFC0 2EAC

CANx_MB22_DATA3 0xFFC0 2ECC

CANx_MB23_DATA3 0xFFC0 2EEC

CANx_MB24_DATA3 0xFFC0 2F0C

CANx_MB25_DATA3 0xFFC0 2F2C

CANx_MB26_DATA3 0xFFC0 2F4C

CANx_MB27_DATA3 0xFFC0 2F6C

CANx_MB28_DATA3 0xFFC0 2F8C

CANx_MB29_DATA3 0xFFC0 2FAC

CANx_MB30_DATA3 0xFFC0 2FCC

CANx_MB31_DATA3 0xFFC0 2FEC

Table 27-16. Mailbox Word 3 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-67

CAN Module

Figure 27-28. Mailbox Word 2 Register

Table 27-17. Mailbox Word 2 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA2 0xFFC0 2C08

CANx_MB01_DATA2 0xFFC0 2C28

CANx_MB02_DATA2 0xFFC0 2C48

CANx_MB03_DATA2 0xFFC0 2C68

CANx_MB04_DATA2 0xFFC0 2C88

CANx_MB05_DATA2 0xFFC0 2CA8

CANx_MB06_DATA2 0xFFC0 2CC8

CANx_MB07_DATA2 0xFFC0 2CE8

CANx_MB08_DATA2 0xFFC0 2D08

CANx_MB09_DATA2 0xFFC0 2D28

CANx_MB10_DATA2 0xFFC0 2D48

CANx_MB11_DATA2 0xFFC0 2D68

CANx_MB12_DATA2 0xFFC0 2D88

CANx_MB13_DATA2 0xFFC0 2DA8

CANx_MB14_DATA2 0xFFC0 2DC8

CANx_MB15_DATA2 0xFFC0 2DE8

Mailbox Word 2 Register (CANx_MBxx_DATA2)

UndefinedFor Memory-
mapped addresses,
see Table 27-17.

Data Field Byte 3[7:0]Data Field Byte 2[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-68 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB16_DATA2 0xFFC0 2E08

CANx_MB17_DATA2 0xFFC0 2E28

CANx_MB18_DATA2 0xFFC0 2E48

CANx_MB19_DATA2 0xFFC0 2E68

CANx_MB20_DATA2 0xFFC0 2E88

CANx_MB21_DATA2 0xFFC0 2EA8

CANx_MB22_DATA2 0xFFC0 2EC8

CANx_MB23_DATA2 0xFFC0 2EE8

CANx_MB24_DATA2 0xFFC0 2F08

CANx_MB25_DATA2 0xFFC0 2F28

CANx_MB26_DATA2 0xFFC0 2F48

CANx_MB27_DATA2 0xFFC0 2F68

CANx_MB28_DATA2 0xFFC0 2F88

CANx_MB29_DATA2 0xFFC0 2FA8

CANx_MB30_DATA2 0xFFC0 2FC8

CANx_MB31_DATA2 0xFFC0 2FE8

Table 27-17. Mailbox Word 2 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-69

CAN Module

Figure 27-29. Mailbox Word 1 Register

Table 27-18. Mailbox Word 1 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA1 0xFFC0 2C04

CANx_MB01_DATA1 0xFFC0 2C24

CANx_MB02_DATA1 0xFFC0 2C44

CANx_MB03_DATA1 0xFFC0 2C64

CANx_MB04_DATA1 0xFFC0 2C84

CANx_MB05_DATA1 0xFFC0 2CA4

CANx_MB06_DATA1 0xFFC0 2CC4

CANx_MB07_DATA1 0xFFC0 2CE4

CANx_MB08_DATA1 0xFFC0 2D04

CANx_MB09_DATA1 0xFFC0 2D24

CANx_MB10_DATA1 0xFFC0 2D44

CANx_MB11_DATA1 0xFFC0 2D64

CANx_MB12_DATA1 0xFFC0 2D84

CANx_MB13_DATA1 0xFFC0 2DA4

CANx_MB14_DATA1 0xFFC0 2DC4

CANx_MB15_DATA1 0xFFC0 2DE4

Mailbox Word 1 Register (CANx_MBxx_DATA1)

UndefinedFor Memory-
mapped addresses,
see Table 27-18.

Data Field Byte 5[7:0]Data Field Byte 4[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-70 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MB16_DATA1 0xFFC0 2E04

CANx_MB17_DATA1 0xFFC0 2E24

CANx_MB18_DATA1 0xFFC0 2E44

CANx_MB19_DATA1 0xFFC0 2E64

CANx_MB20_DATA1 0xFFC0 2E84

CANx_MB21_DATA1 0xFFC0 2EA4

CANx_MB22_DATA1 0xFFC0 2EC4

CANx_MB23_DATA1 0xFFC0 2EE4

CANx_MB24_DATA1 0xFFC0 2F04

CANx_MB25_DATA1 0xFFC0 2F24

CANx_MB26_DATA1 0xFFC0 2F44

CANx_MB27_DATA1 0xFFC0 2F64

CANx_MB28_DATA1 0xFFC0 2F84

CANx_MB29_DATA1 0xFFC0 2FA4

CANx_MB30_DATA1 0xFFC0 2FC4

CANx_MB31_DATA1 0xFFC0 2FE4

Table 27-18. Mailbox Word 1 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-71

CAN Module

Figure 27-30. Mailbox Word 0 Register

Table 27-19. Mailbox Word 0 Register Memory-Mapped
Addresses

Register Name Memory-mapped Address

CANx_MB00_DATA0 0xFFC0 2C00

CANx_MB01_DATA0 0xFFC0 2C20

CANx_MB02_DATA0 0xFFC0 2C40

CANx_MB03_DATA0 0xFFC0 2C60

CANx_MB04_DATA0 0xFFC0 2C80

CANx_MB05_DATA0 0xFFC0 2CA0

CANx_MB06_DATA0 0xFFC0 2CC0

CANx_MB07_DATA0 0xFFC0 2CE0

CANx_MB08_DATA0 0xFFC0 2D00

CANx_MB09_DATA0 0xFFC0 2D20

CANx_MB10_DATA0 0xFFC0 2D40

CANx_MB11_DATA0 0xFFC0 2D60

CANx_MB12_DATA0 0xFFC0 2D80

CANx_MB13_DATA0 0xFFC0 2DA0

CANx_MB14_DATA0 0xFFC0 2DC0

CANx_MB15_DATA0 0xFFC0 2DE0

Mailbox Word 0 Register (CANx_MBxx_DATA0)

UndefinedFor Memory-
mapped addresses,
see Table 27-19.

Data Field Byte 7[7:0]Data Field Byte 6[7:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X XX X X X X X X X X X X X XX

CAN Registers

27-72 ADSP-BF54x Blackfin Processor Hardware Reference

Mailbox Control Registers
Figure 27-31 through Figure 27-57 on page 27-86 show the mailbox con-
trol registers.

CANx_MB16_DATA0 0xFFC0 2E00

CANx_MB17_DATA0 0xFFC0 2E20

CANx_MB18_DATA0 0xFFC0 2E40

CANx_MB19_DATA0 0xFFC0 2E60

CANx_MB20_DATA0 0xFFC0 2E80

CANx_MB21_DATA0 0xFFC0 2EA0

CANx_MB22_DATA0 0xFFC0 2EC0

CANx_MB23_DATA0 0xFFC0 2EE0

CANx_MB24_DATA0 0xFFC0 2F00

CANx_MB25_DATA0 0xFFC0 2F20

CANx_MB26_DATA0 0xFFC0 2F40

CANx_MB27_DATA0 0xFFC0 2F60

CANx_MB28_DATA0 0xFFC0 2F80

CANx_MB29_DATA0 0xFFC0 2FA0

CANx_MB30_DATA0 0xFFC0 2FC0

CANx_MB31_DATA0 0xFFC0 2FE0

Table 27-19. Mailbox Word 0 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 27-73

CAN Module

CANx_MCx Mailbox Configuration Registers

Figure 27-31. Mailbox Configuration Register 1

Figure 27-32. Mailbox Configuration Register 2

Mailbox Configuration Register 1 (CANx_MC1)

MC0

MC12

MC13

MC14

MC15

MC1

MC2

MC3

MC4

MC5

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC6

MC7

MC11

MC10

MC9

MC8

Reset = 0x00000xFFC0 2A00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Mailbox Configuration Register 2 (CANx_MC2)

MC16

MC28

MC29

MC30

MC31

MC17

MC18

MC19

MC20

MC21

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC22

MC23

MC27

MC26

MC25

MC24

Reset = 0x00000xFFC0 2A40
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-74 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MDx Mailbox Direction Registers

Figure 27-33. Mailbox Direction Register 1

Figure 27-34. Mailbox Direction Register 2

Mailbox Direction Register 1 (CANx_MD1)

MD0 - RO

MD12

MD13

MD14

MD15

MD1 - RO

MD2 - RO

MD3 - RO

MD4 - RO

MD5 - RO

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD6 - RO

MD7 - RO

MD11

MD10

MD9

MD8

Reset = 0x00FF0xFFC0 2A04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 1 1 10 0

Mailbox Direction Register 2 (CANx_MD2)

MD16

MD28 - RO

MD29 - RO

MD30 - RO

MD31 - RO

MD17

MD18

MD19

MD20

MD21

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD22

MD23

MD27 - RO

MD26 - RO

MD25 - RO

MD24 - RO

Reset = 0x00000xFFC0 2A44

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-75

CAN Module

CANx_RMPx Registers

Figure 27-35. Receive Message Pending Register 1

Figure 27-36. Receive Message Pending Register 2

Receive Message Pending Register 1 (CANx_RMP1)

RMP0

RMP12

RMP13

RMP14

RMP15

RMP1

RMP2

RMP3

RMP4

RMP5

All bits are W1C

RMP6

RMP7

RMP11

RMP10

RMP9

RMP8

Reset = 0x00000xFFC0 2A18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Receive Message Pending Register 2 (CANx_RMP2)

RMP16

RMP28 - RO

RMP29 - RO

RMP30 - RO

RMP31 - RO

RMP17

RMP18

RMP19

RMP20

RMP21

All bits are W1C

RMP22

RMP23

RMP27 - RO

RMP26 - RO

RMP25 - RO

RMP24 - RO

Reset = 0x00000xFFC0 2A58
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-76 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_RMLx Registers

Figure 27-37. Receive Message Lost Register 1

Figure 27-38. Receive Message Lost Register 2

Receive Message Lost Register 1 (CANx_RML1)

RML0

RML12

RML13

RML14

RML15

RML1

RML2

RML3

RML4

RML5

RO

RML6

RML7

RML11

RML10

RML9

RML8

Reset = 0x00000xFFC0 2A1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Receive Message Lost Register 2 (CANx_RML2)

RML16

RML28

RML29

RML30

RML31

RML17

RML18

RML19

RML20

RML21

RO

RML22

RML23

RML27

RML26

RML25

RML24

Reset = 0x00000xFFC0 2A5C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-77

CAN Module

CANx_OPSSx Register

Figure 27-39. Overwrite Protection/Single Shot Transmission Register 1

Figure 27-40. Overwrite Protection/Single Shot Transmission Register 2

Overwrite Protection/Single Shot Transmission Register 1

OPSS0

OPSS12

OPSS13

OPSS14

OPSS15

OPSS1

OPSS2

OPSS3

OPSS4

OPSS5

OPSS6

OPSS7

OPSS11

OPSS10

OPSS9

OPSS8

Reset = 0x00000xFFC0 2A30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Overwrite Protection/Single Shot Transmission Register 2

OPSS16

OPSS28

OPSS29

OPSS30

OPSS31

OPSS17

OPSS18

OPSS19

OPSS20

OPSS21

OPSS22

OPSS23

OPSS27

OPSS26

OPSS25

OPSS24

Reset = 0x00000xFFC0 2A70
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-78 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_TRSx Registers

Figure 27-41. Transmission Request Set Register 1

Figure 27-42. Transmission Request Set Register 2

Transmission Request Set Register 1 (CANx_TRS1)

TRS0 - RO

TRS12

TRS13

TRS14

TRS15

TRS1 - RO

TRS2 - RO

TRS3 - RO

TRS4 - RO

TRS5 - RO

TRS6 - RO

TRS7 - RO

TRS11

TRS10

TRS9

TRS8

Reset = 0x00000xFFC0 2A08
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Transmission Request Set Register 2 (CANx_TRS2)

TRS16

TRS28

TRS29

TRS30

TRS31

TRS17

TRS18

TRS19

TRS20

TRS21

TRS22

TRS23

TRS27

TRS26

TRS25

TRS24

Reset = 0x00000xFFC0 2A48

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-79

CAN Module

CANx_TRRx Registers

Figure 27-43. Transmission Request Reset Register 1

Figure 27-44. Transmission Request Reset Register 2

Transmission Request Reset Register 1 (CANx_TRR1)

TRR0 - RO

TRR12

TRR13

TRR14

TRR15

TRR1 - RO

TRR2 - RO

TRR3 - RO

TRR4 - RO

TRR5 - RO

TRR6 - RO

TRR7 - RO

TRR11

TRR10

TRR9

TRR8

Reset = 0x00000xFFC0 2A0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Transmission Request Reset Register 2 (CANx_TRR2)

TRR16

TRR28

TRR29

TRR30

TRR31

TRR17

TRR18

TRR19

TRR20

TRR21

TRR22

TRR23

TRR27

TRR26

TRR25

TRR24

Reset = 0x00000xFFC0 2A4C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-80 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_AAx Registers

Figure 27-45. Abort Acknowledge Register 1

Figure 27-46. Abort Acknowledge Register 2

Abort Acknowledge Register 1 (CANx_AA1)

AA0 - RO

AA12

AA13

AA14

AA15

AA1 - RO

AA2 - RO

AA3 - RO

AA4 - RO

AA5 - RO

All bits are W1C

AA6 - RO

AA7 - RO

AA11

AA10

AA9

AA8

Reset = 0x00000xFFC0 2A14
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Abort Acknowledge Register 2 (CANx_AA2)

AA16

AA28

AA29

AA30

AA31

AA17

AA18

AA19

AA20

AA21

All bits are W1C

AA22

AA23

AA27

AA26

AA25

AA24

Reset = 0x00000xFFC0 2A54
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-81

CAN Module

CANx_TAx Registers

Figure 27-47. Transmission Acknowledge Register 1

Figure 27-48. Transmission Acknowledge Register 2

Transmission Acknowledge Register 1 (CANx_TA1)

TA0 - RO

TA12

TA13

TA14

TA15

TA1 - RO

TA2 - RO

TA3 - RO

TA4 - RO

TA5 - RO

All bits are W1C

TA6 - RO

TA7 - RO

TA11

TA10

TA9

TA8

Reset = 0x00000xFFC0 2A10
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Transmission Acknowledge Register 2 (CANx_TA2)

TA16

TA28

TA29

TA30

TA31

TA17

TA18

TA19

TA20

TA21

All bits are W1C

TA22

TA23

TA27

TA26

TA25

TA24

Reset = 0x00000xFFC0 2A50
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-82 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MBTD Register

Figure 27-49. Temporary Mailbox Disable Register

Temporary Mailbox Disable Feature Register (CANx_MBTD)

TDPTR[4:0] (Temporary
Disable Pointer)

Reset = 0x00000xFFC0 2AAC

TDA (Temporary Disable
Acknowledge)
TDR (Temporary Disable
Request)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-83

CAN Module

CANx_RFHx Registers

Figure 27-50. Remote Frame Handling Register 1

Figure 27-51. Remote Frame Handling Register 2

Remote Frame Handling Register 1 (CANx_RFH1)

RFH0 - RO

RFH12

RFH13

RFH14

RFH15

RFH1 - RO

RFH2 - RO

RFH3 - RO

RFH4 - RO

RFH5 - RO

RFH6 - RO

RFH7 - RO

RFH11

RFH10

RFH9

RFH8

Reset = 0x00000xFFC0 2A2C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Remote Frame Handling Register 2 (CANx_RFH2)

RFH16

RFH28 - RO

RFH29 - RO

RFH30 - RO

RFH31 - RO

RFH17

RFH18

RFH19

RFH20

RFH21

RFH22

RFH23

RFH27 - RO

RFH26 - RO

RFH25 - RO

RFH24 - RO

Reset = 0x00000xFFC0 2A6C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-84 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MBIMx Registers

Figure 27-52. Mailbox Interrupt Mask Register 1

Figure 27-53. Mailbox Interrupt Mask Register 2

Mailbox Interrupt Mask Register 1 (CANx_MBIM1)

MBIM0

MBIM12

MBIM13

MBIM14

MBIM15

MBIM1

MBIM2

MBIM3

MBIM4

MBIM5

MBIM6

MBIM7

MBIM11

MBIM10

MBIM9

MBIM8

Reset = 0x00000xFFC0 2A28
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Mailbox Interrupt Mask Register 2 (CANx_MBIM2)

MBIM16

MBIM28

MBIM29

MBIM30

MBIM31

MBIM17

MBIM18

MBIM19

MBIM20

MBIM21

MBIM22

MBIM23

MBIM27

MBIM26

MBIM25

MBIM24

Reset = 0x00000xFFC0 2A68
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-85

CAN Module

CANx_MBTIFx Registers

Figure 27-54. Mailbox Transmit Interrupt Flag Register 1

Figure 27-55. Mailbox Transmit Interrupt Flag Register 2

Mailbox Transmit Interrupt Flag Register 1 (CANx_MBTIF1)

MBTIF0 - RO

MBTIF12

MBTIF13

MBTIF14

MBTIF15

MBTIF1 - RO

MBTIF2 - RO

MBTIF3 - RO

MBTIF4 - RO

MBTIF5 - RO

All bits are W1C

MBTIF6 - RO

MBTIF7 - RO

MBTIF11

MBTIF10

MBTIF9

MBTIF8

Reset = 0x00000xFFC0 2A20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Mailbox Transmit Interrupt Flag Register 2 (CANx_MBTIF2)

MBTIF16

MBTIF28

MBTIF29

MBTIF30

MBTIF31

MBTIF17

MBTIF18

MBTIF19

MBTIF20

MBTIF21

All bits are W1C

MBTIF22

MBTIF23

MBTIF27

MBTIF26

MBTIF25

MBTIF24

Reset = 0x00000xFFC0 2A60
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-86 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MBRIFx Registers

Figure 27-56. Mailbox Receive Interrupt Flag Register 1

Figure 27-57. Mailbox Receive Interrupt Flag Register 2

Mailbox Receive Interrupt Flag Register 1 (CANx_MBRIF1)

MBRIF0

MBRIF12

MBRIF13

MBRIF14

MBRIF15

MBRIF1

MBRIF2

MBRIF3

MBRIF4

MBRIF5

All bits are W1C

MBRIF6

MBRIF7

MBRIF11

MBRIF10

MBRIF9

MBRIF8

Reset = 0x00000xFFC0 2A24
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Mailbox Receive Interrupt Flag Register 2 (CANx_MBRIF2)

MBRIF16

MBRIF28 - RO

MBRIF29 - RO

MBRIF30 - RO

MBRIF31 - RO

MBRIF17

MBRIF18

MBRIF19

MBRIF20

MBRIF21

All bits are W1C

MBRIF22

MBRIF23

MBRIF27 - RO

MBRIF26 - RO

MBRIF25 - RO

MBRIF24 - RO

Reset = 0x00000xFFC0 2A64
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-87

CAN Module

Universal Counter Registers
Figure 27-58 through Figure 27-60 show the universal counter registers.

CANx_UCCNF Register

Figure 27-58. Universal Counter Configuration Mode Register

Universal Counter Configuration Mode Register (CANx_UCCNF)

UCCNF[3:0] (Universal
Counter Configuration)

Reset = 0x00000xFFC0 2ACC

UCRC (Universal Counter
Reload/Clear) - WO

UCCT (Universal Counter
CAN Trigger)

UCE (Universal Counter
Enable)

0 - No action
1 - write 1 to reload counter in

watchdog mode
write 1 to clear counter in
all other modes

0 - No trigger
1 - mailbox 4 reception reloads

counter in watchdog mode
 mailbox 4 reception clears

counter in time stamp mode
 no effect in other modes

0 - Counter disabled
1 - Counter enabled

0x0 - Reserved
0x1 - Time stamp mode
0x2 - Watchdog mode
0x3 - Auto-transmit mode
0x4 - Reserved
0x5 - Reserved
0x6 - Count error frames
0x7 - Count overload frames
0x8 - Count arbitration lost
0x9 - Count aborted

transmissions
0xA - Count successful

 transmissions
0xB - Count rejected
 receive messages
0xC - Count receive
 message lost
0xD - Count successful

 receptions
0xE - Count stored receptions
0xF - Count valid messages

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

CAN Registers

27-88 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_UCCNT Register

CANx_UCRC Register

Figure 27-59. Universal Counter Register

Figure 27-60. Universal Counter Reload/Capture Register

Universal Counter Register (CANx_UCCNT)

UCCNT[15:0]

Reset = 0x00000xFFC0 2AC4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Universal Counter Reload/Capture Register (CANx_UCRC)

UCVAL[15:0]

Reset = 0x00000xFFC0 2AC8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 27-89

CAN Module

Error Registers
Figure 27-61 through Figure 27-63 show the CAN controller error
registers.

CANx_CEC Register

CANx_ESR Register

Figure 27-61. Error Counter Register

Figure 27-62. Error Status Register

CAN Error Counter Register (CANx_CEC)

RXECNT[7:0] (Receive
Error Counter)

Reset = 0x00000xFFC0 2A90

TXECNT[7:0] (Transmit Error
Counter)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Error Status Register (CANx_ESR)
All bits are W1C

ACKE (Acknowledge Error)

Reset = 0x00200xFFC0 2AB4

SER (Stuff Bit Error)
CRCE (CRC Error)

FER (Form Error)
BEF (Bit Error Flag)
SA0 (Stuck at Dominant)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 00 0

CAN Registers

27-90 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_EWR Register

Figure 27-63. Error Counter Warning Level Register

CAN Error Counter Warning Level Register (CANx_EWR)

EWLREC[7:0] (Receive
Error Warning Limit)

Reset = 0x60600xFFC0 2AB0

EWLTEC[7:0] (Transmit Error
Warning Limit)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 0 0 0 0 0 1 1 0 0 0 00 1

ADSP-BF54x Blackfin Processor Hardware Reference 27-91

CAN Module

Programming Examples
The following CAN code examples (Listing 27-2 through Listing 27-4 on
page 27-95) show how to program the CAN hardware and timing, initial-
ize mailboxes, perform transfers, and service interrupts. Each of these code
examples assumes that the appropriate header file is included in the source
code (that is, #include <defBF549.h> for ADSP-BF549 projects).

CAN Setup Code
The following code initializes the port pins to connect to the CAN0 con-
troller and configures the CAN timing parameters.

Listing 27-2. Initializing CAN0

Initialize_CAN0:

P0.H = HI(PORTG_FER); /* CAN pins multiplexed on Port G */

P0.L = LO(PORTG_FER);

R0 = 0x3000 (Z); /* Enable CAN0 TX/RX pins on PG12/PG13 */
W[P0] = R0;
SSYNC;

/* ===
** Set CAN Bit Timing
**
** CANx_TIMING - SJW, TSEG2, and TSEG1 governed by:
** SJW <= TSEG2 <= TSEG1
**
** ===
*/

P0.H = HI(CAN0_TIMING);

P0.L = LO(CAN0_TIMING);

Programming Examples

27-92 ADSP-BF54x Blackfin Processor Hardware Reference

R0 = 0x0334(Z); /* SJW = 3, TSEG2 = 3, TSEG1 = 4 */

W[P0] = R0;
SSYNC;

/* ===
** CANx_CLOCK - Calculate Prescaler (BRP)
**
** Assume a 500kbps CAN rate is desired, which means
** the duration of the bit on the CAN bus (tBIT) is
** 2us. Using the tBIT formula from the HRM, solve for
** TQ:
**
** tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))
** 2us = TQ x (1 + (4 + 1) + (3 + 1))
** 2e-6 = TQ x (1 + 5 + 4)
** TQ = 2e-6 / 10
** TQ = 2e-7
**
** Once time quantum (TQ) is known, BRP can be derived
** from the TQ formula in the HRM. Assume the default
** PLL settings are used for the ADSP-BF54x EZ-KIT,
** which implies that System Clock (SCLK) is 50MHz:
**
** TQ = (BRP+1) / SCLK
** 2e-7 = (BRP+1) / 50e6
** (BRP+1) = 10
** BRP = 9
*/
P0.L = LO(CAN0_CLOCK);
R0 = 9(Z);
W[P0] = R0;
SSYNC;

RTS;

ADSP-BF54x Blackfin Processor Hardware Reference 27-93

CAN Module

Initializing and Enabling CAN Mailboxes
Before the CAN can transfer data, the mailbox area must be properly set
up and the controller must be initialized properly.

Listing 27-3. Initializing and Enabling Mailboxes

CAN0_Initialize_Mailboxes:

P0.H = HI(CAN0_MD1); /* Configure Mailbox Direction */
P0.L = LO(CAN0_MD1);
R0 = W[P0](Z);
BITCLR(R0, BITPOS(MD8)); /* Set MB08 for Transmit */
BITSET(R0, BITPOS(MD9)); /* Set MB09 for Receive */
W[P0] = R0;
SSYNC;

/* ===
** Populate CAN Mailbox Area
**
** Mailbox 8 transmits ID 0x411 with 4 bytes of data
** Bytes 0 and 1 are a data pattern 0xAABB. Bytes 2
** and 3 will be a count value for the number of times
** that message is properly sent.
**
** Mailbox 9 will receive message ID 0x007
**
** ===
*/

/* Initialize Mailbox 8 For Transmit */
R0 = 0x411 << 2; /* Put Message ID in correct slot */
P0.L = LO(CAN0_MB_ID1(8)); /* Access MB08 ID1 Register */
W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;

P0.L = LO(CAN0_MB_ID0(8));
W[P0] = R0; /* Zero Out Lower ID Register */

R0 = 4;

P0.L = LO(CAN0_MB_LENGTH(8));

Programming Examples

27-94 ADSP-BF54x Blackfin Processor Hardware Reference

W[P0] = R0; /* Set DLC to 4 Bytes */

R0 = 0xAABB(Z);

P0.L = LO(CAN0_MB_DATA3(8));

W[P0] = R0; /* Byte0 = 0xAA, Byte1 = 0xBB */

R0 = 1;

P0.L = LO(CAN0_MB_DATA2(8));

W[P0] = R0; /* Initialize Count to 1 */

/* Initialize Mailbox 9 For Receive */

R0 = 0x007 << 2; /* Put Message ID in correct slot */

P0.L = LO(CAN0_MB_ID1(9)); /* Access MB08 ID1 Register */

W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;

P0.L = LO(CAN0_MB_ID0(9));

W[P0] = R0; /* Zero Out Lower ID Register */

SSYNC;

/* Enable the Configured Mailboxes */

P0.L = LO(CAN0_MC1);

R0 = W[P0](Z);

BITSET(R0, BITPOS(MC8)); /* Enable MB08 */

BITSET(R0, BITPOS(MC9)); /* Enable MB09 */

W[P0] = R0;

SSYNC;

RTS;

Initiating CAN Transfers and Processing Interrupts
After the mailboxes are properly set up, transfers can be requested in the
CAN controller. This code example initializes the CAN-level interrupts,
takes the CAN controller out of configuration mode, requests a transfer,

ADSP-BF54x Blackfin Processor Hardware Reference 27-95

CAN Module

and then waits for and processes CAN TX and RX interrupts. This
example assumes that the CAN0_RX_HANDLER and CAN0_TX_HANDLER have
been properly registered in the system interrupt controller and that the
interrupts are enabled properly in the SIC_IMASK0 register.

Listing 27-4. CAN Transfers and Interrupts

CAN0_SetupIRQs_and_Transfer:
P0.H = HI(CAN0_MBIM1);
P0.L = LO(CAN0_MBIM1);

R0 = 0;

BITSET(R0, BITPOS(MBIM8)); /* Enable Mailbox Interrupts */

BITSET(R0, BITPOS(MBIM9)); /* for Mailboxes 8 and 9 */

W[P0] = R0;

SSYNC;

/* Leave CAN Configuration Mode (Clear CCR) */

P0.L = LO(CAN0_CONTROL);

R0 = W[P0](Z);

BITCLR(R0, BITPOS(CCR));

W[P0] = R0;

P0.L = LO(CAN0_STATUS);

/* Wait for CAN Configuration Acknowledge (CCA) */

WAIT_FOR_CCA_TO_CLEAR:

R1 = W[P0](Z);

CC = BITTST (R1, BITPOS(CCA));

IF CC JUMP WAIT_FOR_CCA_TO_CLEAR;
P0.L = LO(CAN0_TRS1);
R0 = TRS8; /* Transmit Request MB08 */

W[P0] = R0; /* Issue Transmit Request */

SSYNC;

Wait_Here_For_IRQs:

NOP;

NOP;

NOP;

Programming Examples

27-96 ADSP-BF54x Blackfin Processor Hardware Reference

JUMP Wait_Here_For_IRQs;

/* ===

** CAN0_TX_HANDLER

**

** ISR clears the interrupt request from MB8, writes

** new data to be sent, and requests to send again

**

** ===

*/

CAN0_TX_HANDLER:

[--SP] = (R7:6, P5:5); /* Save Clobbered Registers */

[--SP] = ASTAT;

P5.H = HI(CAN0_MB_DATA2(8));

P5.L = LO(CAN0_MB_DATA2(8));

R7 = W[P5](Z); /* Retrieve Previously Sent Data */

R6 = 0xFF; /* Mask Upper Byte to Check Lower */

R6 = R6 & R7; /* Byte for Wrap */

R5 = 0xFF; /* Check Wrap Condition */

CC = R6 == R5; /* Check if Lower Byte Wraps */

IF CC JUMP HANDLE_COUNT_WRAP;

R7 += 1; /* If no wrap, Increment Count */

JUMP PREPARE_TO_SEND;

HANDLE_COUNT_WRAP:

R6 = 0xFF00(Z); /* Mask Off Lower Byte */

R7 = R7 & R6; /* Sets Lower Byte to 0 */

R6 = 0x0100(Z); /* Increment Value for Upper Byte */

R7 = R7 + R6; /* Increment Upper Byte */

PREPARE_TO_SEND:

W[P5] = R7; /* Set New TX Data */

P5.L = LO(CAN0_TRS1);

R7 = TRS8;

W[P5] = R7; /* Issue New Transmit Request */

P5.L = LO(CAN0_MBTIF1);

R7 = MBTIF8;

ADSP-BF54x Blackfin Processor Hardware Reference 27-97

CAN Module

W[P5] = R7; /* Clear Interrupt Request Bit for MB08 */

ASTAT = [SP++]; /* Restore Clobbered Registers */

(R7:6, P5:5) = [SP++];

SSYNC;

RTI;

/* ===

** CAN0_RX_HANDLER

**

** ISR clears the interrupt request from MB9, writes

** new data to be sent, and requests to send again

**

** ===*/

CAN0_RX_HANDLER:
[--SP] = (R7:7, P5:4); /* Save Clobbered Registers */
[--SP] = ASTAT;

P4.H = CAN_RX_WORD; /* Set Pointer to Storage Element */

P4.L = CAN_RX_WORD;

P5.H = HI(CAN0_MBRMP1);

P5.L = LO(CAN0_MBRMP1);

R7 = RMP9;

W[P5] = R7; /* Clear Message Pending for MB09 */

P5.L = LO(CANx_MBRIF1);

R7 = MBRIF9;

W[P5] = R7; /* Clear Interrupt Request Bit for MB09 */

P5.L = LO(CAN_RMP1);

W[P5] = R7; /* Clear Message Pending Bit for MB09 */

P5.L = LO(CAN0_MB_DATA3(9));

R7 = W[P5](Z); /* Read data from mailbox */

W[P4] = R7; /* Store data to SDRAM */

ASTAT = [SP++]; /* Restore Clobbered Registers */

(R7:7, P5:4) = [SP++];

SSYNC;

RTI;

Programming Examples

27-98 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 28-1

28 SPI-COMPATIBLE PORT
CONTROLLERS

This chapter describes the serial peripheral interface (SPI) ports and
includes the following sections:

• “Overview” on page 28-1

• “Interface Overview” on page 28-3

• “Description of Operation” on page 28-16

• “Functional Description” on page 28-26

• “Programming Model” on page 28-30

• “SPI Registers” on page 28-43

• “Programming Examples” on page 28-50

Overview
The processor has up to three SPI ports that provide an I/O interface to a
wide variety of SPI-compatible peripheral devices.

With a range of configurable options, the SPI ports provide a glueless
hardware interface with other SPI-compatible devices. SPI is a full-duplex
synchronous serial interface, supporting master modes, slave modes, and
multimaster environments. The SPI-compatible peripheral implementa-
tion also supports programmable bit rate and clock phase/polarities. The
SPI features the use of open-drain drivers to support the multimaster sce-
nario and to avoid data contention.

Overview

28-2 ADSP-BF54x Blackfin Processor Hardware Reference

SPI is a four-wire interface consisting of two data signals, a device select
signal, and a clock signal. Table 28-1 lists the critical SPI signals.

Each SPI includes these features:

• Full duplex, synchronous serial interface

• Supports 8- or 16-bit word sizes

• Programmable baud rate, clock phase, and polarity

• Supports multimaster environments

• Integrated DMA controller

• Double-buffered transmitter and receiver

• 3 SPI chip select outputs, 1 SPI device select input

• Programmable shift direction of MSB or LSB first

• Interrupt generation on mode fault, overflow, and underflow

• Shadow register to aid debugging

Table 28-1. SPI Signals

Signal Name Function

SPIxSCK SPI Clock Signal Pin

SPIxMOSI Master Out Slave In Data Pin

SPIxMISO Master In Slave Out Data Pin

SPIxSS SPI Device-Select Input Pin

ADSP-BF54x Blackfin Processor Hardware Reference 28-3

SPI-Compatible Port Controllers

Interface Overview
Figure 28-1 provides a block diagram of each SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SPIxSCK rate, to and from other SPI devices. SPI data is
transmitted and received at the same time through the use of a shift regis-
ter. When an SPI transfer occurs, data is simultaneously transmitted
(shifted serially out of the shift register) as new data is received (shifted
serially into the other end of the same shift register). The SPIxSCK syn-
chronizes the shifting and sampling of the data on the two serial data pins.

Figure 28-1. SPIx Block Diagram

SPIxMOSI SPIxMISO SPIxSCK

SPIx INTERFACE LOGIC

SHIFT REGISTER

SPIx_RDBR
RECEIVE

REGISTER

SPIx_TDBR
TRANSMIT
REGISTER

SPIx IRQ
OR DMA
REQUEST

SPIx
INTERNAL

CLOCK
GENERATOR

SPIx_CTL
SPIx_STAT

16

16

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPIxSS

Interface Overview

28-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interface
All of the SPI signals are accessible through GPIO ports. The four SPI sig-
nals that make up the 4-wire interface (SPIxSCK, SPIxMISO, SPIxMOSI, and
SPIxSS) are sometimes multiplexed with other peripherals. By default, all
pins function as GPIOs and each can be individually enabled to function
as an SPI pin by the respective bits in the appropriate PORTx_FER register.

If the configurable pin is shared among multiple peripherals, the associ-
ated PORTx_MUX register will also need to be written to explicitly configure
it as SPI. Table 28-2 provides a mapping of SPI pins to GPIO pins along
with an explanation regarding how to enable these pins for use as SPI.

Table 28-2. SPI/GPIO Pin Mapping and Programming Instructions

SPI Signal GPIO Pin To configure for SPI use

SPI0SCK PE0 PORTE_FER[0] = 1, PORTE_MUX[1:0] = b#00

SPI0MOSI PE2 PORTE_FER[2] = 1, PORTE_MUX[5:4] = b#00

SPI0MISO PE1 PORTE_FER[1] = 1, PORTE_MUX[3:2] = b#00

SPI0SS PE3 PORTE_FER[3] = 1, PORTE_MUX[7:6] = b#00

SPI1SCK PG8 PORTG_FER[8] = 1, PORTG_MUX[17:16] = b#00

SPI1MOSI PG10 PORTG_FER[10] = 1, PORTG_MUX[21:20] = b#00

SPI1MISO PG9 PORTG_FER[9] = 1, PORTG_MUX[19:18] = b#00

SPI1SS PG11 PORTG_FER[11] = 1, PORTG_MUX[23:22] = b#00

SPI2SCK PB12 PORTB_FER[12] = 1, PORTB_MUX[25:24] = b#00

SPI2MOSI PB13 PORTB_FER[13] = 1, PORTB_MUX[27:26] = b#00

SPI2MISO PB14 PORTB_FER[14] = 1, PORTB_MUX[29:28] = b#00

SPI2SS PB8 PORTB_FER[8] = 1, PORTB_MUX[17:16] = b#00

ADSP-BF54x Blackfin Processor Hardware Reference 28-5

SPI-Compatible Port Controllers

Each SPI also features three slave select output signals that are sometimes
multiplexed with other peripheral signals. They can be enabled on an indi-
vidual basis using the PORTx_FER and PORTx_MUX registers. Again, the pins
are enabled as GPIO by default. Table 9-3 on page 9-9 provides a map-
ping of SPI pins to GPIO pins along with an explanation regarding how
to enable these pins for use as SPI. For more information, see Chapter 9,
“General-Purpose Ports” in the ADSP-BF54x Blackfin Processor Hardware
Reference (Volume 1 of 2).

Serial Peripheral Interface Clock Signal (SPIxSCK)

The SPIxSCK signal is the serial clock signal. This control signal is driven
by the master and controls the rate at which data is transferred. The mas-
ter may transmit data at a variety of bit rates. The SPIxSCK signal cycles
once for each bit transmitted. It is an output signal if the device is config-
ured as a master, and an input signal if the device is configured as a slave.

The SPIxSCK is a gated clock that is active during data transfers only for
the length of the transferred word. The number of active clock edges is
equal to the number of bits driven on the data lines. Slave devices ignore
the serial clock if the SPIxSS input is driven inactive (high).

The SPIxSCK is used to shift out and shift in the data driven on the
SPIxMISO and SPIxMOSI lines, see “SPI Transfer Protocols” on page 28-17.
Clock polarity and clock phase relative to data are programmable in the
SPIx_CTL register and define the transfer format.

The SPIxSCK signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPI clock signal, be
sure to first configure the appropriate PORTx_FER register to enable the pin
for peripheral use, and then verify that the associated PORTx_MUX register is
properly set to specifically enable the SPI clock functionality. For more
information, see Chapter 9, “General-Purpose Ports” in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2).

Interface Overview

28-6 ADSP-BF54x Blackfin Processor Hardware Reference

Master Out Slave In (MOSI)

The SPIxMOSI signal is the Master Out Slave In pin, one of the bidirec-
tional I/O data pins. If the processor is configured as a master, the
SPIxMOSI pin becomes a data transmit (output) pin, transmitting output
data. If the processor is configured as a slave, the SPIxMOSI pin becomes a
data receive (input) pin, receiving input data. In an SPI interconnection,
the data is shifted out from the SPIxMOSI output pin of the master and
shifted into the SPIxMOSI input(s) of the slave(s).

The SPIxMOSI signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPI SPIxMOSI signal, be
sure to first configure the appropriate PORTx_FER register to enable the pin
for peripheral use, and then verify that the associated PORTx_MUX register is
properly set to specifically enable the SPI Master Out Slave In functional-
ity. For more information, see Chapter 9, “General-Purpose Ports” in the
ADSP-BF54x Blackfin Processor Hardware Reference.

Master In Slave Out (MISO)

The SPIxMISO signal is the Master In Slave Out pin, one of the bidirec-
tional I/O data pins. If the processor is configured as a master, the
SPIxMISO pin becomes a data receive (input) pin, receiving input data. If
the processor is configured as a slave, the SPIxMISO pin becomes a data
transmit (output) pin, transmitting output data. In an SPI interconnec-
tion, the data is shifted out from the SPIxMISO output pin of the slave and
shifted into the SPIxMISO input pin of the master.

The SPIxMISO signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPIxMISO signal, be sure
to first configure the appropriate PORTx_FER register to enable the pin for
peripheral use, and then verify that the associated PORTx_MUX register is

ADSP-BF54x Blackfin Processor Hardware Reference 28-7

SPI-Compatible Port Controllers

properly set to specifically enable the SPI Master In Slave Out functional-
ity. For more information, see Chapter 9, “General-Purpose Ports” in the
ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

Only one slave is allowed to transmit data at any given time.

The SPI configuration example in Figure 28-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host micro controller is
the SPI master.

The processor can be booted by way of its SPI interface to allow
user application code and data to be downloaded before runtime.

Serial Peripheral Interface Slave Select Input Signal

The SPIxSS signal is the SPI serial peripheral slave select input signal. This
is an active-low signal used to enable a processor when it is configured as a
slave device. This input-only pin behaves like a chip select and is provided
by the master device for the slave devices. For a master device, it can act as
an error signal input in case of the multimaster environment. In multi-
master mode, if the SPIxSS input signal of a master is asserted (driven
low), and the PSSE bit in the SPIx_CTL register is enabled, an error has
occurred. This means that another device is also trying to be the master
device.

Figure 28-2. ADSP-BF54x as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

ADSP-BF54x PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO SPIxMISO

SPIxSCLK

SPIxMOSI

SPIxSSS_SEL

Interface Overview

28-8 ADSP-BF54x Blackfin Processor Hardware Reference

The SPIxSS signal is routed to a shared port pin which functions as a
GPIO by default. To enable this pin for use as the SPI slave-select input
signal, be sure to first configure the appropriate PORTx_FER register is
properly set to enable the pin for peripheral use, and then verify that the
associated PORTx_MUX register is set to specifically enable the SPI slave
select input functionality. For more information, see Chapter 9, “Gen-
eral-Purpose Ports” in the ADSP-BF54x Blackfin Processor Hardware
Reference (Volume 1 of 2).

The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SPIxSCK period. See Figure 28-3. The minimum time
between successive word transfers (T4) is two SPIxSCK periods. This is
measured from the last active edge of SPIxSCK of one word to the first
active edge of SPIxSCK of the next word. This is independent of the con-
figuration of the SPI (CPHA, MSTR, and so on).

For a master device with CPHA = 0, the slave select output is inactive
(high) for at least one-half the SPIxSCK period. In this case, T1 and T2 will
each always be equal to one-half the SPIxSCK period.

Figure 28-3. SPI Timing

T1 T2

SPIxSS
(TO SLAVE)

SPIxSCK
(CPOL =1)

T4
T3

ADSP-BF54x Blackfin Processor Hardware Reference 28-9

SPI-Compatible Port Controllers

Serial Peripheral Interface Slave Select Enable Output Signals

When operating in master mode, Blackfin processors may use any GPIO
pin to enable individual SPI slave devices by software. In addition, the SPI
module provides hardware support to generate up to three slave select
enable signals automatically. See “SPIx Flag Register” on page 28-46 for
details.

These signals are always active low in the SPI protocol. Since the respec-
tive pins are not driven during reset, it is recommended to pull them up
by a resistor.

Table 28-3 summarizes how to setup the port control logic in order to
enable the individual slave select enable outputs.

Table 28-3. SPI Slave Select Enable Setup

Signal Name Pin Name Port Control
To Enable Signal

SPI0SEL1 PE4 Set bit 4 in PORTE_FER = 1
Set PORTE_MUX[9:8] = b#00

SPI0SEL2 PE5 Set bit 5 in PORTE_FER = 1
Set PORTE_MUX[11:10] = b#00

SPI0SEL3 PE6 Set bit 6 in PORTE_FER = 1
Set PORTE_MUX[13:12] = b#00

SPI1SEL1 PG5 Set bit 5 in PORTG_FER = 1
Set PORTG_MUX[11:10] = b#00

SPI1SEL2 PG6 Set bit 6 in PORTG_FER = 1
Set PORTG_MUX[13:12] = b#00

SPI1SEL3 PG7 Set bit 4 in PORTG_FER = 1
Set PORTG_MUX[15:14] = b#00

SPI2SEL1 PB9 Set bit 9 in PORTB_FER = 1
Set PORTB_MUX[19:18] = b#00

Interface Overview

28-10 ADSP-BF54x Blackfin Processor Hardware Reference

If enabled as a master, each SPI uses its SPIx_FLG register to enable up to
three general-purpose port pins to be used as individual slave select lines.
Before manipulating this register, the PBx, PEx, and PGx port pins that are
to be used as SPI slave-select outputs must first be configured as such. To
work as SPI output pins, the PBx, PEx, and PGx pins must be enabled for
use by SPI in the appropriate PORTx_FER and PORTx_MUX registers. For
more information, see Chapter 9, “General-Purpose Ports” in the
ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

Refer to Table 28-4 for more details regarding which port pins must be
configured prior to being modified by way of the SPIx_FLG register.

In slave mode, the SPIx_FLG bits have no effect, and each SPI uses the
SPIxSS input as a slave select. Just as in the master mode case, the SPIxSS
pin must first be configured as a peripheral pin in the PORTx_MUX register,
and then as an SPI pin in the PORTx_FER register. Figure 28-14 on
page 28-46 shows the SPIx_FLG register diagram.

SPI2SEL2 PB10 Set bit 10 in PORTB_FER = 1
Set PORTB_MUX[21:20] = b#00

SPI2SEL3 PB11 Set bit 11 in PORTB_FER = 1
Set PORTB_MUX[23:22] = b#00

Table 28-4. SPIx_FLG Bit Mapping to Port Pins

Bit Name Function Port Pin Default

0 Reserved 0

1 FLS1 SPIxSEL1 Enable SPI0: PE4
SPI1: PG5
SPI2: PB9

0

Table 28-3. SPI Slave Select Enable Setup (Cont’d)

Signal Name Pin Name Port Control
To Enable Signal

ADSP-BF54x Blackfin Processor Hardware Reference 28-11

SPI-Compatible Port Controllers

2 FLS2 SPIxSEL2 Enable SPI0: PE5
SPI1: PG6
SPI2: PB10

0

3 FLS3 SPIxSEL3 Enable SPI0: PE6
SPI1: PG7
SPI2: PB11

0

4 Reserved 0

5 Reserved 0

6 Reserved 0

7 Reserved 0

8 Reserved 1

9 FLG1 SPIxSEL1 Value SPI0: PE4
SPI1: PG5
SPI2: PB9

1

10 FLG2 SPIxSEL2 Value SPI0: PE5
SPI1: PG6
SPI2: PB10

1

11 FLG3 SPIxSEL3 Value SPI0: PE6
SPI1: PG7
SPI2: PB11

1

12 Reserved 1

13 Reserved 1

14 Reserved 1

15 Reserved 1

Table 28-4. SPIx_FLG Bit Mapping to Port Pins (Cont’d)

Bit Name Function Port Pin Default

Interface Overview

28-12 ADSP-BF54x Blackfin Processor Hardware Reference

Slave Select Inputs

If the SPI is in slave mode, SPIxSS acts as the slave select input. When
enabled as a master, SPIxSS can serve as an error detection input for the
SPI in a multimaster environment. The PSSE bit in SPIx_CTL enables this
feature. When PSSE = 1, the SPIxSS input is the master mode error input.
Otherwise, SPIxSS is ignored.

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPIx_FLG register are used in a multiple slave SPI
environment. For example, if there are four SPI devices in the system
including a processor master, the master processor can support the SPI
mode transactions across the other three devices. This configuration
requires only one master processor in this multislave environment. For
example, assume that the SPI is the master. The three port pins that can
be configured as SPI master mode slave-select output pins can be con-
nected to each of the slave SPI device’s SPIxSS pins. In this configuration,
the FLSx bits in SPIx_FLG can be used in three cases.

In cases 1 and 2, the processor is the master and the three microcontrol-
lers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all three SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all four devices connected by way of SPI ports can be
other processors.

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the two other slave processors) at a time and transmit broadcast
data to all three at the same time. This EMISO feature may be avail-

ADSP-BF54x Blackfin Processor Hardware Reference 28-13

SPI-Compatible Port Controllers

able in some other microcontrollers. Therefore, it is possible to use
the EMISO feature with any other SPI device that includes this
functionality.

Figure 28-4 shows one processor as a master with three other SPI-compat-
ible devices as slaves.

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

The SPIF bit is set when the SPI port is disabled.

Upon entering DMA mode, the transmit buffer and the receive buffer
become empty. That is, the TXS bit and the RXS bit are initially cleared
upon entering DMA mode.

Figure 28-4. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

SPIxMOSISPIxMISO SPIxSCK

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PB/PE/PGPB/PE/PG

PB/PE/PG

VDD

SPISS

SPIxSS

SPISS SPISS

Interface Overview

28-14 ADSP-BF54x Blackfin Processor Hardware Reference

When using DMA for SPI transmit, the DMA_DONE interrupt signifies that
the DMA FIFO is empty. However, at this point there may still be data in
the SPI DMA FIFO waiting to be transmitted. Therefore, software needs
to poll TXS in the SPIx_STAT register until it goes high for 2 successive
reads, at which point the SPI DMA FIFO will be empty. When the SPIF
bit subsequently gets set, the last word is transferred and the SPI can be
disabled or enabled for another mode.

Internal Interfaces
Each SPI has dedicated connections to the processor’s PAB and DAB.

The low-latency PAB bus is used to map the SPI resources into the system
MMR space through the PAB bus. For the PAB accesses to SPI MMRs,
the primary performance criteria is latency, not throughput. Transfer
latencies for both read and write transfers on the PAB are 2 SCLK cycles.

The DAB bus provides a means for DMA SPI transfers to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory. The SPI peripheral, as a DMA master, is capable of
sourcing DMA accesses. A single arbiter supports a programmable priority
arbitration policy for access to the DAB. For more information on the
default arbitration priority, see Chapter 2, “Chip Bus Hierarchy” in the
ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

DMA Functionality

Each SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.

ADSP-BF54x Blackfin Processor Hardware Reference 28-15

SPI-Compatible Port Controllers

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DAB.

When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPIx_STAT register
until it goes low for two successive reads, at which point the SPI
DMA FIFO will be empty. When the SPIF bit subsequently goes
high, the last word is transferred and the SPI can be disabled or
enabled for another mode.

The four-word FIFO is cleared when the SPI port is disabled.

SPI Transmit Data Buffer
The SPIx_TDBR register is a 16-bit read-write register. Data is loaded into
this register before being transmitted. Just prior to the beginning of a data
transfer, the data in SPIx_TDBR is loaded into the internal shift register,
which is inaccessible by software. A read of SPIx_TDBR can occur at any
time and does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads
data into the SPIx_TDBR register for transmission just prior to the begin-
ning of a data transfer. A write to SPIx_TDBR should not occur in this
mode because this data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of
SPIx_TDBR are repeatedly transmitted. A write to SPIx_TDBR is permitted in
this mode, and this data is transmitted.

If the SZ control bit in the SPIx_CTL register is set, SPIx_TDBR may be reset
to 0 under certain circumstances.

Description of Operation

28-16 ADSP-BF54x Blackfin Processor Hardware Reference

If multiple writes to SPIx_TDBR occur while a transfer is already in
progress, only the last data written is transmitted. None of the intermedi-
ate values written to SPIx_TDBR are transmitted. Multiple writes to
SPIx_TDBR are possible, but not recommended.

SPI Receive Data Buffer
The SPIx_RDBR register is a 16-bit read-only register. At the end of a data
transfer, the data in the shift register is loaded into SPIx_RDBR. During a
DMA receive operation, the data in SPIx_RDBR is automatically read by the
DMA. When SPIx_RDBR is read by way of software, the RXS bit is cleared
and an SPI transfer may be initiated (if TIMOD = b#00).

The SPIx_SHADOW register is provided for use in debugging software. This
register is at a different address than the receive data buffer, SPIx_RDBR,
but its contents are identical to that of SPIx_RDBR. When a software read
of SPIx_RDBR occurs, the RXS bit in SPIx_STAT is cleared and an SPI trans-
fer may be initiated (if TIMOD = b#00 in SPIx_CTL). No such hardware
action occurs when the SPIx_SHADOW register is read. The SPIx_SHADOW reg-
ister is read-only.

Description of Operation
The following sections describe the operation of the SPI.

ADSP-BF54x Blackfin Processor Hardware Reference 28-17

SPI-Compatible Port Controllers

SPI Transfer Protocols
The SPI protocol supports four different combinations of serial clock
phase and polarity (SPI modes 0-3). These combinations are selected
using the CPOL and CPHA bits in SPIx_CTL, as shown in Figure 28-5.

The figures “SPI Transfer Protocol for CPHA = 0” on page 28-18 and
“SPI Transfer Protocol for CPHA = 1” on page 28-19 demonstrate the
two basic transfer formats as defined by the CPHA bit. Two waveforms are
shown for SPIxSCK—one for CPOL = 0 and the other for CPOL = 1. The
diagrams may be interpreted as master or slave timing diagrams since the
SPIxSCK, SPIxMISO, and SPIxMOSI pins are directly connected between the
master and the slave. The SPIxMISO signal is the output from the slave
(slave transmission), and the SPIxMOSI signal is the output from the master
(master transmission). The SPIxSCK signal is generated by the master, and
the SPIxSS signal is the slave device select input to the slave from the mas-
ter. The diagrams represent an 8-bit transfer (SIZE = 0) with the Most

Figure 28-5. SPI Modes of Operation

Description of Operation

28-18 ADSP-BF54x Blackfin Processor Hardware Reference

Significant Bit (MSB) first (LSBF = 0). Any combination of the SIZE and
LSBF bits of SPIx_CTL is allowed. For example, a 16-bit transfer with the
Least Significant Bit (LSB) first is another possible configuration.

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPIxSS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPIxSS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software by way of manipulation of SPIx_FLG.

Figure 28-6 shows the SPI transfer protocol for CPHA = 0. Note SPIxSCK
starts toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 28-6. SPI Transfer Protocol for CPHA = 0

6MSB

SPIxSS
(TO SLAVE)

SPIxSCK
(CPOL = 0)

SPIxSCK
(CPOL = 1)

SPIxMOSI
(FROM MASTER)

SPIxMISO
(FROM SLAVE)

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

CLOCK CYCLE
NUMBER

 * *

 *

(* = UNDEFINED)

ADSP-BF54x Blackfin Processor Hardware Reference 28-19

SPI-Compatible Port Controllers

Figure 28-7 shows the SPI transfer protocol for CPHA = 1. Note SPIxSCK
starts toggling at the beginning of the data transfer, SIZE = 0, and
LSBF = 0.

SPI General Operation
Each SPI can be used in a single master as well as multimaster environ-
ment. The SPIxMOSI, SPIxMISO, and the SPIxSCK signals are all tied
together in both configurations. SPI transmission and reception are always
enabled simultaneously, unless the broadcast mode is selected. In broad-
cast mode, several slaves can be enabled to receive, but only one of the
slaves must be in transmit mode driving the SPIxMISO line. If the transmit
or receive is not needed, it can simply be ignored. This section describes
the clock signals, SPI operation as a master and as a slave, and error
generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-

Figure 28-7. SPI Transfer Protocol for CPHA = 1

6MSB

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

 * *

(* = UNDEFINED)

 *

SPIxSCK
(CPOL = 0)

SPIxSCK
(CPOL = 1)

SPIxMOSI
(FROM MASTER)

SPIxMISO
(FROM SLAVE)

CLOCK CYCLE
NUMBER

SPIxSS
(TO SLAVE)

Description of Operation

28-20 ADSP-BF54x Blackfin Processor Hardware Reference

sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

In a multimaster or multislave SPI system, the data output pins (SPIxMOSI
and SPIxMISO) can be configured to behave as open drain outputs, which
prevents contention and possible damage to pin drivers. An external
pull-up resistor is required on both the SPIxMOSI and SPIxMISO pins when
this option is selected.

The WOM bit controls this option. When WOM is set and the SPI is config-
ured as a master, the SPIxMOSI pin is three-stated when the data driven out
on SPIxMOSI is a logic high. The SPIxMOSI pin is not three-stated when the
driven data is a logic low. Similarly, when WOM is set and the SPI is config-
ured as a slave, the SPIxMISO pin is three-stated if the data driven out on
SPIxMISO is a logic high.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPIxSS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode,
where several slaves can be selected to receive data from the master, but
only one slave at a time can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected by way of their SPI ports, all SPIxMOSI pins are connected
together, all SPIxMISO pins are connected together, and all SPIxSCK pins
are connected together.

ADSP-BF54x Blackfin Processor Hardware Reference 28-21

SPI-Compatible Port Controllers

For a multislave environment, the processor can make use of three pro-
grammable flags for each SPI port, which are dedicated SPI slave select
signals for the SPI slave devices. See Table 28-4 on page 28-10.

At reset, the SPI is disabled and configured as a slave.

SPI Control
The SPIx_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPIx_CTL. There are two spe-
cial bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to b#00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to b#01, the transaction is initiated when the transmit
buffer is written. A value of b#10 selects DMA receive mode and the first
transaction is initiated by enabling the SPI for DMA receive mode. Subse-
quent individual transactions are initiated by a DMA read of the
SPIx_RDBR. A value of b#11 selects DMA transmit mode and the transac-
tion is initiated by a DMA write of the SPIx_TDBR.

The PSSE bit is used to enable the SPIxSS input for master. When not
used, SPIxSS can be disabled, freeing up a chip pin as general-purpose
I/O.

The EMISO bit enables the SPIxMISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

Description of Operation

28-22 ADSP-BF54x Blackfin Processor Hardware Reference

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the SPIx_STAT register is set. See “Mode Fault Error (MODF)” on
page 28-24.

Figure 28-13 on page 28-45 provides the bit descriptions for SPIx_CTL.

Clock Signals
The SPIxSCK signal is a gated clock that is only active during data transfers
for the duration of the transferred word. The number of active edges is
equal to the number of bits driven on the data lines. The clock rate can be
as high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value of SPIx_BAUD. For slave devices, the value
in SPIx_BAUD is ignored. When the SPI device is a master, SPIxSCK is an
output signal. When the SPI is a slave, SPIxSCK is an input signal. Slave
devices ignore the serial clock if the slave select input is driven inactive
(high). See Figure 28-5 on page 28-17.

The SPIxSCK signal is used to shift out and shift in the data driven onto
the MSPIxMISO and SPIxMOSI lines. The data is always shifted out on one
edge of the clock and sampled on the opposite edge of the clock. Clock
polarity and clock phase relative to data are programmable into SPIx_CTL
and define the transfer format.

SPI Baud Rate
The SPIx_BAUD register is used to set the bit transfer rate for a master
device. When configured as a slave, the value written to this register is
ignored. The serial clock frequency is determined by this formula:

SPIxSCK Frequency SCLK System Clock Frequency
2 SPIx_BAUD×

---=

ADSP-BF54x Blackfin Processor Hardware Reference 28-23

SPI-Compatible Port Controllers

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

Table 28-5 lists several possible baud rate values for SPIx_BAUD.

Error Signals and Flags
The SPIx_STAT register is used to detect when an SPI transfer is complete
or if transmission/reception errors occur. The SPIx_STAT register can be
read at any time.

Some of the bits in SPIx_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a 1 to the desired bit
position of SPIx_STAT. For example, if the TXE bit is set, the user must
write a 1 to bit 2 of SPIx_STAT to clear the TXE error condition. This allows
the user to read SPIx_STAT without changing its value.

Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

Table 28-5. SPI Master Baud Rate Example

SPIx_BAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

Description of Operation

28-24 ADSP-BF54x Blackfin Processor Hardware Reference

See Figure 28-15 on page 28-48 for more information.

Mode Fault Error (MODF)

The MODF bit is set in SPIx_STAT when the SPIxSS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPIx_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPIx_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPIx_CTL is cleared, disabling the SPI system

• The MODF status bit in SPIx_STAT is set

• An SPI error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPIxSS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

When SPE and MSTR are cleared, the SPI data and clock pin drivers (SPIx
MOSI, SPIxMISO, and SPIxSCK) are disabled. However, the slave select out-
put pins revert to being controlled by the general-purpose I/O port
registers. This could lead to contention on the slave select lines if these
lines are still driven by the processor. To ensure that the slave select out-
put drivers are disabled once an MODF error occurs, the program must
configure the general-purpose I/O port registers appropriately.

ADSP-BF54x Blackfin Processor Hardware Reference 28-25

SPI-Compatible Port Controllers

When enabling the MODF feature, the program must configure as inputs all
of the port pins that will be used as slave selects. Programs can do this by
configuring the direction of the port pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as port pins, the slave select output drivers are
disabled.

Transmission Error (TXE)

The TXE bit is set in SPIx_STAT when all the conditions of transmission are
met, and there is no new data in SPIx_TDBR (SPIx_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPIx_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)

The RBSY flag is set in the SPIx_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPIx_RDBR. The state
of the GM bit in the SPIx_CTL register determines whether SPIx_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)

The TXCOL flag is set in SPIx_STAT when a write to SPIx_TDBR coincides
with the load of the shift register. The write to SPIx_TDBR can be by way of
software or the DMA. The TXCOL bit indicates that corrupt data may have
been loaded into the shift register and transmitted. In this case, the data in
SPIx_TDBR may not match what was transmitted. This error can easily be
avoided by proper software control. The TXCOL bit is sticky (W1C).

Interrupt Output
Each SPI has two interrupt output signals: a data interrupt and an error
interrupt.

Functional Description

28-26 ADSP-BF54x Blackfin Processor Hardware Reference

The behavior of the SPI data interrupt signal depends on the TIMOD field
in the SPIx_CTL register. In DMA mode (TIMOD = b#1X), the data inter-
rupt acts as a DMA request and is generated when the DMA FIFO is
ready to be written to (TIMOD = b#11) or read from (TIMOD = b#10). In
non-DMA mode (TIMOD = b#0X), a data interrupt is generated when the
SPIx_TDBR is ready to be written to (TIMOD = b#01) or when the SPIx_RDBR
is ready to be read from (TIMOD = b#00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = b#11) or an overflow (RBSY when TIMOD = b#10) error condition.
In non-DMA mode, the underflow and overflow conditions set the TXE
and RBSY bits in the SPIx_STAT register, respectively, but do not generate
an error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control” on page 28-21.

Functional Description
The following sections describe the functional operation of the SPI.

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to the PORTx_FER and/or PORTx_MUX registers to
properly configure the required PBx, PEx, and/or PGx pins for SPI
use.

2. The core writes to SPIx_FLG, setting one or more of the SPI Flag
Select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

ADSP-BF54x Blackfin Processor Hardware Reference 28-27

SPI-Compatible Port Controllers

3. The core writes to the SPIx_BAUD and SPIx_CTL registers, enabling
the device as a master and configuring the SPI system by specifying
the appropriate word length, transfer format, baud rate, and other
necessary information.

4. If CPHA = 1, the core activates the desired slaves by clearing one or
more of the SPI flag bits (FLGx) of SPIx_FLG.

5. The TIMOD bits in SPIx_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the transmit data buffer (SPIx_TDBR) or a data read
of the receive data buffer (SPIx_RDBR).

6. The SPI then generates the programmed clock pulses on SPIxSCK
and simultaneously shifts data out of SPIxMOSI and shifts data in
from SPIxMISO. Before a shift, the shift register is loaded with the
contents of the SPIx_TDBR register. At the end of the transfer, the
contents of the shift register are loaded into SPIx_RDBR.

7. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

See Figure 28-8 on page 28-39 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the SPIxMOSI pin. One word is transmitted for each new transfer ini-
tiate command. If SZ = 0 and the transmit buffer is empty, the device
repeatedly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device contin-
ues to receive new data from the SPIxMISO pin, overwriting the older data
in the SPIx_RDBR buffer. If GM = 0 and the receive buffer is full, the incom-
ing data is discarded, and SPIx_RDBR is not updated.

Functional Description

28-28 ADSP-BF54x Blackfin Processor Hardware Reference

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPIx_CTL. Based on those two bits and the status
of the interface, a new transfer is started upon either a read of SPIx_RDBR
or a write to SPIx_TDBR. This is summarized in Table 28-6.

If the SPI port is enabled with TIMOD = b#01 or TIMOD = b#11, the
hardware immediately issues a first interrupt or DMA request.

Table 28-6. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

b#00 Transmit and
Receive

Initiate new single word trans-
fer upon read of SPIx_RDBR
and previous transfer com-
pleted.

Interrupt active when receive
buffer is full.

Read of SPIx_RDBR clears
interrupt.

b#01 Transmit and
Receive

Initiate new single word trans-
fer upon write to SPIx_TDBR
and previous transfer com-
pleted.

Interrupt active when transmit
buffer is empty.

Writing to SPIx_TDBR clears
interrupt.

b#10 Receive with
DMA

Initiate new multiword trans-
fer upon enabling SPIx for
DMA mode. Individual word
transfers begin with a DMA
read of SPIx_RDBR, and last
transfer completed.

Request DMA reads as long as
SPIx DMA FIFO is not empty.

b#11 Transmit with
DMA

Initiate new multiword trans-
fer upon enabling SPIx for
DMA mode. Individual word
transfers begin with a DMA
write to SPIx_TDBR, and last
transfer completed.

Request DMA writes as long as
SPIx DMA FIFO is not full.

ADSP-BF54x Blackfin Processor Hardware Reference 28-29

SPI-Compatible Port Controllers

Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPIxSS select signal to
the active state (low), or by the first active edge of the clock (SPIxSCK),
depending on the state of CPHA.

These steps illustrate SPI operation in the slave mode:

1. The core writes to the appropriate PORTx_FER and PORTx_MUX regis-
ters to properly configure the GPIO pins as SPI signals.

2. The core writes to SPIx_CTL to define the mode of the serial link to
be the same as the mode setup in the SPI master.

3. To prepare for the data transfer, the core writes data to be trans-
mitted into SPIx_TDBR.

4. Once the SPIxSS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCK edges, depending on the
states of CPHA and CPOL.

5. Reception/transmission continues until SPIxSS is released or until
the slave has received the proper number of clock cycles.

6. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPIxSS and/or SPIxSCK clock edge.

See Figure 28-8 on page 28-39 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the SPIxMISO pin. If SZ = 0 and the transmit buffer is empty, it repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device contin-

Programming Model

28-30 ADSP-BF54x Blackfin Processor Hardware Reference

ues to receive new data from the SPIxMOSI pin, overwriting the older data
in SPIx_RDBR. If GM = 0 and the receive buffer is full, the incoming data is
discarded, and SPIx_RDBR is not updated.

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 28-7 are
necessary to prepare the device for a new transfer.

Programming Model
The following sections describe the SPI programming model.

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, whether the CPHA mode is selected, and
whether the transfer initiation mode (TIMOD) is selected. For a master SPI
with CPHA = 0, a transfer starts when either SPIx_TDBR is written to or
SPIx_RDBR is read, depending on TIMOD. At the start of the transfer, the
enabled slave select outputs are driven active (low). However, the SPIxSCK

Table 28-7. Transfer Preparation

TIMOD Function Action, Interrupt

b#00 Transmit and
Receive

Interrupt active when receive buffer is full.
Read of SPIx_RDBR clears interrupt.

b#01 Transmit and
Receive

Interrupt active when transmit buffer is empty.
Writing to SPIx_TDBR clears interrupt.

b#10 Receive with
DMA

Request DMA reads as long as SPIx DMA FIFO is not
empty.

b#11 Transmit with
DMA

Request DMA writes as long as SPIx DMA FIFO is not full.

ADSP-BF54x Blackfin Processor Hardware Reference 28-31

SPI-Compatible Port Controllers

signal remains inactive for the first half of the first cycle of SPIxSCK. For a
slave with CPHA = 0, the transfer starts as soon as the SPIxSS input goes
low.

For CPHA = 1, a transfer starts with the first active edge of SPIxSCK for both
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of
SPIxSCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPIx_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SPIxSCK. For a slave
SPI, RXS is set shortly after the last SPIxSCK edge, regardless of CPHA or
CPOL. The latency is typically a few SCLK cycles and is independent of
TIMOD and the baud rate. If configured to generate an interrupt when
SPIx_RDBR is full (TIMOD = b#00), the interrupt goes active one SCLK cycle
after RXS is set. When not relying on this interrupt, the end of a transfer
can be detected by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is cleared shortly after the start of a transfer (SPIxSS going low for
CPHA = 0, first active edge of SPIxSCK on CPHA = 1), and is set at the same
time as RXS. For a master device, SPIF is cleared shortly after the start of a
transfer (either by writing the SPIx_TDBR or reading the SPIx_RDBR,
depending on TIMOD), and is set one-half SPIxSCK period after the last
SPIxSCK edge, regardless of CPHA or CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPIx_BAUD < 4). The
SPIF bit is set before RXS is set, and consequently before new data is
latched into SPIx_RDBR, because of the latency. Therefore, for

Programming Model

28-32 ADSP-BF54x Blackfin Processor Hardware Reference

SPIx_BAUD = 2 or SPIx_BAUD = 3, RXS must be set before SPIF to read
SPIx_RDBR. For larger SPIx_BAUD settings, RXS is guaranteed to be set
before SPIF is set.

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = b#00 mode may be the best operation option. In this mode, soft-
ware performs a dummy read from the SPIx_RDBR register to initiate the
first transfer. If the first transfer is used for data transmission, software
should write the value to be transmitted into the SPIx_TDBR register before
performing the dummy read. If the transmitted value is arbitrary, it is
good practice to set the SZ bit to ensure zero data is transmitted rather
than random values. When receiving the last word of an SPI stream, soft-
ware should ensure that the read from the SPIx_RDBR register does not
initiate another transfer. It is recommended to disable the SPI port before
the final SPIx_RDBR read access. Reading the SPIx_SHADOW register is not
sufficient as it does not clear the interrupt request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data is
transferred, software typically releases the slave select again. If the SPI
slave device requires the slave select line to be asserted for the complete
transfer, this can be done in the SPI interrupt service routine only when
operating in TIMOD = b#00 or TIMOD = b#10 mode. With TIMOD = b#01 or
TIMOD = b#11, the interrupt is requested while the transfer is still in
progress.

ADSP-BF54x Blackfin Processor Hardware Reference 28-33

SPI-Compatible Port Controllers

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The core writes to the PORTx_FER and/or PORTx_MUX registers to
properly configure the required PBx, PEx, and/or PGx pins for SPI
use.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see Chapter 5, “Direct Memory Access” in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2).

3. The processor core writes to the SPIx_FLG register, setting one or
more of the SPI flag select bits (FLSx).

4. The processor core writes to the SPIx_BAUD and SPIx_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“receive with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

5. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPIx_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from

Programming Model

28-34 ADSP-BF54x Blackfin Processor Hardware Reference

memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPIx_TDBR register, it initiates a
transfer on the SPI link.

6. The SPI then generates the programmed clock pulses on SPIxSCK
and simultaneously shifts data out of SPIxMOSI and shifts data in
from SPIxMISO. For receive transfers, the value in the shift register
is loaded into the SPIx_RDBR register at the end of the transfer. For
transmit transfers, the value in the SPIx_TDBR register is loaded into
the shift register at the start of the transfer.

7. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from 1 to 0. The SPI continues receiving words
until SPI DMA mode is disabled.

In transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI continues transmit-
ting words until the SPI DMA FIFO is empty.

See Figure 28-9 on page 28-40 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the SPIxMISO pin, overwriting the older data in the
SPIx_RDBR register. If GM = 0, and the DMA FIFO is full, the incoming
data is discarded, and the SPIx_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty (and
TXE is set). If SZ = 1, the device repeatedly transmits 0s on the SPIxMOSI

ADSP-BF54x Blackfin Processor Hardware Reference 28-35

SPI-Compatible Port Controllers

pin. If SZ = 0, it repeatedly transmits the contents of the SPIx_TDBR regis-
ter. The TXE underrun condition cannot generate an error interrupt in this
mode.

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPIx_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE
underrun condition cannot happen in this mode (master DMA TX
mode), because the master SPI will not initiate a transfer if there is no data
in the DMA FIFO.

Writes to the SPIx_TDBR register during an active SPI transmit DMA oper-
ation should not occur because the DMA data will be overwritten. Writes
to the SPIx_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPIx_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPIxSS
signal to the active-low state or by the first active edge of SPIxSCK,
depending on the state of CPHA.

Programming Model

28-36 ADSP-BF54x Blackfin Processor Hardware Reference

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The core writes to the PORTx_FER and PORTx_MUX registers to prop-
erly configure the GPIO pins as SPI signals.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see Chapter 5, “Direct Memory Access” in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2).

3. The processor core writes to the SPIx_CTL register to define the
mode of the serial link to be the same as the mode setup in the SPI
master. The TIMOD field will be configured to select either “receive
with DMA” (TIMOD = b#10) or “transmit with DMA”
(TIMOD = b#11) mode.

4. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SPIxSCK edges. The
value in the shift register is loaded into the SPIx_RDBR register at
the end of the transfer. As the SPI reads data from the SPIx_RDBR
register and writes to the SPI DMA FIFO, it requests a DMA write
to memory. Upon a DMA grant, the DMA engine reads a word
from the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPIx_TDBR register,
awaiting the start of the next transfer. Once the slave select input is
active, the slave starts receiving and transmitting data on active
SPIxSCK edges. The value in the SPIx_TDBR register is loaded into
the shift register at the start of the transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 28-37

SPI-Compatible Port Controllers

5. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
receiving words on SPIxSCK edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
transmitting words on SPIxSCK edges as long as the slave select
input is active.

See Figure 28-9 on page 28-40 for additional information.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the SPIxMOSI pin, overwriting the older data in the
SPIx_RDBR register. If GM = 0 and the DMA FIFO is full, the incoming
data is discarded, and the SPIx_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty and TXE
is set. If SZ = 1, the device repeatedly transmits 0s on the SPIxMISO pin. If
SZ = 0, it repeatedly transmits the contents of the SPIx_TDBR register. The
TXE underrun condition cannot generate an error interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeat-
edly transmits 0s on the SPIxMISO pin. If SZ = 0 and the DMA FIFO is
empty, it repeatedly transmits the last word it transmitted before the
DMA buffer became empty. All aspects of SPI receive operation should be

Programming Model

28-38 ADSP-BF54x Blackfin Processor Hardware Reference

ignored when configured in transmit DMA mode, including the data in
the SPIx_RDBR register, and the status of the RXS and RBSY bits. The RBSY
overrun conditions cannot generate an error interrupt in this mode.

Writes to the SPIx_TDBR register during an active SPI transmit DMA oper-
ation should not occur because the DMA data will be overwritten. Writes
to the SPIx_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPIx_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = b#10), or when the DMA FIFO is not full (when TIMOD = b#11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = b#10), or when there is a TXE underflow error
condition (when TIMOD = b#11).

ADSP-BF54x Blackfin Processor Hardware Reference 28-39

SPI-Compatible Port Controllers

Figure 28-8. Core-Driven SPI Flow Chart

WRITE PORTx_FER AND PORTx_MUX TO ENABLE SPI SIGNALS

MASTER OR SLAVE?

CPHA = 1
AND

MSTR = 1

TIMOD = b#00

MASTER

SLAVE, MSTR = 0

WRITE SPIx_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPIx_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPIx_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

Y

N

WRITE SPIx_FLG
TO SELECT SLAVE(S)

VIA FLGx BITS

WRITE SPIx_TBDR WITH DATA TO SEND OVER SPI

Y

N

READ SPIx_RDBR
TO START
TRANSFER

WAIT FOR TRANSFER COMPLETE

LAST TRANSFER?
Y

N

TIMOD = b#01
Y

N

READ NEW DATA
FROM SPIx_RDBR

CPHA = 1
AND

MSTR = 1

N

Y
WRITE SPIx_FLG

TO DESELECT
SLAVE(S) VIA

FLGx BITS

WRITE SPIx_CTL TO DISABLE SPI PORT

Programming Model

28-40 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 28-9. SPI0 DMA Flow Chart (Part 1 of 3)

WRITE PORTE_FER AND PORTE_MUX TO ENABLE SPI0 SIGNALS

USE
DEFAULT DMA16_4

FOR SPI0?

DMA16_4_CONFIG
FLOW = ?

N

Y

WRITE DESIRED DMA CHANNEL'S
DMAy_x_PERIPHERAL_MAP WITH 0x4000 TO SET AS SPI0.

(REPLACE ALL MENTION OF DMA16_4 REGISTER NAMES
IN THIS FLOW CHART WITH CHOSEN DMAy_x PREFIX.)

WRITE DMA16_4_CONFIG TO CONFIGURE DMA ENGINE

0x4 ARRAY
0x6 SMALL LIST
0x7 LARGE LIST

0x0 STOP
0x1 AUTOBUFFER

POPULATE
DESCRIPTORS

IN MEMORY

WRITE DMA REGISTERS:
DMA16_4_START_ADDR

DMA16_4_X_COUNT
DMA16_4_X_MODIFY

DMA16_4_CONFIG'S NDSIZE FIELD DETERMINES
WHICH DMA REGISTERS TO INITIALIZE STATICALLY

DMA16_4_CONFIG
FLOW = ?

0x6 SMALL LIST
0x7 LARGE LIST

0x4 ARRAY

SET
DMA16_4_CURR_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

SET
DMA16_4_NEXT_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

A

ADSP-BF54x Blackfin Processor Hardware Reference 28-41

SPI-Compatible Port Controllers

Figure 28-10. SPI0 DMA Flow Chart (Part 2 of 3)

2D DMA?

IS SPI MASTER
OR SLAVE?

Y

N

WRITE DMA REGISTERS:
DMA16_4_Y_COUNT
DMA16_4_Y_MODIFY

MASTER

A

SLAVE,
MSTR = 0

WRITE SPI0_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI0_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI0_CTL TO CONFIGURE SPI PORT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI0_FLG
TO SELECT SLAVE(S)

VIA FLGx BITS

WRITE DMA16_4_CONFIG TO ENABLE DMA

WRITE SPI0_CTL TO ENABLE SPI

B

Programming Model

28-42 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 28-11. SPI0 DMA Flow Chart (Part 3 of 3)

INTERRUPT
REQUESTED?

TERMINATE DMA?

Y

N

CLEAR INTERRUPT BY
WRITING THE DMA_DONE

BIT IN DMA16_4_IRQ_STATUS

N

TX OR RX DMA?

TX

B

Y

N

WRITE DMA16_4_CONFIG
TO ENABLE DMA

AGAIN

WAIT FOR DMA_RUN = 0 IN DMA16_4_IRQ_STATUS

WAIT FOR TWO STRAIGHT READS
OF TXS = 0 IN SPI0_STAT

WAIT FOR SPIF = 1 IN SPI0_STAT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI0_FLG TO
DESELECT SLAVE(S)

VIA FLGx BITS

WRITE SPI0_CTL TO DISABLE SPI PORT

WRITE DMA16_4_CONFIG TO DISABLE DMA

FLOW = STOP

Y

RX

ADSP-BF54x Blackfin Processor Hardware Reference 28-43

SPI-Compatible Port Controllers

SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPIx_BAUD, SPIx_CTL, SPIx_FLG,
and SPIx_STAT. Two registers are used for buffering receive and transmit
data: SPIx_RDBR and SPIx_TDBR. For information about DMA-related reg-
isters, see Chapter 5, “Direct Memory Access” in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume1 of 2). The internal shift
register, SFDRx, is not directly accessible.

See “Error Signals and Flags” on page 28-23 for more information about
how the bits in these registers are used to signal errors and other
conditions.

Table 28-8 shows the functions of the SPI registers. Figure 28-12 through
Figure 28-18 on page 28-49 provide details.

Table 28-8. SPI Registers

Register Name Function Notes

SPIx_BAUD SPIx port baud rate registers
on page 28-44

Value of 0 or 1 disables the serial
clock

SPIx_CTL SPIx port control registers
on page 28-45

SPE and MSTR bits can also be
modified by hardware (when
MODF is set)

SPIx_FLG SPIx port flag registers
on page 28-46

Bits 0 and 8 are reserved

SPIx_STAT SPIx port status registers
on page 28-48

SPIF bit can be set by clearing SPE
in SPIx_CTL

SPIx_TDBR SPIx port transmit data buffer regis-
ters
on page 28-48

Register contents can also be modi-
fied by hardware (by DMA and/or
when SZ = 1 in SPIx_CTL)

SPI Registers

28-44 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Baud Rate (SPIx_BAUD) Register

SPIx_RDBR SPIx port receive data buffer regis-
ters
on page 28-49

When register is read, hardware
events can be triggered

SPIx_SHADOW SPIx port RDBR shadow registers
on page 28-49

Register has the same contents as
SPIx_RDBR, but no action is taken
when it is read

Figure 28-12. SPI Baud Rate Register

Table 28-8. SPI Registers (Cont’d)

Register Name Function Notes

Baud Rate[15:0]
SCLK / (2 × SPIx_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPIx_BAUD)

SPI0: 0xFFC0 0514

SPI1: 0xFFC0 2314
SPI2: 0xFFC0 2414

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 28-45

SPI-Compatible Port Controllers

SPI Control (SPIx_CTL) Register

Figure 28-13. SPI Control Register

TIMOD[1:0] (Transfer Initiation
Mode)
00 - Start transfer with read of

SPIx_RDBR, interrupt when
SPIx_RDBR is full

01 - Start transfer with write of
SPIx_TDBR, interrupt when
SPIx_TDBR is empty

10 - Start transfer with DMA read
of SPIx_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPIx_TDBR, request further
DMA writes as long as SPIx DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPIx_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPIx_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SPIxSCK
1 - Active low SPIxSCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SPIxSCK toggles from middle

of the first data bit, slave select
pins controlled by hardware

1 - SPIxSCK toggles from beginning
of first data bit, slave select
pins controller by software

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPIx_CTL)

SPI0: 0xFFC0 0500

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 0 0 0 0 0 0 0 00 0

SPI1: 0xFFC0 2300

SPI2: 0xFFC0 2400

SPI Registers

28-46 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Flag (SPIx_FLG) Register

The SPIx_FLG register consists of two sets of bits that function as follows.

• Slave select enable (FLSx) bits

Each FLSx bit corresponds to a general purpose port (PBx/PEx/PGx)
pin. When an FLSx bit is set, the corresponding port pin is driven
as a slave select. For example, if FLS1 is set in SPI0_FLG, PE4 is
driven as a slave select (SPI0SEL1). Table 28-4 on page 28-10
shows the association of the FLSx bits and the corresponding port
pins.

Figure 28-14. SPIx Flag Register

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPIxSEL1 disabled
1 - SPIxSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPIxSEL2 disabled
1 - SPIxSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPIxSEL3 disabled
1 - SPIxSEL3 enabled

SPI Flag Register (SPIx_FLG)

SPI0: 0xFFC0 0504

SPI1: 0xFFC0 2304

SPI2: 0xFFC0 2404

FLG3 (Slave Select Value 3)
SPIxSEL3 value

FLG2 (Slave Select Value 2)
SPIxSEL2 value

FLG1 (Slave Select Value 1)
SPIxSEL1 value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 0 0 0 0 0 0 01 1

ADSP-BF54x Blackfin Processor Hardware Reference 28-47

SPI-Compatible Port Controllers

If the FLSx bit is not set, the general-purpose port registers
(PORTxIO_DIR and others) configure and control the corresponding
port pins.

• Slave select value (FLGx) bits

When a PBx/PEx/PGx pin is configured as a slave select output, the
FLGx bits can determine the value driven onto the output. If the
CPHA bit in SPIx_CTL is set, the output value is set by software con-
trol of the FLGx bits. The SPI protocol permits the slave select line
to either remain asserted (low) or be deasserted between transferred
words. The user must set or clear the appropriate FLGx bits. For
example, to drive PE6 as a slave select, FLS3 in SPI0_FLG must be
set. Clearing FLG3 in SPI0_FLG drives PE6 low; setting FLG3 drives
PE6 high. The PE6 pin can be cycled high and low between transfers
by setting and clearing FLG3. Otherwise, PE6 remains active (low)
between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PE6 as a slave select pin,
it is only necessary to set the FLS3 bit in SPI0_FLG. It is not neces-
sary to write to the FLG3 bit, because the SPI hardware
automatically drives the PE6 pin.

SPI Registers

28-48 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Status (SPIx_STAT) Register

SPI Transmit Data Buffer (SPIx_TDBR) Register

Figure 28-15. SPI Status Register

Figure 28-16. SPI Transmit Data Buffer Register

Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) - W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) - W1C
Set when transmission
occurred with no new data in
SPIx_TDBR

SPI Status Register (SPIx_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPIx_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full

SPI0: 0xFFC0 0508

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 00 0

SPI1: 0xFFC0 2308
SPI2: 0xFFC0 2408

Reset = 0x0000

Transmit Data Buffer[15:0]

SPI Transmit Data Buffer Register (SPIx_TDBR)

SPI0: 0xFFC0 050C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPI1: 1xFFC0 230C
SPI2: 2xFFC0 240C

ADSP-BF54x Blackfin Processor Hardware Reference 28-49

SPI-Compatible Port Controllers

SPI Receive Data Buffer (SPIx_RDBR) Register

SPI RDBR Shadow (SPIx_SHADOW) Register

Figure 28-17. SPI Receive Data Buffer Register

Figure 28-18. SPI RDBR Shadow Register

Reset = 0x0000

Receive Data Buffer[15:0]

SPI Receive Data Buffer Register (SPIx_RDBR)
RO

SPI0: 0xFFC0 0510

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPI1: 0xFFC0 2310
SPI2: 0xFFC0 2410

Reset = 0x0000

SPIx_RDBR Shadow[15:0]

SPI RDBR Shadow Register (SPIx_SHADOW)
RO

SPI0: 0xFFC0 0518
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPI1: 0xFFC0 2318
SPI2: 0xFFC0 2418

Programming Examples

28-50 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
This section includes examples (Listing 28-1 on page 28-50 through
Listing 28-8 on page 28-57) for core generated transfer and for use with
DMA. Each code example assumes that the appropriate defBF54x header
file is included and that core writes to PORTx_FER and PORTx_MUX have been
made to configure port pins associated with the SPI.

Core Generated Transfer
The following core-driven master-mode SPI example shows how to initial-
ize the hardware, signal the start of a transfer, handle the interrupt and
issue the next transfer, and generate a stop condition.

Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 28-1. SPI Register Initialization

SPI0_Register_Initialization:

P0.H = hi(SPI0_FLG);

P0.L = lo(SPI0_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x3); /* FLS3 */

W[P0] = R0; /* Enable slave-select output pin */

P0.H = hi(SPI0_BAUD);

P0.L = lo(SPI0_BAUD);

R0.L = 0x208E; /* Write to SPI Baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8 kHz

*/

ADSP-BF54x Blackfin Processor Hardware Reference 28-51

SPI-Compatible Port Controllers

/* Setup SPI0 Control Register */

/***

 * TIMOD [1:0] = 00 : Transfer On RDBR Read.

 * SZ [2] = 0 : Send Last Word When TDBR Is Empty

 * GM [3] = 1 : Discard Incoming Data If RDBR Is Full

 * PSSE [4] = 0 : Disables Slave-Select As Input (Master)

 * EMISO [5] = 0 : MISO Disabled For Output (Master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16 Bit Word Length Select

 * LSBF [9] = 0 : Transmit MSB First

 * CPHA [10] = 0 : SC Toggles At START Of 1 Data Bit

 * CPOL [11] = 1 : Active HIGH Serial Clock

 * MSTR [12] = 1 : Device Is Master

 * WOM [13] = 0 : Normal MOSI/MISO Data Output

 * (No Open Drain)

 * SPE [14] = 1 : SPI Module Is Enabled

 * [15] = 0 : RESERVED

 ***/

P0.H = hi(SPI0_CTL) ;

P0.L = lo(SPI0_CTL) ;

R0 = 0x5908;

W[P0] = R0.L; ssync; /* Enable SPI0 as MASTER */

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following a dummy read of SPI0_RDBR. Typically, known data
which is desired to be transmitted to the slave is preloaded into the
SPI0_TDBR. In the following code, P1 is assumed to point to the start of the
16-bit transmit data buffer and P2 is assumed to point to the start of the
16-bit receive data buffer. In addition, the user must ensure appropriate
interrupts are enabled for SPI operation.

Programming Examples

28-52 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 28-2. Initiate Transfer

Initiate_Transfer:

P0.H = hi(SPI0_FLG);

P0.L = lo(SPI0_FLG);

R0 = W[P0] (Z);

BITCLR (R0,0xB); /* FLG3 */

W[P0] = R0; /* Drive 0 on enabled slave-select pin */

P0.H = hi(SPI0_TDBR); /* SPI Transmit Register */

P0.L = lo(SPI0_TDBR);

R0 = W[P1++] (z); /* Get First Data To Be Transmitted And

Increment Pointer */

W[P0] = R0; /* Write to SPI0_TDBR */

P0.H = hi(SPI0_RDBR);

P0.L = lo(SPI0_RDBR);

R0 = W[P0] (z); /* Dummy read of SPI0_RDBR kicks off transfer

*/

Post Transfer and Next Transfer

Following the transfer of data, the SPI generates an interrupt, which is ser-
viced if the interrupt is enabled during initialization. In the interrupt
routine, software must write the next value to be transmitted prior to
reading the byte received. This is because a read of the SPI0_RDBR initiates
the next transfer.

Listing 28-3. SPI0 Interrupt Handler

SPI0_Interrupt_Handler:

Process_SPI0_Sample:

P0.H = hi(SPI0_TDBR); /* SPI0 transmit register */

P0.L = lo(SPI0_TDBR);

ADSP-BF54x Blackfin Processor Hardware Reference 28-53

SPI-Compatible Port Controllers

R0 = W[P1++](z); /* Get next data to be transmitted */

W[P0] = R0.l; /* Write that data to SPI0_TDBR */

Kick_Off_Next:

P0.H = hi(SPI0_RDBR); /* SPI0 receive register */

P0.L = lo(SPI0_RDBR);

R0 = W[P0] (z); /* Read SPI0 receive register (also kicks off

next transfer) */

W[P2++] = R0; /* Store received data to memory */

RTI; /* Exit interrupt handler */

Stopping

In order for a data transfer to end after the user has transferred all data,
the following code can be used to stop the SPI. Note that this is typically
done in the interrupt handler to ensure the final data is sent in its entirety.

Listing 28-4. Stopping SPI

Stopping_SPI0:

P0.H = hi(SPI0_CTL);

P0.L = lo(SPI0_CTL);

R0 = W[P0];

BITCLR(R0, 14); /* Clear SPI0 enable bit */

W[P0] = R0.L; ssync; /* Disable SPI */

DMA Transfer
The following DMA-driven master-mode SPI autobuffer example shows
how to initialize DMA, initialize SPI, signal the start of a transfer, and
generate a stop condition.

Programming Examples

28-54 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Initialization Sequence

The following code initializes the DMA to perform a 16-bit memory read
DMA operation in autobuffer mode, and generates an interrupt request
when the buffer is sent. This code assumes that P1 points to the start of
the data buffer to be transmitted and that NUM_SAMPLES is a defined macro
indicating the number of elements being sent.

Listing 28-5. DMA Initialization

Initialize_DMA: /* DMA16_4 = default channel for SPI0 DMA */

P0.H = hi(DMA16_4_CONFIG);

P0.L = lo(DMA16_4_CONFIG);

R0 = 0x1084(z); /* Autobuffer mode, IRQ on complete, linear

16-bit, mem read */

w[P0] = R0;

P0.H = hi(DMA16_4_START_ADDR);

P0.L = lo(DMA16_4_START_ADDR);

[p0] = p1; /* Start address of TX buffer */

P0.H = hi(DMA16_4_X_COUNT);

P0.L = lo(DMA16_4_X_COUNT);

R0 = NUM_SAMPLES;

w[p0] = R0; /* Number of samples to transfer */

R0 = 2;

P0.H = hi(DMA16_4_X_MODIFY);

P0.L = lo(DMA16_4_X_MODIFY);

w[p0] = R0; /* 2 byte stride for 16-bit words */

R0 = 1; /* single dimension DMA means 1 row */

P0.H = hi(DMA16_4_Y_COUNT);

P0.L = lo(DMA16_4_Y_COUNT);

w[p0] = R0;

ADSP-BF54x Blackfin Processor Hardware Reference 28-55

SPI-Compatible Port Controllers

SPI Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 28-6. SPI Initialization

SPI_Register_Initialization:

P0.H = hi(SPI0_FLG);

P0.L = lo(SPI0_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x3); /* FLS3 */

W[P0] = R0; /* Enable slave-select output pin */

P1.H = hi(SPI0_BAUD);

P1.L = lo(SPI0_BAUD);

R0.L = 0x208E; /* Write to SPI0 baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133MHz, SPI clock ~= 8kHz */

/* Setup SPI Control Register */

/***

 * TIMOD [1:0] = 11 : Transfer on DMA TDBR write

 * SZ [2] = 0 : Send last word when TDBR is empty

 * GM [3] = 1 : Discard incoming data if RDBR is full

 * PSSE [4] = 0 : Disables slave-select as input (master)

 * EMISO [5] = 0 : SPIxMISO disabled for output (master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16 Bit word length select

 * LSBF [9] = 0 : Transmit MSB first

 * CPHA [10] = 0 : SC toggles at START of 1 data bit

 * CPOL [11] = 1 : Active HIGH serial clock

 * MSTR [12] = 1 : Device is master

 * WOM [13] = 0 : Normal MOSI/MISO data output

 * (no open drain)

 * SPE [14] = 1 : SPI module is enabled

Programming Examples

28-56 ADSP-BF54x Blackfin Processor Hardware Reference

 * [15] = 0 : RESERVED

 ***/

/* Configure SPI0 as MASTER */

R1 = 0x190B(z); /* Leave disabled until DMA is enabled*/

P1.L = lo(SPI0_CTL);

W[P1] = R1; ssync;

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following enabling of SPI. However, the DMA must be enabled
before enabling the SPI.

Listing 28-7. Starting a Transfer

Initiate_Transfer:

P0.H = hi(DMA16_4_CONFIG);

P0.L = lo(DMA16_4_CONFIG);

R2 = w[P0](z);

BITSET (R2, 0); /*Set DMA enable bit */

w[p0] = R2.L; /* Enable TX DMA */

P4.H = hi(SPI0_CTL);

P4.L = lo(SPI0_CTL);

R2=w[p4](z);

BITSET (R2, 14); /* Set SPI0 enable bit */

w[p4] = R2; /* Enable SPI0 */

Stopping a Transfer

In order for a data transfer to end after the DMA has transferred all
required data, the following code is executed in the SPI DMA interrupt
handler. The example code below clears the DMA interrupt, then waits
for the DMA engine to stop running. When the DMA engine has
completed, SPI0_STAT is polled to determine when the transmit buffer is

ADSP-BF54x Blackfin Processor Hardware Reference 28-57

SPI-Compatible Port Controllers

empty. If there is data in the SPI Transmit FIFO, it is loaded as soon as
the TXS bit clears. A second consecutive read with the TXS bit clear indi-
cates the FIFO is empty and the last word is in the shift register. Finally,
polling for the SPIF bit determines when the last bit of the last word is
shifted out. At that point, it is safe to shut down the SPI port and the
DMA engine.

Listing 28-8. Stopping a Transfer

SPI_DMA_INTERRUPT_HANDLER:

P0.L = lo(DMA16_4_IRQ_STATUS);

P0.H = hi(DMA16_4_IRQ_STATUS);

R0 = 1 ;

W[P0] = R0 ; /* Clear DMA interrupt */

/* Wait for DMA to complete */

P0.L = lo(DMA16_4_IRQ_STATUS);

P0.H = hi(DMA16_4_IRQ_STATUS);

R0 = DMA_RUN; /* 0x08 */

CHECK_DMA_COMPLETE: /* Poll for DMA_RUN bit to clear */

R3 = W[P0] (Z);

R1 = R3 & R0;

CC = R1 == 0;

IF !CC JUMP CHECK_DMA_COMPLETE;

/* Wait for TXS to clear */

P0.L = lo(SPI0_STAT);

P0.H = hi(SPI0_STAT);

R1 = TXS; /* 0x08 */

Check_TXS: /* Poll for TXS = 0 */

R2 = W[P0] (Z);

R2 = R2 & R1;

Programming Examples

28-58 ADSP-BF54x Blackfin Processor Hardware Reference

CC = R0 == 0;

IF !CC JUMP Check_TXS;

R2 = W[P0] (Z); /* Check if TXS stays clear for 2 reads */

R2 = R2 & R1;

CC = R0 == 0;

IF !CC JUMP Check_TXS;

/* Wait for final word to transmit from SPI */

Final_Word:

R0 = W[P0](Z);

R2 = SPIF; /* 0x01 */

R0 = R0 & R2;

CC = R0 == 0;

IF CC JUMP Final_Word;

Disable_SPI:

P0.L = lo(SPI0_CTL);

P0.H = hi(SPI0_CTL);

R0 = W[P0] (Z);

BITCLR (R0,0xe); /* Clear SPI enable bit */

W[P0] = R0; /* Disable SPI */

Disable_DMA:

P0.L = lo(DMA16_4_CONFIG);

P0.H = hi(DMA16_4_CONFIG);

R0 = W[P0](Z);

BITCLR (R0,0x0); /* Clear DMA enable bit */

W[P0] = R0; /* Disable DMA */

RTI; /* Exit Handler */

ADSP-BF54x Blackfin Processor Hardware Reference 29-1

29 TWO WIRE INTERFACE
CONTROLLERS

ADSP-BF54x processors include two 2-wire interface (TWI) controllers.
These controllers allow a device to interface to an Inter IC bus as specified
by the Philips I2C Bus Specification, version 2.1, dated January 2000.

This chapter contains the following sections:

• “Overview” on page 29-1

• “Interface Overview” on page 29-3

• “Description of Operation” on page 29-7

• “TWI General Operation” on page 29-11

• “Functional Description” on page 29-22

• “Programming Model” on page 29-32

• “TWI Registers” on page 29-34

• “Programming Examples” on page 29-55

• “Electrical Specifications” on page 29-67

Overview
Each TWI is fully compatible with the widely used I2C bus standard. It
was designed with a high level of functionality and is compatible with
multi-master, multi-slave bus configurations.

Overview

29-2 ADSP-BF54x Blackfin Processor Hardware Reference

To preserve processor bandwidth the TWI controller can be set up with
transfer initiated interrupts only to service FIFO buffer data reads and
writes. Protocol related interrupts are optional.

Each TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The TWI controllers include these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in the OmniVision
Serial Camera Control Bus (SCCB) Functional Specification version
2.1.

ADSP-BF54x Blackfin Processor Hardware Reference 29-3

Two Wire Interface Controllers

Interface Overview
Figure 29-1 provides a block diagram of the TWI controllers. The inter-
face is essentially a shift register that serially transmits and receives data
bits, one bit at a time at the SCLx rate, to and from other TWI devices.
The SCLx synchronizes the shifting and sampling of the data on the serial
data pin.

Interface Overview

29-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interface
The TWI signals are functionally multiplexed as general-purpose I/O.
These signals, SDAx (serial data) and SCLx (serial clock) are open drain and
as such require pull up resistors.

Serial Clock signal (SCL1–0)

In slave mode this signal is an input and an external master is responsible
for providing the clock.

Figure 29-1. TWI Block Diagram

PAB16

TWI INTERFACE LOGIC

CLOCK
GENERATION

Tx REG

2-DEEP FIFO 2-DEEP FIFO

Rx REG

Tx SHIFT REG Rx SHIFT REG

ARBITRATIONPRESCALERADDRESS
COMPARE

SCL1-0SDA1-0

ADSP-BF54x Blackfin Processor Hardware Reference 29-5

Two Wire Interface Controllers

In master mode the TWI controllers must set this signal to the desired fre-
quency. The TWI controllers support the standard mode of operation (up
to 100 KHz) or fast mode (up to 400 KHz).

The TWI control register (TWIx_CONTROL) is used to set the PRESCALE value
which gives the relationship between the system clock (SCLK) and the TWI
controller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

The PRESCALE value is the number of system clock (SCLK) periods used in
the generation of one internal time reference. The value of PRESCALE must
be set to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value.

Serial data signal (SDA1–0)

This is a bidirectional signal on which serial data is transmitted or received
depending on the direction of the transfer.

TWI Pins

Table 29-1 shows the pins for the TWI. Two bidirectional pins externally
interface the TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Table 29-1. TWI Pins

Pin Description

SDA1–0 In/Out TWI serial data, high impedance reset value.

SCL1–0 In/Out TWI serial clock, high impedance reset value.

Interface Overview

29-6 ADSP-BF54x Blackfin Processor Hardware Reference

Internal Interfaces
The peripheral bus interface supports the transfer of 16-bit wide data and
is used by the processor in the support of register and FIFO buffer reads
and writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as a1-byte-wide 2-deep transmit FIFO
buffer and a 1-byte-wide 2-deep receive FIFO buffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event any
of the TWI controller module is accessed as a slave.

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCLx clock generation.

The clock generation module is used to generate an external SCLx clock
when in master mode. It includes the logic necessary for synchronization
in a multi-master clock configuration and clock stretching when config-
ured in slave mode.

ADSP-BF54x Blackfin Processor Hardware Reference 29-7

Two Wire Interface Controllers

Description of Operation
The following sections describe the operation of the TWI interface.

TWI Transfer Protocols
The TWI controllers follow the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 29-2.

To better understand the mapping of TWI controller register contents to
a basic transfer, Figure 29-3 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data as a master. The slave has
acknowledged both address and data.

Clock Generation and Synchronization

Each TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer is initiated. If arbitration
for the bus is lost, the serial clock output immediately three-states. If mul-

Figure 29-2. Basic Data Transfer

Figure 29-3. Data Transfer With Bit Illustration

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START

Description of Operation

29-8 ADSP-BF54x Blackfin Processor Hardware Reference

tiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 29-4 for TWI controller 0.

The TWI controller’s serial clock (SCLx) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCLx line is detected at a logic 1 level.
At this time the clock high count begins.

Bus Arbitration

The TWI controllers initiate a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 29-5.

Figure 29-4. TWI Clock Synchronization

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL0
RESULT

ADSP-BF54x Blackfin Processor Hardware Reference 29-9

Two Wire Interface Controllers

The TWI controller monitors the serial data bus (SDAx) while SCLx is high
and if SDAx is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCLx is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controllers generate and recognize these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 29-6.

Figure 29-5. TWI Bus Arbitration

Figure 29-6. TWI Start and Stop Conditions

START

SCL0 (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDAx (BUS)
ARBITRATION
LOST

START

SCL (BUS)

SDA (BUS)

STOP

Description of Operation

29-10 ADSP-BF54x Blackfin Processor Hardware Reference

The TWI controller’s special case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

General Call Support

The TWI controllers always decode and acknowledge a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
general call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

If the TWI controllers are to issue a general call as a master-transmitter
the appropriate address and transfer direction can be set along with load-
ing transmit FIFO data.

ADSP-BF54x Blackfin Processor Hardware Reference 29-11

Two Wire Interface Controllers

Fast Mode

Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most effected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data
(tSU;STO)

• Bus free time between a stop and start condition (tBUF)

TWI General Operation
The following sections describe the general operation of the TWI
controllers.

TWI Control
The TWI control register (TWIx_CONTROL) is used to enable the TWI mod-
ule as well as to establish a relationship between the system clock (SCLK)
and the TWI controller’s internally timed events. The internal time refer-
ence is derived from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

SCCB compatibility is an optional feature and should not be used in an
I2C bus system. This feature is turned on by setting the SCCB bit in the
TWIx_CONTROL register. When this feature is set all slave asserted acknowl-
edgement bits are ignored by this master. This feature is valid only during
transfers where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI control-
lers always generate an acknowledge in slave mode.

TWI General Operation

29-12 ADSP-BF54x Blackfin Processor Hardware Reference

For either master and/or slave mode of operation, the TWI controllers are
enabled by setting the TWIx_ENA bit in the TWIx_CONTROL register. It is rec-
ommended that this bit be set at the time PRESCALE is initialized and
remain set. This guarantees accurate operation of bus busy detection logic.

The PRESCALE field of the TWIx_CONTROL register specifies the number of
system clock (SCLK) periods used in the generation of one internal time
reference. The value of PRESCALE must be set to create an internal time ref-
erence with a period of 10 MHz. It is represented as a 7-bit binary value.

Clock Signal
The clock signal SCLx is an output in master mode and an input in slave
mode.

During master mode operation, the SCLx clock divider register
(TWIx_CLKDIV) values are used to create the high and low durations of the
serial clock (SCLx). Serial clock frequencies can vary from 400 KHz to less
than 20 KHz. The resolution of the clock generated is 1/10 MHz or
100 ns.

CLKDIV = TWI SCLx period / 10 MHz time reference

For example, for an SCLx of 400 KHz (period = 1/400 KHz = 2500 ns)
and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCLx with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8. Note
that CLKLOW and CLKHI add up to CLKDIV.

The clock high field of the TWIx_CLKDIV register specifies the number of
10 MHz time reference periods the serial clock (SCLx) waits before a new
clock low period begins, assuming a single master. It is represented as an
8-bit binary value.

ADSP-BF54x Blackfin Processor Hardware Reference 29-13

Two Wire Interface Controllers

The clock low field of the TWIx_CLKDIV register number of internal time
reference periods the serial clock (SCLx) is held low. It is represented as an
8-bit binary value.

Error Signals and Flags
The following sections describe the TWI error signals and flags.

TWI Master Status

The TWI master mode status register (TWIx_MASTER_STAT) holds informa-
tion during master mode transfers and at their conclusion. Generally,
master mode status bits are not directly associated with the generation of
interrupts but offer information on the current transfer. Slave mode oper-
ation does not affect master mode status bits.

• Bus busy (BUSBUSY)

Indicates whether the bus is currently busy or free. This indication
is not limited to only this device but is for all devices. Upon a start
condition, the setting of the register value is delayed due to the
input filtering. Upon a stop condition the clearing of the register
value occurs after tBUF.

[1] The bus is busy. Clock or data activity is detected.

[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

• Serial clock sense (SCLSEN)

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

TWI General Operation

29-14 ADSP-BF54x Blackfin Processor Hardware Reference

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial clock.

• Serial data sense (SDASEN)

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[1] An active “zero” is currently being sensed on the serial data line.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial data
line.

• Buffer write error (BUFWRERR)

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. Buffer write error, under normal operation, is
never set due to the master’s ability to stretch the clock and avoid
the circumstances described here. This bit is W1C.

[0] The current master receive has not detected a receive buffer
write error.

• Buffer read error (BUFRDERR)

[1] The current master transfer was aborted due to a transmit
buffer read error. At the time data was required by the transmit
shift register the buffer was empty. Buffer read error, under normal
operation, is never set due to the master’s ability to stretch the

ADSP-BF54x Blackfin Processor Hardware Reference 29-15

Two Wire Interface Controllers

clock and avoid the circumstances described here. This bit is W1C.

[0] The current master transmit has not detected a buffer read
error.

• Data not acknowledged (DNAK)

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is W1C.

[0] The current master transfer has not detected a NAK during
data transmission.

• Address not acknowledged (ANAK)

[1] The current master transfer was aborted due to the detection of
a NAK during the address phase of the transfer. This bit is W1C.

[0] The current master transfer has not detected NAK during
addressing.

• Lost arbitration (LOSTARB)

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is W1C.

[0] The current transfer has not lost arbitration with another
master.

• Master transfer in progress (MPROG)

[1] A master transfer is in progress.

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an
idle bus.

TWI General Operation

29-16 ADSP-BF54x Blackfin Processor Hardware Reference

TWI Slave Status

During and at the conclusion of slave mode transfers, the TWI slave mode
status register (TWIx_SLAVE_STAT) holds information on the current trans-
fer. Generally slave mode status bits are not associated with the generation
of interrupts. Master mode operation does not affect slave mode status
bits.

• General call (GCALL)

This bit self clears if slave mode is disabled (SEN = 0).

[1] At the time of addressing, the address was determined to be a
general call.

[0] At the time of addressing, the address was not determined to be
a general call.

• Slave transfer direction (SDIR)

This bit self clears if slave mode is disabled (SEN = 0).

[1] At the time of addressing, the transfer direction was determined
to be slave transmit.

[0] At the time of addressing, the transfer direction was determined
to be slave receive.

ADSP-BF54x Blackfin Processor Hardware Reference 29-17

Two Wire Interface Controllers

TWI FIFO Status

The fields in the TWI FIFO status register (TWIx_FIFO_STAT) indicate the
state of the FIFO buffers’ receive and transmit contents. The FIFO buffers
do not discriminate between master data and slave data. By using the sta-
tus and control bits provided, the FIFO can be managed to allow
simultaneous master and slave operation.

• Receive FIFO status (RCVSTAT[1:0])

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

[b#11] The FIFO is full and contains two bytes of data. Either a
single or double byte peripheral read of the FIFO is allowed.

[b#10] Reserved

[b#01] The FIFO contains one byte of data. A single byte periph-
eral read of the FIFO is allowed.

[b#00] The FIFO is empty.

• Transmit FIFO status (XMTSTAT[1:0])

The XMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

TWI General Operation

29-18 ADSP-BF54x Blackfin Processor Hardware Reference

[b#11] The FIFO is full and contains two bytes of data.

[b#10] Reserved

[b#01] The FIFO contains one byte of data. A single byte periph-
eral write of the FIFO is allowed.

[b#00] The FIFO is empty. Either a single or double byte periph-
eral write of the FIFO is allowed.

TWI Interrupt Status

The TWI interrupt status register (TWIx_INT_STAT) contains information
about functional areas requiring servicing. Many of the bits serve as an
indicator to further read and service various status registers. After servicing
the interrupt source associated with a bit, the user must clear that inter-
rupt source bit by writing a 1 to it.

• Serial Clock Interrupt (SCLI)

If the TWI module is enabled (TWI_ENA), SCLI is set on a
high-to-low transition of the serial clock pin (SCLx). Normally, this
bit is not required for I2C bus transfers. It will be initially set on an
I2C transfer and does not require clearing.

[1] A high-to-low transition was detected on the SCLx pin. This bit
is W1C.

[0] No transition was detected on the SCLx pin.

• Serial Data Interrupt (SDAI)

If the TWI module is enabled (TWI_ENA), SDAI is set on a
high-to-low transition of the serial data pin (SDAx). Normally, this
bit is not required for I2C bus transfers. It will be initially set on an
I2C transfer and does not require clearing.

ADSP-BF54x Blackfin Processor Hardware Reference 29-19

Two Wire Interface Controllers

[1] A high-to-low transition was detected on the SDAx pin. This bit
is W1C.

[0] No transition was detected on the SDAx pin.

• Receive FIFO service (RCVSERV)

If RCVINTLEN in the TWIx_FIFO_CTL register is 0, this bit is set each
time the RCVSTAT field in the TWIx_FIFO_STAT register is increased
to either b#01 or b#11. If RCVINTLEN is 1, this bit is set each time
RCVSTAT is updated to b#11.

[0] The receive FIFO does not require servicing or the RCVSTAT
field has not changed since this bit was last cleared.

[1] The receive FIFO has one or two 8-bit locations available to be
read.

• Transmit FIFO service (XMTSERV)

If XMTINTLEN in the TWIx_FIFO_CTL register is 0, this bit is set each
time the XMTSTAT field in the TWIx_FIFO_STAT register is updated to
either b#01 or b#00. If XMTINTLEN is 1, this bit is set each time XMT-
STAT is updated to b#00.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

• Master transfer error (MERR)

TWI General Operation

29-20 ADSP-BF54x Blackfin Processor Hardware Reference

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status register
(TWIx_MASTER_STAT).

[0] No errors have been detected.

• Master transfer complete (MCOMP)

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus is released.

[0] The completion of a transfer has not been detected.

• Slave overflow (SOVF)

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

[0] No overflow is detected.

• Slave transfer error (SERR)

[1] A slave error has occurred. A restart or stop condition has
occurred during the data transmit phase of a transfer.

[0] No errors have been detected.

ADSP-BF54x Blackfin Processor Hardware Reference 29-21

Two Wire Interface Controllers

• Slave transfer complete (SCOMP)

[1] The transfer is complete and either a stop, or a restart was
detected.

[0] The completion of a transfer has not been detected.

• Slave transfer initiated (SINIT)

[1] The slave has detected an address match and a transfer is initi-
ated.

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

Functional Description

29-22 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the functional operation of the TWI.

General Setup
General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

• Program the TWIx_CONTROL register to enable the TWI controller
and set the prescale value. Program the prescale value to the binary
representation of fSCLK / 10MHz

All values should be rounded up to the next whole number. The TWIx_ENA
bit enable must be set. Note once the TWI controller is enabled a bus
busy condition may be detected. This condition should clear after tBUF
has expired assuming no additional bus activity is detected.

Slave Mode
When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other. This is reflected in the following
setup.

1. Program TWIx_SLAVE_ADDR. The appropriate 7 bits are used in
determining a match during the address phase of the transfer.

2. Program TWIx_XMT_DATA8 or TWIx_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (SCLx) is stretched and an interrupt is generated until data is
written to the transmit FIFO.

ADSP-BF54x Blackfin Processor Hardware Reference 29-23

Two Wire Interface Controllers

3. Program TWIx_INT_MASK. Enable bits are associated with the desired
interrupt sources. As an example, programming the value 0x000F
results in an interrupt output to the processor in the event that a
valid address match is detected, a valid slave transfer completes, a
slave transfer has an error, a subsequent transfer has begun yet the
previous transfer has not been serviced.

4. Program TWIx_SLAVE_CTL. Ultimately this prepares and enables
slave mode operation. As an example, programming the value
0x0005 enables slave mode operation and indicates that data in the
transmit FIFO buffer is intended for slave mode transmission.

Table 29-2 shows what the interaction between the TWI controllers and
the processor might look like using this example.

Table 29-2. Slave Mode Setup Interaction

TWI Controller Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits.
Read TWIx_FIFO_STAT.
Read receive FIFO buffer.

... ...

Interrupt: SCOMP – Slave transfer complete. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Functional Description

29-24 ADSP-BF54x Blackfin Processor Hardware Reference

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

• Program TWIx_CLKDIV. This defines the clock high duration and
clock low duration.

Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program TWIx_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWIx_XMT_DATA8 or TWIx_XMT_DATA16. This is the initial
data transmitted. It is considered an error to complete the address
phase of the transfer and not have data available in the transmit
FIFO buffer.

3. Program TWIx_FIFO_CTL. Indicate if transmit FIFO buffer inter-
rupts should occur with each byte transmitted (8 bits) or with each
2 bytes transmitted (16 bits).

4. Program TWIx_INT_MASK. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWIx_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, sets the direction to mas-
ter-transmit, uses standard mode timing, and transmits 8 data bytes
before generating a Stop condition.

ADSP-BF54x Blackfin Processor Hardware Reference 29-25

Two Wire Interface Controllers

Table 29-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Master Mode Receive
Follow these programming steps for a single master mode receive:

1. Program TWIx_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWIx_FIFO_CTL. Indicate if receive FIFO buffer interrupts
should occur with each byte received (8 bits) or with each 2 bytes
received (16 bits).

3. Program TWIx_INT_MASK. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWIx_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, sets the direction to mas-
ter-receive, uses standard mode timing, and receives 8 data bytes
before generating a Stop condition.

Table 29-4 shows what the interaction between the TWI controllers and
the processor might look like using this example.

Table 29-3. Master Mode Transmit Setup Interaction

TWI Controller Processor

Interrupt: XMTSERV – Transmit buffer is
empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

Functional Description

29-26 ADSP-BF54x Blackfin Processor Hardware Reference

Clock Stretching

Clock Stretching is an added functionality of the TWI controller. This
new behavior of the Master Mode operation utilizes self induced stretch-
ing of I2C clock while waiting on servicing interrupts.

During a master mode transmit an interrupt is generated at the instant the
transmit FIFO becomes empty. At this time the most recent byte begins
transmission. If the XMTSERV interrupt is not serviced, the concluding
“acknowledge” phase of the transfer will be stretched. Stretching of the
clock continues until new data bytes are written to the transmit FIFO
(TWIx_XMT_DATA8 or TWIx_XMT_DATA16). No other action is required to
release the clock and continue the transmission. This behavior continues
until the transmission is complete (DCNT = 0) at which time the transmis-
sion is concluded (MCOMP) as shown in Figure 29-7 and described in
Table 29-5.

Table 29-4. Master Mode Receive Setup Interaction

TWI Controller Processor

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

ADSP-BF54x Blackfin Processor Hardware Reference 29-27

Two Wire Interface Controllers

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWIx_RCV_DATA8, TWIx_RCV_DATA16). No other action is required to

Figure 29-7. Clock Stretching during FIFO Underflow

Table 29-5. FIFO Underflow Case

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

S ADDRESS DATA ACK WITH
STRETCH

ACK DATA ACK DATA

11 01 00

XMTSTAT[1:0]

TWIx_XMT_DATA IS WRITTEN AT THIS TIME
AND CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

01

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

11

Functional Description

29-28 ADSP-BF54x Blackfin Processor Hardware Reference

release the clock and continue the reception of data. This behavior
continues until the reception is complete (DCNT = 0x00) at which time the
reception is concluded (MCOMP) as shown in Figure 29-8 and described in
Table 29-6.

Figure 29-8. Clock Stretching During FIFO Overflow

Table 29-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is
full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive com-
plete.

Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACK DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWIx_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

ADSP-BF54x Blackfin Processor Hardware Reference 29-29

Two Wire Interface Controllers

Repeated Start Condition
In general, a repeated start condition is the absence of a stop condition
between two transfers. The two transfers can be of any direction type.
Examples include a transmit followed by a receive, or a receive followed by
a transmit. With the use of clock stretching the task of managing transi-
tions becomes simpler and becomes common to all transfer types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock will initiate a stretch during the repeated start phase between
transfers. Concurrent with this event the initial transfer will generate a
transfer complete interrupt (MCOMP) to signify the initial transfer has
completed (DCNT = 0). This initial transfer is handled without any special
bit setting sequences or timings. The clock stretching logic described
above applies here. With no system related timing constraints the subse-
quent transfer (receive or transmit) is setup and activated. This sequence
can be repeated as many times as required to string a series of repeated
start transfers together. This is shown in Figure 29-9 and described in
Table 29-7.

Functional Description

29-30 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 29-9. Clock Stretching during Repeated Start Condition

Table 29-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has
completed and DCNT = 0x00.

Note: transfer in progress, RSTART previously
set.

Acknowledge: Clear interrupt source bits.

Write TWIx_MASTER_CTL, setting MDIR
(receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

S ADDRESS RSTART/
STRETCH

ADDRESSACK DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING

IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCLx

REPEATED START "STRETCH" BEGINS SOON AFTER SCLx FALL
DUE TO DCNT=0X00 AND RSTART.

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

ACK ACK

ADSP-BF54x Blackfin Processor Hardware Reference 29-31

Two Wire Interface Controllers

... ...

Interrupt: MCOMP – Master receive com-
plete.

Acknowledge: Clear interrupt source bits.

Table 29-7. Repeated Start Case (Cont’d)

TWI Controller Processor

Programming Model

29-32 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Model
Figure 29-10 and Figure 29-11 illustrate the programming model for the
TWI.

Figure 29-10. TWI Slave Mode

WRITE TO TWIx_CONTROL TO SET
PRESCALE AND ENABLE THE TWI

WRITE TO TWIx_SLAVE_ADDR

DONE

WRITE DATA INTO
TWIx_XMT_DATA

REGISTER

INTERRUPT
SOURCE

SCOMP

XMTSERV

WRITE TO TWIx_XMT_DATA REGISTER
TO PRE-LOAD THE TX FIFO

WRITE TO TWIx_FIFO_CTL TO SELECT WHETHER
1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWIx_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WRITE TO TWIx_SLAVE_CTL TO
ENABLE SLAVE FUNCTIONALITY

WAIT FOR INTERRUPTS

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWIx_RCV_DATA

REGISTER

RCVSERV

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

WRITE TWIx_INT_STAT TO CLEAR INTERRUPT

ADSP-BF54x Blackfin Processor Hardware Reference 29-33

Two Wire Interface Controllers

Figure 29-11. TWI Master Mode

DONE

WRITE DATA INTO
TWIx_XMT_DATA

REGISTER

TRANSFER
DIRECTION

MERR

TRANSMIT

WRITE TO TWIx_CONTROL TO SET
PRESCALE AND ENABLE THE TWI

WRITE TO TWIx_CLK_DIV

WRITE TO TWIx_MASTER_ADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

WRITE TO TWIx_FIFO_CTL TO SELECT WHETHER
1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWIx_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WAIT FOR INTERRUPTS

WRITE TWIx_MASTER_CTL WITH COUNT,
MDIR CLEARED, AND MEN SET. THIS

STARTS THE TRANSFER

RECEIVE

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

XMTSERVMCOMP

WRITE TWIx_MASTER_CTL WITH COUNT,
MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

MCOMPRCVSERV

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWIx_RCV_DATA

REGISTER

WRITE TWIx_INT_STAT
TO CLEAR INTERRUPT

MERR

READ TWIx_MASTER_STAT TO GET ERROR CAUSE

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT IN TWIx_MASTER_STAT

WRITE TWIx_INT_STAT TO CLEAR MERR BIT

WAIT FOR INTERRUPTS

TWI Registers

29-34 ADSP-BF54x Blackfin Processor Hardware Reference

TWI Registers
The TWI controller has 16 registers described in the following sections.
Table 29-8 lists the TWI registers.

Table 29-8. TWIx Registers

TWI0
Memory-mapped
Registers

Register Name Function

0xFFC0 0700 TWIx_CLKDIV SCL clock divider registers
on page 29-36

0xFFC0 0704 TWIx_CONTROL TWI control registers
on page 29-36

0xFFC0 0708 TWIx_SLAVE_CTL TWI slave mode control registers
on page 29-37

0xFFC0 070C TWIx_SLAVE_ADDR TWI slave mode address registers
on page 29-39

0xFFC0 0710 TWIx_SLAVE_STAT TWI slave mode status registers
on page 29-40

0xFFC0 0714 TWIx_MASTER_CTL TWI master mode control registers
on page 29-41

0xFFC0 0718 TWIx_MASTER_ADDR TWI master mode address registers
on page 29-44

0xFFC0 071C TWIx_MASTER_STAT TWI master mode status registers
on page 29-45

0xFFC0 0720 TWIx_INT_STAT TWI interrupt status registers
on page 29-51

0xFFC0 0724 TWIx_INT_MASK TWI interrupt mask registers
on page 29-47

0xFFC0 0728 TWIx_FIFO_CTL TWI FIFO control registers
on page 29-45

0xFFC0 072C TWIx_FIFO_STAT TWI FIFO status registers
on page 29-47

ADSP-BF54x Blackfin Processor Hardware Reference 29-35

Two Wire Interface Controllers

0xFFC0 0780 TWIx_XMT_DATA8 TWI FIFO transmit data single-byte
registers
on page 29-52

0xFFC0 0784 TWIx_XMT_DATA16 TWI FIFO transmit data double-byte
registers
on page 29-52

0xFFC0 0788 TWIx_RCV_DATA8 TWI FIFO receive data single-byte
registers
on page 29-53

0xFFC0 078C TWIx_RCV_DATA16 TWI FIFO receive data double-byte
registers
on page 29-54

Table 29-8. TWIx Registers (Cont’d)

TWI0
Memory-mapped
Registers

Register Name Function

TWI Registers

29-36 ADSP-BF54x Blackfin Processor Hardware Reference

TWIx_CONTROL Register
The TWI control register (TWIx_CONTROL) is used to enable the TWI mod-
ule as well as to establish a relationship between the system clock (SCLK)
and the TWI controller’s internally timed events. The internal time refer-
ence is derived from SCLK using a prescaled value.

TWIx_CLKDIV Register
During master mode operation, the SCLx clock divider register values are
used to create the high and low durations of the serial clock (SCLx). Serial
clock frequencies can vary from 400 KHz to less than 20 KHz. The resolu-
tion of the clock generated is 1/10 MHz or 100 ns.

Figure 29-12. TWI Control Register

Reset = 0x0000

TWI0_CONTROL 0xFFC00704
TWI1_CONTROL 0xFFC02204

PRESCALE[6:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCCB

TWIx_ENA

TWI0_CONTROL Register

ADSP-BF54x Blackfin Processor Hardware Reference 29-37

Two Wire Interface Controllers

TWIx_SLAVE_CTL Register
The TWI slave mode control register (TWIx_SLAVE_CTL) controls the logic
associated with slave mode operation. Settings in this register do not affect
master mode operation and should not be modified to control master
mode functionality.

Additional information for the TWIx_SLAVE_CTL register bits includes:

• General call enable (GEN)

General call address detection is available only when slave mode is
enabled.

Figure 29-13. SCLx Clock Divider Register

Figure 29-14. TWI Slave Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCLx Clock Divider Register (TWIx_CLKDIV)

CLKLOW[7:0]

Reset = 0x0000

CLKHI[7:0]

TWI0_CLKDIV 0xFFC00700
TWI1_CLKDIV 0xFFC02200

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Control Register (TWIx_SLAVE_CTL)

Reset = 0x0000

SEN (Slave Enable)
STDVAL (Slave Transmit
Data Valid)

NAK
GEN (General Call Enable)

TWI0_SLAVE_CTL 0xFFC00708
TWI1_SLAVE_CTL 0xFFC02208

TWI Registers

29-38 ADSP-BF54x Blackfin Processor Hardware Reference

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

[0] General call address matching is not enabled.

• NAK (NAK)

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to
be addressed. At the time the NAK bit was set, a data byte may
have been in the process of being received. The byte will be
NAK'ed (not acknowledged) back to the master yet the byte will be
accepted into the receive FIFO and receive FIFO status (RCVSTAT)
will be updated accordingly.

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

• Slave transmit data valid (STDVAL)

[1] Data in the transmit FIFO is available for a slave transmission.

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

• Slave enable (SEN)

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

ADSP-BF54x Blackfin Processor Hardware Reference 29-39

Two Wire Interface Controllers

TWIx_SLAVE_ADDR Register
The TWI slave mode address register (TWIx_SLAVE_ADDR) holds the slave
mode address, which is the valid address that the slave-enabled TWI con-
troller responds to. The TWI controller compares this value with the
received address during the addressing phase of a transfer.

Figure 29-15. TWI Slave Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Address Register (TWIx_SLAVE_ADDR)

SADDR[6:0] (Slave
Mode Address)

Reset = 0x0000

TWI0_SLAVE_ADDR 0xFFC00710
TWI1_SLAVE_ADDR 0xFFC02210

TWI Registers

29-40 ADSP-BF54x Blackfin Processor Hardware Reference

TWIx_SLAVE_STAT Register
During and at the conclusion of slave mode transfers, the TWI slave mode
status register (TWIx_SLAVE_STAT) holds information on the current trans-
fer. Generally slave mode status bits are not associated with the generation
of interrupts. Master mode operation does not affect slave mode status
bits.

Figure 29-16. TWI Slave Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Status Register (TWIx_SLAVE_STAT)

Reset = 0x0000

SDIR (Slave Trans-
fer Direction) - RO

GCALL (General Call) - RO

TWI0_SLAVE_STAT 0xFFC0070C
TWI1_SLAVE_STAT 0xFFC0220C

ADSP-BF54x Blackfin Processor Hardware Reference 29-41

Two Wire Interface Controllers

TWIx_MASTER_CTL Register
The TWI master mode control register (TWIx_MASTER_CTL) controls the
logic associated with master mode operation. Bits in this register do not
affect slave mode operation and should not be modified to control slave
mode functionality.

Additional information for the TWIx_MASTER_CTL register bits includes:

• Serial clock override (SCLOVR)

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

Figure 29-17. TWI Master Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Control Register (TWIx_MASTER_CTL)

Reset = 0x0000

MEN (Master Mode Enable)
MDIR (Master Transfer
Direction)SDAOVR (Serial

Data Override)

SCLOVR (Serial
Clock Override)

DCNT[7:0] (Data
Transfer Count)

FAST (Fast Mode)
STOP (Issue Stop
Condition)
RSTART (Repeat Start)

TWI0_MASTER_CTL 0xFFC00714
TWI1_MASTER_CTL 0xFFC02214

TWI Registers

29-42 ADSP-BF54x Blackfin Processor Hardware Reference

• Serial data (SDA) override (SDAOVR)

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

• Data transfer count (DCNT[7:0])

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to 0xFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit. In the event a master transmit is aborted
due to a slave data NAK, the value of DCNT will equal the number of
bytes not sent. The byte which was NAK'ed by the slave will be
counted as a byte which was sent.

• Repeat start (RSTART)

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

[0] Transfer concludes with a stop condition.

ADSP-BF54x Blackfin Processor Hardware Reference 29-43

Two Wire Interface Controllers

• Issue stop condition (STOP)

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt mask register (TWIx_INT_MASK) is updated
along with any associated status bits.

[0] Normal transfer operation.

• Fast mode (FAST)

[1] Fast mode (up to 400K bits/s) timing specifications in use.

[0] Standard mode (up to 100K bits/s) timing specifications in use.

• Master transfer direction (MDIR)

[1] The initiated transfer is master receive.

[0] The initiated transfer is master transmit.

• Master mode enable (MEN)

This bit self clears at the completion of a transfer. This includes
transfers terminated due to errors.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDAx,
SCLx) are no longer driven. Write-1-to-clear status bits are not
affected.

TWI Registers

29-44 ADSP-BF54x Blackfin Processor Hardware Reference

TWIx_MASTER_ADDR Register
During the transmit phase of a transfer, the TWI controllers, with their
master enabled, transmits the contents of the TWI master mode address
register (TWIx_MASTER_ADDR). When programming this register, omit the
read/write bit. That is, only the upper 7 bits that make up the slave
address should be written to this register. For example, if the slave address
is b#1010000X, where X is the read/write bit, then TWIx_MASTER_ADDR is
programmed with b#1010000, which corresponds to 0x50. When sending
out the address on the bus, the TWI controller appends the read/write bit
as appropriate based on the state of the MDIR bit in the master mode con-
trol register.

Figure 29-18. TWI Master Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Address Register (TWIx_MASTER_ADDR)

Reset = 0x0000

MADDR[6:0] (Master
Mode Address)

TWI0_MASTER_ADDR 0xFFC0071C
TWI1_MASTER_ADDR 0xFFC0221C

ADSP-BF54x Blackfin Processor Hardware Reference 29-45

Two Wire Interface Controllers

TWIx_MASTER_STAT Register

TWIx_FIFO_CTL Register
The TWI FIFO control register (TWIx_FIFO_CTL) control bits affect only
the FIFO and are not tied in any way with master or slave mode
operation.

Figure 29-19. TWI Master Mode Status Register

Figure 29-20. TWI FIFO Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Status Register (TWIx_MASTER_STAT)

Reset = 0x0000

MPROG (Master Transfer
in Progress) - RO
LOSTARB (Lost Arbitration) -
W1C

SCLSEN (Serial Clock Sense) - RO
BUSBUSY (Bus Busy) - RO

SDASEN (Serial Data Sense) - RO

ANAK (Address Not
Acknowledged) - W1C
DNAK (Data Not
Acknowledged) - W1C

BUFWRERR (Buffer Write Error) - W1C
BUFRDERR (Buffer Read Error) - W1C

TWI0_MASTER_STAT 0xFFC00718
TWI1_MASTER_STAT 0xFFC02218

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Control Register (TWIx_FIFO_CTL)

XMTFLUSH (Transmit Buffer
Flush)

Reset = 0x0000

RCVFLUSH (Receive Buffer
Flush)

RCVINTLEN (Receive Buffer
Interrupt Length)

XMTINTLEN (Transmit Buffer
Interrupt Length)

TWI0_FIFO_CTL 0xFFC00728
TWI1_FIFO_CTL 0xFFC02228

Reserved - Must always write zero

TWI Registers

29-46 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the TWIx_FIFO_CTL register bits includes:

• Receive buffer interrupt length (RCVINTLEN)

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWIx_FIFO_STAT register indicates two bytes in the FIFO are full
(11).

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (b#01 or b#11).

• Transmit buffer interrupt length (XMTINTLEN)

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWIx_FIFO_STAT register indicates two bytes in the FIFO are empty
(b#00).

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (b#01 or b#00).

• Receive buffer flush (RCVFLUSH)

[1] Flush the contents of the receive buffer and update the RCVSTAT
status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.

[0] Normal operation of the receive buffer and its status bits.

ADSP-BF54x Blackfin Processor Hardware Reference 29-47

Two Wire Interface Controllers

• Transmit buffer flush (XMTFLUSH)

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit
buffer in this state responds as if the transmit buffer is empty.

[0] Normal operation of the transmit buffer and its status bits.

TWIx_FIFO_STAT Register

TWIx_INT_MASK Register
The TWI interrupt mask register (TWIx_INT_MASK) enables interrupt
sources to assert the interrupt output. Each mask bit corresponds with one
interrupt source bit in the TWI interrupt status (TWIx_INT_STAT) register.
Reading and writing the TWI interrupt mask register does not affect the
contents of the TWI interrupt status register.

Figure 29-21. TWI FIFO Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Status Register (TWIx_FIFO_STAT)
All bits are RO.

XMTSTAT[1:0] (Transmit
FIFO Status)

Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO Status)

TWI0_FIFO_STAT 0xFFC0072C
TWI1_FIFO_STAT 0xFFC0222C

TWI Registers

29-48 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the TWIx_INT_MASK register bits includes:

• Serial Clock Interrupt Mask (SCLIM)

[1] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

• Serial Data Interrupt Mask (SDAIM)

[1] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

[0] The corresponding interrupt source is prevented from asserting
the interrupt output.

Figure 29-22. TWI Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Mask Register (TWIx_INT_MASK)
For all bits, 0 = Interrupt generation disabled, 1 = Interrupt generation enabled.

SINITM (Slave Transfer
Initiated Interrupt Mask)

Reset = 0x0000

SCOMPM (Slave Transfer
Complete Interrupt Mask)
SERRM (Slave Transfer Error
Interrupt Mask)

SOVFM (Slave Overflow
Interrupt Mask)

RCVSERVM (Receive FIFO
Service Interrupt Mask)

XMTSERVM (Transmit FIFO
Service Interrupt Mask)

MERRM (Master Transfer Error
Interrupt Mask)

MCOMPM (Master Transfer
Complete Interrupt Mask)

TWI0_INT_MASK 0xFFC00724
TWI1_INT_MASK 0xFFC02224

SCLIM (Serial Clock
Interrupt Mask)

SDAIM (Serial Data
Interrupt Mask)

For all bits:
0 - Mask (disable) interrupt generation
1 - Unmask (enable) interrupt generation

ADSP-BF54x Blackfin Processor Hardware Reference 29-49

Two Wire Interface Controllers

• Receive FIFO service interrupt mask (RCVSERVM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

• Transmit FIFO service interrupt mask (XMTSERVM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

TWI Registers

29-50 ADSP-BF54x Blackfin Processor Hardware Reference

• Master transfer error interrupt mask (MERRM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

• Master transfer complete interrupt mask (MCOMPM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

• Slave overflow interrupt mask (SOVFM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

• Slave transfer error interrupt mask (SERRM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

ADSP-BF54x Blackfin Processor Hardware Reference 29-51

Two Wire Interface Controllers

• Slave transfer complete interrupt mask (SCOMPM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

• Slave transfer initiated interrupt mask (SINITM)

[1] The corresponding interrupt source is prevented from asserting
the interrupt output.

[0] A contents of 1 in the corresponding interrupt source results in
asserting the interrupt output.

TWIx_INT_STAT Register

Figure 29-23. TWI Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Status Register (TWIx_INT_STAT)
All bits are sticky and W1C.

SINIT (Slave Transfer
Initiated)

Reset = 0x0000

SCOMP (Slave Transfer
Complete)
SERR (Slave Transfer Error)
SOVF (Slave Overflow)

RCVSERV (Receive FIFO Service)

XMTSERV (Transmit FIFO Service)

MERR (Master Transfer Error)

MCOMP (Master Transfer Complete)

TWI0_INT_STAT 0xFFC00720
TWI1_INT_STAT 0xFFC02220

SCLI (Serial Clock
Interrupt)

SDAI (Serial Data
Interrupt)

TWI Registers

29-52 ADSP-BF54x Blackfin Processor Hardware Reference

TWIx_XMT_DATA8 Register
The TWI FIFO transmit data single byte register (TWIx_XMT_DATA8) holds
an 8-bit data value written into the FIFO buffer. Transmit data is entered
into the corresponding transmit buffer in a first-in first-out order.
Although peripheral bus writes are 16 bits, a write access to
TWIx_XMT_DATA8 adds only one transmit data byte to the FIFO buffer.
With each access, the transmit status (XMTSTAT) field in the
TWIx_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is full, the write is ignored and the existing FIFO buffer data
and its status remains unchanged.

TWIx_XMT_DATA16 Register
The TWI FIFO transmit data double byte register (TWIx_XMT_DATA16)
holds a 16-bit data value written into the FIFO buffer. To reduce inter-
rupt output rates and peripheral bus access times, a double byte transfer
data access can be performed. Two data bytes can be written, effectively
filling the transmit FIFO buffer with a single access. The data is written in
little endian byte order as shown in Figure 29-25 where byte 0 is the first
byte to be transferred and byte 1 is the second byte to be transferred. With
each access, the transmit status (XMTSTAT) field in the TWIx_FIFO_STAT
register is updated.

Figure 29-24. TWI FIFO Transmit Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Single Byte Register (TWIx_XMT_DATA8)
All bits are WO.

XMTDATA8[7:0] (Transmit
FIFO 8-Bit Data)

Reset = 0x0000

TWI0_XMT_DATA8 0xFFC00780
TWI1_XMT_DATA8 0xFFC02280

ADSP-BF54x Blackfin Processor Hardware Reference 29-53

Two Wire Interface Controllers

If an access is performed while the FIFO buffer is not empty, the write is
ignored and the existing FIFO buffer data and its status remains
unchanged.

TWIx_RCV_DATA8 Register
The TWI FIFO receive data single byte register (TWIx_RCV_DATA8) holds
an 8-bit data value read from the FIFO buffer. Receive data is read from
the corresponding receive buffer in a first-in first-out order. Although
peripheral bus reads are 16 bits, a read access to TWIx_RCV_DATA8 will
access only one transmit data byte from the FIFO buffer. With each
access, the receive status (RCVSTAT) field in the TWIx_FIFO_STAT register is
updated. If an access is performed while the FIFO buffer is empty, the
data is unknown and the FIFO buffer status remains indicating it is
empty.

Figure 29-25. Little Endian Byte Order

Figure 29-26. TWI FIFO Transmit Data Double Byte Register

B1 B0

DATA IN REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Double Byte Register (TWIx_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Reset = 0x0000

TWI0_XMT_DATA16 0xFFC00780
TWI1_XMT_DATA16 0xFFC02280

TWI Registers

29-54 ADSP-BF54x Blackfin Processor Hardware Reference

TWIx_RCV_DATA16 Register
The TWI FIFO receive data double byte register (TWIx_RCV_DATA16) holds
a 16-bit data value read from the FIFO buffer. To reduce interrupt output
rates and peripheral bus access times, a double byte receive data access can
be performed. Two data bytes can be read, effectively emptying the receive
FIFO buffer with a single access. The data is read in little endian byte
order as shown in Figure 29-28 where byte 0 is the first byte received and
byte 1 is the second byte received. With each access, the receive status
(RCVSTAT) field in the TWIx_FIFO_STAT register is updated to indicate it is
empty. If an access is performed while the FIFO buffer is not full, the read
data is unknown and the existing FIFO buffer data and its status remains
unchanged.

Figure 29-27. TWI FIFO Receive Data Single Byte Register

Figure 29-28. Little Endian Byte Order

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Single Byte Register (TWIx_RCV_DATA8)
All bits are RO.

RCVDATA8[7:0] (Receive
FIFO 8-Bit Data)

Reset = 0x0000

TWI0_RCV_DATA8 0xFFC00788
TWI1_RCV_DATA8 0xFFC02288

B1 B0

DATA IN REGISTER

ADSP-BF54x Blackfin Processor Hardware Reference 29-55

Two Wire Interface Controllers

Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

Master Mode Setup
Listing 29-1 shows how to initiate polled receive and transmit transfers in
master mode.

Listing 29-1. Master Mode Receive/Transmit Transfer

/***

 Macro for the Count field of the TWIx_MASTER_CTL register

 x can be any value between 0 and 0xFE (254). A value of

 0xFF disables the counter.

***/

#define TWICount(x) (DCNT & ((x) << 6))

.section L1_data_b;

.byte TX_file[file_size] = "DATA.hex";

Figure 29-29. TWI FIFO Receive Data Double Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Double Byte Register (TWIx_RCV_DATA16)
All bits are WO.

RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Reset = 0x0000

TWI0_RCV_DATA16 0xFFC0078C
TWI1_RCV_DATA16 0xFFC0228C

Programming Examples

29-56 ADSP-BF54x Blackfin Processor Hardware Reference

.BYTE RX_CHECK[file_size];

.byte rcvFirstWord[2];

.SECTION program;

_main:

/***

TWI Master Initialization subroutine

***/

TWI0_INIT:

/***

Enable the TWI0 controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

***/

R1 = TWI0_ENA | 0xA (z);

W[P1 + LO(TWI0_CONTROL)] = R1;

/***

Set CLKDIV:

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns)

and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 (0x11) and

CLKHI = 8.

***/

R5 = CLKHI(0x8) | CLKLOW(0x11) (z);

W[P1 + LO(TWI0_CLKDIV)] = R5;

/***

enable these signals to generate a TWI0 interrupt: optional

ADSP-BF54x Blackfin Processor Hardware Reference 29-57

Two Wire Interface Controllers

***/

R1 = RCVSERV | XMTSERV | MERR | MCOMP (z);

W[P1 + LO(TWI0_INT_MASK)] = R1;

/***

The address needs to be shifted one place to the right

e.g., 1010 001x becomes 0101 0001 (0x51) the TWI0 controller

will actually send out 1010 001x where x is either a 0 for

writes or 1 for reads

***/

R6 = 0xBF;

R6 = R6 >> 1;

TWI0_INIT.END: W[P1 + LO(TWI0_MASTER_ADDR)] = R6;

/******************** END OF TWI0 INIT **********************/

/***

Starting the Read transfer

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or SLOW

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. This will kick off the master transfer

***/

R1 = TWICount(0x2) | FAST | MDIR | MEN;

W[P1 + LO(TWI0_MASTER_CTL)] = R1;

ssync;

/***

Poll the FIFO Status register to know when

2 bytes have been shifted into the RX FIFO

***/

Programming Examples

29-58 ADSP-BF54x Blackfin Processor Hardware Reference

Rx_stat:

R1 = W[P1 + LO(TWI0_FIFO_STAT)](Z);

R0 = 0xC;

R1 = R1 & R0;

CC = R1 == R0;

IF !cc jump Rx_stat;

R0 = W[P1 + LO(TWI0_RCV_DATA16)](Z); /* Read data from the RX

fifo */
ssync;

/***

check that master transfer has completed

MCOMP will be set when Count reaches zero

***/

M_COMP:

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if !CC jump M_COMP;

M_COMP.END: W[P1 + LO(TWI0_INT_STAT)] = R1;

/* load the pointer with the address of the transmit buffer */

P2.H = TX_file;

P2.L = TX_file;

/***

Pre-load the tx FIFO with the first two bytes: this is

necessary to avoid the generation of the Buffer Read Error

(BUFRDERR) which occurs whenever a transmit transfer is

initiated while the transmit buffer is empty

***/

R3 = W[P2++](Z);

W[P1 + LO(TWI0_XMT_DATA16)] = R3;

/***

ADSP-BF54x Blackfin Processor Hardware Reference 29-59

Two Wire Interface Controllers

Initiating the Write operation

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or Standard

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. Setting this bit will kick off the transfer

***/

R1 = TWICount(0xFE) | FAST | MEN;

W[P1 + LO(TWI0_MASTER_CTL)] = R1;

SSYNC;

/***

loop to write data to a TWI0 slave device P3 times

***/

P3 = length(TX_file);

LSETUP (Loop_Start1, Loop_End1) LC0 = P3;

Loop_Start1:

/***

check that there's at least one byte location empty in

the tx fifo

***/

XMTSERV_Status:

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

CC = BITTST (R1, bitpos(XMTSERV)); /* test XMTSERV bit */

if !CC jump XMTSERV_Status;

W[P1 + LO(TWI0_INT_STAT)] = R1; /* clear status */

SSYNC;

/***

write byte into the transmit FIFO

***/

Programming Examples

29-60 ADSP-BF54x Blackfin Processor Hardware Reference

R3 = B[P2++](Z);

W[P1 + LO(TWI0_XMT_DATA8)] = R3;

Loop_End1: SSYNC;

/* check that master transfer has completed */

M_COMP1:

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if !CC jump M_COMP1;

M_COMP1.END:W[P1 + LO(TWI0_INT_STAT)] = R1;

idle;

_main.end:

Slave Mode Setup
Listing 29-2 shows how to configure the slave for interrupt based trans-
fers. The interrupts are serviced in the subroutine _TWI0_ISR shown in
Listing 29-3.

Listing 29-2. Slave Mode Setup

#include <defBF54x.h>

#include "startup.h"

#define file_size 254

#define SYSMMR_BASE 0xFFC00000

#define COREMMR_BASE 0xFFE00000

.GLOBAL _main;

.EXTERN _TWI0_ISR;

.section L1_data_b;

.BYTE TWI0_RX[file_size];

ADSP-BF54x Blackfin Processor Hardware Reference 29-61

Two Wire Interface Controllers

.BYTE TWI0_TX[file_size] = “transmit.dat”;

.section L1_code;

_main:

/***

TWI0 Slave Initialization subroutine

***/

TWI0_SLAVE_INIT:

/***

Enable the TWI0 controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

P0 points to the base of the core MMRs

***/

R1 = TWI0_ENA | 0xA (z);

W[P1 + LO(TWI0_CONTROL)] = R1;

/***

Slave address

program the address to which this slave will respond to.

this is an arbitrary 7-bit value

***/

R1 = 0x5F;

W[P1 + LO(TWI0_SLAVE_ADDR)] = R1;

/***

Pre-load the TX FIFO with the first two bytes to be

transmitted in the event the slave is addressed and a transmit

is required

***/

R3=0xB537(Z);

Programming Examples

29-62 ADSP-BF54x Blackfin Processor Hardware Reference

W[P1 + LO(TWI0_XMT_DATA16)] = R3;

/***

FIFO Control determines whether an interrupt is generated

for every byte transferred or for every two bytes.

A value of zero which is the default, allows for single byte

events to generate interrupts

***/

R1 = 0;

 W[P1 + LO(TWI0_FIFO_CTL)] = R1;

/***

enable these signals to generate a TWI0 interrupt

***/

R1 = RCVSERV | XMTSERV | SOVF | SERR | SCOMP | SINIT (z);

W[P1 + LO(TWI0_INT_MASK)] = R1;

/***

Enable the TWI0 Slave

Program the Slave Control register with:

1. Slave transmit data valid (STDVAL) set so that the contents of

the TX FIFO can be used by this slave when a master requests data

from it.

2. Slave Enable SEN to enable Slave functionality

***/

R1 = STDVAL | SEN;

W[P1 + LO(TWI0_SLAVE_CTL)] = R1;

TWI0_SLAVE_INIT.END:

P2.H = HI(TWI0_RX);

P2.L = LO(TWI0_RX);

P4.H = HI(TWI0_TX);

P4.L = LO(TWI0_TX);

ADSP-BF54x Blackfin Processor Hardware Reference 29-63

Two Wire Interface Controllers

/***

Remap the vector table pointer from the default __I10HANDLER

to the new _TWI0_ISR interrupt service routine

***/

R1.H = HI(_TWI0_ISR);

R1.L = LO(_TWI0_ISR);

[P0 + LO(EVT10)] = R1; /* note that P0 points to the base of the

core MMR registers */

/***

ENABLE TWI0 generate to interrupts at the system level

***/

R1 = [P1 + LO(SIC_IMASK)];

BITSET(R1,BITPOS(IRQ_TWI0));

[P1 + LO(SIC_IMASK)] = R1;

/***

ENABLE TWI0 to generate interrupts at the core level

***/

R1 = [P0 + LO(IMASK)];

BITSET(R1,BITPOS(EVT_IVG10));

[P0 + LO(IMASK)] = R1;

/***

 wait for interrupts

***/

idle;

_main.END:

Programming Examples

29-64 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 29-3. TWI0 Slave Interrupt Service Routine

/***

 Function: _TWI0_ISR

 Description: This ISR is executed when the TWI0 controller

detects a slave initiated transfer. After an interrupt is ser-

viced, its corresponding bit is cleared in the TWI0_INT_STAT

register. This done by writing a 1 to the particular bit posi-

tion. All bits are write 1 to clear.

***/

#include <defBF54x.h>

.GLOBAL _TWI0_ISR;

.section L1_code;

_TWI0_ISR:

/***

read the source of the interrupt

***/

R1 = W[P1 + LO(TWI0_INT_STAT)](z);

/***

Slave Transfer Initiated

***/

CC = BITTST(R1, BITPOS(SINIT));

if !CC JUMP RECEIVE;

R0 = SINIT (Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/***

Receive service

***/

ADSP-BF54x Blackfin Processor Hardware Reference 29-65

Two Wire Interface Controllers

RECEIVE:

CC = BITTST(R1, BITPOS(RCVSERV));

if !CC JUMP TRANSMIT;

R0 = W[P1 + LO(TWI0_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0 ; /* store bytes into a buffer pointed to by P2 */

R0 = RCVSERV(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /*clear interrupt source bit */

ssync;

JUMP _TWI0_ISR.END; /* exit */

/***

Transmit service

***/

TRANSMIT:

CC = BITTST(R1, BITPOS(XMTSERV));

if !CC JUMP SlaveError;

R0 = B[P4++](Z);

W[P1 + LO(TWI0_XMT_DATA8)] = R0;

R0 = XMTSERV(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI0_ISR.END; /* exit */

/***

slave transfer error

***/

SlaveError:

CC = BITTST(R1, BITPOS(SERR));

if !CC SlaveOverflow;

R0 = SERR(Z);

W[P1 + if !CC jump SlaveOverflow LO(TWI0_INT_STAT)] = R0; /*

clear interrupt source bit */

ssync;

Programming Examples

29-66 ADSP-BF54x Blackfin Processor Hardware Reference

JUMP _TWI0_ISR.END; /* exit */

/***

slave overflow

***/

SlaveOverflow:

CC = BITTST(R1, BITPOS(SOVF));

if !CC JUMP SlaveTransferComplete;

R0 = SOVF(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI0_ISR.END; /* exit */

/***

 slave transfer complete

***/

SlaveTransferComplete:

CC = BITTST(R1, BITPOS(SCOMP));

if !CC JUMP _TWI0_ISR.END;

R0 = SCOMP(Z);

W[P1 + LO(TWI0_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/* Transfer complete read receive FIFO buffer and set/clear sema-

phores etc. ... */

R0 = W[P1 + LO(TWI0_FIFO_STAT)](z);

CC = BITTST(R0,BITPOS(RCV_HALF)); /* BIT 2 indicates whether

there's a byte in the FIFO or not */

if !CC JUMP _TWI0_ISR.END;

R0 = W[P1 + LO(TWI0_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0 ; /* store bytes into a buffer pointed to by P2 */

_TWI0_ISR.END:RTI;

ADSP-BF54x Blackfin Processor Hardware Reference 29-67

Two Wire Interface Controllers

Electrical Specifications
All logic complies with the Electrical Specification outlined in the Philips
I2C Bus Specification version 2.1 dated January 2000.

Electrical Specifications

29-68 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 30-1

30 SPORT CONTROLLERS

This chapter describes the processor’s dual-channel synchronous serial
ports (SPORTs) and includes the following sections:

• “Overview” on page 30-1

• “Interface Overview” on page 30-3

• “Description of Operation” on page 30-11

• “Functional Description” on page 30-28

• “SPORT Registers” on page 30-48

• “Programming Examples” on page 30-76

Overview
The ADSP-BF54x Blackfin processors feature four identical synchronous
serial ports, called SPORTs. Unlike the SPI interface which is designed for
SPI-compatible communication only, the SPORT modules support a vari-
ety of serial data communication protocols, for example:

• A-law or µ-law companding according to G.711 specification

• Multichannel or Time-Division-Multiplexed (TDM) modes

• Stereo Audio I2S Mode

• H.100 Telephony standard support

Overview

30-2 ADSP-BF54x Blackfin Processor Hardware Reference

In addition to these standard protocols, the SPORT modules provide
straight-forward modes to connect to standard peripheral devices, such as
ADCs or codecs, without external glue logic. With support for high data
rates, independent transmit and receive channels, and dual data paths, the
SPORT interface is a perfect choice for direct serial interconnection
between two or more processors in a multiprocessor system. Many proces-
sors provide compatible interfaces, including DSPs from Analog Devices
and other manufacturers.

All SPORTs have the same capabilities and are programmed in the same
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs can operate at up to 1/2 the system clock (SCLK) rate for an
internally generated or external serial clock. Independent transmit and
receive clocks provide greater flexibility for serial communications.

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data)

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT

• Provides two synchronous transmit and two synchronous receive
data signals and buffers in each SPORT to double the total sup-
ported data streams

• Performs A-law and μ-law hardware companding on transmitted
and received words. (See “Companding” on page 30-31 for more
information.)

ADSP-BF54x Blackfin Processor Hardware Reference 30-3

SPORT Controllers

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing

• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control

• Provides direct memory access transfer to and from memory under
DMA master control. DMA can be autobuffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

• Has a multichannel mode for TDM interfaces. Each SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bit stream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 = (1023 – 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Interface Overview
SPORT0, SPORT1, SPORT2, and SPORT3 provide an I/O interface to
a wide variety of peripheral serial devices. SPORT0 is accessible through
port C. SPORT1 is accessible through port D. SPORT2 and SPORT3 are
both accessible through port A. For more information on the port config-
uration, see the “General Purpose Ports” chapter in the ADSP-BF54x
Blackfin Processor Hardware Reference. SPORTs provide synchronous serial

Interface Overview

30-4 ADSP-BF54x Blackfin Processor Hardware Reference

data transfer only. Each SPORT has one group of signals (primary data,
secondary data, clock, and frame sync) for transmit and a second set of sig-
nals for receive. The receive and transmit functions are programmed
separately. Each SPORT is a full duplex device, capable of simultaneous
data transfer in both directions. The SPORTs can be programmed for bit
rate, frame sync, and number of bits per word by writing to mem-
ory-mapped registers.

In this text, the naming conventions for registers and signals use a
lower case x to represent a digit. In this chapter, for example, the
name RFSx signals indicates RFS0, RFS1, RFS2, and RFS3 (corre-
sponding to SPORT0, SPORT1, SPORT2, and SPORT3,
respectively). In this chapter, LSB refers to least significant bit, and
MSB refers to most significant bit.

Port A contains the SPORT2 and SPORT3 pins. Some of the SPORT2
and SPORT3 pins are multiplexed and can be used for other purposes if
the entire SPORT2 and SPORT3 blocks or some of their signals are not
required by an application. However, all pins default to the SPORT2 and
SPORT3 modules settings after reset.

SPORT0 resides in port C. Its secondary data pins are shared with
MXVR. The PORTC_MUX register controls whether the secondary SPORT0
data lines are enabled. By default, all port C pins are configured in GPIO
mode. Writing to PORTC_FER enables peripheral functionality. For more
information, see the “General Purpose Ports” chapter in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2).

SPORT1 resides in port D. Its signals are shared with the PPI and
HDMA. The PORTD_MUX register controls whether the SPORT1 lines are
enabled. By default, all port D pins are configured in GPIO mode. Writ-
ing to PORTD_FER enables peripheral functionality. For more information,
see the “General Purpose Ports” chapter in the ADSP-BF54x Blackfin Pro-
cessor Hardware Reference (Volume 1 of 2).

ADSP-BF54x Blackfin Processor Hardware Reference 30-5

SPORT Controllers

The secondary data pins of SPORT2 and SPORT3 are multiplexed with
general-purpose timers. The PORTA_MUX register determines whether gen-
eral-purpose timer functionality is enabled. The remaining SPORT2 and
SPORT3 signals aren’t multiplexed, but they can be used as GPIO pins as
dictated by the PORTA_FER register. For more information, see the “Gen-
eral Purpose Ports” chapter in the ADSP-BF54x Blackfin Processor
Hardware Reference.

On DMAC1, 32-bit DMA mode is not supported for SPORT2 or
SPORT3. The data word lengths for SPORT2 and SPORT3 may,
however, still be set to 32 bits.

Figure 30-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT’s SPORTx_TX register through the peripheral bus. This data is
optionally compressed by the hardware and automatically transferred to
the transmit shift register. The bits in the shift register are shifted out on
the SPORT’s DTxPRI/DTxSEC pin, MSB first or LSB first, synchronous to
the serial clock on the TSCLKx pin. The receive portion of the SPORT
accepts data from the DRxPRI/DRxSEC pin synchronous to the serial clock
on the RSCLKx pin. When an entire word is received, the data is optionally
expanded, then automatically transferred to the SPORT’s SPORTx_RX reg-
ister, and then into the RX FIFO where it is available to the processor.
Table 30-1 shows the signals for each SPORT.

Table 30-1. SPORTx Signals

Pin1 Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

Interface Overview

30-6 ADSP-BF54x Blackfin Processor Hardware Reference

RSCLKx Receive Clock

RFSx Receive Frame Sync

1 A lowercase x within a signal name represents a possible value of 0, 1, 2, or 3 (corresponding to
SPORT0 , SPORT1, SPORT2, and SPORT3).

Table 30-1. SPORTx Signals (Cont’d)

Pin1 Description

ADSP-BF54x Blackfin Processor Hardware Reference 30-7

SPORT Controllers

A SPORT receives serial data on its DRxPRI and DRxSEC inputs and trans-
mits serial data on its DTxPRI and DTxSEC outputs. It can receive and
transmit simultaneously for full-duplex operation. For transmit, the data
bits (DTxPRI and DTxSEC) are synchronous to the transmit clock (TSCLKx).
For receive, the data bits (DRxPRI and DRxSEC) are synchronous to the
receive clock (RSCLKx). The serial clock is an output if the processor gener-
ates it, or an input if the clock is externally generated. Frame
synchronization signals RFSx and TFSx are used to indicate the start of a
serial data word or stream of serial words.

Figure 30-1. SPORT Block Diagram

COMPANDING
HARDWARE

COMPANDING
HARDWARE

NOTE 1: ALL WIDE ARROW DATA PATHS ARE 16 OR 32 BITS WIDE, DEPENDING ON SLEN. FOR SLEN = 2 TO 15, A 16-BIT
DATA PATH WITH 8-DEEP FIFO IS USED. FOR SLEN = 16 TO 31, A 32-BIT DATA PATH WITH 4-DEEP FIFO IS USED.
NOTE 2: Tx REGISTER IS THE BOTTOM OF THE Tx FIFO, Rx REGISTER IS THE TOP OF THE Rx FIFO.

TFSx

Rx FIFO
4 x 32 OR 8 x 16

TSCLKx RSCLKx RFSx

PAB

DAB

Tx FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DTx SECDTx PR DRx SECDRx PR

Tx REGISTER Rx REGISTER

Tx PRI
SHIFT REG

Tx SEC
SHIFT REG

Tx PRI
HOLD REG

Tx SEC
HOLD REG

Rx PRI
HOLD REG

Rx SEC
HOLD REG

Rx PRI
SHIFT REG

Rx SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR

Interface Overview

30-8 ADSP-BF54x Blackfin Processor Hardware Reference

The primary and secondary data pins, if enabled by the port configura-
tion, provide a method to increase the data throughput of the serial port.
They do not behave as totally separate SPORTs; rather, they operate in a
synchronous manner (sharing clock and frame sync) but on separate data.
The data received on the primary and secondary signals is interleaved in
main memory and can be retrieved by setting a stride in the Data Address
Generators (DAG) unit. For more information about DAGs, see the
“Data Address Generators” chapter in the Blackfin Processor Programming
Reference. Similarly, for TX, data should be written to the TX register in
an alternating manner—first primary, then secondary, then primary, then
secondary, and so on. This is easily accomplished with the processor’s
powerful DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 30-2 shows a possible port connection for the SPORTs. Note serial
devices A and B must be synchronous, as they share common frame syncs
and clocks. The same is true for serial pairs C and D, E and F, and G
and H. SPORT1 is Multichannel Mode. In Multichannel mode, TFS
functions as a transmit data valid (TDV) output. Although shown as an
external connection, the TSCLK/RSCLK connection is internal in multi-
channel mode. See “Multichannel Operation” on page 30-17 for details.

ADSP-BF54x Blackfin Processor Hardware Reference 30-9

SPORT Controllers

Figure 30-2. SPORT3–0 Example Connections

RSCLK0

TSCLK0

TFS0

RFS0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1

RFS1

DT1SEC

DR1SEC

DR1PRI

DT1PRI

SPORT1

SERIAL
DEVICE D

(SECONDARY)

SERIAL
DEVICE C

(PRIMARY)

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

SPORT0

RSCLK2

TSCLK2

TFS2

RFS2

DT2SEC

DR2SEC

DR2PRI

DT2PRI

RSCLK3

TSCLK3

TFS3

RFS3

DT3SEC

DR3SEC

DR3PRI

DT3PRI

BLACKFIN

SPORT3

SERIAL
DEVICE H

(SECONDARY)

SERIAL
DEVICE G

(PRIMARY)

SERIAL
DEVICE F

(SECONDARY)

SERIAL
DEVICE E

(PRIMARY)

SPORT2

PA5

PA1

PA6

PA2

PA4

PA7

PA0

PA3

PA13

PA9

PA14

PA10

PA12

PA15

PA8

PA11

PORT A

PORT A

PC5

PC1

PC6

PC2

PC4

PC7

PC0

PC3

PD5

PD1

PD6

PD2

PD4

PD7

PD0

PD3

PORT C

PORT D

SERIAL
DEVICE N

Interface Overview

30-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 30-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to the processor.

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Figure 30-3. SPORT1–0 Example Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE BLACKFIN

RSCLK0

TSCLK0

TFS0

RFS0

DT0SEC

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1

RFS1

DT1SEC

DR1PRI

DT1PRI

SPORT1

DR1SEC

SPORT0

DR0SECPC5

PC1

PC6

PC2

PC4

PC7

PC0

PC3

PD5

PD1

PD6

PD2

PD4

PD7

PD0

PD3

PORT C

PORT D

ADSP-BF54x Blackfin Processor Hardware Reference 30-11

SPORT Controllers

Description of Operation

SPORT Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFSx signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPORTx_TX register is
transferred through the FIFO to the internal transmit shift register. The
bits are then sent, beginning with either the MSB or the LSB as specified
in the SPORTx_TCR1 register. Each bit is shifted out on the driving edge of
TSCLKx. The driving edge of TSCLKx can be configured to be rising or fall-
ing. The SPORT generates the transmit interrupt or requests a DMA
transfer as long as there is space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word is received, it is written to the SPORT FIFO regis-
ter and the receive interrupt for that SPORT is generated or a DMA
transfer is initiated. Interrupts are generated differently if DMA block
transfers are performed. For information about DMA, see the “Direct
Memory Access” chapter in the ADSP-BF54x Blackfin Processor Hardware
Reference.

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORTx_TCR1 regis-
ter and RSPEN in the SPORTx_RCR1 register, respectively). Each method has
a different effect on the SPORT.

Description of Operation

30-12 ADSP-BF54x Blackfin Processor Hardware Reference

A processor reset disables the SPORTs by clearing the SPORTx_TCR1,
SPORTx_TCR2, SPORTx_RCR1, and SPORTx_RCR2 registers (including the
TSPEN and RSPEN enable bits) and the SPORTx_TCLKDIV, SPORTx_RCLKDIV,
SPORTx_TFSDIVx, and SPORTx_RFSDIVx clock and frame sync divisor regis-
ters. Any ongoing operations are aborted.

Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

Note that disabling a SPORT through TSPEN/RSPEN may shorten
any currently active pulses on the TFSx/RFSx and TSCLKx/RSCLKx
outputs, if these signals are configured to be generated internally.

The SPORTs are ready to start transmitting or receiving data no later than
three serial clock cycles after they are enabled in the SPORTx_TCR1 or
SPORTx_RCR1 register. No serial clock cycles are lost from this point on.
The first internal frame sync will occur one frame sync delay after the
SPORTs are ready. External frame syncs can occur as soon as the SPORT
is ready.

When disabling the SPORT from multichannel operation, first disable
TXEN and then disable RXEN. Note both TXEN and RXEN must be disabled
before re-enabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Each SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORTx_RCLKDIV,
SPORTx_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORTx_TCR1 and/or RSPEN in SPORTx_RCR1.

ADSP-BF54x Blackfin Processor Hardware Reference 30-13

SPORT Controllers

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in the “SPORT Registers” section. All con-
trol and status bits in the SPORT registers are active high unless otherwise
noted.

Stereo Serial Operation
Several stereo serial modes can be supported by the SPORT, including the
popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2
changes the operation of the frame sync pin to a left/right clock as
required for I2S and left-justified stereo serial data. Setting this bit enables
the SPORT to generate or accept the special LRCLK-style frame sync. All
other SPORT control bits remain in effect and should be set
appropriately.

Figure 30-4 on page 30-14 shows timing diagrams for stereo serial mode
transmit operation.

Figure 30-5 on page 30-15 shows timing diagrams for stereo serial mode
receive operation.

Blackfin SPORTs are designed such that, in I2S master mode,
LRCLK is held at the last driven logic level and does not transition,
to provide an edge, after the final data word is driven out. There-
fore, while transmitting a fixed number of words to an I2S receiver
that expects an LRCLK edge to receive the incoming data word, the
SPORT should send a dummy word after transmitting the fixed
number of words. The transmission of this dummy word toggles
LRCLK, generating an edge. Transmission of the dummy word is not
required when the I2S receiver is a Blackfin SPORT.

Table 30-2 shows several modes that can be configured using bits in
SPORTx_TCR1 and SPORTx_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-

Description of Operation

30-14 ADSP-BF54x Blackfin Processor Hardware Reference

mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 30-2 pro-
vide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 30-28) still apply,

Figure 30-4. SPORT Stereo Serial Modes, Transmit

TFSx

TSCLKx

DTxPRI

TFSx

TSCLKx

DTxPR

TFSx

TSCLKx

DTxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. TFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 x fS.
3. TSCLKx FREQUENCY IS NORMALLY 64 x TFS BUT MAY BE OPERATED IN BURST MODE.

ADSP-BF54x Blackfin Processor Hardware Reference 30-15

SPORT Controllers

Figure 30-5. SPORT Stereo Serial Modes, Receive

Table 30-2. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

RFSx

RSCLKx

DRxPRI

RFSx

RSCLKx

DRxPRI

RFSx

RSCLKx

DRxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. RFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 23 fS.
3. RSCLKx FREQUENCY IS NORMALLY 64x RFS BUT MAY BE OPERATED IN BURST MODE.

Description of Operation

30-16 ADSP-BF54x Blackfin Processor Hardware Reference

but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the frame sync pin that is consid-
ered a “right” channel. Thus, setting LRFS = 0 indicates that a high signal
on the RFSx or TFSx pin is the right channel, and a low signal is the left
channel. This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

The secondary DRxSEC and DTxSEC pins are useful extensions of the
SPORT which pair well with stereo serial mode. Multiple I2S streams of
data can be transmitted or received using a single SPORT. Note the pri-
mary and secondary pins are synchronous, as they share clock and LRCLK
(frame sync) pins. The transmit and receive sides of the SPORT need not
be synchronous, but may share a single clock in some designs. See
Figure 30-3 on page 30-10, which shows multiple stereo serial connec-
tions being made between the processor and an AD1836 codec.

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X

Table 30-2. Stereo Serial Settings (Cont’d)

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

ADSP-BF54x Blackfin Processor Hardware Reference 30-17

SPORT Controllers

Multichannel Operation
The SPORTs offer a multichannel mode of operation which allows the
SPORT to communicate in a Time-Division-Multiplexed (TDM) serial
system. In multichannel communications, each data word of the serial bit
stream occupies a separate channel. Each word belongs to the next consec-
utive channel so that, for example, a 24-word block of data contains one
word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024
total channels. RX and TX must use the same 128-channel region to selec-
tively enable channels. The SPORT can do any of the following on each
channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTxPRI pin is always driven (not three-stated) if the SPORT is
enabled (TSPEN = 1 in the SPORTx_TCR1 register), unless it is in multichan-
nel mode and an inactive time slot occurs. The DTxSEC pin is always driven

Description of Operation

30-18 ADSP-BF54x Blackfin Processor Hardware Reference

(not three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORTx_TCR2 register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

The SPORT multichannel transmit select register and the SPORT
multichannel receive select register must be programmed before
enabling SPORTx_TX or SPORTx_RX operation for multichannel
mode. This is especially important in “DMA data unpacked
mode,” since SPORT FIFO operation begins immediately after
RSPEN and TSPEN are set, enabling both RX and TX. The MCMEN bit
(in SPORTx_MCMC2) must be enabled prior to enabling SPORTx_TX or
SPORTx_RX operation. When disabling the SPORT from multichan-
nel operation, first disable TXEN and then disable RXEN. Note both
TXEN and RXEN must be disabled before re-enabling. Disabling only
TX or RX is not allowed.

Figure 30-6 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFSx signals start of frame

• TFSx is used as “transmit data valid” for external logic, true only
during transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

ADSP-BF54x Blackfin Processor Hardware Reference 30-19

SPORT Controllers

See “Timing Examples” on page 30-41 for more examples.

Multichannel Enable

Setting the MCMEN bit in the SPORTx_MCM2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must
also be in multichannel mode.

When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Figure 30-6. Multichannel Operation

RSCLKx

B3 B2 B1 B2DRxPRI

RFSx

B0 IGNORED B3

DTxPRI
B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFSx

MFD = 1

Description of Operation

30-20 ADSP-BF54x Blackfin Processor Hardware Reference

Table 30-3 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFSx signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

Table 30-3. Multichannel Mode Configuration

SPORTx_RCR1 or
SPORTx_RCR2

SPORTx_TCR1 or
SPORTx_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK - Independent

- ITCLK Independent

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS - Independent

- ITFS Ignored

RFSR TFSR Ignored

- DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

ADSP-BF54x Blackfin Processor Hardware Reference 30-21

SPORT Controllers

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFSx as a frame sync. This is true whether RFSx is gen-
erated internally or externally. The RFSx signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFSx indi-
cates the beginning of the channel 0 data word.

Since RFSx is used by both the SPORTx_TX and SPORTx_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORTx_RCR1 and SPORTx_TCR1, and in SPORTx_RCR2 and SPORTx_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORTx_RX operation is not enabled.

In multichannel mode, RFSx timing similar to late (alternative) frame
mode is entered automatically; the first bit of the transmit data word is
available and the first bit of the receive data word is sampled in the same
serial clock cycle that the frame sync is asserted, provided that MFD is set to
0.

The TFSx signal is used as a transmit data valid signal which is active dur-
ing transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFSx signal serves as
an output-enabled signal for the data transmit pin. The SPORT drives
TFSx in multichannel mode whether or not ITFS is cleared. The TFSx pin
in multichannel mode still obeys the LTFS bit. If LTFS is set, the transmit
data valid signal will be active low—a low signal on the TFSx pin indicates
an active channel.

Once the initial RFSx is received, and a frame transfer has started, all other
RFSx signals are ignored by the SPORT until the complete frame is
transferred.

If MFD > 0, the RFSx may occur during the last channels of a previous
frame. This is acceptable, and the frame sync is not ignored as long as the
delayed channel 0 starting point falls outside the complete frame.

Description of Operation

30-22 ADSP-BF54x Blackfin Processor Hardware Reference

In multichannel mode, the RFSx signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFSx signals required. Therefore, internally generated frame
syncs are always data independent.

Multichannel Frame

A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 30-7.

Figure 30-7. Relationships for Multichannel Parameters

RFSx

DATA DATA IGNORED

CHANNEL

RSCLKx

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPORT_MCMCn

REG FIELD:
SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128

ADSP-BF54x Blackfin Processor Hardware Reference 30-23

SPORT Controllers

Multichannel Frame Delay

The 4-bit MFD field in SPORTx_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit, which is the equivalent of the late frame sync mode. MFD>0 corre-
sponds to the early frame sync mode. There a new frame sync may occur
before data from the last frame is received, because blocks of data occur
back-to-back. The maximum value allowed for MFD is 15.

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

Window Size

The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active
window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

Description of Operation

30-24 ADSP-BF54x Blackfin Processor Hardware Reference

Window Offset

The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

Other Multichannel Fields in SPORTx_MCMC2

The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally the data is transmitted on the same edge that the TFSx is gener-
ated (FSDR = 0). For example, a positive edge on TFSx causes data to be
transmitted on the positive edge of the TSCLKx—either the same edge or
the following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register

A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are

ADSP-BF54x Blackfin Processor Hardware Reference 30-25

SPORT Controllers

received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORTx_MRCSn and SPORTx_MTCSn multichannel select registers are
used to enable and disable individual channels; the SPORTx_MRCSn registers
specify the active receive channels, and the SPORTx_MTCSn registers specify
the active transmit channels.

Four registers make up each multichannel select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit). See Figure 30-8.

Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the data stream. Clearing
the bit in the SPORTx_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the SPORTx_RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the SPORT to ignore the data.

Figure 30-8. Multichannel Select Registers

0 31 0 31 0 31 0 31

0 31 32 63 64 95 96 127

MCS1MCS0

Channel Select 0 – 127

MCS2 MCS3

Description of Operation

30-26 ADSP-BF54x Blackfin Processor Hardware Reference

Companding may be selected for all channels or for no channels. A-law or
μ-law companding is selected with the TDTYPE field in the SPORTx_TCR1
register and the RDTYPE field in the SPORTx_RCR1 register, and applies to all
active channels. (See “Companding” on page 30-31 for more information
about companding.)

Multichannel DMA Data Packing

Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigur-
ing is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words (unless the secondary side is enabled). The data to be
transmitted or received would be placed at addresses 1 and 10 of the
buffer, and the rest of the words in the DMA buffer would be ignored.
This mode allows changing the number of enabled channels while the
SPORT is enabled, with some caution. First read the channel register to
make sure that the active window is not being serviced. If the channel
count is 0, then the multichannel select registers can be updated.

ADSP-BF54x Blackfin Processor Hardware Reference 30-27

SPORT Controllers

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2X Clock Recovery Control

The SPORTs can recover the data rate clock from a provided 2X input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2M bps data) and HMVIP (8M bps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship. A 2-bit mode signal (MCCRM[1:0] in the
SPORTx_MCMC2 register) chooses the applicable clock mode, which includes
a non-divide or bypass mode for normal operation. A value of
MCCRM = b#00 chooses non-divide or bypass mode (H.100-compatible),
MCCRM = b#10 chooses MVIP-90 clock divide (extract 2 MHz from
4 MHz), and MCCRM = b#11 chooses HMVIP clock divide (extract 8 MHz
from 16 MHz).

Functional Description

30-28 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections provide a functional description of the SPORTs.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORTx_TCLKDIV and
SPORTx_RCLKDIV.

TSCLKx frequency = (SCLK frequency)/(2 x (SPORTx_TCLKDIV + 1))

RSCLKx frequency = (SCLK frequency)/(2 x (SPORTx_RCLKDIV + 1))

If the value of SPORTx_TCLKDIV or SPORTx_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLKx or RSCLKx frequency
takes effect at the start of the drive edge of TSCLKx or RSCLKx that follows
the next leading edge of TFSx or RFSx.

When an internal frame sync is selected (ITFS = 1 in the SPORTx_TCR1 reg-
ister or IRFS = 1 in the SPORTx_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORTx_TCLKDIV or SPORTx_RCLKDIV has changed. The second frame
sync will cause the update.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFSx
or RFSx pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

ADSP-BF54x Blackfin Processor Hardware Reference 30-29

SPORT Controllers

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions =

TFSDIV + 1

of receive serial clocks between frame sync assertions =

RFSDIV + 1

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORTxTFS frequency = (TSCLKx frequency)/(SPORTx_TFSDIV + 1)

SPORTxRFS frequency = (RSCLKx frequency)/(SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV
(or RFSDIV) should not be less than the serial word length minus 1 (the
value of the SLEN field in SPORTx_TCR2 or SPORTx_RCR2). A smaller value
could cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or RFS-
DIV) divisor can be used as a counter for dividing an external clock or for
generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See the product data sheet for exact timing specifications.

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The

Functional Description

30-30 ADSP-BF54x Blackfin Processor Hardware Reference

value of the serial word length (SLEN) field in the SPORTx_TCR2 and
SPORTx_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN ≥ 3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORTx_RCR1 and SPORTx_TCR1 registers. When RLSBIT (or TLSBIT) = 0,
serial words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORTx_TCR1 register and the RDTYPE field of the
SPORTx_RCR1 register specify one of four data formats for both single and
multichannel operation. See Table 30-4.

Table 30-4. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORTx_TCR1 Data Formatting SPORTx_RCR1 Data Formatting

b#00 Normal operation Zero fill

b#01 Reserved Sign extend

b#10 Compand using μ-law Compand using μ-law

b#11 Compand using A-law Compand using A-law

ADSP-BF54x Blackfin Processor Hardware Reference 30-31

SPORT Controllers

These formats are applied to serial data words loaded into the SPORTx_RX
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORTs support the two most
widely used companding algorithms, μ-law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORTx_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORTx_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (μ-law)
maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLKx) and a receive clock sig-
nal (RSCLKx). The clock signals are configured by the TCKFE and RCKFE bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers. Serial clock frequency is
configured in the SPORTx_TCLKDIV and SPORTx_RCLKDIV registers.

The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Functional Description

30-32 ADSP-BF54x Blackfin Processor Hardware Reference

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORTx_TCR1
configuration register and the IRCLK bit in the SPORTx_RCR1 configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
processor, and the TSCLKx or RSCLKx pin is an output. The clock frequency
is determined by the value of the serial clock divisor in the
SPORTx_RCLKDIV register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLKx or RSCLKx pins, and the serial clock divisors in the
SPORTx_TCLKDIV/SPORTx_RCLKDIV registers are ignored. The externally gen-
erated serial clocks do not need to be synchronous with the system clock
or with each other. The system clock must have a higher frequency than
RSCLKx and TSCLKx.

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFSx (transmit frame sync) and RFSx
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers
(SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1 and SPORTx_RCR2). The TFSx
and RFSx signals of a SPORT are independent and are separately config-
ured in the control registers.

Framed Versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive
frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORTx_TCR1 and
SPORTx_RCR1 registers.

ADSP-BF54x Blackfin Processor Hardware Reference 30-33

SPORT Controllers

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORTx_TX hold register before the previous
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Figure 30-9 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORTx_TCR1 and SPORTx_RCR1 registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers.

See “Timing Examples” on page 30-41 for more timing examples.

Functional Description

30-34 ADSP-BF54x Blackfin Processor Hardware Reference

Internal Versus External Frame Syncs

Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers determine the frame sync
source.

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFSx pin or RFSx pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFSx pin or RFSx pin, and the frame sync divi-
sors in the SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Figure 30-9. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

FRAMED
DATA

UNFRAMED
DATA

TFSx
OR

RFSx

TFSx
OR

RFSx

DATA

TSCLKx
OR

RSCLKx

ADSP-BF54x Blackfin Processor Hardware Reference 30-35

SPORT Controllers

Active Low Versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1
registers determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal
is active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal
is active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORTx_TCR1
and SPORTx_RCR1 registers select the driving and sampling edges of the
serial data and frame syncs.

For the SPORT transmitter, setting TCKFE = 1 in the SPORTx_TCR1 register
selects the falling edge of TSCLKx to drive data and internally generated
frame syncs and selects the rising edge of TSCLKx to sample externally gen-
erated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLKx to
drive data and internally generated frame syncs and selects the falling edge
of TSCLKx to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORTx_RCR1 register
selects the falling edge of RSCLKx to drive internally generated frame syncs
and selects the rising edge of RSCLKx to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLKx to
drive internally generated frame syncs and selects the falling edge of
RSCLKx to sample data and externally generated frame syncs.

Functional Description

30-36 ADSP-BF54x Blackfin Processor Hardware Reference

Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORTx_TCR1 reg-
ister), the frame sync must be driven on the falling edge of the
clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

In Figure 30-10, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

In Figure 30-11, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 30-10. Example of TCKFE = RCKFE = 0, Transmit and Receive
Connected

B1 B2 B3B0

B1 B2 B3B0

TSCLKx = RSCLKx
INTERNAL OR EXTERNAL

TFSx = RFSx
INTERNAL OR EXTERNAL

DTxPRI

DRxPRI

DRIVE
EDGE

SAMPLE
EDGE

ADSP-BF54x Blackfin Processor Hardware Reference 30-37

SPORT Controllers

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is
the normal mode of operation. In this mode, the first bit of the transmit
data word is available and the first bit of the receive data word is sampled
in the serial clock cycle after the frame sync is asserted, and the frame sync
is not checked again until the entire word is transmitted or received. In
multichannel operation, this corresponds to the case when multichannel
frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN ≥ 3).

Figure 30-11. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3

TSCLKx = RSCLKx
INTERNAL OR EXTERNAL

TFSx = RFSx
INTERNAL OR EXTERNAL

DTxPRI B0

B1 B2 B3DRxPRI B0

DRIVE
EDGE

SAMPLE
EDGE

Functional Description

30-38 ADSP-BF54x Blackfin Processor Hardware Reference

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

Figure 30-12 illustrates the two modes of frame signal timing. In
summary:

• For the LATFS or LARFS bits of the SPORTx_TCR1 or SPORTx_RCR1 reg-
isters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 30-41 for more examples.

ADSP-BF54x Blackfin Processor Hardware Reference 30-39

SPORT Controllers

Data Independent Transmit Frame Sync

Normally the internally generated transmit frame sync signal (TFSx) is
output only when the SPORTx_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFSx signal, with or without new data. The DITFS
bit of the SPORTx_TCR1 register configures this option.

When DITFS = 0, the internally generated TFSx is only output when a new
data word is loaded into the SPORTx_TX buffer. The next TFSx is generated
once data is loaded into SPORTx_TX. This mode of operation allows data to
be transmitted only when it is available.

When DITFS = 1, the internally generated TFSx is output at its pro-
grammed interval regardless of whether new data is available in the
SPORTx_TX buffer. Whatever data is present in SPORTx_TX is transmitted
again with each assertion of TFSx. The TUVF (transmit underflow status)
bit in the SPORTx_STAT register is set when this occurs and old data is
retransmitted. The TUVF status bit is also set if the SPORTx_TX buffer does
not have new data when an externally generated TFSx occurs. Note that in
this mode of operation, data is transmitted only at specified times.

Figure 30-12. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

CLOCK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC

Functional Description

30-40 ADSP-BF54x Blackfin Processor Hardware Reference

If the internally generated TFSx is used, a single write to the SPORTx_TX
data register is required to start the transfer.

Moving Data Between SPORTs and Memory
Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

For information about DMA, see the “Direct Memory Access” chapter in
the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

ADSP-BF54x Blackfin Processor Hardware Reference 30-41

SPORT Controllers

PAB Errors
The SPORT generates a PAB error for illegal register read or write opera-
tions. Examples include:

• Reading a write-only register (for example, SPORTx_TX)

• Writing a read-only register (for example, SPORTx_RX)

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 30-32, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 30-37, and
“Frame Syncs in Multichannel Mode” on page 30-20). This section con-
tains additional examples to illustrate other possible combinations of the
framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the product data sheet for actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing
signals are active high (LRFS = 0 and LTFS = 0).

Figure 30-13 through Figure 30-18 show framing for receiving data.

Functional Description

30-42 ADSP-BF54x Blackfin Processor Hardware Reference

In Figure 30-13 and Figure 30-14, the normal framing mode is shown for
non-continuous data (any number of TSCLKx or RSCLKx cycles between
words) and continuous data (no TSCLKx or SRSCLKx cycles between words).

Figure 30-13. SPORT Receive, Normal Framing

Figure 30-14. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx OUTPUT

DR

RFSx INPUT

RSCLKx

RFSx OUTPUT

RFSx INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

:

ADSP-BF54x Blackfin Processor Hardware Reference 30-43

SPORT Controllers

Figure 30-15 and Figure 30-16 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFSx for the
other SPORT channel.

Figure 30-15. SPORT Receive, Alternate Framing

Figure 30-16. SPORT Continuous Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx OUTPUT

DR

RFSx INPUT

RSCLKx

RFSx OUTPUT

RFSx INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

Functional Description

30-44 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 30-17 and Figure 30-18 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLKx before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multiword bursts
(continuous reception).

Figure 30-17. SPORT Receive, Unframed Mode, Normal Framing

Figure 30-18. SPORT Receive, Unframed Mode, Alternate Framing

RSCLKx

RFSx

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLKx

RFSx

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF54x Blackfin Processor Hardware Reference 30-45

SPORT Controllers

Figure 30-19 through Figure 30-24 show framing for transmitting data
and are very similar to Figure 30-13 through Figure 30-18.

In Figure 30-19 and Figure 30-20, the normal framing mode is shown for
non-continuous data (any number of TSCLKx cycles between words) and
continuous data (no TSCLKx cycles between words). Figure 30-21 and
Figure 30-22 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFSx output meets the RFSx input timing requirement.

Figure 30-19. SPORT Transmit, Normal Framing

TSCLKx

TFSx OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFSx INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

Functional Description

30-46 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 30-20. SPORT Continuous Transmit, Normal Framing

Figure 30-21. SPORT Transmit, Alternate Framing

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLKx

TFSx OUTPUT

TFSx INPUT

DT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx OUTPUT

DT

TFSx INPUT

ADSP-BF54x Blackfin Processor Hardware Reference 30-47

SPORT Controllers

Figure 30-23 and Figure 30-24 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLKx before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 30-22. SPORT Continuous Transmit, Alternate Framing

Figure 30-23. SPORT Transmit, Unframed Mode, Normal Framing

B2 B1 B0B3 B0B3 B2 B1

TSCLKx

TFSx OUTPUT

TFSx INPUT

DT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLKx

TFSx

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

SPORT Registers

30-48 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT Registers
The following sections describe the SPORT registers. Table 30-5 provides
an overview of the available control registers.

Figure 30-24. SPORT Transmit, Unframed Mode, Alternate Framing

Table 30-5. SPORT Registers

Register Name Function Notes

SPORTx_TCR1 Primary transmit configuration regis-
ters
on page 30-51

Bits [15:1] can only be writ-
ten if bit 0 = 0

SPORTx_TCR2 Secondary transmit configuration reg-
isters
on page 30-51

SPORTx_TCLKDIV Transmit clock divider registers
on page 30-68

Ignored if external SPORT
clock mode is selected

SPORTx_TFSDIV Transmit frame sync divider registers
on page 30-69

Ignored if external frame sync
mode is selected

SPORTx_TX SPORT transmit data registers
on page 30-61

See description of FIFO buff-
ering at “SPORTx_TX Regis-
ter” on page 30-61

TSCLKx

TFSx

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF54x Blackfin Processor Hardware Reference 30-49

SPORT Controllers

SPORTx_RCR1 Primary receive configuration regis-
ters
on page 30-56

Bits [15:1] can only be writ-
ten if bit 0 = 0

SPORTx_RCR2 Secondary receive configuration regis-
ters
on page 30-56

SPORTx_RCLKDIV Receive clock divider registers
on page 30-68

Ignored if external SPORT
clock mode is selected

SPORTx_RFSDIV Receive frame sync divider registers
on page 30-69

Ignored if external frame sync
mode is selected

SPORTx_RX SPORT receive data registers
on page 30-63

See description of FIFO buff-
ering at “SPORTx_RX Regis-
ter” on page 30-63

SPORTx_STAT Receive and transmit status registers
on page 30-66

SPORTx_MCMC1 Primary multichannel mode configu-
ration registers
on page 30-70

Configure this register before
enabling the SPORT

SPORTx_MCMC2 Secondary multichannel mode config-
uration registers
on page 30-70

Configure this register before
enabling the SPORT

SPORTx_MRCSn Receive channel selection registers
on page 30-72

Select or deselect channels in
a multichannel frame

SPORTx_MTCSn Transmit channel selection registers
on page 30-74

Select or deselect channels in
a multichannel frame

SPORTx_CHNL SPORTx current channel registers
on page 30-71

Currently serviced channel in
a multichannel frame

Table 30-5. SPORT Registers (Cont’d)

Register Name Function Notes

SPORT Registers

30-50 ADSP-BF54x Blackfin Processor Hardware Reference

Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORTx_RCLKDIV, SPORTx_TCLKDIV, and multichannel mode channel
select registers). The SPORTx_TX register writes are always enabled;
SPORTx_RX, SPORTx_CHNL, and SPORTx_STAT are read-only registers.

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after
the SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

ADSP-BF54x Blackfin Processor Hardware Reference 30-51

SPORT Controllers

SPORTx_TCR1 and SPORTx_TCR2 Registers
The main control registers for the transmit portion of each SPORT are
the transmit configuration registers, SPORTx_TCR1 and SPORTx_TCR2,
shown in Figure 30-25 and Figure 30-26.

Figure 30-25. SPORTx Transmit Configuration 1 Register

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using μ-law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFSx used
1 - Internal TFSx used

0 - Drive data and internal
frame syncs with rising
edge of TSCLKx. Sample
external frame syncs with
falling edge of TSCLKx.

1 - Drive data and internal
frame syncs with falling
edge of TSCLKx. Sample
external frame syncs with
rising edge of TSCLKx.

0 - Active high TFSx
1 - Active low TFSx

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFSx generated
1 - Data-independent TFSx generated

0 - Does not require TFSx for
every data word

1 - Requires TFSx for every
data word

SPORT0:
0xFFC0 0800

SPORT1:
0xFFC0 0900

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2500

SPORT3:
0xFFC0 2600

SPORT Registers

30-52 ADSP-BF54x Blackfin Processor Hardware Reference

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_TCR1 is not written except for bit 0 (TSPEN). For example,

write (SPORTx_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORTx_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_TCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_TCR1

still equal to 0x0000 */

Additional information for the SPORTx_TCR1 and SPORTx_TCR2 transmit
configuration register bits includes:

Figure 30-26. SPORTx Transmit Configuration 2 Register

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value
in this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0804

SPORT1:
0xFFC0 0904

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2504

SPORT3:
0xFFC0 2604

ADSP-BF54x Blackfin Processor Hardware Reference 30-53

SPORT Controllers

• Transmit enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine
(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLKx,
and frame sync pins; it also shuts down the internal SPORT cir-
cuitry. In low power applications, battery life can be extended by
clearing TSPEN whenever the SPORT is not in use.

All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_TCR1 with all of the necessary bits, including
TSPEN.

• Internal transmit clock select. (ITCLK). This bit selects the internal
transmit clock (if set) or the external transmit clock on the TSCLKx
pin (if cleared). The TCLKDIV MMR value is not used when an
external clock is selected.

• Data formatting type select. The two TDTYPE bits specify data for-
mats used for single and multichannel operation.

• Bit order select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

SPORT Registers

30-54 ADSP-BF54x Blackfin Processor Hardware Reference

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word transmitted over the SPORTs) is
calculated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer through DMA or an MMR write
instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The SPORT always
transfers the SLEN+1 lower bits from the transmit buffer.

The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal transmit frame sync select. (ITFS). This bit selects
whether the SPORT uses an internal TFSx (if set) or an external
TFSx (if cleared).

• Transmit frame sync required select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a transmit frame sync for every data word.

The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

ADSP-BF54x Blackfin Processor Hardware Reference 30-55

SPORT Controllers

• Data-Independent transmit frame sync select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFSx
(sync at selected interval) or a data-dependent TFSx (sync when
data is present in SPORTx_TX) for the case of internal frame sync
select (ITFS = 1). The DITFS bit is ignored when external frame
syncs are selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORTx_TX register is loaded or not; if DITFS is cleared, the frame
sync pulse is only generated if the SPORTx_TX data register is loaded.
If the receiver demands regular frame sync pulses, DITFS should be
set, and the processor should keep loading the SPORTx_TX register
on time. If the receiver can tolerate occasional late frame sync
pulses, DITFS should be cleared to prevent the SPORT from trans-
mitting old data twice or transmitting garbled data if the processor
is late in loading the SPORTx_TX register.

• Low transmit frame sync select. (LTFS). This bit selects an active
low TFSx (if set) or active high TFSx (if cleared).

• Late transmit frame sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (TCKFE). This bit selects which
edge of the TSCLKx signal the SPORT uses for driving data, for
driving internally generated frame syncs, and for sampling exter-
nally generated frame syncs. If set, data and internally generated
frame syncs are driven on the falling edge, and externally generated
frame syncs are sampled on the rising edge. If cleared, data and
internally generated frame syncs are driven on the rising edge, and
externally generated frame syncs are sampled on the falling edge.

• Transmit secondary enable. (TXSE). This bit enables the transmit
secondary side of the SPORT (if set).

SPORT Registers

30-56 ADSP-BF54x Blackfin Processor Hardware Reference

• Stereo serial enable. (TSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (TRFST). If this bit is set, the right channel is
transmitted first in stereo serial operating mode. By default this bit
is cleared, and the left channel is transmitted first.

SPORTx_RCR1 and SPORTx_RCR2 Registers
The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORTx_RCR1 and SPORTx_RCR2, shown in
Figure 30-27 and Figure 30-28.

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_RCR1 is not written except for bit 0 (RSPEN). For example,

write (SPORTx_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORTx_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_RCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_RCR1

still equal to 0x0000 */

ADSP-BF54x Blackfin Processor Hardware Reference 30-57

SPORT Controllers

Figure 30-27. SPORTx Receive Configuration 1 Register

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data
Formatting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using μ-law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFSx used
1 - Internal RFSx used

0 - Drive internal frame sync
on rising edge of RSCLKx.
Sample data and external
frame sync with falling
edge of RSCLKx.

1 - Drive internal frame sync
on falling edge of RSCLKx.
Sample data and external
frame sync with rising
edge of RSCLKx.

0 - Active high RFSx
1 - Active low RFSx

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFSx for

every data word
1 - Requires RFSx for every data

word

SPORT0:
0xFFC0 0820

SPORT1:
0xFFC0 0920

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2520

SPORT3:
0xFFC0 2620

SPORT Registers

30-58 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the SPORTx_RCR1 and SPORTxRCR2 receive con-
figuration register bits:

• Receive enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORTx receiver, which can generate a
SPORTx RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to ser-
vice RX interrupts before setting RSPEN. Setting RSPEN also
generates DMA requests if DMA is enabled and data is received.
Set all DMA control registers before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also

Figure 30-28. SPORTx Receive Configuration 2 Register

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value
in this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0824

SPORT1:
0xFFC0 0924

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2524

SPORT3:
0xFFC0 2624

ADSP-BF54x Blackfin Processor Hardware Reference 30-59

SPORT Controllers

shuts down the internal SPORT receive circuitry. In low power
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_RCR1 with all of the necessary bits, including
RSPEN.

• Internal receive clock select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The
RCLKDIV MMR value is not used when an external clock is selected.

• Data formatting type select. (RDTYPE). The two RDTYPE bits specify
one of four data formats used for single and multichannel
operation.

• Bit order select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTs.

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word received over the SPORTs) is calculated by
adding 1 to the value of the SLEN field. The SLEN field can be set to
a value of 2 to 31; 0 and 1 are illegal values for this field.

The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal receive frame sync select. (IRFS). This bit selects whether
the SPORT uses an internal RFSx (if set) or an external RFSx (if
cleared).

SPORT Registers

30-60 ADSP-BF54x Blackfin Processor Hardware Reference

• Receive frame sync required select. (RFSR). This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a receive
frame sync for every data word.

• Low receive frame sync select. (LRFS). This bit selects an active low
RFSx (if set) or active high RFSx (if cleared).

• Late receive frame sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (RCKFE). This bit selects which
edge of the RSCLKx clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec enable. (RXSE). This bit enables the receive secondary side of
the SPORT (if set).

• Stereo serial enable. (RSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (RRFST). If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

ADSP-BF54x Blackfin Processor Hardware Reference 30-61

SPORT Controllers

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1,
and SPORTx_RCR2 registers.

SPORTx_TX Register
The SPORTx transmit data register (SPORTx_TX) is a write-only register.
Reads produce a Peripheral Access Bus (PAB) error. Writes to this register
cause writes into the transmitter FIFO. The 16-bit wide FIFO is 8 deep
for word length <= 16 and 4 deep for word length > 16. The FIFO is com-
mon to both primary and secondary data and stores data for both. Data
ordering in the FIFO is shown in the Figure 30-29. The SPORTx_TX regis-
ter is shown in Figure 30-30.

Figure 30-29. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

SPORT Registers

30-62 ADSP-BF54x Blackfin Processor Hardware Reference

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that PAB/DMA writes to the FIFO must
follow an order of primary first, and then secondary, if secondary is
enabled. DAB/PAB writes must match their size to the data word length.
For word length up to and including 16 bits, use a 16-bit write. Use a
32-bit write for word length greater than 16 bits.

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled. For DMA operation, see the “Direct Memory Access”
chapter in the ADSP-BF54x Blackfin Processor Hardware Reference.

The transmit underflow status bit (TUVF) is set in the SPORT status regis-
ter when a transmit frame sync occurs and no new data is loaded into the
serial shift register. In multichannel mode (MCM), TUVF is set whenever
the serial shift register is not loaded, and transmission begins on the cur-
rent enabled channel. The TUVF status bit is a sticky write-1-to-clear
(W1C) bit and is also cleared by disabling the SPORT (writing TXEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORTx_TX write, the new data is lost and no overwrites occur to
data in the FIFO. The TOVF status bit is set and a SPORT error interrupt
is asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the
SPORTx_TX register without causing this type of error, read the register’s
status first. The TXF bit in the SPORT status register is 0 if space is avail-
able for another word in the FIFO.

The TXF and TOVF status bits in the SPORTx status register are updated
upon writes from the core processor, even when the SPORT is disabled.

ADSP-BF54x Blackfin Processor Hardware Reference 30-63

SPORT Controllers

SPORTx_RX Register
The SPORTx receive data register (SPORTx_RX) is a read-only register.
Writes produce a PAB error. The same location is read for both primary
and secondary data. Reading from this register space causes reading of the
receive FIFO. This 16-bit FIFO is 8 deep for receive word length <= 16
and 4 deep for length > 16 bits. The FIFO is shared by both primary and
secondary receive data. The order for reading using PAB/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

Data storage and data ordering in the FIFO are shown in Figure 30-31.
The SPORTx_RX register is shown in Figure 30-32.

Figure 30-30. SPORTx Transmit Data Register

SPORTx Transmit Data Register (SPORTx_TX)

Transmit Data[31:16]

Reset = 0x0000 0000

Transmit Data[15:0]

SPORT0:
0xFFC0 0810

SPORT1:
0xFFC0 0910

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2510

SPORT3:
0xFFC0 2610

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT Registers

30-64 ADSP-BF54x Blackfin Processor Hardware Reference

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/PAB reads must match their
size to the data word length. For word length up to and including 16 bits,
use a 16-bit read. Use a 32-bit read for word length greater than 16 bits.

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX hold registers for primary and secondary data, respectively.
Data from the hold registers is moved into the FIFO based on RXSE and
SLEN.

Figure 30-31. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

ADSP-BF54x Blackfin Processor Hardware Reference 30-65

SPORT Controllers

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORTx_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORTx status register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORTx_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT RX.

Figure 30-32. SPORTx Receive Data Register

SPORTx Receive Data Register (SPORTx_RX)

Receive Data[31:16]

Reset = 0x0000 0000

Receive Data[15:0]

SPORT0:
0xFFC0 0818

SPORT1:
0xFFC0 0918

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2518

SPORT3:
0xFFC0 2618

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT Registers

30-66 ADSP-BF54x Blackfin Processor Hardware Reference

SPORTx_STAT Register
The SPORT status register (SPORTx_STAT) is used to determine if the
access to a SPORT RX or TX FIFO can be made by determining their full
or empty status. This register is shown in Figure 30-33.

The TXF bit in the SPORT status register indicates whether there is room
in the TX FIFO. The RXNE status bit indicates whether there are words in
the RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

The transmit underflow status bit (TUVF) is set whenever the TFSx signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFSx may be suppressed whenever
SPORTx_TX is empty by clearing the DITFS control bit in the SPORT con-
figuration register. The TUVF status bit is a sticky write-1-to-clear (W1C)
bit and is also cleared by disabling the SPORT (writing TXEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TXEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT status register. It is a sticky W1C bit and is also cleared by
disabling the SPORT (writing RXEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RXEN = 0. The
RUVF bit is updated even when the SPORT is disabled.

ADSP-BF54x Blackfin Processor Hardware Reference 30-67

SPORT Controllers

Figure 30-33. SPORTx Status Register

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive
Underflow Status) - W1C

RXNE (Receive FIFO Not
Empty Status)

ROVF (Sticky Receive
Overflow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)
0 - Not empty
1 - Empty

SPORT0:
0xFFC0 0830

SPORT1:
0xFFC0 0930

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2530

SPORT3:
0xFFC0 2630

SPORT Registers

30-68 ADSP-BF54x Blackfin Processor Hardware Reference

SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers
The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORTx transmit serial clock divider
register, SPORTx_TCLKDIV, shown in Figure 30-34, and the SPORTx
receive serial clock divider register, SPORTx_RCLKDIV, shown in
Figure 30-35).

Figure 30-34. SPORTx Transmit Serial Clock Divider Register

Figure 30-35. SPORTx Receive Serial Clock Divider Register

SPORTx Transmit Serial Clock Divider Register (SPORTx_TCLKDIV)

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
SPORT0:

0xFFC0 0808
SPORT1:

0xFFC0 0908

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORT2:
0xFFC0 2508

SPORT3:
0xFFC0 2608

SPORTx Receive Serial Clock Divider Register (SPORTx_RCLKDIV)

SPORT0:
0xFFC0 0828

SPORT2:
0xFFC0 2528

SPORT3:
0xFFC0 2628

SPORT1:
0xFFC0 0928

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0 Reset = 0x0000

Serial Clock Divide
Modulus[15:0]

ADSP-BF54x Blackfin Processor Hardware Reference 30-69

SPORT Controllers

SPORTx_TFSDIV and SPORTx_RFSDIV Register
The 16-bit SPORTx transmit frame sync divider register (SPORTx_TFSDIV)
and the SPORTx receive frame sync divider register (SPORTx_RFSDIV)
specify how many transmit or receive clock cycles are counted before gen-
erating a TFSx or RFSx pulse when the frame sync is internally generated.
In this way, a frame sync can be used to initiate periodic transfers. The
counting of serial clock cycles applies to either internally or externally gen-
erated serial clocks. These registers are shown in Figure 30-36 and
Figure 30-37.

Figure 30-36. SPORTx Transmit Frame Sync Divider Register

Figure 30-37. SPORTx Receive Frame Sync Divider Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 080C
SPORT1:

0xFFC0 090C

SPORT2:
0xFFC0 250C

SPORT3:
0xFFC0 260C

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock
cycles counted before
generating TFSx pulse

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock
cycles counted before
generating RFSx pulse

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 082C
SPORT1:

0xFFC0 092C

SPORT2:
0xFFC0 252C

SPORT3:
0xFFC0 262C

SPORT Registers

30-70 ADSP-BF54x Blackfin Processor Hardware Reference

SPORTx_MCMCn Registers
There are two SPORTx multichannel configuration registers
(SPORTx_MCMCn) for each SPORT, shown in Figure 30-38 and
Figure 30-39. The SPORTx_MCMCn registers are used to configure the multi-
channel operation of the SPORT.

Figure 30-38. SPORTx Multichannel Configuration Register 1

SPORTx Multichannel Configuration Register 1 (SPORTx_MCMC1)

WSIZE[3:0] (Window Size)

WOFF[9:0]
(Window Offset)

Reset = 0x0000

Places start of window
anywhere in the 0 to
1023 channel rangeValue in field = [(Desired window size)/8 –1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 0838
SPORT1:

0xFFC0 0938

SPORT2:
0xFFC0 2538

SPORT3:
0xFFC0 2638

ADSP-BF54x Blackfin Processor Hardware Reference 30-71

SPORT Controllers

SPORTx_CHNL Register
The 10-bit CHNL field in the SPORTx current channel register
(SPORTx_CHNL) indicates which channel is currently being serviced during
multichannel operation. This field is a read-only status indicator. The
CHNL[9:0] field increments by one as each channel is serviced. The
counter stops at the upper end of the defined window. The channel select
register restarts at 0 at each frame sync. As an example, for a window size
of 8 and an offset of 148, the counter displays a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLKx and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind.

Figure 30-39. SPORTx Multichannel Configuration Register 2

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichan-
nel DMA Transmit

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)
0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0
SPORT0:

0xFFC0 083C
SPORT1:

0xFFC0 093C

SPORT2:
0xFFC0 253C

SPORT3:
0xFFC0 263C

SPORTx Multichannel Configuration Register 2 (SPORTx_MCMC2)

SPORT Registers

30-72 ADSP-BF54x Blackfin Processor Hardware Reference

The SPORTx_CHNL register is shown on Figure 30-40.

SPORTx_MRCSn Registers
The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx multichannel receive select registers
(SPORTx_MRCSn, shown in Figure 30-41) specify the active receive chan-
nels. There are four registers, each with 32 bits, corresponding to the 128
channels. Setting a bit enables that channel so that the SPORT selects that
word for receive from the multiple word block of data. For example, set-
ting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the RX buffer. When the secondary receive side is
enabled by the RXSE bit, both inputs are processed on enabled channels.
Clearing the bit in the SPORTx_MRCSn register causes the SPORT to ignore
the data on either channel. Table 30-6 lists memory-mapped addresses for
all SPORTx_MRCSn registers.

Figure 30-40. SPORTx Current Channel Register

Reset = 0x0000

CHNL[9:0] (Current
Channel Indicator)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SPORTx Current Channel Register (SPORTx_CHNL)
RO

SPORT0:
0xFFC0 0834

SPORT1:
0xFFC0 0934

SPORT2:
0xFFC0 2534

SPORT3:
0xFFC0 2634

ADSP-BF54x Blackfin Processor Hardware Reference 30-73

SPORT Controllers

Figure 30-41. SPORTx Multichannel Receive Select Registers

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple word
block of data.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped
addresses, see
Table 30-6.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

SPORT Registers

30-74 ADSP-BF54x Blackfin Processor Hardware Reference

SPORTx_MTCSn Registers
The multichannel selection registers are used to enable and disable indi-
vidual channels. The four SPORTx multichannel transmit select registers
(SPORTx_MTCSn, Figure 30-42) specify the active transmit channels. There
are four registers, each with 32 bits, corresponding to the 128 channels.
Setting a bit enables that channel so that the SPORT selects that word for
transmit from the multiple word block of data. For example, setting bit 0
selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the data stream. When the
secondary transmit side is enabled by the TXSE bit, both sides transmit a
word on the enabled channel. Clearing the bit in the SPORTx_MTCSn regis-
ter causes both SPORT controllers’ data transmit pins to three-state
during the time slot of that channel.

Table 30-6. SPORTx Multichannel Receive Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

SPORT0_MRCS0 0xFFC0 0850 SPORT2_MRCS0 0xFFC0 2550

SPORT0_MRCS1 0xFFC0 0854 SPORT2_MRCS1 0xFFC0 2554

SPORT0_MRCS2 0xFFC0 0858 SPORT2_MRCS2 0xFFC0 2558

SPORT0_MRCS3 0xFFC0 085C SPORT2_MRCS3 0xFFC0 255C

SPORT1_MRCS0 0xFFC0 0950 SPORT3_MRCS0 0xFFC0 2650

SPORT1_MRCS1 0xFFC0 0954 SPORT3_MRCS1 0xFFC0 2654

SPORT1_MRCS2 0xFFC0 0958 SPORT3_MRCS2 0xFFC0 2658

SPORT1_MRCS3 0xFFC0 095C SPORT3_MRCS3 0xFFC0 265C

ADSP-BF54x Blackfin Processor Hardware Reference 30-75

SPORT Controllers

Figure 30-42. SPORTx Multichannel Transmit Select Registers

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple
word block of data.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For Memory-mapped
addresses, see
Table 30-7.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Programming Examples

30-76 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 30-1 through Listing 30-4 on page 30-82 show how a SPORT is
used in conjunction with the DMA controller.

Since serial ports are usually employed for high-speed, continuous serial
transfers, this example shows an auto-buffered, repeated DMA transfer.

While there are many possible configurations, this example uses generic
labels for the content of the SPORT’s configuration registers
(SPORTx_RCRx and SPORTx_TCRx) and the DMA configuration. An example
value is given in the comments, but for the meaning of the individual bits
the user is referred to the detailed explanation in this chapter. All examples
assume core writes to PORTx_FER and PORTx_MUX have been made to prop-
erly configure port pins associated with the SPORT module.

The example configures both the receive and the transmit section. Since
they are completely independent, the code uses separate labels.

Table 30-7. SPORTx Multichannel Transmit Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped
Address

Register Name Memory-Mapped
Address

SPORT0_MTCS0 0xFFC0 0840 SPORT2_MTCS0 0xFFC0 2540

SPORT0_MTCS1 0xFFC0 0844 SPORT2_MTCS1 0xFFC0 2544

SPORT0_MTCS2 0xFFC0 0848 SPORT2_MTCS2 0xFFC0 2548

SPORT0_MTCS3 0xFFC0 084C SPORT2_MTCS3 0xFFC0 254C

SPORT1_MTCS0 0xFFC0 0940 SPORT3_MTCS0 0xFFC0 2640

SPORT1_MTCS1 0xFFC0 0944 SPORT3_MTCS1 0xFFC0 2644

SPORT1_MTCS2 0xFFC0 0948 SPORT3_MTCS2 0xFFC0 2648

SPORT1_MTCS3 0xFFC0 094C SPORT3_MTCS3 0xFFC0 264C

ADSP-BF54x Blackfin Processor Hardware Reference 30-77

SPORT Controllers

SPORT Initialization Sequence
The SPORT’s receiver and transmitter are configured, but they are not
enabled yet.

Listing 30-1. SPORT Initialization

Program_SPORT_TRANSMITTER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

/* Configure Clock speeds */

R1 = SPORT_TCLK_CONFIG; /* Divider SCLK/TCLK (= 0 to 65535) */

W[P0 + (SPORT0_TCLKDIV – SPORT0_TCR1)] = R1; /* TCK divider

 register */

/* number of Bitclocks between FrameSyncs –1 (= SPORT_SLEN to

65535) */

R1 = SPORT_TFSDIV_CONFIG;

W[P0 + (SPORT0_TFSDIV – SPORT0_TCR1)] = R1; /* TFSDIV

 register */

 /* Transmit configuration */
/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_TRANSMIT_CONF_2;

W[P0 + (SPORT0_TCR2 - SPORT0_TCR1)] = R1;

/* Configuration register 1 (for instance 0x4E12 for inter-

nally generated clk and framesync) */

R1 = SPORT_TRANSMIT_CONF_1;

W[P0] = R1;

ssync; /* NOTE: SPORT0 TX NOT enabled yet (bit 0 of TCR1 must

 be zero) */

Programming Examples

30-78 ADSP-BF54x Blackfin Processor Hardware Reference

Program_SPORT_RECEIVER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

/* Configure Clock speeds */

R1 = SPORT_RCLK_CONFIG; /* Divider SCLK/RCLK (value 0 to

65535) */

W[P0 + (SPORT0_RCLKDIV - SPORT0_RCR1)] = R1; /* RCK divider

register */

/* number of Bitclock between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_RFSDIV_CONFIG;

W[P0 + (SPORT0_RFSDIV - SPORT0_RCR1)] = R1; /* RFSDIV register

*/

/* Receive configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_RECEIVE_CONF_2;

W[P0 + (SPORT0_RCR2 - SPORT0_RCR1)] = R1;

/* Configuration register 1 (for instance 0x4410 for external

clk and framesync) */

R1 = SPORT_RECEIVE_CONF_1;

W[P0] = R1;

ssync; /* NOTE: SPORT0 RX NOT enabled yet (bit 0 of RCR1 must

be zero) */

DMA Initialization Sequence
Next the DMA channels for receive (DMA channel 0) and for transmit
(DMA channel 1) are set up for auto-buffered, one-dimensional, 32-bit
transfers. Again, there are other possibilities, so generic labels have been

ADSP-BF54x Blackfin Processor Hardware Reference 30-79

SPORT Controllers

used, with a particular value shown in the comments. For a detailed expla-
nation of the bits, see the “Direct Memory Access” chapter in the
ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

Note that the DMA channels can be enabled at the end of the configura-
tion since the SPORT is not enabled yet. However, if preferred, the user
can enable the DMA later, immediately before enabling the SPORT. The
only requirement is that the DMA channel be enabled before the associ-
ated peripheral is enabled to start the transfer.

Listing 30-2. DMA Initialization

Program_DMA_Controller:

/* Receiver (DMA channel 0) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA0_CONFIG);

P0.h = hi(DMA0_CONFIG);

/* Configuration (for instance 0x108A for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_RECEIVE_CONF(z);

W[P0] = R0; /* configuration register */

/* rx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(rx_buf)/4)(z);

W[P0 + (DMA0_X_COUNT - DMA0_CONFIG)] = R1; /* X_count register

*/

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA0_X_MODIFY - DMA0_CONFIG)] = R1; /* X_modify regis-

ter */

/* start_address register points to memory buffer to be filled */

R1.l = rx_buf;

Programming Examples

30-80 ADSP-BF54x Blackfin Processor Hardware Reference

R1.h = rx_buf;

[P0 + (DMA0_START_ADDR - DMA0_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

/* Transmitter (DMA 0channel 1) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA1_CONFIG);

P0.h = hi(DMA1_CONFIG);

/* Configuration (for instance 0x1088 for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_TRANSMIT_CONF(z);

W[P0] = R0; /* configuration register */

/* tx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(tx_buf)/4)(z);

W[P0 + (DMA1_X_COUNT - DMA1_CONFIG)] = R1; /* X_count register

*/

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA1_X_MODIFY - DMA1_CONFIG)] = R1; /* X_modify regis-

ter */

/* start_address register points to memory buffer to be trans-

mitted from */

R1.l = tx_buf;

R1.h = tx_buf;

[P0 + (DMA1_START_ADDR - DMA1_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

ADSP-BF54x Blackfin Processor Hardware Reference 30-81

SPORT Controllers

Interrupt Servicing
The receive channel and the transmit channel will each generate an inter-
rupt request if so programmed. The following code fragments show the
minimum actions that must be taken. Not shown is the programming of
the core and system event controllers.

Listing 30-3. Servicing an Interrupt

RECEIVE_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA0_IRQ_STATUS);

P0.l = lo(DMA0_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

TRANSMIT_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA1_IRQ_STATUS);

P0.l = lo(DMA1_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

Programming Examples

30-82 ADSP-BF54x Blackfin Processor Hardware Reference

Starting a Transfer
After the initialization procedure outlined in the previous sections, the
receiver and transmitter are enabled. The core may just wait for interrupts.

Listing 30-4. Starting a Transfer

/* Enable Sport0 RX and TX */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Receiver (set bit 0) */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Transmitter (set bit 0) */

/* dummy wait loop (do nothing but waiting for interrupts) */

wait_forever:

jump wait_forever;

ADSP-BF54x Blackfin Processor Hardware Reference 31-1

31 UART PORT CONTROLLERS

This chapter describes the universal asynchronous receiver/transmitter
(UART) modules and includes the following sections:

• “Overview” on page 31-1

• “Interface Overview” on page 31-3

• “Description of Operation” on page 31-6

• “Programming Model” on page 31-23

• “UART Registers” on page 31-28

• “Programming Examples” on page 31-51

Overview
The ADSP-BF54x Blackfin processors feature multiple separate and iden-
tical UART modules.

ADSP-BF548 and ADSP-BF549 processors feature four UARTs, referred
to as UART0, UART1, UART2, and UART3. UART2 is not present on
ADSP-BF542 and ADSP-BF544 devices.

The UART modules are full-duplex peripherals compatible with PC-style
industry-standard UARTs, sometimes called Serial Controller Interfaces
(SCI). The UARTs convert data between serial and parallel formats. The
serial communication follows an asynchronous protocol that supports var-
ious word length, stop bits, bit rate, and parity generation options.

Overview

31-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
Each UART includes these features:

• 5 – 8 data bits

• 1 or 2 stop bits (1 1/2 in 5-bit mode)

• Even, odd, and sticky parity bit options

• Additional 4-stage receive FIFO with programmable threshold
interrupt

• Flexible transmit and receive interrupt timings

• 3 interrupt outputs for reception, transmission, and status

• Independent DMA operation for receive and transmit

• Programmable automatic RTS/CTS hardware flow control on
UART1 and UART3

• False start bit detection

• SIR IrDA operation mode

• Internal loop back

• Improved bit rate granularity

The UARTs are logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually require external transceiver devices to meet
electrical requirements. In IrDA® (Infrared Data Association) mode, the
UARTs meet the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.

ADSP-BF54x Blackfin Processor Hardware Reference 31-3

UART Port Controllers

Interface Overview
Figure 31-1 shows a simplified block diagram of one UARTx module and
how it interconnects to the Blackfin architecture and to the outside world.

Figure 31-1. UART Block Diagram

UARTx_LSR

UARTx_MSR

UARTx_THR

UARTx_RBR

UARTx_IER

UARTx_MCR

SIC CONTROLLER

UARTx_DLL

UARTx_DLH

DMA CONTROLLER

UARTx_SCR

UARTx_GCTL

TSR

P
O

R
T

S

UARTxR
X

R
E

Q

T
X

R
E

Q

PA
B

D
A

B
x

S
TA

T
R

E
Q

8 8

++

BLACKFIN

UARTxRX

UARTxTX

UARTx_LCR

SET

CLEAR

T
R

A
N

S
C

E
IV

E
R

TO
 T

IM
E

R
x

UARTxCTS

UARTxRTS

NOTE PULLING RESISTORS
ARE FOR THE RESET STATE
ONLY.

FIFO RSR

++

16 16/32

Interface Overview

31-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interface
Each UART features an RX and a TX pin available through general-pur-
pose ports. These two pins usually connect to an external transceiver
device that meets the electrical requirements of full duplex (for example,
EIA-232, EIA-422, 4-wire EIA-485) or half duplex (for example, 2-wire
EIA-485, LIN) standards. Additionally, UART1 and UART3 feature a
pair of UARTxCTS (clear to send, input) and UARTxRTS (request to send, out-
put) signals for hardware flow control.

All UART signals are multiplexed and compete with other functions at
pin level. Table 31-1 shows where the signal can be found and how they
are enabled in the port control.

Table 31-1. UART Signals

Signal Pin Port Control Autobaud Timer

UART0 TX PE7 PORTE_MUX[15:14] = b#00
PORTE_FER[7] = 1

-

UART0 RX PE8 PORTE_MUX[17:16] = b#00
PORTE_FER[8] = 1

Timer 0 (TACI0)

UART1 TX PH0 PORTH_MUX[1:0] = b#00
PORTH_FER[0] = 1

-

UART1 RX PH1 PORTH_MUX[3:2] = b#00
PORTH_FER[1] = 1

Timer 1 (TACI1)

UART1 RTS PE9 PORTE_MUX[19:18] = b#00
PORTE_FER[9] = 1

-

UART1 CTS PE10 PORTE_MUX[21:20] = b#00
PORTE_FER[10] = 1

-

UART2 TX PB4 PORTB_MUX[9:8] = b#00
PORTB_FER[4] = 1

-

UART2 RX PB5 PORTB_MUX[11:10] = b#00
PORTB_FER[5] = 1

Timer 2 (TACI2)

ADSP-BF54x Blackfin Processor Hardware Reference 31-5

UART Port Controllers

Internal Interface
The UARTs are DMA-capable peripherals with support for separate TX
and RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. For more information on DMA, see the
“Direct Memory Access” chapter in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 1 of 2).

All UART registers are 8 bits wide. They connect to the PAB bus. The
UARTx_RBR and UARTx_THR registers also connect to one of the DABx bus-
ses. While UART0 and UART1 connect to the DAB16 bus, UART2 and
UART3 connect to the DAB32 bus.

By default, no DMA channels are assigned to UART2 and
UART3. To assign, program the PMAP crossbar in the
DMAx_PERIPHERAL_MAP register of the desired DMA channels.

UART3 TX PB6 PORTB_MUX[13:12] = b#00
PORTB_FER[6] = 1

-

UART3 RX PB7 PORTB_MUX[15:14] = b#00
PORTB_FER[7] = 1

Timer 3 (TACI3)

UART3 RTS PB2 PORTB_MUX[5:4] = b#00
PORTB_FER[2] = 1

-

UART3 CTS PB3 PORTB_MUX[7:6] = b#00
PORTB_FER[3] = 1

-

Table 31-1. UART Signals (Cont’d)

Signal Pin Port Control Autobaud Timer

Description of Operation

31-6 ADSP-BF54x Blackfin Processor Hardware Reference

Each UART has three interrupt outputs. The transmit request and receive
request outputs can function as DMA requests and connect to the DMA
controller. Therefore, if the DMA is not enabled, the DMA controller
simply forwards the request to the SIC controller. The status interrupt
output connects directly to the SIC controller.

When no DMA channel is assigned, a UART has only one inter-
rupt output. To modify, set the EGLSI bit in the UARTx_GCTL
register to redirect transmit and receive requests to the status inter-
rupt output.

Every UART’s RX pin is also sensed by the alternative capture input
(TACIx) of one of the general-purpose timers. Table 31-1 shows the assign-
ment. In capture mode, the timers can be used to detect the bit rate of the
received signal. See “Autobaud Detection” on page 31-21.

Description of Operation
The sections that follow describe the operation of the UART.

UART Transfer Protocol
UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line
control register (UARTx_LCR). Data is always transmitted and received with
the least significant bit (LSB) first.

Figure 31-2 shows a typical physical bitstream measured on one of the TX
pins.

ADSP-BF54x Blackfin Processor Hardware Reference 31-7

UART Port Controllers

Aside from the standard UART functionality, the UART also supports
serial data communication by way of infrared signals, according to the rec-
ommendations of the Infrared Data Association (IrDA). The physical
layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

IrDA support is enabled by setting the IREN bit in the UARTx_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation
Receive and transmit paths operate completely independently except that
the bit rate and the frame format are identical for both transfer directions.

Figure 31-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

Description of Operation

31-8 ADSP-BF54x Blackfin Processor Hardware Reference

Transmission is initiated by writes to the UARTx_THR register. If no former
operation is pending, the data is immediately passed from the UARTx_THR
register to the internal TSR register where it is shifted out at a bit rate char-
acterized by the formula that follows with start, stop, and parity bits
appended as defined by the UARTx_LCR register:

The least significant bit (LSB) is always transmitted first. This is bit 0 of
the value written to UARTx_THR.

Writes to the UARTx_THR register clear the THRE flag. Transfers of data from
UARTx_THR to the transmit shift registers (TSR) set this status flag in
UARTx_LSR again.

When enabled by the ETBEI bit in the UARTx_IER register, the THRE flag
requests an interrupt on the dedicated TXREQ output. This signal is routed
through the DMA controller. If the associated DMA channel is enabled,
the TXREQ signal functions as a DMA request, otherwise the DMA control-
ler simply forwards it to the SIC interrupt controller. If no DMA channel
is assigned to the UART, the EGLSI bit in the UARTx_GCTL register can redi-
rect the receive and transmit interrupts to the UART status interrupt
alternatively.

The UARTx_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as all data has left the TSR register, the
TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers. An interrupt can be generated by that time either
through the status interrupt channel when the ETFI bit is set, or through
the DMA controller when enabled by the EDTPTI bit.

BIT RATE SCLK
16 1 EDB0–() Divisor×
--=

ADSP-BF54x Blackfin Processor Hardware Reference 31-9

UART Port Controllers

UART Receive Operation
The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient, that is, the STB bit
has no impact to the receiver.

The UART receiver is sensing the falling edges of the RX input. When an
edge is detected, the receiver starts sampling the RX input according to
the bit rate and the EDBO bit settings. The start bit is sampled close to its
midpoint. If sampled low, a valid start condition is assumed. Otherwise,
the detected falling edge is discarded.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate characterized by the following formula:

After the corresponding stop bit is received, the content of the RSR register
is transferred through the 4-deep receive FIFO to the UARTx_RBR register,
shown in Figure 31-13. Finally, the data ready (DR) bit and the status flags
are updated in the UARTx_LSR register, to signal data reception, parity, and
also error conditions, if required.

The receive FIFOs and the UARTx_RBR registers can be seen as a five-stage
receive buffer. If the stop bit of the 6th word is received before software
reads the UARTx_RBR register, an overrun error is reported. The overrun
case protects data in the UARTx_RBR and receive FIFO from being overwrit-
ten by further data until the OE bit is cleared by software. The data in the
RSR register, however, is immediately destroyed as soon as the overrun
occurs.

If enabled by the ERBFI bit in the UARTx_IER register, the DR flag requests
an interrupt on the dedicated RXREQ output. This signal is routed through
the DMA controller. If the associated DMA channel is enabled, the RXREQ
signal functions as a DMA request, otherwise the DMA controller simply

BIT RATE SCLK
16 1 EDB0–() Divisor×
--=

Description of Operation

31-10 ADSP-BF54x Blackfin Processor Hardware Reference

forwards it to the SIC interrupt controller. If no DMA channel is assigned
to the UART, the EGLSI bit in the UARTx_GCTL register can redirect the
receive and transmit interrupts to the UART status interrupt alternatively.

The state of the five-deep receiver buffer (including UARTx_RBR) can be
monitored by the receiver FIFO count status (RFCS) bit in the UARTx_MSR
register. The buffer’s behavior is controlled by the receive FIFO interrupt
threshold (RFIT) bit in the UARTx_MCR register. If RFIT is zero, the RFCS bit
is set when the receive buffer holds two or more words. If RFIT is set, the
RFCS bit is set when the receive buffer holds four or more words. The RFCS
bit is cleared by hardware when core or DMA read the UARTx_RBR register
and when the buffer is flushed below the level of two (RFIT=0) or four
(RFIT=4). If the associated interrupt bit ERFCI is enabled, status interrupt
is reported when the RFCS bit is set.

If errors are detected during reception, an interrupt can be requested to a
the status interrupt output. This status interrupt request goes directly to
the SIC interrupt controller. Status interrupt requests are enabled by the
ELSI bit in the UARTx_IER_SET register. The following error situations are
detected. Every error has an indicating bit in the UARTx_LSR register.

• Overrun error (OE bit)

• Parity error (PE bit)

• Framing error/Invalid stop bit (FE bit)

• Break indicator (BI bit)

The sampling clock is 16 times faster than the bit clock. The receiver over
samples every bit 16 times and does a majority decision based on the mid
three samples. This improves immunity against noise and hazards on the
line. Spurious pulses of less than two times the sampling clock period are
disregarded.

ADSP-BF54x Blackfin Processor Hardware Reference 31-11

UART Port Controllers

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th
sample clock. If, however, the EDBO bit is set to 1 to achieve better bit
rate granularity and accuracy as required at high operation speeds, the bits
are one roughly sampled at 7/16th, 8/16th and 9/16th of their period.
Hardware design should ensure that the incoming signal is stable between
6/16th and 10/16th of the nominal bit period.

Reception is started when a falling edge is detected on the UARTxRX input
pin. The receiver attempts to see a start bit. The data is shifted into the
internal RSR register. After the 9th sample of the first stop bit is processed,
the received data is copied to the 5-stage receive buffer and the RSR recov-
ers for further data.

The receiver samples data bits close to their midpoint. Because the receiver
clock is usually asynchronous to the transmitter’s data rate, the sampling
point may drift relative to the center of the data bits. The sampling point
is synchronized again with each start bit, so the error accumulates only
over the length of a single word.

Description of Operation

31-12 ADSP-BF54x Blackfin Processor Hardware Reference

Hardware Flow Control
To prevent the UART transmitter from sending data while the receiving
counterpart is not ready, a RTS/CTS hardware flow control mechanism is
supported. The UARTxRTS (request to send) signal is an output that con-
nects to the communication’s partner UARTxCTS (clear to send) input. If
data transfer is bidirectional, the handshake is as shown in Figure 31-3.

Regardless of whether working in DMA or non-DMA mode, the receiver
can deassert the UARTxRTS signal to indicate that its receive buffer is getting
full. Further data may cause an overrun error. Consequently, the transmit-
ter pauses transmission when the UARTxCTS input is in deasserted state. On
ADSP-BF54x processors, UART1 and UART3, if present, feature a pair
of RTS/CTS pins each. Automatic hardware flow control can be enabled
individually for receiver and transmitter by the UARTx_MCR register’s ARTS
and ACTS bits.

The signals are usually active low, that is, transmission is halted when the
pin state is high. The polarity of the UARTxCTS and UARTxRTS pins can be
inverted by setting the FCPOL bit in the UARTx_MCR register. If ACTS is

Figure 31-3. UART Hardware Flow

BLACKFIN

UARTxCTS

UARTxRTS

UARTx

UARTxRX

UARTxTX

CTS

RTS

OTHER UART
DEVICE

RX

TX

ADSP-BF54x Blackfin Processor Hardware Reference 31-13

UART Port Controllers

enabled, the UARTxCTS bit in the UARTx_MSR register holds the complement
value (FCPOL=0) or the value (FCPOL=1) of the UARTxCTS input pin. In
either case the UARTxCTS bit reads 1 when the external device is ready to
receive data. The delta CTS (DCTS) bit is a sticky version of the UARTxCTS
bit that is set high when the UARTxCTS bit transitions from 0 to 1. It can
request a status interrupt and is cleared by software with a W1C opera-
tion. If the TX handshaking protocol is enabled (bit ACTS=1), the UART
hardware pauses transmission if the UARTxCTS bit is zero. If the UARTxCTS
input is deasserted, the transmitter still completes transmission of the data
work currently held in the internal TSRx register, but does not continue
with the data in UARTx_THR. If the UARTxCTS is asserted again, the transmit-
ter resumes and loads the content of UARTx_THR into TSRx.

If the RX handshaking protocol is enabled (bit ARTS=1 in the UARTx_MCR
register), the UARTxRTS output pin is toggled automatically by the
receiver's hardware. The pin’s assertion and de-assertion timing is con-
trolled by the receive FIFO RTS threshold (RFRT) bit in the UARTx_MCR
register. If RFRT is cleared, the UARTxRTS pin is de-asserted when the receive
buffer already holds two words and a third start bit is detected. The UAR-
TxRTS pin is asserted again when the buffer does not contain any more
data than the word in the UARTx_RBR register. If RFRT is set, the UARTxRTS
pin is de-asserted when the receive buffer already holds four words and a
fifth start bit is detected. The UARTxRTS is re-asserted when the buffer con-
tains less than four words. Hardware guarantees minimal UARTxRTS
de-assertion pulse width of at least the number of data bits as defined by
the WLS bit field in the UARTx_LCR register.

If ACTS=0, the TX handshaking protocol is disabled, and the UART trans-
mits data as long as there is data to transmit, regardless of the value of
UARTxCTS. With ACTS=0 software can pause on-going transmission by set-
ting the XOFF bit in the UARTx_MCR register.

Description of Operation

31-14 ADSP-BF54x Blackfin Processor Hardware Reference

If ARTS=0, the UARTxRTS pin is not generated automatically by hardware.
The UARTxRTS output can then still be manually controlled by the MRTS bit
in the UARTx_MCR register.

On reset, when the UART is not yet enabled and the port multi-
plexing has not been programmed, the UARTxRTS pin is not driven.
Some applications may require the UARTxRTS signal to be pulled to
either state by a resistor during reset.

IrDA Transmit Operation
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is trans-
mitted as a low pulse for 16 UART clock periods. The leading edge of the
pulse is then delayed by six UART clock periods. Similarly, the trailing
edge of the pulse is truncated by eight UART clock periods. This results in
the final representation of the original 0 as a high pulse of only 3/16 clock
periods in a 16-cycle UART clock period. The pulse is centered around
the middle of the bit time, as shown in Figure 31-4. The final IrDA pulse
is fed to the off-chip infrared driver.

Figure 31-4. IrDA Transmit Pulse

0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

ADSP-BF54x Blackfin Processor Hardware Reference 31-15

UART Port Controllers

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 31-2 on page 31-20, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

IrDA Receive Operation
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be
avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note because the system clock can change
across systems, the longest glitch tolerated is inversely proportional to the
system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

Description of Operation

31-16 ADSP-BF54x Blackfin Processor Hardware Reference

The polarity of receive data is selectable, using the IRPOL bit. Figure 31-5
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

In the IrDA mode the EDB0 bit is ignored. The sample frequency is
always exactly 16 times the bit rate.

Figure 31-5. IrDA Receiver Pulse Detection

0 1

16/16

PULSE
DETECT

OR
OUTPUT

SAMPLING
WINDOWN

8/16 16/16

RECOVERED
NRZ INPUT 10

8/16

0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

ADSP-BF54x Blackfin Processor Hardware Reference 31-17

UART Port Controllers

Interrupt Processing
Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report status
events. As shown in Figure 31-1 on page 31-3, the transmit and receive
requests are routed through the DMA controller. The status request goes
directly to the SIC controller.

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the SIC interrupt controller. Note that a DMA channel must be associated
with the UART module to enable TX and RX interrupts. Otherwise, the
transmit and receive requests cannot be forwarded. Refer to the descrip-
tion of the peripheral map registers in the “Direct Memory Access”
chapter in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 1 of 2).

On ADSP-BF54x processors not all UARTs have a DMA channel
assigned by default. Even if disabled, a DMA channel is still
required to forward the DMA requests to the SIC controller as
interrupt requests (see Figure 31-1 on page 31-3). Also, if no DMA
channel is assigned, the UART loses its normal receive and trans-
mit interrupt functionality.

To operate in interrupt mode without assigned DMA channels, set
the EGLSI bit in the UARTx_GCTL register. This setup redirects
receive and transmit requests to the status interrupt output. The
status interrupt goes directly to the SIC controller without being
routed through the DMA controller.

Transmit interrupts are enabled by the ETBEI bit in the UARTx_IER_SET
register. If set, the transmit request is asserted along with the THRE bit in
the UART_LSR, indicating that the TX buffer is ready for new data.

Description of Operation

31-18 ADSP-BF54x Blackfin Processor Hardware Reference

Note that the THRE bit resets to 1. When the ETBEI bit is set in the
UARTx_IER_SET register, the UART module immediately issues an inter-
rupt or DMA request. This way, no special handling of the first character
is required when transmission of a string is initiated. Simply set the ETBEI
bit and let the interrupt service routine load the first character from mem-
ory and write it to the UARTx_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared in the UARTx_IER_CLEAR register
if the string transmission has completed. For more information, see
“DMA Mode” on page 31-25.

The THRE bit is cleared by hardware when new data is written to the
UARTx_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
clearing the ETBEI bit in the UARTx_IER_CLEAR register.

Receive interrupts are enabled by the ERBFI bit in the UARTx_IER_SET reg-
ister. If set, the receive request is asserted along with the DR bit in the
UART_LSR register, indicating that new data is available in the UARTx_RBR
register. When software reads the UARTx_RBR, hardware clears the DR bit
again which in turn clears the receive interrupt request.

The UART status interrupt channels are used for multiple purposes:

• Line Status Interrupts

• Flow Control Interrupts

• Receive FIFO Threshold Interrupts

• Transmission Finished Interrupt

Line status interrupts are enabled by the ELSI bit in the UARTx_IER_SET
register. If set, the status interrupt request is asserted with any of the BI,
FE, PE or OE receive errors bits in the UART_LSR register. Refer to

ADSP-BF54x Blackfin Processor Hardware Reference 31-19

UART Port Controllers

“UARTx_LSR Registers” on page 31-36 for details. The error bits in the
UARTx_LSR register are cleared by W1C operation. Once all error condi-
tions are cleared the interrupt request de-asserts.

The receive FIFO count interrupt is enabled by the ERFCI bit in the
UARTx_IER_SET register. If set, a status interrupt is generated when the
RFCS is active. The RFCS bit indicates a receive buffer threshold level. If the
RFIT bit in the UARTx_MCR register is cleared, software can safely read two
words out of the UARTx_RBR register by the time the RFCS interrupt occurs.
If the RFIT bit is set, software can safely read four words. The interrupt
and the RFCS bit clear when the UARTx_RBR is read sufficient times, so that
the receive buffer drains below the threshold of two (RFIT=0) or four
(RFIT=1). Because in DMA mode a status service routine may not be per-
mitted to read UARTx_RBR, this interrupt is only recommended in
non-DMA mode. In DMA mode, use this functionality for error recovery
only.

The UARTxCTS interrupts are enabled by the EDSSI bit in the
UARTx_IER_SET register. If active, a status interrupt is generated when the
sticky SCTS bit in the UARTx_MSR register is set, indicating that the trans-
mitter's UARTxCTS input been re-asserted. A W1C operation to the SCTS bit
clears the interrupt request.

A transmission finished interrupt is enabled by the ETFI bit in the
UARTx_IER_SET register. If active, a status interrupt request is asserted
when the TFI bit in the UARTx_LSR register is set. TFI is the sticky version
of the TEMT bit, indicating that a byte that started transmission has com-
pletely finished. The interrupt request is cleared by a W1C operation to
the TFI bit.

Bit Rate Generation
The UART clock is enabled by the UCEN bit in the UARTx_GCTL register.

Description of Operation

31-20 ADSP-BF54x Blackfin Processor Hardware Reference

The sample clock is characterized by the system clock (SCLK) and the
16-bit divisor. The divisor is split into the 8-bit UARTx_DLL and the
UARTx_DLH registers. These registers form a 16-bit divisor.

By default every serial bit is over sampled 16 times. The bit clock is 1/16th
of the sample clock. If not in IrDA mode the bit clock can equal the sam-
ple clock if the EDBO bit in the UARTx_GCTL register is set, so that the
following applies:

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

Table 31-2 provides example divide factors required to support most stan-
dard baud rates.

Table 31-2. UART Bit Rate Examples With 133 MHz SCLK

Bit Rate Dfactor = 16
DL Actual % Error

Dfactor = 1
DL Actual % Error

2400 3464 2399.68 0.013 55417 2399.99 0.001

4800 1732 4799.36 0.013 27708 4800.06 0.001

9600 866 9598.73 0.013 13854 9600.12 0.001

19200 433 19197.46 0.013 6927 19200.23 0.001

38400 216 38483.80 0.218 3464 38394.92 0.013

57600 144 57725.69 0.218 2309 57600.69 0.001

115200 72 115451.39 0.218 1155 115151.52 0.042

921600 9 923611.11 0.218 144 923611.11 0.218

1500000 6 1385416.67 7.639 89 1494382.02 0.375

3000000 3 2770833.33 7.639 44 3022727.27 0.758

6250000 1 8312500.00 33.000 21 6333333.33 1.333

BIT RATE SCLK
16 1 EDB0–() Divisor×
--=

ADSP-BF54x Blackfin Processor Hardware Reference 31-21

UART Port Controllers

Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Setting the bit clock equal to the sample clock (EDBO=1) improves
bit rate granularity and enables the Blackfin bit clock to more
closely match the bit rate of the communication partner. There is,
however, a disadvantage—the power dissipation is higher. Also the
sample points may not be that accurate. It is recommended to use
EDBO=1 mode only when bit rate accuracy is not acceptable in
EDBO=0 mode.

The EDBO=1 mode is not intended to increase operation speed
beyond the electrical limitations of the asynchronous UART trans-
fer protocol.

Autobaud Detection
At the chip level, the UART RX pins are routed to the alternate capture
inputs (TACIx) of the general purpose timers. When working in WDTH_CAP
mode these timers can be used to automatically detect the bit rate applied
to the UARTxRX pin by an external device. For more information, see the
“General-Purpose Timers” chapter in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 1 of 2).

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART was talking to any device supplied
by a weak clock oscillator that drifts over time, the Blackfin can re-adjust
its UART bit rate dynamically as required.

Often, autobaud detection is used for initial bit rate negotiations. There,
the Blackfin processor is most likely a slave device waiting for the host to
send a predefined autobaud character as discussed below. This is exactly
the scenario used for UART booting. In this scenario, it is recommended
that the UART clock enable bit UCEN is not enabled while autobaud

Description of Operation

31-22 ADSP-BF54x Blackfin Processor Hardware Reference

detection is performed to prevent the UART from starting reception with
incorrect bit rate matching. Alternatively, the UART can be disconnected
from the UARTxRX pin by setting the LOOP_ENA bit.

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from SCLK—the pulse widths can be used to calcu-
late the bit rate divider for the UART by using the following formula:

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud
detection, as shown in Figure 31-6.

Because the example frame in Figure 31-6 encloses 8 data bits and 1 start
bit, apply the following formula:

Real UARTxRX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection

Figure 31-6. Autobaud Detection Character 0x00

DIVISOR TIMERx_WIDTH

16 1 EDB0–() Number of captured UART bits×

·
=

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP0

DIVISOR TIMERx_WIDTH

16 1 EDB0–() 9×
---=

ADSP-BF54x Blackfin Processor Hardware Reference 31-23

UART Port Controllers

might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 31-7, measure the period between the
falling edge of the start bit and the falling edge after bit 6. Since this
period encloses 8 bits, apply the following:

• Divisor = TIMERx_PERIOD >> 7 if EDB0 = 0

• Divisor = TIMERx_PERIOD >> 3 if EDB0 = 1

An example is provided in Listing 31-2 on page 31-53.

Programming Model
The following sections describe a programming model for the UARTs.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received data
can be read from UARTx_RBR. The processor must write and read a limited
number of characters at a time.

Figure 31-7. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 70

Programming Model

31-24 ADSP-BF54x Blackfin Processor Hardware Reference

To prevent any loss of data and misalignments of the serial data stream,
the UARTx_LSR register provides two status flags for handshaking—THRE
and DR.

The THRE flag is set when UARTx_THR is ready for new data and cleared
when the processor loads new data into UARTx_THR. Writing UARTx_THR
when it is not empty overwrites the register with the new value and the
previous character is never transmitted.

The DR flag signals when new data is available in UARTx_RBR. This flag is
cleared automatically when the processor reads from UARTx_RBR. Reading
UARTx_RBR when it is not full returns the previously received value. When
UARTx_RBR is not read in time, an overrun condition protects the already
received data from being overwritten by new data until the OE bit is
cleared by software. Only the content of the RSR register can be overwrit-
ten in the overrun case.

The TEMT bit can be interrogated to see whether any transmission is ongo-
ing. The TEMT bit’s sticky counterpart TFI tells whether the transmit buffer
has drained and can trigger a status interrupt, if required.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Since read operations from UARTx_LSR registers have no side effects, differ-
ent software threads can interrogate these registers without mutual
impacts. Polling the SIC_ISRx register without enabling the interrupts by
SIC_MASKx is an alternate method of operation to consider. Software can
write up to two words into the UARTx_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for UART
TX, UARTxRX, and UART status. The independent interrupts can be
enabled individually by the UARTx_IER_SET and UARTx_IER_CLEAR register
pair. The UCEN bit must be set to enable UART transmit interrupts.

ADSP-BF54x Blackfin Processor Hardware Reference 31-25

UART Port Controllers

The ISRs can evaluate the status bits in the UARTx_LSR and UARTx_MSR reg-
isters to determine the signalling interrupt source. Interrupts also must be
assigned and unmasked by the processor’s interrupt controller. The ISRs
must clear the interrupt latches explicitly. See Figure 31-15 on
page 31-45.

To reduce interrupt frequency on the receive side in non-DMA mode, the
ERFCI status interrupt may be used as an alternative to the regular ERBFI
receive interrupt. Hardware ensure that at least two (if RFIT=0) or four (if
RFIT=1) words are available in the receive buffer by the time the interrupt
is requested.

DMA Mode
In this mode, separate receive (UARTxRX) and transmit (UARTxTX)
DMA channels move data between the UART and memory. The software
does not have to move data, it just has to set up the appropriate transfers
either through the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at the transmit and 9 words at the receive side receive sides.
In DMA mode, the latency is determined by the bus activity and arbitra-
tion mechanism and not by the processor loading and interrupt priorities.
For more information, see the “Direct Memory Access” chapter in the
ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

DMA interrupt routines must explicitly write 1s to the corresponding
DMAx_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER_SET register. This is because the interrupt request lines
double as DMA request lines. Depending on whether DMA is enabled or
not, upon receiving these requests, the DMA control unit either generates

Programming Model

31-26 ADSP-BF54x Blackfin Processor Hardware Reference

a direct memory access or passes the UART interrupt on to the system
interrupt handling unit. The UART’s status interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended to set the SYNC bit in the
DMAx_CONFIG register. With this bit set, the interrupt generation is delayed
until the entire DMA FIFO is drained to the UART module. The UART
TX DMA interrupt service routine is allowed to disable the DMA or to
clear the ETBEI control bit only when the SYNC bit is set, otherwise up to
four data bytes might be lost.

When the ETBEI bit is set in the UARTx_IER_SET register, an initial transmit
DMA request is issued immediately. It is common practice to clear the
ETBEI bit by the DMA’s service routine.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which is
4, then the DMA interrupt might be requested already before the ETBEI
bit is set. If this is not wanted, set the SYNC bit in the DMAx_CONFIG register.

Regardless of the SYNC setting, the DMA stream has not left the UART
transmitter completely at the time the interrupt is generated. Transmis-
sion may abort in the middle of the stream, causing data loss, if the UART
clock was disabled without additional synchronization with the TEMT bit.

The ADSP-BF54x UART implementation provides new functionality to
avoid expensive polling of the TEMT bit. The EDTPTI bit in the
UARTx_IER_SET register enables the TEMT bit to trigger a DMA interrupt.
To delay the DMA completion interrupt until the last data word of a
STOP DMA has left the UART, keep the DMA’s DI_EN bit cleared and set
the EDTPTI bit instead. Then, the normal DMA completion interrupt is
suppressed. Later, the TEMT event triggers a DMA interrupt after the
DMA’s last word has left the UART transmit buffers. If DI_EN and EDTPTI
are set, when finishing STOP mode, the DMA requests two interrupts.

ADSP-BF54x Blackfin Processor Hardware Reference 31-27

UART Port Controllers

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit
operation. Sign extension is not supported.

Mixing Modes
Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. Normally, the UARTxTX DMA completion interrupt is generated
after the last byte is copied from the memory into the DMA FIFO. The
UARTxTX DMA interrupt service routine is not yet permitted to disable
the DMA enable bit DMAEN. The interrupt is requested by the time the
DMA_DONE bit is set. The DMA_RUN bit, however, remains set until the data
has completely left the UARTxTX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMAx_CONFIG word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after
the interrupt occurs, software can write new data into the UARTx_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead. Using the EDTPTI bit can avoid expensive
status bit polling, alternatively.

When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBEI bit should be
pulsed to initiate DMA transmission.

UART Registers

31-28 ADSP-BF54x Blackfin Processor Hardware Reference

UART Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero filled. Table 31-3 provides an overview of the UART
registers.

Unlike on ADSP-BF53x processors, register addresses are not shared on
ADSP-BF54x processors. Each register has its own MMR address. Conse-
quently, the DLAB bit is not present on ADSP-BF54x processors’
UARTx_LSR registers. Software must use 16-bit word load/store instructions
to access these registers.

Furthermore, the interrupt processing differs from ADSP-BF53x proces-
sors. Error bits in status registers do not clear on register reads implicitly,
rather they are cleared by write-1-to-clear (W1C) operations. The
UARTx_IIR register is not present at all. The interrupt enable register has
separate set and clear ports, so that separate receive, transmit, and status
interrupt service routines can enable or set masks individually.

Transmit and receive channels are both buffered. The UARTx_THR registers
buffer the transmit shift registers (TSR). The UARTx_RBR registers and an
additional 4-stage receive FIFO buffer the receive shift register (RSR). The
shift registers are not directly accessible by software.

Table 31-3. ADSP-BF54x vs. ADSP-BF53x UART Register

Name ADSP-BF54x
Address Offset

ADSP-BF53x
Address Offset

Register Name

UARTx_DLL 0x00 0x00, DLAB=1 UART divisor latch low byte regis-
ters
on page 31-48

UARTx_DLH 0x04 0x00, DLAB=1 UART divisor latch high byte regis-
ters
on page 31-48

ADSP-BF54x Blackfin Processor Hardware Reference 31-29

UART Port Controllers

UARTx_GCTL 0x08 0x24 UART global control register
on page 31-50

UARTx_LCR 0x0C 0x0C UART line control registers
on page 31-30

UARTx_MCR 0x10 0x10 UART modem control registers
on page 31-33

UARTx_LSR 0x14 0x14 UART line status registers
on page 31-36

UARTx_MSR 0x18 N/A UART modem status registers
on page 31-39

UARTx_SCR 0x1C 0x1C UART scratch registers
on page 31-49

UARTx_IER_SET 0x20 N/A UART interrupt enable set registers
on page 31-43

UARTx_IER_CLEAR 0x24 N/A UART interrupt enable clear regis-
ters
on page 31-43

UARTx_IER N/A 0x04, DLAB=0 Interrupt Enable R/W register
on page 31-30

UARTx_THR 0x28 0x00, DLAB=0 UART transmit hold registers
on page 31-41

UARTx_RBR 0x2C 0x00, DLAB=0 UART receive buffer registers
on page 31-42

UARTx_IIR N/A 0x08 Interrupt Enable register
on page 31-30

Table 31-3. ADSP-BF54x vs. ADSP-BF53x UART Register (Cont’d)

Name ADSP-BF54x
Address Offset

ADSP-BF53x
Address Offset

Register Name

UART Registers

31-30 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_LCR Registers
The line control (UARTx_LCR) registers, shown in Figure 31-8, control the
format of received and transmitted character frames.

Figure 31-8. UART Line Control Registers

Table 31-4. UART Line Control Register Memory-Mapped Addresses

Register Name Memory-mapped Address

UART0_LCR 0xFFC0 040C

UART1_LCR 0xFFC0 200C

UART2_LCR 0xFFC0 210C

UART3_LCR 0xFFC0 310C

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 0, parity transmitted and checked as 1
EPS = 1, parity transmitted and checked as 0

EPS (Even Parity Select)
0 - Odd parity when PEN = 1 and STP = 0
1 - Even parity

WLS[1:0] (Word Length
Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
0 - 1 stop bit
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

PEN (Parity Enable)
0 - Parity not transmitted or

checked
1 - Transmit and check
 parity

UART Line Control Registers (UARTx_LCR)

Reset = 0x0000For Memory-
mapped
addresses,
see Table 31-4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 31-31

UART Port Controllers

The 2-bit WLS field determines whether the transmitted and received
UART word consists of 5, 6, 7 or 8 data bits.

The STB bit controls how many stop bits are appended to transmitted
data. When STB=0, one stop bit is transmitted. If WLS is non zero, STB=1
instructs the transmitter to add one additional stop bit, two stop bits in
total. If WLS=0 and 5-bit operation is chosen, STB=1 forces the transmitter
to append one additional half bit, 1 1/2 stop bits in total. Note that this
bit does not impact data reception—the receiver is always satisfied with
one stop bit.

The PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on
data and the STP and EPS control bits. Both transmitter and receiver calcu-
late the parity value. The receiver compares the received parity bit with
the expected value and issues a parity error if they don’t match. If PEN is
cleared, the STP and the EPS bits are ignored.

The STP bit controls whether the parity is generated by hardware based on
the data bits or whether it is set to a fixed value. If STP=0 the hardware cal-
culates the parity bit value based on the data bits. Then, the EPS bit
determines whether odd or even parity mode is chosen. If EPS=0, odd par-
ity is used. That means that the total count of logical–1 data bits
including the parity bit must be an odd value. Even parity is chosen by
STP=0 and EPS=1. Then, the count of logical–1 bits must be a even value.
If the STP bit is set, then hardware parity calculation is disabled. In this
case, the sent and received parity equals the inverted EPS bit. The example
in Table 31-5 summarizes polarity behavior assuming 8-bit data words
(WLS=3).

If set, the SB bit forces the UARTxTX pin to low asynchronously, regardless
of whether or not data is currently transmitted. It functions even when the
UART clock is disabled. Since the UARTxTX pin normally drives high, it
can be used as a flag output pin, if the UART is not used.

UART Registers

31-32 ADSP-BF54x Blackfin Processor Hardware Reference

Table 31-5. UART Parity

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 0 x x 1

1 1 1 x x 0

1 1 1 x x 0

ADSP-BF54x Blackfin Processor Hardware Reference 31-33

UART Port Controllers

UARTx_MCR Registers
The modem control (UARTx_MCR) registers control the UART port, as
shown in Figure 31-9. Partial modem functionality is supported to allow
for hardware flow control and loopback mode.

Figure 31-9. UART Modem Control Registers

UART Modem Control Registers (UARTx_MCR)

Reset = 0x0000

0 - Forces pin UARTxRTS
tode-assertive state
1 - Forces pin UARTxRTS
to its assertive state

ARTS (Auto UARTxRTS gen-
eration for RX handshake)

MRTS (Manual Request to
Send)

LOOP_ENA (Loopback Mode Enable)

ACTS (Auto CTS operation
for TX handshake)

0 - Pins CTS, UARTxRTS are
negative
 assertive
1 - Pins CTS, RTS are positive
assertive

Disconnects RX from RSR, TX remains active
Internally redirects TX to RSR
Deasserts pin UARTxRTS
Disconnects pin CTS
Internally redirects bit MRTS of UARTx_MCR to
bit CTS of UART_MSR
Enable transmit/receive by setting MRTS bit.

FCPOL (Flow Control Pin
Polarity)

For Memory-
mapped
addresses,
see Table 31-6.

0 - Set RFCS=1 if RX buffer
 count >= 2
1 - Set RFCS=1 if RX buffer
 count >= 4

RFIT (Receive FIFO IRQ
Threshold)

(ignored if ARTS=0)
0 - De-assert RTS pin if
 RX buffer count >=2
 and detect another
 start bit; assert RTS pin
 after an UARTx_RBR
 read and the RX buffer
 count < 2.
1 - De-assert RTS pin if
 RX buffer count >=4
 and detect another
 start bit; assert RTS pin
 after an UARTx_RBR
 read and the RX buffer
 count < 4.

RFRT (Receive FIFO RTS
Threshold)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

XOFF (Transmitter off)
(ignored if ACTS=1)
0 - Enable transmission
1 - Prevent content of
 UARTx_THR to be
 continued to TSR if
 ACTS=0

UART Registers

31-34 ADSP-BF54x Blackfin Processor Hardware Reference

The receive FIFO interrupt threshold (RFIT) bit controls the timing of the
RFCS status bit. If RFIT=0, the receive threshold is two. If RFIT=1, the
threshold is four words in the receive buffer.

The manual request to send (MRTS) bit controls the state of the UARTxRTS
output pin only if ARTS=0. A value of MRTS=0 forces the UARTxRTS pin to its
de-assertive state, signaling to the external device that the UART is not
ready to receive. A value of MRTS=1 forces the UARTxRTS pin to its assertive
state, signaling to the external device that the UART is ready to receive.

The automatic RTS (ARTS) bit enables the receive buffer to control the
RTS output depending on the threshold programmed by the RFTR bit. If
RFRT=0, the RTS signal is de-asserted when already two words are held by
the receive buffer and a third start bit is detected. It is re-asserted if the
buffer contains less than two words. If RFRT=1, the RTS signal is
de-asserted when already four words are held by the receive buffer and a
fifth start bit is detected. The RTS signal is re-asserted if the buffer contains
less than four words.

Similarly, the automatic CTS (ACTS) bit must be set to enable the CTS
input pin for UARTxTX handshaking. If enabled, the CTS status bit in the
UARTx_MSR register holds the value (if FCPOL=1) or complement value (if
FCPOL=0) of the CTS input pin. The CTS status bit can be used to determine
if the external device is ready to receive data (CTS=1) or if it is busy
(CTS=0). If ACTS=0, the UARTxTX handshaking protocol is disabled, and
the UARTxTX line transmits data whenever there is data to send, regard-
less of the value of CTS. The transmitter off (XOFF) bit can be used to pause

Table 31-6. UART Modem Control Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_MCR 0xFFC0 0410

UART1_MCR 0xFFC0 2010

UART2_MCR 0xFFC0 2110

UART3_MCR 0xFFC0 3110

ADSP-BF54x Blackfin Processor Hardware Reference 31-35

UART Port Controllers

an on-going transmission by software when ACTS=0. Similarly to auto-
matic CTS mode, the XOFF bit prevents the data in the UARTx_THR register
from being continued to the TSR shift register. When ACTS=1, the XOFF
bit is ignored. When ACTS=0, the state of the CTS input signal is ignored.

The polarities of the UARTxCTS and UARTxRTS pins can be programmed
using the FCPOL bit. If FCPOL=0, the pins are negative asserted. If FCPOL=1,
the pins are positive asserted.

Loopback mode (LOOP_ENA=1) disconnects the receiver’s input from the
UARTxRX pin, and internally redirects the transmit output to the receiver.
The UARTxTX pin remains active and continues to transmit data externally
as well. Loopback mode also forces the UARTxRTS pin to its de-assertive
state, disconnects the UARTxCTS bit from the UARTxCTS input pin, and
directly connects bit MRTS to bit UARTxCTS of the modem status register
(UARTx_MSR). In loopback mode, writing a 1 to the MRTS bit sets bit UARTx-
CTS, DCTS and enable the UART’s transmitter. Writing a 0 to the MRTS bit
clears bit UARTxCTS and disable the UART’s transmitter.

UART Registers

31-36 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_LSR Registers
The line status (UARTx_LSR) registers contain UART status information as
shown in Figure 31-10. Unlike the industrial standard, the ADSP-BF54x
processor’s UARTx_LSR register is not read only. Writes to this register can
perform write-one-to-clear (W1C) operations on most status bits. Reading
this register has no side effects.

Figure 31-10. UART Line Status Registers

Table 31-7. UART Line Status Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_LSR 0xFFC0 0414

UART1_LSR 0xFFC0 2014

UART2_LSR 0xFFC0 2114

UART3_LSR 0xFFC0 3114

DR (Data Ready) - RO

TEMT (TSR and UARTx_THR Empty) - RO

UART Line Status Registers (UARTx_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this

indicates UARTxRX was
held low for more than the max-
imum word length

BI (Break Interrupt) - W1C

THRE (THR Empty) - RO

FE (Framing Error) - W1C

0 - No new data
1 - UARTx_RBR holds

new data

OE (Overrun Error) - W1C
0 - No overrun
1 - Overrun error. Read
 buffers not overwritten.

PE (Parity Error) - W1C
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x0060

TFI (Transmission Finished Indicator) - W1C
0 - TEMT did not transition from 0 to 1
1 - TEMT transition from 0 to 1

For Memory-
mapped
addresses,
see Table 31-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 31-37

UART Port Controllers

The DR (data ready) bit indicates that data is available in the receiver and
can be read from the UARTx_RBR register. The bit is set by hardware when
the receiver detects the first valid stop bit. It is cleared by hardware when
the UARTx_RBR register is read.

The OE (overrun error) bit indicates that further data is received while the
internal receive buffer was full. It is set when sampling the stop bit of the
6th data word. To avoid overruns, read the UARTx_RBR register in time. In
DMA receive mode overruns are very unlikely to happen ever. Once an
overrun occurs, the UARTx_RBR and receive FIFO are protected from being
overwritten by new data until the OE bit is cleared by software. The con-
tent of receive shift register RSR, however, is lost as soon as the overrun
occurs. The OE bit is sticky and can be cleared by W1C operations.

The PE (parity error) bit indicates that the received parity bit does not
match the expected value. The PE bit is updated simultaneously with the
DR bit, that is, by the time the first stop bit is received or when data is
loaded from the receive FIFO to the UARTx_RBR register. The bit is sticky
and can be cleared by W1C operations. Invalid parity bits can be simu-
lated by setting the FPE bit in the UARTx_GCTL register.

The FE (framing error) bit indicates that the first stop bit is sampled. The
FE bit is updated simultaneously with the DR bit, that is, by the time the
first stop bit is received or when data is loaded from the receive FIFO to
the UARTx_RBR register. The bit is sticky and can be cleared by W1C oper-
ations. Invalid stop bits can be simulated by setting the FFE bit in the
UARTx_GCTL register.

The BI (break indicator) bit indicates that the first stop bit is sampled low
and the entire data word, including parity bit, consists of low bits only.
The BI bit is updated simultaneously with the DR bit, that is, by the time
the first stop bit is received or when data is loaded from the receive FIFO
to the UARTx_RBR register. The bit is sticky and can be cleared by W1C
operations.

UART Registers

31-38 ADSP-BF54x Blackfin Processor Hardware Reference

The THRE (transmit hold register empty) bit indicates that the UART
transmit channel is ready for new data and software can write to
UARTx_THR. Writes to UARTx_THR clear the THRE bit. It is set again when
data is passed from UARTx_THR to the internal TSR register.

The TEMT (transmitter empty) bit indicates that both the UARTx_THR regis-
ter and the internal TSR register are empty. In this case the program is
permitted to write to the UARTx_THR register twice without losing data.
The TEMT bit can also be used as indicator that pending UART transmis-
sion is completed. At that time it is safe to disable the UCEN bit or to
three-state the off-chip line driver.

The TFI (transmission finished indicator) bit is a sticky version of the TEMT
bit. While TEMT is automatically cleared by hardware when new data is
written to the UARTx_THR register, the sticky TFI bit remains set until it is
cleared by software (W1C). The TFI bit enables more flexible transmit
interrupt timing.

ADSP-BF54x Blackfin Processor Hardware Reference 31-39

UART Port Controllers

UARTx_MSR Registers
The modem status (UARTx_MSR) registers, shown in Figure 31-12, contains
current states of the UART’s external UARTxCTS pin and current status of
the UART's internal receive buffers.

The UARTxCTS bit holds the value (if FCPOL = 1) or the complement value
(if FCPOL = 0) of the UARTxCTS input pin. The ACTS bit in the UARTx_MCR
register must be set to enable this feature. The core can read the value of
UARTxCTS to determine if the external device is ready to receive (UARTxCTS

Figure 31-11. UART Modem Status Registers

Table 31-8. UART Modem Status Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_MSR 0xFFC0 0418

UART1_MSR 0xFFC0 2018

UART2_MSR 0xFFC0 2118

UART3_MSR 0xFFC0 3118

SCTS (Sticky CTS) - W1C

UART Modem Status Registers (UARTx_MSR)

Reset = 0x0000

Holds value of input pin CTS (if FCPOL bit of UART_MCR=1)
Holds complement value of input pin CTS (if FCPOL=0)

CTS (Clear to Send) - RO

Set when CTS transitions
from 0 to 1.
Clear with a W1C operation.

For Memory-
mapped
addresses,
see Table 31-8.

When RFIT=0:
 0: receive buffer < 2 entries
 1: receive buffer >= 2 entries
When RFIT=1:
 0: receive buffer < 4 entries
 1: receive buffer >= 4 entries

RFCS (Receive FIFO Count Status) - RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UART Registers

31-40 ADSP-BF54x Blackfin Processor Hardware Reference

= 1) or if it is busy (UARTxCTS = 0). If ACTS = 0, the UARTxTX handshak-
ing protocol is disabled, and the UART transmits data as long as there is
data to transmit, regardless of the value of UARTxCTS. When ACTS=0, the
software can pause transmission temporarily by setting the XOFF bit.

The SCTS bit is a sticky bit that is set high when UARTxCTS transitions from
0 to 1, and is cleared by software with a W1C operation. The SCTS bit can
trigger a line status interrupt if enabled by the EDSSI bit in the
UARTx_IER_SET register.

The receiver FIFO count status (RFCS) bit is set when the receive buffer
holds more or equal entries than a certain threshold. The threshold is con-
trolled by the RFIT bit in the UARTx_MCR register. If RFIT=0, the threshold
is two entries. If RFIT=1, the threshold is four entries. The RFCS bit cleared
when the UARTx_RBR register is read sufficient times until the buffer is
drained below the threshold. The RFCS bit can trigger a status interrupt if
enabled by the ERFCI bit in the UARTx_IER_SET register.

In loopback mode (LOOP_ENA=1), the UARTxCTS bit is disconnected from
the UARTxCTS input pin. Instead, it is directly connected to the MRTS bit of
the UARTx_MCR register.

Previous implementations of the UART did not have this register.
It is implemented to allow for hardware flow control between the
UART and an external device.

ADSP-BF54x Blackfin Processor Hardware Reference 31-41

UART Port Controllers

UARTx_THR Registers
The write-only transmit hold (UARTx_THR) registers, shown in
Figure 31-12, is the UART’s transmit buffer. The THRE bit in the
UARTx_LSR registers indicate whether UARTx_THR is ready for new data.
Writes to UARTx_THR automatically propagate to the internal TSR register as
soon as TSR is ready. Then transmit operation is initiated immediately.

Figure 31-12. UART Transmit Holding Registers

Table 31-9. UART Transmit Holding Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_THR 0xFFC0 0428

UART1_THR 0xFFC0 2028

UART2_THR 0xFFC0 2128

UART3_THR 0xFFC0 3128

Transmit Hold[7:0]

UART Transmit Holding Registers (UARTx_THR)
W

Reset = 0x0000For Memory-
mapped
addresses,
see Table 31-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UART Registers

31-42 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_RBR Registers
The read-only UARTx_RBR registers, shown in Figure 31-13, is the UART’s
receive buffer. It is updated by the internal RSR register when a complete
data word is received or when there is pending data in the receive FIFO.
Newly available data is signalled by the DR bit in the UARTx_LSR register.

Figure 31-13. UART Receive Buffer Registers

Table 31-10. UART Receive Buffer Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_RBR 0xFFC0 042C

UART1_RBR 0xFFC0 202C

UART2_RBR 0xFFC0 212C

UART3_RBR 0xFFC0 312C

Receive Buffer[7:0]

UART Receive Buffer Registers (UARTx_RBR)
RO

Reset = 0x0000For Memory-
mapped
addresses,
see Table 31-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 31-43

UART Port Controllers

UARTx_IER_SET and UARTx_IER_CLEAR Registers
The interrupt enable register is not implemented as a data register. Instead
it is controlled by the UARTx_IER_SET and UARTx_IER_CLEAR register pair.
Writing ones to UARTx_IER_SET enables interrupts, writing
UARTx_IER_CLEAR disables them. Reads from either register return the
enabled bits. This way, different interrupt service routines can control
transmit, receive, and status interrupts independently and gracefully.

The UARTx_IER registers, shown in Figure 31-14 and Figure 31-15, are
used to enable requests for system handling of empty or full states of
UART data registers. Unless polling is used as a means of action, the
ERBFI and/or ETBEI bits in this register are normally set.

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present.

Each UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless whether DMA is enabled or not. If no DMA channels
are assigned to the UART, set the EGLSI bit in the UARTx_GCTL
register to reroute transmit and receive interrupts to the status
interrupt output.

UART Registers

31-44 ADSP-BF54x Blackfin Processor Hardware Reference

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

Figure 31-14. UART Interrupt Enable Set Registers

Table 31-11. UART Interrupt Enable Set Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_IER_SET 0xFFC0 0420

UART1_IER_SET 0xFFC0 2020

UART2_IER_SET 0xFFC0 2120

UART3_IER_SET 0xFFC0 3120

ERBFI (Enable Receive
Buffer Full Interrupt)

UART Interrupt Enable Set Registers (UARTx_IER_SET)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status
Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

 DR bit in UARTx_LSR is
 set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
 set

0 - No interrupt
1 - Generate status interrupt

 if any of UARTx_LSR[4:1] is
 set

Reset = 0x0000

ETFI (Enable Transmission Finished Interrupt)

EDTPTI (Enable DMA TX Peripheral Triggered Interrupt)

EDSSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate status interrupt if

TFI bit in UARTx_LSR is set

0 - No interrupt
1 - Generate peripheral interrupt command (PIRQ)
 to DMA controller after the last byte from DMA

 is transmitted

0 - No interrupt
1 - Generate status interrupt

 if SCTS bit in UARTx_MSR is set

For Memory-
mapped
addresses,
see Table 31-11.

ERFCI (Enable Receive FIFO Count Interrupt)
0 - No interrupt
1 - Generate status interrupt if RFCS
 bit in UARTx_MSR is set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 31-45

UART Port Controllers

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,

Figure 31-15. UART Interrupt Enable Clear Registers

Table 31-12. UART Interrupt Enable Clear Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_IER_CLEAR 0xFFC0 0424

UART1_IER_CLEAR 0xFFC0 2024

UART2_IER_CLEAR 0xFFC0 2124

UART3_IER_CLEAR 0xFFC0 3124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ERBFI (Enable Receive
Buffer Full Interrupt)

UART Interrupt Enable Clear Registers (UARTx_IER_CLEAR)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status
Interrupt)

0 - No interrupt
1 - Generate RX interrupt if

 DR bit in UARTx_LSR is
 set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate status interrupt

if any of UARTx_LSR[4:1]
 is set

Reset = 0x0000

ETFI (Enable Transmission Finished Interrupt)

EDTPTI (Enable DMA TX Peripheral Triggered Interrupt)

EDSSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate status interrupt if

 TFI bit in UARTx_LSR is set

0 - No interrupt
1 - Generate PIRQ command to DMA

 controller after the last byte from DMA
 is transmitted

0 - No interrupt
1 - Generate status interrupt

if SCTS bit in UARTx_MSR is set

For Memory-
mapped
addresses,
see Table 31-12.

ERFCI (Enable Receive FIFO Count Interrupt)
0 - No interrupt
1 - Generate status interrupt if RFCS
 bit in UARTx_MSR is set

UART Registers

31-46 ADSP-BF54x Blackfin Processor Hardware Reference

upon receiving these requests, the DMA control unit either generates a
direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. However, UART’s error interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UARTx_LSR register:

• Receive overrun error (OE)

• Receive parity error (PE)

• Receive framing error (FE)

• Break interrupt (BI)

The EDSSI bit enables a modem status interrupt on the same status inter-
rupt channel when the SCTS bit in the UARTx_MSR register is set. This
indicates CTS re-assertion. Write-1-to-clear (W1C) the SCTS bit to clear
the interrupt request.

The ERFCI bit enables the receive buffer threshold interrupt if signalled by
the RFCS bit. Read the UARTx_RBR register sufficient times to clear the
interrupt request.

The ETFI bit enables interrupt generation on the status interrupt channel
when both the transmit buffer register and transmit shift register are
empty as indicated by the TFI bit in the UARTx_LSR register. The ETFI
interrupt can be used to avoid expensive polling of the TEMT bit, when the
UART clock or line drivers should be disabled after transmission has com-
pleted. W1C the TFI bit to clear the interrupt request. In DMA operation,
the ETDPTI bit’s functionality might be preferred.

The ETDPTI bit is required for DMA transmit operation only. It enables
the DMA completion interrupt to be delayed until the data has left the
UART completely. If set, it can generate a DMA interrupt by the time the
TEMT bit goes high after the last DMA data word is transmitted.

ADSP-BF54x Blackfin Processor Hardware Reference 31-47

UART Port Controllers

If the ETDPTI bit is cleared, the DMA completion interrupt is generated
when either the last data word is transferred from memory to the DMA
FIFO (DMA’s SYNC bit cleared) or when the last word has left the DMA
FIFO (SYNC bit set). If ETDPTI is set, usually the DMA’s DI_EN is not set in
a STOP mode DMA. Thus, the normal completion interrupt is sup-
pressed. Rather, the TEMT event is signalled through the DMA controller
and triggers the DMA interrupt. If both, DI_EN and ETDPTI are set, two
interrupts are requested at the end of a STOP mode DMA.

The UARTx_IIR registers are not present on this implementation.
Signalling interrupt sources can be identified by interrogating
UARTx_LSR and UARTx_MSR status registers.

UART Registers

31-48 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_DLL and UARTx_DLH Registers
The two 8-bit clock divisor latch registers (UARTx_DLH and UARTx_DLL)
build a 16-bit clock divisor value. They divide the system clock SCLK down
to the bit clock. These registers are shown in Figure 31-16.

Figure 31-16. UART Divisor Latch Registers

Table 31-13. UART Divisor Latch Low Byte Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_DLL 0xFFC0 0400

UART1_DLL 0xFFC0 2000

UART2_DLL 0xFFC0 2100

UART3_DLL 0xFFC0 3100

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Divisor Latch Low Byte[7:0]

Divisor Latch High Byte[15:8]

UART Divisor Latch Low Byte Registers (UARTx_DLL)

UART Divisor Latch High Byte Registers (UARTx_DLH)

Reset = 0x0001

Reset = 0x0000

For Memory-
mapped
addresses,
see Table 31-13.

For Memory-
mapped
addresses,
see Table 31-14.

ADSP-BF54x Blackfin Processor Hardware Reference 31-49

UART Port Controllers

Note the 16-bit divisor formed by UARTx_DLH and UARTx_DLL resets
to 0x0001, resulting in high clock frequency by default. If the
UART is not used, disabling the UART clock saves power.

Note that the bit rate depends also on the EDBO bit in the UARTx_GCTL reg-
ister. Refer to “Bit Rate Generation” on page 31-19.

UARTx_SCR Registers
The contents of the 8-bit scratch (UARTx_SCR) registers, shown in
Figure 31-17, are reset to 0x00. They are used for general-purpose data
storage and do not control the UART hardware in any way.

Table 31-14. UART Divisor Latch High Byte Register Memory-mapped
Addresses

Register Name Memory-mapped Address

UART0_DLH 0xFFC0 0404

UART1_DLH 0xFFC0 2004

UART2_DLH 0xFFC0 2104

UART3_DLH 0xFFC0 3104

Figure 31-17. UART Scratch Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Scratch[7:0]

UART Scratch Registers (UARTx_SCR)

Reset = 0x0000For Memory-
mapped
addresses,
see Table 31-15.

UART Registers

31-50 ADSP-BF54x Blackfin Processor Hardware Reference

UARTx_GCTL Registers
The global control (UARTx_GCTL) registers, shown in Figure 31-18, contain
the enable bit for internal UART clocks and for the IrDA mode of opera-
tion of the UARTs.

Table 31-15. UART Scratch Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_SCR 0xFFC0 041C

UART1_SCR 0xFFC0 201C

UART2_SCR 0xFFC0 211C

UART3_SCR 0xFFC0 311C

Figure 31-18. UART Global Control Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

UCEN (Enable UART Clocks)
0 - Disable UART clocks
1 - Enable UART clocks

Reset = 0x0000

IREN (Enable IrDA Mode)
0 - Disable IrDA
1 - Enable IrDA

FPE (Force Parity Error on Transmit)
0 - Normal operation
1 - Force error

FFE (Force Framing Error on Transmit)
0 - Normal operation
1 - Force error

UART Global Control Registers (UARTx_GCTL)

TPOLC (IrDA TX Polarity
Change)
0 - Serial line idles low
1 - Serial line idles high

RPOLC (IrDA RX Polarity Change)
0 - Serial line idles low
1 - Serial line idles high

EDBO (Enable Divide-by-One)
0 - Bit clock prescaler = 16
1 - Bit clock prescaler = 1

For Memory-
mapped
addresses,
see Table 31-16.

EGLSI (Enable Global LS Interrupt)
0 - TX and RX interrupts routed to
 normal interrupt outputs
1 - TX and RX interrupts redirected to
 status interrupt output

ADSP-BF54x Blackfin Processor Hardware Reference 31-51

UART Port Controllers

The UCEN bit enables the UART clocks. It also resets the state machine and
control registers when cleared. Note that the UCEN bit was not present in
previous UART implementations. It is introduced to save power if the
UART is not used. When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

The EDBO bit enables bypassing of the divide-by-16 prescaler in bit clock
generation. This improves bit rate granularity, especially at high bit rates.
See “Bit Rate Generation” on page 31-19. Do not set this bit in IrDA
mode.

The EGLSI bit redirects TX and RX interrupt requests to the status inter-
rupt output of the UART by ORing them with all other kinds of UART
status interrupt requests. Set this bit when no DMA channel is associated
with the UART. Enabling EGLSI disables the RX/TX interrupt channels
and negates the EDTPTI bit.

Programming Examples
The following programming examples show how to use the UART.

Table 31-16. UART Global Control Register Memory-mapped Addresses

Register Name Memory-mapped Address

UART0_GCTL 0xFFC0 0408

UART1_GCTL 0xFFC0 2008

UART2_GCTL 0xFFC0 2108

UART3_GCTL 0xFFC0 3108

Programming Examples

31-52 ADSP-BF54x Blackfin Processor Hardware Reference

The subroutine in Listing 31-1 shows a typical UART initialization
sequence.

Listing 31-1. UART Initialization

/**

 * Configures UART in 8 data bits, no parity, 1 stop bit mode.

 * Input parameters: r0 holds divisor latch value to be

 * written into

 * DLH:DLL registers.

 * p0 contains the UARTx_GCTL register address

 * Return values: none

 ***/

uart_init:

 [--sp] = r7;

 r7 = UCEN (z); /* First of all, enable UART clock */

 w[p0+UART0_GCTL-UART0_GCTL] = r7;

 w[p0+UART0_DLL-UART0_GCTL] = r0; /* write lower byte to DLL
*/

 r7 = r0 >> 8;

 w[p0+UART0_DLH-UART0_GCTL] = r7; /* write upper byte to DLH
*/

 r7 = STB | WLS(8) (z); /* config to */

 w[p0+UART0_LCR-UART0_GCTL] = r7; /* 8 bits, no parity, 2
stop bits */

 r7 = [sp++];

 rts;

uart_init.end:

The subroutine in Listing 31-2 performs autobaud detection similarly to
UART boot.

ADSP-BF54x Blackfin Processor Hardware Reference 31-53

UART Port Controllers

Listing 31-2. UART Autobaud Detection Subroutine

/***

 * Assuming 8 data bits, this functions expects a '@'

 * (ASCII 0x40) character

 * on the UARTx RX pin. A Timer performs the autobaud detection.

 * Input parameters: p0 contains the UARTx_GCTL register address

 * p1 contains the TIMERx_CONFIG register

 * address

 * Return values: r0 holds timer period value (equals 8 bits)

***/

uart_autobaud:

 [--sp] = (r7:5,p5:5);

 r5.h = hi(TIMER0_CONFIG); /* for generic timer use calculate

*/

 r5.l = lo(TIMER0_CONFIG); /* specific bits first */

 r7 = p1;

 r7 = r7 - r5;

 r7 >>= 4; /* r7 holds the 'x' of TIMERx_CONFIG now */

 r5 = TIMEN0 (z);

 r5 <<= r7; /* r5 holds TIMENx/TIMDISx now */

 r6 = TRUN0 | TOVL_ERR0 | TIMIL0 (z);

 r6 <<= r7;

 CC = r7 <= 3;

 r7 = r6 << 12;

 if !CC r6 = r7; /* r6 holds TRUNx | TOVL_ERRx | TIMILx */

 p5.h = hi(TIMER_STATUS);

 p5.l = lo(TIMER_STATUS);

 w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

 [p5 + TIMER_STATUS - TIMER_STATUS] = r6; /* clear pending

latches */

 /* period capture, falling edge to falling edge */

Programming Examples

31-54 ADSP-BF54x Blackfin Processor Hardware Reference

 r7 = TIN_SEL | IRQ_ENA | PERIOD_CNT | WDTH_CAP (z);

 w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

 w[p5+TIMER_ENABLE-TIMER_STATUS] = r5;

uart_autobaud.wait: /* wait for timer event */

 r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

 r7 = r7 & r5;

 CC = r7 == 0;

 if CC jump uart_autobaud.wait;

 w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

 [p5 + TIMER_STATUS - TIMER_STATUS] = r6; /* clear pending

latches */

 /* Save period value to R0 */

 r0 = [p1 + TIMER0_PERIOD - TIMER0_CONFIG];

 /* delay processing as autobaud character is still ongoing */

 r7 = OUT_DIS | IRQ_ENA | PERIOD_CNT | PWM_OUT (z);

 w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

 w[p5 + TIMER_ENABLE - TIMER_STATUS] = r5;

uart_autobaud.delay:

 r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

 r7 = r7 & r5;

 CC = r7 == 0;

 if CC jump uart_autobaud.delay;

 w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5;

 [p5 + TIMER_STATUS - TIMER_STATUS] = r6;

 (r7:5,p5:5) = [sp++];

 rts;

uart_autobaud.end:

The parent routine in Listing 31-3 performs autobaud detection using
UART0 and TIMER0.

ADSP-BF54x Blackfin Processor Hardware Reference 31-55

UART Port Controllers

Listing 31-3. UART Autobaud Detection Parent Routine

 p0.l = lo(PORTE_FER); /* function enable on UART0 pins PE7 and

PE8 and PF1 */

 p0.h = hi(PORTE_FER); /* by default PORTE_MUX register is all

set */

 r0 = PE8 | PE7 (z)

 w[p0] = r0;

 p0.l = lo(UART0_GCTL); /* select UART 0 */

 p0.h = hi(UART0_GCTL);

 p1.l = lo(TIMER0_CONFIG); /* select TIMER 0 */

 p1.h = hi(TIMER0_CONFIG);

 call uart_autobaud;

 r0 >>= 7; /* divide PERIOD value by (16 x 8) */

 call uart_init;

 ...

The subroutine in Listing 31-4 transmits a character by polling operation.

Listing 31-4. UART Character Transmission

/***

 * Transmit a single byte by polling the THRE bit.

 * Input parameters: r0 holds the character to be transmitted

 * p0 contains UARTx_GCTL register address

 * Return values: none

***/

uart_putc:

 [--sp] = r7;

uart_putc.wait:

 r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

 CC = bittst(r7, bitpos(THRE));

 if !CC jump uart_putc.wait;

 w[p0+UART0_THR-UART0_GCTL] = r0; /* write initiates transfer

*/

Programming Examples

31-56 ADSP-BF54x Blackfin Processor Hardware Reference

 r7 = [sp++];

 rts;

uart_putc.end:

Use the routine shown in Listing 31-5 to transmit a C-style string that is
terminated by a null character.

Listing 31-5. UART String Transmission

/**

 * Transmit a null-terminated string.

 * Input parameters: p1 points to the string

 * p0 contains UARTx_GCTL register address

 * Return values: none

***/

uart_puts:

 [--sp] = rets;

 [--sp] = r0;

uart_puts.loop:

 r0 = b[p1++] (z);

 CC = r0 == 0;

 if CC jump uart_puts.exit;

 call uart_putc;

 jump uart_puts.loop;

uart_puts.exit:

 r0 = [sp++];

 rets = [sp++];

 rts;

uart_puts.end:

Note that polling the UART0_LSR register for transmit purposes does not
cause side effects on receive status bits as on former implementations.

ADSP-BF54x Blackfin Processor Hardware Reference 31-57

UART Port Controllers

In non-DMA interrupt operation, the three UART interrupt request lines
may or may not be ORed together in the SIC controller or by the EGLSI
control bit. If they had three different service routines, they may look as
shown in Listing 31-6.

Listing 31-6. UART Non-DMA Interrupt Operation

isr_uart_rx:

 [--sp] = astat;

 [--sp] = r7;

 r7 = w[p0+UART0_RBR-UART0_GCTL] (z);

 b[p4++] = r7;

 ssync;

 r7 = [sp++];

 astat = [sp++];

 rti;

isr_uart_rx.end:

isr_uart_tx:

 [--sp] = astat;

 [--sp] = r7;

 r7 = b[p3++] (z);

 CC = r7 == 0;

 if CC jump isr_uart_tx.final;

 w[p0+UART0_THR-UART0_GCTL] = r7;

 r7 = [sp++];

 astat = [sp++];

 ssync;

 rti;

isr_uart_tx.final:

 r7 = ETBEI (z) ;

 w[p0+UART0_IER_CLR] = r7; /* clear TX interrupt enable */

 ssync;

 r7 = [sp++];

Programming Examples

31-58 ADSP-BF54x Blackfin Processor Hardware Reference

 astat = [sp++];

 rti;

isr_uart_tx.end:

isr_uart_error:

 [--sp] = astat;

 [--sp] = (r7:6);

 r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

 r6 = OE | BI | FE | PE (z);

 w[p0+UART0_LSR-UART0_GCTL] = r6;

 /* do something with the error */

 (r7:6) = [sp++];

 astat = [sp++];

 ssync;

 rti;

isr_uart_error.end:

Listing 31-7 transmits a string by DMA operation, waits until DMA com-
pletes and sends an additional string by polling. Note the importance of
the SYNC bit.

Listing 31-7. UART Transmission SYNC Bit Use

.section data;

.byte sHello[] = 'Hello Blackfin User',13,10,0;

.byte sWorld[] = 'How is life?',13,10,0;

.section program;

 ...

 p1.l = lo(IMASK);

 p1.h = hi(IMASK);

 r0.l = lo(isr_uart_tx); /* register service routine */

 r0.h = hi(isr_uart_tx); /* UART0 TX defaults to IVG10 */

 r0 = [p1 + IMASK - IMASK]; /* unmask interrupt in CEC */

 bitset(r0, bitpos(EVT_IVG10));

ADSP-BF54x Blackfin Processor Hardware Reference 31-59

UART Port Controllers

 [p1] = r0;

 p1.l = lo(SIC_IMASK0);

 p1.h = hi(SIC_IMASK0); /* unmask interrupt in SIC */

 r0.l = 0x8000;

 r0.h = 0x0000;

 [p1] = r0;

 [--sp] = reti; /* enable nesting of interrupts */

 p5.l = lo(DMA7_CONFIG); /* setup DMA in STOP mode */

 p5.h = hi(DMA7_CONFIG);

 r7.l = lo(sHello);

 r7.h = hi(sHello);

 [p5+DMA7_START_ADDR-DMA7_CONFIG] = r7;

 r7 = length(sHello) (z);

 r7+= -1; /* don't send trailing null character */

 w[p5+DMA7_X_COUNT-DMA7_CONFIG] = r7;

 r7 = 1;

 w[p5+DMA7_X_MODIFY-DMA7_CONFIG] = r7;

 r7 = FLOW_STOP | WDSIZE_8 | DI_EN | SYNC | DMAEN (z);

 w[p5] = r7;

 p0.l = lo(UART0_GCTL); /* select UART 0 */

 p0.h = hi(UART0_GCTL);

 r0 = ETBEI (z); /* enable and issue first request */

 w[p0+UART0_IER-UART0_GCTL] = r0;

wait4dma: /* just one way to synchronize with the service routine

*/

 r0 = w[p5+DMA7_IRQ_STATUS-DMA7_CONFIG] (z);

 CC = bittst(r0,bitpos(DMA_RUN));

 if CC jump wait4dma;

 p1.l=lo(sWorld);

 p1.h=hi(sWorld);

Programming Examples

31-60 ADSP-BF54x Blackfin Processor Hardware Reference

 call uart_puts;

forever: jump forever;

isr_uart_tx:

 [--sp] = astat;

 [--sp] = r7;

 r7 = DMA_DONE (z); /* W1C interrupt request */

 w[p5+DMA7_IRQ_STATUS-DMA7_CONFIG] = r7;

 r7 = ETBEI (z);

 w[p0+UART0_IER_CLEAR-UART0_GCTL] = r7;

 ssync;

 r7 = [sp++];

 astat = [sp++];

 rti;

isr_uart_tx.end:

ADSP-BF54x Blackfin Processor Hardware Reference 32-1

32 USB OTG CONTROLLER

This chapter describes the USB OTG interface. This peripheral is a 6-pin
interface for the USB OTG controller.

This chapter includes the following sections:

• “Overview” on page 32-2

• “Interface Overview” on page 32-3

• “Description of Operation” on page 32-12

• “Functional Description” on page 32-44

• “Programming Model” on page 32-46

• “USB OTG Registers” on page 32-64

• “Programming Examples” on page 32-141

• “References” on page 32-141

• “Glossary of USB Terms ” on page 32-141

The USB OTG controller provides a low-cost connectivity solution for
consumer mobile devices such as cell phones, digital still cameras and
MP3 players, allowing these devices to transfer data using a point-to-point
USB connection without the need for a personal computer host. The USB
controller can operate in a traditional USB peripheral-only mode as well
as the host mode presented in the On-The-Go (OTG) supplement to the
USB 2.0 Specification. In host mode, the USB module supports transfers
at high-speed (480Mbps), full-speed (12Mbps), and low-speed (1.5Mbps)

Overview

32-2 ADSP-BF54x Blackfin Processor Hardware Reference

rates. peripheral mode supports the high- and full-speed transfer rates.
Following an overview and a list of key features are a description of opera-
tion and functional modes of operation. The chapter concludes with a
programming model, consolidated register definitions, and programming
examples.

Overview
The USB OTG controller provides a low-cost connectivity solution for
consumer mobile devices such as cell phones, digital still cameras, and
MP3 players, allowing these devices to transfer data using a point-to-point
USB connection without the need for a personal computer host.

The USB controller uses a peripheral bus slave interface to access its con-
trol and status registers as well as read and write to the endpoint packet
buffers. Data is transferred to and from the USB controller through any of
the seven transmit and seven receive endpoint FIFOs, EP1 – EP7, provid-
ing a total of 14 data endpoints. A DCB/DEB bus master interface
provides eight DMA channels to provide a more efficient means of trans-
ferring large amounts of data between the controller and the Blackfin
processor's memory map.

Features
The USB controller provides the following features:

• Low speed/full speed / high speed rates supported

• 1 bidirectional control endpoint

• Seven transmit and seven receive unidirectional endpoints

• 7.232 KBytes of FIFOs for packet buffering

• 8 DMA master channels

ADSP-BF54x Blackfin Processor Hardware Reference 32-3

USB OTG Controller

• 3 top-level maskable general purpose interrupts

• 1 asynchronous wakeup interrupt

• VBUS control interrupts for external analog VBUS control

• Software-controlled clock control on each endpoint for power
reduction

• Session request protocol (SRP) and host negotiation protocol
(HNP) capability

• Host transaction scheduling in hardware

• High-bandwidth isochronous and interrupt endpoint support

• Soft connect/disconnect feature

• Full- and high-speed physical layer UTMI+ level 2 interface for
on-chip PHY

• Backwards compatible with existing USB 1.1 hosts

The number of active endpoints at one time is only limited by device
requirements or system bandwidth, because each endpoint operates inde-
pendently from the next. The maximum buffer size per endpoint is 1024
bytes. Software determines the type of transfer for each endpoint individu-
ally and also the manner in which it is transferred between the USB
controller and memory (DMA or interrupt-based). Endpoint zero is used
solely for receive and transmit control transfers, which are used for device
configuration and information gathering.

Interface Overview
The USB controller operates in either of two USB operation modes
(peripheral or host mode) at a given time.

Interface Overview

32-4 ADSP-BF54x Blackfin Processor Hardware Reference

In peripheral mode, the USB controller encodes, decodes, checks, and
directs all USB packets sent and received, responding appropriately to
host requests. Data is transferred from the processor core memory into the
device’s TX FIFOs to be transmitted onto USB as IN packets and in the
other direction USB OUT packets are received into the Rx FIFOs (having
being sent from the host) and transferred to system memory for processing
or storage. In peripheral mode, the USB controller acts as a slave device to
another USB host; either a personal computer or another OTG host con-
troller.

When operating in host mode, the USB controller uses simple hosting
capabilities to master point-to-point connections with another USB
peripheral, initiating transfers on the bus for the peripheral to respond.
USB IN packets are received into the Rx FIFOs to be moved into the pro-
cessor core memory, and data written into TX FIFOs is transmitted onto
the bus as USB OUT packets. In this mode, the USB controller encodes,
decodes, and checks USB packets sent and received and automatically
schedules isochronous and interrupt transfers from the endpoint buffers
such that one transaction is performed every n frames, where n represents
the polling interval programmed for the endpoint.

Figure 32-1 shows the main functional blocks within the USB controller
and its interfaces to the processor core, USB controller RAM, and USB
OTG PHY.

Any of the endpoints can be programmed to be written to or read from
using the DMA master channels to provide the most efficient means of
transferring data between the controller and on-chip memory. USB end-
points 0 through 7 have DMA interrupt lines (USB_DMAxINT) providing a
total of 8 DMA request lines. Three top-level maskable interrupts are pro-
vided each of which can be source from any or all of transmit endpoint
status, receive endpoint status or global USB status. Details of these can be
found in “Interrupts” on page 32-8.

ADSP-BF54x Blackfin Processor Hardware Reference 32-5

USB OTG Controller

The USB controller uses the peripheral bus to access control and status
registers and FIFOs from a slave perspective and to transfer data between
the USB engine and on-chip memory as a master. The MMR peripheral
data bus is 16-bits wide, the DMA DCB/DEB data bus is 32-bits wide.

Figure 32-1. USB OTG Controller Block Diagram

INT/CLK
CONTROL

MMR SLAVE DECODE
AND DATA MUX

TX EP COUNT
REGISTERS

INTERRUPT
REGISTERS

COMMON
REGISTERS

FIFO DECODE
AND ARB

MMR
SLAVE

MASTER
CONTROL

DMA
REGISTERS

DMA
CHANNELS

DMA
CONTROLLER

CPU
INTERFACE

TRANSMIT (Tx)
ENDPOINTS

RECEIVE (Rx)
ENDPONTS

HOST TRANSACTION
SCHEDULER

ENDPOINT CONTROL
AND COMBINE

ENDPOINT
CONTROL

CPU-SIDE
BUFFERS

CYCLE/PTR
CONTROL

RAM
INTERFACE

USB-SIDE
BUFFERS

EPRAMPACKET
ENCODE/
DECODE

PACKET
CONTROL

CRC
GENERATE/

CHECK

HNP/SRP

HS
NEGOTIATE

DATA SYNC

TIMERS

MAIN
PROTOCOL

FSM

UTMI
SYNC AND
PROTOCOL

ENGINEUTMI INTERFACE

SRP WAKEUP
DETECTION

VBUS CONTROL

TO
UTMI PHY

PHY
CLK

ASYNC
WAKEUP

INTERRUPT

INTERRUPTS SYSTEM CLOCK
AND RESET

PAB BUS
SLAVE INTERFACE

DCB/DEB BUS
MASTER INTERFACE

Interface Overview

32-6 ADSP-BF54x Blackfin Processor Hardware Reference

Using the 16-bit wide data bus, the USB controller to processor core
interface translates into either half word transfers (for both CSR and FIFO
addresses) or byte transfers (FIFO addresses only).

The USB controller’s RAM interface supports a single block of synchro-
nous single-port RAM used to buffer the USB packets. 7.232kBytes of
SRAM are available.

The UTMI+ level 2 PHY interface provides a means of connecting a selec-
tion of high- or full-speed PHYs to the controller, from device-only PHYs
through full OTG compliant PHYs. The details of the PHY interface can
be found in “UTMI Interface” on page 32-46.

The USB controller requires a system clock frequency of >30MHz to
operate correctly on USB.

The USB controller must not be used if the system clock is operat-
ing at a clock frequency below 30 MHz.

The asynchronous wakeup circuit is used to detect when another
'B' device is asserting its D+ pullup to initiate SRP when all other clocks
are off. This circuit requires a slow clock (for example, 32kHz).

The USB controller is configured as either a USB OTG 'A' device or
'B' device depending on the type of plug inserted into its USB receptacle.
This is determined by the state of the USB_ID (connector ID) pin.

Before any endpoint register writes can be committed on endpoint zero
(control transfers) take place, the GLOBAL_ENA bit of the USB_GLOBAL_CTL
register must be set in order to enable the system clock to the control
logic. Likewise, before any endpoints can be set up and used to transfer
data, the related control bit in the USB_GLOBAL_CTL register must be set.

Use of the controller for OTG functionality requires the capability to
drive VBUS (as default 'A' device powering the bus), to discharge VBUS
(to speed up the time for VBUS to fall below the SessionEnd threshold as
a 'B' device checking initial conditions) and to charge VBUS to 2.1V

ADSP-BF54x Blackfin Processor Hardware Reference 32-7

USB OTG Controller

(when initiating SRP as a 'B' device). These controls are driven from the
UTMI interface, but the controller also provides a separate interrupt regis-
ter, USB_OTG_VBUS_IRQ, which represents the drive VBUS, discharge
VBUS, and charge VBUS signaling. See “USB OTG VBUS Interrupt
(USB_OTG_VBUS_IRQ) Register” on page 32-124 for more informa-
tion on these controls.

FIFO Configuration
Each bidirectional endpoint (provided as two unidirectional endpoints)
has its own endpoint number (0 for control, 1–7 for data transfer).
Although two endpoints might use the same number, the endpoints may
support different transfer types. Each of these bidirectional endpoint has a
fixed region of the SRAM in the USB controller to which it has access,
and this feature dictates to some extent the types of transfers that may be
used for that particular endpoint. This restriction follows from the maxi-
mum size of USB packets, which varies with each transfer type.
Table 32-1 lists the endpoint FIFO configuration, with an indication of
the transfer types possible for that particular buffer size.

This configuration gives a total USB controller RAM size of 7232 bytes.

Each endpoint FIFO can buffer one or two packets (in double-buffered
mode). The double buffered mode is automatically enabled when the soft-
ware programs a maximum packet size for an endpoint that is equal to or
less than half the actual FIFO size for that endpoint. Double-buffering is

Table 32-1. FIFO Sizes and Transfer Types

Bidirectional Endpoint
 (Rx and Tx)

FIFO Size
(each direction)

USB Transfer Types

0 64 bytes Size fixed for Control transfers.

1 – 4 128 bytes Bulk, Interrupt, Isochronous

5 - 7 1024 bytes Bulk, Interrupt, Isochronous

Interface Overview

32-8 ADSP-BF54x Blackfin Processor Hardware Reference

recommended for most applications to improve efficiency by reducing the
frequency with which each endpoint needs to be serviced. Double-buffer-
ing Bulk transactions means that data transfer over the USB is not slowed
if packets can be loaded/unloaded from the FIFO in the time it takes to
transfer a packet over the bus. Double-buffering Isochronous transactions
also allows more time to load/unload the FIFO, but in addition, it also
allows the SOF interrupt to be used to service the endpoint rather than
the endpoint interrupt. This has the following advantages:

• Easy detection of lost packets

• Regular interrupt timing (making it easier to source/sink the data);
and

• If more than one Isochronous endpoint is used, they can all be ser-
viced with one interrupt.

Interrupts
Three active-high top-level interrupts are provided from the USB control-
ler: USB_INT0, USB_INT1 and USB_INT2. Each of these interrupts is
route-able through the programming of a global mask register (USB_
GLOBINTR) and can be sourced from control transfers, transmit (USB_
INTRTX), and receive (USB_INTRRX) endpoint activity, from a range of con-
ditions on the USB lines (USB_INTRUSB), or from requests for the USB
controller to send VBUS control signals to an external analog chip (USB_
OTG_VBUS_IRQ). The USB_INTRUSB and USB_OTG_VBUS_IRQ sources share the
same interrupt line and are not route-able separately (for example, USB_
INTRTX and USB_INTRRX). Finally, the DMA master channels use a separate
interrupt, USB_DMAxINT, to indicate when a master transfer is pend-
ing.

Figure 32-2 shows the various sources of interrupts in the USB controller
and how they are routed to the top-level interrupts using the USB_
GLOBINTR register.

ADSP-BF54x Blackfin Processor Hardware Reference 32-9

USB OTG Controller

Interrupts can be generated from control endpoint zero from the follow-
ing conditions:

• When a control transaction ends before the end of the data is
transferred.

• When a data packet is sent or received from the endpoint 0 FIFOs.

Figure 32-2. USB Interrupt Sources and Routing

USB_INTRTX[7–0]

USB_INTRTXE[7–0]

USB_INTRUSB[7–0]

USB_INTRUSBE[7–0]

USB_OTG_VBUS_IRQ[5–0]

USB_OTG_VBUS_MASK[5–0]

DMA0_INT

USB_DMA0CONTROL
[DMA_ENA]

USB_INTRRX[7–1]

USB_INTRRXE[7–1]

GLOBAL
INTERRUPT
ROUTING

USB_INT0

USB_INT1

USB_INT2

USB_DMAINT

DMA7_INT

USB_DMA7CONTROL
[DMA_ENA]

...

...

...

...

...

...

USB_INTRUSB

USB_INTRTX

USB_INTRRX

(USB_GLOBINTR)

Interface Overview

32-10 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupts can be generated from transmit endpoints (USB_INTRTX) from
the following conditions:

• Packet sent from the TX FIFO (host and peripheral mode)

• After three attempts at transmitting a packet with no valid hand-
shake packet received (host mode)

Interrupts can be generated from receive endpoints (USB_INTRRX) from the
following conditions:

• Packet received into the Rx FIFO (host and peripheral mode)

• When a STALL handshake is received (host mode)

• After three attempts at receiving a packet and no data packet is
received (host mode)

Interrupts can be generated from the USB status (USB_INTRUSB) from the
following conditions:

• When VBUS drops below the VBUS valid threshold during a ses-
sion ('A' device only)

• When SRP signalling is detected ('A' device only)

• When device disconnect is detected (host mode)

• When a session ends (peripheral mode)

• Device connection detected (host mode)

• Start of frame (SOF)

• Reset signalling detected on USB (peripheral mode)

• Babble detected (host mode)

ADSP-BF54x Blackfin Processor Hardware Reference 32-11

USB OTG Controller

• In suspend mode when resume signalling detected on USB

• When suspend signalling is detected (peripheral mode)

Interrupts are generated for the following VBUS control requests from the
USB controller:

• Drive VBUS >4.4V (Default 'A' device)

• Stop driving VBUS

• Start charging VBUS (peripheral mode)

• Stop charging VBUS

• Start discharging VBUS (peripheral mode)

• Stop discharging VBUS

Resets
The USB controller includes an active-high synchronous hardware reset
sourced from the processor core. Another source of peripheral reset is
through the USB, when USB reset signaling is detected on the I/O lines.
As dictated by the USB 2.0 Specification, this state is entered when both
the D+ and D– inputs are driven low for a period of 2.5µs or more
(though the reset itself is held for typically greater than 10ms by the USB
host).

When a USB reset is detected, the USB controller performs the following
actions:

• USB_FADDR register set to zero

• USB_INDEX register set to zero

• All endpoint FIFOs flushed

• All control and status registers cleared

Description of Operation

32-12 ADSP-BF54x Blackfin Processor Hardware Reference

• All interrupts enabled

• Reset interrupt generated

The USB_INTRUSB, USB_OTG_VBUS_IRQ, USB_GLOBINTR, and USB_GLOBAL_CTL
registers are not affected by the USB controller reset. These registers are
only reset (along with those listed above) during a system reset.

Description of Operation
The USB OTG interface may operate in peripheral mode or host mode.

When the USB controller is operating in peripheral mode, the controller
may be attached to a conventional host (such as a personal computer) or
another OTG device operating in host mode. The second device can be
high-speed or full-speed. When linked to another peripheral device, the
USB controller can also act as the host, and if the other device is also a
dual role controller, the two devices can switch roles as required.

The role taken by the USB controller depends on the way the devices are
cabled together. Each USB cable has an 'A' and a 'B' device end. If the 'A'
end of the cable is plugged into the device containing the USB controller,
the USB controller takes the role of the host device and goes into host
mode (in this case the HOST_MODE bit is set to 1). If the 'B' of the cable is
plugged in, the USB controller goes instead into peripheral mode (and the
HOST_MODE bit remains at 0).

When both devices contain dual role controllers, signaling may be used to
switch the roles of the two devices, without any need to switch the cable
connecting the two devices. The conditions under which the USB control-
ler may switch between peripheral and host mode are detailed “Host
Negotiation/Configuration” on page 32-49.

ADSP-BF54x Blackfin Processor Hardware Reference 32-13

USB OTG Controller

Peripheral Mode Operation
Operations for the USB OTG interface when in peripheral mode differ
from host mode in a number of ways. The following sections describe
peripheral mode operations.

Endpoint Setup

In peripheral mode, there are a few endpoint-specific configuration bits
that are used when setting up an endpoint for transfer for all types of
peripheral transfer. They determine how the processor core interacts with
the endpoint FIFO.

One key parameter required before transfer can occur through an end-
point is the maximum USB packet size that the endpoint can support.
This value is set by the software and depends on a variety of system con-
straints such as the size of hardware FIFO available and system latencies as
well as the USB transfer type and class being used. As far as USB is con-
cerned, the USB_TX_MAX_PACKET or USB_RX_MAX_PACKET defines the
maximum amount of data that can be transferred to the selected endpoint
in a single frame, and the value must match the programmed maximum
individual packet size (MaxPktSize) of the standard endpoint descriptor
for the endpoint. For TX endpoints, the maximum packet size is pro-
grammed using the USB_TX_MAX_PACKET. For Rx endpoints, the USB_RX_
MAX_PACKET register is used. The maximum packet size must not exceed
the actual hardware endpoint FIFO size (see Table 32-1 on page 32-7).
Because the USB controller uses a 16-bit interface, it is recommended that
the value chosen for MaxPktSize is an even number, as this selection sim-
plifies transferring data between FIFOs and processor core.

If the size of the endpoint FIFO being used is at least twice the USB_RX_
MAX_PACKET or USB_TX_MAX_PACKET, double buffering is automatically
enabled for that endpoint.

Description of Operation

32-14 ADSP-BF54x Blackfin Processor Hardware Reference

Additional setup parameters are configured using the USB_RXCSR or USB_
TXCSR register (depending on whether the endpoint in question is Rx or
TX). The DMA_ENA bit in this register is used to enable the assertion of the
appropriate DMA request whenever the endpoint is able to receive or
transmit another packet. The AUTOCLEAR_R and AUTOSET_R/T bits can be
used to automatically set the FIFO ready triggers (RXPKTRDY and TXPKTRDY)
whenever a packet is transferred to streamline DMA operation for trans-
fers that span multiple packets. Refer to the descriptions in “USB OTG
Registers” on page 32-64 for more details on the endpoint control and sta-
tus registers.

IN Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for IN
transactions is handled through the TX FIFOs. The maximum size of data
packet that may be placed in a TX endpoint’s FIFO for transmission is
programmable and (where applicable) is determined by the value written
to the USB_TX_MAX_PACKET register for that endpoint (maximum payload
multiplied by the number of transactions per micro-frame).

The maximum packet size set for any endpoint must not exceed the FIFO
size (see Table 32-1 on page 32-7).

Note that the USB_TX_MAX_PACKET register should not be written to
while there is data in the FIFO, as unexpected results may occur.

If the size of the TX endpoint FIFO is less than twice the maximum
packet size for this endpoint (as set in the USB_TX_MAX_PACKET register),
only one packet can be buffered in the FIFO and single packet buffering is
enabled. As each packet to be sent is loaded into the TX FIFO, the TXPK-
TRDY bit in USB_TXCSR needs to be set. If the AUTOSET_T bit in USB_TXCSR is
set, the TXPKTRDY bit automatically is set when a maximum-sized packet is
loaded into the FIFO. For packet sizes less than the maximum, TXPKTRDY
always has to be set manually (for example, set by the processor core).

ADSP-BF54x Blackfin Processor Hardware Reference 32-15

USB OTG Controller

When the TXPKTRDY bit is set, either manually or automatically, the FIFO_
NOT_EMPTY_T bit in USB_TXCSR is also set and the packet is ready to be sent.
When the packet is successfully sent, both TXPKTRDY and FIFO_NOT_EMPTY_
T are cleared and the appropriate TX endpoint interrupt is generated (if
enabled). The next packet can then be loaded into the FIFO.

If the size of the TX endpoint FIFO is at least twice the maximum packet
size for this endpoint (as set in the USB_TX_MAX_PACKET), two packets can
be buffered in the FIFO and double packet buffering is enabled. As each
packet to be sent is loaded into the TX FIFO, the TXPKTRDY bit in USB_
TXCSR needs to be set. If the AUTOSET_T bit in USB_TXCSR is set, the TXPK-
TRDY bit automatically is set when a maximum-sized packet is loaded into
the FIFO. For packet sizes less than the maximum, TXPKTRDY always has to
be set manually (for example, set by the processor core). When the TXPK-
TRDY bit is set, either manually or automatically, the FIFO_NOT_EMPTY_T bit
in USB_TXCSR also is set. TXPKTRDY is then immediately cleared (and an
interrupt generated, if enabled). A second packet can now be loaded into
the TX FIFO and TXPKTRDY set again (either manually or automatically if
the packet is the maximum size). Both packets are now ready to be sent.

When the first packet is successfully sent, TXPKTRDY is cleared and the
appropriate TX endpoint interrupt is generated (if enabled) to signal that
another packet can now be loaded into the TX FIFO. The state of the
FIFO_NOT_EMPTY_T bit at this point indicates how many packets may be
loaded. If the FIFO_NOT_EMPTY_T bit is set then there is another packet in
the FIFO and only one more packet can be loaded. If the FIFO_NOT_
EMPTY_T bit is clear then there are no packets in the FIFO and two more
packets can be loaded.

Description of Operation

32-16 ADSP-BF54x Blackfin Processor Hardware Reference

High Bandwidth Isochronous IN Endpoints

In high-speed mode, isochronous TX endpoints can transmit up to three
USB packets in any micro-frame, with a payload of up to 1024/3 bytes in
each packet, corresponding to a data transfer rate of up to 1024 bytes per
micro-frame. Figure 32-3 provides an overview of high-bandwidth IN
endpoints in USB.

The USB controller supports these transfers by permitting the loading of
data packets with up to 3 times the normal packet size into the associated
FIFO in a single transaction. From the point of view of the software in the

Figure 32-3. High-Bandwidth IN Endpoints

B
L

O
C

K
 O

F
 D

A
TA

 F
O

R
 T

R
A

N
S

F
E

R

FIFO

USB

SINGLE PACKET OF
UP TO INMAXP

(MAX 1024 BYTES)
WRITTEN TO FIFO

SINGLE PACKET OF
UP TO INMAXP

(MAX 1024 BYTES)
WRITTEN TO FIFO

1

2

3

1

2

3

U
S

B
 P

A
C

K
E

T
S

 O
F

PA
Y

L
O

A
D

 B
Y

T
E

S
(U

P
 T

O
 1

02
4/

3
B

Y
T

E
S

)
S

E
N

T
 O

V
E

R
 U

S
B

REMAINDER

REMAINDER

U
S

B
 P

A
C

K
E

T
S

 O
F

PA
Y

L
O

A
D

 B
Y

T
E

S
(U

P
 T

O
 1

02
4/

3
B

Y
T

E
S

)
S

E
N

T
 O

V
E

R
 U

S
B

SYSTEM

M
IC

R
O

F
R

A
M

E
M

IC
R

O
F

R
A

M
E

ADSP-BF54x Blackfin Processor Hardware Reference 32-17

USB OTG Controller

processor core, the operation is then exactly as described above for single
packet buffering or double packet buffering (as appropriate) except that
TXPKTRDY always needs to be set manually (for example, set by the proces-
sor core) as the auto set feature does not operate with high-bandwidth
isochronous transfers.

Any data packet loaded into the FIFO that is larger than the maximum
payload is automatically split into USB packets of the maximum payload,
or smaller, for transmission over the USB. The number of USB packets
transmitted per micro-frame and the maximum payload in each packet is
defined through the USB_TX_MAX_PACKET register. Bits 10–0 of the USB_TX_
MAX_PACKET register determine the maximum payload in any USB packet
while bits 12,11 determine the maximum number of such packets that can
be sent in one micro-frame (2 or 3). Together, these set the maximum size
of packet that can be loaded into the FIFO.

At least one USB packet always is sent. The number of further USB pack-
ets sent in the same micro-frame depends on the amount of data loaded
into the FIFO. The TXPKTRDY bit is cleared and an interrupt is generated
only when all the packets have been sent. Each USB packet is sent in
response to an IN token. If, at the end of a micro-frame, the USB control-
ler has not received enough IN tokens to send all the USB packets (for
example, because one of the IN tokens received was corrupted), the
remaining data is flushed from the FIFO. The TXPKTRDY bit is cleared and
the INCOMPTX_T bit in the USB_TXCSR register is set to indicate that not all
of the data loaded into the FIFO was sent.

OUT Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for OUT
transactions is handled through the USB controller’s Rx FIFOs.

The maximum amount of data received by an Rx endpoint in any frame or
micro-frame (in high-speed mode) is programmable and is determined by
the value written to the USB_EP_NIx_RXMAXP register for that endpoint.

Description of Operation

32-18 ADSP-BF54x Blackfin Processor Hardware Reference

This is the maximum payload multiplied by the number of transactions
per micro-frame (where applicable). The maximum packet size must not
exceed the FIFO size (see Table 32-1 on page 32-7).

If the size of the Rx endpoint FIFO is less than twice the maximum packet
size for this endpoint (as set in the USB_RX_MAX_PACKET register), only one
data packet can be buffered in the FIFO and single packet buffering is
enabled. When a packet is received and placed in the Rx FIFO, the RXPK-
TRDY bit and the FIFO_FULL_R bit in USB_RXCSR are set and the appropriate
Rx endpoint is generated (if enabled) to signal that a packet can now be
unloaded from the FIFO. After the packet is unloaded, the RXPKTRDY bit
needs to be cleared in order to allow further packets to be received. If the
AUTOCLEAR_R bit in USB_RXCSR is set and a maximum-sized packet is
unloaded from the FIFO, the RXPKTRDY bit is cleared automatically. The
FIFO_FULL_R bit is also cleared. For packet sizes less than the maximum,
RXPKTRDY always has to be cleared manually (for example, set by the pro-
cessor core).

If the size of the Rx endpoint FIFO is at least twice the maximum packet
size for the endpoint, two data packets can be buffered and double packet
buffering is enabled. When the first packet to be received is loaded into
the Rx FIFO, the RXPKTRDY bit in USB_RXCSR is set and the appropriate Rx
endpoint interrupt is generated (if enabled) to signal that a packet can
now be unloaded from the FIFO. Note that the FIFO_FULL_R bit in USB_
RXCSR is not set at this point. This bit is only set if a second packet is
received and loaded into the Rx FIFO.

After the first packet is unloaded, RXPKTRDY needs to be cleared in order to
allow further packets to be received. If the AUTOCLEAR_R bit in USB_RXCSR is
set and a maximum-sized packet is unloaded from the FIFO, the RXPKTRDY
bit is cleared automatically. For packet sizes less than the maximum, RXP-
KTRDY always has to be cleared manually (for example, set by the processor
core).

ADSP-BF54x Blackfin Processor Hardware Reference 32-19

USB OTG Controller

If the FIFO_FULL_R bit was set to 1 when RXPKTRDY is cleared, the USB
controller first clears the FIFO_FULL_R bit. The controller then sets RXPK-
TRDY again to indicate that there is another packet waiting in the FIFO to
be unloaded.

High Bandwidth Isochronous OUT Endpoints

In high-speed mode, isochronous Rx endpoints can receive up to three
USB packets in any micro-frame, with a payload of up to 1024/3 bytes in
each packet, corresponding to a data transfer rate of up to 3072 bytes per
micro-frame. Figure 32-4 shows an overview of high-bandwidth OUT
endpoints in USB.

The USB controller supports this rate by automatically combining all the
USB packets received during a micro-frame into a single packet of up to 3
normal packets in size within the Rx FIFO. From the point of view of the
software in the processor core, the operation is then exactly as described
above for single packet buffering or double packet buffering (as appropri-
ate), except the RXPKTRDY always needs to be cleared manually (for example,
cleared by the processor core) as AUTOCLEAR_R does not operate with
high-bandwidth isochronous transfers.

The maximum number of USB packets that may be received in any
micro-frame and the maximum payload of these packets are defined
through the USB_RX_MAX_PACKET register. Bits 10–0 of the USB_RX_MAX_
PACKET register determine the maximum payload in any USB packet while
bits 12,11 determine the maximum number of these packets that may be
received in a micro-frame (2 or 3).

The number of USB packets sent in any micro-frame depends on the
amount of data to be transferred, and is indicated through the PIDs used
for the individual packets. If the indicated number of packets have not
been received by the end of a micro-frame, the INCOMPRX_R bit in the USB_
RXCSR register is set to indicate that the data in the FIFO is incomplete.
Even so, an interrupt is still be generated to allow the data that is received
to be read from the FIFO.

Description of Operation

32-20 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral Transfer Workflows

The USB transfer types control, bulk, isochronous and interrupt transfers
each have significantly different system requirements as well as individual
USB transfer-specific features, which dictates that they are each dealt with
slightly differently in software. For these reasons, there is no uniform way
of doing transfers across all transfer types on the USB controller.

The following section provides some guideline peripheral mode transfer
flows for each of the transfer types, in both IN (TX) and OUT (Rx) direc-
tions. In the case of bulk endpoints, the optimal transfer flow differs

Figure 32-4. High-Bandwidth OUT Endpoints

B
L

O
C

K
 O

F
 D

A
TA

 F
O

R
 T

R
A

N
S

F
E

R

FIFO

USB

SINGLE PACKET OF
UP TO INMAXP

(MAX 1024 BYTES)
READ FROM FIFO

SINGLE PACKET OF
UP TO INMAXP

(MAX 1024 BYTES)
READ FROM FIFO

1

2

3

1

2

3

U
S

B
 P

A
C

K
E

T
S

 O
F

PA
Y

L
O

A
D

 B
Y

T
E

S
(U

P
 T

O
 1

02
4/

3
B

Y
T

E
S

)
S

E
N

T
 O

V
E

R
 U

S
B

REMAINDER

REMAINDER

U
S

B
 P

A
C

K
E

T
S

 O
F

PA
Y

L
O

A
D

 B
Y

T
E

S
(U

P
 T

O
 1

02
4/

3
B

Y
T

E
S

)
S

E
N

T
 O

V
E

R
 U

S
B

SYSTEM

M
IC

R
O

F
R

A
M

E
M

IC
R

O
F

R
A

M
E

ADSP-BF54x Blackfin Processor Hardware Reference 32-21

USB OTG Controller

depending on whether the final size of the transfer is known or unknown.
Whether the transfer size is known or not depends on the USB driver class
being used. Some define the complete transfer size, and others operate on
a packet-by-packet basis using a short packet (a packet of <USB_TX_MAX_
PACKET or <USB_RX_MAX_PACKET) to denote the end of a transfer.

Each of the workflows use the following common method:

1. Configure the endpoint (USB_TX_MAX_PACKET or USB_RX_MAX_
PACKET value and control and status registers)

2. Configure the appropriate data transfer mechanism (DMA or
interrupt setup)

3. Data transfer phase

The workflows do not describe the USB controller’s actions immediately
preceding the endpoint setup (for example, the reception of an IN/OUT
token from the host, token validity checking, or NAK generation, among
others). Note also that there is currently no error-handling contained in
the workflows (for example, checking FIFO_FULL_R bit before writing
data).

In the workflow descriptions, processor core interactions are indicated
with bold face type, and transfer parameters are indicated with italic type.
Note that the terms packets, frames and transfers are used in the proceed-
ing sections with their strict USB definitions. (See the “Glossary of USB
Terms ” on page 32-141 for these definitions.)

Control Transactions as a Peripheral

Endpoint 0 is the main control endpoint of the USB controller. As such,
the routines required to service Endpoint 0 are more complicated than
those required to service other endpoints.

Description of Operation

32-22 ADSP-BF54x Blackfin Processor Hardware Reference

The software is required to handle all the Standard Device Requests that
may be sent or received through Endpoint 0. These are described in Uni-
versal Serial Bus Specification, Revision 2.0, Chapter 9. The protocol for
these device requests involves different numbers and types of transaction
per transfer. To accommodate this, the processor needs to take a state
machine approach to command decoding and handling.

The Standard Device Requests received by a USB peripheral can be
divided into three categories: Zero Data Requests (in which all the infor-
mation is included in the command), Write Requests (in which the
command will be followed by additional data), and Read Requests (in
which the device is required to send data back to the host).

This section looks at the sequence of actions that the software must per-
form to process these different types of device request.

Note: The Setup packet associated with any Standard Device Request
should include an 8-byte command. Any Setup packet containing a com-
mand field of anything other than 8 bytes will be automatically rejected by
the USB controller.

Write Requests

Write requests involve an additional packet (or packets) of data being sent
from the host after the 8-byte command. An example of a ‘Write’ Stan-
dard Device Request is: SET_DESCRIPTOR.

The sequence of events will begin, as with all requests, when the software
receives an Endpoint 0 interrupt. The RxPktRdy bit will also have been set.
The 8-byte command should then be read from the Endpoint 0 FIFO and
decoded.

As with a zero data request, the USB_CSR0 register should then be writ-
ten to set the ServicedRxPktRdy bit (indicating that the command is read
from the FIFO) but in this case the DataEnd bit should not be set (indi-
cating that more data is expected).

ADSP-BF54x Blackfin Processor Hardware Reference 32-23

USB OTG Controller

When a second Endpoint 0 interrupt is received, the USB_CSR0 register
is read to check the endpoint status. The RxPktRdy bit is set to indicate
that a data packet is received. The USB_COUNT0 register should then be read
to determine the size of this data packet. The data packet can then be read
from the Endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the
wLength field in the command) is greater than the maximum packet size
for Endpoint 0, further data packets will be sent. In this case, USB_CSR0 is
written to set the ServicedRxPktRdy bit, but the DataEnd bit should not be
set.

When all the expected data packets have been received, the USB_CSR0 regis-
ter is written to set the ServicedRxPktRdy bit and to set the DataEnd bit
(indicating that no more data.

Zero Data Requests

Zero data requests have all their information included in the 8-byte com-
mand and require no additional data to be transferred.

Examples of ‘Zero Data’ Standard Device Requests are: SET_FEATURE,
CLEAR_FEATURE, SET_ADDRESS, SET_CONFIGURATION, SET_INTERFACE.

The sequence of events will begin, as with all requests, when the software
receives an Endpoint 0 interrupt. The RxPktRdy bit will also have been
set. The 8-byte command should then be read from the Endpoint 0 FIFO,
decoded and the appropriate action taken. For example if the command is
SET_ADDRESS, the 7-bit address value contained in the command is written
to the USB_FADDR register.

NOTE, however, that when the host moves to the Status stage it still
addresses the device with the default address, therefore the USB_FADDR
should not be written before the host moves to the Status stage. In the
next transaction the host will then use this new address to address the
device.

Description of Operation

32-24 ADSP-BF54x Blackfin Processor Hardware Reference

The USB_CSR0 register should then be written to set the ServicedRxPktRdy
bit (indicating that the command is read from the FIFO) and to set the
DataEnd bit (indicating that no further data is expected for this request).

When the host moves to the status stage of the request, a second Endpoint
0 interrupt will be generated to indicate that the request has completed.
No further action is required from the software: the second interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason
cannot be executed, then when it is decoded, the USB_CSR0 register is writ-
ten to set the ServicedRxPktRdy bit and to set the SendStall bit. When
the host moves to the status stage of the request, the USB controller will
send a STALL to tell the host that the request was not executed. A second
Endpoint 0 interrupt will be generated and the SentStall bit will be set.

If the host sends more data after the DataEnd bit is set, then the USB con-
troller will send a STALL. An Endpoint 0 interrupt will be generated and
the SentStall bit will be set.

Peripheral Mode, Bulk IN, Transfer Size Known

Programming values must be known for the maximum individual packet
size (MaxPktSize) in bytes and the complete transfer size (TxferSize) in
bytes for this process:

1. Load MaxPktSize into USB_TX_MAX_PACKET

2. Set DMA_ENA=1, AUTOSET_T=1, ISO_T=0, FRCDATATOG=0 in USB_TXCSR

3. Load TxferSize into USB_TXCOUNT

4. Configure the DMA controller to write the full TxferSize/2 half
words into the corresponding TX FIFO address

5. On each USB_DMAxINT transition, the DMA controller writes a
new packet into the FIFO. TXPKTRDY automatically is set when each
new packet is written.

ADSP-BF54x Blackfin Processor Hardware Reference 32-25

USB OTG Controller

6. Step 5 is repeated for each full packet of the transfer.

7. Even if the final packet is a short packet, the packet automatically
is detected by the USB controller (because USB_TXCOUNT is zero)
and TXPKTRDY is set.

Peripheral Mode, Bulk IN, Transfer Size Unknown

The programming value for the maximum individual packet size (MaxPkt-
Size) in bytes is assumed to be an even number of bytes for this process:

1. Load MaxPktSize into USB_TX_MAX_PACKET

2. Set DMA_ENA=1, AUTOSET_T=1, ISO_T=0, FRCDATATOG=0 in USB_TXCSR

3. Configure the DMA controller to write MaxPktSize/2 half words
into the corresponding TX FIFO address on each USB_
DMAxINT.

4. Set up an ISR, sensitive to the DMA work block complete inter-
rupt, that writes a remaining short packet into the TX FIFO using
processor core DMA and then sets TXPKTRDY or simply sends a
zero-length packet by toggling TXPKTRDY.

5. On each USB_DMAxINT transition, the DMA controller writes a
new packet into the FIFO. TXPKTRDY automatically is set when each
new packet is written.

6. Step 5 is repeated for each full packet of the transfer.

7. The final short/zero-length packet is dealt with by the ISR from
step 4.

Description of Operation

32-26 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral Mode, ISO IN, Small MaxPktSize

The programming value for the maximum individual packet size (MaxPkt-
Size) in bytes is <128 bytes and is an even number of bytes, double
buffering is assumed as enabled, and the auto set feature is unused
(because packets are often <MaxPktSize) for this process:

1. Load MaxPktSize into USB_TX_MAX_PACKET

2. Set ISO_T=1 in USB_TXCSR

3. Pre-load the first two packets into the endpoint TX FIFO and set
TXPKTRDY (or alternatively use the USB_TXCOUNT feature that sets
TXPKTRDY after USB_TXCOUNT bytes have been loaded).

4. Set up an ISR, sensitive to the SOF_B interrupt, which writes a new
packet into the TX FIFO and sets TXPKTRDY.

5. Set SOF_B=1 in USB_INTRUSBE to generate an interrupt on each Start
Of Frame.

6. Step 5 is repeated for each ISO packet.

Peripheral Mode, ISO IN, Large MaxPktSize

The programming value for the maximum individual packet size (MaxPkt-
Size) in bytes is >128 bytes and is an even number of bytes, double
buffering is assumed as enabled, and the auto set feature is unused
(because packets are often <MaxPktSize) for this process:

1. Load MaxPktSize into USB_TX_MAX_PACKET

2. Set ISO_T=1 in USB_TXCSR

3. Set ISO_UPDATE=1 in USB_POWER to prevent initial packet loaded
into the FIFO from being transmitted on USB until the next 1ms
frame.

ADSP-BF54x Blackfin Processor Hardware Reference 32-27

USB OTG Controller

4. Load the total number of bytes in the first two packets into USB_
TXCOUNT

5. Configure the DMA controller to pre-load the two packets (as half
words) into the corresponding TX FIFO address. TXPKTRDY auto-
matically is set by the USB controller when USB_TXCOUNT bytes have
been loaded.

6. Set up an ISR, sensitive to the SOF_B interrupt, which writes a new
packet into the TX FIFO by loading USB_TXCOUNT with the size of
the packet, then configuring the DMA controller to load the
packet.

7. Set SOF_B=1 in USB_INTRUSBE to generate an interrupt on each start
of frame.

8. Step 7 is repeated for each ISO packet.

Peripheral Mode, Bulk OUT, Transfer Size Known

Programming values must be known for the maximum individual packet
size (MaxPktSize) in bytes and the complete transfer size (TxferSize) in
bytes for this process:

1. Load MaxPktSize into USB_RX_MAX_PACKET

2. Set DMA_ENA=1, AUTOCLEAR_R=1, ISO_R=0, FRCDATATOG=0,
DMAREQMODE_R=0 in USB_RXCSR

3. Configure the DMA controller to read the full TxferSize/2 half
words from the corresponding Rx FIFO address

4. On each USB_DMAxINT transition, the DMA controller reads
another packet from the FIFO. RXPKTRDY automatically is cleared
by the USB controller when each new packet is read.

Description of Operation

32-28 ADSP-BF54x Blackfin Processor Hardware Reference

5. Step 5 is repeated for each full packet of the transfer.

6. If TxferSize is not an exact multiple of MaxPktSize, the final USB_
DMAxINT transition causes the DMA controller to read out only
the short packet that remains.

Peripheral Mode, Bulk OUT, Transfer Size Unknown

A programming value must be known for the maximum individual packet
size (MaxPktSize) in bytes for this process:

1. Load MaxPktSize into USB_RX_MAX_PACKET

2. Set DMA_ENA=1, AUTOCLEAR_R=1, ISO_R=0, FRCDATATOG=0,
DMAREQMODE_R=1 in USB_RXCSR

3. Set the appropriate EPx_RX_E bit in USB_INTRRXE

4. Configure the DMA controller to read MaxPktSize/2 half words
from the corresponding Rx FIFO address on each USB_DMAx-
INT transition.

5. Set up an ISR, sensitive to the Rx interrupt, which reads USB_
RXCOUNT and then transfers USB_RXCOUNT bytes (in half words) from
the Rx FIFO to the processor core. Depending on the number of
bytes in the FIFO, this can be performed by configuring the DMA
to read the data, or reading it with the processor core.

6. On each USB_DMAxINT transition, the DMA controller reads a
packet from the FIFO. RXPKTRDY automatically is cleared by the
USB controller when each new packet is read.

7. Step 5 is repeated for each full packet of the transfer.

8. If a packet is received that is < MaxPktSize, the Rx interrupt goes
high, and the ISR from step 5 reads out the remaining short
packet.

ADSP-BF54x Blackfin Processor Hardware Reference 32-29

USB OTG Controller

Peripheral Mode, ISO OUT, Small MaxPktSize

The programming value for the maximum individual packet size (MaxPkt-
Size) in bytes is <128 bytes, and double buffering is assumed as enabled
for this process:

1. Load MaxPktSize into USB_RX_MAX_PACKET

2. Set ISO_R=1 in USB_RXCSR

3. Set up an ISR, sensitive to the SOF_B interrupt, that reads the FIFO_
FULL_R bit, reads the USB_RXCOUNT status register, and finally
removes one or two packets (equaling from the USB_RXCOUNT num-
ber of bytes) from the FIFO and clears RXPKTRDY.

4. Set SOF_B=1 in USB_INTRUSBE to generate an interrupt on each start
of frame.

5. Step 4 is repeated for each ISO packet.

Peripheral Mode, ISO OUT, Large MaxPktSize

The programming value for the maximum individual packet size (MaxPkt-
Size) in bytes is >128 bytes, and double buffering is assumed as enabled
for this process:

1. Load MaxPktSize into USB_RX_MAX_PACKET

2. Set ISO_R=1 in USB_RXCSR

3. Set up an ISR, sensitive to the SOF_B interrupt, that reads the
FIFO_FULL_R bit, reads the USB_RXCOUNT status register, and finally
configures the DMA controller to remove or two packets (equaling
from the USB_RXCOUNT number of bytes) from the FIFO.

4. Set up an ISR, sensitive to the DMA work block complete inter-
rupt to clear RXPKTRDY.

Description of Operation

32-30 ADSP-BF54x Blackfin Processor Hardware Reference

5. Set SOF_B=1 in USB_INTRUSBE to generate an interrupt on each start
of frame.

6. Step 5 is repeated for each ISO packet.

Peripheral Mode Suspend

When no activity has occurred on the USB for 3 ms, the USB controller
enters suspend mode. If the suspend interrupt (SUSPEND_B) is enabled, an
interrupt is generated at this time.

When resume signaling is detected, the USB controller exits suspend
mode. If the RESUME_B interrupt is enabled, an interrupt is generated. The
processor core can also force the USB controller to exit suspend mode by
setting the RESUME_MODE bit in the USB_POWER register. When this bit is set,
the USB controller exits suspend mode and drives resume signaling onto
the bus. The processor core should clear this bit after 10 ms (a maximum
of 15 ms) to end resume signaling.

No RESUME_B interrupt is generated when suspend mode is exited by the
processor core.

Start Of Frame (SOF) Packets

When the USB controller is operating in peripheral mode, it should
receive a start of frame packet from the host every millisecond when in
full-speed mode, or every 125 microseconds when in high-speed mode.

When the SOF packet is received, the 11-bit frame number contained in
the packet is written into the USB_FRAME register and an output pulse, last-
ing one USB clock bit period, is generated on SOF_PULSE (internal USB
controller signal). A SOF_B interrupt is also generated (if enabled in the
USB_INTRUSBE register).

After the USB controller has started to receive SOF packets, the controller
expects one every millisecond or 125 microseconds. If no SOF packet is
received after 1.00358 ms (or 125.125 ms), it is assumed that the packet is

ADSP-BF54x Blackfin Processor Hardware Reference 32-31

USB OTG Controller

lost and an SOF_PULSE (together with a SOF_B interrupt, if enabled) is
still generated though the USB_FRAME register is not updated. The USB
controller continues to generate an SOF_PULSE every millisecond (or
125 ms) and re-synchronizes these pulses to the received SOF packets
when these packets are successfully received again.

Soft Connect / Soft Disconnect

In peripheral mode, the USB controller can be programmed to switch
between normal mode and non-driving mode by setting or clearing the
SOFT_CONN bit of the USB_POWER register. When this SOFT_CONN bit is set to
1, the USB controller is placed in its normal mode and the D+/D– lines of
the USB bus are enabled. When this feature is enabled and the SOFT_CONN
bit is zero, the PHY is put into non-driving and D+ and D– are
three-stated. Then, the USB controller appears to have been disconnected
to other devices on the USB bus.

After system reset, SOFT_CONN is cleared to 0. From that point, the USB
controller appears disconnected until the software has set SOFT_CONN to 1.
The application software can then choose when to set the PHY into its
normal mode. Systems with a lengthy initialization procedure may use this
to ensure that initialization is complete and the system is ready to perform
enumeration before connecting to the USB.

Error Handling As a Peripheral

A control transfer may be aborted due to a protocol error on the USB, the
host prematurely ending the transfer, or if the function controller software
wishes to abort the transfer (for example, because it cannot process the
command).

The USB controller will automatically detect protocol errors and send a
STALL packet to the host under the following conditions:

Description of Operation

32-32 ADSP-BF54x Blackfin Processor Hardware Reference

1. The host sends more data during the OUT Data phase of a write
request than was specified in the command. This condition is detected
when the host sends an OUT token after the DataEnd bit is set.

2. The host request more data during the IN Data phase of a read request
than was specified in the command. This condition is detected when the
host sends an IN token after the DataEnd bit in the USB_CSR0 register is set.

3. The host sends more than MaxPktSize data bytes in an OUT data
packet.

4. The host sends a non-zero length DATA1 packet during the STATUS
phase of a read request.

When the USB controller has sent the STALL packet, it sets the SentStall
bit and generates an interrupt. When the software receives an Endpoint 0
interrupt with the SentStall bit set, it should abort the current transfer,
clear the SentStall bit, and return to the IDLE state.

If the host prematurely ends a transfer by entering the STATUS phase
before all the data for the request is transferred, or by sending a new
SETUP packet before completing the current transfer, then the SetupEnd
bit will be set and an Endpoint 0 interrupt generated. When the software
receives an Endpoint 0 interrupt with the SetupEnd bit set, it should abort
the current transfer, set the ServicedSetupEnd bit, and return to the IDLE
state. If the RxPktRdy bit is set this indicates that the host has sent another
SETUP packet and the software should then process this command.

If the software wants to abort the current transfer, because it cannot pro-
cess the command or has some other internal error, then it should set the
SendStall bit. The USB controller will then send a STALL packet to the
host, set the SentStall bit and generate an Endpoint 0 interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 32-33

USB OTG Controller

STALLS Issued to Control Transfers

In peripheral mode, the USB controller automatically issues a STALL
handshake to a control transfer under the following conditions:

1. The host sends more data during an OUT data phase of a control
transfer than was specified in the device request during the SETUP
phase. This condition is detected by the USB controller when the
host sends an OUT token (instead of an IN token) after the proces-
sor core has unloaded the last OUT packet and set DATAEND.

2. The host requests more data during an IN data phase of a control
transfer than was specified in the device request during the SETUP
phase. This condition is detected by the USB controller when the
host sends an IN token (instead of an OUT token) after the proces-
sor core has cleared TXPKTRDY and set DATAEND in response to the
ACK issued by the host to what should have been the last packet.

3. The host sends more than MaxPktSize data with an OUT data
token.

4. The host sends the wrong PID for the OUT status phase of a con-
trol transfer.

5. The host sends more than a zero length data packet for the OUT
status phase.

Zero Length OUT Data Packets in Control Transfers

A zero-length OUT data packet is used to indicate the end of a control
transfer. In normal operation, such packets should only be received after
the entire length of the device request is transferred (for example, after the
processor core has set DATAEND). If the host sends a zero-length OUT data
packet before the entire length of device request is transferred, this packet
signals the premature end of the transfer. In this case, the USB controller
automatically flushes any IN token loaded by processor core ready for the
data phase from the FIFO and sets SETUPEND.

Description of Operation

32-34 ADSP-BF54x Blackfin Processor Hardware Reference

Host Mode Operation
Operations for the USB OTG interface when in host mode differ from
peripheral mode in a number of ways. The following sections describe
host mode operations.

Endpoint Setup and Data Transfer

When the HOST_MODE bit is set to 1, the USB controller operates as a host
for point-to-point communications with another USB device. This second
device may be either a high-speed, full-speed, or low-speed USB function,
but it may not be a hub. Control, bulk, isochronous or interrupt transac-
tions are supported between the USB controller and the second device.

Transfers between the subsystem and endpoint FIFOs in host mode are
similar to peripheral mode. With this in mind, see many of the descrip-
tions of processor core to FIFO data transfer in “Peripheral Mode
Operation” on page 32-13.

Control Transaction as a Host

Host Control Transactions are conducted through Endpoint 0 and the
software is required to handle all the Standard Device Requests that may
be sent or received through Endpoint 0 (as described in Universal Serial
Bus Specification, Revision 2.0, Chapter 9).

As for a USB peripheral, there are three categories of Standard Device
Requests to be handled: Zero Data Requests (in which all the information
is included in the command); Write Requests (in which the command will
be followed by additional data); and, Read Requests (in which the device
is required to send data back to the host).

Zero Data Requests comprise a SETUP command followed by an IN Sta-
tus Phase.

ADSP-BF54x Blackfin Processor Hardware Reference 32-35

USB OTG Controller

Write Requests comprise a SETUP command, followed by an OUT Data
Phase which is in turn followed by an IN Status Phase.

Read Requests comprise a SETUP command, followed by an IN Data
Phase which is in turn followed by an OUT Status Phase.

A timeout may be set to limit the length of time for which the USB con-
troller will retry a transaction which is continually NAKed by the target.
This limit can be between 2 and 2^15 frames/microframes and is set
through the USB_NAKLimit0 register.

The following sections describe the actions that the core needs to take in
issuing these different types of request through looking at the steps to take
in the different phases of a Control Transaction.

Note: Before initiating any transactions as a Host, the USB_FADDR register
needs to be set to address the peripheral device. When the device is first
connected, USB_FADDR is set to zero. After a SET_ADDRESS command is
issued, USB_FADDR is set the target’s new address.

Setup Phase as a Host

For the SETUP Phase of a Control Transaction, the PROCESSOR
CORE driving the Host device needs to:

1. Load the 8 bytes of the required Device request command into the End-
point 0 FIFO

2. Then set SETUPPKT_H and TxPtRdy (bits 3 and 1 of the USB_USB_CSR0
register, respectively). Note: These bits need to be set together.

The USB controller then proceeds to send a SETUP token followed by the
8-byte command to Endpoint 0 of the addressed device, retrying as
necessary.

Description of Operation

32-36 ADSP-BF54x Blackfin Processor Hardware Reference

3. At the end of the attempt to send the data, the USB controller will gen-
erate an Endpoint 0 interrupt (for example, set IntrTx.D0). The
PROCESSOR CORE should then read USB_CSR0 to establish whether the
STALL_RECEIVED_H bit, the ERROR_H bit or the NAK_TIMEOUT_H bit is set.

If STALL_RECEIVED_H is set, it indicates that the target did not accept the
command (for example, because it is not supported by the target device)
and so has issued a STALL response.

If ERROR_H is set, it means that the USB controller has tried to send the
SETUP Packet and the following data packet three times without getting
any response.

If NAK_TIMEOUT_H is set, it means that the USB controller has received a
NAK response to each attempt to send the SETUP packet, for longer than
the time set in the USB_NAKLimit0 register. The USB controller can then
be directed either to continue trying this transaction (until it times out
again) by clearing the NAK_TIMEOUT_H bit or to abort the transaction by
flushing the FIFO before clearing the NAK_TIMEOUT_H bit.

4. If none of STALL_RECEIVED_H, ERROR_H or NAK_TIMEOUT_H is set, the
SETUP Phase is correctly ACKed and the PROCESSOR CORE should
proceed to the following IN Data Phase, OUT Data Phase or IN Status
Phase specified for the particular Standard Device Request.

IN Data Phase as a Host

For the IN Data Phase of a Control Transaction, the PROCESSOR
CORE driving the Host device needs to:

1. Set REQPKT_H in USB_CSR0.

2. Wait while the USB controller both sends the IN token and receives the
required data back.

ADSP-BF54x Blackfin Processor Hardware Reference 32-37

USB OTG Controller

3. When the USB controller generates the Endpoint 0 interrupt (for
example, sets EP0_TX in USB_INTRTX register), read USB_CSR0 to establish
whether the STALL_RECEIVED_H bit, the ERROR_H bit, the NAK_TIMEOUT_H bit
or RxPktRdy is set.

If STALL_RECEIVED_H is set, it indicates that the target has issued a STALL
response.

If ERROR_H is set, it means that the USB controller has tried to send the
required IN token three times without getting any response.

If NAK_TIMEOUT_H is set, it means that the USB controller has received a
NAK response to each attempt to send the IN token, for longer than the
time set in the USB_NAKLimit0 register. The USB controller can then be
directed either to continue trying this transaction (until it times out again)
by clearing the NAK_TIMEOUT_H bit or to abort the transaction by clearing
REQPKT_H before clearing the NAK_TIMEOUT_H bit.

4. If RxPktRdy is set, the PROCESSOR CORE should read the data from
the Endpoint 0 FIFO, then clear RxPktRdy.

5. If further data is expected, the PROCESSOR CORE should repeat
Steps 1 – 4.

When all the data is successfully received, the PROCESSOR CORE
should proceed to the OUT Status Phase of the Control Transaction.

OUT Data as a Host (Control)

For the OUT Data Phase of a Control Transaction, the PROCESSOR
CORE driving the Host device needs to:

1. Load the data to be sent into the Endpoint 0 FIFO

2. Then set the TxPtRdy bit in USB_CSR0.

Description of Operation

32-38 ADSP-BF54x Blackfin Processor Hardware Reference

The USB controller then proceeds to send an OUT token followed by the
data from the FIFO to Endpoint 0 of the addressed device, retrying as
necessary.

3. At the end of the attempt to send the data, the USB controller will gen-
erate an Endpoint 0 interrupt (for example, set EP0_TX in USB_INTRTX
register). The PROCESSOR CORE should then read USB_CSR0 to estab-
lish whether the STALL_RECEIVED_H bit (D2), the ERROR_H bit (D4) or the
NAK_TIMEOUT_H bit (D7) is set.

If STALL_RECEIVED_H is set, it indicates that the target has issued a STALL
response.

If ERROR_H is set, it means that the USB controller has tried to send the
OUT token and the following data packet three times without getting any
response.

If NAK_TIMEOUT_H is set, it means that the USB controller has received a
NAK response to each attempt to send the OUT token, for longer than
the time set in the USB_NAKLimit0 register. The USB controller can then
be directed either to continue trying this transaction (until it times out
again) by clearing the NAK_TIMEOUT_H bit or to abort the transaction by
flushing the FIFO before clearing the NAK_TIMEOUT_H bit.

If none of STALL_RECEIVED_H, Error or NAKLimit is set, the OUT data is
correctly ACKed.

4. If further data needs to be sent, the PROCESSOR CORE should repeat
Steps 1 – 3.

When all the data is successfully sent, the PROCESSOR CORE should
proceed to the IN Status Phase of the Control Transaction.

ADSP-BF54x Blackfin Processor Hardware Reference 32-39

USB OTG Controller

IN Status Phase as a Host (following SETUP phase or OUT Data
Phase)

For the IN Status Phase of a Control Transaction, the PROCESSOR
CORE driving the Host device needs to:

1. Set STATUSPKT_H_H and REQPKT_H (bits 6 and 5 of USB_CSR0, respec-
tively). Note: These bits need to be set together.

2. Wait while the USB controller both sends an IN token and receives a
response from the USB peripheral.

3. When the USB controller generates the Endpoint 0 interrupt (for
example, sets EP0_TX in USB_INTRTX register), read USB_CSR0 to establish
whether the STALL_RECEIVED_H bit, the ERROR_H bit, the NAK_TIMEOUT_H bit
or RxPktRdy is set.

If STALL_RECEIVED_H is set, it indicates that the target could not complete
the command and so has issued a STALL response.

If ERROR_H is set, it means that the USB controller has tried to send the
required IN token three times without getting any response.

If NAK_TIMEOUT_H is set, it means that the USB controller has received a
NAK response to each attempt to send the IN token, for longer than the
time set in the USB_NAKLimit0 register. The USB controller can then be
directed either to continue trying this transaction (until it times out again)
by clearing the NAK_TIMEOUT_H bit or to abort the transaction by clearing
REQPKT_H and STATUSPKT_H_H before clearing the NAK_TIMEOUT_H bit.

4. If RxPktRdy is set, the PROCESSOR CORE should simply clear
RxPktRdy.

OUT Status Phase as a Host (following IN Data Phase)

For the OUT Status Phase of a Control Transaction, the PROCESSOR
CORE driving the Host device needs to:

Description of Operation

32-40 ADSP-BF54x Blackfin Processor Hardware Reference

1. Set STATUSPKT_H and TxPktRdy. Note: These bits need to be set
together.

2. Wait while the USB controller both sends the OUT token and a
zero-length DATA1 packet.

3. At the end of the attempt to send the data, the USB controller will gen-
erate an Endpoint 0 interrupt. The PROCESSOR CORE should then
read USB_CSR0 to establish whether the STALL_RECEIVED_H bit, the ERROR_H
bit or the NAK_TIMEOUT_H bit is set.

If STALL_RECEIVED_H is set, it indicates that the target could not complete
the command and so has issued a STALL response.

If ERROR_H is set, it means that the USB controller has tried to send the
STATUS Packet and the following data packet three times without get-
ting any response.

If NAK_TIMEOUT_H is set, it means that the USB controller has received a
NAK response to each attempt to send the IN token, for longer than the
time set in the USB_NAKLimit0 register. The USB controller can then be
directed either to continue trying this transaction (until it times out again)
by clearing the NAK_TIMEOUT_H bit or to abort the transaction by flushing
the FIFO before clearing the NAK_TIMEOUT_H bit.

4. If none of STALL_RECEIVED_H, Error or NAK_TIMEOUT_H is set, the STA-
TUS Phase is correctly ACKed.

Host IN Transactions

When the USB controller is operating as a host, IN transactions are han-
dled in much the same manner in which OUT transactions are handled
when the USB controller is operating as a peripheral, except that the
transaction needs first to be initiated by setting the REQPKT_H bit in USB_
RXCSR. This bit indicates to the transaction scheduler that there is an active
transaction on this endpoint. The transaction scheduler then sends an IN
token to the target function.

ADSP-BF54x Blackfin Processor Hardware Reference 32-41

USB OTG Controller

When the packet is received and placed in the Rx FIFO, the RXPKTRDY bit
in USB_RXCSR is set, and the appropriate Rx endpoint interrupt is gener-
ated (if enabled) to signal that a packet can now be unloaded from the
FIFO. When the packet is unloaded, RXPKTRDY is cleared. The AUTOCLEAR_
R bit in the USB_RXCSR register can be used to have RXPKTRDY automatically
cleared when a maximum sized packet is unloaded from the FIFO. There
is also an AUTOREQ_RH bit in USB_RXCSR that causes the REQPKT_H bit to be
automatically set when the RXPKTRDY bit is cleared. The AUTOCLEAR_R and
AUTOREQ_RH bits can be used with an external DMA controller to perform
complete bulk transfers without processor core intervention.

If the target function responds to a bulk or interrupt IN token with a
NAK, the USB controller keeps retrying the transaction until the NAK
limit set (in USB_NAKLIMIT0) is reached. If the target function responds
with a STALL, the USB controller does not retry the transaction, but does
interrupt the processor core with the RXSTALL_TH bit in the USB_RXCSR reg-
ister set. If the target function does not respond to the IN token within
the required time (or there was a CRC or bit-stuff error in the packet), the
USB controller retries the transaction. If after three attempts the target
function still has not responded, the USB controller clears the REQPKT_H
bit and interrupts the processor core with the DATAERROR_R bit in USB_
RXCSR set.

Host OUT Transactions

When the USB controller is operating as a host, OUT transactions are
handled in a similar manner to the way IN transactions are handled when
the USB controller is operating as a peripheral.

The TXPKTRDY bit in the USB_TXCSR register needs to be set as each packet is
loaded into the TX FIFO and the AUTOSET_T bit in USB_TXCSR can be used
to cause the TXPKTRDY bit to be automatically set when a maximum sized
packet is loaded into the FIFO. Again, the AUTOSET_T bit can be used with
an external DMA controller to perform complete bulk transfers without
processor core intervention.

Description of Operation

32-42 ADSP-BF54x Blackfin Processor Hardware Reference

If the target function responds to the OUT token with a NAK, the USB
controller keeps retrying the transaction until any NAK limit that is set (in
USB_NAKLIMIT0) is reached. If the target function responds with a STALL,
the USB controller does not retry the transaction, but does interrupt the
processor core with the RXSTALL_TH bit in the USB_TXCSR register set. If the
target function does not respond to the OUT token within the required
time (or there was a CRC or bit-stuff error in the packet), the USB con-
troller retries the transaction. If after three attempts the target function
still has not responded, the USB controller flushes the FIFO and inter-
rupts the processor core with the ERROR_TH bit in USB_TXCSR set.

Transaction Scheduling

When operating as a host, the USB controller maintains a frame counter.
If the target function is a full-speed device, the USB controller automati-
cally sends an SOF packet at the start of each frame or micro-frame. If the
target function is a low-speed device, a K state is transmitted on the bus to
act as a keep-alive to stop the low-speed device going into suspend mode.

After the SOF packet is transmitted, the USB controller cycles through all
the endpoints looking for active transactions. An active transaction is
defined as an Rx endpoint for which the REQPKT_H bit is set or a TX end-
point for which the TXPKTRDY bit is set. An active isochronous or interrupt
transaction only is started if found on the first transaction scheduler cycle
of a frame and if the interval counter for that endpoint has counted down
to zero. This ensures that only one interrupt or isochronous transaction
occurs per endpoint per n frames where n is the interval set in the USB_
TXINTERVAL or USB_RXINTERVAL register for that endpoint.

An active bulk transaction is started immediately, provided there is suffi-
cient time left in the frame to complete the transaction before the next
SOF packet is due. If the transaction needs to be retried (for example,
because a NAK was received or the target function did not respond) then
the transaction is not retried until the transaction scheduler has checked
all the other endpoints for active transactions first. This check ensures that

ADSP-BF54x Blackfin Processor Hardware Reference 32-43

USB OTG Controller

an endpoint that is sending a lot of NAKs does not block other transac-
tions on the bus. The USB controller also lets you to specify a limit to the
length of time for NAKs may be received from a particular target before
the endpoint is timed out (USB_TXINTERVAL or USB_RXINTERVAL registers).

Babble

The USB controller does not start a transaction until the bus is inactive
for at least the minimum inter-packet delay. The controller also does not
start a transaction unless it can be finished before the end of the frame. If
the bus is still active at the end of a frame, the USB controller assumes
that the function it is connected to has malfunctioned, suspends all trans-
actions, and generates a babble interrupt (RESET_OR_BABLE_B).

Host Mode Reset

If the RESET bit in the USB_POWER register is set while the USB controller is
in host mode, the USB controller generates reset signaling on the bus. The
processor core should keep this bit set for 20 ms to ensure correct resetting
of the target device. After the processor core has cleared the bit, the USB
controller starts its frame counter and transaction scheduler.

Host Mode Suspend

If the SUSPEND_MODE bit in the USB_POWER register is set, the USB controller
completes the current transaction then stops the transaction scheduler and
frame counter. No further transactions are started and no SOF packets are
generated.

To exit suspend mode, the processor core should set the RESUME_MODE bit
and clear the SUSPEND_MODE bit in the USB_POWER register. While the
RESUME_MODE bit is high, the USB controller generates resume signaling on
the bus. After 20 ms, the processor core should clear the RESUME_MODE bit,
at which point the frame counter and transaction scheduler are started.

Functional Description

32-44 ADSP-BF54x Blackfin Processor Hardware Reference

While in suspend mode, the USB controller clock is stopped to reduce
power. The SUSPEND_BE output also goes low, if enabled. This feature may
be used to power-down the USB drivers. If remote wake-up is to be sup-
ported, power to the PHY must be maintained, so the USB controller can
detect resume signaling on the bus.

Functional Description
The following sections describe the function of the USB OTG interface.

On-Chip Bus Interfaces
The USB controller uses two independent bus interfaces (peripheral slave
and DCB/DEB master) to communicate with a processor-based sub-
system. The slave interface allows the processor core to access the control
and status registers (including DMA master registers) and the endpoint
FIFOs. The master interface is used to drive data into or out of the end-
point FIFOs with minimal processor core interaction.

The peripheral bus slave interface has the following characteristics:

• 16-bit wide only transfers

• Wait states are asserted when FIFO accesses take place (maximum
of 3 are possible when contention for the SRAM occurs)

The DCB/DEB bus master interface has the following characteristics:

• 32-bit wide read and write data busses

• Write transfers of byte, half word and 32-bit words possible (byte
and half word are used only for remaining bytes in a transfer)

• Read transfers of 32 bits (first few or last few bytes may be dis-
carded based on starting address and DMA count respectively)

ADSP-BF54x Blackfin Processor Hardware Reference 32-45

USB OTG Controller

Interface Pins
The USB OTG external interface has the pins shown in Table 32-2.

Power and Clocking
The USB controller uses the system clock CLK (>30MHz required) to
generate an internal clock used to clock many of the system registers. The
transceiver clock is a 60MHz clock sourced from the UTMI PHY and is
used by the PHY interface logic and USB engine. The 24 MHz SCLK is
used for D+ pulse detection for SRP signaling by an OTG 'B' device only.

During SUSPEND and when no session is active, the clock to much of
the USB controller is stopped to reduce power consumption. The clock
becomes operational again when RESUME signaling is detected on the
USB lines.

Table 32-2. USB 2.0 HS OTG Pins

Signal
Name

Input/
Output

Description

USB_DP I/O USB D+ pin

USB_DM I/O USB D– pin

USB_XI C Clock XTAL input 1

USB_XO C Clock XTAL input 2

USB_ID I USB ID pin

USB_VBUS I/O USB VBUS pin

USB_VREF O USB voltage reference source (Test purposes only)

USB_RSET O USB resistance set (Test purposes only)

Programming Model

32-46 ADSP-BF54x Blackfin Processor Hardware Reference

UTMI Interface
The interface to the on-chip PHY uses the industry-standard UTMI+
(universal transceiver macro interface) level 2. This provides full
high-speed device and OTG functionality, but does not support commu-
nication to a hub.

The PHY is a mixed-signal block and includes the following:

• Full-speed and high-speed drivers and receivers (single-ended and
differential)

• Data line pullup and pull-down resistors

• Full-speed and high-speed CDR

• VBUS and USB_ID level detection

• Host disconnect detection

• Full-speed/high-speed shift registers, NRZI encode/decode and bit
stuff encode/decode

Although the UTMI specification indicates that VBUS charging, driving
and discharging be done inside the PHY, for process-restricting and power
reasons, these functions are typically implemented off-chip in a separate
USB charge-pump chip.

Programming Model
The following sections describe the USB OTG programming model.

ADSP-BF54x Blackfin Processor Hardware Reference 32-47

USB OTG Controller

OTG Session Request
In order to conserve power, the USB on-the-go supplement allows VBUS
to only be powered up when required and to be turned off when the bus is
not in use.

VBUS is always supplied by the 'A' device on the bus. The USB controller
determines whether it is the 'A' device or the 'B' device by sampling the
USB_ID input from the PHY. This signal is pulled low when an A-type
plug is sensed (signifying that the USB controller is the 'A' device), but
the input is taken high when a B-type plug is sensed (signifying that the
USB controller is the 'B' device).

Starting a Session

When the device containing the USB controller requires to start a session,
the processor core needs to set the SESSION bit in the USB_OTG_DEV_CTL
register. The USB controller then enables ID pin sensing. This results in
the USB_ID input either being taken low if an A-type connection is
detected or high if a B-type connection is detected. The B_DEVICE bit in
the USB_OTG_DEV_CTL register is also set to indicate whether the USB con-
troller has adopted the role of the 'A' device or the 'B' device.

If the USB controller is the 'A' device: The USB controller then enters host
mode (the 'A' device is always the default host), turns on VBUS, and waits
for VBUS to go above the VBUS valid threshold, as indicated by the
VBUS1–0 bits in the USB_OTG_DEV_CTL register to transition to 11.

The USB controller then waits for a peripheral to be connected. When a
peripheral is detected, a connect interrupt (CONN_B bit in USB_INTRUSB) is
generated (if enabled) and either the FSDEV or LSDEV bit in the USB_OTG_
DEV_CTL register is set, depending on whether a full-speed peripheral or a
low-speed peripheral was detected. The processor core should then reset
this peripheral. To end the session, the processor core should clear the
SESSION bit in USB_OTG_DEV_CTL.

Programming Model

32-48 ADSP-BF54x Blackfin Processor Hardware Reference

If the USB controller is the 'B' device: The USB controller requests a session
using the session request protocol defined in the USB on-the-go supple-
ment (for example, it first asserts the DISCHRG_VBUS_START bit in USB_OTG_
VBUS_IRQ to discharge VBUS). Then, when VBUS has gone below the ses-
sion end threshold (as indicated by the VBUS1–0 bits in the USB_OTG_DEV_
CTL register going to 00) – and the line state is SE0 for > 2 ms – the USB
controller first pulses the data line then pulses VBUS (by taking high the
interrupt CHRG_VBUS_START in USB_OTG_VBUS_IRQ).

At the end of the session, the SESSION bit is cleared – usually by the USB
controller but it can also be cleared by the processor core if the application
software wishes to perform a software disconnect. For more information,
see the description of “USB OTG Device Control (USB_OTG_DEV_
CTL) Register” on page 32-122. The USB controller switches on the
pull-up resistor on D+. This signals to the 'A' device to end the session.

Detecting Activity

When the other device of the OTG set-up wishes for a session to start, it
either raises VBUS above the session valid threshold (if it is the 'A' device
as indicated by the VBUS1–0 bits in the USB_OTG_DEV_CTL register going to
10), or (if it is the 'B' device) first pulses the data line then pulse VBUS.
Depending on which of these actions happens, the USB controller can
determine whether it is the 'A' device or the 'B' device in the current
set-up and act accordingly.

If VBUS is raised above the session valid threshold, the USB controller is the
'B' device. The USB controller sets the SESSION bit in the USB_OTG_DEV_
CTL register. When reset signaling is detected on the bus, a reset interrupt
(RESET_OR_BABLE_B =1) is generated (if enabled) that the processor core
should interpret as the start of a session. The USB controller is in periph-
eral mode at this point as the 'B' device is the default peripheral.

At the end of the session, the 'A' device turns off the power to VBUS.
When VBUS drops below the session valid threshold (as indicated by the
VBUS1–0 bits in the USB_OTG_DEV_CTL register going to 01), the USB con-

ADSP-BF54x Blackfin Processor Hardware Reference 32-49

USB OTG Controller

troller detects this and clears the SESSION bit to indicate that the session
has ended. A disconnect interrupt (DISCON_B bit in USB_INTRUSB) also is
generated (if enabled).

If data line/VBUS pulsing is detected, the USB controller is the 'A' device.
The controller generates a SESSION_REQ_B interrupt (bit 6 in USB_
INTRUSB– if enabled) to indicate that the 'B' device is requesting a session.
The processor core should then start a session by setting the SESSION bit.

Host Negotiation/Configuration
When the USB controller is the 'A' device (USB_ID low, B_DEVICE= 0), the
controller automatically enters host mode when a session starts.

When the USB controller is the 'B' device (USB_ID high, B_DEVICE= 1), the
controller automatically enters peripheral mode when a session starts. The
processor core can request that the USB controller becomes the host by
setting the HOST_REQ bit in the USB_OTG_DEV_CTL register. This bit can be
set either at the same time as requesting a session start by setting the SES-
SION bit in USB_OTG_DEV_CTL or at any time after a session has started.
When the USB controller next enters suspend mode (no activity on the
bus for 3 ms), then assuming the HOST_REQ bit remains set, the controller
enters host mode and begins host negotiation (as specified in the USB
on-the-go supplement), causing the PHY to disconnect the pull-up resis-
tor on the D+ line. This should cause the 'A' device to switch to peripheral
mode and to connect its own pull-up resistor. When the USB controller
detects this, it generates a connect interrupt (CONN_B bit in USB_INTRUSB) if
this is enabled. The controller also sets the RESET bit in the USB_POWER reg-
ister to begin resetting the 'A' device. (The USB controller begins this
reset sequence automatically to ensure that reset is started as required
within 1 ms of the 'A' device connecting its pull-up resistor). The proces-
sor core should wait at least 20 ms, then clear the RESET bit and enumerate
the 'A' device.

Programming Model

32-50 ADSP-BF54x Blackfin Processor Hardware Reference

When the USB controller-based 'B' device has finished using the bus, the
processor core should put it into suspend mode by setting the SUSPEND_
MODE bit in the USB_POWER register. The 'A' device should detect this and
either terminate the session or revert to host mode. If the 'A' device is
USB controller-based, it generates a disconnect interrupt (DISCON_B bit in
USB_INTRUSB) if this is enabled.

Software Clock Control
Power consumption is minimized in the USB controller by software-con-
trolled clock propagation. The USB_GLOBAL_CTL register is used to enable
clocks to only those parts of the controller that are necessary to perform a
given USB function. The GLOBAL_ENA bit must be set in order to do any
operations with the USB, including even writing to other registers. End-
point 0 control and FIFO access depends on the GLOBAL_ENA bit.

The remaining endpoint 1 – 7 TX and Rx register access, transfer opera-
tion and FIFO access is dependent on the corresponding bit of USB_
GLOBAL_CTL being set. State is retained in the registers when the particular
endpoint clock is stopped.

Wakeup from Hibernate State
In order to conserve power when the chip is idle, systems often uses vari-
ous levels of powerdown modes which shut down power and clocks to
various parts of the chip. Hibernate state is the highest power saving mode
for the processor (core clock, peripherals clocks, and internal power are
OFF; only external power is ON).

During the course of normal operation, the software can decide that the
chip is idle for a long enough period of time with no immediate need for
the clocks to be active that the chip can be put into a power-down mode
such as the hibernate state. As far as active USB sessions are concerned,
this period of inactivity occurs when there is a USB suspend state (idle on

ADSP-BF54x Blackfin Processor Hardware Reference 32-51

USB OTG Controller

the bus for >3ms) or if no OTG session is valid. The SUSPEND_MODE bit (in
USB_POWER) and VBUS1–0 status bits (in USB_OTG_DEV_CTL) respectively are
used to indicate these states.

Before the system software (driver) pushes processor into hibernate state,
the software has to make sure that the CSR_HBR bit (in USB_APHY_CNTRL2) is
set. Setting this bit activates the non-idle activity detection logic in the
PHY. Any non-idle activity on the USB bus is detected by the non-idle
activity detection logic in the analog PHY. This logic wakes up the proces-
sor and generates a low to high transition on EXT_WAKE pin.

To be able to use non-idle activity detection logic as a wakeup source for
the processor, enable the USB wakeup source by programming the appro-
priate bits in the voltage regulator control register (VR_CTL). After the
processor wakes up, USB is listed as the wakeup source in PLL status
(PLL_STAT) register. The EXT_WAKE pin can be used by the external
power-up sequence chip to power up DDR or any other external periph-
eral. The processor typically goes through these steps (see Figure 32-5)
when it comes out of hibernate state.

Programming Model

32-52 ADSP-BF54x Blackfin Processor Hardware Reference

After the chip comes out of hibernate state, the software has to make sure
that CSR_RSTD bit of the USB_APHY_CNTRL2 register is set. This setting deac-
tivates the non-idle activity detection logic and ensure proper USB
functionality.

The interrupt will be asserted when either of the following events occur:

• Non-idle signaling occurs during USB suspend state (including
USB reset signaling)

• VBUS falls below the session valid threshold

Figure 32-5. Timing Diagram of EXT_WAKE Pin

EXT_WAKE

(USB)
NONIDLE3V

D+/D–
VBUS

ACTIVITY

IVDDRDY

RST_3V

3.3V
POWERUP PROCESSOR

HIBERNATE
PROCESSOR

WAKEUP

NON-IDLE
ACTIVITY

ON
D+/D–/VBUS

ANALOG PHY NON-IDLE ACTIVITY
EDGE DETECTION CIRCUIT IS ON

DURING THIS WINDOW

ADSP-BF54x Blackfin Processor Hardware Reference 32-53

USB OTG Controller

Wakeup without Re-Enumeration
When USB is kicked into suspend mode after 3 ms of inactivity on the D+
and D–, in order to save power, it is possible that the processor is pushed
into hibernate state. Hibernate state implies all the internal power is shut
down, and only the external 3.3 V power is present. Also, all the clocks in
the processor are shut down. When USB is expected to wake up in
response to non-idle activity on the D+ and D–, the USB controller has
lost the state it was in before going into hibernate state. This lost state
imposes a restriction on host to re-enumerate USB controller device. To
prevent re-enumeration of USB controller device, systems must do the
following:

• Before the system software (driver) pushes processor into hibernate
state, the software must make sure that the state of the USB is
stored in some external memory flash.

• Also, the software must make sure that the CSR_HBR bit is set in the
USB_APHY_CNTRL2 register.

A low to high transition on CSR_HBR generates a pulse (high) on csr_hbr1v
signal (internal USB controller signal). This signal is used by the USB ana-
log PHY to retain the states of the pull-up and pull-down resistors during
the hibernate state. Retaining states on pull-up and pull-down resistors on
D+ and D– implies to the host that the USB controller device is not dis-
connected from the USB bus.

After the system software pushes processor into hibernate state, any
non-idle activity on the USB bus is detected by the non-idle activity
detection logic in the analog PHY. After the processor wakes up from
hibernate state, the processor typically goes through these steps: powering
up the processor, waiting for the PLL to lock, and booting the code into
L1 memory.

Programming Model

32-54 ADSP-BF54x Blackfin Processor Hardware Reference

After code is loaded into L1 memory, it is executed. The executed code
restores the state of the USB to pre-hibernate state. After the state is
resumed, the analog PHY no longer needs to retain the state of the
pull-ups and pull-downs on D+ and D–. The system software has to make
sure that CSR_RSTD bit is set in the USB_APHY_CNTRL2 register. A low to high
transition on the CSR_RSTD bit generates a pulse on the csr_rstd1v signal
(internal USB controller signal). This signal is used by the analog PHY to
prevent holding the values of pull-up and pull-down resistors. The

ADSP-BF54x Blackfin Processor Hardware Reference 32-55

USB OTG Controller

pull-ups and pull-downs are now controlled by the USB controller. This
sequence of actions (see Figure 32-6) prevents re-enumeration of the USB
controller device after the processor wakes up from hibernate state.

Data Transfer
Regardless of whether the USB controller is operating in host or periph-
eral mode, data is channeled through the endpoint FIFOs in order to
construct packets to be sent on USB or to receive packets from USB. The
Rx FIFOs are used to receive OUT packets when in peripheral mode and

Figure 32-6. Timing Diagram of the CSR_HBR/CSR_RSTD Bits

HIBERNATE
(3V INT SIG
IN APHY)

CSR_RSTD1V

CSR_RSTD

CSR_HBR1V

CSR_HBR

PROCESSOR
AND USB
STATES

ANALOG PHY RETAINS
THE STATE OF THE
PULL-UP/DOWNS

DURING THIS PERIOD

IDLE
ACTIVITY
ON D+/D–

DATA
TRANSFERS

ON D+/D–

PROCESSOR
HIBERNATES

RESUME
ACTIVITY
ON D+/D–

PROCESSOR
IN RESET

PROCESSOR
USB STATE
RESTORED

IVDDRDY

NONIDLE3V
(USB)

USB ENABLED
HERE

VOLTAGE DROPPING
ON CSR_HBR

THE STATE OF THIS SIGNAL
DEPENDS ON D+/D–

(DRIVEN ONLY WHEN THE
PROCESSOR IS IN HIBERNATE STATE)

SYSTEM S/W MAKES SURE
THAT THIS BIT IS SET

BEFORE HIBERNATING
THE PROCESSOR

SYSTEM S/W MAKES SURE
THAT CSR_RSTD IS PULSED

AFTER USB STATE
IS RESTORED

Programming Model

32-56 ADSP-BF54x Blackfin Processor Hardware Reference

IN packets when operating in host mode. Similarly, the TX FIFOs are
used to transmit IN packets when in peripheral mode and OUT packets as
a host.

Data may be moved between the FIFOs and memory using either DMA
or interrupts. Each endpoint FIFO has its own individual programmable
options available to allow each to be set up individually. This is necessary
because different transfer types need to be treated differently by the sys-
tem. Data transfers of significant size almost certainly require DMA to
move the data around, but smaller packet sizes might be handled com-
pletely by the processor.

Each data endpoint supports both double and single-buffering modes. In
single-buffered operation, FIFOs are unloaded and loaded on a
packet-by-packet basis. Double-buffering provides a means of less burden
on the system by allowing two packets to be buffered in a FIFO before it is
necessary to use DMA/interrupts to service the FIFO. Double-buffering
mode is automatically enabled when a MaxPktSize is set for an endpoint
that is equal to or less than half the size in bytes of that FIFO.

Loading/Unloading Packets from Endpoints
Because the peripheral bus slave interface to the USB controller provides a
fixed transfer size of half words (16-bits), some additional work is required
to use packet or transfer sizes that are an odd-number of bytes in length to
prevent data loss or corruption. This problem only exists for FIFO inter-
face accesses through the processor core slave interface (DMA mastered
endpoints can access individual bytes).

ADSP-BF54x Blackfin Processor Hardware Reference 32-57

USB OTG Controller

For TX endpoints with an odd number of bytes to be written into the
FIFO, there is the possibility that an extra byte could be incorrectly writ-
ten. The USB controller provides hardware counting and comparison
logic to prevent this from occurring. When writing such a packet into the
USB controller, the following steps are required:

• Load the appropriate USB_TXCOUNT register with the packet/transfer
size in bytes

• Write all the data into the FIFO (using DMA or processor core)
with the final half word of the transfer containing the final byte
aligned to the least significant byte lane.

After a USB_TXCOUNT register is loaded with a value, it counts down the
number of bytes written into that particular FIFO on each processor core
or DMA write. When there is only a byte remaining in the transfer, the
USB controller latches the least significant byte of the last half word.

For Rx endpoints using odd packet/transfer sizes, the software must com-
pensate for the fact that the least significant byte lane of the final half
word in the transfer is valid.

Another use for the USB_TXCOUNT registers is to streamline DMA transfers,
preventing unnecessary processor interaction in lengthy multi-packet
transfers.

DMA Master Channels
The USB controller provides 8 DMA Master channels to provide a more
efficient method of transferring larger amount of data between the FIFOs
and processor core and to free up the processor core for other tasks. Each
of these channels is configured and controlled using the DMA control
registers.

Programming Model

32-58 ADSP-BF54x Blackfin Processor Hardware Reference

Each DMA controller can operate in one of two DMA modes: 0 or 1.
When operating in mode 0, the DMA controller only can be programmed
to load or unload one packet, so processor intervention is required for
each packet transferred over USB. This mode can be used with any end-
point, either it uses control, bulk, isochronous, or interrupt transactions.

When operating in DMA mode 1, the DMA controller can only be pro-
grammed to load/unload a complete bulk transfer, which can be many
packets. After set up, the DMA controller loads or unloads packets of the
transfer, interrupting the processor only when the transfer has completed.
DMA mode 1 can only be used with endpoints that use bulk transactions.
DMA mode 1 is most valuable where large blocks of data are transferred to
a bulk endpoint. The USB protocol requires such packets to be split into a
series of packets of MaxPktSize for the endpoint. Mode 1 can be used to
avoid the overhead of having to interrupt the processor after each individ-
ual packet; instead the processor is only interrupted after the transfer has
completed. In some cases, the block of data transferred comprises a
pre-defined number of these packets that the controlling software counts
through the transfer process. In other cases, the last packet in the series
may be less than the maximum packet size and the receiver may use this
“short” packet to signal the end of the transfer. If the total size of the
transfer is an exact multiple of the maximum packet size, the transmitting
software should send a null packet for the receiver to detect.

Each channel can be independently programmed for the selected operat-
ing mode.

DMA transfers may be 8-, 16-, or 32-bit. All the transfer associated with
one packet (with the exception of the last) must be of the same width, so
that the data is consistently byte-, half word-, or word-aligned. The last
transfer may contain fewer bytes than the previous transfers in order to
complete an odd-byte or odd-word transfer.

ADSP-BF54x Blackfin Processor Hardware Reference 32-59

USB OTG Controller

DMA Bus Cycles
The DMA controller uses incrementing bursts of an unspecified length on
the peripheral DMA bus. The controller starts a new burst when it is first
granted bus mastership (whether at the start of a USB packet or when
regaining the bus after being thrown off part way through a packet) and
when the peripheral address starts a new 1K byte block.

When unloading packets from the FIFOs, the DMA controller requests
ahead to the USB controller. Although it starts the transfer with two
BUSY cycles while it is getting the first word from the FIFO, all subse-
quent words of the packet are immediately available. No no further BUSY
cycles are required. The DMA controller is associated with a two-word
buffer, so no data is lost if it loses bus mastership part way through
unloading a packet. When bus mastership is regained, it can continue
unloading the packet without adding any BUSY cycles.

As long as the start address (written to the DMAxADDR register) is word
aligned, all the transfers for a packet are word transfers (32 bits), with pos-
sible half-word and/or byte transfers added at the end to handle any
residue. If the start address is merely half-word aligned, the DMA control-
ler uses half-word transfers for the duration of the packet, with a possible
byte transfer at the end. If the start address is an odd byte address, the
DMA controller uses byte transfers for the duration of the packet.

Split transactions and retries are supported.

Transferring Packets Using DMA
Use of the DMA master channels to access the USB controller FIFOs
requires both the appropriate channel and the endpoint to be programmed
appropriately. Many variations are possible. The following sections detail
the standard setups used for the basic actions of transferring individual
packets and multiple packets.

Programming Model

32-60 ADSP-BF54x Blackfin Processor Hardware Reference

Individual Packet: Rx Endpoint

The transfer of individual packets are normally carried out using DMA
mode 0.

For this, the USB controller Rx endpoint is programmed as follows:

1. The relevant EPx_RX_E bit in the USB_INTRRXE register is set to 1.

2. The DMA_ENA bit of the appropriate USB_RXCSR register is set to 0.
(Note that there is no need to set the USB controller to support
DMA for this operation.)

3. When a packet is received by the USB controller, it generates the
appropriate endpoint interrupt (using USB_INTRRX). The processor
should then program the appropriate DMA master channel as
follows:

• DMAxADDR: Memory address to store packet

• USB_DMAxCOUNT: Size of packet (determined by reading the
USB controller USB_RXCOUNT register)

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 0,
DMAREQMODE_R = 0

The DMA controller then requests bus mastership and transfers the
packet to memory. It interrupts the processor when it has completed the
transfer. The processor should then clear the RXPKTRDY bit in the USB_
RXCSR register.

ADSP-BF54x Blackfin Processor Hardware Reference 32-61

USB OTG Controller

Individual Packet: TX Endpoint

To carry out this operation using DMA mode 0, a USB controller TX
endpoint is programmed as follow:

1. The relevant EPx_TX_E bit in the USB_INTRTXE register is set to 1.

2. The DMA_ENA bit of the appropriate USB_TxCSR register is set to 0.
(Note that there is no need to set the USB controller to support
DMA for this operation.)

3. When the FIFO can accommodate data, the USB controller inter-
rupts the processor with the appropriate TX endpoint interrupt.
The processor should then program the DMA channel as follows:

• DMAxADDR: Memory address of packet to send

• USB_DMAxCOUNT: Size of packet to be sent

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 1,
DMAREQMODE_T = 0

The DMA controller then requests bus mastership and transfer the packet
to the USB controller FIFO. When it has completed the transfer, it gener-
ates a DMA interrupt. The processor should then set the TXPKTRDY bit in
the USB_TXCSR register.

Multiple Packets: Rx Endpoint

The transfer of multiple packets normally are carried out using DMA
mode 1.Where multiple packets are to be received using DMA mode 1,
the DMA controller is programmed using the DMA registers:

• DMAxADDR: Memory address of the buffer in which to store transfer

• USB_DMAxCOUNT: Maximum size of data buffer

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 0,
DMAREQMODE_R = 1

Programming Model

32-62 ADSP-BF54x Blackfin Processor Hardware Reference

The USB controller Rx endpoint should now be programmed as follows:

1. The relevant EPx_RX_E bit in the USB_INTRRXE register is set to 1.

2. The AUTOCLEAR_R, DMAREQ_ENA_R and DMAREQMODE_R bits of the
appropriate USB_RXCSR register is set to 1. In host mode, the
AUTOREQ_RH and DMAREQMODE_RH bits should also be set to 1.

As each packet is received by the USB controller, the DMA master chan-
nel requests bus mastership and transfers the packet to memory. With
AUTOCLEAR_R set, the USB controller automatically clears its RXPKTRDY bit.
This process continues automatically until the USB controller receives a
short packet (one of less than the maximum packet size for the endpoint)
signifying the end of the transfer. This short packet is not transferred by
the DMA controller: instead the USB controller interrupts the processor
by generating the appropriate endpoint interrupt. The processor can then
read the USB_RXCOUNT register to see the size of the short packet and either
unload it manually or reprogram the DMA controller in mode 0 to unload
the packet.

The DMAxADDR register is incremented as the packets are unloaded, so the
processor can determine the size of the transfer by comparing the current
value of DMAxADDR with the start address of the memory buffer.

If the size of the transfer exceeds the data buffer size, the DMA controller
stops unloading the FIFO and interrupts the processor.

ADSP-BF54x Blackfin Processor Hardware Reference 32-63

USB OTG Controller

Multiple Packets: TX Endpoints

For operation in DMA mode 1 with a USB controller TX endpoint, the
DMA controller is programmed as follows:

• DMAxADDR: Memory address of data block to send

• USB_DMAxCOUNT: Size of data block

• USB_DMAxCONTROL: INT_ENA = 1, DMA_ENA = 1, DIRECTION = 1,
DMAREQMODE_T = 1

The USB controller TX endpoint is programmed as follows:

1. The relevant EPx_TX_E bit in the USB_INTRTXE register is set to 1.

2. The AUTOSET_T and DMA_ENA bits of the appropriate USB_EP_NIx_
TXCSR register is set to 1.

When the FIFO in the USB controller becomes available, the DMA con-
troller requests bus mastership and transfers a packet to the FIFO. With
AUTOSET_T set, the USB controller automatically sets the TXPKTRDY bit.
This process continues until the entire data block is transferred to the
USB controller. The DMA controller then interrupts the processor by tak-
ing DMAx_INT low. If the last packet to be loaded was less than the
maximum packet size for the endpoint, the TXPKTRDY bit is not set for this
packet; the processor should respond to the DMA interrupt by setting the
TXPKTRDY bit to allow the last short packet to be sent. If the last packet to
be loaded was of the maximum packet size, then the action to take
depends on whether the transfer is under the control of an application
such as the mass storage software on Windows system that keeps count of
the individual packets sent. If the transfer is not under such control, the
processor should still respond to the DMA interrupt by setting the TXPK-
TRDY bit. This has the effect of sending a null packet for the receiving
software to interpret as indicating the end of the transfer.

USB OTG Registers

32-64 ADSP-BF54x Blackfin Processor Hardware Reference

USB OTG Registers
The USB OTG has a number of memory-mapped registers (MMRs) that
regulate its operation. These registers are the:

• USB Control Registers

• USB Packet Control – Indexed Registers

• USB Endpoint FIFO Registers

• USB OTG Control Registers

• USB PHY Control Registers

• USB Endpoint 0 Control Registers, USB Endpoint 1 Control Reg-
isters, USB Endpoint 2 Control Registers, USB Endpoint 3
Control Registers, USB Endpoint 4 Control Registers, USB End-
point 5 Control Registers, USB Endpoint 6 Control Registers,
USB Endpoint 7 Control Registers

• USB DMA Registers, USB Channel 0 Config Registers, USB
Channel 1 Config Registers, USB Channel 2 Config Registers,
USB Channel 3 Config Registers, USB Channel 4 Config Regis-
ters, USB Channel 5 Config Registers, USB Channel 6 Config
Registers, USB Channel 7 Config Registers

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

ADSP-BF54x Blackfin Processor Hardware Reference 32-65

USB OTG Controller

Table 32-3. USB OTG Memory-Mapped Registers

Name Width Address Index Function

USB Control Registers

USB_FADDR 16 0xFFC03C00 n/a USB function address register
on page 32-81

USB_POWER 16 0xFFC03C04 n/a USB power management register
on page 32-82

USB_INTRTX 16 0xFFC03C08 n/a USB transmit interrupt register
on page 32-85
for endpoint 0 and Tx endpoint 1 to 7

USB_INTRRX 16 0xFFC03C0C n/a USB receive interrupt register
on page 32-86
for Rx endpoints 1 to 7

USB_INTRTXE 16 0xFFC03C10 n/a USB transmit interrupt enable register
on page 32-87
for IntrTx

USB_INTRRXE 16 0xFFC03C14 n/a USB receive interrupt enable register
on page 32-88
for IntrRx

USB_INTRUSB 16 0xFFC03C18 n/a USB common interrupt register
on page 32-89

USB_INTRUSBE 16 0xFFC03C1C n/a USB common interrupt enable register
on page 32-90

USB_FRAME 16 0xFFC03C20 n/a USB frame number register
on page 32-91

USB_INDEX 16 0xFFC03C24 n/a USB index register
on page 32-91

USB_TESTMODE 16 0xFFC03C28 n/a USB test mode register
on page 32-93
(for Analog Devices internal use only)

USB_GLOBINTR 16 0xFFC03C2C n/a USB global interrupt register
on page 32-94

USB_GLOBAL_
CTL

16 0xFFC03C30 n/a USB global control register
on page 32-95

USB OTG Registers

32-66 ADSP-BF54x Blackfin Processor Hardware Reference

USB Packet Control – Indexed Registers

USB_TX_MAX_
PACKET

16 0xFFC03C40 1–7 USB Tx maximum packet register
on page 32-97

USB_CSR0 16 0xFFC03C44 0 USB control/status register
on page 32-98

USB_TXCSR 16 0xFFC03C44 1–7 USB Tx control/status EPx register
on page 32-102

USB_RX_MAX_
PACKET

16 0xFFC03C48 1–7 USB Rxx maximum packet register
on page 32-107

USB_RXCSR 16 0xFFC03C4C 1–7 USB Rx control/status EPx register
on page 32-109t

USB_COUNT0 16 0xFFC03C50 0 USB count 0 register
on page 32-115

USB_RXCOUNT 16 0xFFC03C50 1–7 USB Rx byte count EPx register
on page 32-116

USB_TXTYPE 16 0xFFC03C54 1–7 USB Tx type register
on page 32-117

USB_NAKLIMIT0 16 0xFFC03C58 0 USB NAK 0 limit register
on page 32-117

USB_
TXINTERVAL

16 0xFFC03C58 1–7 USB Tx interval register
on page 32-118

USB_RXTYPE 16 0xFFC03C5C 1–7 USB Rx type register
on page 32-119

USB_
RXINTERVAL

16 0xFFC03C60 1–7 USB Rx interval register
on page 32-120

USB_TXCOUNT 16 0xFFC03C68 1–7 USB Tx byte count EPx register
on page 32-121

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-67

USB OTG Controller

USB Endpoint FIFO Registers

USB_EP0_FIFO 16 0xFFC03C80 n/a USB endpoint FIFO 0 register
on page 32-122

USB_EP1_FIFO 16 0xFFC03C88 n/a USB endpoint FIFO 1 register
on page 32-122

USB_EP2_FIFO 16 0xFFC03C90 n/a USB endpoint FIFO 2 register
on page 32-120

USB_EP3_FIFO 16 0xFFC03C98 n/a USB endpoint FIFO 30 register
on page 32-120

USB_EP4_FIFO 16 0xFFC03CA0 n/a USB endpoint FIFO 4 register
on page 32-120

USB_EP5_FIFO 16 0xFFC03CA8 n/a USB endpoint FIFO 5 register
on page 32-120

USB_EP6_FIFO 16 0xFFC03CB0 n/a USB endpoint FIFO 6 register
on page 32-120

USB_EP7_FIFO 16 0xFFC03CB8 n/a USB endpoint FIFO 7 register
on page 32-120

USB OTG Control Registers

USB_OTG_DEV_
CTL

16 0xFFC03D00 n/a USB OTG device control register
on page 32-122

USB_OTG_VBUS_
IRQ

16 0xFFC03D04 n/a USB OTG VBUS interrupt register
on page 32-124

USB_OTG_VBUS_
MASK

16 0xFFC03D08 n/a USB VBUS mask register
on page 32-126

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-68 ADSP-BF54x Blackfin Processor Hardware Reference

USB PHY Control Registers

USB_LINKINFO 16 0xFFC03D48 n/a USB link info register
on page 32-127

USB_VPLEN 16 0xFFC03D4C n/a USB VBUS pulse length register
on page 32-127

USB_HS_EOF1 16 0xFFC03D50 n/a USB high-speed EOF 1 register
on page 32-128

USB_FS_EOF1 16 0xFFC03D54 n/a USB full-speed EOF 1 register
on page 32-128

USB_LS_EOF1 16 0xFFC03D58 n/a USB low-speed EOF 1 register
on page 32-129

USB_APHY_
CNTRL

16 0xFFC03DE0 n/a USB APHY control 2 register
on page 32-130
(for Analog Devices internal use only)

USB_APHY_
CALIB

16 0xFFC03DE4 n/a USB APHY calibration register
(for Analog Devices internal use only)

USB_APHY_
CNTRL2

16 0xFFC03DE8 n/a ?????? Used to prevent re-enumeration after the
processor goes into hibernate mode

USB_PHY_TEST 16 0xFFC03DEC n/a Register used for PHY and FIFO test features
(for Analog Devices internal use only)

USB_PLLOSC_
CTRL

16 0xFFC03DF0 n/a USB PLL OSC control register
on page 32-132

USB_SRP_
CLKDIV

16 0xFFC03DF4 n/a USB SRP clock divider register
on page 32-133

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-69

USB OTG Controller

USB Endpoint 0 Control Registers

USB_EP_NI0_
TXMAXP

16 0xFFC03E00 n/a Maximum packet size for host Tx endpoint0

USB_EP_NI0_
TXCSR

16 0xFFC03E04 n/a Control Status register for endpoint 0

USB_EP_NI0_
RXMAXP

16 0xFFC03E08 n/a Maximum packet size for host Rx endpoint0

USB_EP_NI0_
RXCSR

16 0xFFC03E0C n/a Control Status register for host Rx endpoint0

USB_EP_NI0_
RXCOUNT

16 0xFFC03E10 n/a Number of bytes received in endpoint 0 FIFO

USB_EP_NI0_
TXTYPE

16 0xFFC03E14 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint0

USB_EP_NI0
_TXINTERVAL

16 0xFFC03E18 n/a Sets the NAK response timeout on endpoint 0

USB_EP_NI0_
RXTYPE

16 0xFFC03E1C n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint0

USB_EP_NI0
_RXINTERVAL

16 0xFFC03E20 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint0

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-70 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 1 Control Registers

USB_EP_NI0_
TXCOUNT

16 0xFFC03E28 n/a Number of bytes to be written to the endpoint0
Tx FIFO

USB_EP_NI1_
TXMAXP

16 0xFFC03E40 n/a Maximum packet size for host Tx endpoint1

USB_EP_NI1_
TXCSR

16 0xFFC03E44 n/a Control Status register for endpoint1

USB_EP_NI1_
RXMAXP

16 0xFFC03E48 n/a Maximum packet size for host Rx endpoint1

USB_EP_NI1_
RXCSR

16 0xFFC03E4C n/a Control Status register for host Rx endpoint1

USB_EP_NI1_
RXCOUNT

16 0xFFC03E50 n/a Number of bytes received in endpoint1 FIFO

USB_EP_NI1_
TXTYPE

16 0xFFC03E54 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint1

USB_EP_NI1
_TXINTERVAL

16 0xFFC03E58 n/a Sets the NAK response timeout on endpoint1

USB_EP_NI1_
RXTYPE

16 0xFFC03E5C n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint1

USB_EP_NI1
_RXINTERVAL

16 0xFFC03E60 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint1

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-71

USB OTG Controller

USB Endpoint 2 Control Registers

USB_EP_NI1_
TXCOUNT

16 0xFFC03E68 n/a Number of bytes to be written to the+H102
endpoint1 Tx FIFO

USB_EP_NI2_
TXMAXP

16 0xFFC03E80 n/a Maximum packet size for host Tx endpoint2

USB_EP_NI2_
TXCSR

16 0xFFC03E84 n/a Control Status register for endpoint2

USB_EP_NI2_
RXMAXP

16 0xFFC03E88 n/a Maximum packet size for host Rx endpoint2

USB_EP_NI2_
RXCSR

16 0xFFC03E8C n/a Control Status register for host Rx endpoint2

USB_EP_NI2_
RXCOUNT

16 0xFFC03E90 n/a Number of bytes received in endpoint2 FIFO

USB_EP_NI2_
TXTYPE

16 0xFFC03E94 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint2

USB_EP_NI2
_TXINTERVAL

16 0xFFC03E98 n/a Sets the NAK response timeout on endpoint2

USB_EP_NI2_
RXTYPE

16 0xFFC03E9C n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint2

USB_EP_NI2
_RXINTERVAL

16 0xFFC03EA0 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint2

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-72 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 3 Control Registers

USB_EP_NI2_
TXCOUNT

16 0xFFC03EA8 n/a Number of bytes to be written to the endpoint2
Tx FIFO

USB_EP_NI3_
TXMAXP

16 0xFFC03EC0 n/a Maximum packet size for host Tx endpoint3

USB_EP_NI3_
TXCSR

16 0xFFC03EC4 n/a Control Status register for endpoint3

USB_EP_NI3_
RXMAXP

16 0xFFC03EC8 n/a Maximum packet size for host Rx endpoint3

USB_EP_NI3_
RXCSR

16 0xFFC03ECC n/a Control Status register for host Rx endpoint3

USB_EP_NI3_
RXCOUNT

16 0xFFC03ED0 n/a Number of bytes received in endpoint3 FIFO

USB_EP_NI3_
TXTYPE

16 0xFFC03ED4 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint3

USB_EP_NI3
_TXINTERVAL

16 0xFFC03ED8 n/a Sets the NAK response timeout on endpoint3

USB_EP_NI3_
RXTYPE

16 0xFFC03EDC n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint3

USB_EP_NI3
_RXINTERVAL

16 0xFFC03EE0 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint3

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-73

USB OTG Controller

USB Endpoint 4 Control Registers

USB_EP_NI3_
TXCOUNT

16 0xFFC03EE8 n/a Number of bytes to be written to the
H124endpoint3 Tx FIFO

USB_EP_NI4_
TXMAXP

16 0xFFC03F00 n/a Maximum packet size for host Tx endpoint4

USB_EP_NI4_
TXCSR

16 0xFFC03F04 n/a Control Status register for endpoint4

USB_EP_NI4_
RXMAXP

16 0xFFC03F08 n/a Maximum packet size for host Rx endpoint4

USB_EP_NI4_
RXCSR

16 0xFFC03F0C n/a Control Status register for host Rx endpoint4

USB_EP_NI4_
RXCOUNT

16 0xFFC03F10 n/a Number of bytes received in endpoint4 FIFO

USB_EP_NI4_
TXTYPE

16 0xFFC03F14 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint4

USB_EP_NI4
_TXINTERVAL

16 0xFFC03F18 n/a Sets the NAK response timeout on endpoint4

USB_EP_NI4_
RXTYPE

16 0xFFC03F1C n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint4

USB_EP_NI4
_RXINTERVAL

16 0xFFC03F20 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint4

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-74 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 5 Control Registers

USB_EP_NI4_
TXCOUNT

16 0xFFC03F28 n/a Number of bytes to be written to the endpoint4
Tx FIFO

USB_EP_NI5_
TXMAXP

16 0xFFC03F40 n/a Maximum packet size for host Tx endpoint5

USB_EP_NI5_
TXCSR

16 0xFFC03F44 n/a Control Status register for endpoint5

USB_EP_NI5_
RXMAXP

16 0xFFC03F48 n/a Maximum packet size for host Rx endpoint5

USB_EP_NI5_
RXCSR

16 0xFFC03F4C n/a Control Status register for host Rx endpoint5

USB_EP_NI5_
RXCOUNT

16 0xFFC03F50 n/a Number of bytes received in endpoint5 FIFO

USB_EP_NI5_
TXTYPE

16 0xFFC03F54 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint5

USB_EP_NI5
_TXINTERVAL

16 0xFFC03F58 n/a Sets the NAK response timeout on endpoint5

USB_EP_NI5_
RXTYPE

16 0xFFC03F5C n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint5

USB_EP_NI5
_RXINTERVAL

16 0xFFC03F60 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint5

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-75

USB OTG Controller

USB Endpoint 6 Control Registers

USB_EP_NI5_
TXCOUNT

16 0xFFC03F68 n/a Number of bytes to be written to the
H145endpoint5 Tx FIFO

USB_EP_NI6_
TXMAXP

16 0xFFC03F80 n/a Maximum packet size for host Tx endpoint6

USB_EP_NI6_
TXCSR

16 0xFFC03F84 n/a Control Status register for endpoint6

USB_EP_NI6_
RXMAXP

16 0xFFC03F88 n/a Maximum packet size for host Rx endpoint6

USB_EP_NI6_
RXCSR

16 0xFFC03F8C n/a Control Status register for host Rx endpoint6

USB_EP_NI6_
RXCOUNT

16 0xFFC03F90 n/a Number of bytes received in endpoint6 FIFO

USB_EP_NI6_
TXTYPE

16 0xFFC03F94 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint6

USB_EP_NI6
_TXINTERVAL

16 0xFFC03F98 n/a Sets the NAK response timeout on endpoint6

USB_EP_NI6_
RXTYPE

16 0xFFC03F9C n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint6

USB_EP_NI6
_RXINTERVAL

16 0xFFC03FA0 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint6

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-76 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 7 Control Registers

USB_EP_NI6_
TXCOUNT

16 0xFFC03FA8 n/a Number of bytes to be written to the endpoint6
Tx FIFO

USB_EP_NI7_
TXMAXP

16 0xFFC03FC0 n/a Maximum packet size for host Tx endpoint7

USB_EP_NI7_
TXCSR

16 0xFFC03FC4 n/a Control Status register for endpoint7

USB_EP_NI7_
RXMAXP

16 0xFFC03FC8 n/a Maximum packet size for host Rx endpoint7

USB_EP_NI7_
RXCSR

16 0xFFC03FCC n/a Control Status register for host Rx endpoint7

USB_EP_NI7_
RXCOUNT

16 0xFFC03FD0 n/a Number of bytes received in endpoint7 FIFO

USB_EP_NI7_
TXTYPE

16 0xFFC03FD4 n/a Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint7

USB_EP_NI7
_TXINTERVAL

16 0xFFC03FD8 n/a Sets the NAK response timeout on endpoint7

USB_EP_NI7_
RXTYPE

16 0xFFC03FDC n/a Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint7

USB_EP_NI7
_RXINTERVAL

16 0xFFC03FF0 n/a Sets the polling interval for interrupt and isoch-
ronous transfers or the NAK response timeout
on bulk transfers for host Rx endpoint7

USB_EP_NI7_
TXCOUNT

16 0xFFC03FF8 n/a Number of bytes to be written to the endpoint7
Tx FIFO

USB DMA Registers

USB_DMA_
INTERRUPT

16 0xFFC04000 n/a USB DMA interrupt register
on page 32-134

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-77

USB OTG Controller

USB Channel 0 Config Registers

USB_
DMA0CONTROL

16 0xFFC04004 n/a USB DMA control register 0
on page 32-135

USB_DMA0ADDR
LOW

16 0xFFC04008 n/a USB DMA address low register 0
on page 32-137

USB_DMA0ADDR
HIGH

16 0xFFC0400C n/a USB DMA address high register 0
on page 32-138

USB_
DMA0COUNT
LOW

16 0xFFC04010 n/a USB DMA count low register 0
on page 32-139

USB_
DMA0COUNT
HIGH

16 0xFFC04014 n/a USB DMA count high register 0
on page 32-140

USB Channel 1 Config Registers

USB_
DMA1CONTROL

16 0xFFC04024 n/a USB DMA control register 1
on page 32-135

USB_DMA1ADDR
LOW

16 0xFFC04028 n/a USB DMA address low register 1
on page 32-137

USB_DMA1ADDR
HIGH

16 0xFFC0402C n/a USB DMA address high register 1
on page 32-138

USB_
DMA1COUNT
LOW

16 0xFFC04030 n/a USB DMA count low register 1
on page 32-139

USB_
DMA1COUNT
HIGH

16 0xFFC04034 n/a USB DMA count high register 1
on page 32-140

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-78 ADSP-BF54x Blackfin Processor Hardware Reference

USB Channel 2 Config Registers

USB_
DMA2CONTROL

16 0xFFC04044 n/a USB DMA control register 2
on page 32-135

USB_DMA2ADDR
LOW

16 0xFFC04048 n/a USB DMA address low register 2
on page 32-137

USB_DMA2ADDR
HIGH

16 0xFFC0404C n/a USB DMA address high register 2
on page 32-138

USB_
DMA2COUNT
LOW

16 0xFFC04050 n/a USB DMA count low register 2
on page 32-139

USB_
DMA2COUNT
HIGH

16 0xFFC04054 n/a USB DMA count high register 2
on page 32-140

USB Channel 3 Config Registers

USB_
DMA3CONTROL

16 0xFFC04064 n/a USB DMA control register 3
on page 32-135

USB_DMA3ADDR
LOW

16 0xFFC04068 n/a USB DMA address low register 3
on page 32-137

USB_DMA3ADDR
HIGH

16 0xFFC0406C n/a USB DMA address high register 3
on page 32-138

USB_
DMA3COUNT
LOW

16 0xFFC04070 n/a USB DMA count low register 3
on page 32-139

USB_
DMA3COUNT
HIGH

16 0xFFC04074 n/a USB DMA count high register 3
on page 32-140

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-79

USB OTG Controller

USB Channel 4 Config Registers

USB_
DMA4CONTROL

16 0xFFC04084 n/a USB DMA control register 4
on page 32-135

USB_DMA4ADDR
LOW

16 0xFFC04088 n/a USB DMA address low register 4
on page 32-137

USB_DMA4ADDR
HIGH

16 0xFFC0408C n/a USB DMA address high register 4
on page 32-138

USB_
DMA4COUNT
LOW

16 0xFFC04090 n/a USB DMA count low register 4
on page 32-139

USB_
DMA4COUNT
HIGH

16 0xFFC04094 n/a USB DMA count high register 4
on page 32-140

USB Channel 5 Config Registers

USB_
DMA5CONTROL

16 0xFFC040A4 n/a USB DMA control register 5
on page 32-135

USB_DMA5ADDR
LOW

16 0xFFC040A8 n/a USB DMA address low register 5
on page 32-137

USB_DMA5ADDR
HIGH

16 0xFFC040AC n/a USB DMA address high register 5
on page 32-138

USB_
DMA5COUNT
LOW

16 0xFFC040B0 n/a USB DMA count low register 5
on page 32-139

USB_
DMA5COUNT
HIGH

16 0xFFC040B4 n/a USB DMA count high register 5
on page 32-140

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

USB OTG Registers

32-80 ADSP-BF54x Blackfin Processor Hardware Reference

USB Channel 6 Config Registers

USB_
DMA6CONTROL

16 0xFFC040C4 n/a USB DMA control register 6
on page 32-135

USB_DMA6ADDR
LOW

16 0xFFC040C8 n/a USB DMA address low register 6
on page 32-137

USB_DMA6ADDR
HIGH

16 0xFFC040CC n/a USB DMA address high register 6
on page 32-138

USB_
DMA6COUNT
LOW

16 0xFFC040D0 n/a USB DMA count low register 6
on page 32-139

USB_
DMA6COUNT
HIGH

16 0xFFC040D4 n/a USB DMA count high register 6
on page 32-140

USB Channel 7 Config Registers

USB_
DMA7CONTROL

16 0xFFC040E4 n/a USB DMA control register 7
on page 32-135

USB_DMA7ADDR
LOW

16 0xFFC040E8 n/a USB DMA address low register 7
on page 32-137

USB_DMA7ADDR
HIGH

16 0xFFC040EC n/a USB DMA address high register 7
on page 32-138

USB_
DMA7COUNT
LOW

16 0xFFC040F0 n/a USB DMA count low register 7
on page 32-139

USB_
DMA7COUNT
HIGH

16 0xFFC040F4 n/a USB DMA count high register 7
on page 32-140

Table 32-3. USB OTG Memory-Mapped Registers (Cont’d)

Name Width Address Index Function

ADSP-BF54x Blackfin Processor Hardware Reference 32-81

USB OTG Controller

USB Function Address (USB_FADDR) Register
The USB_FADDR register (see Figure 32-7) contains the 7-bit address of the
peripheral part of the transaction.

When the USB controller is being used in peripheral mode (HOST_MODE=0
in USB_OTG_DEV_CTL), this register is written with the address received
through a SET_ADDRESS command. The address is used for decoding
the function address in subsequent token packets.

When the USB controller is being used in host mode (HOST_MODE=1 in
USB_OTG_DEV_CTL), this register is set to the value sent in a SET_
ADDRESS command during device enumeration as the address for the
peripheral device.

Figure 32-7. USB Function Address (USB_FADDR) Register

USB Function Address Register (USB_FADDR)

Reset = 0x0000

Read/Write

0xFFC03C00

FUNCTION_ADDRESS
(Peripheral Device Address)

0x7F - 0x00 Address Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

32-82 ADSP-BF54x Blackfin Processor Hardware Reference

USB Power Management (USB_POWER) Register
The USB_POWER register (see Figure 32-8) controls suspend and resume sig-
naling and controls some operational aspects of the USB controller.

ENABLE_SUSPENDM

The ENABLE_SUSPENDM (bit 0) is set by the processor core to enable the
SUSPENDM output (internal USB controller signal). When this bit is set,
the SUSPENDM output signal is used by the USB PHY to power-down
its drivers when the USB controller is not active.

Figure 32-8. USB Power Management (USB_POWER) Register

USB Power Management Register (USB_POWER)

Reset = 0x0020

Read/Write, Read Only

0xFFC03C04

ENABLE_SUSPENDM
(Suspend Mode Output Enable)

0 - Disable (or indicate disabled)
1 - Enable (or indicate enabled)

SUSPEND_MODE
(Suspend Mode Enable)

0 - Disable (or indicate mode off)
1 - Enable (or indicate mode on)

RESET
(USB Reset)

0 - No reset
1 - Reset USB

RESUME_MODE
(Resume Mode Flag)

0 - Mode off indicator (or disable)
1 - Mode on indicator (or enable)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 00 0

ISO_UPDATE
(Isochronous Update Enable)

0 - Disable
1 - Enable

HS_ENABLE
(High Speed Mode Enable)

0 - Disable
1 - Enable

SOFT_CONN
(Soft Connect Enable)

0 - Disabled
1 - Enabled

ro ro ro ro ro ro ro ro – – r/w ro r/w r/w set r/w

ro ro ro ro ro ro ro ro r/w r/w r/w ro ro r/w ro r/w

Host Mode Access

Per. Mode Access

HS_MODE
(High Speed Mode Flag)

0 - Mode off indicator
1 - Mode on indicator

ADSP-BF54x Blackfin Processor Hardware Reference 32-83

USB OTG Controller

SUSPEND_MODE

In host mode, the SUSPEND_MODE (bit 1) bit is set by the processor core to
enter suspend mode. In peripheral mode, this bit is set on entry into sus-
pend mode. It is cleared when the processor core reads the interrupt
register, or sets the resume bit.

RESUME_MODE

The RESUME_MODE (bit 2) is set by the processor core to generate resume
signaling when the function is in suspend mode. The processor core
should clear this bit after 10 ms (a maximum of 15 ms) to end resume sig-
naling. In host mode, this bit is also automatically set when resume
signaling from the target is detected while the USB controller is
suspended.

RESET

The RESET (bit 3) bit is set when reset signaling is present on the bus. This
bit is read/write from the processor core in host mode but read-only in
peripheral mode.

HS_MODE

When HS_MODE (bit 4) is set, this read-only bit indicates high-speed mode
successfully negotiated during a USB reset. In peripheral mode, it
becomes valid when the USB reset completes (as indicated by the USB
reset interrupt). In host mode, it becomes valid when the RESET_OR_
BABLE_B bit is cleared. It remains valid for the duration of the session.

HS_ENABLE

When HS_ENABLE (bit 5) is set by the processor core, the USB controller
negotiates for high speed when the device is reset by the hub/host. If it is
not set, the controller only operates in full-speed mode. By Default HS_
ENABLE is set to 1.

USB OTG Registers

32-84 ADSP-BF54x Blackfin Processor Hardware Reference

SOFT_CONN

If the soft connect/disconnect feature is enabled (bit 6, SOFT_CONN =1),
then the USB D+/D–lines are enabled when this bit is set by the processor
core and three-stated when this bit is cleared by the processor core. Only
valid in peripheral mode.

ISO_UPDATE

When ISO_UPDATE (bit 7) is set by the processor core, the USB controller
waits for an SOF token from the time TXPKTRDY is set before sending the
packet. If an IN token is received before an SOF token, then a zero length
data packet is sent. Only valid in peripheral mode. Also, this bit only
affects endpoints performing isochronous transfers.

ADSP-BF54x Blackfin Processor Hardware Reference 32-85

USB OTG Controller

USB Transmit Interrupt (USB_INTRTX) Register
The USB_INTRTX register (see Figure 32-9) indicates which interrupts are
currently active for endpoint 0 and the Tx endpoints 1–7. Writing 1 to
bits 0 - 7 when they are high clears that particular bit and de-asserts the
corresponding interrupt source.

Figure 32-9. USB Transmit Interrupt (USB_INTRTX) Register

USB Transmit Interrupt Register (USB_INTRTX)

Reset = 0x0000

Read/Write

0xFFC03C08

EP0_TX (Tx EP0 Interrupt)

0 - No interrupt
1 - Tx endpoint 0 interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EP1_TX (Tx EP1 Interrupt)

0 - No interrupt
1 - Tx endpoint 1 interrupt

EP2_TX (Tx EP2 Interrupt)

0 - No interrupt
1 - Tx endpoint 2 interrupt

EP3_TX (Tx EP3 Interrupt)

0 - No interrupt
1 - Tx endpoint 3 interrupt

EP7_TX (Tx EP7 Interrupt)

0 - No interrupt
1 - Tx endpoint 7 interrupt

EP6_TX (Tx EP6 Interrupt)

0 - No interrupt
1 - Tx endpoint 6 interrupt

EP5_TX (Tx EP5 Interrupt)

0 - No interrupt
1 - Tx endpoint 5 interrupt

EP4_TX (Tx EP4 Interrupt)

0 - No interrupt
1 - Tx endpoint 4 interrupt

USB OTG Registers

32-86 ADSP-BF54x Blackfin Processor Hardware Reference

USB Receive Interrupt (USB_INTRRX) Register
The USB_INTRRX register (see Figure 32-10) indicates which interrupts are
currently active for the Rx endpoints 1–7. Writing 1 to bits 1 - 7 when
they are high clears that particular bit and de-asserts the corresponding
interrupt source.

Figure 32-10. USB Receive Interrupt (USB_INTRRX) Register

USB Receive Interrupt Register (USB_INTRRX)

Reset = 0x0000

Read/Write

0xFFC03C0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EP1_RX (Rx EP1 Interrupt)

0 - No interrupt
1 - Rx endpoint 1 interrupt

EP2_RX (Rx EP2 Interrupt)

0 - No interrupt
1 - Rx endpoint 2 interrupt

EP3_RX (Rx EP3 Interrupt)

0 - No interrupt
1 - Rx endpoint 3 interrupt

EP7_RX (Rx EP7 Interrupt)

0 - No interrupt
1 - Rx endpoint 7 interrupt

EP6_RX (Rx EP6 Interrupt)

0 - No interrupt
1 - Rx endpoint 6 interrupt

EP5_RX (Rx EP5 Interrupt)

0 - No interrupt
1 - Rx endpoint 5 interrupt

EP4_RX (Rx EP4 Interrupt)

0 - No interrupt
1 - Rx endpoint 4 interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 32-87

USB OTG Controller

USB Transmit Interrupt Enable (USB_INTRTXE)
Register

The USB_INTRTXE register (see Figure 32-11) enables interrupts for end-
point 0 and the Tx endpoints 1–7.

Writing 1 to bits 0 - 7 enables (unmasks) the corresponding interrupt
source. Writing 0 to bits 0–7 disables (masks) an interrupt source. The
corresponding status bit in the USB_INTRTX register may still be set, but no
interrupt is asserted. On reset, the bits corresponding to endpoint 0 and
the Tx endpoints included in the design are set to 1 (for example, all Tx
interrupts are enabled).

Figure 32-11. USB Transmit Interrupt Enable (USB_INTRTXE) Register

USB Transmit Interrupt Enable Register (USB_INTRTXE)

Reset = 0x00FF

Read/Write

0xFFC03C10

EP0_TX_E (Tx EP0 Interrupt)

0 - Disable interrupt
1 - Enable interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 1 1 1 1 1 1 10 0

EP1_TX_E (Tx EP1 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 1 interrupt

EP2_TX_E (Tx EP2 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 2 interrupt

EP3_TX_E (Tx EP3 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 3 interrupt

EP7_TX_E (Tx EP7 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 7 interrupt

EP6_TX_E (Tx EP6 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 6 interrupt

EP5_TX_E (Tx EP5 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 5 interrupt

EP4_TX_E (Tx EP4 Interrupt)

0 - Disable interrupt
1 - Enable Tx ep 4 interrupt

USB OTG Registers

32-88 ADSP-BF54x Blackfin Processor Hardware Reference

USB Receive Interrupt Enable (USB_INTRRXE)
Register

The USB_INTRRXE register (see Figure 32-12) enables interrupts for the Rx
endpoints 1–7.

Writing 1 to bits 1–7 enables (unmasks) the corresponding interrupt
source. Writing 0 to bits 1–7 disables (masks) an interrupt source. The
corresponding status bit in the USB_INTRRX register may still be set, but no
interrupt is asserted. On reset, the bits corresponding to endpoint 0 and
the Tx endpoints included in the design are set to 1 (for example, all Tx
interrupts are enabled).

Figure 32-12. USB Receive Interrupt Enable (USB_INTRRXE) Register

USB Receive Interrupt Enable Register (USB_INTRRXE)

Reset = 0x00FE

Read/Write

0xFFC03C14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 1 1 10 0

EP1_RX_E (Rx EP 1 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 1 interrupt

EP2_RX_E (Rx EP 2 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 2 interrupt

EP3_RX_E (Rx EP 3 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 3 interrupt

EP7_RX_E (Rx EP 7 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 7 interrupt

EP6_RX_E (Rx EP 6 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 6 interrupt

EP5_RX_E (Rx EP 5 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 5 interrupt

EP4_RX_E (Rx EP 4 Interrupt)

0 - Disable interrupt
1 - Enable Rx ep 4 interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 32-89

USB OTG Controller

USB Common Interrupts (USB_INTRUSB) Register
The USB_INTRUSB register (see Figure 32-13) indicates which USB inter-
rupts are currently active.

Writing a 1 to any of the bits 0–7 when they are high de-asserts the inter-
rupt source corresponding to that bit. The USB_INTRUSB register shares an
interrupt source line with USB_OTG_VBUS_IRQ.

Figure 32-13. USB Common Interrupts (USB_INTRUSB) Register

USB Common Interrupts Register (USB_INTRUSB)

Reset = 0x0000

Read/Write

0xFFC03C18

RESUME_B
(Resume Indicator)

0 - Not detected
1 - Resume signaling detected
 while USB in Suspend mode

RESET_OR_BABLE_B
(Reset/Babble Indicator)

0 - Not detected
1 - Babble detected (host mode)
 Reset detected (peri. mode)

SOF_B
(Start of Frame Indicator)

0 - Not detected
1 - Start of USB frame detected

SUSPEND_B
(Suspend Indicator)

0 - Not detected
1 - Suspend signalling detected
 (valid in peri. mode)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

VBUS_ERROR_B
(VBUS Threshold Indicator)

0 - Not detected
1 - VBUS below VBUS Valid threshold detected
 (valid when USB is 'A' device

DISCON_B
(Disconnect Indicator)

0 - Not detected
1 - Device disconnect detected (host mode)
 Session end detected (peri. mode)

SESSION_REQ_B
(Session Request Indicator)

0 - Not detected
1 - Session request signalling detected
 (valid when USB is 'A' device)

CONN_B
(Connection Indicator)

0 - Not detected
1 - Device connection detected
 (valid in host mode)

USB OTG Registers

32-90 ADSP-BF54x Blackfin Processor Hardware Reference

USB Common Interrupt Enable (USB_INTRUSBE)
Register

The USB_INTRUSBE register (see Figure 32-14) enables common USB inter-
rupts. Writing 1 to bits 0–7 enables (unmasks) the corresponding
interrupt source. Writing 0 to bits 0–7 disables (masks) an interrupt
source. The corresponding status bit in the USB_INTUSB register may still
be set, but no interrupt is asserted. On reset, the RESUME_BE and RESET_OR_
BABLE_BE bits are set to 1 (for example, interrupts for resume signalling
detection and reset/babble detection are enabled).

Figure 32-14. USB Common Int. Enable (USB_INTRUSBE) Register

USB Common Interrupts Enable Register (USB_INTRUSBE)

Reset = 0x0006

Read/Write

0xFFC03C1C

RESUME_BE
(Resume Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt
 (valid in suspend mode)

RESET_OR_BABLE_BE
(Reset/Babble Ind. Interrupt)

0 - Not detected
1 - Enable interrupt on
 Babble (host) or Reset (peri.)

SOF_BE
(Start of Frame Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt

SUSPEND_BE
(Suspend Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt
 (valid in peri. mode)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 10 0

VBUS_ERROR_BE
(VBUS Threshold Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt
 (valid when USB is 'A' device

DISCON_BE
(Disconnect Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt on
 disconnect (host) or session end (peri.)

SESSION_REQ_BE
(Session Request Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt
 (valid when USB is 'A' device)

CONN_BE
(Connection Ind. Interrupt)

0 - Disable interrupt
1 - Enable interrupt
 (valid in host mode)

ADSP-BF54x Blackfin Processor Hardware Reference 32-91

USB OTG Controller

USB Frame Number (USB_FRAME) Register
The USB_FRAME register (see Figure 32-15) contains the last received frame
number; bit 10 is MSB; bit 0 is LSB.

USB Index (USB_INDEX) Register
The USB_INDEX register (see Figure 32-16) contains an index value for
alternate addressing of USB endpoint control and status registers.

Each Tx endpoint and each Rx endpoint have their own set of control/sta-
tus registers located between address 0xFFC0 3E00 and 0xFFC0 3FF8. In
addition, one indexed set of Tx control/status and one set of Rx con-

Figure 32-15. USB Frame Number (USB_FRAME) Register

Figure 32-16. USB Index (USB_INDEX) Register

USB Frame Number Register (USB_FRAME)

Reset = 0x0000

Read/Write

0xFFC03C20

FRAME_NUMBER
(USB Frame Number)

0x7FF - 0x000 Frame Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB Index Register (USB_INDEX)

Reset = 0x0000

Read/Write

0xFFC03C24

SELECTED_ENDPOINT
(USB Endpoint Index)

0xF - 0x0 Index Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

32-92 ADSP-BF54x Blackfin Processor Hardware Reference

trol/status registers appear between address 0xFFC0 3C40 and
0xFFC0 3C68. The USB_INDEX is a 4-bit register that determines which set
of endpoint control/status registers are accessed at the indexed address
range.

Before accessing an endpoint’s control/status registers using the indexed
range, the endpoint number is written to the USB_INDEX register to ensure
that the correct control/status registers appear in the indexed range of the
memory map.

ADSP-BF54x Blackfin Processor Hardware Reference 32-93

USB OTG Controller

USB Test Mode (USB_TESTMODE) Register
The USB_TESTMODE register (see Figure 32-17) places the USB controller
into test mode state and also can put the USB controller into one of the
four test modes for high-speed operation (see the USB 2.0 specification).

USB_TESTMODE is not used in normal operation. Only one of the bits may
be set at any one time, except for bit 5 in conjunction with the ForceHost
feature.

Figure 32-17. USB Test Mode (USB_TESTMODE) Register

USB Test Mode Register (USB_TESTMODE)

Reset = 0x0000

Read/Write

0xFFC0 3C28

Test_SE0_NAK
(High Speed Mode only). The CPU sets
this bit to enter the Test_SE0_NAK test
mode. In this mode, the USBDRC
remains in High-speed mode but
responds to any valid IN token with a
NAK.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Test_J
(High Speed Mode only). The CPU sets
this bit to enter the Test_J test mode. In
this mode, the USBDRC transmits a
continuous J on the bus.

Test_K
(High Speed Mode only). The CPU sets
this bit to enter the Test_K test mode. In
this mode, the USBDRC transmits a
continuous K on the bus.

Test_Packet
(High Speed Mode only). The CPU sets
this bit to enter the Test_Packet test
mode. In this mode, the USBDRC repet-
itively transmits on the bus a 53-byte
test packet, the form of which is defined
in the USB 2.0 Specification, Section
7.1.20. Note that the test packet has a
fixed format and must be loaded into the
Endpoint 0 FIFO before this test mode
is entered.

Force_HS
The CPU sets this bit to force the USB-
DRC into High-speed mode when it
receives a USB reset.

Force_FS
The CPU sets this bit to force the USB-
DRC into Full-speed mode when it
receives a USB reset.

FIFO_Access
The CPU sets this bit to transfer the
packet in the Endpoint 0 Tx FIFO to the
Endpoint 0 Rx FIFO. It is cleared
automatically.

ForceHost
The CPU may set this bit to instruct the
core to enter Host mode when the Ses-
sion bit is set, regardless of whether the
core is connected to any peripheral. In
order to ensure the correct operating
speed in this mode, the Force_FS or
Force_HS bit must also be set for this
feature.

Reserved
Undefined, always returns zero.

USB OTG Registers

32-94 ADSP-BF54x Blackfin Processor Hardware Reference

USB Global Interrupt (USB_GLOBINTR) Register
The USB_GLOBINTR register (see Figure 32-18) selects routing for each of
the three USB interrupt sources (USB_INTRRX, USB_INTRTX and USB_
INTRUSB/USB_OTG_VBUS_IRQ) to any or all of the top-level interrupts (USB_
INT0, USB_INT1 and USB_INT2).

Each interrupt source is represented by a configuration bit across each of
the top-level interrupts. Setting each to a 1, routes that source to the
interrupt.

Figure 32-18. USB Global Interrupt (USB_GLOBINTR) Register

USB Global Interrupt Register (USB_GLOBINTR)

Reset = 0x0111

Read/Write

0xFFC03C2C

USB_INT0_R
(INTR_USB/VBUS to USB_INT0)

0 - No routing
1 - Route USB/VBUS IRQ to INT0

RX_INT0_R
(INTR_RX to USB_INT0)

0 - No routing
1 - Route Rx IRQ to INT0

USB_INT1_R
(INTR_USB/VBUS to USB_INT1)

0 - No routing
1 - Route USB/VBUS IRQ to INT1

TX_INT0_R
(INTR_TX to USB_INT0)

0 - No routing
1 - Route Tx IRQ to INT0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 1 0 0 0 1 0 0 00 0

RX_INT2_R
(INTR_RX to USB_INT2)

0 - No routing
1 - Route Rx IRQ to INT2

TX_INT1_R
(INTR_TX to USB_INT1)

0 - No routing
1 - Route Tx IRQ to INT1

USB_INT2_R
(INTR_USB/VBUS to USB_INT2)

0 - No routing
1 - Route USB/VBUS IRQ to INT2

RX_INT1_R
(INTR_RX to USB_INT1)

0 - No routing
1 - Route Rx IRQ to INT1

TX_INT2_R
(INTR_TX to USB_INT2)

0 - No routing
1 - Route Tx IRQ to INT2

ADSP-BF54x Blackfin Processor Hardware Reference 32-95

USB OTG Controller

USB Global Control (USB_GLOBAL_CTL) Register
The USB_GLOBAL_CTL register (see Figure 32-19) enables software control
of the internal clocking of the USB. This control permits reducing power
consumption by minimizing switching activity in endpoint logic, which is
not required for use.

Figure 32-19. USB Global Control (USB_GLOBAL_CTL) Register

USB Global Control Register (USB_GLOBAL_CTL)

Reset = 0x0000

Read/Write

0xFFC03C30

GLOBAL_ENA (USB Enable)

0 - Disable
1 - Enable USB

EP1_TX_ENA (Tx EP1 Enable)
0 - Disable
1 - Enable endpoint 1 Tx

EP3_TX_ENA (Tx EP3 Enable)

0 - Disable
1 - Enable endpoint 3 Tx

EP2_TX_ENA (Tx EP2 Enable)
0 - Disable
1 - Enable endpoint 2 Tx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EP4_TX_ENA (Tx EP4 Enable)

0 - Disable
1 - Enable endpoint 4 Tx

EP5_TX_ENA (Tx EP5 Enable)

0 - Disable
1 - Enable endpoint 5 Tx

EP6_TX_ENA (Tx EP6 Enable)

0 - Disable
1 - Enable endpoint 6 Tx

EP7_TX_ENA (Tx EP7 Enable)

0 - Disable
1 - Enable endpoint 7 Tx

EP1_RX_ENA (Rx EP1 Enable)
0 - Disable
1 - Enable endpoint 1 Rx

EP3_RX_ENA (Rx EP3 Enable)

0 - Disable
1 - Enable endpoint 3 Rx

EP2_RX_ENA (Rx EP2 Enable)
0 - Disable
1 - Enable endpoint 2 Rx

EP4_RX_ENA (Rx EP4 Enable)

0 - Disable
1 - Enable endpoint 4 Rx

EP5_RX_ENA (Rx EP5 Enable)

0 - Disable
1 - Enable endpoint 5 Rx

EP6_RX_ENA (Rx EP6 Enable)

0 - Disable
1 - Enable endpoint 6 Rx

EP7_RX_ENA (Rx EP7 Enable)

0 - Disable
1 - Enable endpoint 7 Rx

USB OTG Registers

32-96 ADSP-BF54x Blackfin Processor Hardware Reference

Before an endpoint can be used for transfer on USB it must first be acti-
vated by setting the appropriate bit in the USB_GLOBAL_CTL register. The
GLOBAL_ENA bit must be set any time the USB controller is required for
use. The GLOBAL_ENA bit also brings the USB PHY and USB PLL out of
reset state. The USB PLL locks with the frequency multiplier value pro-
grammed in the USB_PLLOSC_CTRL register. When USB_GLOBAL_CTL is not
configured, the behavior of the USB controller is undefined and writes
into any CSR registers and FIFOs are not committed. It is not possible to
access an endpoint FIFO location when that endpoint is not activated in
this register. Similarly, the GLOBAL_ENA bit is required for access to the
endpoint 0 FIFO locations. For more information on the USB controller
clocking scheme, see “Power and Clocking” on page 32-45.

Bit 15, which is marked as reserved in Figure 32-19, implements
the test mode timer reduction. When set, this bit reduces the values
used in the timers internal to the USB protocol block in order to
drastically reduce the simulation time. This bit should only be set
for simulation purposes, because setting it causes incorrect USB
behavior if set during normal operation.

ADSP-BF54x Blackfin Processor Hardware Reference 32-97

USB OTG Controller

USB Tx Max Packet (USB_TX_MAX_PACKET) Register
The USB_TX_MAX_PACKET register (see Figure 32-20) defines the maximum
amount of data that can be transferred through the selected transmit end-
point in a single frame.

When setting this value, you must note the constraints placed by the USB
Specification on packet sizes for bulk, interrupt and isochronous transac-
tions in full-speed operations. The USB_TX_MAX_PACKET register provides
indexed access to the USB_EP_NIx_TXMAXP register for each Tx endpoint
(except endpoint 0).

Figure 32-20. USB Tx Max Packet (USB_TX_MAX_PACKET) Register

USB Tx Max Packet Register (USB_TX_MAX_PACKET)

Reset = 0x0000

Read/Write

0xFFC03C40

MAX_PACKET_SIZE_T
(Tx Max Packet Size Value)

0x7FF - 0x000 maximum data
pay load in a frame

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MAX_PACKETS_IN_FRM_T
(Rx Max Packet Size Value)
Only used for multiple packets or high
bandwidth Isochronous transfers.
01 – Max of 2 packets per microframe
11 – Max of 3 packets per microframe

USB OTG Registers

32-98 ADSP-BF54x Blackfin Processor Hardware Reference

USB Control/Status EP0 (USB_CSR0) Register
The USB_CSR0 register (see Figure 32-21) provides control and status bits
for endpoint 0. The cleared automatically notes in the figure indicate the
self-clearing properties of that particular bit. The interpretation of the
USB_CSR0 register depends on whether the USB controller is acting as a
peripheral or as a host.

Figure 32-21. USB Control/Status EP0 (USB_CSR0) Register

USB Control/Status EP0 Register (USB_CSR0)

Reset = 0x0000

Read/Write

0xFFC03C44

USB_INDEX=0

TXPKTRDY
(Data Packet in FIFO Ind.)

0 - Not detected
1 - Detected data packet in FIFO

STALL_SENT /
STALL_RECEIVED_H
(STALL Handshake Sent – Peri./
STALL Handshake Received – Host)

0 - Not detected
1 - Stall handshake sent / received

DATAEND / SETUPPKT_H
(Data End Ind. – Peri. /
Send Setup Token – Host)

0 - Cleared automatically
1 - Set for data / packet signalling

RXPKTRDY
(Data Packet Receive Ind.)

0 - Not detected
1 - Detected data packet receive

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SENDSTALL / REQPKT_H
(Send STALL Handshake – Peri. /
Request an IN Transaction – Host)

0 - Cleared automatically
1 - Set to terminate / request transaction

SETUPEND / ERROR_H
(Setup End – Peri. /
Timeout Error Ind. – Host)

0 - Cleared automatically
1 - Control transaction abend / timeout

SERVICED_RXPKTRDY /
STATUSPKT_H
(Rx Packet Serviced – Peri. /
Packet Transaction Status – Host)

0 - Cleared automatically
1 - Clear / indicate packet status

SERVICED_SETUPEND /
NAK_TIMEOUT_H
(Setup End Serviced – Peri. /
EP Halted After a NAK – Host)

0 - Cleared automatically
1 - Clear / indicate EP status

FLUSHFIFO
(Flush Endpoint FIFO)

0 - No flush
1 - Flush endpoint FIFO

DISABLE_PING_H

0 - Issue PING tokens
1 - Do not issue PING

ADSP-BF54x Blackfin Processor Hardware Reference 32-99

USB OTG Controller

Many bits in this register have different operations (control versus status)
depending on whether the USB is in peripheral or host mode. This regis-
ter includes the following bits:

RXPKTRDY

In peripheral mode, RXPKTRDY (bit 0) is set when a data packet is received.
An interrupt is generated when this bit is set. The processor core clears
this bit by setting the SERVICED_RXPKTRDY bit.

In host mode, RXPKTRDY (bit 0) is set when a data packet is received. An
interrupt is generated (if enabled) when this bit is set. The processor core
should clear this bit when the packet is read from the FIFO.

TXPKTRDY

In peripheral mode, the processor core sets TXPKTRDY (bit 1) after loading a
data packet into the FIFO. It is cleared automatically when the data
packet is transmitted. An interrupt is generated (if enabled) when the bit
is cleared.

In host mode, the processor core sets TXPKTRDY (bit 1) after loading a data
packet into the FIFO. It is cleared automatically when the data packet is
transmitted. An interrupt is generated (if enabled) when the bit is cleared.

STALL_SENT / STALL_RECEIVED_H

In peripheral mode, STALL_SENT (bit 2) is set when a STALL handshake is
transmitted. The processor core should clear this bit.

In host mode, STALL_RECEIVED_H (bit 2) is set when a STALL handshake is
received. The processor core should clear this bit.

USB OTG Registers

32-100 ADSP-BF54x Blackfin Processor Hardware Reference

DATAEND / SETUPPKT_H

In peripheral mode, the processor core sets DATAEND (bit 3):

1. When setting TXPKTRDY for the last data packet.

2. When clearing RXPKTRDY after unloading the last data packet.

3. When setting TXPKTRDY for a zero length data packet. It is cleared
automatically.

In host mode, the processor core sets SETUPPKT_H (bit 3), at the same time
as the TXPKTRDY bit is set, to send a SETUP token instead of an OUT
token for the transaction.

SETUPEND / ERROR_H

In peripheral mode, SETUPEND (bit 4) is set when a control transaction
ends before the DATAEND bit is set. An interrupt is generated and the FIFO
is flushed at this time. The bit is cleared by the processor core writing a 1
to the SERVICED_SETUPEND bit.

In host mode, ERROR_H (bit 4) is set when three attempts have been made
to perform a transaction with no response from the peripheral. The pro-
cessor core should clear this bit. An interrupt is generated when this bit is
set.

SENDSTALL / REQPKT_H

In peripheral mode, the processor core writes a 1 to SENDSTALL (bit 5) to
terminate the current transaction. The STALL handshake is transmitted,
then this bit automatically is cleared.

In host mode, the processor core sets REQPKT_H (bit 5) to request an IN
transaction. It is cleared when RXPKTRDY is set.

ADSP-BF54x Blackfin Processor Hardware Reference 32-101

USB OTG Controller

SERVICED_RXPKTRDY / STATUSPKT_H

In peripheral mode, the processor core writes a 1 to SERVICED_RXPKTRDY
(bit 6) to clear the RXPKTRDY bit. It is cleared automatically.

In host mode, the processor core sets STATUSPKT_H (bit 6) at the same time
as the TXPKTRDY or REQPKT_H bit is set, to perform a status stage transac-
tion. Setting this bit ensures that the data toggle is set to 1 so that a
DATA1 packet is used for the Status Stage transaction.

SERVICED_SETUPEND / NAK_TIMEOUT_H

In peripheral mode, the processor core writes a 1 to SERVICED_SETUPEND
(bit 7) to clear the SETUPEND bit. It is cleared automatically.

In host mode, NAK_TIMEOUT_H (bit 7) is set when endpoint 0 is halted fol-
lowing the receipt of NAK responses for longer than the time set by the
NAKLimit0 register. The processor core should clear this bit to allow the
endpoint to continue.

FLUSHFIFO

In peripheral mode, the processor core writes a 1 to the FLUSHFIFO (bit 8)
to flush the next packet to be transmitted/read from the endpoint 0 FIFO.
The FIFO pointer is reset and the TXPKTRDY or RXPKTRDY bit (below) is
cleared. Note that FLUSHFIFO has no effect unless TXPKTRDY or RXPKTRDY is
set.

In host mode, the processor core writes a 1 to FLUSHFIFO (bit 8) to flush
the next packet to be transmitted/read from the endpoint 0 FIFO. The
FIFO pointer is reset and the TXPKTRDY or RXPKTRDY bit (below) is cleared.
Note that FLUSHFIFO has no effect unless TXPKTRDY or RXPKTRDY is set.

DISABLE_PING_H

The processor core writes a 1 to this bit to instruct the USB Controller
not to issue PING tokens in data and status phases of a high-speed Con-
trol transfer (for use with devices that do not respond to PING).

USB OTG Registers

32-102 ADSP-BF54x Blackfin Processor Hardware Reference

USB Tx Control/Status EPx (USB_TXCSR) Register
The USB_TXCSR register (see Figure 32-22) provides control and status bits
for transfers through the currently-selected Tx endpoint.

Figure 32-22. USB Tx Control/Status EPx (USB_TXCSR) Register

USB Tx Control/Status EPx Register (USB_TXCSR)

Reset = 0x0000

Read/Write

0xFFC03C44

USB_INDEX=1–7

FIFO_NOT_EMPTY_T
(Data Packet in FIFO Ind.)

0 - Not detected
1 - Detected FIFO not empty

STALL_SENT_T
(STALL Handshake Sent – Peri./
Reserved – Host)
0 - Not detected
1 - Stall handshake sent / received

TXPKTRDY_T
(Data Packet in FIFO Ind.)

0 - Not detected
1 - Detected data in FIFO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

STALL_SEND_T / RXSTALL_TH
(Send STALL Handshake – Peri. /
Request an IN Transaction – Host)

0 - Cleared automatically
1 - Set to terminate/request transaction

UNDERRUN_T / ERROR_TH
(No TXPKTRDY for IN token – Peri. /
Timeout Error Ind. – Host)

0 - Cleared automatically
1 - Control transaction abend / timeout

INCOMPTX_T /
NAK_TIMEOUT_H
(Large Packet Split – Peri. /
EP Halted After a NAK – Host)

0 - Cleared automatically
1 - Indicates split packet / EP status

FLUSHFIFO_T
(Flush Endpoint FIFO)

0 - Cleared automatically
1 - Flush endpoint FIFO

CLEAR_DATATOGGLE_T
(Clear Endpoint Data Toggle)

0 - Cleared automatically
1 - Resets endpoint data toggle

DMAREQMODE_T
(DMA Mode Select)

0 - DMA mode 0
1 - DMA mode 1

FORCE_DATATOGGLE_T
(Force Data Toggle)

0 - Cleared automatically
1 - Forces endpoint data toggle

DMAREQ_ENA_T
(DMA Request Enable Tx EP)

0 - Disable
1 - Enable DMA requests

ISO_T
(Isochronous Transfers Enable)

0 - Disable
1 - Enable

AUTOSET_T
(TXPKTRDY Autoset Enable)

0 - Disable
1 - Enable

ADSP-BF54x Blackfin Processor Hardware Reference 32-103

USB OTG Controller

The cleared automatically notes in the figure indicate the self-clearing
properties of that particular bit. The interpretation of the USB_TXCSR regis-
ter depends on whether the USB controller is acting as a peripheral or as a
host.

There is a USB_EP_NIx_TXCSR register for each Tx endpoint, except end-
point 0. These registers may be accessed directly through registers address
or through the USB_TXCSR register indexed by the USB_INDEX register.

Many bits in the USB_TXCSR register have different operations (control ver-
sus status) depending on whether the USB is in peripheral or host mode.
This register includes the following bits:

TXPKTRDY_T

In peripheral mode, the processor core sets TXPKTRDY_T (bit 0) after load-
ing a data packet into the FIFO. It is cleared automatically when a data
packet is transmitted. An interrupt is generated (if enabled) when the bit
is cleared.

In host mode, the processor core sets TXPKTRDY_T (bit 0) after loading a
data packet into the FIFO. It is cleared automatically when a data packet
is transmitted. An interrupt is generated (if enabled) when the bit is
cleared.

FIFO_NOT_EMPTY_T

In peripheral mode, the USB sets FIFO_NOT_EMPTY_T (bit 1) when there is
at least 1 packet in the Tx FIFO.

In host mode, the USB sets FIFO_NOT_EMPTY_T (bit 1) when there is at
least 1 packet in the Tx FIFO.

UNDERRUN_T / ERROR_TH

In peripheral mode, the USB sets UNDERRUN_T (bit 2) if an IN token is
received when TXPKTRDY is not set. The processor core should clear this bit.

USB OTG Registers

32-104 ADSP-BF54x Blackfin Processor Hardware Reference

In host mode, the USB sets ERROR_TH (bit 2) when 3 attempts have been
made to send a packet and no handshake packet is received. The processor
core should clear this bit. An interrupt is generated when the bit is set.
Valid only when the endpoint is operating in bulk or interrupt mode.

FLUSHFIFO_T

In peripheral mode, the processor core writes a 1 to FLUSHFIFO_T (bit 3) to
flush the next packet to be transmitted from the endpoint Tx FIFO. The
FIFO pointer is reset and the TXPKTRDY bit (below) is cleared. This pointer
may be set simultaneously with TxPktRdy to abort the packet that is cur-
rently being loaded into the FIFO. Note that FLUSHFIFO_T has no effect
unless TXPKTRDY is set. Also note that, if the FIFO is double-buffered,
FLUSHFIFO_T may need to be set twice to completely clear the FIFO.

In host mode, the processor core writes a 1 to FLUSHFIFO_T (bit 3) to flush
the next packet to be transmitted from the endpoint Tx FIFO. The FIFO
pointer is reset and the TXPKTRDY bit (below) is cleared. This pointer may
be set simultaneously with TxPktRdy to abort the packet that is currently
being loaded into the FIFO. Note that FLUSHFIFO_T has no effect unless
TXPKTRDY is set. Also note that, if the FIFO is double-buffered, FLUSHFIFO_
T may need to be set twice to completely clear the FIFO.

STALL_SEND_T / STALL_RECEIVED_TH

In peripheral mode, the processor core writes a 1 to STALL_SEND_T (bit 4)
to issue a STALL handshake to an IN token. The processor core clears this
bit to terminate the stall condition. Note: This bit has no effect where the
endpoint is being used for isochronous transfers.

In host mode, bit 4 is reserved.

STALL_SENT_T / RXSTALL_TH

In peripheral mode, SENTSTALL (bit 5) is set when a STALL handshake is
transmitted. The FIFO is flushed and the TXPKTRDY bit is cleared. The
processor core should clear this bit.

ADSP-BF54x Blackfin Processor Hardware Reference 32-105

USB OTG Controller

In host mode, RXSTALL_TH (bit 5) is set when a STALL handshake is
received. The FIFO is flushed and the TXPKTRDY bit is cleared. The proces-
sor core should clear this bit.

CLEAR_DATATOGGLE_T

In peripheral mode, the processor core writes a 1 to CLEAR_DATATOGGLE_T
(bit 6) to reset the endpoint data toggle to 0.

In host mode, the processor core writes a 1 to CLEAR_DATATOGGLE_T (bit 6)
to reset the endpoint data toggle to 0.

INCOMPTX_T / NAK_TIMEOUT_TH

In peripheral mode, when the endpoint is being used for high-bandwidth
isochronous/interrupt transfers, INCOMPTX_T (bit 7) is set to indicate when
a large packet is split into 2 or 3 packets for transmission but insufficient
IN tokens have been received to send all the parts. Note: In anything
other than a high-bandwidth transfer, this bit always returns 0.

In host mode, NAK_TIMEOUT_TH (bit 7) is set when the Tx endpoint is
halted following the receipt of NAK responses for longer than the time set
as the NAK limit by the USB_TXINTERVAL register. The processor core
should clear this bit to allow the endpoint to continue. Note: Valid only
for bulk endpoints.

DMAREQMODE_T

In peripheral mode, the processor core sets DMAREQMODE_T (bit 10) to select
DMA mode 1 and clears this bit to select DMA mode 0.

In host mode, the processor core sets DMAREQMODE_T (bit 10) to select
DMA mode 1 and clears this bit to select DMA mode 0.

USB OTG Registers

32-106 ADSP-BF54x Blackfin Processor Hardware Reference

FORCE_DATATOGGLE_T

In peripheral mode, the processor core sets FORCE_DATATOGGLE_T (bit 11)
to force the endpoint data toggle to switch and the data packet to be
cleared from the FIFO, regardless of whether an ACK was received. This
can be used by interrupt Tx endpoints that are used to communicate rate
feedback for isochronous endpoints.

In host mode, the processor core sets FRCDATATOG (bit 11) to force the end-
point data toggle to switch and the data packet to be cleared from the
FIFO, regardless of whether an ACK was received. This can be used by
interrupt Tx endpoints that are used to communicate rate feedback for
isochronous endpoints.

DMAREQ_ENA_T

In peripheral mode, the processor core sets DMAREQ_ENA_T (bit 12) to
enable the DMA request for the Tx endpoint.

In host mode, the processor core sets DMAREQ_ENA_T (bit 12) to enable the
DMA request for the Tx endpoint.

ISO_T

In peripheral mode, the processor core sets ISO_T (bit 14) to enable the Tx
endpoint for isochronous transfers, and clears it to enable the Tx endpoint
for bulk or interrupt transfers. Note: This bit only has any effect in
peripheral mode.

In host mode, bit 14 is unused, and always returns zero.

AUTOSET_T

In peripheral mode, if the processor core sets AUTOSET_T (bit 15), TXPKTRDY
automatically is set when data of the maximum packet size (value in USB_
TX_MAX_PACKET) is loaded into the Tx FIFO. If a packet of less than the

ADSP-BF54x Blackfin Processor Hardware Reference 32-107

USB OTG Controller

maximum packet size is loaded, then TXPKTRDY must be set manually.
Note: This bit should not be set for high-bandwidth isochronous
endpoints.

In host mode, if the processor core sets AUTOSET_T (bit 15), TXPKTRDY auto-
matically is set when data of the maximum packet size (value in USB_TX_
MAX_PACKET) is loaded into the Tx FIFO. If a packet of less than the maxi-
mum packet size is loaded, then TXPKTRDY must be set manually. Note:
should not be set for high-bandwidth isochronous endpoints.

USB Rx Max Packet (USB_RX_MAX_PACKET)
Register

The USB_RX_MAX_PACKET register (see Figure 32-23) defines the maximum
amount of data that can be transferred through the selected transmit end-
point in a single frame.

The USB_RX_MAX_PACKET register provides indexed access to the USB_EP_
NIx_RXMAXP register for each Rx endpoint (except endpoint 0). Bits 10:0
define (in bytes) the maximum payload transmitted in a single transaction.

Figure 32-23. USB Rx Max Packet (USB_RX_MAX_PACKET) Register

USB Rx Max Packet Register (USB_RX_MAX_PACKET)

Reset = 0x0000

Read/Write

0xFFC03C48

MAX_PACKET_SIZE_R
(Rx Max Packet Size Value)
0x7FF - 0x000 maximum data
pay load in a frame

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MAX_PACKETS_IN_FRM_R
(Rx Max Packet Size Value)
Only used for multiple packets or high
bandwidth Isochronous transfers.
01 – Max of 2 packets per microframe
11 – Max of 3 packets per microframe

USB OTG Registers

32-108 ADSP-BF54x Blackfin Processor Hardware Reference

The legal value loaded can be up to 1023 bytes but is subject to the con-
straints placed by the USB Specification on packet sizes for bulk, interrupt
and isochronous transfers in full-speed operation.

A value greater than the maximum allowed of 1023 for full-speed
USB operation produces unpredictable results.

The value written to this register should match the programmed maxi-
mum individual packet size (MaxPktSize) of the standard endpoint
descriptor for the associated endpoint (see Universal Serial Bus Specifica-
tion Revision 2.0, Chapter 9). A mismatch could cause unexpected results.

The total amount of data represented by the value written to this register
must not exceed the Rx FIFO size, and should not exceed half the FIFO
size if double-buffering is required.

ADSP-BF54x Blackfin Processor Hardware Reference 32-109

USB OTG Controller

USB Rx Control/Status (USB_RXCSR) Register
The USB_RXCSR register (see Figure 32-24) provides control and status bits
for transfers through the currently-selected Rx endpoint.

Figure 32-24. USB Rx Control/Status EPx (USB_RXCSR) Register

USB Rx Control/Status EPx Register (USB_RXCSR)

Reset = 0x0000

Read/Write

0xFFC03C4C

USB_INDEX=0–7

FIFO_FULL_R
(FIFO not empty Ind.)

0 - Not detected
1 - Detected FIFO not empty

FLUSHFIFO_R
(Flush Endpoint FIFO)

0 - Cleared automatically
1 - Flush FIFO

RXPKTRDY_R
(Data Packet in FIFO Ind.)

0 - Not detected
1 - Detected data in FIFO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

STALL_SEND_R / REQPKT_RH
(Send STALL Handshake – Peri. /
Request an IN Transaction – Host)

0 - Cleared automatically
1 - Set to terminate/request transaction

OVERRUN_R / ERROR_RH
(TXPKTRDY not Set for IN token – Peri. /
TXPKTRDY not Set for IN token – Host)

0 - Cleared automatically
1 - Control transaction abend

INCOMPRX_R / _RH
(Large Packet Split – Peri. / Host)

0 - Cleared automatically
1 - Indicates split packet / EP status

DATAERROR_R
(Load Error of OUT Data to FIFO)

0 - Not detected
1 - Error detected

STALL_SENT_R /
STALL_RECEIVED_RH
(Stall Handshake Sent – Peri. /
Stall Handshake Received – Host)
0 - Cleared automatically
1 - Set to indicate handshake

DMAREQMODE_R / _RH
(DMA Mode Select – Peri. / Host)

0 - DMA mode 0
1 - DMA mode 1

DISNYET_R (Disable Nyet Handshakes)

0 - Enable handshake
1 - Disable handshake

DMAREQ_ENA_R
(DMA Request Enable Tx EP)

0 - Disable
1 - Enable DMA requests

ISO_R / AUTOREQ_RH
(Isochronous Trans. Enable – Peri. /
Automatically Set REQPKT_H – Host)

0 - Disable
1 - Enable

AUTOCLEAR_R
(RxPktRdy Autoclear Enable)

0 - Disable
1 - Enable

CLEAR_DATATOGGLE_R
(Clear Endpoint Data Toggle)

0 - Cleared automatically
1 - Resets endpoint data toggle

USB OTG Registers

32-110 ADSP-BF54x Blackfin Processor Hardware Reference

The cleared automatically notes in the figure indicate the self-clearing
properties of that particular bit. The interpretation of the USB_RXCSR regis-
ter depends on whether the USB controller is acting as a peripheral or as a
host.

There is a USB_EP_NIx_RXCSR register for each Rx endpoint, except end-
point 0. These registers may be accessed directly through registers address
or through the USB_RXCSR register indexed by the USB_INDEX register.

Many bits in the USB_RXCSR register have different operations (control ver-
sus status) depending on whether the USB is in peripheral or host mode.
This register includes the following bits:

RXPKTRDY_R

In peripheral mode, RXPKTRDY_R (bit 0) is set when a data packet is
received. The processor core should clear this bit when the packet is
unloaded from the Rx FIFO. An interrupt is generated when the bit is set.

In host mode, RXPKTRDY_R (bit 0) is set when a data packet is received. The
processor core should clear this bit when the packet is unloaded from the
Rx FIFO. An interrupt is generated when the bit is set.

FIFO_FULL_R

In peripheral mode, FIFO_FULL_R (bit 1) is set when no more packets can
be loaded into the Rx FIFO.

In host mode, FIFO_FULL_R (bit 1) is set when no more packets can be
loaded into the Rx FIFO.

OVERRUN_R / ERROR_RH

In peripheral mode, OVERRUN_R (bit 2) is set if an OUT packet cannot be
loaded into the Rx FIFO. The processor core should clear this bit. Note:
This bit is only valid when the endpoint is operating in isochronous
mode. In bulk mode, it always returns zero.

ADSP-BF54x Blackfin Processor Hardware Reference 32-111

USB OTG Controller

In host mode, the USB sets ERROR_RH (bit 2) when 3 attempts have been
made to receive a packet and no data packet is received. The processor
core should clear this bit. An interrupt is generated when the bit is set.
Note: This bit is only valid when the Tx endpoint is operating in bulk or
interrupt mode. In isochronous mode, it always returns zero.

DATAERROR_R

In peripheral mode, DATAERROR_R (bit 3) is set when RXPKTRDY is set if the
data packet has a CRC or bit-stuff error. It is cleared when RXPKTRDY is
cleared. Note: This bit is only valid when the endpoint is operating in iso-
chronous mode. In bulk mode, it always returns zero.

In host mode, when operating in isochronous mode, DATAERROR_R (bit 3)
is set when RXPKTRDY is set and the data packet has a CRC or bit-stuff error
and cleared when RXPKTRDY is cleared. In bulk mode, this bit is set when
the Rx endpoint is halted following the receipt of NAK responses for
longer than the time set as the NAK limit by the USB_RXINTERVAL register.
The processor core should clear this bit to allow the endpoint to continue.

FLUSHFIFO_R

In peripheral mode, the processor core writes a 1 to FLUSHFIFO_R (bit 4) to
flush the next packet to be read from the endpoint Rx FIFO. The FIFO
pointer is reset and the RXPKTRDY bit (below) is cleared. Note that
FLUSHFIFO_R has no effect unless RXPKTRDY is set. Also note that, if the
FIFO is double-buffered, FLUSHFIFO_R may need to be set twice to com-
pletely clear the FIFO.

In host mode, the processor core writes a 1 to FLUSHFIFO_R (bit 4) to flush
the next packet to be read from the endpoint Rx FIFO. The FIFO pointer
is reset and the RXPKTRDY bit (below) is cleared. Note: FLUSHFIFO_R has no
effect unless RXPKTRDY is set. Also note that, if the FIFO is double-buff-
ered, FLUSHFIFO_R may need to be set twice to completely clear the FIFO.

USB OTG Registers

32-112 ADSP-BF54x Blackfin Processor Hardware Reference

STALL_SEND_R / REQPKT_RH

In peripheral mode, the processor core writes a 1 to STALL_SEND_R (bit 5)
to issue a STALL handshake. The processor core clears this bit to termi-
nate the stall condition. Note: This bit has no effect where the endpoint is
being used for isochronous transfers.

In host mode, the processor core writes a 1 to REQPKT_RH (bit 5) to request
an IN transaction. It is cleared when RXPKTRDY is set.

STALL_SENT_R / STALL_RECEIVED_RH

In peripheral mode, STALL_SENT_R (bit 6) is set when a STALL handshake
is transmitted. The processor core should clear this bit.

In host mode, when a STALL handshake is received, STALL_RECEIVED_RH
(bit 6) is set and an interrupt is generated. The processor core should clear
this bit.

CLEAR_DATATOGGLE_R

In peripheral mode, the processor core writes a 1 to CLEAR_DATATOGGLE_R
(bit 7) to reset the endpoint data toggle to 0.

In host mode, the processor core writes a 1 to CLEAR_DATATOGGLE_R (bit 7)
to reset the endpoint data toggle to 0.

INCOMPRX_R / INCOMPRX_RH

In peripheral mode, INCOMPRX_R (bit 8) is set in a high-bandwidth isochro-
nous transfer if the packet in the Rx FIFO is incomplete because parts of
the data were not received. It is cleared when the RXPKTRDY is cleared.
Note: In anything other than a high-bandwidth isochronous transfer, this
bit always returns 0.

In host mode, INCOMPRX_RH (bit 8) is set in a high-bandwidth isochronous
transfer if the packet received is incomplete. It is cleared when the RXPK-
TRDY is cleared. Note: If USB protocols are followed correctly, this bit

ADSP-BF54x Blackfin Processor Hardware Reference 32-113

USB OTG Controller

should never be set. When it gets set, it indicates a failure of the associated
peripheral device to operate within the USB specification. In anything
other than a high-bandwidth isochronous transfer, this bit always
returns 0.

DMAREQMODE_R / DMAREQMODE_RH

In peripheral mode, the processor core sets DMAREQMODE_R (bit 11) to select
DMA request mode 1 and clears this bit to select DMA request mode 0.

In host mode, the processor core sets DMAREQMODE_RH (bit 11) to select
DMA mode 1 and clears this bit to select DMA mode 0.

DISNYET_R

In peripheral mode, the processor core sets DISNYET_R (bit 12) to disable
the sending of NYET handshakes.When set, all successfully received Rx
packets are ACKnowledged, including at the point at which the FIFO
becomes full. Note: This bit only has any effect in high-speed mode, in
which mode it is set for all interrupt endpoints.

In host mode, the processor core sets DISNYET_R (bit 12) to disable the
sending of NYET handshakes.When set, all successfully received Rx pack-
ets are ACKnowledged including the point at which the FIFO becomes
full. Note: This bit only has any effect in high-speed mode, when it is set
for all Interrupt transfers.

DMAREQ_ENA_R

In peripheral mode, the processor core sets DMAREQ_ENA_R (bit 13) to
enable the DMA request for the Rx endpoint.

In host mode, the processor core sets DMAREQ_ENA_R (bit 13) to enable the
DMA request for the Rx endpoint.

USB OTG Registers

32-114 ADSP-BF54x Blackfin Processor Hardware Reference

ISO_R / AUTOREQ_RH

In peripheral mode, the processor core sets ISO_R (bit 14) to enable the Rx
endpoint for isochronous transfers, and clears it to enable the Rx endpoint
for bulk or interrupt transfers.

In host mode, if the processor core sets AUTOREQ_RH (bit 14), the REQPKT_H
bit automatically is set when the RXPKTRDY bit is cleared.

AUTOCLEAR_R

In peripheral mode, if the processor core sets AUTOCLEAR_R (bit 15), the
RXPKTRDY bit automatically is cleared when a packet of USB_RX_MAX_PACKET
bytes is unloaded from the Rx FIFO. When packets of less than the maxi-
mum packet size are unloaded, RXPKTRDY must be cleared manually. Note:
Should not be set for high-bandwidth endpoints.

In host mode, if the processor core sets AUTOCLEAR_R (bit 15), the RXPK-
TRDY bit automatically is cleared when a packet of USB_RX_MAX_PACKET
bytes is unloaded from the Rx FIFO. When packets of less than the maxi-
mum packet size are unloaded, RXPKTRDY must be cleared manually. Note:
Should not be set for high-bandwidth isochronous endpoints.

ADSP-BF54x Blackfin Processor Hardware Reference 32-115

USB OTG Controller

USB Count 0 (USB_COUNT0) Register
The USB_COUNT0 register (see Figure 32-25) indicates the number of
received data bytes in the endpoint 0 FIFO. The value returned changes as
the contents of the FIFO change and is only valid while RXPKTRDY is set.

Figure 32-25. USB Count 0 (USB_COUNT0) Register

USB Count 0 Register (USB_COUNT0)

Reset = 0x0000

Read Only

0xFFC03C50

USB_INDEX=0

EP0_RX_COUNT
(Number of Rx bytes in
EP0 FIFO)

0x7F - 0x00 Rx bytes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

32-116 ADSP-BF54x Blackfin Processor Hardware Reference

USB Rx Byte Count EPx (USB_RXCOUNT) Register
The USB_RXCOUNT register (see Figure 32-26) holds the number of received
data bytes in the packet in the Rx FIFO. Note: The value returned
changes as the FIFO is unloaded and is only valid while RXPKTRDY in USB_
RXCSR is set.

Figure 32-26. USB Rx Byte Count (USB_RXCOUNT) Register

USB Rx Byte Count EPx Register (USB_RXCOUNT)

Reset = 0x0000

Read Only

0xFFC03C50

USB_INDEX=1–7

RX_COUNT
(Number of received bytes
in the packet in the Rx FIFO)

0x1FFF - 0x000 Number of
bytes received

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 32-117

USB OTG Controller

USB Tx Type (USB_TXTYPE) Register
The USB_TXTYPE register (see Figure 32-27) selects the endpoint number
and transaction protocol to use for the currently-selected Tx endpoint.
There is a USB_TXTYPE register for each Tx endpoint.

USB NAK Limit 0 (USB_NAKLIMIT0) Register
The USB_NAKLIMIT0 register (see Figure 32-28) determines the number of
frames/micro-frames after which the endpoint should timeout on receiv-
ing a stream of NAK responses for bulk endpoints.

Figure 32-27. USB Tx Type (USB_TXTYPE) Register

Figure 32-28. USB NAK Limit 0 (USB_NAKLIMIT0) Register

USB Tx Type Register (USB_TXTYPE)

Reset = 0x0000

Read/Write

0xFFC03C54

USB_INDEX=–7

TARGET_EP_NO_T
(EPx Number)

0xF - 0x0 Endpoint value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PROTOCOL_T
(Transfer Type)

00: Illegal
01: Isochronous
10: Bulk
11: Interrupt

USB NAK Limit 0 Register (USB_NAKLIMIT0)

Reset = 0x0000

Read Only

0xFFC03C58

USB_INDEX=0

EP0_NAK_LIMIT
(Timeout Value in Frames
for EP0 Timeouts)

0x1F - 0x00 Number of frames
before timeout

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

32-118 ADSP-BF54x Blackfin Processor Hardware Reference

USB Tx Interval (USB_TXINTERVAL) Register
The USB_TXINTERVAL register (see Figure 32-29) defines the polling inter-
val for the currently-selected Tx endpoint for interrupt, isochronous, and
bulk transfers. There is a USB_TXINTERVAL register for each configured Tx
endpoint, except endpoint 0

Table 32-5 relates transfer types to TX_POLL_INTERVAL values (number of
frames).

Figure 32-29. USB Tx Interval (USB_TXINTERVAL) Register

Table 32-4. Interval Value Versus Transfer Type

Transfer
Type

Speed Valid
Values (m)

Interpretation

Interrupt Low Speed or Full Speed 1 – 255 Polling interval is m frames.

High Speed 1 – 16 Polling interval is 2(m-1) micro-frames.

Isochronous Full Speed or High Speed 1 – 16 Polling interval is 2(m-1) frames or
micro-frames.

Bulk Full Speed or High Speed 2 – 16 NAK Limit is 2(m-1) frames or micro-
fames. Note: A value of 0 or 1 disables
the NAK timeout function.

USB Tx Interval Register (USB_TXINTERVAL)

Reset = 0x0000

Read/Write

0xFFC03C58

USB_INDEX=1–7

TX_POLL_INTERVAL
(Polling Interval for Selected
Tx EP)

0xFF - 0x00 Interval value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 32-119

USB OTG Controller

USB Rx Type (USB_RXTYPE) Register
The USB_RXTYPE register (see Figure 32-30) selects the endpoint number
and transaction protocol to use for the currently-selected Rx endpoint.
There is a USB_RXTYPE register for each Rx, except endpoint 0.

Figure 32-30. USB Tx Type (USB_TXTYPE) Register

USB Rx Type Register (USB_RXTYPE)

Reset = 0x0000

Read/Write

0xFFC03C5C

USB_INDEX=–7

TARGET_EP_NO_R
(EPx Number)

0xF - 0x0 Endpoint value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PROTOCOL_R
(Transfer Type)

00: Illegal
01: Isochronous
10: Bulk
11: Interrupt

USB OTG Registers

32-120 ADSP-BF54x Blackfin Processor Hardware Reference

USB Rx Interval (USB_RXINTERVAL) Register
The USB_RXINTERVAL register (see Figure 32-31) defines the polling inter-
val in number of frames for the currently-selected Rx endpoint for
interrupt, isochronous, and bulk transfers. There is a USB_RXINTERVAL reg-
ister for each configured Rx endpoint, except endpoint 0.

Table 32-5 relates transfer types to RX_POLL_INTERVAL values (number of
frames).

Figure 32-31. USB Rx Interval (USB_RXINTERVAL) Register

Table 32-5. Interval Value Versus Transfer Type

Transfer
Type

Speed Valid
Values (m)

Interpretation

Interrupt Low Speed or Full Speed 1 – 255 Polling interval is m frames.

High Speed 1 – 16 Polling interval is 2(m-1) micro-frames.

Isochronous Full Speed or High Speed 1 – 16 Polling interval is 2(m-1) frames or
micro-frames.

Bulk Full Speed or High Speed 2 – 16 NAK Limit is 2(m-1) frames or micro-
fames. Note: A value of 0 or 1 disables
the NAK timeout function.

USB Rx Interval Register (USB_RXINTERVAL)

Reset = 0x0000

Read/Write

0xFFC03C60

USB_INDEX=1–7

RX_POLL_INTERVAL
(Polling Interval for Selected
Rx EP)

0xFF - 0x00 Interval value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 32-121

USB OTG Controller

USB Tx Byte Count EPx (USB_TXCOUNT) Register
The USB_TXCOUNT register (see Figure 32-32) selects the size in bytes of the
packet/transfer which is about to be written into an Tx endpoint FIFO.

As the packet is transferred, USB_TXCOUNT is a register that can be used by
the processor core to program the size in bytes of the packet/transfer that
is about to be written into an Tx endpoint FIFO. The value is decre-
mented by two when the processor core writes into the corresponding
USB_EPx_FIFO high word address and is decremented by one when the pro-
cessor core writes a byte into the FIFO using the corresponding USB_
EPx_FIFO low word address. If the count itself reaches 0001h (which
would only happen for odd-sized transfers), the next write into either
USB_EPx_FIFO high word or USB_EPx_FIFO low word writes only the
least significant byte of the half word into the FIFO. This aids DMA
transfers that require IO accesses to go to the same address. USB_TXCOUNT
must be re-loaded after it has counted to zero. It is not activated until it is
loaded with a non-zero value.

See “Loading/Unloading Packets from Endpoints” on page 32-56 for
more details on USB_TXCOUNT’s usage.

Figure 32-32. USB Tx Byte Count EPx (USB_TXCOUNT) Register

USB Tx Byte Count EPx Register (USB_TXCOUNT)

Reset = 0x0000

Read Only

0xFFC03C50

USB_INDEX=1–7

TX_COUNT
(Number bytes to be Tx in
the packet)

0x1FFF - 0x000 Number of
bytes to send

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USB OTG Registers

32-122 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint FIFO (USB_EPx_FIFO) Registers
Each endpoint uses a FIFO register (USB_EPx_FIFO) for data transfer.
For more information about these FIFOs, see “Data Transfer” on
page 32-55.

USB OTG Device Control (USB_OTG_DEV_CTL)
Register

The USB_OTG_DEV_CTL register (see Figure 32-33) selects whether the USB
controller is operating in peripheral mode or in host mode, and for con-
trolling and monitoring the USB VBUS line.

Figure 32-33. USB OTG Device Control (USB_OTG_DEV_CTL)
Register

USB OTG Device Control Register (USB_OTG_DEV_CTL)

Reset = 0x0080

Read/Write

0xFFC03D00

HOST_REQ
(Host Negotiation Request)

0 - Not request
1 - Place request

HOST_MODE
(Host mode Ind.)
0 – Peripheral mode
1 – Host mode

LSDEV (Low-Speed Ind.)

0 - Not detected
1 - Low-speed detected

SESSION
(Session Ind.)

0 - Not detected
1 - Detected session

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 00 0

B_DEVICE ('A' or 'B' Device Ind.)

0 - 'A' device detected
1 - 'B' device detected

FSDEV (Full or High-Speed Ind.)
0 - Not detected
1 - Full or high-speed detected

VBUS1–0 (VBUS Level Ind.)

0 0 – Below SessionEnd
0 1 – Above SessionEnd, below session valid
1 0 – Above session valid, below VBUS valid
1 1 – Above VBUS valid

ADSP-BF54x Blackfin Processor Hardware Reference 32-123

USB OTG Controller

SESSION

When operating as an 'A' device, SESSION (bit 0) is set or cleared by the
processor core to start or end a session. When operating as a 'B' device,
SESSION is set/cleared by the USB controller when a session starts/ends.
SESSION is also set by the processor core to initiate the session request pro-
tocol. When the USB controller is in Suspend mode, the bit may be
cleared by the processor core to perform a software disconnect.

HOST_REQ

When HOST_REQ (bit 1) is set, the USB controller initiates the host negoti-
ation when suspend mode is entered. HOST_REQ is cleared when host
negotiation is completed. ('B' device only)

HOST_MODE

The HOST_MODE (bit 2) read-only bit is set when the USB controller is act-
ing as a host.

VBUS0[1:0]

The VBUS (bits 4–3) bits are read-only bits that encode the current VBUS
level.

LSDEV

The LSDEV (bit 5) read-only bit is set when a low-speed device is detected
being connected to the port. Only valid in host mode.

FSDEV

The FSDEV (bit 6) read-only bit is set when a full-speed or high-speed
device is detected being connected to the port. High speed devices are dis-
tinguished from full-speed by checking for high-speed chirps when the
device detects a USB reset. Only valid in host mode.

USB OTG Registers

32-124 ADSP-BF54x Blackfin Processor Hardware Reference

B_DEVICE

The B_DEVICE (bit 7) read-only bit indicates whether the USB controller is
operating as the 'A' device or the 'B' device. Only valid while a session is
in progress.

USB OTG VBUS Interrupt (USB_OTG_VBUS_IRQ)
Register

The USB_OTG_VBUS_IRQ register (see Figure 32-34) is an interrupt status
register used to indicate when VBUS is required to be driven, charged or
discharged as required by the OTG supplement. Writing a 1 to any of the
bits 0 – 5 when they are active clears that bit and the corresponding inter-
rupt. The USB_OTG_VBUS_IRQ register shares an interrupt source with USB_
INTRUSB.

Figure 32-34. USB OTG VBUS Interrupt (USB_OTG_VBUS_IRQ)
Register

USB OTG VBUS Interrupt Register (USB_OTG_VBUS_IRQ)

Reset = 0x0000

Read/Write

0xFFC03D04

DRIVE_VBUS_OFF
(Drive VBUS OFF)

0 - Not affected
1 - Turn drive OFF

CHRG_VBUS_START
(Charge VBUS Start)
0 – Not affected
1 – Start charging VBUS

CHRG_VBUS_END
(Charge VBUS End)

0 - Not affected
1 - End charging VBUS

DRIVE_VBUS_ON
(Drive VBUS ON)

0 - Not affected
1 - Turn drive ON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DISCHRG_VBUS_END
(Discharge VBUS End)
0 - Not affected
1 - End discharging VBUS

DISCHRG_VBUS_START
(Discharge VBUS Start)

0 - Not affected
1 - Start discharging VBUS

ADSP-BF54x Blackfin Processor Hardware Reference 32-125

USB OTG Controller

Because the charge pump and VBUS charge/discharge circuit is located in
an external component/chip from the on-chip PHY, the USB_OTG_VBUS_
IRQ is provided as a means of allowing the software to drive the necessary
control through a general-purpose, or dedicated IO.

DRIVE_VBUS_ON

When DRIVE_VBUS_ON (bit 0) is set, this status bit indicates the VBUS con-
trol circuit must be driven to >4.4V ('A' device only).

DRIVE_VBUS_OFF

When DRIVE_VBUS_OFF (bit 1) is set, this status bit indicates the charge
pump is to be shut off to end driving VBUS. ('A' device only).

CHRG_VBUS_START

When CHRG_VBUS_START (bit 2) is set, this status bit indicates external con-
trol circuit is to begin charging of VBUS in order to signal SRP ('B' device
only).

CHRG_VBUS_END

When CHRG_VBUS_END (bit 3) is set, this status bit indicates external VBUS
control to end charging of VBUS ('B' device only).

DISCHRG_VBUS_START

When DISCHRG_VBUS_START (bit 4) is set, this status bit indicates VBUS is
to be discharged in order to speed up VBUS discharging below Session-
End threshold ('B' device only).

DISCHRG_VBUS_END

When DISCHRG_VBUS_END (bit 5) is set, this status bit indicates VBUS con-
trol required to end discharging of VBUS ('B' device only).

USB OTG Registers

32-126 ADSP-BF54x Blackfin Processor Hardware Reference

USB OTG VBUS Mask (USB_OTG_VBUS_MASK)
Register

The USB_OTG_VBUS_MASK register (see Figure 32-35) provides interrupt
enable bits for the interrupt sources in USB_OTG_VBUS_IRQ.

Figure 32-35. USB OTG VBUS Mask (USB_OTG_VBUS_MASK)
Register

USB OTG VBUS Mask Register (USB_OTG_VBUS_MASK)

Reset = 0x0000

Read/Write

0xFFC03D08

DRIVE_VBUS_OFF_ENA
(Drive VBUS Off Interrupt Enable)

0 - Disable (mask)
1 - Enable (unmask)

CHRG_VBUS_START_ENA
(Charge VBUS Start Interrupt Enable)
0 - Disable (mask)
1 - Enable (unmask)

DISCHRG_VBUS_START_ENA
(Discharge VBUS Start Interrupt Enable)

0 - Disable (mask)
1 - Enable (unmask)

DRIVE_VBUS_ON_ENA
(Drive VBUS On Interrupt Enable)

0 - Disable (mask)
1 - Enable (unmask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DISCHRG_VBUS_END_ENA
(Discharge VBUS End Interrupt Enable)

0 - Disable (mask)
1 - Enable (unmask)

CHRG_VBUS_END_ENA
(Charge VBUS End Interrupt Enable)
0 - Disable (mask)
1 - Enable (unmask)

ADSP-BF54x Blackfin Processor Hardware Reference 32-127

USB OTG Controller

USB Link Info (USB_LINKINFO) Register
The USB_LINKINFO register (see Figure 32-36) allows some PHY-side
delays to be specified.

USB VBUS Pulse Length (USB_VPLEN) Register
The USB_VPLEN register (see Figure 32-37) defines the duration of the
VBUS pulsing charge for SRP initiation.

Figure 32-36. USB Link Info (USB_LINKINFO) Register

Figure 32-37. USB VBUS Pulse Length (USB_VPLEN) Register

USB Link Info Register (USB_LINKINFO)

Reset = 0x005C

Read/Write

0xFFC03D48

WTID
(Wait from IDPULLUP)

Sets the delay to be applied from
IDPULLUP being asserted to IDDIG
being considered valid (for example,
when the ID pin is sampled), in units of
4.369ms. The default setting corre-
sponds to 52.43ms.

WTCON
(Wait for Connect/Disconnect)

Sets the wait to be applied to allow for
the user’s connect/disconnect filter in
units of 533.3ns. The default setting
corresponds to 2.667µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 1 0 1 1 1 00 0

USB VBUS Pulse Length Register (USB_VPLEN)

Reset = 0x003C

Read/Write

0xFFC03D4C

VPLEN
(VBUS Pulse Length)

Defines the duration of the VBUS
pulsing charge in units of 546.1µs.
The default setting corresponds to
32.77ms.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 1 1 1 00 0

USB OTG Registers

32-128 ADSP-BF54x Blackfin Processor Hardware Reference

USB High-Speed EOF 1 (USB_HS_EOF1) Register
The USB_HS_EOF1 register (see Figure 32-38) defines the minimum time
gap that is to be allowed between the start of the last transaction and the
EOF for high-speed transactions.

USB Full-Speed EOF 1 (USB_FS_EOF1) Register
The USB_FS_EOF1 register (see Figure 32-39) defines the minimum time
gap that is to be allowed between the start of the last transaction and the
EOF for full-speed transactions.

Figure 32-38. USB High-Speed EOF 1 (USB_HS_EOF1) Register

Figure 32-39. USB Full-Speed EOF 1 (USB_FS_EOF1) Register

USB High-Speed EOF1 Register (USB_HS_EOF1)

Reset = 0x0080

Read/Write

0xFFC03D50

HS_EOF1
(High-Speed EOF 1)

Defines for high-speed transactions
the time before EOF to stop beginning
new transactions, in units of 133.3ns.
The default setting corresponds to
17.07µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 00 0

USB Full-Speed EOF1 Register (USB_FS_EOF1)

Reset = 0x0077

Read/Write

0xFFC03D54

FS_EOF1
(Full-Speed EOF 1)

Defines for full-speed transactions the
time before EOF to stop beginning new
transactions, in units of 533.3ns. The
default setting corresponds to 63.46µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 1 1 1 0 1 10 0

ADSP-BF54x Blackfin Processor Hardware Reference 32-129

USB OTG Controller

USB Low-Speed EOF 1 (USB_LS_EOF1) Register
The USB_LS_EOF1 register (see Figure 32-40) defines the minimum time
gap that is to be allowed between the start of the last transaction and the
EOF for low-speed transactions.

Figure 32-40. USB Low-Speed EOF 1 (USB_LS_EOF1) Register

USB Low-Speed EOF1 Register (USB_LS_EOF1)

Reset = 0x0077

Read/Write

0xFFC03D58

LS_EOF1
(Low-Speed EOF 1)

Defines for Low-Speed transactions
the time before EOF to stop beginning
new transactions, in units of 1.067µs.
The default setting corresponds to
121.6µs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 1 1 1 0 1 10 0

USB OTG Registers

32-130 ADSP-BF54x Blackfin Processor Hardware Reference

USB APHY Control 2 (USB_APHY_CNTRL2) Register
The USB_APHY_CNTRL2 register (see Figure 32-41) helps to clean transition
of the USB operation states from normal => suspend => hibernate =>
resume normal.

This register also is used tune the non-overlap between the clocks in the
Digital PHY clock shaper circuit and it is also used to define whether the
ADSP-BF54x processor is a USB part or non-USB part. The user is
allowed to write to this register after the chip comes out of reset. This reg-
ister is for Analog PHY and Digital PHY.

CSR_HBR

The CSR_HBR (bit 0) acts as the USB hibernate signal (hold pu/pd state) to
signal the Analog PHY to hold the state of the pull-up and pull-downs on
the D+ and D–.

Figure 32-41. USB APHY Control 2 (USB_APHY_CNTRL2) Register

USB APHY Control 2 Register (USB_APHY_CNTRL2)

Reset = 0x0000

Read/Write

0xFFC03DE8

CSR_RSTD
(USB pu/pd Restore Control Signal)

0 - No restore
1 - Restore

CNOS
(Tuning of DPHY Clocks)

00 - TBD, 01 - TBD,
10 - TBD, 11 - TBD

CSR_HBR
(USB Hibernate--hold pu/pd--Signal)

0 - No hibernate
1 - Hibernate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

USBPARTB1V
(USB Part or Non-USB Part)

0 - USB
1 - non-USB

ADSP-BF54x Blackfin Processor Hardware Reference 32-131

USB OTG Controller

CSR_RSTD

The CSR_RSTD (bit 1) acts as the USB pu/pd restore signal to signal the
Analog PHY to release the holding state on the D+/D– pull-ups and
pull-downs and give control to the USB controller to control the pull-ups
and pull-downs.

CNOS[1:0]

The CNOS (bits 3–2) permits tuning non-overlap of the DPHY clocks.

USBPARTB1V

The USBPARTB1V (bit 4) defines whether the ADSP-BF54x processor is a
USB part or non-USB part. This signal is used to switch off the PHY for
power saving reasons.

USB OTG Registers

32-132 ADSP-BF54x Blackfin Processor Hardware Reference

USB PLL OSC Control (USB_PLLOSC_CTRL) Registers
The USB_PLLOSC_CTRL register (see Figure 32-42) program PLL and oscil-
lator controls.

Figure 32-42. USB PLL OSC Control (USB_PLLOSC_CTRL) Register

USB PLL OSC Control Register (USB_PLLOSC_CTRL)

Reset = 0x3028

Read/Write, Read-Only

0xFFC03DF0

M (PLL Multiplier Select)

0x3F - 0x00 Multiplier selections

TM_SHORT_CHAIN
0 - Normal chain
1 - Shorten startup counter chain

DF (Divide CLKIN by 2)

0 - No divide
1 - Divide

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 0 0 0 0 0 0 1 0 1 0 00 0

PLLCLKOE
(PLL Clock Output Enable)

0 - Disable
1 - Enable
Enable oscillator even when ivdd is
not present. This is used when
sysosc is also providing pad-volt-
age clock to outside world through
clko_hv

FORCE_MSEL

0 - No force
1 - Force PLL freq multiplier (m)
 into divider circuit

TM_SELC

0 - No increase
1 - Increase PLL charge pump current

TM_PLL_VCO

0 - No boost
1 - Boost PLL amplitude

SMODE_B
00 - TBD, 01 - TBD,
01 - TBD, 11 - TBD
These bits are used to switch on
the charge pumps in the Oscillator.
Tie high to make sure you can
start any crystals from 9MHz to
33Mhz with 40pF on each
side of pad.

PLL_STABLE (RO)
0 - PLL is not stable (Still
locking)

ADSP-BF54x Blackfin Processor Hardware Reference 32-133

USB OTG Controller

USB SRP Clock Divider (USB_SRP_CLKDIV) Register
The USB_SRP_CLKDIV register (see Figure 32-43) programs the clock
divider for sleep recovery of the USB peripheral (wakeup from sleep
mode).

The processor is capable of running at peripheral clock frequencies up to
133 MHz. A 12-bit USB_SRP_CLKDIV register can be programmed to the
desired value to divide the peripheral clock frequency that would clock the
wakeup circuitry when the chip is put into Sleep mode. For reliable opera-
tion of the circuit the user is recommended to program a value in the
divider register that would divide the peripheral clock frequency greater
than or equal to 32KHz. Formula for calculating the value to be pro-
grammed into the USB_SRP_CLKDIV register:

If SCLK 130 MHz then CLKDIV = 4062 – 1 = 4061

If SCLK 32 MHz then CLKDIV = 1000 – 1 = 999

Figure 32-43. USB SRP Clock Divider (USB_SRP_CLKDIV) Register

USB SRP Clock Divider Register (USB_SRP_CLKDIV)

Reset = 0x0000

Read/Write

0xFFC03DF4

CLKDIV (Clock Divisor)

0xFFF - 0x000 Divisor value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

SRPEN (SRP Counter Enable)
0 - Disable
1 - Enable

SCLK frequency in kHz
32

--- 1– CLKDIV value=

USB OTG Registers

32-134 ADSP-BF54x Blackfin Processor Hardware Reference

USB DMA Interrupt (USB_DMA_INTERRUPT) Register
The USB_DMA_INTERRUPT register (see Figure 32-44) indicates which of the
eight DMA master channels have a pending interrupt. The interrupt is
generated when the corresponding DMA master channel’s DMA Count
register has reached zero. When the status is read by the processor core,
the corresponding bit should have a 1 written to it by the software in
order to clear the status.

Figure 32-44. USB DMA Interrupt (USB_DMA_INTERRUPT) Register

USB DMA Interrupt Register (USB_DMA_INTERRUPT)

Reset = 0x0000

Read/Write

0xFFC04000

DMA0_INT

0 - No interrupt
1 - DMA0 pending interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

DMA1_INT

0 - No interrupt
1 - DMA1 pending interrupt

DMA2_INT

0 - No interrupt
1 - DMA2 pending interrupt

DMA3_INT

0 - No interrupt
1 - DMA3 pending interrupt

DMA7_INT

0 - No interrupt
1 - DMA7 pending interrupt

DMA6_INT

0 - No interrupt
1 - DMA6 pending interrupt

DMA5_INT

0 - No interrupt
1 - DMA5 pending interrupt

DMA4_INT

0 - No interrupt
1 - DMA4 pending interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 32-135

USB OTG Controller

USB DMAx Control (USB_DMA_CONTROL) Registers
The USB_DMAx_CONTROL registers (see Figure 32-42) provide a DMA con-
trol register per DMA master channel. DMA control is used to assign,
configure and control each endpoint with a corresponding DMA master
channel. The n in the address below indicates the channel number, 0 – 7
depending on the channel being used.

DMA_ENA

The DMA_ENA (bit 0) control bit enables the DMA master channel to allow
it to begin transferring data between the FIFOs and on-chip memory.

DIRECTION

The DIRECTION (bit 1) control bit determines the direction of the DMA
transfer. A value of 0 indicates a DMA write (for use with Rx endpoints),
and a 1 indicates a DMA read (for use with Tx endpoints).

Figure 32-45. USB DMAx Control (USB_DMAxCONTROL) Registers

USB DMAx Control Registers (USB_DMAxCONTROL)

Reset = 0x0000

Read/Write

0xFFC04004
0xFFC04024
0xFFC04044
0xFFC04064
0xFFC04084
0xFFC040A4
0xFFC040C4
0xFFC040E4

DIRECTION (DMA Tx or Rx)

0 - Rx direction
1 - Tx direction

DMA_ENA (DMA Enable)

0 - Disable
1 - Enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

EPNUM (Endpoint Number)

0x7 - 0x0 Endpoint for the transfer

MODE (DMA Mode)

0 - DMA mode 0
1 - DMA mode 1

INT_ENA (Interrupt Enable)

0 - Disable
1 - Enable

BURST_MODE (DMA Burst Selection)
00 - Burst of unspecified length
01,10,11 - Reserved

BUSERROR (DMA Bus Error)
0 - No error
1 - Error

USB OTG Registers

32-136 ADSP-BF54x Blackfin Processor Hardware Reference

MODE

The MODE (bit 2) control bit determines the DMA mode the channel is to
operate in, DMA mode 0 or DMA mode 1.

INT_ENA

The INT_ENA (bit 3) control bit enables DMA interrupts (enable bit for the
corresponding bit in the USB_DMA_INTERRUPT register).

EPNUM

The EPNUM (bits 7–4) control bits value indicates the endpoint that is to be
used for the DMA transfer. The only values that are valid in this imple-
mentation are 0 through 7.

BUSERROR

The BUSERROR (bit 8) control bit indicates a peripheral bus error was
encountered by the master channel.

BURST_MODE

The BURST_MODE (bits 10–9) control bits determine the type of burst trans-
fer the corresponding DMA channel uses to transfer data.

ADSP-BF54x Blackfin Processor Hardware Reference 32-137

USB OTG Controller

USB DMAx Address Low (USB_DMAxADDRLOW)
Registers

The USB_DMAxADDRLOW registers (see Figure 32-47) represent the least-sig-
nificant half word of the full 32-bit DMA address, which indicates the
location in on-chip memory where DMA data is written or read.

Figure 32-46. USB DMAx Address Low (USB_DMAxADDRLOW)
Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Address Low Registers (USB_DMAxADDRLOW)

Reset = 0x0000 0000

Read/Write

DMA_ADDR_LOW
(Polling Interval for
Selected Tx EP)

0xFFC04008
0xFFC04028
0xFFC04048
0xFFC04068
0xFFC04088
0xFFC040A8
0xFFC040C8
0xFFC040E8 0xFFFF - 0x0000 values

USB OTG Registers

32-138 ADSP-BF54x Blackfin Processor Hardware Reference

USB DMAx Address High (USB_DMAxADDRHIGH)
Registers

The USB_DMAxADDRHIGH registers (see Figure 32-47) represent the most-sig-
nificant half word of the full 32-bit DMA address, which indicates the
location in on-chip memory where DMA data is written or read.

Figure 32-47. USB DMAx Address High (USB_DMAxADDRHIGH)
Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Address High Registers (USB_DMAxADDRHIGH)

Reset = 0x0000 0000

Read/Write

DMA_ADDR_HIGH
(Polling Interval for
Selected Tx EP)

0xFFC0400C
0xFFC0402C
0xFFC0404C
0xFFC0406C
0xFFC0408C
0xFFC040AC
0xFFC040CC
0xFFC040EC 0xFFFF - 0x0000 values

ADSP-BF54x Blackfin Processor Hardware Reference 32-139

USB OTG Controller

USB DMAx Count Low (USB_DMAxCOUNTLOW)
Registers

The USB_DMAxCOUNTLOW registers (see Figure 32-48) represent the least-sig-
nificant half word of the full 32-bit DMA count for each DMA channel.
The 32-bit DMA count indicates the number of bytes to be transferred for
a given DMA work block.

Figure 32-48. USB DMAx Count Low (USB_DMAxCOUNTLOW) Reg-
isters

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Count Low Registers (USB_DMAxCOUNTLOW)

Reset = 0x0000 0000

Read/Write

DMA_COUNT_LOW
(Polling Interval for
Selected Tx EP)

0xFFC04010
0xFFC04030
0xFFC04050
0xFFC04070
0xFFC04090
0xFFC040B0
0xFFC040D0
0xFFC040F0 0xFFFF - 0x0000 values

USB OTG Registers

32-140 ADSP-BF54x Blackfin Processor Hardware Reference

USB DMAx Count High (USB_DMAxCOUNTHIGH)
Registers

The USB_DMAxCOUNTHIGH registers (see Figure 32-49) represent the
most-significant half word of the full 32-bit DMA count for each DMA
channel. The 32-bit DMA count indicates the number of bytes to be
transferred for a given DMA work block.

Figure 32-49. USB DMAx Count High (USB_DMAxCOUNTHIGH)
Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB DMA Count High Registers (USB_DMAxCOUNTHIGH)

Reset = 0x0000 0000

Read/Write

DMA_COUNT_HIGH
(Polling Interval for
Selected Tx EP)

0xFFC04014
0xFFC04034
0xFFC04054
0xFFC04074
0xFFC04094
0xFFC040B4
0xFFC040D4
0xFFC040F4 0xFFFF - 0x0000 values

ADSP-BF54x Blackfin Processor Hardware Reference 32-141

USB OTG Controller

Programming Examples
The following programming examples (... through ...) describe the USB
operations.

References
The following in are useful sources of reference information on USB:

• On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a;
June 24, 2003; USB-IF

• Universal Serial Bus Specification 2.0

Glossary of USB Terms
A list of common USB terms and their definitions as used in this specifica-
tion and with respect to the USB controller follows:

'A' Device

Device on USB with a mini-A plug inserted into its receptacle. The 'A'
device always supplies power to VBUS.

'B' Device

Device on USB with a Standard-B or mini-B plug inserted into its recep-
tacle. The 'B' device starts a session as the peripheral.

Bi-directional endpoint

Endpoint that appears to USB to be bi-directional (can concurrently sup-
port receive and transfer packets).

Glossary of USB Terms

32-142 ADSP-BF54x Blackfin Processor Hardware Reference

Control endpoint

Endpoint that is solely used for transfer of USB control packets for setup
and configuration. In all USB devices, the control endpoint refers to the
bi-directional endpoint 0.

Dual Role Device

 USB device that can operate either a the USB host in an OTG session or
as a traditional USB peripheral.

Endpoint

Single physical communication channel for USB, implemented as a FIFO
and control logic for that endpoint. Each endpoint has an associated USB
transfer type, maximum packet size, bandwidth requirement, endpoint
number, and – often – a fixed transfer direction.

Frame

Regular, fixed 1ms time slot that can contain several transactions. The
transfer type determines what transactions are permitted for a given
endpoint.

HNP

Host negotiation protocol. Part of the USB OTG Supplement that allows
the host function to be transferred between two connected dual role
devices.

Packet

Lowest level of data exchange on USB, the size of which is determined by
the transfer type and buffer size of the USB peripheral.

ADSP-BF54x Blackfin Processor Hardware Reference 32-143

USB OTG Controller

PHY

 The PHY is a transceiver circuit that implements the physical layer of
USB. For Full Speed USB OTG this includes line drivers and receivers,
pull-up/down resistors as well as device ID and VBUS level detection.

Session

A period of time when USB transfers take place within an OTG connec-
tion, which can be initiated by the 'A' (by driving VBUS) or 'B' device (by
initiating SRP). VBUS is powered during a session.

SRP

Session request protocol. Part of the USB OTG Supplement that allows a
'B' device to turn on VBUS and initiate a USB session.

Transaction

Collection of one or more packets in sequence

Transfer

 Collection of one or more transfers in sequence

Uni-directional endpoint

Endpoint with its direction fixed in a single direction (for example, it can
only receive packets from the USB) in both host and peripheral modes

Glossary of USB Terms

32-144 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference A-1

A SYSTEM MMR ASSIGNMENTS

This appendix lists memory-mapped registers (MMR) addresses and regis-
ter names for the system memory-mapped registers (MMRs), core timer
registers, and processor-specific memory registers mentioned in this man-
ual. Registers are listed in order by their memory-mapped address.

This chapter includes the following sections:

• “Dynamic Power Management Registers” on page A-3

• “System Reset and Interrupt Control Registers” on page A-3

• “Watchdog Timer Registers” on page A-3

• “Real-Time Clock Registers” on page A-4

• “Ports Registers” on page A-4

• “Timer Registers” on page A-4

• “DMA/Memory DMA Control Registers” on page A-5

• “External Bus Interface Unit Registers” on page A-4

• “Handshake MDMA Control Registers” on page A-5

• “Host DMA Registers” on page A-5

• “PIXC Registers” on page A-5

• “Rotary Counter Registers” on page A-5

• “Security Registers” on page A-6

A-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “Core Timer Registers” on page A-6

• “Processor-Specific Memory Registers” on page A-6

• “MXVR Registers” on page A-7

• “Keypad Registers” on page A-13

• “SDH Registers” on page A-13

• “ATAPI Registers” on page A-16

• “NAND Flash Controller Registers” on page A-18

• “EPPI1 Registers” on page A-19

• “EPPI2 Registers” on page A-20

• “CANx Registers” on page A-22

• “SPI0 Controller Registers” on page A-32

• “SPI1 Controller Registers” on page A-32

• “TWI Registers” on page A-33

• “SPORT0 Controller Registers” on page A-35

• “SPORT1 Controller Registers” on page A-37

• “UART0 Controller Registers” on page A-43

• “UART1 Controller Registers” on page A-44

• “UART2 Controller Registers” on page A-45

• “UART3 Controller Registers” on page A-46

• “USB OTG Registers” on page A-47

ADSP-BF54x Blackfin Processor Hardware Reference A-3

System MMR Assignments

The following notes provide general information about the system mem-
ory-mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are 16
bits wide must be accessed with 16-bit read or write operations. MMRs
that are 32 bits wide must be accessed with 32-bit read or write opera-
tions. Check the description of the MMR to determine whether a 16-bit
or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is reserved for
internal use only.

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF) are listed
in the “System MMR Assignments” appendix in the ADSP-BF54x Blackfin Pro-
cessor Hardware Reference (Volume 1 of 2).

System Reset and Interrupt Control
Registers

System reset and interrupt control registers (0xFFC0 0100 – 0xFFC0 01FF) are
listed in the “System MMR Assignments” appendix in the ADSP-BF54x Blackfin
Processor Hardware Reference (Volume 1 of 2).

Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF) are listed in the “Sys-
tem MMR Assignments” appendix in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 1 of 2).

Real-Time Clock Registers

A-4 ADSP-BF54x Blackfin Processor Hardware Reference

Real-Time Clock Registers
Real-time clock registers (0xFFC0 0300 – 0xFFC0 03FF) are listed in the
“System MMR Assignments” appendix in the ADSP-BF54x Blackfin Pro-
cessor Hardware Reference (Volume 1 of 2).

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) are listed in the “System
MMR Assignments” appendix in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 1 of 2).

Ports Registers
Ports registers (port F: 0xFFC0 0700 – 0xFFC0 07FF, port G:
0xFFC0 1500 – 0xFFC0 15FF, port H: 0xFFC0 1700 – 0xFFC0 17FF,
pin control: 0xFFC0 3200 – 0xFFC0 32FF) are listed in the “System
MMR Assignments” appendix in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 1 of 2).

External Bus Interface Unit Registers
External bus interface unit registers (0xFFC0 0A00 – 0xFFC0 0AFF) are
listed in the “System MMR Assignments” appendix in the ADSP-BF54x
Blackfin Processor Hardware Reference.

ADSP-BF54x Blackfin Processor Hardware Reference A-5

System MMR Assignments

DMA/Memory DMA Control Registers
DMA control registers (0xFFC0 0B00 – 0xFFC0 0FFF) are listed in the
“System MMR Assignments” appendix in the ADSP-BF54x Blackfin Proces-
sor Hardware Reference (Volume 1 of 2).

Handshake MDMA Control Registers
HMDMA registers (0xFFC0 3300 – 0xFFC0 33FF) are listed in the “System
MMR Assignments” appendix in the ADSP-BF54x Blackfin Processor Hard-
ware Reference (Volume 1 of 2).

Host DMA Registers
Host DMA registers are listed in the “System MMR Assignments” appendix
in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

PIXC Registers
Pixel compositor registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume
1 of 2).

Rotary Counter Registers
Rotary Counter registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume
1 of 2).

Security Registers

A-6 ADSP-BF54x Blackfin Processor Hardware Reference

Security Registers
Security registers are listed in the “System MMR Assignments” appendix
in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2).

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C) are listed in the “Sys-
tem MMR Assignments” appendix in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 1 of 2).

Processor-Specific Memory Registers
Processor-specific memory registers (0xFFE0 0004 – 0xFFE0 0300) are
listed in the “System MMR Assignments” appendix in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 1 of 2).

ADSP-BF54x Blackfin Processor Hardware Reference A-7

System MMR Assignments

MXVR Registers
Table A-1 shows the MXVR register memory map.

Table A-1. MXVR Memory Map

Register
Address

Register Name Register Description Size
(bits)

Reset Value

0xFFC0 2700 MXVR_CONFIG configuration register 16 R/W 0x1FCA

0xFFC0 2704 Reserved – – –

0xFFC0 2708 MXVR_STATE_0 state register 0 32 RO 0x0000 0000

0xFFC0 270C MXVR_STATE_1 state register 1 32 RO 0x0000 0000

0xFFC0 2710 MXVR_INT_STAT_0 interrupt status register 0 32 R/W 0x0000 0000

0xFFC0 2714 MXVR_INT_STAT_1 interrupt status register 1 32 R/W 0x0000 0000

0xFFC0 2718 MXVR_INT_EN_0 interrupt enable register 0 32 R/W 0x0000 0000

0xFFC0 271C MXVR_INT_EN_1 interrupt enable register 1 32 R/W 0x0000 0000

0xFFC0 2720 MXVR_POSITION node position register 16 RO 0x8000

0xFFC0 2724 MXVR_MAX_POSITION maximum node position register 16 RO 0x0000

0xFFC0 2728 MXVR_DELAY node frame delay register 16 RO 0x8000

0xFFC0 272C MXVR_MAX_DELAY maximum node frame delay register 16 RO 0x0000

0xFFC0 2730 MXVR_LADDR logical address register 32 R/W 0x0000 0FFF

0xFFC0 2734 MXVR_GADDR group address register 16 R/W 0x0000

0xFFC0 2738 MXVR_AADDR alternate address register 32 R/W 0x0000 0FFF

0xFFC0 273C MXVR_ALLOC_0 allocation table register 0 32 RO 0xXXXX XXXX

0xFFC0 2740 MXVR_ALLOC_1 allocation table register 1 32 RO 0xXXXX XXXX

0xFFC0 2744 MXVR_ALLOC_2 allocation table register 2 32 RO 0xXXXX XXXX

0xFFC0 2748 MXVR_ALLOC_3 allocation table register 3 32 RO 0xXXXX XXXX

0xFFC0 274C MXVR_ALLOC_4 allocation table register 4 32 RO 0xXXXX XXXX

0xFFC0 2750 MXVR_ALLOC_5 allocation table register 5 32 RO 0xXXXX XXXX

0xFFC0 2754 MXVR_ALLOC_6 allocation table register 6 32 RO 0xXXXX XXXX

0xFFC0 2758 MXVR_ALLOC_7 allocation table register 7 32 RO 0xXXXX XXXX

0xFFC0 275C MXVR_ALLOC_8 allocation table register 8 32 RO 0xXXXX XXXX

MXVR Registers

A-8 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2760 MXVR_ALLOC_9 allocation table register 9 32 RO 0xXXXX XXXX

0xFFC0 2764 MXVR_ALLOC_10 allocation table register 10 32 RO 0xXXXX XXXX

0xFFC0 2768 MXVR_ALLOC_11 allocation table register 11 32 RO 0xXXXX XXXX

0xFFC0 276C MXVR_ALLOC_12 allocation table register 12 32 RO 0xXXXX XXXX

0xFFC0 2770 MXVR_ALLOC_13 allocation table register 13 32 RO 0xXXXX XXXX

0xFFC0 2774 MXVR_ALLOC_14 allocation table register 14 32 RO 0xXXXX XXXX

0xFFC0 2778 MXVR_SYNC_LCHAN_0 synchronous data logical
channel assignment register 0

32 R/W 0xFFFF FFFF

0xFFC0 277C MXVR_SYNC_LCHAN_1 synchronous data logical
channel assignment register 1

32 R/W 0xFFFF FFFF

0xFFC0 2780 MXVR_SYNC_LCHAN_2 synchronous data logical
channel assignment register 2

32 R/W 0xFFFF FFFF

0xFFC0 2784 MXVR_SYNC_LCHAN_3 synchronous data logical
channel assignment register 3

32 R/W 0xFFFF FFFF

0xFFC0 2788 MXVR_SYNC_LCHAN_4 synchronous data logical
channel assignment register 4

32 R/W 0xFFFF FFFF

0xFFC0 278C MXVR_SYNC_LCHAN_5 synchronous data logical
channel assignment register 5

32 R/W 0xFFFF FFFF

0xFFC0 2790 MXVR_SYNC_LCHAN_6 synchronous data logical
channel assignment register 6

32 R/W 0xFFFF FFFF

0xFFC0 2794 MXVR_SYNC_LCHAN_7 synchronous data logical
channel assignment register 7

32 R/W 0xFFFF FFFF

0xFFC0 2798 MXVR_DMA0_CONFIG synchronous data DMA0
configuration register

32 R/W 0x0000 0000

0xFFC0 279C MXVR_DMA0_START_ADDR synchronous data DMA0
start address register

32 R/W 0xFF00 0000

0xFFC0 27A0 MXVR_DMA0_COUNT synchronous data DMA0
loop count register

16 R/W 0x0001

0xFFC0 27A4 MXVR_DMA0_CURR_ADDR synchronous data DMA0
current address register

32 RO 0xFF00 0000

0xFFC0 27A8 MXVR_DMA0_CURR_COUNT synchronous data DMA0
current loop count register

16 RO 0x0000

Table A-1. MXVR Memory Map (Cont’d)

Register
Address

Register Name Register Description Size
(bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference A-9

System MMR Assignments

0xFFC0 27AC MXVR_DMA1_CONFIG synchronous data DMA1
configuration register

32 R/W 0x0000 0000

0xFFC0 27B0 MXVR_DMA1_START_ADDR synchronous data DMA1
start address register

32 R/W 0xFF00 0000

0xFFC0 27B4 MXVR_DMA1_COUNT synchronous data DMA1
loop count register

16 R/W 0x0001

0xFFC0 27B8 MXVR_DMA1_CURR_ADDR synchronous data DMA1
current address register

32 RO 0xFF00 0000

0xFFC0 27BC MXVR_DMA1_CURR_COUNT synchronous data DMA1
current Loop count register

16 RO 0x0000

0xFFC0 27C0 MXVR_DMA2_CONFIG synchronous data DMA2
configuration register

32 R/W 0x0000 0000

0xFFC0 27C4 MXVR_DMA2_START_ADDR synchronous data DMA2
start address register

32 R/W 0xFF00 0000

0xFFC0 27C8 MXVR_DMA2_COUNT synchronous data DMA2
loop count register

16 R/W 0x0001

0xFFC0 27CC MXVR_DMA2_CURR_ADDR synchronous data DMA2
current address register

32 RO 0xFF00 0000

0xFFC0 27D0 MXVR_DMA2_CURR_COUNT synchronous data DMA2
current loop count register

16 RO 0x0000

0xFFC0 27D4 MXVR_DMA3_CONFIG synchronous data DMA3
configuration register

32 R/W 0x0000 0000

0xFFC0 27D8 MXVR_DMA3_START_ADDR synchronous data DMA3
start address register

32 R/W 0xFF00 0000

0xFFC0 27DC MXVR_DMA3_COUNT synchronous data DMA3
loop count register

16 R/W 0x0001

0xFFC0 27E0 MXVR_DMA3_CURR_ADDR synchronous data DMA3
current address register

32 RO 0xFF00 0000

0xFFC0 27E4 MXVR_DMA3_CURR_COUNT synchronous data DMA3
current loop count register

16 RO 0x0000

0xFFC0 27E8 MXVR_DMA4_CONFIG synchronous data DMA4
configuration register

32 R/W 0x0000 0000

Table A-1. MXVR Memory Map (Cont’d)

Register
Address

Register Name Register Description Size
(bits)

Reset Value

MXVR Registers

A-10 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 27EC MXVR_DMA4_START_ADDR synchronous data DMA4
start address register

32 R/W 0xFF00 0000

0xFFC0 27F0 MXVR_DMA4_COUNT synchronous data DMA4
loop count register

16 R/W 0x0001

0xFFC0 27F4 MXVR_DMA4_CURR_ADDR synchronous data DMA4
current address register

32 RO 0xFF00 0000

0xFFC0 27F8 MXVR_DMA4_CURR_COUNT synchronous data DMA4
current loop count register

16 RO 0x0000

0xFFC0 27FC MXVR_DMA5_CONFIG synchronous data DMA5
configuration register

32 R/W 0x0000 0000

0xFFC0 2800 MXVR_DMA5_START_ADDR synchronous data DMA5
start address register

32 R/W 0xFF00 0000

0xFFC0 2804 MXVR_DMA5_COUNT synchronous data DMA5
loop count register

16 R/W 0x0000

0xFFC0 2808 MXVR_DMA5_CURR_ADDR synchronous data DMA5
current address register

32 RO 0xFF00 0000

0xFFC0 280C MXVR_DMA5_CURR_COUNT synchronous data DMA5
current loop count register

16 RO 0x0000

0xFFC0 2810 MXVR_DMA6_CONFIG synchronous data DMA6
configuration register

32 R/W 0x0000 0000

0xFFC0 2814 MXVR_DMA6_START_ADDR synchronous data DMA6
start address register

32 R/W 0xFF00 0000

0xFFC0 2818 MXVR_DMA6_COUNT synchronous data DMA6
loop count register

16 R/W 0x0001

0xFFC0 281C MXVR_DMA6_CURR_ADDR synchronous data DMA6
current address register

32 RO 0xFF00 0000

0xFFC0 2820 MXVR_DMA6_CURR_COUNT synchronous data DMA6
current loop count register

16 RO 0x0000

0xFFC0 2824 MXVR_DMA7_CONFIG synchronous data DMA7
configuration register

32 R/W 0x0000 0000

0xFFC0 2828 MXVR_DMA7_START_ADDR synchronous data DMA7
start address register

32 R/W 0xFF00 0000

Table A-1. MXVR Memory Map (Cont’d)

Register
Address

Register Name Register Description Size
(bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference A-11

System MMR Assignments

0xFFC0 282C MXVR_DMA7_COUNT synchronous data DMA7
loop count register

16 R/W 0x0001

0xFFC0 2830 MXVR_DMA7_CURR_ADDR synchronous data DMA7
current address register

32 RO 0xFF00 0000

0xFFC0 2834 MXVR_DMA7_CURR_COUNT synchronous data DMA7
current loop count register

16 RO 0x0000

0xFFC0 2838 MXVR_AP_CTL asynchronous packet control register 16 R/W 0x0000

0xFFC0 283C MXVR_APRB_START_ADDR asynchronous packet receive buffer
start address register

32 R/W 0xFF00 0000

0xFFC0 2840 MXVR_APRB_CURR_ADDR asynchronous packet receive buffer
current address register

32 RO 0xFF00 0000

0xFFC0 2844 MXVR_APTB_START_ADDR asynchronous packet transmit buffer
start address register

32 R/W 0xFF00 0000

0xFFC0 2848 MXVR_APTB_CURR_ADDR asynchronous packet transmit buffer
current address register

32 RO 0xFF00 0000

0xFFC0 284C MXVR_CM_CTL control message control register 32 R/W 0x0000 0000

0xFFC0 2850 MXVR_CMRB_START_ADDR control message receive buffer
start address register

32 R/W 0xFF00 0000

0xFFC0 2854 MXVR_CMRB_CURR_ADDR control message receive buffer
current address register

32 RO 0xFF00 0000

0xFFC0 2858 MXVR_CMTB_START_ADDR control message transmit buffer
start address register

32 R/W 0xFF00 0000

0xFFC0 285C MXVR_CMTB_CURR_ADDR control message transmit buffer
current address register

32 RO 0xFF00 0000

0xFFC0 2860 MXVR_RRDB_START_ADDR remote read buffer
start address register

32 R/W 0xFF00 0000

0xFFC0 2864 MXVR_RRDB_CURR_ADDR remote read buffer
current address register

32 RO 0xFF00 0000

0xFFC0 2868 MXVR_PAT_DATA_0 pattern data register 0 32 R/W 0x0000 0000

0xFFC0 286C MXVR_PAT_EN_0 pattern enable register 0 32 R/W 0x0000 0000

0xFFC0 2870 MXVR_PAT_DATA_1 pattern data register 1 32 R/W 0x0000 0000

0xFFC0 2874 MXVR_PAT_EN_1 pattern enable register 1 32 R/W 0x0000 0000

Table A-1. MXVR Memory Map (Cont’d)

Register
Address

Register Name Register Description Size
(bits)

Reset Value

MXVR Registers

A-12 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2878 MXVR_FRAME_CNT_0 frame counter 0 16 R/W 0x0000

0xFFC0 287C MXVR_FRAME_CNT_1 frame counter 1 16 R/W 0x0000

0xFFC0 2880 MXVR_Routing_0 routing register 0 32 WO 0xXXXX XXXX

0xFFC0 2884 MXVR_Routing_1 routing register 1 32 WO 0xXXXX XXXX

0xFFC0 2888 MXVR_Routing_2 routing register 2 32 WO 0xXXXX XXXX

0xFFC0 288C MXVR_Routing_3 routing register 3 32 WO 0xXXXX XXXX

0xFFC0 2890 MXVR_Routing_4 routing register 4 32 WO 0xXXXX XXXX

0xFFC0 2894 MXVR_Routing_5 routing register 5 32 WO 0xXXXX XXXX

0xFFC0 2898 MXVR_Routing_6 routing register 6 32 WO 0xXXXX XXXX

0xFFC0 289C MXVR_Routing_7 routing register 7 32 WO 0xXXXX XXXX

0xFFC0 28A0 MXVR_Routing_8 routing register 8 32 WO 0xXXXX XXXX

0xFFC0 28A4 MXVR_Routing_9 routing register 9 32 WO 0xXXXX XXXX

0xFFC0 28A8 MXVR_Routing_10 routing register 10 32 WO 0xXXXX XXXX

0xFFC0 28AC MXVR_Routing_11 routing register 11 32 WO 0xXXXX XXXX

0xFFC0 28B0 MXVR_Routing_12 routing register 12 32 WO 0xXXXX XXXX

0xFFC0 28B4 MXVR_Routing_13 routing register 13 32 WO 0xXXXX XXXX

0xFFC0 28B8 MXVR_Routing_14 routing register 14 32 WO 0xXXXX XXXX

0xFFC0 28BC Reserved – – –

0xFFC0 28C0 MXVR_BLOCK_CNT block counter 16 R/W 0x0000

0xFFC0 28C4
 to
0xFFC0 28CC

Reserved – – –

0xFFC0 28D0 MXVR_CLK_CTL clock control register 32 R/W 0x0202 0003

0xFFC0 28D4 MXVR_CDRPLL_CTL clock/data recovery PLL ctrl register 32 R/W 0x0502 0820

0xFFC0 28D8 MXVR_FMPLL_CTL frequency mult. PLL ctrl register 32 R/W 0x1900 1020

0xFFC0 28DC MXVR_PIN_CTL pin control register 16 R/W 0x0000

0xFFC0 28E0 MXVR_SCLK_CNT system clock counter register 16 R/W 0x0000

0xFFC0 28E4
 to
0xFFC0 28FF

Reserved – – –

Table A-1. MXVR Memory Map (Cont’d)

Register
Address

Register Name Register Description Size
(bits)

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference A-13

System MMR Assignments

Keypad Registers
Descriptions and bit diagrams for each of the memory-mapped registers
(MMRs) are provided in the following subsections. See Table A-2.

SDH Registers
The Secure Data Host (SDH) interface has memory-mapped registers
(MMRs) that regulate its operation. Descriptions and bit diagrams for
each of these MMRs are provided in the following sections.

Table A-2. Control/Status/Data Registers

Memory-mapped
Address

Name Description

0xFFC04100 KPAD_CTL Keypad control register
on page 22-11

0xFFC04104 KPAD_PRESCALE Keypad prescale register
on page 22-14

0xFFC04108 KPAD_MSEL Keypad multiplier select register
on page 22-16

0xFFC0410c KPAD_ROWCOL Keypad row-column register
on page 22-16

0xFFC04110 KPAD_STAT Keypad status register
on page 22-20

0xFFC04114 KPAD_SOFTEVAL Keypad software evaluate register
on page 22-21

SDH Registers

A-14 ADSP-BF54x Blackfin Processor Hardware Reference

The SDH memory-mapped registers start at base address 0xFFC03900. In
Table A-3, register addresses are given relative to the base address. All
functional register bits reset to zero, except the SDH_E_MASKx registers
(which reset to 0x40) and SDH_CFG register (which resets to 0xA0).

Table A-3. SDH Functional Registers

Memory-mapped
Address

Register Name Description

0xFFC03900 SDH_PWR_CTL SDH power control register
on page 23-22

0xFFC03904 SDH_CLK_CTL SDH clock control register
on page 23-23

0xFFC03908 SDH_ARGUMENT SDH argument register
on page 23-19

0xFFC0390c SDH_COMMAND SDH command register
on page 23-24

0xFFC03910 SDH_RESP_CMD SDH response command register
on page 23-25

0xFFC03914 SDH_RESPONSE0 SDH response 0 register
on page 23-26

0xFFC03918 SDH_RESPONSE1 SDH response 1 register
on page 23-25

0xFFC0391c SDH_RESPONSE2 SDH response 2 register
on page 23-25

0xFFC03920 SDH_RESPONSE3 SDH response 3 register
on page 23-25

0xFFC03924 SDH_DATA_TIMER SDH data timer register
on page 23-27

0xFFC03928 SDH_DATA_LGTH SDH data length register
on page 23-27

0xFFC0392c SDH_DATA_CTL SDH data control register
on page 23-27

0xFFC03930 SDH_DATA_CNT SDH data counter register
on page 23-29

ADSP-BF54x Blackfin Processor Hardware Reference A-15

System MMR Assignments

0xFFC03934 SDH_STATUS SDH status register
on page 23-30

0xFFC03938 SDH_STATUS_CLR SDH status clear register
on page 23-32

0xFFC0393c SDH_MASK0 SDH interrupt 0 mask register
on page 23-33

0xFFC03940 SDH_MASK1 SDH interrupt 1 mask register
on page 23-33

0xFFC03944 Reserved –

0xFFC03948 SDH_FIFO_CNT SDH FIFO counter register
on page 23-34

0xFFC0394c
...
0xFFC0397c

Reserved –

0xFFC03980 SDH_FIFOx SDH data FIFO registers
on page 23-34

0xFFC03984
...
0xFFC03988

Reserved –

0xFFC039c0 SDH_E_STATUS SDH exception status register
on page 23-35

0xFFC039c4 SDH_E_MASK SDH exception mask register
on page 23-36

0xFFC039c8 SDH_CFG SDH configuration register
on page 23-37

0xFFC039cc SDH_RD_WAIT_EN SDH read wait enable register
on page 23-38

0xFFC039d0
...
0xFFC039ec

SDH_PIDx SDH peripheral identification registers
(8-bit values)
on page 23-38

Table A-3. SDH Functional Registers (Cont’d)

Memory-mapped
Address

Register Name Description

ATAPI Registers

A-16 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI Registers
The ATAPI interface’s memory-mapped registers (MMRs) regulate its
operation. Descriptions and bit diagrams for each of these MMRs are pro-
vided in the following sections.

Table A-4 lists the ATAPI memory-mapped registers, starting at base
address 0xFFC03800. Register addresses are given relative to the base
address.

Table A-4. ATAPI Core Registers

Memory-mapped
Address

Register Name Description

 0xFFC03800 ATAPI_CONTROL ATAPI control on page 24-50

 0xFFC03804 ATAPI_STATUS ATAPI status on page 24-52

 0xFFC03808 ATAPI_DEV_ADDR ATAPI device address on page 24-53

 0xFFC0380C ATAPI_DEV_TXBUF ATAPI device transmit buffer
on page 24-54

 0xFFC03810 ATAPI_DEV_RXBUF ATAPI device receive buffer
on page 24-55

 0xFFC03814 ATAPI_INT_MASK ATAPI interrupt mask on page 24-56

 0xFFC03818 ATAPI_INT_STATUS ATAPI interrupt status on page 24-57

 0xFFC0381C ATAPI_XFER_LEN ATAPI transfer length on page 24-59

 0xFFC03820 ATAPI_LINE_STATUS ATAPI line status on page 24-60

 0xFFC03824 ATAPI_SM_STATE ATAPI state machine status on page 24-61

 0xFFC03828 ATAPI_TERMINATE ATAPI terminate on page 24-61

 0xFFC0382C ATAPI_PIO_TFRCNT ATAPI PIO transfer count on page 24-62

 0xFFC03830 ATAPI_DMA_TFRCNT ATAPI multi-word DMA transfer count
on page 24-63

 0xFFC03834 ATAPI_ULTRA_IN_TFR
CNT

ATAPI ultra-DMA in transfer count
on page 24-63

ADSP-BF54x Blackfin Processor Hardware Reference A-17

System MMR Assignments

 0xFFC03838 ATAPI_ULTRA_OUT_TF
RCNT

ATAPI ultra-DMA out transfer count
on page 24-64

 0xFFC03840 ATAPI_REG_TIM_0 ATAPI register transfer timing 0
on page 24-64

 0xFFC03844 ATAPI_PIO_TIM_0 ATAPI programmed I/O timing 0
on page 24-65

 0xFFC03848 ATAPI_PIO_TIM_1 ATAPI programmed I/O timing 1
on page 24-65

 0xFFC03850 ATAPI_MULTI_TIM_0 ATAPI multi-DMA timing 0
on page 24-66

 0xFFC03854 ATAPI_MULTI_TIM_1 ATAPI multi-DMA timing 1
on page 24-66

 0xFFC03858 ATAPI_MULTI_TIM_2 ATAPI multi-DMA timing 2
on page 24-67

 0xFFC03860 ATAPI_ULTRA_TIM_0 ATAPI ultra-DMA timing 0
on page 24-67

 0xFFC03864 ATAPI_ULTRA_TIM_1 ATAPI ultra-DMA timing 1
on page 24-67

 0xFFC03868 ATAPI_ULTRA_TIM_2 ATAPI ultra-DMA timing 2
on page 24-67

 0xFFC0386C ATAPI_ULTRA_TIM_3 ATAPI ultra-DMA timing 3
on page 24-67

Table A-4. ATAPI Core Registers (Cont’d)

Memory-mapped
Address

Register Name Description

NAND Flash Controller Registers

A-18 ADSP-BF54x Blackfin Processor Hardware Reference

NAND Flash Controller Registers
Table A-6 lists all of the NFC memory-mapped registers.

Table A-5. NFC Memory-Mapped Registers

Memory-mapped
Address

Register Name Description

0xFFC0 3B00 NFC_CTL NFC control register
on page 25-20

0xFFC0 3B04 NFC_STAT NFC status register
on page 25-21

0xFFC0 3B08 NFC_IRQSTAT NFC interrupt status register
on page 25-22

0xFFC0 3B0C NFC_IRQMASK NFC interrupt mask register
on page 25-23

0xFFC0 3B10 NFC_ECC0 NFC ECC register 0
on page 25-24

0xFFC0 3B14 NFC_ECC1 NFC ECC register 1
on page 25-24

0xFFC0 3B18 NFC_ECC2 NFC ECC register 2
on page 25-24

0xFFC0 3B1C NFC_ECC3 NCF ECC register 3
on page 25-24

0xFFC0 3B20 NFC_COUNT NFC count register
on page 25-25

0xFFC0 3B24 NFC_RST NFC reset register
on page 25-25

0xFFC0 3B28 NFC_PGCTL NFC page control register
on page 25-26

0xFCC0 3B2C NFC_READ NFC read data register
on page 25-27

ADSP-BF54x Blackfin Processor Hardware Reference A-19

System MMR Assignments

EPPI1 Registers
PPI1 registers are listed in Table A-7.

0xFFC0 3B40 NFC_ADDR NFC address register
on page 25-27

0xFFC0 3B44 NFC_CMD NFC command register
on page 25-28

0xFFC0 3B48 NFC_DATA_WR NFC data write register
on page 25-29

0xFFC0 3B4C NFC_DATA_RD NFC data read register
on page 25-29

Table A-6. PPI1 Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 1300 PPI1_STATUS “EPPI Status Register” on page 26-90

0xFFC0 1304 PPI1_HCOUNT “EPPI Horizontal Transfer Count Register” on
page 26-95

0xFFC0 1308 PPI1_HDELAY “EPPI Horizontal Delay Register” on
page 26-94

0xFFC0 130C PPI1_VCOUNT “EPPI Vertical Transfer Count Register” on
page 26-94

0xFFC0 1310 PPI1_VDELAY “EPPI Vertical Delay Count Register” on
page 26-93

0xFFC0 1314 PPI1_FRAME “EPPI Lines per Frame Register” on
page 26-92

Table A-5. NFC Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Register Name Description

EPPI2 Registers

A-20 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI2 Registers
PPI2 registers are listed in Table A-7.

0xFFC0 1318 PPI1_LINE “EPPI Samples per Line Register” on
page 26-93

0xFFC0 131C PPI1_CLKDIV “EPPI Clock Divide Register (PPIx_CLK)” on
page 26-96

0xFFC0 1320 PPI1_CONTROL “PPIx Control Register, Upper Half” on
page 26-83

0xFFC0 1324 PPI1_FSIW_HBL “EPPI FS1 Width / Horizontal Blanking Sam-
ples per Line Register” on page 26-97

0xFFC0 1328 PPI1_FSIP_AVPL “EPPI FS1 Period Register / EPPI Active Video
Samples per Line Register
(PPIx_FS1P_AVPL)” on page 26-99

0xFFC0 132C PPI1_FS2W_LVB “EPPI FS2 Width Register/EPPI Lines of Ver-
tical Blanking Register” on page 26-98

0xFFC0 1330 PPI1_FS2P_LAVF “EPPI FS2 Period Register/EPPI Lines of
Active Video per Frame Register
(PPIx_FS2_LAVF)” on page 26-100

0xFFC0 1334 PPI1_CLIP “EPPI Clipping Register (PPIx_CLIP)” on
page 26-101

Table A-7. PPI2 Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 2900 PPI2_STATUS “EPPI Status Register” on page 26-90

0xFFC0 2904 PPI2_HCOUNT “EPPI Horizontal Transfer Count Register” on
page 26-95

Table A-6. PPI1 Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-21

System MMR Assignments

0xFFC0 2908 PPI2_HDELAY “EPPI Horizontal Delay Register” on
page 26-94

0xFFC0 290C PPI2_VCOUNT “EPPI Vertical Transfer Count Register” on
page 26-94

0xFFC0 2910 PPI2_VDELAY “EPPI Vertical Delay Count Register” on
page 26-93

0xFFC0 2914 PPI2_FRAME “EPPI Lines per Frame Register” on
page 26-92

0xFFC0 2918 PPI2_LINE “EPPI Samples per Line Register” on
page 26-93

0xFFC0 291C PPI2_CLKDIV “EPPI Clock Divide Register (PPIx_CLK)” on
page 26-96

0xFFC0 2920 PPI2_CONTROL “PPIx Control Register, Upper Half” on
page 26-83

0xFFC0 2924 PPI2_FSIW_HBL “EPPI FS1 Width / Horizontal Blanking Sam-
ples per Line Register” on page 26-97

0xFFC0 2928 PPI2_FSIP_AVPL “EPPI FS1 Period Register / EPPI Active Video
Samples per Line Register
(PPIx_FS1P_AVPL)” on page 26-99

0xFFC0 292C PPI2_FS2W_LVB “EPPI FS2 Width Register/EPPI Lines of Ver-
tical Blanking Register” on page 26-98

0xFFC0 2930 PPI2_FS2P_LAVF “EPPI FS2 Period Register/EPPI Lines of
Active Video per Frame Register
(PPIx_FS2_LAVF)” on page 26-100

0xFFC0 2934 PPI2_CLIP “EPPI Clipping Register (PPIx_CLIP)” on
page 26-101

Table A-7. PPI2 Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

CANx Registers

A-22 ADSP-BF54x Blackfin Processor Hardware Reference

CANx Registers
CANx registers (0xFFC0 2A00 – 0xFFC0 2FFF) are listed in Table A-8
through Table A-11.

Table A-8. CANx Control and Configuration Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 2A00 CANx_MC1 “Mailbox Configuration Register 1” on
page 27-73

0xFFC0 2A04 CANx_MD1 “Mailbox Direction Register 1” on page 27-74

0xFFC0 2A08 CANx_TRS1 “Transmission Request Set Register 1” on
page 27-78

0xFFC0 2A0C CANx_TRR1 “Transmission Request Reset Register 1” on
page 27-79

0xFFC0 2A10 CANx_TA1 “Transmission Acknowledge Register 1” on
page 27-81

0xFFC0 2A14 CANx_AA1 “Abort Acknowledge Register 1” on
page 27-80

0xFFC0 2A18 CANx_RMP1 “Receive Message Pending Register 1” on
page 27-75

0xFFC0 2A1C CANx_RML1 “Receive Message Lost Register 1” on
page 27-76

0xFFC0 2A20 CANx_MBTIF1 “Mailbox Transmit Interrupt Flag Register 1”
on page 27-85

0xFFC0 2A24 CANx_MBRIF1 “Mailbox Receive Interrupt Flag Register 1” on
page 27-86

0xFFC0 2A28 CANx_MBIM1 “Mailbox Interrupt Mask Register 1” on
page 27-84

0xFFC0 2A2C CANx_RFH1 “Remote Frame Handling Register 1” on
page 27-83

ADSP-BF54x Blackfin Processor Hardware Reference A-23

System MMR Assignments

0xFFC0 2A30 CANx_OPSS1 “Overwrite Protection/Single Shot Transmis-
sion Register 1” on page 27-77

0xFFC0 2A40 CANx_MC2 “Mailbox Configuration Register 2” on
page 27-73

0xFFC0 2A44 CANx_MD2 “Mailbox Direction Register 2” on page 27-74

0xFFC0 2A48 CANx_TRS2 “Transmission Request Set Register 2” on
page 27-78

0xFFC0 2A4C CANx_TRR2 “Transmission Request Reset Register 2” on
page 27-79

0xFFC0 2A50 CANx_TA2 “Transmission Acknowledge Register 2” on
page 27-81

0xFFC0 2A54 CANx_AA2 “Abort Acknowledge Register 2” on
page 27-80

0xFFC0 2A58 CANx_RMP2 “Receive Message Pending Register 2” on
page 27-75

0xFFC0 2A5C CANx_RML2 “Receive Message Lost Register 2” on
page 27-76

0xFFC0 2A60 CANx_MBTIF2 “Mailbox Transmit Interrupt Flag Register 2”
on page 27-85

0xFFC0 2A64 CANx_MBRIF2 “Mailbox Receive Interrupt Flag Register 2” on
page 27-86

0xFFC0 2A68 CANx_MBIM2 “Mailbox Interrupt Mask Register 2” on
page 27-84

0xFFC0 2A6C CANx_RFH2 “Remote Frame Handling Register 2” on
page 27-83

0xFFC0 2A70 CANx_OPSS2 “Overwrite Protection/Single Shot Transmis-
sion Register 2” on page 27-77

0xFFC0 2A80 CANx_CLOCK “CAN Clock Registers” on page 27-48

0xFFC0 2A84 CANx_TIMING “CAN Timing Registers” on page 27-49

Table A-8. CANx Control and Configuration Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

CANx Registers

A-24 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2A88 CANx_DEBUG “CAN Timing Registers” on page 27-49

0xFFC0 2A8C CANx_STATUS “Global CAN Status Registers” on page 27-47

0xFFC0 2A90 CANx_CEC “Error Counter Register” on page 27-89

0xFFC0 2A94 CANx_GIS “Global CAN Interrupt Status Registers” on
page 27-51

0xFFC0 2A98 CANx_GIM “Global CAN Interrupt Mask Registers” on
page 27-50

0xFFC0 2A9C CANx_GIF “Global CAN Interrupt Flag Registers” on
page 27-52

0xFFC0 2AA0 CANx_CONTROL “Master Control Registers” on page 27-46

0xFFC0 2AA4 CANx_INTR “CAN Interrupt Registers” on page 27-49

0xFFC0 2AAC CANx_MBTD “Temporary Mailbox Disable Register” on
page 27-82

0xFFC0 2AB0 CANx_EWR “Error Counter Warning Level Register” on
page 27-90

0xFFC0 2AB4 CANx_ESR “Error Status Register” on page 27-89

0xFFC0 2AC4 CANx_UCCNT “Universal Counter Register” on page 27-88

0xFFC0 2AC8 CANx_UCRC “Universal Counter Reload/Capture Register”
on page 27-88

0xFFC0 2ACC CANx_UCCNF “Universal Counter Configuration Mode Reg-
ister” on page 27-87

Table A-8. CANx Control and Configuration Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-25

System MMR Assignments

Table A-9. CANx Mailbox Acceptance Mask Registers

Memory-mapped
Address

Register Name See Section

0xFFC0 2B00 CANx_AM00L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B04 CANx_AM00H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B08 CANx_AM01L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B0C CANx_AM01H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B10 CANx_AM02L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B14 CANx_AM02H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B18 CANx_AM03L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B1C CANx_AM03H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B20 CANx_AM04L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B24 CANx_AM04H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B28 CANx_AM05L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B2C CANx_AM05H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B30 CANx_AM06L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B34 CANx_AM06H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B38 CANx_AM07L “Acceptance Mask Registers (L)” on
page 27-55

CANx Registers

A-26 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2B3C CANx_AM07H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B40 CANx_AM08L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B44 CANx_AM08H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B48 CANx_AM09L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B4C CANx_AM09H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B50 CANx_AM10L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B54 CANx_AM10H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B58 CANx_AM11L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B5C CANx_AM11H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B60 CANx_AM12L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B64 CANx_AM12H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B68 CANx_AM13L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B6C CANx_AM13H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B70 CANx_AM14L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B74 CANx_AM14H “Acceptance Mask Registers (H)” on
page 27-53

Table A-9. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

ADSP-BF54x Blackfin Processor Hardware Reference A-27

System MMR Assignments

0xFFC0 2B78 CANx_AM15L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B7C CANx_AM15H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B80 CANx_AM16L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B84 CANx_AM16H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B88 CANx_AM17L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B8C CANx_AM17H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B90 CANx_AM18L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B94 CANx_AM18H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2B98 CANx_AM19L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2B9C CANx_AM19H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BA0 CANx_AM20L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BA4 CANx_AM20H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BA8 CANx_AM21L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BAC CANx_AM21H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BB0 CANx_AM22L “Acceptance Mask Registers (L)” on
page 27-55

Table A-9. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

CANx Registers

A-28 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2BB4 CANx_AM22H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BB8 CANx_AM23L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BBC CANx_AM23H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BC0 CANx_AM24L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BC4 CANx_AM24H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BC8 CANx_AM25L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BCC CANx_AM25H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BD0 CANx_AM26L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BD4 CANx_AM26H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BD8 CANx_AM27L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BDC CANx_AM27H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BE0 CANx_AM28L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BE4 CANx_AM28H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BE8 CANx_AM29L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BEC CANx_AM29H “Acceptance Mask Registers (H)” on
page 27-53

Table A-9. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

ADSP-BF54x Blackfin Processor Hardware Reference A-29

System MMR Assignments

Since each CANx mailbox has an identical MMR set, with fixed offsets
from the base address associated with that mailbox, it is convenient to
view the MMR information as provided in Table A-10 and Table A-11.
Table A-10 identifies the base address of each CANx mailbox, as well as
the register prefix that identifies mailbox. Table A-11 then lists the regis-
ter suffix and provides its offset from the base address.

As an example, the CANx mailbox 2 length register is called
CAN_MB02_LENGTH, and its address is 0xFFC0 2C50. Likewise, the CAN
mailbox 17 timestamp register is called CAN_MB17_TIMESTAMP, and its
address is 0xFFC0 2E34.

0xFFC0 2BF0 CANx_AM30L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BF4 CANx_AM30H “Acceptance Mask Registers (H)” on
page 27-53

0xFFC0 2BF8 CANx_AM31L “Acceptance Mask Registers (L)” on
page 27-55

0xFFC0 2BFC CANx_AM31H “Acceptance Mask Registers (H)” on
page 27-53

Table A-10. CANx Mailbox Base Addresses

Mailbox Identifier MMR Base Address Register Prefix

0 0xFFC0 2C00 CANx_MB00_

1 0xFFC0 2C20 CANx_MB01_

2 0xFFC0 2C40 CANx_MB02_

3 0xFFC0 2C60 CANx_MB03_

4 0xFFC0 2C80 CANx_MB04_

Table A-9. CANx Mailbox Acceptance Mask Registers (Cont’d)

Memory-mapped
Address

Register Name See Section

CANx Registers

A-30 ADSP-BF54x Blackfin Processor Hardware Reference

5 0xFFC0 2CA0 CANx_MB05_

6 0xFFC0 2CC0 CANx_MB06_

7 0xFFC0 2CE0 CANx_MB07_

8 0xFFC0 2D00 CANx_MB08_

9 0xFFC0 2D20 CANx_MB09_

10 0xFFC0 2D40 CANx_MB10_

11 0xFFC0 2D60 CANx_MB11_

12 0xFFC0 2D80 CANx_MB12_

13 0xFFC0 2DA0 CANx_MB13_

14 0xFFC0 2DC0 CANx_MB14_

15 0xFFC0 2DE0 CANx_MB15_

16 0xFFC0 2E00 CANx_MB16_

17 0xFFC0 2E20 CANx_MB17_

18 0xFFC0 2E40 CANx_MB18_

19 0xFFC0 2E60 CANx_MB19_

20 0xFFC0 2E80 CANx_MB20_

21 0xFFC0 2EA0 CANx_MB21_

22 0xFFC0 2EC0 CANx_MB22_

23 0xFFC0 2EE0 CANx_MB23_

24 0xFFC0 2F00 CANx_MB24_

25 0xFFC0 2F20 CANx_MB25_

26 0xFFC0 2F40 CANx_MB26_

27 0xFFC0 2F60 CANx_MB27_

28 0xFFC0 2F80 CANx_MB28_

Table A-10. CANx Mailbox Base Addresses (Cont’d)

Mailbox Identifier MMR Base Address Register Prefix

ADSP-BF54x Blackfin Processor Hardware Reference A-31

System MMR Assignments

29 0xFFC0 2FA0 CANx_MB29_

30 0xFFC0 2FC0 CANx_MB30_

31 0xFFC0 2FE0 CANx_MB31_

Table A-11. CANx Mailbox Register Suffix and Offset

Register Suffix Offset From
Base

See Page

DATA0 0x00 “Mailbox Word 0 Register” on page 27-71

DATA1 0x04 “Mailbox Word 1 Register” on page 27-69

DATA2 0x08 “Mailbox Word 2 Register” on page 27-67

DATA3 0x0C “Mailbox Word 3 Register” on page 27-65

LENGTH 0x10 “Mailbox Word 4 Register” on page 27-63

TIMESTAMP 0x14 “Mailbox Word 5 Register” on page 27-61

ID0 0x18 “Mailbox Word 6 Register” on page 27-59

ID1 0x1C “Mailbox Word 7 Register” on page 27-57

Table A-10. CANx Mailbox Base Addresses (Cont’d)

Mailbox Identifier MMR Base Address Register Prefix

SPI0 Controller Registers

A-32 ADSP-BF54x Blackfin Processor Hardware Reference

SPI0 Controller Registers
SPI0 controller registers (0xFFC0 0500 – 0xFFC0 05FF) are listed in
Table A-12.

SPI1 Controller Registers
SPI1 controller registers are listed in Table A-12.

Table A-12. SPI0 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 0500 SPI0_CTL “SPI Control Register” on page 28-45

0xFFC0 0504 SPI0_FLG “SPIx Flag Register” on page 28-46

0xFFC0 0508 SPI0_STAT “SPI Status Register” on page 28-48

0xFFC0 050C SPI0_TDBR “SPI Transmit Data Buffer Register” on
page 28-48

0xFFC0 0510 SPI0_RDBR “SPI Receive Data Buffer Register” on
page 28-49

0xFFC0 0514 SPI0_BAUD “SPI Baud Rate Register” on page 28-44

0xFFC0 0518 SPI0_SHADOW “SPI RDBR Shadow Register” on page 28-49

Table A-13. SPI0 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 2300 SPI1_CTL “SPI Control Register” on page 28-45

0xFFC0 2304 SPI1_FLG “SPIx Flag Register” on page 28-46

0xFFC0 2308 SPI1_STAT “SPI Status Register” on page 28-48

ADSP-BF54x Blackfin Processor Hardware Reference A-33

System MMR Assignments

TWI Registers
The TWI controller has 16 registers described in the following sections.

Table A-14 lists the TWI registers.

0xFFC0 230C SPI1_TDBR “SPI Transmit Data Buffer Register” on
page 28-48

0xFFC0 2310 SPI1_RDBR “SPI Receive Data Buffer Register” on
page 28-49

0xFFC0 2314 SPI1_BAUD “SPI Baud Rate Register” on page 28-44

0xFFC0 2318 SPI1_SHADOW “SPI RDBR Shadow Register” on page 28-49

Table A-14. TWIx Registers

TWI0
Memory-mapped
Registers

Register Name Function

0xFFC0 0700 TWIx_CLKDIV SCL clock divider registers
on page 29-37

0xFFC0 0704 TWIx_CONTROL TWI control registers
on page 29-36

0xFFC0 0708 TWIx_SLAVE_CTL TWI slave mode control registers
on page 29-37

0xFFC0 070C TWIx_SLAVE_ADDR TWI slave mode address registers
on page 29-39

0xFFC0 0710 TWIx_SLAVE_STAT TWI slave mode status registers
on page 29-40

0xFFC0 0714 TWIx_MASTER_CTL TWI master mode control registers
on page 29-41

Table A-13. SPI0 Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

TWI Registers

A-34 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 0718 TWIx_MASTER_ADDR TWI master mode address registers
on page 29-44

0xFFC0 071C TWIx_MASTER_STAT TWI master mode status registers
on page 29-45

0xFFC0 0720 TWIx_INT_STAT TWI interrupt status registers
on page 29-51

0xFFC0 0724 TWIx_INT_MASK TWI interrupt mask registers
on page 29-48

0xFFC0 0728 TWIx_FIFO_CTL TWI FIFO control registers
on page 29-45

0xFFC0 072C TWIx_FIFO_STAT TWI FIFO status registers
on page 29-47

0xFFC0 0780 TWIx_XMT_DATA8 TWI FIFO transmit data single-byte
registers on page 29-52

0xFFC0 0784 TWIx_XMT_DATA16 TWI FIFO transmit data double-byte
registers on page 29-53

0xFFC0 0788 TWIx_RCV_DATA8 TWI FIFO receive data single-byte
registers on page 29-54

0xFFC0 078C TWIx_RCV_DATA16 TWI FIFO receive data double-byte
registers on page 29-55

Table A-14. TWIx Registers (Cont’d)

TWI0
Memory-mapped
Registers

Register Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-35

System MMR Assignments

SPORT0 Controller Registers
SPORT0 controller registers (0xFFC0 0800 – 0xFFC0 08FF) are listed in
Table A-15.

Table A-15. SPORT0 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 0800 SPORT0_TCR1 “SPORTx Transmit Configuration 1 Register”
on page 30-51

0xFFC0 0804 SPORT0_TCR2 “SPORTx Transmit Configuration 2 Register”
on page 30-52

0xFFC0 0808 SPORT0_TCLKDIV “SPORTx Transmit Serial Clock Divider Reg-
ister” on page 30-68

0xFFC0 080C SPORT0_TFSDIV “SPORTx Transmit Frame Sync Divider Reg-
ister” on page 30-69

0xFFC0 0810 SPORT0_TX “SPORTx Transmit Data Register” on
page 30-63

0xFFC0 0818 SPORT0_RX “SPORTx Receive Data Register” on
page 30-65

0xFFC0 0820 SPORT0_RCR1 “SPORTx Receive Configuration 1 Register”
on page 30-57

0xFFC0 0824 SPORT0_RCR2 “SPORTx Receive Configuration 2 Register”
on page 30-58

0xFFC0 0828 SPORT0_RCLKDIV “SPORTx Receive Serial Clock Divider Regis-
ter” on page 30-68

0xFFC0 082C SPORT0_RFSDIV “SPORTx Receive Frame Sync Divider Regis-
ter” on page 30-69

0xFFC0 0830 SPORT0_STAT “SPORTx Status Register” on page 30-67

0xFFC0 0834 SPORT0_CHNL “SPORTx Current Channel Register” on
page 30-72

SPORT0 Controller Registers

A-36 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 0838 SPORT0_MCMC1 “SPORTx Multichannel Configuration Regis-
ter 1” on page 30-70

0xFFC0 083C SPORT0_MCMC2 “SPORTx Multichannel Configuration Regis-
ter 2” on page 30-71

0xFFC0 0840 SPORT0_MTCS0 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 0844 SPORT0_MTCS1 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 0848 SPORT0_MTCS2 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 084C SPORT0_MTCS3 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 0850 SPORT0_MRCS0 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 0854 SPORT0_MRCS1 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 0858 SPORT0_MRCS2 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 085C SPORT0_MRCS3 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

Table A-15. SPORT0 Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-37

System MMR Assignments

SPORT1 Controller Registers
SPORT1 controller registers (0xFFC0 0900 – 0xFFC0 09FF) are listed in
Table A-16.

Table A-16. SPORT 1 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 0900 SPORT1_TCR1 “SPORTx Transmit Configuration 1 Register”
on page 30-51

0xFFC0 0904 SPORT1_TCR2 “SPORTx Transmit Configuration 2 Register”
on page 30-52

0xFFC0 0908 SPORT1_TCLKDIV “SPORTx Transmit Serial Clock Divider Reg-
ister” on page 30-68

0xFFC0 090C SPORT1_TFSDIV “SPORTx Transmit Frame Sync Divider Reg-
ister” on page 30-69

0xFFC0 0910 SPORT1_TX “SPORTx Transmit Data Register” on
page 30-63

0xFFC0 0918 SPORT1_RX “SPORTx Receive Data Register” on
page 30-65

0xFFC0 0920 SPORT1_RCR1 “SPORTx Receive Configuration 1 Register”
on page 30-57

0xFFC0 0924 SPORT1_RCR2 “SPORTx Receive Configuration 2 Register”
on page 30-58

0xFFC0 0928 SPORT1_RCLKDIV “SPORTx Receive Serial Clock Divider Regis-
ter” on page 30-68

0xFFC0 092C SPORT1_RFSDIV “SPORTx Receive Frame Sync Divider Regis-
ter” on page 30-69

0xFFC0 0930 SPORT1_STAT “SPORTx Status Register” on page 30-67

0xFFC0 0934 SPORT1_CHNL “SPORTx Current Channel Register” on
page 30-72

SPORT1 Controller Registers

A-38 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 0938 SPORT1_MCMC1 “SPORTx Multichannel Configuration Regis-
ter 1” on page 30-70

0xFFC0 093C SPORT1_MCMC2 “SPORTx Multichannel Configuration Regis-
ter 2” on page 30-71

0xFFC0 0940 SPORT1_MTCS0 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 0944 SPORT1_MTCS1 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 0948 SPORT1_MTCS2 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 094C SPORT1_MTCS3 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 0950 SPORT1_MRCS0 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 0954 SPORT1_MRCS1 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 0958 SPORT1_MRCS2 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 095C SPORT1_MRCS3 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

Table A-16. SPORT 1 Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-39

System MMR Assignments

SPORT2 Controller Registers
SPORT2 controller registers are listed in Table A-17.

Table A-17. SPORT2 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 2500 SPORT2_TCR1 “SPORTx Transmit Configuration 1 Register”
on page 30-51

0xFFC0 2504 SPORT2_TCR2 “SPORTx Transmit Configuration 2 Register”
on page 30-52

0xFFC0 2508 SPORT2_TCLKDIV “SPORTx Transmit Serial Clock Divider Reg-
ister” on page 30-68

0xFFC0 250C SPORT2_TFSDIV “SPORTx Transmit Frame Sync Divider Reg-
ister” on page 30-69

0xFFC0 2510 SPORT2_TX “SPORTx Transmit Data Register” on
page 30-63

0xFFC0 2518 SPORT2_RX “SPORTx Receive Data Register” on
page 30-65

0xFFC0 2520 SPORT2_RCR1 “SPORTx Receive Configuration 1 Register”
on page 30-57

0xFFC0 2524 SPORT2_RCR2 “SPORTx Receive Configuration 2 Register”
on page 30-58

0xFFC0 2528 SPORT2_RCLKDIV “SPORTx Receive Serial Clock Divider Regis-
ter” on page 30-68

0xFFC0 252C SPORT2_RFSDIV “SPORTx Receive Frame Sync Divider Regis-
ter” on page 30-69

0xFFC0 2530 SPORT2_STAT “SPORTx Status Register” on page 30-67

0xFFC0 2534 SPORT2_CHNL “SPORTx Current Channel Register” on
page 30-72

0xFFC0 2538 SPORT2_MCMC1 “SPORTx Multichannel Configuration Regis-
ter 1” on page 30-70

SPORT2 Controller Registers

A-40 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 253C SPORT2_MCMC2 “SPORTx Multichannel Configuration Regis-
ter 2” on page 30-71

0xFFC0 2540 SPORT2_MTCS0 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 2544 SPORT2_MTCS1 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 2548 SPORT2_MTCS2 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 254C SPORT2_MTCS3 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 2550 SPORT2_MRCS0 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 2554 SPORT2_MRCS1 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 2558 SPORT2_MRCS2 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 095C SPORT2_MRCS3 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

Table A-17. SPORT2 Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-41

System MMR Assignments

SPORT3 Controller Registers
SPORT3 controller registers (0xFFC0 0900 – 0xFFC0 09FF) are listed in
Table A-18.

Table A-18. SPORT3 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 2600 SPORT3_TCR1 “SPORTx Transmit Configuration 1 Register”
on page 30-51

0xFFC0 2604 SPORT3_TCR2 “SPORTx Transmit Configuration 2 Register”
on page 30-52

0xFFC0 2608 SPORT3_TCLKDIV “SPORTx Transmit Serial Clock Divider Reg-
ister” on page 30-68

0xFFC0 260C SPORT3_TFSDIV “SPORTx Transmit Frame Sync Divider Reg-
ister” on page 30-69

0xFFC0 2610 SPORT3_TX “SPORTx Transmit Data Register” on
page 30-63

0xFFC0 2618 SPORT3_RX “SPORTx Receive Data Register” on
page 30-65

0xFFC0 2620 SPORT3_RCR1 “SPORTx Receive Configuration 1 Register”
on page 30-57

0xFFC0 2624 SPORT3_RCR2 “SPORTx Receive Configuration 2 Register”
on page 30-58

0xFFC0 2628 SPORT3_RCLKDIV “SPORTx Receive Serial Clock Divider Regis-
ter” on page 30-68

0xFFC0 262C SPORT3_RFSDIV “SPORTx Receive Frame Sync Divider Regis-
ter” on page 30-69

0xFFC0 2630 SPORT3_STAT “SPORTx Status Register” on page 30-67

0xFFC0 2634 SPORT3_CHNL “SPORTx Current Channel Register” on
page 30-72

SPORT3 Controller Registers

A-42 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0 2638 SPORT3_MCMC1 “SPORTx Multichannel Configuration Regis-
ter 1” on page 30-70

0xFFC0 263C SPORT3_MCMC2 “SPORTx Multichannel Configuration Regis-
ter 2” on page 30-71

0xFFC0 2640 SPORT3_MTCS0 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 2644 SPORT3_MTCS1 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 2648 SPORT3_MTCS2 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 264C SPORT3_MTCS3 “SPORTx Multichannel Transmit Select Reg-
isters” on page 30-75

0xFFC0 2650 SPORT3_MRCS0 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 2654 SPORT3_MRCS1 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 2658 SPORT3_MRCS2 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

0xFFC0 265C SPORT3_MRCS3 “SPORTx Multichannel Receive Select Regis-
ters” on page 30-73

Table A-18. SPORT3 Controller Registers (Cont’d)

Memory-mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-43

System MMR Assignments

UART0 Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF) are listed in
Table A-19.

Table A-19. UART0 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 0400 UART0_DLL “UART Divisor Latch Registers” on
page 31-48

0xFFC0 0404 UART0_DLH “UART Divisor Latch Registers” on
page 31-48

0xFFC0 0408 UART0_GCTL “UART Global Control Registers” on
page 31-50

0xFFC0 040C UART0_LCR “UART Line Control Registers” on page 31-30

0xFFC0 0410 UART0_MCR “UART Modem Control Registers” on
page 31-33

0xFFC0 0414 UART0_LSR “UART Line Status Registers” on page 31-36

0xFFC0 0418 UART0_MSR “UART Modem Control Registers” on
page 31-33

0xFFC0 041C UART0_SCR “UART Scratch Registers” on page 31-49

0xFFC0 0420 UART0_IER_SET “UART Interrupt Enable Set Registers” on
page 31-44

0xFFC0 0424 UART0_IER_CLEAR “UART Interrupt Enable Clear Registers” on
page 31-45

0xFFC0 0428 UART0_THR “UART Transmit Holding Registers” on
page 31-41

0xFFC0 042C UART0_RBR “UART Receive Buffer Registers” on
page 31-42

UART1 Controller Registers

A-44 ADSP-BF54x Blackfin Processor Hardware Reference

UART1 Controller Registers
UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF) are listed in
Table A-20.

Table A-20. UART1 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 0200 UART1_DLL “UART Divisor Latch Registers” on
page 31-48

0xFFC0 0204 UART1_DLH “UART Divisor Latch Registers” on
page 31-48

0xFFC0 0208 UART1_GCTL “UART Global Control Registers” on
page 31-50

0xFFC0 020C UART1_LCR “UART Line Control Registers” on page 31-30

0xFFC0 0210 UART1_MCR “UART Modem Control Registers” on
page 31-33

0xFFC0 0214 UART1_LSR “UART Line Status Registers” on page 31-36

0xFFC0 0218 UART1_MSR “UART Modem Control Registers” on
page 31-33

0xFFC0 021C UART1_SCR “UART Scratch Registers” on page 31-49

0xFFC0 0220 UART1_IER_SET “UART Interrupt Enable Set Registers” on
page 31-44

0xFFC0 0224 UART1_IER_CLEAR “UART Interrupt Enable Clear Registers” on
page 31-45

0xFFC0 0228 UART1_THR “UART Transmit Holding Registers” on
page 31-41

0xFFC0 022C UART1_RBR “UART Receive Buffer Registers” on
page 31-42

ADSP-BF54x Blackfin Processor Hardware Reference A-45

System MMR Assignments

UART2 Controller Registers
UART2 controller registers are listed in Table A-21. UART2 is not avail-
able on the ADSP-BF542 and ADSP-BF544 processors.

Table A-21. UART2 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 2100 UART2_DLL “UART Divisor Latch Registers” on
page 31-48

0xFFC0 2104 UART2_DLH “UART Divisor Latch Registers” on
page 31-48

0xFFC0 2108 UART2_GCTL “UART Global Control Registers” on
page 31-50

0xFFC0 210C UART2_LCR “UART Line Control Registers” on page 31-30

0xFFC0 2110 UART2_MCR “UART Modem Control Registers” on
page 31-33

0xFFC0 2114 UART2_LSR “UART Line Status Registers” on page 31-36

0xFFC0 2118 UART2_MSR “UART Modem Control Registers” on
page 31-33

0xFFC0 211C UART2_SCR “UART Scratch Registers” on page 31-49

0xFFC0 2120 UART2_IER_SET “UART Interrupt Enable Set Registers” on
page 31-44

0xFFC0 2124 UART2_IER_CLEAR “UART Interrupt Enable Clear Registers” on
page 31-45

0xFFC0 2128 UART2_THR “UART Transmit Holding Registers” on
page 31-41

0xFFC0 212C UART2_RBR “UART Receive Buffer Registers” on
page 31-42

UART3 Controller Registers

A-46 ADSP-BF54x Blackfin Processor Hardware Reference

UART3 Controller Registers
UART3 controller registers are listed in Table A-22.

Table A-22. UART3 Controller Registers

Memory-mapped
Address

Register Name See Page

0xFFC0 3100 UART3_DLL “UART Divisor Latch Registers” on
page 31-48

0xFFC0 3104 UART3_DLH “UART Divisor Latch Registers” on
page 31-48

0xFFC0 3108 UART3_GCTL “UART Global Control Registers” on
page 31-50

0xFFC0 310C UART3_LCR “UART Line Control Registers” on page 31-30

0xFFC0 3110 UART3_MCR “UART Modem Control Registers” on
page 31-33

0xFFC0 3114 UART3_LSR “UART Line Status Registers” on page 31-36

0xFFC0 3118 UART3_MSR “UART Modem Control Registers” on
page 31-33

0xFFC0 311C UART3_SCR “UART Scratch Registers” on page 31-49

0xFFC0 3120 UART3_IER_SET “UART Interrupt Enable Set Registers” on
page 31-44

0xFFC0 3124 UART3_IER_CLEAR “UART Interrupt Enable Clear Registers” on
page 31-45

0xFFC0 3128 UART3_THR “UART Transmit Holding Registers” on
page 31-41

0xFFC0 312C UART3_RBR “UART Receive Buffer Registers” on
page 31-42

ADSP-BF54x Blackfin Processor Hardware Reference A-47

System MMR Assignments

USB OTG Registers
Descriptions and bit diagrams for each of these MMRs are provided in the
following sections. See Table A-23.

USB OTG Registers

A-48 ADSP-BF54x Blackfin Processor Hardware Reference

Table A-23. USB OTG Memory-Mapped Registers

Memory-mapped
Address

Name Function

0xFFC03C00 USB_FADDR USB function address register
on page 32-81

0xFFC03C04 USB_POWER USB power management register
on page 32-82

0xFFC03C08 USB_INTRTX USB transmit interrupt register
on page 32-85
for endpoint 0 and Tx endpoint 1 to 7

0xFFC03C0C USB_INTRRX USB receive interrupt register
on page 32-85
for Rx endpoints 1 to 7

0xFFC03C10 USB_INTRTXE USB transmit interrupt enable register
on page 32-86
for IntrTx

0xFFC03C14 USB_INTRRXE USB receive interrupt enable register
on page 32-88
for IntrRx

0xFFC03C18 USB_INTRUSB USB common interrupt register
on page 32-89

0xFFC03C1C USB_INTRUSBE USB common interrupt enable register
on page 32-90

0xFFC03C20 USB_FRAME USB frame number register
on page 32-91

0xFFC03C24 USB_INDEX USB index register
on page 32-91

0xFFC03C28 USB_TESTMODE USB test mode register
on page 32-93
(for Analog Devices internal use only)

0xFFC03C2C USB_GLOBINTR USB global interrupt register
on page 32-94

0xFFC03C30 USB_GLOBAL_CTL USB global control register
on page 32-95

ADSP-BF54x Blackfin Processor Hardware Reference A-49

System MMR Assignments

USB Packet Control – Indexed Registers

0xFFC03C40 USB_TX_MAX_PACKET USB Tx maximum packet register
on page 32-97

0xFFC03C44 USB_CSR0 USB control/status register
on page 32-98

0xFFC03C44 USB_TXCSR USB Tx control/status EPx register
on page 32-102

0xFFC03C48 USB_RX_MAX_PACKET USB Rxx maximum packet register
on page 32-107

0xFFC03C4C USB_RXCSR USB Rx control/status EPx register
on page 32-109t

0xFFC03C50 USB_COUNT0 USB count 0 register
on page 32-115

0xFFC03C50 USB_RXCOUNT USB Rx byte count EPx register
on page 32-116

0xFFC03C54 USB_TXTYPE USB Tx type register
on page 32-117

0xFFC03C58 USB_NAKLIMIT0 USB NAK 0 limit register
on page 32-117

0xFFC03C58 USB_TXINTERVAL USB Tx interval register
on page 32-118

0xFFC03C5C USB_RXTYPE USB Rx type register
on page 32-119

0xFFC03C60 USB_RXINTERVAL USB Rx interval register
on page 32-120

0xFFC03C68 USB_TXCOUNT USB Tx byte count EPx register
on page 32-121

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-50 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint FIFO Registers

0xFFC03C80 USB_EP0_FIFO USB endpoint FIFO 0 register

0xFFC03C88 USB_EP1_FIFO USB endpoint FIFO 1 register

0xFFC03C90 USB_EP2_FIFO USB endpoint FIFO 2 register

0xFFC03C98 USB_EP3_FIFO USB endpoint FIFO 30 register

0xFFC03CA0 USB_EP4_FIFO USB endpoint FIFO 4 register

0xFFC03CA8 USB_EP5_FIFO USB endpoint FIFO 5 register

0xFFC03CB0 USB_EP6_FIFO USB endpoint FIFO 6 register

0xFFC03CB8 USB_EP7_FIFO USB endpoint FIFO 7 register

USB OTG Control Registers

0xFFC03D00 USB_OTG_DEV_CTL USB OTG device control register
on page 32-122

0xFFC03D04 USB_OTG_VBUS_IRQ USB OTG VBUS interrupt register
on page 32-124

0xFFC03D08 USB_OTG_VBUS_MASK USB VBUS mask register
on page 32-126

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-51

System MMR Assignments

USB PHY Control Registers

0xFFC03D48 USB_LINKINFO USB link info register
on page 32-127

0xFFC03D4C USB_VPLEN USB VBUS pulse length register
on page 32-127

0xFFC03D50 USB_HS_EOF1 USB high-speed EOF 1 register
on page 32-128

0xFFC03D54 USB_FS_EOF1 USB full-speed EOF 1 register
on page 32-128

0xFFC03D58 USB_LS_EOF1 USB low-speed EOF 1 register
on page 32-129

0xFFC03DE0 USB_APHY_CNTRL USB APHY control 2 register
on page 32-130
(for Analog Devices internal use only)

0xFFC03DE4 USB_APHY_CALIB USB APHY calibration register
(for Analog Devices internal use only)

0xFFC03DE8 USB_APHY_CNTRL2 Used to prevent re-enumeration after the
processor goes into hibernate mode

0xFFC03DEC USB_PHY_TEST Register used for PHY and FIFO test fea-
tures (for Analog Devices internal use only)

0xFFC03DF0 USB_PLLOSC_CTRL USB PLL OSC control register
on page 32-132

0xFFC03DF4 USB_SRP_CLKDIV USB SRP clock divider register
on page 32-133

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-52 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 0 Control Registers

0xFFC03E00 USB_EP_NI0_TXMAXP Maximum packet size for host Tx
endpoint0

0xFFC03E04 USB_EP_NI0_TXCSR Control Status register for endpoint 0

0xFFC03E08 USB_EP_NI0_RXMAXP Maximum packet size for host Rx
endpoint0

0xFFC03E0C USB_EP_NI0_RXCSR Control Status register for host Rx
endpoint0

0xFFC03E10 USB_EP_NI0_RXCOUNT Number of bytes received in endpoint 0
FIFO

0xFFC03E14 USB_EP_NI0_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint0

0xFFC03E18 USB_EP_NI0
_TXINTERVAL

Sets the NAK response timeout on end-
point 0

0xFFC03E1C USB_EP_NI0_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint0

0xFFC03E20 USB_EP_NI0
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint0

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-53

System MMR Assignments

USB Endpoint 1 Control Registers

0xFFC03E28 USB_EP_NI0_TXCOUNT Number of bytes to be written to the
endpoint0 Tx FIFO

0xFFC03E40 USB_EP_NI1_TXMAXP Maximum packet size for host Tx
endpoint1

0xFFC03E44 USB_EP_NI1_TXCSR Control Status register for endpoint1

0xFFC03E48 USB_EP_NI1_RXMAXP Maximum packet size for host Rx
endpoint1

0xFFC03E4C USB_EP_NI1_RXCSR Control Status register for host Rx
endpoint1

0xFFC03E50 USB_EP_NI1_RXCOUNT Number of bytes received in endpoint1
FIFO

0xFFC03E54 USB_EP_NI1_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint1

0xFFC03E58 USB_EP_NI1
_TXINTERVAL

Sets the NAK response timeout on
endpoint1

0xFFC03E5C USB_EP_NI1_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint1

0xFFC03E60 USB_EP_NI1
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint1

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-54 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 2 Control Registers

0xFFC03E68 USB_EP_NI1_TXCOUNT Number of bytes to be written to the+H102
endpoint1 Tx FIFO

0xFFC03E80 USB_EP_NI2_TXMAXP Maximum packet size for host Tx
endpoint2

0xFFC03E84 USB_EP_NI2_TXCSR Control Status register for endpoint2

0xFFC03E88 USB_EP_NI2_RXMAXP Maximum packet size for host Rx
endpoint2

0xFFC03E8C USB_EP_NI2_RXCSR Control Status register for host Rx
endpoint2

0xFFC03E90 USB_EP_NI2_RXCOUNT Number of bytes received in endpoint2
FIFO

0xFFC03E94 USB_EP_NI2_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint2

0xFFC03E98 USB_EP_NI2
_TXINTERVAL

Sets the NAK response timeout on
endpoint2

0xFFC03E9C USB_EP_NI2_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint2

0xFFC03EA0 USB_EP_NI2
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint2

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-55

System MMR Assignments

USB Endpoint 3 Control Registers

0xFFC03EA8 USB_EP_NI2_TXCOUNT Number of bytes to be written to the
endpoint2 Tx FIFO

0xFFC03EC0 USB_EP_NI3_TXMAXP Maximum packet size for host Tx
endpoint3

0xFFC03EC4 USB_EP_NI3_TXCSR Control Status register for endpoint3

0xFFC03EC8 USB_EP_NI3_RXMAXP Maximum packet size for host Rx
endpoint3

0xFFC03ECC USB_EP_NI3_RXCSR Control Status register for host Rx
endpoint3

0xFFC03ED0 USB_EP_NI3_RXCOUNT Number of bytes received in endpoint3
FIFO

0xFFC03ED4 USB_EP_NI3_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint3

0xFFC03ED8 USB_EP_NI3
_TXINTERVAL

Sets the NAK response timeout on
endpoint3

0xFFC03EDC USB_EP_NI3_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint3

0xFFC03EE0 USB_EP_NI3
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint3

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-56 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 4 Control Registers

0xFFC03EE8 USB_EP_NI3_TXCOUNT Number of bytes to be written to the
H124endpoint3 Tx FIFO

0xFFC03F00 USB_EP_NI4_TXMAXP Maximum packet size for host Tx
endpoint4

0xFFC03F04 USB_EP_NI4_TXCSR Control Status register for endpoint4

0xFFC03F08 USB_EP_NI4_RXMAXP Maximum packet size for host Rx
endpoint4

0xFFC03F0C USB_EP_NI4_RXCSR Control Status register for host Rx
endpoint4

0xFFC03F10 USB_EP_NI4_RXCOUNT Number of bytes received in endpoint4
FIFO

0xFFC03F14 USB_EP_NI4_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint4

0xFFC03F18 USB_EP_NI4
_TXINTERVAL

Sets the NAK response timeout on
endpoint4

0xFFC03F1C USB_EP_NI4_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint4

0xFFC03F20 USB_EP_NI4
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint4

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-57

System MMR Assignments

USB Endpoint 5 Control Registers

0xFFC03F28 USB_EP_NI4_TXCOUNT Number of bytes to be written to the
endpoint4 Tx FIFO

0xFFC03F40 USB_EP_NI5_TXMAXP Maximum packet size for host Tx
endpoint5

0xFFC03F44 USB_EP_NI5_TXCSR Control Status register for endpoint5

0xFFC03F48 USB_EP_NI5_RXMAXP Maximum packet size for host Rx
endpoint5

0xFFC03F4C USB_EP_NI5_RXCSR Control Status register for host Rx
endpoint5

0xFFC03F50 USB_EP_NI5_RXCOUNT Number of bytes received in endpoint5
FIFO

0xFFC03F54 USB_EP_NI5_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint5

0xFFC03F58 USB_EP_NI5
_TXINTERVAL

Sets the NAK response timeout on
endpoint5

0xFFC03F5C USB_EP_NI5_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint5

0xFFC03F60 USB_EP_NI5
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint5

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-58 ADSP-BF54x Blackfin Processor Hardware Reference

USB Endpoint 6 Control Registers

0xFFC03F68 USB_EP_NI5_TXCOUNT Number of bytes to be written to the
H145endpoint5 Tx FIFO

0xFFC03F80 USB_EP_NI6_TXMAXP Maximum packet size for host Tx
endpoint6

0xFFC03F84 USB_EP_NI6_TXCSR Control Status register for endpoint6

0xFFC03F88 USB_EP_NI6_RXMAXP Maximum packet size for host Rx
endpoint6

0xFFC03F8C USB_EP_NI6_RXCSR Control Status register for host Rx
endpoint6

0xFFC03F90 USB_EP_NI6_RXCOUNT Number of bytes received in endpoint6
FIFO

0xFFC03F94 USB_EP_NI6_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint6

0xFFC03F98 USB_EP_NI6
_TXINTERVAL

Sets the NAK response timeout on
endpoint6

0xFFC03F9C USB_EP_NI6_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint6

0xFFC03FA0 USB_EP_NI6
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint6

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-59

System MMR Assignments

USB Endpoint 7 Control Registers

0xFFC03FA8 USB_EP_NI6_TXCOUNT Number of bytes to be written to the
endpoint6 Tx FIFO

0xFFC03FC0 USB_EP_NI7_TXMAXP Maximum packet size for host Tx
endpoint7

0xFFC03FC4 USB_EP_NI7_TXCSR Control Status register for endpoint7

0xFFC03FC8 USB_EP_NI7_RXMAXP Maximum packet size for host Rx
endpoint7

0xFFC03FCC USB_EP_NI7_RXCSR Control Status register for host Rx
endpoint7

0xFFC03FD0 USB_EP_NI7_RXCOUNT Number of bytes received in endpoint7
FIFO

0xFFC03FD4 USB_EP_NI7_TXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Tx endpoint7

0xFFC03FD8 USB_EP_NI7
_TXINTERVAL

Sets the NAK response timeout on
endpoint7

0xFFC03FDC USB_EP_NI7_RXTYPE Sets the transaction protocol and peripheral
endpoint number for the host Rx endpoint7

0xFFC03FF0 USB_EP_NI7
_RXINTERVAL

Sets the polling interval for interrupt and
isochronous transfers or the NAK response
timeout on bulk transfers for host Rx
endpoint7

0xFFC03FF8 USB_EP_NI7_TXCOUNT Number of bytes to be written to the
endpoint7 Tx FIFO

USB DMA Registers

0xFFC04000 USB_DMA_INTERRUPT USB DMA interrupt register
on page 32-134

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-60 ADSP-BF54x Blackfin Processor Hardware Reference

USB Channel 0 Config Registers

0xFFC04004 USB_DMA0CONTROL USB DMA control register 0
on page 32-135

0xFFC04008 USB_DMA0ADDR
LOW

USB DMA address low register 0
on page 32-137

0xFFC0400C USB_DMA0ADDR
HIGH

USB DMA address high register 0
on page 32-138

0xFFC04010 USB_DMA0COUNT
LOW

USB DMA count low register 0
on page 32-139

0xFFC04014 USB_DMA0COUNT
HIGH

USB DMA count high register 0
on page 32-140

USB Channel 1 Config Registers

0xFFC04024 USB_DMA1CONTROL USB DMA control register 1
on page 32-135

0xFFC04028 USB_DMA1ADDR
LOW

USB DMA address low register 1
on page 32-137

0xFFC0402C USB_DMA1ADDR
HIGH

USB DMA address high register 1
on page 32-138

0xFFC04030 USB_DMA1COUNT
LOW

USB DMA count low register 1
on page 32-139

0xFFC04034 USB_DMA1COUNT
HIGH

USB DMA count high register 1
on page 32-140

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-61

System MMR Assignments

USB Channel 2 Config Registers

0xFFC04044 USB_DMA2CONTROL USB DMA control register 2
on page 32-135

0xFFC04048 USB_DMA2ADDR
LOW

USB DMA address low register 2
on page 32-137

0xFFC0404C USB_DMA2ADDR
HIGH

USB DMA address high register 2
on page 32-138

0xFFC04050 USB_DMA2COUNT
LOW

USB DMA count low register 2
on page 32-139

0xFFC04054 USB_DMA2COUNT
HIGH

USB DMA count high register 2
on page 32-140

USB Channel 3 Config Registers

0xFFC04064 USB_DMA3CONTROL USB DMA control register 3
on page 32-135

0xFFC04068 USB_DMA3ADDR
LOW

USB DMA address low register 3
on page 32-137

0xFFC0406C USB_DMA3ADDR
HIGH

USB DMA address high register 3
on page 32-138

0xFFC04070 USB_DMA3COUNT
LOW

USB DMA count low register 3
on page 32-139

0xFFC04074 USB_DMA3COUNT
HIGH

USB DMA count high register 3
on page 32-140

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-62 ADSP-BF54x Blackfin Processor Hardware Reference

USB Channel 4 Config Registers

0xFFC04084 USB_DMA4CONTROL USB DMA control register 4
on page 32-135

0xFFC04088 USB_DMA4ADDR
LOW

USB DMA address low register 4
on page 32-137

0xFFC0408C USB_DMA4ADDR
HIGH

USB DMA address high register 4
on page 32-138

0xFFC04090 USB_DMA4COUNT
LOW

USB DMA count low register 4
on page 32-139

0xFFC04094 USB_DMA4COUNT
HIGH

USB DMA count high register 4
on page 32-140

USB Channel 5 Config Registers

0xFFC040A4 USB_DMA5CONTROL USB DMA control register 5
on page 32-135

0xFFC040A8 USB_DMA5ADDR
LOW

USB DMA address low register 5
on page 32-137

0xFFC040AC USB_DMA5ADDR
HIGH

USB DMA address high register 5
on page 32-138

0xFFC040B0 USB_DMA5COUNT
LOW

USB DMA count low register 5
on page 32-139

0xFFC040B4 USB_DMA5COUNT
HIGH

USB DMA count high register 5
on page 32-140

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-63

System MMR Assignments

USB Channel 6 Config Registers

0xFFC040C4 USB_DMA6CONTROL USB DMA control register 6
on page 32-135

0xFFC040C8 USB_DMA6ADDR
LOW

USB DMA address low register 6
on page 32-137

0xFFC040CC USB_DMA6ADDR
HIGH

USB DMA address high register 6
on page 32-138

0xFFC040D0 USB_DMA6COUNT
LOW

USB DMA count low register 6
on page 32-139

0xFFC040D4 USB_DMA6COUNT
HIGH

USB DMA count high register 6
on page 32-140

USB Channel 7 Config Registers

0xFFC040E4 USB_DMA7CONTROL USB DMA control register 7
on page 32-135

0xFFC040E8 USB_DMA7ADDR
LOW

USB DMA address low register 7
on page 32-137

0xFFC040EC USB_DMA7ADDR
HIGH

USB DMA address high register 7
on page 32-138

0xFFC040F0 USB_DMA7COUNT
LOW

USB DMA count low register 7
on page 32-139

0xFFC040F4 USB_DMA7COUNT
HIGH

USB DMA count high register 7
on page 32-140

Table A-23. USB OTG Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Name Function

USB OTG Registers

A-64 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference B-1

B TEST FEATURES

This chapter discusses the test features of the processor and includes the
following sections:

• “JTAG Standard” on page B-1

• “Boundary-Scan Architecture” on page B-3

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
boundary-scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

JTAG Standard

B-2 ADSP-BF54x Blackfin Processor Hardware Reference

The test logic consists of a boundary-scan register and other building
blocks. The test logic is accessed through a Test Access Port (TAP).

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Private ADI JTAG emulation functionality has some modified
behavior dependent on the access privileges associated with the
state of the Secure State Machine operating mode. This is to ensure
that sensitive information and processing performed within Secure
Entry Mode and Secure Mode will not be compromised through
JTAG. For more information about private ADI JTAG emulation
functionality when security features are used, see the “Security”
chapter in the ADSP-BF54x Blackfin Processor Hardware Reference.

ADSP-BF54x Blackfin Processor Hardware Reference B-3

Test Features

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table B-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An Instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Figure B-1 shows the state diagram for the TAP controller.

Table B-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out

Boundary-Scan Architecture

B-4 ADSP-BF54x Blackfin Processor Hardware Reference

Note:

• The TAP controller enters the test-logic-reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the test-logic-reset state when TRST is
asynchronously asserted.

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Figure B-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

ADSP-BF54x Blackfin Processor Hardware Reference B-5

Test Features

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table B-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Figure B-2 shows the instruction bit scan ordering for the paths shown in
Table B-2.

Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the boundary-scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

Table B-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass

IDCODE 00010 Device Identification

Boundary-Scan Architecture

B-6 ADSP-BF54x Blackfin Processor Hardware Reference

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

Figure B-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Device Identification Register

ADSP-BF54x Blackfin Processor Hardware Reference B-7

Test Features

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

IDCODE – Binary Code 00010

The IDCODE instruction selects the device identification register to be con-
nected to TDI and TDO. This register allows identification of the device
through the JTAG TAP.

Boundary-Scan Register
The boundary-scan register is selected by the EXTEST and SAMPLE/PRELOAD
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.

Boundary-Scan Architecture

B-8 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference I-1

I INDEX

Symbols
, 21-69
'A' or 'B' device indicator (B_DEVICE)

bit, 32-122, 32-124
'B' or 'A' device indicator (B_DEVICE)

bit, 32-122, 32-124
µ-law companding, 30-26, 30-31

A
AAIF bit, 27-27, 27-52
AAIM bit, 27-27, 27-50
AAIS bit, 27-27, 27-51
AAn bit, 27-80
ABO bit, 27-46
abort acknowledge interrupt, CAN, 27-27
acceptance mask filtering, CAN, 27-18
acceptance mask register (CAN_AMxxH),

27-53
acceptance mask register (CAN_AMxxL),

27-55
access denied interrupt, CAN, 27-27
access to unimplemented address interrupt,

CAN, 27-27
ACKE bit, 27-89
active low/high frame syncs, serial port,

30-35
active mode, 20-33
Active Mode (ACTIVE) bit, 21-13
ACTS bit, 31-33
ADCs, connecting to, 30-2
ADIF bit, 27-27, 27-52

ADIM bit, 27-27, 27-50
ADIS bit, 27-27, 27-51
advanced technology attachment packet

interface, 24-1
A-law companding, 30-26, 30-31
All Bypass-MXVR Disabled Mode, 21-12
Allocation Table, 21-57
Allocation Table Updated (ATU) interrupt

event, 21-33
Allocation Table Updated interrupt enable,

21-45
alternate frame sync mode, 30-38
alternate timing, serial port, 30-37
AMC, 20-15
AME bit, 27-57
AMIDE bit, 27-53
ANAK bit, 29-15, 29-45
AP Data field, 21-129
AP Destination Address, 21-128
application data, loading, 20-35
AP Priority, 21-128
APRCEEN, 21-48
APREN, 21-48
APROFEN, 21-48
APRPEEN, 21-48
AP Source Address, 21-129
APTCEN, 21-48
APTSEN, 21-48
arbitration

TWI, 29-8
ARTS bit, 31-33
asynchronous controller, 20-15

Index

I-2 ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Packet Arbitrating (APARB)
bit, 21-22

Asynchronous Packet Continuation
(APCONT) bit, 21-27

Asynchronous Packet Receive Buffer
(APRB), 21-77

Asynchronous Packet Receive Buffer Entry
Field Offsets, 21-130

Asynchronous Packet Receive Buffer Entry
x (APRBEx) bits, 21-79

Asynchronous Packet Receive Buffer
Overflow (APROF) interrupt event,
21-41

Asynchronous Packet Receive Buffer
Overflow interrupt enable, 21-45,
21-48

Asynchronous Packet Receive CRC Error
(APRCE) interrupt event, 21-42

Asynchronous Packet Receive CRC Error
interrupt enable, 21-45, 21-48

Asynchronous Packet Received (APR) bit,
21-23

Asynchronous Packet Received (APR)
interrupt event, 21-41

Asynchronous Packet Received interrupt
enable, 21-48

Asynchronous Packet Receive Enable
(APRXEN) bit, 21-17

Asynchronous Packet Receive Packet Error
(APRPE) interrupt event, 21-42

Asynchronous Packet Receive Packet Error
interrupt enable, 21-46, 21-48

Asynchronous Packet Receiving (APRX)
bit, 21-23

Asynchronous Packet Reception, 21-129
Asynchronous Packet Transmission,

21-126
Asynchronous Packet Transmit Buffer

(APTB), 21-77

Asynchronous Packet Transmit Buffer
Busy (APBSY) bit, 21-22

Asynchronous Packet Transmit Buffer
Field Offsets, 21-127

Asynchronous Packet Transmit Buffer
Successfully Cancelled (APTC)
interrupt event, 21-42

Asynchronous Packet Transmit Buffer
Successfully Cancelled interrupt
enable, 21-48

Asynchronous Packet Transmit Buffer
Successfully Sent (APTS) interrupt
event, 21-42

Asynchronous Packet Transmit Buffer
Successfully Sent interrupt enable,
21-48

Asynchronous Packet Transmitting
(APTX) bit, 21-22

asynchronous serial communications, 31-6
ATA interface, 24-1
ATAPI

ATAPI Signals Summary, 24-3
host DMA state M=machine, 24-13
host ultra DMA command protocol

transfers, 24-16
PIO data-In state machine, 24-10
PIO data-put protocol state machine,

24-7
power-on and hardware reset protocol,

24-20
summary of IDE/ATA standards, 24-78

ATAPI_ADDR (ATAPI address line
status) bits, 24-60

ATAPI address line status
(ATAPI_ADDR) bits, 24-60

ATAPI chip select 0 line status
(ATAPI_CS0N) bit, 24-60

ATAPI chip select 1 line status
(ATAPI_CS1N) bit, 24-60

ADSP-BF54x Blackfin Processor Hardware Reference I-3

Index

ATAPI_CONTROL (ATAPI control)
register, 24-48, 24-50, A-16

ATAPI_CS0N (ATAPI chip select 0 line
status) bit, 24-60

ATAPI_CS1N (ATAPI chip select 1 line
status) bit, 24-60

ATAPI_DASP (device DASP to host line
status) bit, 24-60

ATAPI_DEV_ADDR (ATAPI device
register address) register, 24-48,
24-53, A-16

ATAPI device I/O registers, 24-69
ATAPI device register address

(ATAPI_DEV_ADDR) register,
24-48, 24-53, A-16

ATAPI device register receive data
(ATAPI_DEV_RXBUF) register,
24-48, 24-55, A-16

ATAPI device register write data
(ATAPI_DEV_TXBUF) register,
24-48, 24-54, A-16

ATAPI_DEV_INT (device interrupt
status) bit, 24-58

ATAPI_DEV_INT_MASK (device
interrupt mask) bit, 24-56

ATAPI_DEV_RXBUF (ATAPI device
register receive data) register, 24-48,
24-55, A-16

ATAPI_DEV_TXBUF (ATAPI device
register write data) register, 24-48,
24-54, A-16

ATAPI_DIORN (ATAPI read line status)
bit, 24-60

ATAPI_DIOWN (ATAPI write line
status) bit, 24-60

ATAPI_DMAACKN (ATAPI DMA
acknowledge line status) bit, 24-60

ATAPI DMA acknowledge line status
(ATAPI_DMAACKN) bit, 24-60

ATAPI_DMAREQ (ATAPI DMA request
line status) bit, 24-60

ATAPI DMA request line status
(ATAPI_DMAREQ) bit, 24-60

ATAPI_DMA_TFRCNT (ATAPI DMA
transfer count) register, 24-49, 24-63,
A-16

ATAPI DMA transfer count
(ATAPI_DMA_TFRCNT) register,
24-49, 24-63, A-16

ATAPI_HOST_TERM (host termination)
bit, 24-61

ATAPI host terminate
(ATAPI_TERMINATE) register,
24-48, 24-61, A-16

ATAPI interface, 24-1
ATAPI interrupt mask

(ATAPI_INT_MASK) register,
24-48, 24-56, A-16

ATAPI interrupt status
(ATAPI_INT_STATUS) register,
24-48, 24-58, A-16

ATAPI_INT_MASK (ATAPI interrupt
mask) register, 24-48, 24-56, A-16

ATAPI_INTR (device interrupt to host
line status) bit, 24-60

ATAPI_INT_STATUS (ATAPI interrupt
status) register, 24-48, 24-58, A-16

ATAPI_IORDY (ATAPI IORDY line
status) bit, 24-60

ATAPI IORDY line status
(ATAPI_IORDY) bit, 24-60

ATAPI IORDY line status
(UDMAOUT_CSTATE) bits, 24-61

ATAPI_LINE_STATUS (ATAPI line
status) register, 24-48, 24-60, A-16

ATAPI line status
(ATAPI_LINE_STATUS) register,
24-48, 24-60, A-16

Index

I-4 ADSP-BF54x Blackfin Processor Hardware Reference

ATAPI MDMA timing 0
(ATAPI_MULTI_TIM_0) register,
24-49, 24-66, A-17

ATAPI MDMA timing 1
(ATAPI_MULTI_TIM_1) register,
24-49, 24-66, A-17

ATAPI MDMA timing 2
(ATAPI_MULTI_TIM_2) register,
24-49, 24-67, A-17

ATAPI_MULTI_TIM_0 (ATAPI MDMA
timing 0) register, 24-49, 24-66, A-17

ATAPI_MULTI_TIM_1 (ATAPI MDMA
timing 1) register, 24-49, 24-66, A-17

ATAPI_MULTI_TIM_2 (ATAPI MDMA
timing 2) register, 24-49, 24-67, A-17

ATAPI_PIO_TFRCNT (ATAPI PIO
transfer count) register, 24-48, 24-62,
A-16

ATAPI_PIO_TIM_0 (ATAPI PIO timing
0) register, 24-49, 24-65, A-17

ATAPI_PIO_TIM_1 (ATAPI PIO timing
1) register, 24-49, 24-65, A-17

ATAPI PIO timing 0
(ATAPI_PIO_TIM_0) register,
24-49, 24-65, A-17

ATAPI PIO timing 1
(ATAPI_PIO_TIM_1) register,
24-49, 24-65, A-17

ATAPI PIO transfer count
(ATAPI_PIO_TFRCNT) register,
24-48, 24-62, A-16

ATAPIPI status (ATAPIPI_STATUS)
register, 24-63

ATAPI read line status (ATAPI_DIORN)
bit, 24-60

ATAPI registers, 24-48, A-16
ATAPI register transfer timing 0

(ATAPI_REG_TIM_0) register,
24-49, 24-64, A-17

ATAPI_REG_TIM_0 (ATAPI register
transfer timing 0) register, 24-49,
24-64, A-17

ATAPI_SM_STATE (ATAPI state
machine status) register, 24-48,
24-61, A-16

ATAPI standards reference, 24-74
ATAPI state machine status

(ATAPI_SM_STATE) register,
24-48, 24-61, A-16

ATAPI_STATUS (ATAPI status) register,
24-52, 24-53, 24-54, 24-55, 24-59,
24-60, 24-61, 24-62, 24-63, 24-64,
24-65, 24-66, 24-67, 24-68, 24-69

ATAPI status (ATAPI_STATUS) register,
24-52, 24-53, 24-54, 24-55, 24-59,
24-60, 24-61, 24-62, 24-63, 24-64,
24-65, 24-66, 24-67, 24-68, 24-69

ATAPI_STATUS register, 24-48, 24-52,
A-16

ATAPI_TERMINATE (ATAPI host
terminate) register, 24-48, 24-61,
A-16

ATAPI transfer length
(ATAPI_XFER_LEN) register,
24-48, 24-59, A-16

ATAPI_UDMAIN_TFRCNT (ATAPI
UDMA transfer count) register,
24-49, 24-63, A-16

ATAPI_UDMAOUT_TFRCNT (ATAPI
UDMAOUT transfer count) register,
24-49, 24-64, A-17

ATAPI UDMAOUT transfer count
(ATAPI_UDMAOUT_TFRCNT)
register, 24-49, 24-64, A-17

ATAPI UDMA timing 0
(ATAPI_ULTRA_TIM_0) register,
24-49, 24-67, A-17

ADSP-BF54x Blackfin Processor Hardware Reference I-5

Index

ATAPI UDMA timing 1
(ATAPI_ULTRA_TIM_1) register,
24-49, 24-68, A-17

ATAPI UDMA timing 2
(ATAPI_ULTRA_TIM_2) register,
24-49, 24-68, A-17

ATAPI UDMA timing 3
(ATAPI_ULTRA_TIM_3) register,
24-49, 24-69, A-17

ATAPI UDMA transfer count
(ATAPI_UDMAIN_TFRCNT)
register, 24-49, 24-63, A-16

ATAPI_ULTRA_TIM_0 (ATAPI UDMA
timing 0) register, 24-49, 24-67, A-17

ATAPI_ULTRA_TIM_1 (ATAPI UDMA
timing 1) register, 24-49, 24-68, A-17

ATAPI_ULTRA_TIM_2 (ATAPI UDMA
timing 2) register, 24-49, 24-68, A-17

ATAPI_ULTRA_TIM_3 (ATAPI UDMA
timing 3) register, 24-49, 24-69, A-17

ATAPI write line status
(ATAPI_DIOWN) bit, 24-60

ATAPI_XFER_LEN (ATAPI transfer
length) register, 24-48, 24-59, A-16

ATUEN, 21-45
autobaud detection, 31-21
Autobuffer Mode, 21-63, 21-71, 21-74,

21-76
AUTOCLEAR_R (RxPktRdy autoclear

enable) bit, 32-109
AUTOREQ_RH (autoset ReqPkt) bit,

32-109
autoset ReqPkt (AUTOREQ_R) bit,

32-109
AUTOSET_T (TxPktRdy autoset enable)

bit, 32-102
auto-transmit mode, CAN, 27-16

B
bable or reset indicator

(RESET_OR_BABLE_B) bit, 32-89
bable or reset IRQ enable

(RESET_OR_BABLE_BE) bit,
32-90

BASEID[10:0] field, 27-53, 27-57
baud rate

SPI, 28-23
UART, 31-9, 31-20

baud rate[15:0] field, 28-44
BAUD_RATE (baud rate) bits, 28-44
baud rate (BAUD_RATE) bits, 28-44
BCZEN, 21-46
B_DEVICE ('A' or 'B' device indicator)

bit, 32-122, 32-124
BEF bit, 27-89
BI (break indicator) bit, 31-37
BI (break interrupt) bit, 31-36
binary decode, B-5
Biphase Mark Coding Error (BMERR)

interrupt event, 21-39
Biphase Mark Coding Error interrupt

enable, 21-46
bit order, selecting, 30-30
BL2UEN, 21-45
Blackfin processor family

I/O memory space, 20-10
memory architecture, 20-6

BLANKGEN (ITU output with internal
blanking) bit, 26-82

Block Counter Zero (BCZ) interrupt event,
21-39

Block Counter Zero interrupt enable,
21-46

Index

I-6 ADSP-BF54x Blackfin Processor Hardware Reference

block diagrams
CAN, 27-4
EPPI, 26-5
processor, 20-5
SPI, 28-3
SPORT, 30-7
TWI, 29-3
UART, 31-3, 31-12

Block Locked (BLOCK) bit, 21-25
Block Locked to Unlocked (BL2U)

interrupt event, 21-35
Block Unlocked to Locked (BU2L)

interrupt event, 21-35
BMERREN, 21-46
BOIF bit, 27-28, 27-52
BOIM bit, 27-28, 27-50
BOIS bit, 27-28, 27-51
boost PLL amplitude (TM_PLL_VCO)

bit, 32-132
booting, 20-35 to ??
boot kernel, 20-35
boot ROM

internal, 20-35
boot stream, 20-35
boundary-scan architecture, B-3
boundary-scan register, B-7
broadcast mode, 28-12, 28-19, 28-20
BRP[9:0] field, 27-11, 27-48
BU2LEN, 21-45
Buffer start address register, Initialization,

21-120
BUFRDERR bit, 29-14, 29-45
BUFWRERR bit, 29-14, 29-45
BURST_MODE (DMA burst mode

selection) bits, 32-135
BUSBUSY bit, 29-13, 29-45
BUSERROR (DMA bus error) bit, 32-135
buses

bandwidth, 20-4
and peripherals, 20-4

bus-off interrupt, CAN, 27-28
bus standard, I2C, 20-16
bypass divisor (CLKDIV_BYPASS) bit,

23-23
BYPASS instruction, B-7
bypass register, B-7

C
CAN, 27-1 to 27-97

acceptance mask filtering, 27-18
acceptance mask registers, 27-6
acknowledge error, 27-31
architecture, 27-5
auto-transmit mode, 27-16
bit error, 27-30
bit timing, 27-11
block diagram, 27-4
bus interface, 27-2
clock, 27-11
code examples, 27-91
configuration mode, 27-10, 27-13
CRC error, 27-31
data field filtering, 27-20
debug and test modes, 27-35
disabling mailboxes, 27-23
enabling mailboxes, 27-93
error frames, 27-29, 27-31
error levels, 27-33
errors, 27-30
event counter, 27-29
extended frame, 27-10
features, 27-2
form error, 27-31
global interrupts, 27-26
hibernate state, 27-40
identifier frame, 27-10
initializing, 27-91
initializing mailboxes, 27-93
initiating transfers, 27-95
interrupts, 27-25, 27-95

ADSP-BF54x Blackfin Processor Hardware Reference I-7

Index

lost arbitration, 27-29
and low power designs, 27-40
low power features, 27-39
mailbox area registers, 27-6
mailbox control, 27-7
mailboxes, 27-5
mailbox interrupts, 27-25
mailbox RAM, 27-5
message buffers, 27-5
message received, 27-29
message stored, 27-30
multiplexing of signals, 27-3
nominal bit rate, 27-12
nominal bit time, 27-11
overload frame, 27-29
propagation segment, 27-12
protocol basics, 27-8
receive message lost, 27-29
receive message rejected, 27-29
receive operation, 27-16
receive operation flow chart, 27-19
registers, table, 27-41
remote frames, 27-22
re-synchronization, 27-12
retransmission, 27-14
sampling, 27-12
single shot transmission, 27-15
sleep mode, 27-40
software reset, 27-13
standard frame, 27-9
stuff error, 27-31
suspend mode, 27-39
test modes, 27-38
time quantum, 27-11
time stamps, 27-21
transceiver interconnection, 27-2
transmission, 27-9
transmission aborted, 27-29
transmission succeeded, 27-29
transmit operation, 27-13

transmit operation flow chart, 27-15
universal counter as event counter, 27-29
valid message, 27-30
wakeup from hibernate, 27-40
warnings, 27-30
watchdog mode, 27-21

CAN_AMxxH (acceptance mask register),
27-53

CAN_AMxxL (acceptance mask register),
27-42, 27-55

CAN_CEC (CAN error counter register),
27-37

Cancel Asynchronous Packet Transmission
(CANCELAP) bit, 21-78

Cancel Control Message Transmission
(CANCELCM) bit, 21-85

CAN_CLOCK (CAN clock register),
27-11

CAN controller abort acknowledge
(CANx_AA1) register 1, 27-80

CAN controller abort acknowledge
(CANx_AA2) register 2, 27-80

CAN controller acceptance mask
(CANx_AMxxH) registers, 27-53

CAN controller acceptance mask
(CANx_AMxxL) registers, 27-53

CAN controller clock (CANx_CLOCK)
register, 27-48

CAN controller debug (CANx_DEBUG)
register, 27-48

CAN controller error counter
(CANx_CEC) register, 27-89

CAN controller error counter warning level
(CANx_EWR) register, 27-90

CAN controller error status (CANx_ESR)
register, 27-89

CAN controller global interrupt flag
(CANx_GIF) register, 27-52

CAN controller global interrupt mask
(CANx_GIM) register, 27-50

Index

I-8 ADSP-BF54x Blackfin Processor Hardware Reference

CAN controller global interrupt status
(CANx_GIS) register, 27-51

CAN controller global status
(CANx_STATUS) register, 27-47

CAN controller interrupt pending
(CANx_INTR) register, 27-49

CAN controller mailbox configuration
(CANx_MC1) register 1, 27-73

CAN controller mailbox configuration
(CANx_MC2) register 2, 27-73

CAN controller mailbox direction
(CANx_MD1) register 1, 27-74

CAN controller mailbox direction
(CANx_MD2) register 2, 27-74

CAN controller mailbox interrupt mask
(CANx_MBIM1) register 1, 27-84

CAN controller mailbox interrupt mask
(CANx_MBIM2) register 2, 27-84

CAN controller mailbox receive interrupt
flag (CANx_MBRIF1) register 1,
27-86

CAN controller mailbox receive interrupt
flag (CANx_MBRIF2) register 2,
27-86

CAN controller mailbox transmit interrupt
flag (CANx_MBTIF1) register 1,
27-85

CAN controller mailbox transmit interrupt
flag (CANx_MBTIF2) register 2,
27-85

CAN controller mailbox word 0
(CANx_MBxx_DATA0) register,
27-65

CAN controller mailbox word 1
(CANx_MBxx_DATA1) register,
27-65

CAN controller mailbox word 2
(CANx_MBxx_DATA2) register,
27-65

CAN controller mailbox word 3
(CANx_MBxx_DATA3) register,
27-65

CAN controller mailbox word 4
(CANx_MBxx_LENGTH) register,
27-63

CAN controller mailbox word 5
(CANx_MBxx_TIMESTAMP)
register, 27-61

CAN controller mailbox word 6
(CANx_MBxx_ID0) register, 27-59

CAN controller mailbox word 7
(CANx_MBxx_ID1) register, 27-57

CAN controller master control
(CANx_CONTROL) register, 27-46

CAN controller overwrite protection/single
shot transmission (CANx_OPSS1)
register 1, 27-77

CAN controller overwrite protection/single
shot transmission (CANx_OPSS2)
register 2, 27-77

CAN controller receive message lost
(CANx_RML1) register 1, 27-76

CAN controller receive message lost
(CANx_RML2) register 2, 27-76

CAN controller receive message pending
(CANx_RMP1) register 1, 27-75

CAN controller receive message pending
(CANx_RMP2) register 2, 27-75

CAN controller remote frame handling
(CANx_RFH1) register 1, 27-83

CAN controller remote frame handling
(CANx_RFH2) register 2, 27-83

CAN controller temporary mailbox disable
feature (CANx_MBTD) register,
27-82

CAN controller timing (CANx_TIMING)
register, 27-49

CAN controller transmission acknowledge
(CANx_TA1) register 1, 27-81

ADSP-BF54x Blackfin Processor Hardware Reference I-9

Index

CAN controller transmission acknowledge
(CANx_TA2) register 2, 27-81

CAN controller transmission request reset
(CANx_TRR1) register 1, 27-79

CAN controller transmission request reset
(CANx_TRR2) register 2, 27-79

CAN controller transmission request set
(CANx_TRS1) register 1, 27-78

CAN controller transmission request set
(CANx_TRS2) register 2, 27-78

CAN controller universal counter
(CANx_UCCNT) register, 27-88

CAN controller universal counter
configuration mode
(CANx_UCCNF) register, 27-87

CAN controller universal counter
reload/capture (CANx_UCRC)
register, 27-88

CAN_DEBUG (CAN debug register),
27-35, 27-36

CAN_EWR (CAN controller error counter
warning level) register, 27-45

CAN_MBxx_DATA0 (mailbox word 0
register), 27-42

CAN_MBxx_DATA1 (mailbox word 1
register), 27-42

CAN_MBxx_DATA2 (mailbox word 2
register), 27-42

CAN_MBxx_DATA registers, 27-6
CAN_MBxx_ID0 (mailbox word 6

register), 27-6, 27-42
CAN_MBxx_ID1 (mailbox word 7

register), 27-6
CAN_MBxx_LENGTH (mailbox word 4

register), 27-6
CAN_MBxx_TIMESTAMP (mailbox

word 5 register), 27-6
CAN_TIMING (CAN timing register),

27-11

CANx_AA1 (CAN controller abort
acknowledge) register 1, 27-80

CANx_AA2 (CAN controller abort
acknowledge) register 2, 27-80

CANx_AAx (CAN controller abort
acknowledge) registers, 27-43

CANx_AMxxH (CAN controller
acceptance mask) registers, 27-42,
27-53

CANx_AMxxL (CAN controller
acceptance mask) registers, 27-42,
27-53

CANx_CEC (CAN controller error
counter) register, 27-45, 27-89

CANx_CLOCK (CAN controller clock)
register, 27-42, 27-48

CANx_CONTROL master control
register, 27-41, 27-46

CANx_DEBUG CAN controller debug)
register, 27-41, 27-48

CANx_ESR (CAN controller error status)
register, 27-45, 27-89

CANx_EWR (CAN controller error
counter warning level) register, 27-90

CANx_GIF (CAN controller global
interrupt flag) register, 27-42, 27-52

CANx_GIM (CAN controller global
interrupt mask) register, 27-42, 27-50

CANx_GIS (CAN controller global
interrupt status) register, 27-42, 27-51

CANx_INTR (CAN controller interrupt
pending) register, 27-42, 27-49

CANx_MBIM1 (CAN controller mailbox
interrupt mask) register 1, 27-84

CANx_MBIM2 (CAN controller mailbox
interrupt mask) register 2, 27-84

CANx_MBIMx (CAN controller mailbox
interrupt mask) registers, 27-44

CANx_MBRIF1 (CAN controller mailbox
receive interrupt flag) register 1, 27-86

Index

I-10 ADSP-BF54x Blackfin Processor Hardware Reference

CANx_MBRIF2 (CAN controller mailbox
receive interrupt flag) register 2, 27-86

CANx_MBRIFx (CAN controller mailbox
receive interrupt flag) registers, 27-44

CANx_MBTD (CAN controller
temporary mailbox disable feature)
register, 27-43, 27-82

CANx_MBTIF1 (CAN controller mailbox
transmit interrupt flag) register 1,
27-85

CANx_MBTIF2 (CAN controller mailbox
transmit interrupt flag) register 2,
27-85

CANx_MBTIFx (CAN controller mailbox
transmit interrupt flag) registers,
27-44

CANx_MBxx_DATA0 (CAN controller
mailbox word 0) register, 27-42,
27-65

CANx_MBxx_DATA1 (CAN controller
mailbox word 1) register, 27-42,
27-65

CANx_MBxx_DATA2 (CAN controller
mailbox word 2) register, 27-42,
27-65

CANx_MBxx_DATA3 (CAN controller
mailbox word 3) register, 27-42,
27-65

CANx_MBxx_ID0 (CAN controller
mailbox word 6) register, 27-42,
27-59

CANx_MBxx_ID1 (CAN controller
mailbox word 7) register, 27-42,
27-57

CANx_MBxx_LENGTH (CAN controller
mailbox word 4) register, 27-42,
27-63

CANx_MBxx_TIMESTAMP (CAN
controller mailbox word 5) register,
27-42, 27-61

CANx_MC1 (CAN controller mailbox
configuration) register 1, 27-73

CANx_MC2 (CAN controller mailbox
configuration) register 2, 27-73

CANx_MCx (CAN controller mailbox
configuration) registers, 27-43

CANx_MD1 (CAN controller mailbox
direction) register 1, 27-74

CANx_MD2 (CAN controller mailbox
direction) register 2, 27-74

CANx_MDx (CAN controller mailbox
direction) registers, 27-43

CANx_OPSS1 (CAN controller overwrite
protection/single shot transmission)
register 1, 27-77

CANx_OPSS2 (CAN controller overwrite
protection/single shot transmission)
register 2, 27-77

CANx_OPSSx (CAN controller overwrite
protection/single shot transmission)
registers, 27-43

CANx_RFH1 (CAN controller remote
frame handling) register 1, 27-83

CANx_RFH2 (CAN controller remote
frame handling) register 2, 27-83

CANx_RFHx (CAN controller remote
frame handling enable) registers,
27-44

CANx_RML1 (CAN controller receive
message lost) register 1, 27-76

CANx_RML2 (CAN controller receive
message lost) register 2, 27-76

CANx_RMLx (CAN controller receive
message lost) registers, 27-43

CANx_RMP1 (CAN controller receive
message pending) register 1, 27-75

CANx_RMP2 (CAN controller receive
message pending) register 2, 27-75

CANx_RMPx (CAN controller receive
message pending) registers, 27-43

ADSP-BF54x Blackfin Processor Hardware Reference I-11

Index

CANxRX bit, 27-49
CANxRX pin, 27-8
CANx_STATUS (CAN controller global

status) register, 27-41, 27-47
CANx_TA12 (CAN controller

transmission acknowledge) register 2,
27-81

CANx_TA1 (CAN controller transmission
acknowledge) register 1, 27-81

CANx_TAx (CAN controller transmit
acknowledge) registers, 27-43

CANx_TIMING (CAN controller timing)
register, 27-42, 27-49

CANx_TRR1 (CAN controller
transmission request reset) register 1,
27-79

CANx_TRR2 (CAN controller
transmission request reset) register 2,
27-79

CANx_TRRx (CAN controller transmit
request reset) registers, 27-43

CANx_TRS1 (CAN controller
transmission request set) register 1,
27-78

CANx_TRS2 (CAN controller
transmission request set) register 2,
27-78

CANx_TRSx (CAN controller transmit
request set) registers, 27-43

CANxTX bit, 27-49
CANxTX pin, 27-8
CANx_UCCNF (CAN controller

universal counter configuration mode)
register, 27-44, 27-87

CANx_UCCNT (CAN controller
universal counter) register, 27-44,
27-88

CANx_UCRC (CAN controller universal
counter reload/capture) register,
27-44, 27-88

CCA bit, 27-47
CCITT G.711 specification, 30-31
CCR bit, 27-46
CDE bit, 27-35, 27-48
CFIFO_ERR (chroma FIFO error) bit,

26-89
CFIFO_ERR (Chroma FIFO Overflow

Error) bit, 24-50, 24-56, 24-57
Channel-In-Use (CIUx) bit, 21-58
channels

defined, serial, 30-24
serial port TDM, 30-25
serial select offset, 30-24

charge VBUS end interrupt enable
(CHRG_VBUS_END_ENA) bit,
32-126

charge VBUS start interrupt enable
(CHRG_VBUS_START_ENA) bit,
32-126

CHNL[9:0] field, 30-71, 30-72
CHRG_VBUS_END_ENA (charge

VBUS end interrupt enable) bit,
32-126

CHRG_VBUS_START_ENA (charge
VBUS start interrupt enable) bit,
32-126

chroma FIFO error (CFIFO_ERR) bit,
26-89

Chroma FIFO Overflow Error
(CFIFO_ERR) bit, 24-50, 24-56,
24-57

circuit board testing, B-1, B-5
CLEAR_DATATOGGLE_R (reset

endpoint data toggle) bit, 32-109
CLEAR_DATATOGGLE_T (reset

endpoint data toggle) bit, 32-102
CLKDIV_BYPASS (bypass divisor) bit,

23-23
CLKDIV (clock divisor) bits, 32-133
CLKDIV (SD_CLK divisor) bits, 23-23

Index

I-12 ADSP-BF54x Blackfin Processor Hardware Reference

CLK_E (SD_CLK bus clock enable) bit,
23-23

CLKHI[7:0] field, 29-37
CLKIN, 20-32
CLKLOW[7:0] field, 29-37
CLKS_EN (clocks enable) bit, 23-37
clock

clock signals, 20-32
frequency for SPORT, 30-68
SPI clock signal, 28-5

clock divide modulus register, 30-68
clock divisor (CLKDIV) bits, 32-133
clock phase, SPI, 28-17, 28-19
clock phase (CPHA) bit, 28-45
clock polarity, SPI, 28-17
clock polarity (CPOL) bit, 28-45
clock rate

SPORT, 30-2
clocks enable (CLKS_EN) bit, 23-37
CM Allocate Channel List field, 21-144
CM Allocate Number Free field, 21-143
CM Allocate Number Requested field,

21-141
CM Allocate Status, 21-143
CM Allocate Status Encodings, 21-143
CMD_ACT (CMD active) bit, 23-30
CMD active (CMD_ACT) bit, 23-30
CMD active mask (CMD_ACT_MASK)

bit, 23-33
CMD_ACT_MASK (CMD active mask)

bit, 23-33
CM Data field, 21-135
CMD_CRC_FAIL (CMD CRC fail) bit,

23-30
CMD_CRC_FAIL_MASK bit, 23-33
CMD_CRC_FAIL_STAT bit, 23-32
CM De-Allocate Connection Label field,

21-145
CM De-Allocate Status, 21-147
CM De-Allocate Status Encodings, 21-147

CMD_E (command enable) bit, 23-24
CM Destination Address, 21-132
CMD_IDX (command index) bits, 23-24
CMD_INT_E (command interrupt) bit,

23-24
CMD_L_RSP (long response) bit, 23-24
CMD_PEND_E (command pending) bit,

23-24
CMD_RESP_END (CMD response end)

bit, 23-30
CMD_RESP_END_MASK (CMD

response end mask) bit, 23-33
CMD_RESP_END_STAT (CMD

response end status) bit, 23-32
CMD response end (CMD_RESP_END)

bit, 23-30
CMD response end mask

(CMD_RESP_END_MASK) bit,
23-33

CMD response end status
(CMD_RESP_END_STAT) bit,
23-32

CMD_RSP (response) bit, 23-24
CMD_SENT bit, 23-30
CMD_SENT_MASK bit, 23-33
CMD_SENT_STAT bit, 23-32
CMD_TIMEOUT (CMD time out) bit,

23-30
CMD_TIMEOUT_MASK bit, 23-33
CMD_TIMEOUT_STAT, 23-32
CM GetSource Channel field, 21-148
CM Message Type Encodings, 21-133
CM Message Type field, 21-133
CM Priority, 21-132
CM Read Address field, 21-137
CMREN, 21-46
CM Source Address, 21-132
CMTCEN, 21-46
CM Transmission Status, 21-134
CM Transmission Status field, 21-133

ADSP-BF54x Blackfin Processor Hardware Reference I-13

Index

CMTSEN, 21-46
CM Write Address field, 21-139
CM Write Data field, 21-139
CM Write Length field, 21-139
CNOS (tuning of DPHY clocks) bits,

32-130
codecs, connecting to, 30-2
COLDRV_SCALE (column driver scale

value) bits, 22-16
column driver scale value

(COLDRV_SCALE) bits, 22-16
column enable width (KPAD_COLEN)

bits, 22-10
columns value pressed (KPAD_COL) bits,

22-16
command enable (CMD_E) bit, 23-24
command index (CMD_IDX) bits, 23-24
command interrupt (CMD_INT_E) bit,

23-24
command pending (CMD_PEND_E) bit,

23-24
commands

transfer initiate, 28-27
companding, 30-17, 30-26

defined, 30-31
lengths supported, 30-31
multichannel operations, 30-26

configuration
CAN, 27-13
SPORT, 30-12

CONN_B (connection indicator) bit,
32-89

CONN_BE (connection IRQ enable) bit,
32-90

connection indicator (CONN_B) bit,
32-89

connection IRQ enable (CONN_BE) bit,
32-90

Connection Label, 21-144
Connection Label (CLx) field, 21-57

Control Message Arbitrating (CMARB)
bit, 21-23

Control Message Interrupt, 21-30
Control Message Receive Buffer, 21-15
Control Message Receive Buffer (CMRB),

21-84
Control Message Receive Buffer Entry

Field Offsets, 21-152
Control Message Receive Buffer Entry

Offsets, 21-152
Control Message Receive Buffer Entry x

(CMRBEx) bits, 21-85
Control Message Receive Buffer Overflow

(CMROF) interrupt event, 21-37
Control Message Receive Buffer Overflow

interrupt enable, 21-46
Control Message Received (CMR) bit,

21-24
Control Message Received (CMR)

interrupt event, 21-37
Control Message Received interrupt enable,

21-46
Control Message Reception, 21-150
Control Message Transmission, 21-131
Control Message Transmit Buffer Busy

(CMBSY) bit, 21-23
Control Message Transmit Buffer

(CMTB), 21-83
Control Message Transmit Buffer

Successfully Cancelled (CMTC)
interrupt event, 21-38

Control Message Transmit Buffer
Successfully Cancelled interrupt
enable, 21-46

Control Message Transmit Buffer
Successfully Sent (CMTS) interrupt
event, 21-38

Control Message Transmit Buffer
Successfully Sent interrupt enable,
21-46

Index

I-14 ADSP-BF54x Blackfin Processor Hardware Reference

Control Message Transmitting (CMTX)
bit, 21-24

conventions, -xlviii
core clock, See CCLK
Count Position (COUNTPOSx) field,

21-68
CPHA bit, 28-45
CPHA (clock phase) bit, 28-45
CPOL bit, 28-45
CPOL (clock polarity) bit, 28-45
CRCE bit, 27-89
CRC error, 21-136
CrossCore software, 20-36
crystal oscillator pins, 21-3
CSA bit, 27-39, 27-47
CSR bit, 27-39, 27-46
CSR_HBR (USB hibernate signal) bit,

32-130
CSR_RSTD (USB pu/pd restore control)

bit, 32-130
CTS (clear to send) bit, 31-39
customer support, -xlv

D
data block end (DAT_BLK_END) bit,

23-30
data block end mask

(DAT_BLK_END_MASK) bit,
23-33

data block end status
(DAT_BLK_END_STAT) bit, 23-32

data corruption, avoiding with SPI, 28-19
DATA_COUNT (data count) bits, 23-29
data count (DATA_COUNT) bits, 23-29
DATAEND (data end indicator) bit, 32-98
data end (DAT_END) bit, 23-30
data end indicator (DATAEND) bit, 32-98
DATAERROR_R (load error indicator)

bit, 32-109
data field byte 0[7:0] field, 27-65

data field byte 1[7:0] field, 27-65
data field byte 2[7:0] field, 27-67
data field byte 3[7:0] field, 27-67
data field byte 4[7:0] field, 27-69
data field byte 5[7:0] field, 27-69
data field byte 6[7:0] field, 27-71
data field byte 7[7:0] field, 27-71
data field filtering, CAN, 27-20
data formats, SPORT, 30-30
DATA_LENGTH (data length) bits,

23-27
data length (DATA_LENGTH) bits,

23-27
data move, serial port operations, 30-40
data packet in FIFO indicator

(FIFO_NOT_EMPTY_T) bit,
32-102

data packet in FIFO indicator
(RXPKTRDY_R) bit, 32-109

data packet in FIFO indicator
(TXPKTRDY) bit, 32-98

data packet in FIFO indicator
(TXPKTRDY_T) bit, 32-102

data packet receive indicator
(RXPKTRDY) bit, 32-98

data sampling, serial, 30-35
data transfer block length

(DTX_BLK_LGTH) bits, 23-27
data transfer direction (DTX_DIR) bit,

23-27
data transfer DMA enable

(DTX_DMA_E) bit, 23-27
data transfer enable (DTX_E) bit, 23-27
data transfer mode (DTX_MODE) bit,

23-27
data transfers

SPI, 28-20
data word, serial data formats, 30-61
DAT_BLK_END (data block end) bit,

23-30

ADSP-BF54x Blackfin Processor Hardware Reference I-15

Index

DAT_BLK_END_MASK (data block end
mask) bit, 23-33

DAT_BLK_END_STAT (data block end
status) bit, 23-32

DAT_CRC_FAIL (data CRC fail) bit,
23-30

DAT_CRC_FAIL_MASK bit, 23-33
DAT_CRC_FAIL_STAT bit, 23-32
DAT_END (data end) bit, 23-30
DAT_END_MASK bit, 23-33
DAT_END_STAT bit, 23-32
DAT_TIMEOUT (data time out) bit,

23-30
DAT_TIMEOUT_MASK bit, 23-33
DAT_TIMEOUT_STAT bit, 23-32
DBON_SCALE (debounce scale value)

bits, 22-16
DCNT[7:0] field, 29-41, 29-42
DDR SDRAM controller, 20-14
debounce scale value (DBON_SCALE)

bits, 22-16
debugging, 20-37
DEC bit, 27-37, 27-48
deep sleep mode, 20-34
Delay Register Updated (DRU) interrupt

event, 21-32
Delay Register Updated interrupt enable,

21-45
DERREN, 21-46
detected FIFO not empty

(FIFO_FULL_R) bit, 32-109
DEV_ADDR (device address) bit, 24-53
development tools, 20-36
device address (DEV_ADDR) bit, 24-53
device DASP to host line status

(ATAPI_DASP) bit, 24-60
device interrupt mask

(ATAPI_DEV_INT_MASK) bit,
24-56

device interrupt status
(ATAPI_DEV_INT) bit, 24-58

device interrupt to host line status
(ATAPI_INTR) bit, 24-60

device receive buffer (REG_RXBUFFER)
bits, 24-55

device terminate multi-DMA transfer
interrupt mask
(MULTI_TERM_MASK) bit, 24-56

device terminate multi-DMA transfer
interrupt status
(MULTI_TERM_INT) bit, 24-58

device terminate ultra-DMA-in transfer
interrupt mask
(UDMAIN_TERM_MASK) bit,
24-56

device terminate ultra-DMA-in transfer
interrupt status
(UDMAIN_TERM_INT) bit, 24-58

device terminate ultra-DMA-out transfer
interrupt mask
(UDMAOUT_TERM_MASK) bit,
24-56

device terminate ultra-DMA-out transfer
interrupt status
(UDMAOUT_TERM_INT) bit,
24-58

device transmit buffer (REG_TXBUFFER)
bits, 24-54

DEV_RST (device reset) bit, 24-50
DFC[15:0] field, 27-59
DF (divide CLKIN by 2) bit, 32-132
DFM[15:0] field, 27-55
DIL bit, 27-37, 27-48
DIOR/DIOW asserted pulsewidth (TD)

bits, 24-66
DIOR/DIOW pulsewidth (

T2_REG_PIO) bits, 24-65
DIOW data hold (T4_REG) bits, 24-65
DIR (direction) bit, 26-82

Index

I-16 ADSP-BF54x Blackfin Processor Hardware Reference

DIRECTION (DMA Tx or Rx selection)
bit, 32-135

direct memory access, See DMA
disable nyet handshake (DISNYET) bit,

32-109
discharge VBUS end interrupt enable

(DISCHRG_VBUS_END_ENA)
bit, 32-126

discharge VBUS start interrupt enable
(DISCHRG_VBUS_START_ENA)
bit, 32-126

DISCHRG_VBUS_END_ENA
(discharge VBUS end interrupt
enable) bit, 32-126

DISCHRG_VBUS_START_ENA
(discharge VBUS start interrupt
enable) bit, 32-126

DISCON_B (disconnect/session end
indicator) bit, 32-89

DISCON_BE (disconnect/session end
IRQ enable) bit, 32-90

disconnect/session end indicator
(DISCON_B) bit, 32-89

disconnect/session end IRQ enable
(DISCON_BE) bit, 32-90

DISNYET (disable nyet handshake) bit,
32-109

DITFS bit, 30-39, 30-51, 30-55, 30-66
divide CLKIN by 2 (DF) bit, 32-132
divisor latch high byte[15:8] field, 31-48
divisor latch low byte[7:0] field, 31-48
divisor reset, UART, 31-49
DLC[3:0] field, 27-63
DLEN (data length) bits, 26-83

DMA
buffer size, multichannel SPORT, 30-26
for SPI transmit, 28-14
overview, 20-11
serial port block transfers, 30-40
and SPI, 28-14
SPI data transmission, 28-15, 28-16
SPI master, 28-33
SPI slave, 28-35
and SPORT, 30-3
support for peripherals, 20-4
and UART, 31-25, 31-44

DMA0 Urgent Request (DMA0URQ) bit,
24-50, 24-56, 24-57

DMA0URQ (DMA0 Urgent Request) bit,
24-50, 24-56, 24-57

DMA0URQ (DMA0 urgent request) bit,
26-89

DMA1 Urgent Request (DMA1URQ) bit,
24-50, 24-56, 24-57

DMA1URQ (DMA1 Urgent Request) bit,
24-50, 24-56, 24-57

DMA1URQ (DMA1 urgent request) bit,
26-89

DMAACTIVEx bits, 21-28
DMA address high

(DMA_ADDR_HIGH) bits, 32-138
DMA address low (DMA_ADDR_LOW)

bits, 32-137
DMA_ADDR_HIGH (DMA address

high) bits, 32-138
DMA_ADDR_LOW (DMA address low)

bits, 32-137
DMA burst mode selection

(BURST_MODE) bits, 32-135
DMA bus error (BUSERROR) bit, 32-135
DMACFG (one/two DMA channel

modes) bit, 26-83
DMA Channel x Done interrupt enable,

21-48

ADSP-BF54x Blackfin Processor Hardware Reference I-17

Index

DMA Channel x Half Done interrupt
enable, 21-48

DMA_COUNT_LOW (DMA count low)
bits, 32-139, 32-140

DMA count low (DMA_COUNT_LOW)
bits, 32-139, 32-140

DMA_CSTATE (DMA mode state
machine current state) bits, 24-61

DMA enable (DMA_ENA) bit, 32-135
DMA_ENA (DMA enable) bit, 32-135
DMA Error Channel Number

(DERRNUM) field, 21-26
DMA Error (DERR) interrupt event,

21-39
DMA Error interrupt enable, 21-46
DMA mode 0/1 selection (MODE) bit,

32-135
DMA mode select (DMAREQMODE_R)

bit, 32-109
DMA mode select

(DMAREQMODE_RH) bit, 32-109
DMA mode select (DMAREQMODE_T)

bit, 32-102
DMA mode state machine current state

(DMA_CSTATE) bits, 24-61
DMAPMENx, 21-28
DMAREQ_ENA_R (DMA request

enable) bit, 32-109
DMAREQ_ENA_T (DMA request

enable) bit, 32-102
DMAREQMODE_R (DMA mode select)

bit, 32-109
DMAREQMODE_RH (DMA mode

select) bit, 32-109
DMAREQMODE_T (DMA mode select)

bit, 32-102
DMA request enable

(DMAREQ_ENA_R) bit, 32-109
DMA request enable

(DMAREQ_ENA_T) bit, 32-102

DMA support, 20-11
DMAC0, 20-11
DMAC1, 20-11

DMA Tx or Rx selection (DIRECTION)
bit, 32-135

DMAx Bit-Swap Enable (BITSWAPENx)
bit, 21-62

DMAx Direction (DDx) bit, 21-61
DMAx Done (DONEx) interrupt event,

21-41
DMAx Half-Done (HDONEx) interrupt

event, 21-41
DMAx_INT (USB DMA endpoint x

interrupt) bits, 32-134
DMAx Logical Channel (LCHANx) field,

21-61
DMAx Operation Flow (MFLOWx) field,

21-63
DNAK bit, 29-15, 29-45
DNM bit, 27-46
DONEENx, 21-48
DR bit, 31-18
DR (data ready) bit, 31-36, 31-37
DR flag, 31-24
DRI bit, 27-37, 27-48
DRIVE_VBUS_OFF_ENA (drive VBUS

off interrupt enable) bit, 32-126
drive VBUS off interrupt enable

(DRIVE_VBUS_OFF_ENA) bit,
32-126

DRIVE_VBUS_ON_ENA (drive VBUS
on interrupt enable) bit, 32-126

drive VBUS on interrupt enable
(DRIVE_VBUS_ON_ENA) bit,
32-126

DRUEN, 21-45
DRxPRI signal, 30-5
DRxPRI SPORT input, 30-7
DRxSEC signal, 30-5
DRxSEC SPORT input, 30-7

Index

I-18 ADSP-BF54x Blackfin Processor Hardware Reference

DTO bit, 27-37, 27-48
DTX_BLK_LGTH (data transfer block

length) bits, 23-27
DTX_DIR (data transfer direction) bit,

23-27
DTX_DMA_E (data transfer DMA

enable) bit, 23-27
DTX_E (data transfer enable) bit, 23-27
DTX_MODE (data transfer mode) bit,

23-27
DTxPRI signal, 30-5
DTxPRI SPORT output, 30-7
DTxSEC signal, 30-5
DTxSEC SPORT output, 30-7
dynamic power management, 20-32

E
early frame sync, 30-37
EBIU, 20-14
EBO bit, 27-47
ECC0 (parity calculation result0) bits,

25-24
ECC1 (parity calculation result1) bits,

25-24
ECC2 (parity calculation result2) bits,

25-24
ECC3 (parity calculation result3) bits,

25-24
ECCCNT (transfer count) bits, 25-25
ECC_RST (ECC (and NFC counters) reset

bit, 25-25
ELSI bit, 31-10, 31-44, 31-45, 31-46
EMISO bit, 28-21, 28-45
EMISO (enable MISO) bit, 28-45
enable MISO (EMISO) bit, 28-45
ENABLE_SUSPENDM (suspend mode

output enable) bit, 32-82
end of cycle time for PIO access transfers

(TEOC_REG_PIO) bits, 24-65

end of cycle time for register access transfers
(T2_REG) bits, 24-64

END_ON_TERM (end/terminate select)
bit, 24-50

endpoint number (EPNUM) bits, 32-135
endpoint x Rx enable (EPx_RX_ENA) bits,

32-95
endpoint x Tx enable (EPx_TX_ENA) bits,

32-95
end/terminate select (END_ON_TERM)

bit, 24-50
EN (enable) bit, 26-82
EP0_NAK_LIMIT (EP0 NAK limit) bits,

32-117
EP0 NAK limit (EP0_NAK_LIMIT) bits,

32-117
EP0_RX_COUNT (received byte count in

EP0 FIFO) bits, 32-115
EP bit, 27-47
EP halted after a NAK

(NAK_TIMEOUT_H) bit, 32-98,
32-102

EPIF bit, 27-28, 27-52
EPIM bit, 27-28, 27-50
EPIS bit, 27-28, 27-51
EPNUM (endpoint number) bits, 32-135
EPPI

block diagram, 26-5
control signal polarities, 26-79
data width, 26-79
GP output, 26-13, 26-14
operating modes, 26-79

EPPI clipping (EPPIx_CLIP) register,
26-77, 26-101

EPPI_CONTROL (EPPI control register),
26-79

EPPI control register (EPPI_CONTROL),
26-79

EPPI vertical transfer count
(EPPIx_VCOUNT) register, 26-77

ADSP-BF54x Blackfin Processor Hardware Reference I-19

Index

EPPIx_CLIP (EPPI clipping) register,
26-77, 26-101

EPPIx_CLKDIV (EPPIx clock divide)
register, 26-77, 26-96

EPPIx clock divide (EPPIx_CLKDIV)
register, 26-77, 26-96

EPPIx_CONTROL register, 26-77, 26-83
EPPIx_FRAME (EPPIx lines per frame)

register, 26-77, 26-92
EPPIx_FS1P_AVPL (EPPIx FS1 period)

register, 26-77, 26-99
EPPIx FS1 period (EPPIx_FS1P_AVPL)

register, 26-77, 26-99
EPPIx_FS1W_HBL (EPPIx FS1 width)

register, 26-77, 26-96
EPPIx FS1 width (EPPIx_FS1W_HBL)

register, 26-77, 26-96
EPPIx FS2 period (EPPIx_FS2P_LAVF)

register, 26-77, 26-100
EPPIx_FS2P_LAVF (EPPIx FS2 period)

register, 26-77, 26-100
EPPIx FS2 width (EPPIx_FS2W_LVB)

register, 26-77, 26-98
EPPIx_FS2W_LVB (EPPIx FS2 width)

register, 26-77, 26-98
EPPIx_HCOUNT (EPPIx horizontal

transfer count) register, 26-76, 26-95
EPPIx_HDELAY (EPPIx horizontal delay

count) register, 26-77, 26-94
EPPIx horizontal delay count

(EPPIx_HDELAY) register, 26-77,
26-94

EPPIx horizontal transfer count
(EPPIx_HCOUNT) register, 26-76,
26-95

EPPIx_LINE (EPPIx samples per line)
register, 26-77, 26-92

EPPIx lines per frame (EPPIx_FRAME)
register, 26-77, 26-92

EPPIx samples per line (EPPIx_LINE)
register, 26-77, 26-92

EPPIx_STATUS (EPPI status) register,
26-76, 26-89

EPPIx status (EPPIx_STATUS) register,
26-76, 26-89

EPPIx_VCOUNT (EPPI vertical transfer
count) register, 26-77, 26-94

EPPIx_VDELAY (EPPI vertical delay
count) register, 26-77, 26-93

EPPIx vertical delay count
(EPPIx_VDELAY) register, 26-77,
26-93

EPPIx vertical transfer count
(EPPIx_VCOUNT) register, 26-94

EPS (even parity select) bit, 31-30
EPx_RX_ENA (endpoint x Rx enable) bits,

32-95
EPx_RX_E (USB Rx endpoint x interrupt

enable) bits, 32-88
EPx_RX (USB Rx endpoint x interrupt)

bits, 32-86
EPx_TX_ENA (endpoint x Tx enable) bits,

32-95
EPx_TX_E (USB Tx endpoint x interrupt

enable) bits, 32-87
EPx_TX (USB Tx endpoint x interrupt)

bits, 32-85
ERBFI bit, 31-9, 31-18, 31-43, 31-44,

31-45
ERR_DET (Error Detected in Preamble)

bit, 24-50, 24-56, 24-57
ERR_DET (preamble error detected) bit,

26-89
ERR_NCOR (Error Not Corrected in

Preamble) bit, 24-50, 24-56, 24-57
ERR_NCOR (preamble error not

corrected) bit, 26-89

Index

I-20 ADSP-BF54x Blackfin Processor Hardware Reference

error
bus exception, 21-5
hardware interrupt, 21-5

Error Detected in Preamble (ERR_DET)
bit, 24-50, 24-56, 24-57

error frames, CAN, 27-31
ERROR_H (timeout error) bit, 32-98
Error Not Corrected in Preamble

(ERR_NCOR) bit, 24-50, 24-56,
24-57

error-passive interrupt, CAN, 27-28
ERROR_RH (timeout error indicator) bit,

32-109
error signals, SPI, 28-23 to 28-25
ERROR_TH (timeout error indicator) bit,

32-102
error warning receive interrupt, CAN,

27-28
error warning transmit interrupt, CAN,

27-28
ETBEI bit, 31-8, 31-17, 31-43, 31-44,

31-45
event counter, CAN, 27-29
EWLREC[7:0] field, 27-90
EWLTEC[7:0] field, 27-90
EWRIF bit, 27-28, 27-52
EWRIM bit, 27-28, 27-50
EWRIS bit, 27-28, 27-51
EWTIF bit, 27-28, 27-52
EWTIM bit, 27-28, 27-50
EWTIS bit, 27-28, 27-51
External Bus Interface Unit, 20-14
external crystal, 20-32
EXTEST instruction, B-5
EXTID[15:0] field, 27-55, 27-59
EXTID[17:16] field, 27-53, 27-57
EZ-KIT Lite, 20-39

F
F1_ACT bits, 26-100

F1VB_AD bits, 26-98
F1VB_BD bits, 26-98
F2_ACT bits, 26-100
F2VB_AD bits, 26-98
F2VB_BD bits, 26-98
FAST bit, 29-41, 29-43
fast mode, TWI, 29-11
FCPOL (flow control pin polarity) bit,

31-33
FCZ0EN, 21-45
FCZ1EN, 21-45, 21-46
FDF bit, 27-20, 27-53
FE (framing error) bit, 31-36, 31-37
FER bit, 27-89
FERREN, 21-45
FFE bit, 31-50, 31-51
Field (FLD) bit, 24-50, 24-56, 24-57
field (FLD) bit, 26-89
field select/trigger (FLD_SEL) bit, 26-82
FIFO_COUNT bits, 23-34
FIFO Error (FERR) interrupt event, 21-36
FIFO Error interrupt enable, 21-45
FIFO_FLUSH (flush FIFOs) bit, 24-50
FIFO_FULL_R (detected FIFO not

empty) bit, 32-109
FIFO_NOT_EMPTY_T (data packet in

FIFO indicator) bit, 32-102
FIFO regular watermark (FIFO_RWM)

bits, 26-83
FIFO_RWM (FIFO regular watermark)

bits, 26-83
FIFO urgent watermarks (FIFO_UWM)

bits, 26-83
FIFO_UWM (FIFO urgent watermarks)

bits, 26-83
Fixed Pattern Matching select (FIXEDPM)

bit, 21-67
FLD (Field) bit, 24-50, 24-56, 24-57
FLD (field) bit, 26-89
FLD_SEL (field select/trigger) bit, 26-82

ADSP-BF54x Blackfin Processor Hardware Reference I-21

Index

FLGx bit, 28-47
flow charts

CAN receive operation, 27-19
CAN transmit operation, 27-15
SPI core-driven, 28-39
SPI DMA, 28-40
TWI master mode, 29-33
TWI slave mode, 29-32

FLSx bit, 28-12, 28-46
FLSx (slave select enable) bits, 28-46
flush endpoint FIFO (FLUSHFIFO) bit,

32-98
flush endpoint FIFO (FLUSHFIFO_R)

bit, 32-109
flush endpoint FIFO (FLUSHFIFO_T)

bit, 32-102
FLUSHFIFO (flush endpoint FIFO) bit,

32-98
FLUSHFIFO_R (flush endpoint FIFO)

bit, 32-109
FLUSHFIFO_T (flush endpoint FIFO)

bit, 32-102
FMD bit, 27-53
FORCE_DATATOGGLE_T (force

endpoint data toggle) bit, 32-102
force endpoint data toggle

(FORCE_DATATOGGLE_T) bit,
32-102

FORCE_MSEL (force PLL frequency
multiplier) bits, 32-132

force PLL frequency multiplier
(FORCE_MSEL) bits, 32-132

formatting enable (RGB_FMT_EN) bit,
26-83

FPE bit, 31-50, 31-51
Frame Counter 0, A-12
Frame Counter 0 Zero (FCZ0) interrupt

event, 21-34
Frame Counter 0 Zero interrupt enable,

21-45

Frame Counter 1, A-12
Frame Counter 1 Zero (FCZ1) interrupt

event, 21-34
Frame Counter 1 Zero interrupt enable,

21-45
framed serial transfers, characteristics,

30-33
framed/unframed data, 30-32
Frame Locked (FLOCK) bit, 21-25
Frame Locked to Unlocked (FL2U)

interrupt event, 21-35
FRAME_NUMBER (USB frame number)

bits, 32-91
frame sync

active high/low, 30-35
early, 30-37
early/late, 30-37
external/internal, 30-34
internal, 30-28
internally generated, 30-69
late, 30-37
multichannel mode, 30-20
sampling edge, 30-35
SPORT options, 30-32

frame sync configuration (FS_CFG) bits,
26-82

frame sync divider[15:0] field, 30-69
frame synchronization

and SPORT, 30-3
frame sync pulse

use of, 30-54
when issued, 30-55

frame sync signal, control of, 30-54, 30-59
Frame Track Overflow Error

(FTERR_OVR) bit, 24-50, 24-56,
24-57

frame track overflow (FTERR_OVR) bit,
26-89

Index

I-22 ADSP-BF54x Blackfin Processor Hardware Reference

Frame Track Underflow Error
(FTERR_UNDR) bit, 24-50, 24-56,
24-57

frame track underflow (FTERR_UNDR)
bit, 26-89

Frame Unlocked to Locked (FU2L)
interrupt event, 21-35

frequencies, clock and frame sync, 30-28
FS_CFG (frame sync configuration) bits,

26-82
FSDEV (full- or high-speed device

indicator) bit, 32-122, 32-124
FSDR bit, 30-24, 30-71
FS_EOF1 (full-speed EOF 1) bits, 32-128
FTERR_OVR (frame track overflow) bit,

26-89
FTERR_OVR (Frame Track Overflow

Error) bit, 24-50, 24-56, 24-57
FTERR_UNDR (frame track underflow)

bit, 26-89
FTERR_UNDR (Frame Track Underflow

Error) bit, 24-50, 24-56, 24-57
full duplex, 30-4, 30-7

SPI, 28-1
full on mode, 20-33
full- or high-speed device indicator

(FSDEV) bit, 32-122, 32-124
full-speed EOF 1 (FS_EOF1) bits, 32-128
FUNCTION_ADDRESS (USB peripheral

device address) bits, 32-81

G
GCALL bit, 29-16, 29-40
GEN bit, 29-37
general call address, TWI, 29-10
general-purpose ports, 20-15
get more data (GM) bit, 28-45
GIRQ bit, 27-49
glitch filtering, UART, 31-15
GLOBAL_ENA (USB enable) bit, 32-95

global interrupts, CAN, 27-26
GM bit, 28-29, 28-45
GM (get more data) bit, 28-45
GPIO, 21-3
Group cast/Broadcast Transmission Status

Encodings, 21-134

H
H.100, 30-24, 30-27
HDONEENx, 21-48
hibernate state, 20-34

and CAN, 27-40
HIGH_EVEN (upper limit for even bytes

(luma) bits, 26-101
HIGH_ODD (upper limit for odd bytes

(chroma) bits, 26-101
high- or full-speed device indicator

(FSDEV) bit, 32-122, 32-124
high-speed EOF 1 (HS_EOF1) bits,

32-128
high speed mode enable (HS_ENABLE)

bit, 32-82
high speed mode flag (HS_MODE) bit,

32-82
HMVIP, 30-27
Host DMA interface, 20-13
host DMA port (HOSTDP), 20-13
host negotiation request (HOST_REQ)

bit, 32-122, 32-124
HOST_REQ (host negotiation request)

bit, 32-122, 32-124
host terminate current transfer interrupt

mask
(HOST_TERM_XFER_MASK) bit,
24-56

host terminate current transfer interrupt
status (HOST_TERM_XFER_INT)
bit, 24-58

host termination (ATAPI_HOST_TERM)
bit, 24-61

ADSP-BF54x Blackfin Processor Hardware Reference I-23

Index

HOST_TERM_XFER_INT (host
terminate current transfer interrupt
status) bit, 24-58

HOST_TERM_XFER_MASK (host
terminate current transfer interrupt
mask) bit, 24-56

HS_ENABLE (high speed mode enable)
bit, 32-82

HS_EOF1 (high-speed EOF 1) bits,
32-128

HS_MODE (high speed mode flag) bit,
32-82

I
I2C bus standard, 20-16, 29-1
I2S, 20-20

format, 30-13
serial devices, 30-2

ICLKGEN (internal clock generation) bit,
26-82

IDE bit, 27-57
IDE interface, 24-1
IEEE 1149.1 standard, See JTAG standard
IFSGEN (internal frame sync generation)

bit, 26-82
INCOMPTX_RH (large packet split) bit,

32-109
INCOMPTX_R (large packet split) bit,

32-109
INCOMPTX_T (large packet split) bit,

32-102
increase PLL charge pump current

(TM_SELC) bit, 32-132
initializing

CAN, 27-10
input clock, See CLKIN
instruction bit scan ordering, B-5
instruction register, B-3, B-5
instructions, 20-35

See also instructions by name

Integrated Drive Electronics interface, 24-1
INT_ENA (interrupt enable) bit, 32-135
interleaving

of data in SPORT FIFO, 30-62
SPORT data, 30-8

internal boot ROM, 20-35
internal clock generation (ICLKGEN) bit,

26-82
internal/external frame syncs, See frame

sync
internal frame sync generation (IFSGEN)

bit, 26-82
internal memory, 20-7
interrupt channels, UART, 31-43
interrupt conditions, UART, 31-46
interrupt enable (INT_ENA) bit, 32-135
interrupt output, SPI, 28-25
interrupts

CAN, 27-25
SPI, 28-26, 28-52
SPORT error, 30-40
SPORT RX, 30-40, 30-65
SPORT TX, 30-40, 30-62
UART, 31-17

I/O interface to peripheral serial device,
30-3

I/O memory space, 20-10
IORDY_EN (IORDY enable) bit, 24-50
IRCLK bit, 30-57, 30-59
IrDA

receiver, 31-15
transmitter, 31-14

IrDA mode, 31-50
IREN bit, 31-50
IRFS bit, 30-34, 30-57, 30-59
IRPOL bit, 31-16
isochronous transfer enable (ISO_R) bit,

32-109
isochronous transfer enable (ISO_T) bit,

32-102

Index

I-24 ADSP-BF54x Blackfin Processor Hardware Reference

isochronous update enable
(ISO_UPDATE) bit, 32-82

ISO_R (isochronous transfer enable) bit,
32-109

ISO_T (isochronous transfer enable) bit,
32-102

ISO_UPDATE (isochronous update
enable) bit, 32-82

ITCLK bit, 30-51, 30-53
ITFS bit, 30-21, 30-34, 30-51, 30-54
ITU interlaced/progressive (ITU_TYPE)

bit, 26-82
ITU output with internal blanking

(BLANKGEN) bit, 26-82
ITU_TYPE (ITU interlaced/progressive)

bit, 26-82

J
JTAG, 20-38, B-1, B-3, B-5

K
keypad

enable/disable, 22-4
input matrix programmability, 22-4
interface, 22-3
interface overview, 22-1
KPAD_CTL register, 22-4
KPAD_PRESCALE register, 22-9
operation, 22-2
programming examples, 22-22
programming model, 22-9
registers

interrupt generation when X-Key
pressed, 22-18

KPAD_CTL, 22-10, A-13
KPAD_MSEL, 22-10, A-13
KPAD_PRESCALE, 22-10, A-13
KPAD_ROWCOL, 22-10, A-13
KPAD_SOFTEVAL, 22-10, A-13

KPAD_STAT, 22-10, A-13
state diagram, 22-8

keypad control (KPAD_CTL) register,
22-10, A-13

keypad enable (KPAD_EN) bit, 22-10
keypad interrupt status (KPAD_IRQ) bit,

22-19
keypad multiplier select (KPAD_MSEL)

register, 22-10, 22-16, A-13
keypad row-column (KPAD_ROWCOL)

register, 22-10, 22-16, A-13
keypad software evaluate

(KPAD_SOFTEVAL) register, 22-21
key prescale (KPAD_PRESCALE) register,

22-10, 22-14, A-13
key prescale value

(KPAD_PRESCALE_VAL) bits,
22-14

key press current status
(KPAD_PRESSED) bit, 22-19

key software evaluate
(KPAD_SOFTEVAL) register, 22-10,
A-13

KPAD_COL (columns value pressed) bits,
22-16

KPAD_COLEN (column enable width)
bits, 22-10

KPAD_CTL (keypad control) register,
22-10, A-13

KPAD_EN (keypad enable) bit, 22-10
KPAD_IRQ (keypad interrupt status) bit,

22-19
KPAD_IRQMODE (multikey press

interrupt enable) bits, 22-10
KPAD_MROWCOL (multiple

row/column keypress) bits, 22-19
KPAD_MSEL (keypad multiplier select)

register, 22-10, 22-16, A-13
KPAD_PRESCALE (key prescale) register,

22-10, 22-14, A-13

ADSP-BF54x Blackfin Processor Hardware Reference I-25

Index

KPAD_PRESCALE_VAL (key prescale
value) bits, 22-14

KPAD_PRESSED (key press current
status) bit, 22-19

KPAD_ROWCOL (keypad row-column)
register, 22-10, 22-16, A-13

KPAD_ROWEN (row enable width) bits,
22-10

KPAD_ROW (rows value pressed) bits,
22-16

KPAD_SOFTEVAL_E (software
programmable force evaluate) bit,
22-21

KPAD_SOFTEVAL (keypad software
evaluate) register, 22-21

KPAD_SOFTEVAL (key software
evaluate) register, 22-10, A-13

KPAD_STAT (keypad status) register,
22-10, 22-19, A-13

L
L1 data memory, 20-7
L1 instruction memory, 20-7
L1 scratchpad RAM, 20-7
LARFS bit, 30-37, 30-57, 30-60
large packet split (INCOMPTX_R) bit,

32-109
large packet split (INCOMPTX_RH) bit,

32-109
large packet split (INCOMPTX_T) bit,

32-102
late frame sync, 30-19, 30-37
LATFS bit, 30-37, 30-51, 30-55
line terminations, SPORT, 30-10
Line Track Overflow Error

(LTERR_OVR) bit, 24-50, 24-56,
24-57

line track overflow (LTERR_OVR) bit,
26-89

Line Track Underflow Error
(LTERR_UNDR) bit, 24-50, 24-56,
24-57

line track underflow (LTERR_UNDR) bit,
26-89

little endian byte order, 29-52
load error indicator (DATAERROR_R)

bit, 32-109
Lock Mechanism 0, 21-18
Lock Mechanism 1, 21-18
Lock Mechanism Select (LMECH) bit,

21-18
Logical Channel for Physical Channel x

(LCHANPCx) field, 21-59
long response (CMD_L_RSP) bit, 23-24
LOOPBACK (loopback mode enable) bit,

31-33
loopback mode, UART, 31-33
LOSTARB bit, 29-15, 29-45
LOW_EVEN (lower limit for even bytes

(luma) bits, 26-101
LOW_ODD (lower limit for odd bytes

(chroma) bits, 26-101
low-speed device indicator (LSDEV) bit,

32-122, 32-124
low-speed EOF 1 (LS_EOF1) bits, 32-129
LRFS bit, 30-33, 30-35, 30-57, 30-60
LSBF bit, 28-45
LSB first (LSBF) bit, 28-45
LSBF (LSB first) bit, 28-45
LSDEV (low-speed device indicator) bit,

32-122, 32-124
LS_EOF1 (low-speed EOF 1) bits, 32-129
LT_ERR_OVR bit, 22-11, 22-20, 22-21
LTERR_OVR (line track overflow) bit,

26-89
LTERR_OVR (Line Track Overflow

Error) bit, 24-50, 24-56, 24-57
LTERR_UNDR (line track underflow) bit,

26-89

Index

I-26 ADSP-BF54x Blackfin Processor Hardware Reference

LTERR_UNDR (Line Track Underflow
Error) bit, 24-50, 24-56, 24-57

LTFS bit, 30-21, 30-33, 30-35, 30-51,
30-55

luma FIFO error (YFIFO_ERR) bit, 26-89
Luma FIFO Overflow Error

(YFIFO_ERR) bit, 24-50, 24-56,
24-57

M
MAA bit, 27-48
MAC

pins, 22-6
MADDR[6:0] field, 29-44
mailboxes, CAN, 27-5
mailbox interrupts, CAN, 27-25
manual

conventions, -xlviii
MASK_BUSYIRQ (mask not busy IRQ)

bit, 25-23
mask card detect (SCD_MSK) bit, 23-36
mask not busy IRQ (MASK_BUSYIRQ)

bit, 25-23
MASK_RDRDY (mask read data ready)

bit, 25-23
mask read data ready (MASK_RDRDY)

bit, 25-23
MASK_WBEDGE (mask write buffer edge

detect) bit, 25-23
MASK_WBOVF (mask write buffer

overflow) bit, 25-23
MASK_WRDONE (mask write done) bit,

25-23
mask write buffer edge detect

(MASK_WBEDGE) bit, 25-23
mask write buffer overflow

(MASK_WBOVF) bit, 25-23

mask write done (MASK_WRDONE) bit,
25-23

Master mode initialization, 21-118
master (MSTR) bit, 28-45
Maximum Delay Register Updated

interrupt enable, 21-45
Maximum Delay Register Updated

(MDRU) interrupt event, 21-32
maximum individual packet size

(MaxPktSize), 32-24, 32-25, 32-26,
32-27, 32-28, 32-29

Maximum Position Register Updated
interrupt enable, 21-45

Maximum Position Register Updated
(MPRU) interrupt event, 21-32

MAX_PACKET_SIZE_R (USB max Rx
data in frame) bits, 32-107

MAX_PACKET_SIZE_T (USB max Tx
data in frame) bits, 32-97

MaxPktSize (maximum individual packet
size), 32-24, 32-25, 32-26, 32-27,
32-28, 32-29

MBCLK, 21-4
MBIMn bit, 27-84
MBPTR[4:0] field, 27-47
MBRIFn bit, 27-86
MBRIRQ bit, 27-49
MBTIFn bit, 27-85
MBTIRQ bit, 27-49
MCCRM[1:0] field, 30-71
MCDRXPE bit, 30-71
MCDTXPE bit, 30-71
MCMEN bit, 30-19, 30-71
MCOMP bit, 29-20, 29-51
MCOMPM bit, 29-48, 29-50
MCx bit, 27-73
MDIR bit, 29-41, 29-43
MDMA_TFRCNT (MDMA transfer

count) bits, 24-63

ADSP-BF54x Blackfin Processor Hardware Reference I-27

Index

MDMA_XFER_ON (multi-word DMA
transfer in progress) bit, 24-52, 24-53,
24-54, 24-55, 24-59, 24-60, 24-61,
24-62, 24-63, 24-64, 24-65, 24-66,
24-67, 24-68, 24-69

MDn bit, 27-74
MDRUEN, 21-45
Meaning of CM Allocate Status, 21-143
Meaning of Transmission Status, 21-134
Media Oriented System Transport, -xliii,

21-1
Media Transceiver module, -xliii, 21-1
memory

architecture, 20-6
configurations, 20-6
external, 20-8

EBIU, 20-8
internal, 20-7
I/O, 20-8
I/O space, 20-10
L1 data, 20-7
L1 instruction, 20-7
L1 scratchpad, 20-7
moving data between SPORT and,

30-40
on-chip, 20-7
one-time-programmable, 20-10
structure, 20-6

memory-mapped registers, See MMRs
MEN bit, 29-41, 29-43
MERR bit, 29-19, 29-51
MERRM bit, 29-48, 29-50
MFD[3:0] field, 30-23, 30-71
MFLOW field, 21-70
MFS, 21-4
MH2LEN, 21-45
MII

pins, 22-6
MISO pin, 28-5, 28-6, 28-17, 28-19,

28-20, 28-22, 28-29

ML2HEN, 21-45
μ-law companding, 30-26, 30-31
MLF, 21-4
MLF analog pin, 21-3
MMCLK, 21-4
MMR

offset, 21-6
MMR Offset, A-7
MMRs, 20-10

address range, A-3
width, A-3

MODE (DMA mode 0/1 selection) bit,
32-135

mode fault error, 28-24, 28-26
mode fault error (MODF) bit, 28-48
modes

broadcast, 28-12, 28-19, 28-20
multichannel, 30-17
serial port, 30-12
SPI master, 28-20, 28-26
SPI slave, 28-20, 28-29
UART DMA, 31-25
UART non-DMA, 31-23

MODF bit, 28-24, 28-48
MODF (mode fault error) bit, 28-48
MOSI pin, 28-5, 28-6, 28-17, 28-19,

28-20, 28-22, 28-30
MOST®, -xliii, 21-1
MOST® NetInterface, 21-1
moving data, serial port, 30-40
moving window enable (MWE) bit, 23-37
MPIVDD, 21-5
M (PLL multiplier select) bits, 32-132
MPROG bit, 29-15, 29-45
MPRUEN, 21-45
MRB bit, 27-48
MRTS (manual request to send) bit, 31-33
MRX, 21-3, 21-4
MRX input pin, 21-20
MRXONB, 21-4

Index

I-28 ADSP-BF54x Blackfin Processor Hardware Reference

MRXONB High to Low interrupt enable,
21-45

MRXONB High to Low (MH2L)
interrupt event, 21-34

MRXONB Low to High interrupt enable,
21-45

MRXONB Low to High (ML2H)
interrupt event, 21-34

MSTR bit, 28-22, 28-45
MSTR (master) bit, 28-45
MTX, 21-4
MTXON, 21-4
multichannel frame, 30-22
multichannel frame delay field, 30-23
multichannel mode, 30-17

enable/disable, 30-19
frame syncs, 30-20
SPORT, 30-20

multichannel operation, SPORT, 30-17 to
30-26

multi-DMA transfer done interrupt mask
(MULTI_DONE_MASK) bit, 24-56

multi-DMA transfer done interrupt status
(MULTI_DONE_INT) bit, 24-58

MULTI_DONE_INT (multi-DMA
transfer done interrupt status) bit,
24-58

MULTI_DONE_MASK (multi-DMA
transfer done interrupt mask) bit,
24-56

multikey press interrupt enable
(KPAD_IRQMODE) bits, 22-10

multiple row/column keypress
(KPAD_MROWCOL) bits, 22-19

multiple slave SPI systems, 28-12
multiplexed with GPIO, 21-3
MULTI_START (start multi-DMA Op)

bit, 24-50

MULTI_TERM_INT (device terminate
multi-DMA transfer interrupt status)
bit, 24-58

MULTI_TERM_MASK (device terminate
multi-DMA transfer interrupt mask)
bit, 24-56

multi-word DMA transfer in progress
(MDMA_XFER_ON) bit, 24-52,
24-53, 24-54, 24-55, 24-59, 24-60,
24-61, 24-62, 24-63, 24-64, 24-65,
24-66, 24-67, 24-68, 24-69

multi-word DMA transfer in progress
(MULTI_XFER_ON) bit, 24-52

MULTI_XFER_ON (multi-word DMA
transfer in progress) bit, 24-52

MVIP-90, 30-27
MWE (moving window enable) bit, 23-37
MXEGND, 21-5
MXI, 21-4
MXO, 21-4
MXVR, -xliii, 21-1
MXVR_AADDR, 21-56
MXVR_AADDR (MXVR alternate

address) register, 21-56
MXVR allocation table

(MXVR_ALLOC_x) registers, 21-57
MXVR Allocation Table Registers, 21-56
MXVR_ALLOC_x, 21-56
MXVR_ALLOC_x (MXVR allocation

table) registers, 21-57
MXVR alternate address

(MXVR_AADDR) register, 21-56
MXVR Alternate Address Register, 21-56
MXVR_AP_CTL, 21-77
MXVR_AP_CTL (MXVR asynchronous

packet control) register, 21-77
MXVR_AP_CTL register, 21-77
MXVR_APRB_CURR_ADDR (MXVR

asynchronous packet receive buffer
current address) register, 21-81

ADSP-BF54x Blackfin Processor Hardware Reference I-29

Index

MXVR_APRB_CURR_ADDR register,
21-81

MXVR_APRB_START_ADDR (MXVR
asynchronous packet receive buffer
start address) register, 21-80

MXVR_APRB_START_ADDR register,
21-80

MXVR_APTB_CURR_ADDR (MXVR
asynchronous packet transmit buffer
current address) register, 21-83

MXVR_APTB_CURR_ADDR register,
21-83

MXVR_APTB_START_ADDR (MXVR
asynchronous packet transmit buffer
start address) register, 21-82

MXVR_APTB_START_ADDR registers,
21-82

MXVR asynchronous packet control
(MXVR_AP_CTL) register, 21-77

MXVR Asynchronous Packet Control
Register, 21-77

MXVR asynchronous packet receive buffer
current address
(MXVR_APRB_CURR_ADDR)
register, 21-81

MXVR Asynchronous Packet Receive
Buffer Current Address Register,
21-81

MXVR asynchronous packet receive buffer
start address
(MXVR_APRB_START_ADDR)
register, 21-80

MXVR Asynchronous Packet Receive
Buffer Start Address Register, 21-80

MXVR asynchronous packet transmit
buffer current address
(MXVR_APTB_CURR_ADDR)
register, 21-83

MXVR Asynchronous Packet Transmit
Buffer Current Address Register,
21-83

MXVR asynchronous packet transmit
buffer start address
(MXVR_APTB_START_ADDR)
register, 21-82

MXVR Asynchronous Packet Transmit
Buffer Start Address Register, 21-82

MXVR Bit Clock, 21-4
MXVR_BLOCK_CNT, 21-98
MXVR_BLOCK_CNT (MXVR block

counter) register, 21-99
MXVR block counter

(MXVR_BLOCK_CNT) register,
21-99

MXVR Block Counter Register, 21-98
MXVR_CM_CTL (MXVR control

message control) register, 21-84
MXVR_CM_CTL register, 21-83
MXVR_CMRB_CURR_ADDR, 21-87
MXVR_CMRB_CURR_ADDR (MXVR

control message receive buffer current
address) register, 21-87

MXVR_CMRB_START_ADDR, 21-86
MXVR_CMRB_START_ADDR (MXVR

control message receive buffer start
address) register, 21-86

MXVR_CMTB_CURR_ADDR, 21-89
MXVR_CMTB_CURR_ADDR (MXVR

control message transmit buffer
current address) register, 21-89

MXVR_CMTB_START_ADDR, 21-88
MXVR_CMTB_START_ADDR (MXVR

control message transmit buffer start
address) register, 21-88

MXVR_CONFIG, 21-12
MXVR_CONFIG (MXVR configuration)

register, 21-12

Index

I-30 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR configuration (MXVR_CONFIG)
register, 21-12

MXVR Configuration Register, 21-12
MXVR control message control

(MXVR_CM_CTL) register, 21-84
MXVR Control Message Control Register,

21-83
MXVR control message receive buffer

current address
(MXVR_CMRB_CURR_ADDR)
register, 21-87

MXVR Control Message Receive Buffer
Current Address Register, 21-87

MXVR control message receive buffer start
address
(MXVR_CMRB_START_ADDR)
register, 21-86

MXVR Control Message Receive Buffer
Start Address Register, 21-86

MXVR Control Message Transmit Buffer
(CMTB), 21-131

MXVR control message transmit buffer
current address
(MXVR_CMTB_CURR_ADDR)
register, 21-89

MXVR Control Message Transmit Buffer
Current Address Register, 21-89

MXVR control message transmit buffer
start address
(MXVR_CMTB_START_ADDR)
register, 21-88

MXVR Control Message Transmit Buffer
Start Address Register, 21-88

MXVR Crystal Input, 21-4
MXVR Crystal Output, 21-4
MXVR_DELAY, 21-51
MXVR_DELAY (MXVR node frame

delay) register, 21-51
MXVR DMA Channel x Current Address

Registers, 21-72

MXVR DMA Channel x Current Transfer
Count Registers, 21-76

MXVR DMA Channel x Start Address
Registers, 21-70

MXVR DMA Channel x Transfer Count
Registers, 21-73

MXVR_DMAx_CONFIG (MXVR
DMAx data configuration) registers,
21-69

MXVR DMAx Configuration Registers,
21-60

MXVR_DMAx_COUNT, 21-73
MXVR_DMAx_CURR_ADDR, 21-72,

21-73
MXVR_DMAx_CURR_ADDR (MXVR

sync data DMAx current address)
registers, 21-74

MXVR_DMAx_CURR_COUNT, 21-76
MXVR_DMAx_CURR_COUNT

(MXVR sync data DMAx current
loop count) registers, 21-76

MXVR_DMAx_START_ADDR, 21-70,
21-73

MXVR_DMAx_START_ADDR (MXVR
sync data DMAx start address)
registers, 21-70, 21-73

MXVR Enable (MXVREN) bit, 21-12
MXVR_FRAME_CNT_x (MXVR frame

counter) registers, 21-95
MXVR_FRAME_CNT_x register, 21-94
MXVR frame counter

(MXVR_FRAME_CNT_x) registers,
21-95

MXVR Frame Counter Registers, 21-94
MXVR Frame Sync, 21-4
MXVR_GADDR, 21-55
MXVR_GADDR (MXVR group address)

register, 21-55
MXVR group address (MXVR_GADDR)

register, 21-55

ADSP-BF54x Blackfin Processor Hardware Reference I-31

Index

MXVR Group Address Register, 21-55
MXVR_INT_EN_0, 21-43
MXVR_INT_EN_0 (MXVR interrupt

enable) register 0, 21-44
MXVR_INT_EN_1, 21-46
MXVR_INT_EN_1 (MXVR interrupt

enable) register 1, 21-47
MXVR interrupt enable

(MXVR_INT_EN_0) register 0,
21-44

MXVR interrupt enable
(MXVR_INT_EN_1) register 1,
21-47

MXVR Interrupt Enable Register 0, 21-43
MXVR Interrupt Enable Register 1, 21-46
MXVR interrupt status

(MXVR_INT_STAT_0) register 0,
21-30

MXVR interrupt status
(MXVR_INT_STAT_1) register 1,
21-40

MXVR Interrupt Status Register 0, 21-29
MXVR Interrupt Status Register_1, 21-40
MXVR_INT_STAT_0, 21-29
MXVR_INT_STAT_0 (MXVR interrupt

status) register 0, 21-30
MXVR_INT_STAT_1, 21-40
MXVR_INT_STAT_1 (MXVR interrupt

status) register 1, 21-40
MXVR_LADDR, 21-54
MXVR_LADDR (MXVR logical address)

register, 21-54
MXVR logical address (MXVR_LADDR)

register, 21-54
MXVR Logical Address Register, 21-54
MXVR Master Clock, 21-4
MXVR Master Mode/Slave Mode Select

(MMSM) bit, 21-13
MXVR_MAX_DELAY, 21-53

MXVR_MAX_DELAY (MXVR
maximum node frame delay) register,
21-53

MXVR maximum node frame delay
(MXVR_MAX_DELAY) register,
21-53

MXVR Maximum Node Frame Delay
Register, 21-53

MXVR maximum node position
(MXVR_MAX_POSITION) register,
21-50

MXVR Maximum Node Position Register,
21-50

MXVR_MAX_POSITION, 21-50
MXVR_MAX_POSITION (MXVR

maximum node position) register,
21-50

MXVR Memory Map, 21-5, A-7
MXVR MMR address offsets, 21-5
MXVR node frame delay

(MXVR_DELAY) register, 21-51
MXVR Node Frame Delay Register, 21-51
MXVR node position

(MXVR_POSITION) register, 21-49
MXVR Node Position Register, 21-48
MXVR Parity select (PARITY) bit, 21-16
MXVR_PAT_DATA_x (MXVR pattern

data) registers, 21-92
MXVR_PAT_DATA_x registers, 21-92
MXVR_PAT_EN_x (MXVR pattern

enable) registers, 21-93
MXVR_PAT_EN_x registers, 21-93
MXVR pattern data

(MXVR_PAT_DATA_x) registers,
21-92

MXVR Pattern Data Registers, 21-92
MXVR pattern enable

(MXVR_PAT_EN_x) registers,
21-93

MXVR Pattern Enable Register, 21-93

Index

I-32 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR Pattern Matching, 21-91
MXVR PHY Receiver Receiving Light,

21-4
MXVR_PLL_CTL_0 register,

Initialization, 21-119
MXVR_POSITION, 21-48
MXVR_POSITION (MXVR node

position) register, 21-49
MXVR Power Supply Pins, 21-5
MXVR Power-Up PHY Transmitter, 21-4
MXVR Power-Up PHY Transmitter

(MTXON) bit, 21-16
MXVR Receive Data, 21-4
MXVR Register

Allocation Table x, A-7
Alternate Address, A-7
Control Message Control, A-11
Control Message RX Buffer Current

Address, A-11
Control Message RX Buffer Start

Address, A-11
Control Message TX Buffer Current

Address, A-11
Control Message TX Buffer Start

Address, A-11
Group Address, A-7
Logical Address, A-7
Maximum Node Frame Delay, A-7
Maximum Node Position, A-7
Node Frame Delay, A-7
Node Position, A-7
Pattern Data 0, A-11
Pattern Data 1, A-11
Pattern Enable 0, A-11
Pattern Enable 1, A-11
Phase Lock Loop Control, A-12
Remote Read Buffer Current Address,

A-11
Remote Read Buffer Start Address, A-11
Routing x, A-12

State 0, A-7
State 1, A-7
Synchronous Data DMA0

Configuration, A-8
Synchronous Data DMA0 Current

Address, A-8
Synchronous Data DMA0 Current Loop

Count, A-8
Synchronous Data DMA0 Loop Count,

A-8
Synchronous Data DMA0 Start Address,

A-8
Synchronous Data DMA1

Configuration, A-9
Synchronous Data DMA1 Current

Address, A-9
Synchronous Data DMA1 Current Loop

Count, A-9
Synchronous Data DMA1 Loop Count,

A-9
Synchronous Data DMA1 Start Address,

A-9
Synchronous Data DMA2

Configuration, A-9
Synchronous Data DMA2 Current

Address, A-9
Synchronous Data DMA2 Current Loop

Count, A-9
Synchronous Data DMA2 Loop Count,

A-9
Synchronous Data DMA2 Start Address,

A-9
Synchronous Data DMA3

Configuration, A-9
Synchronous Data DMA3 Current

Address, A-9
Synchronous Data DMA3 Current Loop

Count, A-9
Synchronous Data DMA3 Loop Count,

A-9

ADSP-BF54x Blackfin Processor Hardware Reference I-33

Index

Synchronous Data DMA3 Start Address,
A-9

Synchronous Data DMA4
Configuration, A-9

Synchronous Data DMA4 Current
Address, A-10

Synchronous Data DMA4 Current Loop
Count, A-10

Synchronous Data DMA4 Loop Count,
A-10

Synchronous Data DMA4 Start Address,
A-10

Synchronous Data DMA5
Configuration, A-10

Synchronous Data DMA5 Current
Address, A-10

Synchronous Data DMA5 Current Loop
Count, A-10

Synchronous Data DMA5 Loop Count,
A-10

Synchronous Data DMA5 Start Address,
A-10

Synchronous Data DMA6
Configuration, A-10

Synchronous Data DMA6 Current
Address, A-10

Synchronous Data DMA6 Current Loop
Count, A-10

Synchronous Data DMA6 Loop Count,
A-10

Synchronous Data DMA6 Start Address,
A-10

Synchronous Data DMA7
Configuration, A-10

Synchronous Data DMA7 Current Loop
Count, A-11

Synchronous Data DMA7 Loop Count,
A-11

Synchronous Data DMA7 Start Address,
A-10

Synchronous Data DMAx Current
Address, A-11

Synchronous Data Logical Channel
Assignment x, A-8

MXVR registers
list of, 21-6

MXVR remote read buffer current address
(MXVR_RRDB_CURR_ADDR)
register, 21-91

MXVR Remote Read Buffer Current
Address Register, 21-91

MXVR remote read buffer start address
(MXVR_RRDB_START_ADDR)
register, 21-90

MXVR Remote Read Buffer Start Address
Register, 21-90

MXVR_ROUTING_0 (MXVR routing 0)
register, 21-96

MXVR routing 0 (MXVR_ROUTING_0)
register, 21-96

MXVR Routing Registers, 21-95
MXVR_ROUTING_x register,

Initialization, 21-119
MXVR_ROUTING_x registers, 21-95
MXVR_RRDB_CURR_ADDR, 21-91
MXVR_RRDB_CURR_ADDR (MXVR

remote read buffer current address)
register, 21-91

MXVR_RRDB_START_ADDR, 21-90
MXVR_RRDB_START_ADDR (MXVR

remote read buffer start address)
register, 21-90

MXVR Signal Pins, 21-4
MXVR signal pins, 21-3
MXVR_STATE_0, 21-19
MXVR_STATE_1, 21-19
MXVR State Registers, 21-19
MXVR_STATE_x state registers, 21-19

Index

I-34 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR sync data DMAx current address
(MXVR_DMAx_CURR_ADDR)
registers, 21-74

MXVR sync data DMAx current loop
count
(MXVR_DMAx_CURR_COUNT)
registers, 21-76

MXVR sync data DMAx start address
(MXVR_DMAx_START_ADDR)
registers, 21-70, 21-73

MXVR synchronous logical channel
assignment
(MXVR_SYNC_LCHAN_x)
registers, 21-59

MXVR Synchronous Logical Channel
Assignment Registers, 21-58

MXVR_SYNC_LCHAN_x, 21-58
MXVR_SYNC_LCHAN_x (MXVR

synchronous logical channel
assignment) registers, 21-59

MXVR Transmit Data, 21-4
MXVR Transmit Data Pin Enable

(MTXEN) bit, 21-16

N
NA2IEN, 21-44
NAK bit, 29-37, 29-38
NAK_TIMEOUT_H (EP halted after a

NAK) bit, 32-98, 32-102
NAND address (NFC_ADDR) register,

25-19, 25-27, A-19
NAND command (NFC_CMD) register,

25-19, 25-28, A-19
NAND control (NFC_CTL) register,

25-18, 25-20, A-18
NAND data read (NFC_DATA_RD)

register, 25-19, 25-29, A-19
NAND data width (NWIDTH) bit, 25-20
NAND data write (NFC_DATA_WR)

register, 25-19, 25-29, A-19

NAND ECC count (NFC_COUNT)
register, 25-18, 25-25, A-18

NAND ECC reset (NFC_RST) register,
25-18, 25-25, A-18

NAND flash controller, 20-9
additional operations, 25-10
NFC accesses, 25-6
NFC error detection, 25-11
NFC external interface, 25-4
NFC interface block diagram, 25-4
overview, 25-1
page read, 25-9
page write, 25-8

NAND interrupt mask (NFC_IRQMASK)
register, 25-18, 25-23, A-18

NAND interrupt status (NFC_IRQSTAT)
register, 25-18, 25-22, A-18

NAND page control (NFC_PGCTL)
register, 25-18, 25-26, A-18

NAND read data (NFC_READ) register,
25-18, 25-27, A-18

NAND status (NFC_STAT) register,
25-18, 25-21, A-18

NBUSYIRQ (not busy IRQ) bit, 25-22
NBUSY (not busy) bit, 25-21
NetServices Layer 1, 21-1
Network Active (NACT) bit, 21-20
Network Active to Inactive interrupt

enable, 21-44
Network Active to Inactive (NA2I)

interrupt event, 21-31
Network Activity Detection, 21-115
Network Activity (NACT) bit, 21-31
Network Inactive to Active interrupt

enable, 21-44
Network Inactive to Active (NI2A)

interrupt event, 21-31
Network Initialization, 21-121
Network Lock, 21-121
network slave, 21-13

ADSP-BF54x Blackfin Processor Hardware Reference I-35

Index

network timing master, 21-13
NFC

features, 25-2
NFC_ADDR (NAND address) register,

25-19, 25-27, A-19
NFC_CMD (NAND command) register,

25-19, 25-28, A-19
NFC_COUNT (NAND ECC count)

register, 25-18, 25-25, A-18
NFC_CTL (NAND control) register,

25-18, 25-20, A-18
NFC_DATA_RD (NAND data read)

register, 25-19, 25-29, A-19
NFC_DATA_WR (NAND data write)

register, 25-19, 25-29, A-19
NFC_ECC0 (NAND ECC) register 0,

25-18, 25-24, A-18
NFC_ECC1 (NAND ECC) register 1,

25-18, 25-24, A-18
NFC_ECC1 (NAND ECC) register 2,

25-24
NFC_ECC2 (NAND ECC) register 2,

25-18, A-18
NFC_ECC3 (NAND ECC) register 3,

25-18, 25-24, A-18
NFC_ECCx (NAND ECC) registers,

25-18, 25-24, A-18
NFC_IRQMASK (NAND interrupt mask)

register, 25-18, 25-23, A-18
NFC_IRQSTAT (NAND interrupt status)

register, 25-18, 25-22, A-18
NFC_PGCTL (NAND page control)

register, 25-18, 25-26, A-18
NFC_READ (NAND read data) register,

25-18, 25-27, A-18
NFC_RST (NAND ECC reset) register,

25-18, 25-25, A-18
NFC_STAT (NAND status) register,

25-18, 25-21, A-18
NI2AEN, 21-44

Node Initialization, 21-117
nominal bit rate, CAN, 27-12
nominal bit time, CAN, 27-11
Normal Control Message Receive Enable

(NCMRXEN) bit, 21-15
Normal Control Message Transmission,

21-135
Normal Control Message Transmit Buffer

Entry Field Offsets, 21-136
normal frame sync mode, 30-37
normal timing, serial port, 30-37
not busy IRQ (NBUSYIRQ) bit, 25-22
no TxPktRdy for IN token

(OVERRUN_R) bit, 32-109
no TxPktRdy for IN token

(UNDERRUN_T) bit, 32-102
NWIDTH (NAND data width) bit, 25-20

O
OE (overrun error) bit, 31-36, 31-37
on-chip memory, 20-7
one/two DMA channel modes

(DMACFG) bit, 26-83
open drain drivers, 28-1
open drain outputs, 28-20
open drain output (SD_CMD_OD) bit,

23-22
operating modes

active, 20-33
deep sleep, 20-34
full on, 20-33
hibernate state, 20-34
sleep, 20-33

operating mode (XFR_TYPE) bits, 26-82
OPSSn bit, 27-77
optical Phy, 21-1
OVERRUN_R (no TxPktRdy for IN

token) bit, 32-109

Index

I-36 ADSP-BF54x Blackfin Processor Hardware Reference

P
PAB

errors generated by SPORT, 30-41
PACKEN (pack/unpack enable) bit, 26-83
packet transaction status

(STATUSPKT_H) bit, 32-98
packing, serial port, 30-26
pack/unpack enable (PACKEN) bit, 26-83
page read pending (PG_RD_STAT) bit,

25-21
page read start (PG_RD_START) bit,

25-26
page write done (WR_DONE) bit, 25-22
page write pending (PG_WR_STAT) bit,

25-21
page write start (PG_WR_START) bit,

25-26
parity calculation result0 (ECC0) bits,

25-24
parity calculation result1 (ECC1) bits,

25-24
parity calculation result2 (ECC2) bits,

25-24
parity calculation result3 (ECC3) bits,

25-24
Parity Error interrupt enable, 21-45
Parity Error (PERR) interrupt event, 21-33
Pattern 0 Registers (PR0), 21-91
Pattern 1 Registers (PR1), 21-91
PC133 SDRAM controller, 20-14
PD_SDDAT3 (pull-down SD_DATA3)

bit, 23-37
PEN (parity enable) bit, 31-30
PE (parity error) bit, 31-36, 31-37
peripherals, 20-3

and buses, 20-4
DMA support, 20-4
list of, 20-3

PERREN, 21-45

PFx pin, 28-10
PG_RD_START (page read start) bit,

25-26
PG_RD_STAT (page read pending) bit,

25-21
PG_SIZE (page size) bit, 25-20
PG_WR_START (page write start) bit,

25-26
PG_WR_STAT (page write pending) bit,

25-21
Phy Receiver, 21-116
Phy Transmitter, 21-16
pin interrupt mask set

(PINTx_MASK_SET) registers,
21-100, 21-107, 21-110

pin interrupt x (PIQx) bits, 21-100,
21-107, 21-110

pin terminations, SPORT, 30-10
PINTx_MASK_SET (pin interrupt mask

set) registers, 21-100, 21-107, 21-110
PIO_CSTATE (PIO mode state machine

current state) bits, 24-61
PIO-DMA enable (PIO_USE_DMA) bit,

24-50
PIO_DONE_INT (PIO transfer done

interrupt status) bit, 24-58
PIO_DONE_MASK (PIO transfer done

interrupt mask) bit, 24-56
PIO mode state machine current state

(PIO_CSTATE) bits, 24-61
PIO_START (start PIO/Reg Op) bit,

24-50
PIO_TFRCNT (PIO transfer count) bits,

24-62
PIO transfer done interrupt mask

(PIO_DONE_MASK) bit, 24-56
PIO transfer done interrupt status

(PIO_DONE_INT) bit, 24-58

ADSP-BF54x Blackfin Processor Hardware Reference I-37

Index

PIO transfer in progress (PIO_XFER_ON)
bit, 24-52, 24-53, 24-54, 24-55,
24-59, 24-60, 24-61, 24-62, 24-63,
24-64, 24-65, 24-66, 24-67, 24-68,
24-69

PIO_USE_DMA (PIO-DMA enable) bit,
24-50

PIO_XFER_ON (PIO transfer in progress)
bit, 24-52, 24-53, 24-54, 24-55,
24-59, 24-60, 24-61, 24-62, 24-63,
24-64, 24-65, 24-66, 24-67, 24-68,
24-69

PIQx (pin interrupt x) bits, 21-100,
21-107, 21-110

PJx pin, 28-10
PLLCLKOE (PLL clock output enable) bit,

32-132
PLL clock output enable (PLLCLKOE) bit,

32-132
PLL multiplier select (M) bits, 32-132
PLL stable indicator (PLL_STABLE) bit,

32-132
PLL_STABLE (PLL stable indicator) bit,

32-132
PLL Start-Up Sequence, 21-120
POLC bits, 26-82
POLS bits, 26-82
port connection, SPORT, 30-8
port F

and SPI, 28-4
port function enable (PORTx_FER)

registers, 21-112, 21-114
port pins, 28-47
port pins, test access, B-3
ports, 20-15
port x bit y (Pxy) bits, 21-112, 21-114
PORTx_FER (port function enable)

registers, 21-112, 21-114
POSITION field, 21-49

Position Register Updated interrupt enable,
21-45

Position Register Updated (PRU) interrupt
event, 21-31

power management, 20-32
power on (PWR_ON) bits, 23-22
power save enable (PWR_SV_E) bit, 23-23
PPI_STATUS (PPI status register), 24-50,

24-56, 24-57, 26-100, 26-101
PPI status register (PPI_STATUS), 24-50,

24-56, 24-57, 26-100, 26-101
preamble error detected (ERR_DET) bit,

26-89
preamble error not corrected

(ERR_NCOR) bit, 26-89
prescale[6:0] field, 29-36
private instructions, B-5
processor block diagram, 20-5
propagation segment, CAN, 27-12
PROTOCOL_R (Rx protocol type) bits,

32-119
PROTOCOL_T (Tx protocol type) bits,

32-117
PRUEN, 21-45
PSSE bit, 28-21, 28-45
PSSE (slave select enable) bit, 28-45
public instructions, B-5
public JTAG scan instructions, B-5
pull-down SD_DATA3 (PD_SDDAT3)

bit, 23-37
pull-up SD_DATA3 (PUP_SDDAT3) bit,

23-37
pull-up SD_DATA (PUP_SDDAT) bit,

23-37
PUP_SDDAT3 (pull-up SD_DATA3) bit,

23-37
PUP_SDDAT (pull-up SD_DATA) bit,

23-37
PWR_ON (power on) bits, 23-22
PWR_SV_E (power save enable) bit, 23-23

Index

I-38 ADSP-BF54x Blackfin Processor Hardware Reference

Pxy (port x bit y) bits, 21-112, 21-114

R
RBSY bit, 28-48
RBSY flag, 28-25
RBSY (receive error) bit, 28-48
RCKFE bit, 30-35, 30-57, 30-60
RCVDATA16[15:0] field, 29-55
RCVDATA8[7:0] field, 29-54
RCVFLUSH bit, 29-45, 29-46
RCVINTLEN bit, 29-45, 29-46
RCVSERV bit, 29-18, 29-19, 29-51
RCVSERVM bit, 29-48, 29-49
RCVSTAT[1:0] field, 29-17, 29-47
RD_DLY (read strobe delay) bits, 25-20
RD_RDY (read data ready) bit, 25-22
RDTYPE[1:0] field, 30-30, 30-57, 30-59
read data ready (RD_RDY) bit, 25-22
read strobe delay (RD_DLY) bits, 25-20
read wait request (RWR) bit, 23-38
READY_PAUSE (select ready to pause)

bits, 24-69
real-time clock, See RTC
REC bit, 27-47
receive active mask (RX_ACT_MASK) bit,

23-33
receive active (RX_ACT) bit, 23-30
receive buffer[7:0] field, 31-42
receive data[15:0] field, 30-65
receive data[31:16] field, 30-65
receive data available mask

(RX_DAT_RDY_MASK) bit, 23-33
receive data available (RX_DAT_RDY) bit,

23-31

receive data buffer[15:0] field, 28-49
received byte count in EP0 FIFO

(EP0_RX_COUNT) bits, 32-115
receive error (RBSY) bit, 28-48
receive FIFO, SPORT, 30-63
receive FIFO empty mask

(RX_FIFO_ZERO_MASK) bit,
23-33

receive FIFO empty (RX_FIFO_ZERO)
bit, 23-31

receive FIFO full mask
(RX_FIFO_FULL_MASK) bit,
23-33

receive FIFO full (RX_FIFO_FULL) bit,
23-31

receive FIFO status mask
(RX_FIFO_STAT_MASK) bit,
23-33

receive FIFO status (RX_FIFO_STAT) bit,
23-30

receive message lost interrupt, CAN, 27-27
receive overrun (RX_OVERRUN) bit,

23-30
Receive Synchronous Boundary (RSB)

field, 21-26
receive underrun mask

(RX_UNDERRUN_MASK) bit,
23-33

receive underrun status
(RX_UNDERRUN_STAT) bit,
23-32

Receiving Control Message (CMRX) bit,
21-24

reception error, SPI, 28-25

ADSP-BF54x Blackfin Processor Hardware Reference I-39

Index

Registers
MXVR_AADDR, A-7
MXVR_ALLOC_0, A-7
MXVR_ALLOC_1, A-7
MXVR_ALLOC_10, A-8
MXVR_ALLOC_11, A-8
MXVR_ALLOC_12, A-8
MXVR_ALLOC_13, A-8
MXVR_ALLOC_14, A-8
MXVR_ALLOC_2, A-7
MXVR_ALLOC_3, A-7
MXVR_ALLOC_4, A-7
MXVR_ALLOC_5, A-7
MXVR_ALLOC_7, A-7
MXVR_ALLOC_8, A-7
MXVR_ALLOC_9, A-8
MXVR_AP_CTL, A-11
MXVR_APRB_CURR_ADDR, A-11
MXVR_APRB_START_ADDR, A-11
MXVR_APTB_CURR_ADDR, A-11
MXVR_APTB_START_ADDR, A-11
MXVR_CM_CTL, A-11
MXVR_CMRB_CURR_ADDR, A-11
MXVR_CMRB_START_ADDR, A-11
MXVR_CMTB_CURR_ADDR, A-11
MXVR_CMTB_START_ADDR, A-11
MXVR_CONFIG, A-7
MXVR_DELAY, A-7
MXVR_DMA0_CONFIG, A-8
MXVR_DMA0_COUNT, A-8
MXVR_DMA0_CURR_ADDR, A-8
MXVR_DMA0_CURR_COUNT, A-8
MXVR_DMA0_START_ADDR, A-8
MXVR_DMA1_CONFIG, A-9
MXVR_DMA1_COUNT, A-9
MXVR_DMA1_CURR_ADDR, A-9
MXVR_DMA1_CURR_COUNT, A-9
MXVR_DMA1_START_ADDR, A-9
MXVR_DMA2_CONFIG, A-9
MXVR_DMA2_COUNT, A-9

MXVR_DMA2_CURR_ADDR, A-9
MXVR_DMA2_CURR_COUNT, A-9
MXVR_DMA2_START_ADDR, A-9
MXVR_DMA3_CONFIG, A-9
MXVR_DMA3_COUNT, A-9
MXVR_DMA3_CURR_ADDR, A-9
MXVR_DMA3_CURR_COUNT, A-9
MXVR_DMA3_START_ADDR, A-9
MXVR_DMA4_CONFIG, A-9
MXVR_DMA4_COUNT, A-10
MXVR_DMA4_CURR_ADDR, A-10
MXVR_DMA4_CURR_COUNT,

A-10
MXVR_DMA4_START_ADDR, A-10
MXVR_DMA5_CONFIG, A-10
MXVR_DMA5_COUNT, A-10
MXVR_DMA5_CURR_ADDR, A-10
MXVR_DMA5_CURR_COUNT,

A-10
MXVR_DMA5_START_ADDR, A-10
MXVR_DMA6_CONFIG, A-10
MXVR_DMA6_COUNT, A-10
MXVR_DMA6_CURR_ADDR, A-10
MXVR_DMA6_CURR_COUNT,

A-10
MXVR_DMA6_START_ADDR, A-10
MXVR_DMA7_CONFIG, A-10
MXVR_DMA7_COUNT, A-11
MXVR_DMA7_CURR_ADDR, A-11
MXVR_DMA7_CURR_COUNT,

A-11
MXVR_DMA7_START_ADDR, A-10
MXVR_FRAME_CNT_0, A-12
MXVR_FRAME_CNT_1, A-12
MXVR_GADDR, A-7
MXVR_INT_EN_0, A-7
MXVR_INT_EN_1, A-7
MXVR_INT_STAT_0, A-7
MXVR_INT_STAT_1, A-7
MXVR_LADDR, A-7

Index

I-40 ADSP-BF54x Blackfin Processor Hardware Reference

MXVR_MAX_DELAY, A-7
MXVR_MAX_POSITION, A-7
MXVR_PAT_DATA_0, A-11
MXVR_PAT_DATA_1, A-11
MXVR_PAT_EN_0, A-11
MXVR_PAT_EN_1, A-11
MXVR_PLL_CTL, A-7, A-12
MXVR_POSITION, A-7
MXVR_ROUTING_0, A-12
MXVR_ROUTING_1, A-12
MXVR_ROUTING_10, A-12
MXVR_ROUTING_11, A-12
MXVR_ROUTING_12, A-12
MXVR_ROUTING_13, A-12
MXVR_ROUTING_2, A-12
MXVR_ROUTING_3, A-12
MXVR_ROUTING_4, A-12
MXVR_ROUTING_5, A-12
MXVR_ROUTING_6, A-12
MXVR_ROUTING_7, A-12
MXVR_ROUTING_8, A-12
MXVR_ROUTING_9, A-12
MXVR_RRDB_CURR_ADDR, A-11
MXVR_RRDB_START_ADDR, A-11
MXVR_STATE_0, A-7
MXVR_STATE_1, A-7
MXVR_SYNC_LCHAN_0, A-8
MXVR_SYNC_LCHAN_1, A-8
MXVR_SYNC_LCHAN_2, A-8
MXVR_SYNC_LCHAN_3, A-8
MXVR_SYNC_LCHAN_4, A-8
MXVR_SYNC_LCHAN_5, A-8
MXVR_SYNC_LCHAN_6, A-8
MXVR_SYNC_LCHAN_7, A-8

registers
See also registers by name
ATAPI, 24-48, A-16
diagram conventions, -xlix
system, A-3

RegistersMXVR_ALLOC_6, A-7

REG_RXBUFFER (device receive buffer)
bits, 24-55

REG_TXBUFFER (device transmit buffer)
bits, 24-54

remote frames, CAN, 27-22
Remote GetSource Control Message

Transmission, 21-147
Remote GetSource Control Message

Transmit Buffer Entry Field Offsets,
21-149

Remote Get Source In Progress (RGSIP)
bit, 21-24

Remote GetSource Reception, 21-156
Remote Get Source system control

message, 21-24
Remote Read and Remote Write

Reception, 21-153
Remote Read Buffer, 21-15
Remote Read Buffer Field Offsets, 21-154
Remote Read Control Message

Transmission, 21-137
Remote Read Control Message Transmit

Buffer Entry Field Offsets, 21-138
Remote Read In Progress (RRDIP) bit,

21-25
Remote Write Complete interrupt enable,

21-46
Remote Write control message, 21-15
Remote Write Control Message Complete

(RWRC) interrupt event, 21-38
Remote Write Control Message

Transmission, 21-139
Remote Write Control Message Transmit

Buffer Entry Field Offsets, 21-140
Remote Write In Progress (RWRIP) bit,

21-25
Remote Write Receive Enable

(RWRRXEN) bit, 21-15
REQPKT (request an IN transaction) bit,

32-98

ADSP-BF54x Blackfin Processor Hardware Reference I-41

Index

REQPKT_RH (request an IN transaction)
bit, 32-109

request and IN transaction
(STALL_RECEIVED_RH) bit,
32-109

request and IN transaction
(STALL_RECEIVED_TH) bit,
32-102

request an IN transaction
(REQPKKT_RH) bit, 32-109

request an IN transaction (REQPKT) bit,
32-98

request an IN transaction (RXSTALL_TH)
bit, 32-102

reset, effect on SPI, 28-21
Reset Asynchronous Packet Arbitration

(RESETAP) bit, 21-78
reset endpoint data toggle

(CLEAR_DATATOGGLE_R) bit,
32-109

reset endpoint data toggle
(CLEAR_DATATOGGLE_T) bit,
32-102

RESET_OR_BABLE_BE (reset or bable
IRQ enable) bit, 32-90

RESET_OR_BABLE_B (reset or bable
indicator) bit, 32-89

reset or bable indicator
(RESET_OR_BABLE_B) bit, 32-89

reset or bable IRQ enable
(RESET_OR_BABLE_BE) bit,
32-90

RESET (USB reset) bit, 32-82
reset vector, 20-35
Resource Allocate Control Message

Transmission, 21-141
Resource Allocate Control Message

Transmit Buffer Entry Field Offsets,
21-142

Resource Allocate In Progress (ALIP) bit,
21-25

Resource Allocate Reception, 21-154
Resource De-Allocate Control Message

Transmission, 21-144
Resource De-Allocate Control Message

Transmit Buffer Entry Field Offsets,
21-145

Resource De-Allocate In Progress (DALIP)
bit, 21-24

Resource De-Allocate Reception, 21-155
RESP_CMD (response command) bits,

23-25
response (CMD_RSP) bit, 23-24
response command (RESP_CMD) bits,

23-25
RESUME_BE (resume signalling IRQ

enable) bit, 32-90
RESUME_B (resume signalling indicator)

bit, 32-89
resume mode flag (RESUME_MODE) bit,

32-82
RESUME_MODE (resume mode flag) bit,

32-82
resume signalling indicator (RESUME_B)

bit, 32-89
resume signalling IRQ enable

(RESUME_BE) bit, 32-90
re-synchronization, CAN, 27-12
RFCS (receive FIFO count status) bit,

31-39
RFHn bit, 27-83
RFIT (receive FIFO IRQ threshold) bit,

31-33
RFRT (receive FIFO RTS threshold) bit,

31-33
RFS pins, 30-20, 30-32
RFSR bit, 30-32, 30-33, 30-57, 30-60
RFSx signal, 30-6

Index

I-42 ADSP-BF54x Blackfin Processor Hardware Reference

RGB_FMT_EN (formatting enable) bit,
26-83

RLSBIT bit, 30-57, 30-59
RMLIF bit, 27-27, 27-52
RMLIM bit, 27-27, 27-50
RMLIS bit, 27-27, 27-51
RMLn bit, 27-76
RMPn bit, 27-75
rod control (ROD_CTL) bit, 23-22
ROD_CTL (rod control) bit, 23-22
route Rx IRQ to INTx (RX_INTx_R) bits,

32-94
route Tx IRQ to INTx (TX_INTx_R) bits,

32-94
route USB/VBUS IRQ to INTx

(USB_INTx_R) bits, 32-94
ROVF bit, 30-65, 30-66, 30-67
row enable width (KPAD_ROWEN) bits,

22-10
rows value pressed (KPAD_ROW) bits,

22-16
RPOLC bit, 31-50, 31-51
RRFST bit, 30-58, 30-60
RSCLKx pins, 30-31
RSCLKx signal, 30-6
RSFSE bit, 30-13, 30-58, 30-60
RSPEN bit, 30-11, 30-56, 30-57, 30-58
RSTART bit, 29-41, 29-42
RTC, 20-30
RTR bit, 27-57
RUVF bit, 30-65, 30-66, 30-67
RWRCEN, 21-46
RWR (read wait request) bit, 23-38
RX_ACT_MASK (receive active mask) bit,

23-33
RX_ACT (receive active) bit, 23-30
RX_COUNT (USB Rx byte count) bits,

32-116
Rx data buffer status (RXS) bit, 28-48

RX_DAT_RDY_MASK (receive data
available mask) bit, 23-33

RX_DAT_RDY (receive data available) bit,
23-31

RXECNT[7:0] field, 27-89
RX_FIFO_FULL_MASK (receive FIFO

full mask) bit, 23-33
RX_FIFO_FULL (receive FIFO full) bit,

23-31
RX_FIFO_STAT_MASK (receive FIFO

status mask) bit, 23-33
RX_FIFO_STAT (receive FIFO status) bit,

23-30
RX_FIFO_ZERO_MASK (receive FIFO

empty mask) bit, 23-33
RX_FIFO_ZERO (receive FIFO empty)

bit, 23-31
RX hold register, 30-64
RX_INTx_R (route Rx IRQ to INTx) bits,

32-94
RXNE bit, 30-67
RX_OVERRUN (receive overrun) bit,

23-30
Rx packet serviced

(SERVICED_RXPKTRDY) bit,
32-98

RxPktRdy autoclear enable
(AUTOCLEAR_R) bit, 32-109

RXPKTRDY (data packet receive
indicator) bit, 32-98

RXPKTRDY_R (data packet in FIFO
indicator) bit, 32-109

RX_POLL_INTERVAL (USB Rx poll
interval) bits, 32-120

Rx protocol type (PROTOCOL_R) bits,
32-119

RXREQ signal, 31-9
RXS bit, 28-31, 28-48
RXSE bit, 30-58, 30-60
RXS (Rx data buffer status) bit, 28-48

ADSP-BF54x Blackfin Processor Hardware Reference I-43

Index

RXSTALL_TH (request an IN transaction)
bit, 32-102

RX_UNDERRUN_MASK (receive
underrun mask) bit, 23-33

RX_UNDERRUN_STAT (receive
underrun status) bit, 23-32

S
SA0 bit, 27-89
SADDR[6:0] field, 29-39
SAM bit, 27-49
SAMPLE/PRELOAD instruction, B-7
sampling, CAN, 27-12
sampling edge, SPORT, 30-35
SBL2UEN, 21-45
SB (set break) bit, 31-30
SBU2LEN, 21-45
SBUEN, 21-45
scan paths, B-5
SCCB bit, 29-36
SCD_MSK (mask card detect) bit, 23-36
SCK signal, 28-5, 28-17, 28-19, 28-22
SCL clock divider (TWI_CLKDIV)

register, 29-36
SCLK
SCLK domain, 20-11
SCLOVR bit, 29-41
SCL pin, 29-5
SCLSEN bit, 29-13, 29-45
SCOMP bit, 29-21, 29-51
SCOMPM bit, 29-48, 29-51
scratch[7:0] field, 31-49
SCTS (sticky CTS) bit, 31-39
SD4E (SDIO 4-bit enable) bit, 23-37
SDAOVR bit, 29-41, 29-42
SDA pin, 29-5
SDASEN bit, 29-14, 29-45
SD card detect (SD_CARD_DET) bit,

23-35

SD_CARD_DET (SD card detect) bit,
23-35

SD_CLK bus clock enable (CLK_E) bit,
23-23

SD_CLK divisor (CLKDIV) bits, 23-23
SD_CMD_OD (open drain output) bit,

23-22
SDH_ARGUMENT (SDH argument)

register, 23-20, 23-24, A-14
SDH argument (SDH_ARGUMENT)

register, 23-20, 23-24, A-14
SDH_CFG (SDH configuration) register,

23-21, 23-37, A-15
SDH_CLK_CTL (SDH clock control)

register, 23-19, 23-23, A-14
SDH clock control (SDH_CLK_CTL)

register, 23-19, 23-23, A-14
SDH_COMMAND (SDH command)

register, 23-20, 23-24, A-14
SDH command (SDH_COMMAND)

register, 23-20, 23-24, A-14
SDH configuration (SDH_CFG) register,

23-21, 23-37, A-15
SDH_DATA_CNT (SDH data counter)

register, 23-20, 23-29, A-14
SDH data control (SDH_DATA_CTL)

register, 23-20, 23-27, A-14
SDH data counter (SDH_DATA_CNT)

register, 23-20, 23-29, A-14
SDH_DATA_CTL (SDH data control)

register, 23-20, 23-27, A-14
SDH data FIFO (SDH_FIFOx) registers,

23-21, 23-35, A-15
SDH data length (SDH_DATA_LGTH)

register, 23-20, 23-27, A-14
SDH_DATA_LGTH (SDH data length

register, 23-20, 23-27, A-14
SDH_DATA_TIMER (SDH data timer)

register, 23-20, 23-26, A-14

Index

I-44 ADSP-BF54x Blackfin Processor Hardware Reference

SDH data timer (SDH_DATA_TIMER)
register, 23-20, 23-26, A-14

SDH_E_MASK (SDH exception mask)
register, 23-21, 23-36, A-15

SDH_E_STATUS (SDH exception status)
register, 23-21, 23-35, A-15

SDH exception mask (SDH_E_MASK)
register, 23-21, 23-36, A-15

SDH exception status (SDH_E_STATUS)
register, 23-21, 23-35, A-15

(SDH_FIFO_CNT (SDH FIFO counter)
register, 23-34

SDH_FIFO_CNT (SDH FIFO counter)
register, 23-21, A-15

SDH FIFO counter (SDH_FIFO_CNT)
register, 23-21, 23-34, A-15

SDH_FIFOx (SDH data FIFO) registers,
23-21, 23-35, A-15

SDH identification (SDH_PIDx) registers,
23-21, 23-38, A-15

SDH interrupt mask (SDH_MASKx)
registers, 23-20, 23-33, A-15

SDH_MASKx (SDH interrupt mask)
registers, 23-20, 23-33, A-15

SDH_PIDx (SDH identification) registers,
23-21, 23-38, A-15

SDH power control (SDH_PWR_CTL)
register, 23-19, 23-22, A-14

SDH_PWR_CTL (SDH power control)
register, 23-19, 23-22, A-14

SDH_RD_WAIT_EN (SDH read wait
enable) register, 23-21, 23-38, A-15

SDH read wait enable
(SDH_RD_WAIT_EN) register,
23-21, 23-38, A-15

SDH_RESP_CMD (SDH response
command) register, 23-20, 23-25,
A-14

SDH response command
(SDH_RESP_CMD) register, 23-20,
23-25, A-14

SDH response (SDH_RESPONSEx)
registers, 23-20, 23-26, A-14

SDH_RESPONSEx (SDH response)
registers, 23-20, 23-26, A-14

SDH status clear (SDH_STATUS_CLR)
register, 23-20, 23-32, A-15

SDH_STATUS_CLR (SDH status clear)
register, 23-20, 23-32, A-15

SDH_STATUS (SDH status) register,
23-20, 23-30, A-15

SDH status (SDH_STATUS) register,
23-20, 23-30, A-15

SDIO 4-bit enable (SD4E) bit, 23-37
SDIO_INT_DET (SDIO interrupt

detected) bit, 23-35
SDIO interrupt detected

(SDIO_INT_DET) bit, 23-35
SDIO interrupt detected (SDIO_MSK)

bit, 23-36
SDIO_MSK (SDIO interrupt detected)

bit, 23-36
SDIR bit, 29-16, 29-40
SDMMC reset (SD_RST) bit, 23-37
SD_RST (SDMMC reset) bit, 23-37
secure digital host

descripiton of operation, 23-3
MMC/SD card detection, 23-18
receive FIFO, 23-17
SDH clocking, 23-4
SDH data, 23-10
SDH data FIFO, 23-16
SDH data path state machine, 23-10
SDH operation, 23-5
SDH registers, 23-19, A-13

SDH_CLK_CTL, 23-19, A-14

ADSP-BF54x Blackfin Processor Hardware Reference I-45

Index

SDH_PWR_CTL, 23-19, A-14
SDIO interrupt and read wait support,

23-17
transmit FIFO, 23-16

select cycle time - TDVS time
(TCYC_TDVS) bits, 24-68

select data valid setup time (TDVS) bits,
24-68

select DIOR/DIOW pulsewidth
(TEOC_REG) bits, 24-64

select DIOR negated pulsewidth (TKR)
bits, 24-66

select DIOW data hold (TH) bits, 24-67
select DIOW negated pulsewidth (TKW)

bits, 24-66
SELECTED_ENDPOINT (USB

endpoint index) bits, 32-91, 32-93
select end of cycle for DMA (TEOC) bits,

24-67
select envelope time (TENV) bits, 24-67
select interlock time (TMLI) bits, 24-68
select minimum delay required for output

(TZAH) bits, 24-69
select ready to pause (READY_PAUSE)

bits, 24-69
select setup and hold times for TACK

(TACK) bits, 24-67
select time from STROBE edge to negation

of DMARQ or assertion of STOP
(TSS) bits, 24-68

SEN bit, 29-37, 29-38
send setup token (SETUPPKT) bit, 32-98
send STALL handshake (SENDSTALL)

bit, 32-98
send STALL handshake

(STALL_SEND_R) bit, 32-109
send STALL handshake

(STALL_SEND_T) bit, 32-102
SENDSTALL (send STALL handshake)

bit, 32-98

send zero (SZ) bit, 28-45
SER bit, 27-89
serial clock divide modulus[15:0] field,

30-68
serial clock frequency, 28-22
serial communications, 31-6
serial data transfer, 30-3
serial scan paths, B-5
SERR bit, 29-20, 29-51
SERRM bit, 29-48, 29-50
SERVICED_RXPKTRDY (Rx packet

serviced) bit, 32-98
SERVICED_SETUPEND (setup end

serviced) bit, 32-98
session end/disconnect indicator

(DISCON_B) bit, 32-89
session end/disconnect IRQ enable

(DISCON_BE) bit, 32-90
session indicator (SESSION) bit, 32-122,

32-124
SESSION_REQ_BE (session request IRQ

enable) bit, 32-90
SESSION_REQ_B (session request

indicator) bit, 32-89
session request indicator

(SESSION_REQ_B) bit, 32-89
session request IRQ enable

(SESSION_REQ_BE) bit, 32-90
SESSION (session indicator) bit, 32-122,

32-124
setup end serviced

(SERVICED_SETUPEND) bit,
32-98

SETUPEND (setup end) bit, 32-98
setup end (SETUPEND) bit, 32-98
SETUPPKT (send setup token) bit, 32-98
shorten startup counter chain

(TM_SHORT_CHAIN) bit, 32-132
SIGN_EXT (sign extension/zero-filled) bit,

26-83

Index

I-46 ADSP-BF54x Blackfin Processor Hardware Reference

sine wave input, 20-32
Single cast Transmission Status Encodings,

21-133
single shot transmission, CAN, 27-15
SINIT bit, 29-21, 29-51
SINITM bit, 29-48, 29-51
SIZE bit, 28-21, 28-45
size of words (SIZE) bit, 28-45
SIZE (size of words) bit, 28-45
SJW[1:0] field, 27-12, 27-49
SKIP_EN (skip enable) bit, 26-83
SKIP_EO (skip even/odd) bit, 26-83
Slave Mode, 21-13
Slave mode initialization, 21-118
slave select, SPI, 28-47
slave select enable (FLSx) bits, 28-46
slave select enable (PSSE) bit, 28-45
slave SPI device, 28-7
sleep mode, 20-33

CAN, 27-40
SLEN[4:0] field, 30-52, 30-54, 30-58,

30-59
restrictions, 30-30
word length formula, 30-30

SMODE_B (switch charge pump mode)
bits, 32-132

SMR bit, 27-46
SOF_BE (start of frame IRQ enable) bit,

32-90
SOF_B (start of frame indicator) bit, 32-89
soft connect enable (SOFTC_CONN) bit,

32-82
SOFT_CONN (soft connect enable) bit,

32-82
SOFT_RST (soft reset) bit, 24-50
software programmable force evaluate

(KPAD_SOFTEVAL_E) bit, 22-21
software reset, and CAN, 27-13
software reset (SRS) bit, 27-46
software watchdog timer, 20-31

SOVF bit, 29-20, 29-51
SOVFM bit, 29-48, 29-50
SPE bit, 28-22, 28-45
SPE (SPI enable) bit, 28-45
SPI, 20-22, 28-1 to 28-58

beginning and ending transfers, 28-30
bit mapping to port pins, 28-10
block diagram, 28-3
clock phase, 28-17, 28-19, 28-22
clock polarity, 28-17, 28-22
clock signal, 28-3, 28-22
code examples, 28-50
data corruption, avoiding, 28-19
data interrupt, 28-25
data transfer, 28-20
detecting transfer complete, 28-23
and DMA, 28-14
DMA initialization, 28-54
DMA transfers, 28-53
effect of reset, 28-21
error interrupt, 28-25
error signals, 28-23 to 28-25
general operation, 28-26 to 28-30
initialization, 28-50
internal interfaces, 28-14
interrupt outputs, 28-25
interrupts, 28-52
master mode, 28-20, 28-26
master mode DMA operation, 28-33
mode fault error, 28-24
multiple slave systems, 28-12
port F, 28-4
reception error, 28-25
registers, table, 28-43
SCK signal, 28-5
slave device, 28-7
slave mode, 28-20, 28-29
slave mode DMA operation, 28-35
slave select enable setup, 28-2, 28-9
slave-select function, 28-46

ADSP-BF54x Blackfin Processor Hardware Reference I-47

Index

slave transfer preparation, 28-30
SPI_FLG mapping to port pins, 28-47
starting DMA transfer, 28-56
starting transfer, 28-51
stopping, 28-53
stopping DMA transfers, 28-56
switching between transmit and receive,

28-32
timing, 28-8
transfer formats, 28-17 to 28-19
transfer initiate command, 28-27
transfer modes, 28-28
transfer protocol, 28-18, 28-19
transmission error, 28-25
transmission/reception errors, 28-23
transmit collision error, 28-25
using DMA, 28-14
word length, 28-21

SPI baud rate registers (SPI_BAUD),
28-22, 28-43

SPI baud rate (SPIx_BAUD) registers,
28-44

SPI_BAUD (SPI baud rate registers),
28-22, 28-43

SPI_BAUD values, 28-23
SPI control register (SPI_CTL), 28-21,

28-43, 28-45
SPI control (SPIx_CTL) registers, 28-45
SPI_CTL (SPI control register), 28-5,

28-21, 28-43, 28-45
SPI enable (SPE) bit, 28-45
SPIF bit, 28-13, 28-31, 28-48
SPI finished (SPIF) bit, 28-48
SPI flag register (SPI_FLG), 28-10, 28-43,

28-46
SPI flag (SPIx_FLG) registers, 28-46
SPI_FLG bit, 28-10
SPI_FLG (SPI flag register), 28-10, 28-12,

28-43, 28-46
SPIF (SPI finished) bit, 28-48

SPI_RDBR shadow[15:0] field, 28-49
SPI RDBR shadow register

(SPI_SHADOW), 28-16, 28-44,
28-49

SPI RDBR shadow (SPIx_SHADOW)
registers, 28-49

SPI_RDBR (SPI receive data buffer
register), 28-16, 28-44, 28-49

SPI receive data buffer register
(SPI_RDBR), 28-16, 28-44, 28-49

SPI receive data buffer (SPIx_RDBR)
registers, 28-49

SPI_SHADOW (SPI RDBR shadow
register), 28-16, 28-44, 28-49

SPI slave select, 28-47
SPISS signal, 28-7, 28-12, 28-17
SPI_STAT (SPI status register), 28-23,

28-43, 28-48
SPI status register (SPI_STAT), 28-23,

28-43, 28-48
SPI status (SPIx_STAT) registers, 28-48
SPI_TDBR (SPI transmit data buffer

register), 28-15, 28-43, 28-48
SPI transmit data buffer register

(SPI_TDBR), 28-15, 28-43, 28-48
SPI transmit data buffer (SPIx_TDBR)

registers, 28-48
SPIx_BAUD (SPI baud rate) registers,

28-44
SPIx_CTL (SPI control) registers, 28-45
SPIx_FLG (SPI flag) registers, 28-46
SPIx_RDBR (SPI receive data buffer)

registers, 28-49
SPIx_SHADOW (SPI RDBR shadow)

registers, 28-49
SPIx_STAT (SPI status) registers, 28-48
SPIx_TDBR data buffer status (TXS) bit,

28-48
SPIx_TDBR (SPI transmit data buffer)

registers, 28-48

Index

I-48 ADSP-BF54x Blackfin Processor Hardware Reference

SPLT_EVEN_ODD, 26-83
SPORT, 20-20, 30-1 to 30-82

active low vs. active high frame syncs,
30-35

channels, 30-17
clock, 30-31
clock frequency, 30-28, 30-68
clock rate, 30-2
clock rate restrictions, 30-29
clock recovery control, 30-27
companding, 30-31
configuration, 30-12
data formats, 30-30
data word formats, 30-61
delay when enabled, 30-12
disabling, 30-12
DMA data packing, 30-26
enable/disable, 30-11
enabling multichannel mode, 30-19
framed serial transfers, 30-33
framed vs. unframed, 30-32
frame sync, 30-34, 30-37
frame sync frequencies, 30-28
framing signals, 30-32
general operation, 30-11
H.100 standard protocol, 30-27
initialization code, 30-59
internal memory access, 30-40
internal vs. external frame syncs, 30-34
late frame sync, 30-19
modes, 30-12
moving data to memory, 30-40
multichannel frame, 30-22
multichannel operation, 30-17 to 30-26
multichannel transfer timing, 30-18
multiplexed pins, 30-4
PAB error, 30-41
packing data, multichannel DMA, 30-26
pins, 30-4
port connection, 30-8

port G, 30-4
receive and transmit functions, 30-4
receive clock signal, 30-31
receive FIFO, 30-63
receive word length, 30-64
register writes, 30-50
RX hold register, 30-64
sampling edge, 30-35
selecting bit order, 30-30
serial data communication protocols,

30-1
shortened active pulses, 30-12
signals, 30-5
single clock for both receive and

transmit, 30-31
single word transfers, 30-40
stereo serial connection, 30-10
stereo serial frame sync modes, 30-19
stereo serial operation, 30-13
support for standard protocols, 30-27
termination, 30-10
timing, 30-41
transmit clock signal, 30-31
transmitter FIFO, 30-61
transmit word length, 30-62
TX hold register, 30-62
TX interrupt, 30-62
unframed data flow, 30-33
unpacking data, multichannel DMA,

30-26
window offset, 30-24
word length, 30-29

SPORT current channel
(SPORTx_CHNL) registers, 30-49,
30-71

SPORT error interrupt, 30-40
SPORT multichannel configuration

(SPORTx_MCMC1) register 1,
30-49

ADSP-BF54x Blackfin Processor Hardware Reference I-49

Index

SPORT multichannel configuration
(SPORTx_MCMC2) register 2,
30-49

SPORT multichannel receive select
(SPORTx_MRCSn) registers, 30-49

SPORT multichannel receive select
(SPORTx_MRCSn) segisters, 30-72

SPORT multichannel transmit select
registers (SPORTx_MTCSn), 30-25

SPORT multichannel transmit select
(SPORTx_MTCSn) segisters, 30-49,
30-74

SPORT receive configuration 1
(SPORTx_RCR1) registers, 30-49,
30-56

SPORT receive configuration 2
(SPORTx_RCR2) registers, 30-49,
30-56

SPORT receive data (SPORTx_RX)
registers, 30-49, 30-63, 30-65

SPORT receive frame sync divider
(SPORTx_RFSDIV) registers, 30-49,
30-69

SPORT receive serial clock divider
(SPORTx_RCLKDIV) registers,
30-49, 30-68

SPORT RX interrupt, 30-40, 30-65
SPORT status (SPORTx_STAT) registers,

30-49, 30-66
SPORT transmit configuration 1

(SPORTx_TCR1) registers, 30-48,
30-51

SPORT transmit configuration 2
(SPORTx_TCR2) registers, 30-48,
30-51

SPORT transmit data (SPORTx_TX)
registers, 30-48, 30-61, 30-62

SPORT transmit frame sync divider
(SPORTx_TFSDIV) registers, 30-48,
30-69

SPORT transmit serial clock divider
(SPORTx_TCLKDIV) registers,
30-48, 30-68

SPORT TX interrupt, 30-40
SPORTx_CHNL (SPORT current

channel) registers, 30-49, 30-71
SPORTx_MCMC1 (SPORT

multichannel configuration) register
1, 30-49

SPORTx_MCMC2 (SPORT
multichannel configuration) register
2, 30-49

SPORTx_MRCSn (SPORT multichannel
receive select) registers, 30-49

SPORTx_MRCSn (SPORT multichannel
receive select) segisters, 30-72

SPORTx_MTCSn (SPORT multichannel
transmit select) segisters, 30-49, 30-74

SPORTx multichannel configuration
registers (SPORTx_MCMCn), 30-70

SPORTx multichannel receive select
registers (SPORTx_MRCSn), 30-25

SPORTx multichannel transmit select
registers (SPORTx_MTCSn), 30-25

SPORTx_RCLKDIV (SPORT receive
serial clock divider) registers, 30-49,
30-68

SPORTx_RCR1 (SPORT receive
configuration 1) registers, 30-49,
30-56

SPORTx_RCR2 (SPORT receive
configuration 2) registers, 30-49,
30-56

SPORTx_RCR2 (SPORTx receive
configuration register), 30-58

SPORTx receive configuration 2 registers
(SPORTx_RCR2), 30-58

SPORTx receive data registers
(SPORTx_RX), 30-21

Index

I-50 ADSP-BF54x Blackfin Processor Hardware Reference

SPORTx_RFSDIV (SPORT receive frame
sync divider) registers, 30-49, 30-69

SPORTx_RX (SPORT receive data)
registers, 30-49, 30-63, 30-65

SPORTx_STAT (SPORT status) registers,
30-49, 30-66

SPORTx_TCLKDIV (SPORT transmit
serial clock divider) registers, 30-48,
30-68

SPORTx_TCR1 (SPORT transmit
configuration 1) registers, 30-48,
30-51

SPORTx_TCR2 (SPORT transmit
configuration 2) registers, 30-48,
30-51

SPORTx_TFSDIV (SPORT transmit
frame sync divider) registers, 30-48,
30-69

SPORTx transmit data registers
(SPORTx_TX), 30-21, 30-39

SPORTx_TX (SPORT transmit data)
registers, 30-48, 30-61, 30-62

SRS bit, 27-46
SRS (software reset) bit, 27-46
STALL handshake received

(STALL_RECEIVED) bit, 32-98
STALL handshake sent (STALL_SENT)

bit, 32-98
STALL handshake sent

(STALL_SENT_R) bit, 32-109
STALL handshake sent

(STALL_SENT_T) bit, 32-102
STALL_RECEIVED_RH (request and IN

transaction) bit, 32-109
STALL_RECEIVED (STALL handshake

received) bit, 32-98
STALL_RECEIVED_TH (request and IN

transaction) bit, 32-102
STALL_SEND_R (send STALL

handshake) bit, 32-109

STALL_SEND_T (send STALL
handshake) bit, 32-102

STALL_SENT_R (STALL handshake
sent) bit, 32-109

STALL_SENT (STALL handshake sent)
bit, 32-98

STALL_SENT_T (STALL handshake
sent) bit, 32-102

Start Asynchronous Packet Transmission
(STARTAP) bit, 21-77

START_BIT_ERR bit, 23-30
START_BIT_ERR_MASK bit, 23-33
start bit error status

(START_BIT_ERR_STAT) bit,
23-32

START_BIT_ERR_STAT (start bit error
status) bit, 23-32

Start Control Message Transmission
(STARTCM) bit, 21-84

start of frame indicator (SOF_B) bit, 32-89
start of frame IRQ enable (SOF_B) bit,

32-90
Start Pattern select (STARTPATx) field,

21-67
Status Change Interrupt, 21-30, 21-31
STATUSPKT_H (packet transaction

status) bit, 32-98
STB (stop bits) bit, 31-30
STDVAL bit, 29-37, 29-38
stereo serial data, 30-2
stereo serial device, SPORT connection,

30-10
stereo serial frame sync modes, 30-19
stereo serial operation, SPORT, 30-13
STOP bit, 29-43
Stop Mode, 21-63, 21-74
Stop Pattern select (STOPPATx) field,

21-68
STP (stick parity) bit, 31-30

ADSP-BF54x Blackfin Processor Hardware Reference I-51

Index

SUBSPLT_ODD (sub-split odd samples)
bit, 26-83

Super Block Locked State (SBLOCK) bit,
21-31

Super Block Locked to Unlocked interrupt
enable, 21-45

Super Block Locked to Unlocked (SBL2U)
interrupt event, 21-31

Super Block Lock (SBLOCK) bit, 21-20
Super Block Unlocked to Locked interrupt

enable, 21-45
Super Block Unlocked to Locked (SBU2L)

interrupt event, 21-31
support, technical or customer, -xlv
SUSPEND_BE (suspend signalling IRQ

enable) bit, 32-90
SUSPEND_B (suspend signalling

indicator) bit, 32-89
suspend mode, CAN, 27-39
suspend mode enable

(SUSPEND_MODE) bit, 32-82
suspend mode output enable

(ENABLE_SUSPENDM) bit, 32-82
SUSPEND_MODE (suspend mode

enable) bit, 32-82
suspend signalling indicator

(SUSPEND_B) bit, 32-89
suspend signalling IRQ enable

(SUSPEND_BE) bit, 32-90
SWAPEN (swap enable) bit, 26-83
switch charge pump mode (SMODE_B)

bits, 32-132
SYNC bit, 31-26
Synchronous Boundary (MSB) field, 21-17
Synchronous Boundary Updated interrupt

enable, 21-45
Synchronous Boundary Updated (SBU)

interrupt event, 21-33
Synchronous Data Delay (SDELAY) bit,

21-13

Synchronous Data Interrupt, 21-41
Synchronous Data Reception, 21-126
Synchronous Data Routing, Muting, and

Transmission, 21-123
Synchronous Packet Autobuffer Modes,

21-64
Synchronous Packet-Fixed Count Mode,

21-71, 21-75, 21-76
Synchronous Packet-Start/Stop Mode,

21-65, 21-71, 21-75, 21-77
Synchronous Packet-Variable Count

Mode, 21-64, 21-65, 21-71, 21-75,
21-76

Synchronous Receive FIFO Number of
Bytes (SRXNUMB) field, 21-27

Synchronous Receive FIFO Number of
Bytes (STXNUMB) field, 21-27

synchronous serial data transfer, 30-3
synchronous serial ports, See SPORT
system peripheral clock, See SCLK
system peripherals, 20-3
system reset, 20-35 to ??
SZ bit, 28-29, 28-45
SZ (send zero) bit, 28-45

T
T1_REG (time from address valid to

DIOR/DIOW) bits, 24-65
T2_REG (end of cycle time for register

access transfers) bits, 24-64
T2_REG_PIO (DIOR/DIOW

pulsewidth) bits, 24-65
T4_REG (DIOW data hold) bits, 24-65
TACK (select setup and hold times for

TACK) bits, 24-67
TAn bit, 27-81
TAP registers

boundary-scan, B-7
bypass, B-7
instruction, B-3, B-5

Index

I-52 ADSP-BF54x Blackfin Processor Hardware Reference

TAP (test access port), B-2, B-3
controller, B-3

TARGET_EP_NO_R (target EPx
number) bits, 32-119

TARGET_EP_NO_T (target EPx
number) bits, 32-117

target EPx number
(TARGET_EP_NO_R) bits, 32-119

target EPx number
(TARGET_EP_NO_T) bits, 32-117

TCKFE bit, 30-35, 30-51, 30-55
TCYC_TDVS (select cycle time - TDVS

time) bits, 24-68
TDA bit, 27-24, 27-82
TD (DIOR/DIOW asserted pulsewidth)

bits, 24-66
TDM interfaces, 30-3
TDPTR[4:0] field, 27-82
TDR bit, 27-24, 27-82
TDTYPE[1:0] field, 30-30, 30-51, 30-53
TDVS (select data valid setup time) bits,

24-68
technical support, -xlv
TEMT bit, 31-8, 31-36, 31-38
TENV (select envelope time) bits, 24-67
TEOC_REG_PIO (end of cycle time for

PIO access transfers) bits, 24-65
TEOC_REG (select DIOR/DIOW

pulsewidth) bits, 24-64
TEOC (select end of cycle for DMA) bits,

24-67
terminations, SPORT pin/line, 30-10
test access port (TAP), B-2, B-3

controller, B-3
test clock (TCK), B-7
test features, B-1 to B-7
testing circuit boards, B-1, B-5
test-logic-reset state, B-4
TFI (transmission finished indicator) bit,

31-36, 31-38

TFRCNT_RST (transmission count reset)
bit, 24-50

TFS pins, 30-32, 30-39
TFSR bit, 30-32, 30-33, 30-51, 30-54
TFS signal, 30-21
TFSx signal, 30-5
THRE bit, 31-18, 31-38
THRE flag, 31-8, 31-24
THRE (transmit hold register empty) bit,

31-36
throughput

SPORT, 30-8
TH (select DIOW data hold) bits, 24-67
time-division-multiplexed (TDM) mode,

30-17
See also SPORT, multichannel operation

time from address valid to DIOR/DIOW
(T1_REG) bits, 24-65

time from address valid to DIOR/DIOW
(TM) bits, 24-66

timeout error (ERROR_H) bit, 32-98
timeout error indicator (ERROR_RH) bit,

32-109
timeout error indicator (ERROR_TH) bit,

32-102
timers, 20-22

watchdog, 20-31
WDTH_CAP mode, 31-23

time stamps, CAN, 27-21
timing

multichannel transfer, 30-18
SPI, 28-8

timing examples, for SPORTs, 30-41
timing parameters, CAN, 27-12
TIMOD[1:0] field, 28-21, 28-26, 28-28,

28-45
TIMODx (transfer initiation mode) bits,

28-45
TKR (select DIOR negated pulsewidth)

bits, 24-66

ADSP-BF54x Blackfin Processor Hardware Reference I-53

Index

TKW (select DIOW negated pulsewidth)
bits, 24-66

TLSBIT bit, 30-51, 30-53
TMLI (select interlock time) bits, 24-68
TM_PLL_VCO (boost PLL amplitude)

bit, 32-132
TM_SELC (increase PLL charge pump

current) bit, 32-132
TM_SHORT_CHAIN (shorten startup

counter chain) bit, 32-132
TM (time from address valid to

DIOR/DIOW) bits, 24-66
tools, development, 20-36
TOVF bit, 30-62, 30-66, 30-67
TPOLC bit, 31-50, 31-51
transfer count (ECCCNT) bits, 25-25
transfer direction (XFER_DIR) bit, 24-50
transfer initiate command, 28-27
transfer initiation from SPI master, 28-28
transfer initiation mode (TIMODx) bits,

28-45
transfer length (XFER_LENGTH) bits,

24-59
transfer size (TxferSize), 32-24, 32-27
transmission count reset (TFRCNT_RST)

bit, 24-50
transmission error, SPI, 28-25
transmission error (TXE) bit, 28-48
transmit active mask (TX_ACT_MASK)

bit, 23-33
transmit active (TX_ACT) bit, 23-30
transmit clock, serial (TSCLKx) pins,

30-31
transmit collision error, SPI, 28-25
transmit collision error (TXCOL) bit,

28-48
transmit data[15:0] field, 30-63
transmit data[31:16] field, 30-63
transmit data available mask

(TX_DAT_RDY_MASK) bit, 23-33

transmit data available (TX_DAT_RDY)
bit, 23-31

transmit data buffer[15:0] field, 28-48
transmit FIFO empty mask

(TX_FIFO_ZERO_MASK) bit,
23-33

transmit FIFO empty (TX_FIFO_ZERO)
bit, 23-31

transmit FIFO full mask
(TX_FIFO_FULL_MASK) bit,
23-33

transmit FIFO full (TX_FIFO_FULL) bit,
23-31

transmit FIFO status mask
(TX_FIFO_STAT_MASK) bit,
23-33

transmit FIFO status (TX_FIFO_STAT)
bit, 23-30

Transmit FOT, 21-16
transmit hold[7:0] field, 31-41, 31-42
transmit underrun mask

(TX_UNDERRUN_MASK) bit,
23-33

transmit underrun status
(TX_UNDERRUN_STAT) bit,
23-32

transmit underrun (TX_UNDERRUN)
bit, 23-30

TRFST bit, 30-52, 30-56
TRM bit, 27-47
TRRn bit, 27-79
TRSn bit, 27-78
TSCLKx signal, 30-5
TSEG1[3:0] field, 27-12, 27-49
TSEG2[2:0] field, 27-12, 27-49
TSFSE bit, 30-13, 30-52, 30-56
TSPEN bit, 30-11, 30-51, 30-52, 30-53
TSS (select time from STROBE edge to

negation of DMARQ or assertion of
STOP) bits, 24-68

Index

I-54 ADSP-BF54x Blackfin Processor Hardware Reference

TSV[15:0] field, 27-61
tuning of DPHY clocks (CNOS) bits,

32-130
TUVF bit, 30-39, 30-62, 30-66, 30-67
TWI, 20-16, 29-1 to 29-67

block diagram, 29-3
bus arbitration, 29-8
clock generation, 29-7
electrical specifications, 29-67
fast mode, 29-11
features, 29-2
general call address, 29-10
general setup, 29-22
I2C compatibility, 20-16
master mode clock setup, 29-24
master mode receive, 29-25
master mode transmit, 29-24
peripheral interface, 29-6
pins, 29-5
registers, list of, 29-34, A-33
slave mode operation, 29-22
start and stop conditions, 29-9
synchronization, 29-7
transfer protocol, 29-7

TWI_CLKDIV (SCL clock divider)
register, 29-36

TWI_CONTROL (TWI control) register,
29-36

TWI_ENA bit, 29-36
TWI_FIFO_CTL (TWI FIFO control)

register, 29-45
TWI FIFO receive data double byte

(TWI_RCV_DATA16 register,
29-54

TWI FIFO receive data single byte
(TWI_RCV_DATA8 register, 29-53

TWI_FIFO_STAT (TWI FIFO status
register), 29-17

TWI_FIFO_STAT (TWI FIFO status)
register, 29-47

TWI FIFO status register
(TWI_FIFO_STAT), 29-17

TWI FIFO transmit data double byte
(TWI_XMT_DATA16) register,
29-52

TWI FIFO transmit data single byte
(TWI_XMT_DATA8 register, 29-52

TWI interrupt mask (TWI_INT_MASK)
register, 29-47

TWI interrupt status register
(TWI_INT_STAT), 29-18

TWI_INT_MASK (TWI interrupt mask)
register, 29-47

TWI_INT_STAT (TWI interrupt status
register), 29-18

TWI_INT_STAT (TWI interrupt status)
register, 29-51

TWI_MASTER_ADDR (TWI master
mode address) register, 29-44

TWI master mode status register
(TWI_MASTER_STAT), 29-13

TWI master mode status
(TWI_MASTER_STAT) register,
29-45

TWI_MASTER_STAT (TWI master
mode status register), 29-13

TWI_MASTER_STAT (TWI master
mode status) register, 29-45

TWI_RCV_DATA16 (TWI FIFO receive
data double byte) register, 29-54

TWI_RCV_DATA8 (TWI FIFO receive
data single byte) register, 29-53

TWI_SLAVE_ADDR (TWI slave mode
address) register, 29-39

TWI_SLAVE_CTL (TWI slave mode
control) register, 29-37

TWI slave mode control
(TWI_SLAVE_CTL) register, 29-37

TWI slave mode status register
(TWI_SLAVE_STAT), 29-16

ADSP-BF54x Blackfin Processor Hardware Reference I-55

Index

TWI slave mode status
(TWI_SLAVE_STAT) register,
29-40

TWI_SLAVE_STAT (TWI slave mode
status register), 29-16

TWI_SLAVE_STAT (TWI slave mode
status) register, 29-40

TWI_XMT_DATA16 (TWI FIFO
transmit data double byte) register,
29-52

TWI_XMT_DATA8 (TWI FIFO transmit
data single byte) register, 29-52

two-wire interface, See TWI
TX_ACT_MASK (transmit active mask)

bit, 23-33
TX_ACT (transmit active) bit, 23-30
TXCOL bit, 28-48
TXCOL flag, 28-25
TXCOL (transmit collision error) bit,

28-48
TX_COUNT (USB Tx byte count) bits,

32-121
TX_DAT_RDY_MASK (transmit data

available mask) bit, 23-33
TX_DAT_RDY (transmit data available)

bit, 23-31
TXE bit, 28-25, 28-48
TXECNT[7:0] field, 27-89
TXE (transmission error) bit, 28-48
TXF bit, 30-62, 30-66, 30-67
TxferSize (transfer size), 32-24, 32-27
TX_FIFO_FULL_MASK (transmit FIFO

full mask) bit, 23-33
TX_FIFO_FULL (transmit FIFO full) bit,

23-31

TX_FIFO_STAT_MASK (transmit FIFO
status mask) bit, 23-33

TX_FIFO_STAT (transmit FIFO status)
bit, 23-30

TX_FIFO_ZERO_MASK (transmit FIFO
empty mask) bit, 23-33

TX_FIFO_ZERO (transmit FIFO empty)
bit, 23-31

TX hold register, 30-62
TXHRE bit, 30-67
TX_INTx_R (route Tx IRQ to INTx) bits,

32-94
TxPktRdy autoset enable (AUTOSET_T)

bit, 32-102
TXPKTRDY (data packet in FIFO

indicator) bit, 32-98
TXPKTRDY_T (data packet in FIFO

indicator) bit, 32-102
TX_POLL_INTERVAL (USB Tx poll

interval) bits, 32-118
Tx protocol type (PROTOCOL_T) bits,

32-117
TXREQ signal, 31-8
TXS bit, 28-31, 28-48
TXSE bit, 30-52, 30-55
TXS (SPIx_TDBR data buffer status) bit,

28-48
TX_UNDERRUN_MASK (transmit

underrun mask) bit, 23-33
TX_UNDERRUN_STAT (transmit

underrun status) bit, 23-32
TX_UNDERRUN (transmit underrun)

bit, 23-30
TZAH (select minimum delay required for

output) bits, 24-69

Index

I-56 ADSP-BF54x Blackfin Processor Hardware Reference

U
UART, 31-1 to 31-60

autobaud detection, 31-21, 31-54
baud rate, 31-9
baud rate examples, 31-20
bit rate examples, 31-20
bitstream, 31-7
block diagram, 31-3, 31-12
booting, 31-21
character transmission, 31-55
clock, 31-19
code examples, 31-52
data words, 31-6
divisor reset, 31-49
DMA channels, 31-25
DMA mode, 31-25
errors during reception, 31-10
external interfaces, 31-4
features, 31-2
glitch filtering, 31-15
initialization, 31-52
internal interfaces, 31-5
interrupt channels, 31-43
interrupt conditions, 31-46
interrupts, 31-17
IrDA mode, 31-2
IrDA receiver, 31-15
IrDA receiver pulse detection, 31-16
IrDA transmit pulse, 31-15
IrDA transmitter, 31-14
and ISRs, 31-24
loopback mode, 31-33
mixing modes, 31-27
non-DMA interrupt operation, 31-57
non-DMA mode, 31-23
receive operation, 31-9
receive sampling window, 31-15
registers, table, 31-28
signals, 31-4
standard, 31-1

string transmission, 31-56
switching from DMA to non-DMA,

31-27
switching from non-DMA to DMA,

31-27
and system DMA, 31-44
transmission, 31-8
transmission SYNC bit use, 31-58

UART divisor latch high byte
(UARTx_DLH) registers, 31-48

UART divisor latch low byte
(UARTx_DLL) registers, 31-48

UART global control (UARTx_GCTL)
registers, 31-50

UART interrupt enable clear
(UARTx_IER_CLEAR) registers,
31-44

UART interrupt enable registers
(UARTx_IER), 31-45

UART interrupt enable set
(UARTx_IER_SET) registers, 31-44

UART interrupt enable (UARTx_IER)
registers, 31-43

UART line control registers
(UARTx_LCR), 31-30

UART line control (UARTx_LCR)
registers, 31-30

UART line status registers (UARTx_LSR),
31-36

UART line status (UARTx_LSR) registers,
31-36

UART modem control (UARTx_MCR)
registers, 31-33

UART modem status (UARTx_MSR)
registers, 31-39

UART receive buffer registers
(UARTx_RBR), 31-9

UART receive buffer (UARTx_RBR)
registers, 31-42

ADSP-BF54x Blackfin Processor Hardware Reference I-57

Index

UART scratch registers (UARTx_SCR),
31-49

UART scratch (UARTx_SCR) registers,
31-49

UART transmit holding (UARTx_THR)
registers, 31-41

UARTx, 31-28
UARTx_DLH (UART divisor latch high

byte registers), 31-28
UARTx_DLH (UART divisor latch high

byte) registers, 31-48
UARTx_DLL (UART divisor latch low

byte registers), 31-28
UARTx_DLL (UART divisor latch low

byte) registers, 31-48
UARTx_GCTL (UART global control

registers), 31-29
UARTx_GCTL (UART global control)

registers, 31-50
UARTx_IER_CLEAR (UART interrupt

enable clear) registers, 31-44
UARTx_IER_SET (UART interrupt

enable set) registers, 31-44
UARTx_IER (UART interrupt enable

registers), 31-45
UARTx_IER (UART interrupt enable)

registers, 31-43
UARTx_IIR (UART interrupt

identification registers), 31-29
UARTx_LCR (UART line control

registers), 31-29, 31-30
UARTx_LCR (UART line control)

registers, 31-30
UARTx_LSR (UART line status registers),

31-29, 31-36
UARTx_LSR (UART line status) registers,

31-36
UARTx_MCR (UART modem control

registers), 31-29

UARTx_MCR (UART modem control)
registers, 31-33

UARTx_MSR (UART modem status)
registers, 31-39

UARTx_RBR (UART receive buffer
registers), 31-9, 31-29

UARTx_RBR (UART receive buffer)
registers, 31-42

UARTx_SCR (UART scratch registers),
31-29, 31-49

UARTx_SCR (UART scratch) registers,
31-49

UARTx_THR (UART transmit holding
registers), 31-8, 31-29

UARTx_THR (UART transmit holding)
registers, 31-41

UCCNF[3:0] field, 27-29, 27-87
UCCNT[15:0] field, 27-88
UCCT bit, 27-87
UCE bit, 27-87
UCEIF bit, 27-27, 27-52
UCEIM bit, 27-27, 27-50
UCEIS bit, 27-27, 27-51
UCEN bit, 31-8, 31-19, 31-50, 31-51
UCRC[15:0] field, 27-88
UCRC bit, 27-87
UDMAIN_CSTATE (ultra DMA-In

mode state machine current state) bits,
24-61

UDMAIN_DONE_INT (ultra-DMA in
transfer done interrupt status) bit,
24-58

UDMAIN_DONE_MASK (ultra-DMA
in transfer done interrupt mask) bit,
24-56

UDMAIN_FIFO_THRS (ultra DMA-IN
FIFO threshold) bits, 24-50

Index

I-58 ADSP-BF54x Blackfin Processor Hardware Reference

UDMA_IN_FL (ultra DMA input FIFO
level) bit, 24-52, 24-53, 24-54, 24-55,
24-59, 24-60, 24-61, 24-62, 24-63,
24-64, 24-65, 24-68, 24-69

UDMAIN_TERM_INT (device terminate
ultra-DMA-in transfer interrupt
status) bit, 24-58

UDMAIN_TERM_MASK (device
terminate ultra-DMA-in transfer
interrupt mask) bit, 24-56

UDMAIN_TFRCNT (UDMA in transfer
count) bits, 24-63

UDMAOUT_CSTATE (ATAPI IORDY
line status) bits, 24-61

UDMAOUT_DONE_INT (ultra-DMA
out transfer done interrupt status) bit,
24-58

UDMAOUT_DONE_MASK
(ultra-DMA out transfer done
interrupt mask) bit, 24-56

UDMAOUT_TERM_INT (device
terminate ultra-DMA-out transfer
interrupt status) bit, 24-58

UDMAOUT_TERM_MASK (device
terminate ultra-DMA-out transfer
interrupt mask) bit, 24-56

UDMAOUT_TFRCNT (UDMA out
transfer count) bits, 24-64

UDMA_XFER_ON (ultra DMA transfer
in progress) bit, 24-52, 24-53, 24-54,
24-55, 24-59, 24-60, 24-61, 24-62,
24-63, 24-64, 24-65, 24-66, 24-67,
24-68, 24-69

UIAIF bit, 27-27, 27-52
UIAIM bit, 27-27, 27-50
UIAIS bit, 27-27, 27-51
ultra DMA-IN FIFO threshold

(UDMAIN_FIFO_THRS) bits,
24-50

ultra DMA-In mode state machine current
state (UDMAIN_CSTATE) bits,
24-61

ultra DMA input FIFO level
(UDMA_IN_FL) bit, 24-52, 24-53,
24-54, 24-55, 24-59, 24-60, 24-61,
24-62, 24-63, 24-64, 24-65, 24-68,
24-69

ultra DMA input FIFO level
(ULTRA_IN_FL) bits, 24-52

ultra-DMA in transfer done interrupt mask
(UDMAIN_DONE_MASK) bit,
24-56

ultra-DMA in transfer done interrupt status
(UDMAIN_DONE_INT) bit, 24-58

ultra-DMA out transfer done interrupt
mask
(UDMAOUT_DONE_MASK) bit,
24-56

ultra-DMA out transfer done interrupt
status (UDMAOUT_DONE_INT)
bit, 24-58

ultra DMA transfer in progress
(UDMA_XFER_ON) bit, 24-52,
24-53, 24-54, 24-55, 24-59, 24-60,
24-61, 24-62, 24-63, 24-64, 24-65,
24-66, 24-67, 24-68, 24-69

ultra DMA transfer in progress
(ULTRA_XFER_ON) bit, 24-52

ULTRA_IN_FL (ultra DMA input FIFO
level) bits, 24-52

ULTRA_START (start ultra-DMA Op)
bit, 24-50

ULTRA_XFER_ON (ultra DMA transfer
in progress) bit, 24-52

UNDERRUN_T (no TxPktRdy for IN
token) bit, 32-102

unframed/framed, serial data, 30-32
universal asynchronous

receiver/transmitter, See UART

ADSP-BF54x Blackfin Processor Hardware Reference I-59

Index

universal counter, CAN, 27-29
universal counter exceeded interrupt, CAN,

27-27
USB_APHY_CNTRL2 (USB APHY

control 2) register, 32-130
USB APHY control 2

(USB_APHY_CNTRL2) register,
32-130

USB common interrupts enable
(USB_INTRUSBE) register, 32-90

USB common interrupts
(USB_INTRUSB) register, 32-89

USB control/status EP0 (USB_CSR0)
register, 32-98

USB_COUNT0 (USB received byte count
in EP0 FIFO) register, 32-115

USB_CSR0 (USB control/status EP0)
register, 32-98

USB DMA endpoint x interrupt
(DMAx_INT) bits, 32-134

USB_DMA_INTERRUPT (USB DMA
interrupt) register, 32-134

USB DMA interrupt
(USB_DMA_INTERRUPT) register,
32-134

USB DMAx address high
(USB_DMAxADDRHIGH) register,
32-138

USB DMAx address low
(USB_DMAxADDRLOW) register,
32-137

USB_DMAxADDRHIGH (USB DMAx
address high) register, 32-138

USB_DMAxADDRLOW (USB DMAx
address low) register, 32-137

USB_DMAxCONTROL (USB DMAx
control) registers, 32-135

USB DMAx control
(USB_DMAxCONTROL) registers,
32-135

USB_DMAxCOUNTHIGH (USB
DMAx count high) register, 32-140

USB DMAx count high
(USB_DMAxCOUNTHIGH)
register, 32-140

USB_DMAxCOUNTLOW (USB DMAx
count low) register, 32-139

USB DMAx count low
(USB_DMAxCOUNTLOW)
register, 32-139

USB enable (GLOBAL_ENA) bit, 32-95
USB endpoint index

(SELECTED_ENDPOINT) bits,
32-91, 32-93

USB_FADDR (USB function address)
register, 32-81

USB frame number (FRAME_NUMBER)
bits, 32-91

USB frame number (USB_FRAME)
register, 32-91

USB_FRAME (USB frame number)
register, 32-91

USB_FS_EOF1 (USB full-speed EOF 1)
register, 32-128

USB full-speed EOF 1 (USB_FS_EOF1)
register, 32-128

USB function address (USB_FADDR)
register, 32-81

USB global control
(USB_GLOBAL_CTL) register,
32-95

USB_GLOBAL_CTL (USB global
control) register, 32-95

USB global interrupt (USB_GLOBINTR)
register, 32-94

USB_GLOBINTR (USB global interrupt)
register, 32-94

USB hibernate signal (CSR_HBR) bit,
32-130

Index

I-60 ADSP-BF54x Blackfin Processor Hardware Reference

USB high-speed EOF 1 (USB_HS_EOF1)
register, 32-128

USB_HS_EOF1 (USB high-speed EOF 1)
register, 32-128

USB_INDEX (USB index) register, 32-91,
32-93

USB index (USB_INDEX) register, 32-91,
32-93

USB_INTRRXE (USB receive interrupt
enable) register, 32-88

USB_INTRRX (USB receive interrupt)
register, 32-86

USB_INTRTXE (USB transmit interrupt
enable) register, 32-87

USB_INTRTX (USB transmit interrupt)
register, 32-85

USB_INTRUSBE (USB common
interrupts enable) register, 32-90

USB_INTRUSB (USB common
interrupts) register, 32-89

USB_INTx_R (route USB/VBUS IRQ to
INTx) bits, 32-94

USB_LINKINFO (USB link info) register,
32-127

USB link info (USB_LINKINFO) register,
32-127

USB low-speed EOF 1 (USB_LS_EOF1)
register, 32-129

USB_LS_EOF1 (USB low-speed EOF 1)
register, 32-129

USB max Rx data in frame
(MAX_PACKET_SIZE_R) bits,
32-107

USB max Tx data in frame
(MAX_PACKET_SIZE_T) bits,
32-97

USB_NAKLIMIT0 (USB NAK limit 0)
register, 32-117

USB NAK limit 0 (USB_NAKLIMIT0)
register, 32-117

USB or non-USB part (USBPARTB1V)
bit, 32-130

USB OTG
DMA master channels, 32-57
features, 32-2
host negotiation /configuration, 32-49
interface pins, 32-45
OTG session request, 32-47
peripheral mode operation, 32-13
transferring packets using DMA, 32-59

USB_OTG_DEV_CTL (USB OTG
device control) register, 32-122,
32-124

USB OTG device control
(USB_OTG_DEV_CTL) register,
32-122, 32-124

USB_OTG_VBUS_MASK (USB OTG
VBUS mask) register, 32-126

USB OTG VBUS mask
(USB_OTG_VBUS_MASK) register,
32-126

USBPARTB1V (USB part or non-USB
part) bit, 32-130

USB peripheral device address
(FUNCTION_ADDRESS) bits,
32-81

USB PLL OSC control
(USB_PLLOSC_CTRL) register,
32-132

USB_PLLOSC_CTRL (USB PLL OSC
control) register, 32-132

USB power management (USB_POWER)
register, 32-82

USB_POWER (USB power management)
register, 32-82

USB pu/pd restore control (CSR_RSTD)
bit, 32-130

USB received byte count in EP0 FIFO
(USB_COUNT0) register, 32-115

Index

I-61 ADSP-BF54x Blackfin Processor Hardware Reference

USB receive interrupt enable
(USB_INTRRXE) register, 32-88

USB receive interrupt (USB_INTRRX)
register, 32-86

USB reset (RESET) bit, 32-82
USB Rx byte count (RX_COUNT) bits,

32-116
USB Rx byte count (USB_RXCOUNT)

register, 32-116
USB Rx control/status EPx (USB_RXCSR)

register, 32-109
USB_RXCOUNT (USB Rx byte count)

register, 32-116
USB_RXCSR (USB Rx control/status EPx)

register, 32-109
USB Rx endpoint x interrupt enable

(EPx_RX_E) bits, 32-88
USB Rx endpoint x interrupt (EPx_RX)

bits, 32-86
USB_RXINTERVAL (USB Rx interval)

register, 32-120
USB Rx interval (USB_RXINTERVAL)

register, 32-120
USB_RX_MAX_PACKET (USB Rx max

packet) register, 32-107
USB Rx max packet

(USB_RX_MAX_PACKET) register,
32-107

USB Rx poll interval
(RX_POLL_INTERVAL) bits,
32-120

USB_RXTYPE (USB Rx type) register,
32-119

USB Rx type (USB_RXTYPE) register,
32-119

USB_SRP_CLKDIV (USB SRP clock
divider) register, 32-133

USB SRP clock divider
(USB_SRP_CLKDIV) register,
32-133

USB transmit interrupt enable
(USB_INTRTXE) register, 32-87

USB transmit interrupt (USB_INTRTX)
register, 32-85

USB Tx byte count (TX_COUNT) bits,
32-121

USB Tx byte count (USB_TXCOUNT)
register, 32-121

USB Tx control/status EPx (USB_TXCSR)
register, 32-102

USB_TXCOUNT (USB Tx byte count)
register, 32-121

USB_TXCSR (USB Tx control/status EPx)
register, 32-102

USB Tx endpoint x interrupt enable
(EPx_TX_E) bits, 32-87

USB Tx endpoint x interrupt (EPx_TX)
bits, 32-85

USB_TXINTERVAL (USB Tx interval)
register, 32-118

USB Tx interval (USB_TXINTERVAL)
register, 32-118

USB_TX_MAX_PACKET (USB Tx max
packet) register, 32-97

USB Tx max packet
(USB_TX_MAX_PACKET) register,
32-97

USB Tx poll interval
(TX_POLL_INTERVAL) bits,
32-118

USB_TXTYPE (USB Tx type) register,
32-117

USB Tx type (USB_TXTYPE) register,
32-117

USB VBUS pulse length (USB_VPLEN)
register, 32-127

USB_VPLEN (USB VBUS pulse length)
register, 32-127

Index

I-62 ADSP-BF54x Blackfin Processor Hardware Reference

V
VBUS1–0 (VBUS level indicator) bit,

32-122, 32-124
VBUS_ERROR_BE (VBus threshold IRQ

enable) bit, 32-90
VBUS_ERROR_B (VBus threshold

indicator) bit, 32-89
VBUS level indicator (VBUS1–0) bit,

32-122, 32-124
VBUS pulse length (VPLEN) bits, 32-127
VBus threshold indicator

(VBUS_ERROR_B) bit, 32-89
VBus threshold IRQ enable

(VBUS_ERROR_BE) bit, 32-90
VDK, 20-38
VisualDSP++, 20-36

debugger, 20-37
voltage regulator, 20-34
VPLEN (VBUS pulse length) bits, 32-127
VR_CTL (voltage regulator control

register), 27-41

W
wait for connect (WTCON) bits, 32-127
wait from IDPULLUP (WTID) bits,

32-127
wakeup interrupt, CAN, 27-27
Wakeup Preamble Detected interrupt

enable, 21-45
Wake-Up Preamble Received (WUP)

interrupt event, 21-34
Wake-Up (WAKEUP) bit, 21-17
watchdog mode, CAN, 27-21
watchdog timer, 20-31
WBA bit, 27-46
WB_EDGE (write buffer edge detect) bit,

25-21, 25-22
WB_FULL (write buffer full) bit, 25-21

WB_OVF (write buffer overflow) bit,
25-22

wide bus mode enable (WIDE_BUS) bit,
23-23

WIDE_BUS (wide bus mode enable) bit,
23-23

WLS[1:0] field, 31-30
WOFF[9:0] field, 30-24, 30-70
WOM bit, 28-20, 28-45
WOM (write open drain master) bit, 28-45
word length

SPI, 28-21
SPORT, 30-29
SPORT receive data, 30-64
SPORT transmit data, 30-62

WR bit, 27-47
WR_DLY (write strobe delay) bits, 25-20
WR_DONE (page write done) bit, 25-22
write buffer edge detect (WB_EDGE) bit,

25-21, 25-22
write buffer full (WB_FULL) bit, 25-21
write buffer overflow (WB_OVF) bit,

25-22
write open drain master (WOM) bit, 28-45
write strobe delay (WR_DLY) bits, 25-20
WSIZE[3:0] field, 30-23, 30-70
WT bit, 27-47
WTCON (wait for connect) bits, 32-127
WTID (wait from IDPULLUP) bits,

32-127
WUIF bit, 27-27, 27-52
WUIM bit, 27-27, 27-50
WUIS bit, 27-27, 27-51
WUPEN, 21-45

X
XFER_DIR (transfer direction) bit, 24-50
XFER_LENGTH (transfer length) bits,

24-59
XFR_TYPE (operating mode) bits, 26-82

ADSP-BF54x Blackfin Processor Hardware Reference I-63

Index

XMTDATA16[15:0] field, 29-53
XMTDATA8[7:0] field, 29-52
XMTFLUSH bit, 29-45, 29-47
XMTINTLEN bit, 29-45, 29-46
XMTSERV bit, 29-19, 29-51
XMTSERVM bit, 29-48, 29-49
XMTSTAT[1:0] field, 29-17, 29-47

XOFF (transmitter off) bit, 31-33

Y
YFIFO_ERR (luma FIFO error) bit, 26-89
YFIFO_ERR (Luma FIFO Overflow

Error) bit, 24-50, 24-56, 24-57

Index

I-64 ADSP-BF54x Blackfin Processor Hardware Reference

	ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2)
	Contents
	Preface
	Contents of Two Volumes xli
	Purpose of This Manual xlii
	Intended Audience xlii
	Manual Contents xliii
	What’s New in This Manual xlv
	Technical or Customer Support xlv
	Supported Processors xlvii
	Conventions xlviii
	Register Diagram Conventions xlix

	Introduction
	Peripherals 20-3
	Memory Architecture 20-6
	Internal Memory 20-7
	External Memory 20-8
	NAND Flash Controller (NFC) 20-9

	I/O Memory Space 20-10
	One-Time-Programmable (OTP) Memory 20-10

	DMA Support 20-11
	Host DMA Interface 20-13

	External Bus Interface Unit 20-14
	DDR SDRAM Controller 20-14
	Asynchronous Controller 20-15

	Ports 20-15
	General-Purpose I/O (GPIO) 20-15

	Two-Wire Interfaces 20-16
	Controller Area Network 20-17
	Enhanced Parallel Peripheral Interface (EPPI) 20-18
	SPORT Controllers 20-20
	Serial Peripheral Interface (SPI) Ports 20-22
	Timers 20-22
	UART Ports 20-23
	USB On-The-Go, Dual-Role Device Controller 20-24
	ATA/ATAPI-6 Interface 20-25
	Keypad Interface 20-25
	Secure Digital (SD)/SDIO Controller 20-26
	Rotary Counter and Thumbwheel Interface 20-27
	Security 20-27
	Media Transceiver (MXVR) MAC Layer 20-29
	Real-Time Clock 20-30
	Watchdog Timer 20-31
	Clock Signals 20-32
	Dynamic Power Management 20-32
	Full On Mode (Maximum Performance) 20-33
	Active Mode (Moderate Dynamic Power Savings) 20-33
	Sleep Mode (High Dynamic Power Savings) 20-33
	Deep Sleep Mode (Maximum Dynamic Power Savings) 20-34
	Hibernate State (Maximum Power Savings) 20-34

	Voltage Regulation 20-34
	Boot Modes 20-35
	Instruction Set Description 20-35
	Development Tools 20-36

	Media Transceiver Module (MXVR)
	Overview 21-1
	Interface Signals 21-3
	MXVR Memory Map 21-5
	MXVR Registers 21-6
	MXVR Configuration Register (MXVR_CONFIG) 21-12
	MXVR State Registers 21-19
	MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0) 21-29
	MXVR Interrupt Status Register_1 (MXVR_INT_STAT_1) 21-40
	MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0) 21-43
	MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1) 21-46
	MXVR Node Position Register (MXVR_POSITION) 21-48
	MXVR Maximum Node Position Register 21-50
	MXVR Node Frame Delay Register (MXVR_DELAY) 21-51
	MXVR Maximum Node Frame Delay Register (MXVR_MAX_DELAY) 21-53
	MXVR Logical Address Register (MXVR_LADDR) 21-54
	MXVR Group Address Register (MXVR_GADDR) 21-55
	MXVR Alternate Address Register (MXVR_AADDR) 21-56
	MXVR Allocation Table Registers 21-56
	MXVR Synchronous Logical Channel Assignment Registers 21-58
	MXVR DMAx Configuration Registers 21-60
	MXVR DMA Channel x Start Address Registers 21-70
	MXVR DMA Channel x Current Address Registers 21-72
	MXVR DMA Channel x Transfer Count Registers 21-73
	MXVR DMA Channel x Current Transfer Count Registers 21-76
	MXVR Asynchronous Packet Control Register (MXVR_AP_CTL) 21-77
	MXVR Asynch Packet Receive Buffer Start Address Register 21-80
	MXVR Asynch Packet Receive Buffer Current Address 21-81
	MXVR Asynch Packet Transmit Buffer Start Address Register 21-82
	MXVR Asynch Packet Transmit Buffer Current Address 21-83
	MXVR Control Message Control Register 21-83
	MXVR Control Message Receive Buffer Start Address 21-86
	MXVR Control Message Receive Buffer Current Address 21-87
	MXVR Control Message Transmit Buffer Start Address 21-88
	MXVR Control Message Transmit Buffer Current Address 21-89
	MXVR Remote Read Buffer Start Address Register 21-90
	MXVR Remote Read Buffer Current Address Register 21-91
	MXVR Pattern Registers 21-91
	MXVR Pattern Data Registers 21-92
	MXVR Pattern Enable Registers 21-93
	MXVR Frame Counter Registers 21-94
	MXVR Routing Registers 21-95
	MXVR Block Counter Register (MXVR_BLOCK_CNT) 21-98
	MXVR Clock Control Register (MXVR_CLK_CTL) 21-100
	MXVR Clock/Data Recovery PLL Control Register 21-107
	MXVR Frequency Multiply PLL Control Register) 21-110
	MXVR Pin Control Register (MXVR_PIN_CTL) 21-112
	MXVR System Clock Counter Register 21-113

	General Operation 21-115
	Network Services Software 21-115
	Network Activity Detection 21-115
	Node Initialization 21-117
	Initialization of Processor Pin Multiplexing 21-118
	Master mode initialization, MXVR_CONFIG register 21-118
	Slave mode initialization, MXVR_CONFIG register 21-118
	Initialization of the MXVR_CLK_CTL register 21-119
	Initialization of the MXVR_ROUTING_x registers 21-119
	Initialization of the buffer start address registers 21-120

	Enabling the MXVR PLLs 21-120
	Enabling MXVR Output Clocks 21-120
	Network Lock 21-121
	Network Initialization 21-121
	Synchronous Data Routing, Muting, and Transmission 21-123
	Synchronous Data Reception 21-126
	Asynchronous Packet Transmission 21-126
	Asynchronous Packet Reception 21-129
	Control Message Transmission 21-131
	Normal Control Message Transmission 21-135
	Remote Read Control Message Transmission 21-137
	Remote Write Control Message Transmission 21-139
	Resource Allocate Control Message Transmission 21-141
	Resource De-Allocate Control Message Transmission 21-144
	Remote Get Source Control Message Transmission 21-147
	Control Message Reception 21-150
	Normal Control Message Reception 21-151
	Remote Read and Remote Write Reception 21-153
	Resource Allocate Reception 21-154
	Resource De-Allocate Reception 21-155
	Remote Get Source Reception 21-156

	MXVR Low Power Operation 21-156
	Full On Mode 21-158
	Active Mode 21-159
	Sleep Mode 21-160
	Deep Sleep Mode 21-162
	Hibernate State 21-163
	Power Gating the ADSP-BF54x 21-164

	Keypad Interface
	Interface Overview 22-1
	Description of Operation 22-2
	Keypad Operation 22-2
	Keypad Enable/Disable 22-4
	Input Keypad Matrix Programmability 22-4

	Waking Up on Keypad Press 22-4
	Sensitivity of Keypad Interface 22-5
	Limited Multiple Key Resolution 22-5
	Keypad Interrupt Modes 22-6
	Implementing Press-Hold Feature 22-6

	Functional Description 22-7
	State Diagram 22-7

	Programming Model 22-9
	Keypad Registers 22-10
	Keypad Control Register (KPAD_CTL) 22-10
	KPAD_PRESCALE Register 22-14
	KPAD_MSEL Register 22-15
	KPAD_ROWCOL Register 22-16
	KPAD_STAT Register 22-19
	KPAD_SOFTEVAL Register 22-21

	Programming Examples 22-22

	Secure Digital Host
	Overview 23-1
	Interface Overview 23-2
	Description of Operation 23-3
	Functional Description 23-4
	SDH Clocking 23-4
	SDH Operation 23-5
	SDH Data 23-10
	WAIT_R 23-11
	RECEIVE 23-11
	SEND 23-12

	SDH Data FIFO 23-16
	Transmit FIFO 23-16
	Receive FIFO 23-17
	SDIO Interrupt and Read Wait Support 23-17
	MMC/SD Card Detection 23-18
	SDH DMA Transfers 23-19

	Programming Model 23-19
	SDH Registers 23-19
	SDH Power Control Register (SDH_PWR_CTL) 23-22
	SDH Clock Control Register (SDH_CLK_CTL) 23-23
	SDH Argument Register (SDH_ARGUMENT) 23-24
	SDH Command Register (SDH_COMMAND) 23-24
	SDH Response Command Register (SDH_RESP_CMD) 23-25
	SDH Response Registers (SDH_RESPONSEx) 23-26
	SDH Data Timer Register (SDH_DATA_TIMER) 23-26
	SDH Data Length Register (SDH_DATA_LGTH) 23-27
	SDH Data Control Register (SDH_DATA_CTL) 23-27
	SDH Data Counter Register (SDH_DATA_CNT) 23-29
	SDH Status Register (SDH_STATUS) 23-30
	SDH Status Clear Register (SDH_STATUS_CLR) 23-32
	SDH Interrupt Mask Registers (SDH_MASKx) 23-33
	SDH FIFO Counter Register (SDH_FIFO_CNT) 23-34
	SDH Data FIFO (SDH_FIFOx) Registers 23-35
	SDH Exception Status Register (SDH_E_STATUS) 23-35
	SDH Exception Mask Register (SDH_E_MASK) 23-35
	SDH Configuration Register (SDH_CFG) 23-36
	SDH Read Wait Enable Register (SDH_RD_WAIT_EN) 23-38
	SDH Identification Registers (SDH_PIDx) 23-38

	Programming Examples 23-39

	ATAPI Interface
	Interface Overview 24-1
	Description of Operation 24-4
	Host PIO/Register Transfers 24-4
	PIO Data-Out Transfers (Device Write) 24-6
	PIO Data-In Transfers (Device Read) 24-8

	Host Multiword DMA Transfers 24-11
	Host Pausing the Multi-DMA Transfer 24-14
	Host Terminating the Multi DMA Transfer 24-14
	Device Pausing the Multi-DMA Transfer 24-14
	Device Terminating the Multi-DMA Transfer 24-15

	Host Ultra DMA Command Protocol Transfers 24-16
	Host Pausing the Ultra DMA Data-In Transfer 24-17
	Host Terminating the Ultra DMA Data-In Transfer 24-17
	Device Pausing the Ultra DMA Data-In Transfer 24-17
	Device Terminating the Ultra DMA Data-In Transfer 24-18
	Host Pausing Ultra DMA Data-Out Transfer 24-18
	Host Terminating Ultra DMA Data-Out Transfer 24-18
	Device Pausing the Ultra DMA Data-Out Transfer 24-18
	Device Terminating the Ultra DMA Data-Out Transfer 24-18

	Functional Description 24-19
	Power-on and Hardware Reset Protocol 24-19
	Device Selection Protocol 24-21
	Programmed I/O (PIO) 24-22
	Host Multi DMA Block Implementation 24-23
	Host Ultra DMA Block Implementation 24-29
	Initiating an Ultra DMA Data-In Burst 24-29
	Data-In Transfer 24-32
	Device pausing an Ultra DMA Data-In Burst 24-33
	Host pausing an Ultra DMA Data-In Burst 24-33
	Ultra DMA Timing 24-35
	Ultra DMA-Out Timing 24-39

	Programming Model 24-43
	ATAPI Device Configuration and Setup 24-43
	PIO Data-out Transfers Pseudo-code 24-45
	Host Multiword DMA Transfers Pseudo-code 24-46
	Host Ultra DMA Command Protocol Transfers Pseudo-code 24-47

	ATAPI Registers 24-48
	ATAPI Control and Status Registers 24-49
	ATAPI Control Register (ATAPI_CONTROL) 24-50
	ATAPI Status Register (ATAPI_STATUS) 24-52
	ATAPI Device Address Register (ATAPI_DEV_ADDR) 24-53
	ATAPI Device Transmit Buffer Register 24-54
	ATAPI Device Receive Buffer Register 24-55
	ATAPI Interrupt Mask (ATAPI_INT_MASK) Register 24-56
	ATAPI Interrupt Status Register (ATAPI_INT_STATUS) 24-57
	ATAPI Transfer Length Register (ATAPI_XFER_LEN) 24-59
	ATAPI Line Status Register (ATAPI_LINE_STATUS) 24-60
	ATAPI State Machine Status Register 24-61
	ATAPI Host Terminate Register (ATAPI_TERMINATE) 24-61
	ATAPI PIO Transfer Count Register 24-62
	ATAPI Multiword DMA Transfer Count 24-62
	ATAPI Ultra DMA Transfer Count 24-63
	ATAPI Ultra DMA OUT Transfer Count 24-64
	ATAPI Register Transfer Timing 0 (ATAPI_REG_TIM_0) 24-64
	ATAPI Programmed I/O Timing 0 24-65
	ATAPI Programmed I/O Timing 1 24-65
	ATAPI Multi DMA Timing 0 24-66
	ATAPI Multi DMA Timing 1 24-66
	ATAPI Multi DMA Timing 2 24-67
	ATAPI Ultra DMA Timing 0 24-67
	ATAPI Ultra DMA Timing 1 24-68
	ATAPI Ultra DMA Timing 2 Register 24-68
	ATAPI Ultra DMA Timing 3 Register 24-69

	ATAPI Device I/O Registers 24-69
	Command Register (R/W) 24-71
	Device Control Register (WO) 24-71
	Features Register (WO) 24-72
	Sector Count Register (R/W) 24-72
	Status Register (RO) 24-72
	Alternate Status Register (RO) 24-73
	Error Register (RO) 24-73

	ATAPI Standards Reference 24-74
	Summary of IDE/ATA Standards 24-78
	ATAPI Timing Summary 24-79
	IDE/ATA Transfer Modes and Protocols 24-79
	Programmed (I/O) PIO Modes 24-79
	Direct Memory Access (DMA) Modes 24-80
	Ultra Direct Memory Access (DMA) Modes 24-80

	ATAPI Device Selection 24-81

	NAND Flash Controller
	Overview 25-2
	Interface Overview 25-4
	Description of Operation 25-5
	Internal Bus Interfaces 25-5
	Bus Access Types 25-6
	Access Timing 25-6
	Pin Sharing 25-7

	Functional Description 25-7
	Page Write 25-8
	Page Read 25-9
	Additional Operations 25-10
	Write Protection 25-11
	Chip Enable Don’t Care 25-11
	NFC Error Detection 25-11
	Error Analysis 25-13
	Large Page Size Support 25-15

	NFC SmartMedia Support 25-15

	Programming Model 25-15
	NFC Registers 25-17
	NFC Control Register (NFC_CTL) 25-19
	NFC Status Register (NFC_STAT) 25-20
	NFC Interrupt Status Register (NFC_IRQSTAT) 25-21
	NFC Interrupt Mask Register (NFC_IRQMASK) 25-23
	NFC ECC Registers (NFC_ECCx) 25-23
	NFC Count Register (NFC_COUNT) 25-25
	NFC Reset Register (NFC_RST) 25-25
	NFC Page Control Register (NFC_PGCTL) 25-26
	NFC Read Data Register (NFC_READ) 25-26
	NFC Address Register (NFC_ADDR) 25-27
	NFC Command Register (NFC_CMD) 25-28
	NFC Data Write Register (NFC_DATA_WR) 25-29
	NFC Data Read Register (NFC_DATA_RD) 25-29

	NFC Programming Examples 25-30

	Enhanced Parallel Peripheral Interface
	Overview 26-1
	Interface Overview 26-5
	Description of Operation 26-7
	EPPI Reset 26-8
	Clock Gating 26-8
	Frame Sync Polarity & Sampling Edge 26-9
	Interrupts 26-10

	Functional Description 26-11
	ITU-R 656 Modes 26-11
	ITU-R 656 Background 26-11
	ITU-R 656 Input Modes 26-17
	Entire Field 26-17
	Active Video 26-18
	Vertical Blanking Interval (VBI) only 26-18

	ITU-R 656 Output in GP Transmit Modes 26-19
	Frame Synchronization in ITU-R 656 Modes 26-22
	General-Purpose EPPI Modes 26-23
	GP 0 FS Mode 26-24
	Frame Synchronization in GP 0 FS External Trigger Mode 26-25
	Frame Synchronization in GP 0 FS Internal Trigger Mode 26-25

	GP 1 FS Mode 26-25
	GP 2 FS Mode 26-26
	DEN functionality in GP 2 FS Transmit Mode 26-27

	GP 3 FS Mode 26-28

	EPPI Data Path Options 26-29
	EPPI Data Lengths 26-29
	EPPI DMA Channels 26-30
	Data Packing For Receive Modes 26-30
	Data Unpacking For Transmit Modes 26-31
	Sign-Extension and Zero-Filling 26-32
	Split Receive Modes 26-33
	Split Transmit Modes 26-33
	RGB Data Formats 26-34
	Programmed Clipping and Thresholding of Data Values 26-34
	Data Transfer Examples 26-35
	8-Bit Receive Mode 26-35
	10/12/14-Bit Receive Modes 26-37
	16-Bit Receive Mode 26-40
	18-Bit Receive Mode 26-42
	24-Bit Receive Mode 26-44
	8-Bit Split Receive Mode 26-45
	10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0 26-48
	16-Bit Split Receive Mode with SPLT_16 = 1 26-50
	8-Bit Transmit Mode 26-51
	10/12/14-Bit Transmit Modes 26-52
	16-Bit Transmit Mode 26-53
	18-Bit Transmit Mode 26-55
	24-Bit Transmit Mode 26-56
	8-Bit Split Transmit Mode 26-56
	10/12/14/16-Bit Split Transmit Mode with SPLT_16 = 0 26-61
	16-Bit Split Transmit Mode with SPLT_16 = 1 26-64

	Programming Model 26-66
	DMA Operation 26-66
	Elevating EPPI Urgent requests at DDR controller Interface 26-74
	System Configuration 26-76

	EPPI Registers 26-76
	PPIx_CONTROL Register 26-79
	PPIx_STATUS Register 26-86
	Windowing Registers 26-90
	EPPI Lines per Frame Register (PPIx_FRAME) 26-92
	EPPI Samples per Line Register (PPIx_LINE) 26-92
	EPPI Vertical Delay Register (PPIx_VDELAY) 26-93
	EPPI Vertical Transfer Count Register (PPIx_VCOUNT) 26-93
	EPPI Horizontal Delay Register (PPIx_HDELAY) 26-94
	EPPI Horizontal Transfer Count Register 26-95

	EPPI Clock Divide Register (PPIx_CLKDIV) 26-95
	Frame Sync/ Blanking Generation Registers 26-96
	EPPI FS1 Width Register / EPPI Horizontal Blanking Samples per Line Register (PPIx_FS1W_HBL) 26-96
	EPPI FS2 Width Register/ EPPI Lines of Vertical Blanking Register (PPIx_FS2W_LVB) 26-96
	EPPI FS1 Period Register/EPPI Active Video Samples per Line Register (PPIx_FS1P_AVPL) 26-98
	EPPI FS2 Period Register/EPPI Lines of Active Video per Frame Register (PPIx_FS2P_LAVF) 26-99

	EPPI Clipping Register (PPIx_CLIP) 26-101

	CAN Module
	Overview 27-1
	Interface Overview 27-2
	CAN Mailbox Area 27-5
	CAN Mailbox Control 27-7
	CAN Protocol Basics 27-8

	CAN Operation 27-10
	Bit Timing 27-11
	Transmit Operation 27-13
	Retransmission 27-14
	Single Shot Transmission 27-15
	Auto-Transmission 27-16

	Receive Operation 27-16
	Data Acceptance Filter 27-20
	Watchdog Mode 27-21

	Time Stamps 27-21
	Remote Frame Handling 27-22
	Temporarily Disabling Mailboxes 27-23

	Functional Operation 27-25
	CAN Interrupts 27-25
	Mailbox Interrupts 27-25
	Global CAN Interrupt 27-26

	Event Counter 27-29
	CAN Warnings and Errors 27-30
	Programmable Warning Limits 27-30
	CAN Error Handling 27-30
	Error Frames 27-31
	Error Levels 27-33

	Debug and Test Modes 27-35
	Low Power Features 27-39
	CAN Built-In Suspend Mode 27-39
	CAN Built-In Sleep Mode 27-40
	CAN Wakeup From Hibernate State 27-40

	CAN Registers 27-41
	Global CAN Registers 27-46
	CANx_CONTROL Master Control Registers 27-46
	CANx_STATUS Global CAN Status Registers 27-47
	CANx_DEBUG Registers 27-48
	CANx_CLOCK Registers 27-48
	CANx_TIMING Registers 27-49
	CANx_INTR Interrupt Pending Registers 27-49
	CANx_GIM Global CAN Interrupt Mask Registers 27-50
	CANx_GIS Global CAN Interrupt Status Registers 27-51
	CANx_GIF Global CAN Interrupt Flag Registers 27-52

	Mailbox/Mask Registers 27-52
	CANx_AMxx Acceptance Mask Registers 27-53
	CANx_MBxx_ID1 Registers 27-57
	CANx_MBxx_ID0 Registers 27-59
	CANx_MBxx_TIMESTAMP Registers 27-61
	CANx_MBxx_LENGTH Registers 27-63
	CANx_MBxx_DATAx Registers 27-65

	Mailbox Control Registers 27-72
	CANx_MCx Mailbox Configuration Registers 27-73
	CANx_MDx Mailbox Direction Registers 27-74
	CANx_RMPx Registers 27-75
	CANx_RMLx Registers 27-76
	CANx_OPSSx Register 27-77
	CANx_TRSx Registers 27-78
	CANx_TRRx Registers 27-79
	CANx_AAx Registers 27-80
	CANx_TAx Registers 27-81
	CANx_MBTD Register 27-82
	CANx_RFHx Registers 27-83
	CANx_MBIMx Registers 27-84
	CANx_MBTIFx Registers 27-85
	CANx_MBRIFx Registers 27-86

	Universal Counter Registers 27-87
	CANx_UCCNF Register 27-87
	CANx_UCCNT Register 27-88
	CANx_UCRC Register 27-88

	Error Registers 27-89
	CANx_CEC Register 27-89
	CANx_ESR Register 27-89
	CANx_EWR Register 27-90

	Programming Examples 27-91
	CAN Setup Code 27-91
	Initializing and Enabling CAN Mailboxes 27-93
	Initiating CAN Transfers and Processing Interrupts 27-94

	SPI-Compatible Port Controllers
	Overview 28-1
	Interface Overview 28-3
	External Interface 28-4
	Serial Peripheral Interface Clock Signal (SPIxSCK) 28-5
	Master Out Slave In (MOSI) 28-6
	Master In Slave Out (MISO) 28-6
	Serial Peripheral Interface Slave Select Input Signal 28-7
	Serial Peripheral Interface Slave Select Enable Output 28-9
	Slave Select Inputs 28-12
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI 28-12

	Internal Interfaces 28-14
	DMA Functionality 28-14

	SPI Transmit Data Buffer 28-15
	SPI Receive Data Buffer 28-16

	Description of Operation 28-16
	SPI Transfer Protocols 28-17
	SPI General Operation 28-19
	SPI Control 28-21
	Clock Signals 28-22
	SPI Baud Rate 28-22
	Error Signals and Flags 28-23
	Mode Fault Error (MODF) 28-24
	Transmission Error (TXE) 28-25
	Reception Error (RBSY) 28-25
	Transmit Collision Error (TXCOL) 28-25

	Interrupt Output 28-25

	Functional Description 28-26
	Master Mode Operation 28-26
	Transfer Initiation From Master (Transfer Modes) 28-28
	Slave Mode Operation 28-29
	Slave Ready for a Transfer 28-30

	Programming Model 28-30
	Beginning and Ending an SPI Transfer 28-30
	Master Mode DMA Operation 28-33
	Slave Mode DMA Operation 28-35

	SPI Registers 28-43
	SPI Baud Rate (SPIx_BAUD) Register 28-44
	SPI Control (SPIx_CTL) Register 28-45
	SPI Flag (SPIx_FLG) Register 28-46
	SPI Status (SPIx_STAT) Register 28-48
	SPI Transmit Data Buffer (SPIx_TDBR) Register 28-48
	SPI Receive Data Buffer (SPIx_RDBR) Register 28-49
	SPI RDBR Shadow (SPIx_SHADOW) Register 28-49

	Programming Examples 28-50
	Core Generated Transfer 28-50
	Initialization Sequence 28-50
	Starting a Transfer 28-51
	Post Transfer and Next Transfer 28-52
	Stopping 28-53

	DMA Transfer 28-53
	DMA Initialization Sequence 28-54
	SPI Initialization Sequence 28-55
	Starting a Transfer 28-56
	Stopping a Transfer 28-56

	Two Wire Interface Controllers
	Overview 29-1
	Interface Overview 29-3
	External Interface 29-4
	Serial Clock signal (SCL1-0) 29-4
	Serial data signal (SDA1-0) 29-5
	TWI Pins 29-5

	Internal Interfaces 29-6

	Description of Operation 29-7
	TWI Transfer Protocols 29-7
	Clock Generation and Synchronization 29-7
	Bus Arbitration 29-8
	Start and Stop Conditions 29-9
	General Call Support 29-10
	Fast Mode 29-11

	TWI General Operation 29-11
	TWI Control 29-11
	Clock Signal 29-12
	Error Signals and Flags 29-13
	TWI Master Status 29-13
	TWI Slave Status 29-16
	TWI FIFO Status 29-17
	TWI Interrupt Status 29-18

	Functional Description 29-22
	General Setup 29-22
	Slave Mode 29-22
	Master Mode Clock Setup 29-24
	Master Mode Transmit 29-24
	Master Mode Receive 29-25
	Clock Stretching 29-26

	Repeated Start Condition 29-29

	Programming Model 29-32
	TWI Registers 29-34
	TWIx_CONTROL Register 29-36
	TWIx_CLKDIV Register 29-36
	TWIx_SLAVE_CTL Register 29-37
	TWIx_SLAVE_ADDR Register 29-39
	TWIx_SLAVE_STAT Register 29-40
	TWIx_MASTER_CTL Register 29-41
	TWIx_MASTER_ADDR Register 29-44
	TWIx_MASTER_STAT Register 29-45
	TWIx_FIFO_CTL Register 29-45
	TWIx_FIFO_STAT Register 29-47
	TWIx_INT_MASK Register 29-47
	TWIx_INT_STAT Register 29-51
	TWIx_XMT_DATA8 Register 29-52
	TWIx_XMT_DATA16 Register 29-52
	TWIx_RCV_DATA8 Register 29-53
	TWIx_RCV_DATA16 Register 29-54

	Programming Examples 29-55
	Master Mode Setup 29-55
	Slave Mode Setup 29-60

	Electrical Specifications 29-67

	SPORT Controllers
	Overview 30-1
	Interface Overview 30-3
	SPORT Pin/Line Terminations 30-10

	Description of Operation 30-11
	SPORT Operation 30-11
	SPORT Disable 30-11
	Setting SPORT Modes 30-12
	Stereo Serial Operation 30-13
	Multichannel Operation 30-17
	Multichannel Enable 30-19
	Frame Syncs in Multichannel Mode 30-20
	Multichannel Frame 30-22
	Multichannel Frame Delay 30-23
	Window Size 30-23
	Window Offset 30-24
	Other Multichannel Fields in SPORTx_MCMC2 30-24
	Channel Selection Register 30-24
	Multichannel DMA Data Packing 30-26

	Support for H.100 Standard Protocol 30-27
	2X Clock Recovery Control 30-27

	Functional Description 30-28
	Clock and Frame Sync Frequencies 30-28
	Maximum Clock Rate Restrictions 30-29

	Word Length 30-29
	Bit Order 30-30
	Data Type 30-30
	Companding 30-31
	Clock Signal Options 30-31
	Frame Sync Options 30-32
	Framed Versus Unframed 30-32
	Internal Versus External Frame Syncs 30-34
	Active Low Versus Active High Frame Syncs 30-35
	Sampling Edge for Data and Frame Syncs 30-35
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing) 30-37
	Data Independent Transmit Frame Sync 30-39

	Moving Data Between SPORTs and Memory 30-40
	SPORT RX, TX, and Error Interrupts 30-40
	PAB Errors 30-41
	Timing Examples 30-41

	SPORT Registers 30-48
	Register Writes and Effective Latency 30-50
	SPORTx_TCR1 and SPORTx_TCR2 Registers 30-51
	SPORTx_RCR1 and SPORTx_RCR2 Registers 30-56
	Data Word Formats 30-61
	SPORTx_TX Register 30-61
	SPORTx_RX Register 30-63
	SPORTx_STAT Register 30-66
	SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers 30-68
	SPORTx_TFSDIV and SPORTx_RFSDIV Register 30-69
	SPORTx_MCMCn Registers 30-70
	SPORTx_CHNL Register 30-71
	SPORTx_MRCSn Registers 30-72
	SPORTx_MTCSn Registers 30-74

	Programming Examples 30-76
	SPORT Initialization Sequence 30-77
	DMA Initialization Sequence 30-78
	Interrupt Servicing 30-81
	Starting a Transfer 30-82

	UART Port Controllers
	Overview 31-1
	Features 31-2

	Interface Overview 31-3
	External Interface 31-4
	Internal Interface 31-5

	Description of Operation 31-6
	UART Transfer Protocol 31-6
	UART Transmit Operation 31-7
	UART Receive Operation 31-9
	Hardware Flow Control 31-12
	IrDA Transmit Operation 31-14
	IrDA Receive Operation 31-15
	Interrupt Processing 31-17
	Bit Rate Generation 31-19
	Autobaud Detection 31-21

	Programming Model 31-23
	Non-DMA Mode 31-23
	DMA Mode 31-25
	Mixing Modes 31-27

	UART Registers 31-28
	UARTx_LCR Registers 31-30
	UARTx_MCR Registers 31-33
	UARTx_LSR Registers 31-36
	UARTx_MSR Registers 31-39
	UARTx_THR Registers 31-41
	UARTx_RBR Registers 31-42
	UARTx_IER_SET and UARTx_IER_CLEAR Registers 31-43
	UARTx_DLL and UARTx_DLH Registers 31-48
	UARTx_SCR Registers 31-49
	UARTx_GCTL Registers 31-50

	Programming Examples 31-51

	USB OTG Controller
	Overview 32-2
	Features 32-2

	Interface Overview 32-3
	FIFO Configuration 32-7
	Interrupts 32-8
	Resets 32-11

	Description of Operation 32-12
	Peripheral Mode Operation 32-13
	Endpoint Setup 32-13
	IN Transactions as a Peripheral 32-14
	High Bandwidth Isochronous IN Endpoints 32-16
	OUT Transactions as a Peripheral 32-17
	High Bandwidth Isochronous OUT Endpoints 32-19
	Peripheral Transfer Workflows 32-20
	Control Transactions as a Peripheral 32-21
	Write Requests 32-22
	Zero Data Requests 32-23
	Peripheral Mode, Bulk IN, Transfer Size Known 32-24
	Peripheral Mode, Bulk IN, Transfer Size Unknown 32-25
	Peripheral Mode, ISO IN, Small MaxPktSize 32-26
	Peripheral Mode, ISO IN, Large MaxPktSize 32-26
	Peripheral Mode, Bulk OUT, Transfer Size Known 32-27
	Peripheral Mode, Bulk OUT, Transfer Size Unknown 32-28
	Peripheral Mode, ISO OUT, Small MaxPktSize 32-29
	Peripheral Mode, ISO OUT, Large MaxPktSize 32-29

	Peripheral Mode Suspend 32-30
	Start Of Frame (SOF) Packets 32-30
	Soft Connect / Soft Disconnect 32-31
	Error Handling As a Peripheral 32-31
	STALLS Issued to Control Transfers 32-33
	Zero Length OUT Data Packets in Control Transfers 32-33

	Host Mode Operation 32-34
	Endpoint Setup and Data Transfer 32-34
	Control Transaction as a Host 32-34
	Setup Phase as a Host 32-35
	IN Data Phase as a Host 32-36
	OUT Data as a Host (Control) 32-37
	IN Status Phase, (SETUP phase or OUT Data Phase) 32-39
	OUT Status Phase as a Host (following IN Data Phase) 32-39
	Host IN Transactions 32-40
	Host OUT Transactions 32-41
	Transaction Scheduling 32-42
	Babble 32-43
	Host Mode Reset 32-43
	Host Mode Suspend 32-43

	Functional Description 32-44
	On-Chip Bus Interfaces 32-44
	Interface Pins 32-45
	Power and Clocking 32-45
	UTMI Interface 32-46

	Programming Model 32-46
	OTG Session Request 32-47
	Starting a Session 32-47
	Detecting Activity 32-48

	Host Negotiation/Configuration 32-49
	Software Clock Control 32-50
	Wakeup from Hibernate State 32-50
	Wakeup without Re-Enumeration 32-53
	Data Transfer 32-55
	Loading/Unloading Packets from Endpoints 32-56
	DMA Master Channels 32-57
	DMA Bus Cycles 32-59
	Transferring Packets Using DMA 32-59
	Individual Packet: Rx Endpoint 32-60
	Individual Packet: TX Endpoint 32-61
	Multiple Packets: Rx Endpoint 32-61
	Multiple Packets: TX Endpoints 32-63

	USB OTG Registers 32-64
	USB Function Address (USB_FADDR) Register 32-81
	USB Power Management (USB_POWER) Register 32-82
	USB Transmit Interrupt (USB_INTRTX) Register 32-85
	USB Receive Interrupt (USB_INTRRX) Register 32-86
	USB Transmit Interrupt Enable (USB_INTRTXE) Register 32-87
	USB Receive Interrupt Enable (USB_INTRRXE) Register 32-88
	USB Common Interrupts (USB_INTRUSB) Register 32-89
	USB Common Interrupt Enable (USB_INTRUSBE) Register 32-90
	USB Frame Number (USB_FRAME) Register 32-91
	USB Index (USB_INDEX) Register 32-91
	USB Test Mode (USB_TESTMODE) Register 32-93
	USB Global Interrupt (USB_GLOBINTR) Register 32-94
	USB Global Control (USB_GLOBAL_CTL) Register 32-95
	USB Tx Max Packet (USB_TX_MAX_PACKET) Register 32-97
	USB Control/Status EP0 (USB_CSR0) Register 32-98
	USB Tx Control/Status EPx (USB_TXCSR) Register 32-102
	USB Rx Max Packet (USB_RX_MAX_PACKET) Register 32-107
	USB Rx Control/Status (USB_RXCSR) Register 32-109
	USB Count 0 (USB_COUNT0) Register 32-115
	USB Rx Byte Count EPx (USB_RXCOUNT) Register 32-116
	USB Tx Type (USB_TXTYPE) Register 32-117
	USB NAK Limit 0 (USB_NAKLIMIT0) Register 32-117
	USB Tx Interval (USB_TXINTERVAL) Register 32-118
	USB Rx Type (USB_RXTYPE) Register 32-119
	USB Rx Interval (USB_RXINTERVAL) Register 32-120
	USB Tx Byte Count EPx (USB_TXCOUNT) Register 32-121
	USB Endpoint FIFO (USB_EPx_FIFO) Registers 32-122
	USB OTG Device Control Register 32-122
	USB OTG VBUS Interrupt Register 32-124
	USB OTG VBUS Mask Register 32-126
	USB Link Info (USB_LINKINFO) Register 32-127
	USB VBUS Pulse Length (USB_VPLEN) Register 32-127
	USB High-Speed EOF 1 (USB_HS_EOF1) Register 32-128
	USB Full-Speed EOF 1 (USB_FS_EOF1) Register 32-128
	USB Low-Speed EOF 1 (USB_LS_EOF1) Register 32-129
	USB APHY Control 2 (USB_APHY_CNTRL2) Register 32-130
	USB PLL OSC Control (USB_PLLOSC_CTRL) Registers 32-132
	USB SRP Clock Divider (USB_SRP_CLKDIV) Register 32-133
	USB DMA Interrupt (USB_DMA_INTERRUPT) Register 32-134
	USB DMAx Control (USB_DMA_CONTROL) Registers 32-135
	USB DMAx Address Low Registers 32-137
	USB DMAx Address HighRegisters 32-138
	USB DMAx Count Low Registers 32-139
	USB DMAx Count High Registers 32-140

	Programming Examples 32-141
	References 32-141
	Glossary of USB Terms 32-141

	System MMR Assignments
	Dynamic Power Management Registers A-3
	System Reset and Interrupt Control Registers A-3
	Watchdog Timer Registers A-3
	Real-Time Clock Registers A-4
	Timer Registers A-4
	Ports Registers A-4
	External Bus Interface Unit Registers A-4
	DMA/Memory DMA Control Registers A-5
	Handshake MDMA Control Registers A-5
	Host DMA Registers A-5
	PIXC Registers A-5
	Rotary Counter Registers A-5
	Security Registers A-6
	Core Timer Registers A-6
	Processor-Specific Memory Registers A-6
	MXVR Registers A-7
	Keypad Registers A-13
	SDH Registers A-13
	ATAPI Registers A-16
	NAND Flash Controller Registers A-18
	EPPI1 Registers A-19
	EPPI2 Registers A-20
	CANx Registers A-22
	SPI0 Controller Registers A-32
	SPI1 Controller Registers A-32
	TWI Registers A-33
	SPORT0 Controller Registers A-35
	SPORT1 Controller Registers A-37
	SPORT2 Controller Registers A-39
	SPORT3 Controller Registers A-41
	UART0 Controller Registers A-43
	UART1 Controller Registers A-44
	UART2 Controller Registers A-45
	UART3 Controller Registers A-46
	USB OTG Registers A-47

	Test Features
	JTAG Standard B-1
	Boundary-Scan Architecture B-3
	Instruction Register B-5
	Public Instructions B-5
	EXTEST - Binary Code 00000 B-5
	SAMPLE/PRELOAD - Binary Code 10000 B-7
	BYPASS - Binary Code 11111 B-7
	IDCODE - Binary Code 00010 B-7

	Boundary-Scan Register B-7

	Preface
	Contents of Two Volumes
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Conventions
	Register Diagram Conventions

	20 Introduction
	Peripherals
	Memory Architecture
	Internal Memory
	External Memory
	NAND Flash Controller (NFC)

	I/O Memory Space
	One-Time-Programmable (OTP) Memory

	DMA Support
	Host DMA Interface

	External Bus Interface Unit
	DDR SDRAM Controller
	Asynchronous Controller

	Ports
	General-Purpose I/O (GPIO)

	Two-Wire Interfaces
	Controller Area Network
	Enhanced Parallel Peripheral Interface (EPPI)
	SPORT Controllers
	Serial Peripheral Interface (SPI) Ports
	Timers
	UART Ports
	USB On-The-Go, Dual-Role Device Controller
	ATA/ATAPI-6 Interface
	Keypad Interface
	Secure Digital (SD)/SDIO Controller
	Rotary Counter and Thumbwheel Interface
	Security
	Media Transceiver (MXVR) MAC Layer
	Real-Time Clock
	Watchdog Timer
	Clock Signals
	Dynamic Power Management
	Full On Mode (Maximum Performance)
	Active Mode (Moderate Dynamic Power Savings)
	Sleep Mode (High Dynamic Power Savings)
	Deep Sleep Mode (Maximum Dynamic Power Savings)
	Hibernate State (Maximum Power Savings)

	Voltage Regulation
	Boot Modes
	Instruction Set Description
	Development Tools

	21 Media Transceiver Module (MXVR)
	Overview
	Interface Signals
	MXVR Memory Map
	MXVR Registers
	MXVR Configuration Register (MXVR_CONFIG)
	MXVR State Registers (MXVR_STATE_0, MXVR_STATE_1)
	MXVR Interrupt Status Register 0 (MXVR_INT_STAT_0)
	MXVR Interrupt Status Register_1 (MXVR_INT_STAT_1)
	MXVR Interrupt Enable Register 0 (MXVR_INT_EN_0)
	MXVR Interrupt Enable Register 1 (MXVR_INT_EN_1)
	MXVR Node Position Register (MXVR_POSITION)
	MXVR Maximum Node Position Register (MXVR_MAX_POSITION)
	MXVR Node Frame Delay Register (MXVR_DELAY)
	MXVR Maximum Node Frame Delay Register (MXVR_MAX_DELAY)
	MXVR Logical Address Register (MXVR_LADDR)
	MXVR Group Address Register (MXVR_GADDR)
	MXVR Alternate Address Register (MXVR_AADDR)
	MXVR Allocation Table Registers (MXVR_ALLOC_0 - MXVR_ALLOC_14)
	MXVR Synchronous Logical Channel Assignment Registers (MXVR_SYNC_LCHAN_0 - MXVR_SYNC_LCHAN_7)
	MXVR DMAx Configuration Registers (MXVR_DMA0_CONFIG - MXVR_DMA7_CONFIG)
	MXVR DMA Channel x Start Address Registers (MXVR_DMA0_START_ADDR - MXVR_DMA7_START_ADDR)
	MXVR DMA Channel x Current Address Registers (MXVR_DMA0_CURR_ADDR - MXVR_DMA7_CURR_ADDR)
	MXVR DMA Channel x Transfer Count Registers (MXVR_DMA0_COUNT - MXVR_DMA7_COUNT)
	MXVR DMA Channel x Current Transfer Count Registers (MXVR_DMA0_CURR_COUNT - MXVR_DMA7_CURR_COUNT)
	MXVR Asynchronous Packet Control Register (MXVR_AP_CTL)
	MXVR Asynchronous Packet Receive Buffer Start Address Register (MXVR_APRB_START_ADDR)
	MXVR Asynchronous Packet Receive Buffer Current Address Register (MXVR_APRB_CURR_ADDR)
	MXVR Asynchronous Packet Transmit Buffer Start Address Register (MXVR_APTB_START_ADDR)
	MXVR Asynchronous Packet Transmit Buffer Current Address Register (MXVR_APTB_CURR_ADDR)
	MXVR Control Message Control Register (MXVR_CM_CTL)
	MXVR Control Message Receive Buffer Start Address Register (MXVR_CMRB_START_ADDR)
	MXVR Control Message Receive Buffer Current Address Register (MXVR_CMRB_CURR_ADDR)
	MXVR Control Message Transmit Buffer Start Address Register (MXVR_CMTB_START_ADDR)
	MXVR Control Message Transmit Buffer Current Address Register (MXVR_CMTB_CURR_ADDR)
	MXVR Remote Read Buffer Start Address Register (MXVR_RRDB_START_ADDR)
	MXVR Remote Read Buffer Current Address Register (MXVR_RRDB_CURR_ADDR)
	MXVR Pattern Registers
	MXVR Pattern Data Registers (MXVR_PAT_DATA_0, MXVR_PAT_DATA_1)
	MXVR Pattern Enable Registers (MXVR_PAT_EN_0, MXVR_PAT_EN_1)
	MXVR Frame Counter Registers (MXVR_FRAME_CNT_0, MXVR_FRAME_CNT_1)
	MXVR Routing Registers (MXVR_ROUTING_0 - MXVR_ROUTING_14)
	MXVR Block Counter Register (MXVR_BLOCK_CNT)
	MXVR Clock Control Register (MXVR_CLK_CTL)
	MXVR Clock/Data Recovery PLL Control Register (MXVR_CDRPLL_CTL)
	MXVR Frequency Multiply PLL Control Register (MXVR_FMPLL_CTL)
	MXVR Pin Control Register (MXVR_PIN_CTL)
	MXVR System Clock Counter Register (MXVR_SCLK_CNT)

	General Operation
	Network Services Software
	Network Activity Detection
	Node Initialization
	Initialization of Processor Pin Multiplexing
	Master mode initialization of the MXVR_CONFIG register
	Slave mode initialization of the MXVR_CONFIG register
	Initialization of the MXVR_CLK_CTL register
	Initialization of the MXVR_ROUTING_x registers
	Initialization of the buffer start address registers

	Enabling the MXVR PLLs
	Enabling MXVR Output Clocks
	Network Lock
	Network Initialization
	Synchronous Data Routing, Muting, and Transmission
	Synchronous Data Reception
	Asynchronous Packet Transmission
	Asynchronous Packet Reception
	Control Message Transmission
	Normal Control Message Transmission
	Remote Read Control Message Transmission
	Remote Write Control Message Transmission
	Resource Allocate Control Message Transmission
	Resource De-Allocate Control Message Transmission
	Remote Get Source Control Message Transmission
	Control Message Reception
	Normal Control Message Reception
	Remote Read and Remote Write Reception
	Resource Allocate Reception
	Resource De-Allocate Reception
	Remote Get Source Reception

	MXVR Low Power Operation
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State
	Power Gating the ADSP-BF54x

	22 Keypad Interface
	Interface Overview
	Description of Operation
	Keypad Operation
	Keypad Enable/Disable
	Input Keypad Matrix Programmability

	Waking Up on Keypad Press
	Sensitivity of Keypad Interface
	Limited Multiple Key Resolution
	Keypad Interrupt Modes
	Implementing Press-Hold Feature

	Functional Description
	State Diagram

	Programming Model
	Keypad Registers
	Keypad Control Register (KPAD_CTL)
	KPAD_PRESCALE Register
	KPAD_MSEL Register
	KPAD_ROWCOL Register
	KPAD_STAT Register
	KPAD_SOFTEVAL Register

	Programming Examples

	23 Secure Digital Host
	Overview
	Interface Overview
	Description of Operation
	Functional Description
	SDH Clocking
	SDH Operation
	SDH Data
	WAIT_R
	RECEIVE
	SEND

	SDH Data FIFO
	Transmit FIFO
	Receive FIFO
	SDIO Interrupt and Read Wait Support
	MMC/SD Card Detection
	SDH DMA Transfers

	Programming Model
	SDH Registers
	SDH Power Control Register (SDH_PWR_CTL)
	SDH Clock Control Register (SDH_CLK_CTL)
	SDH Argument Register (SDH_ARGUMENT)
	SDH Command Register (SDH_COMMAND)
	SDH Response Command Register (SDH_RESP_CMD)
	SDH Response Registers (SDH_RESPONSEx)
	SDH Data Timer Register (SDH_DATA_TIMER)
	SDH Data Length Register (SDH_DATA_LGTH)
	SDH Data Control Register (SDH_DATA_CTL)
	SDH Data Counter Register (SDH_DATA_CNT)
	SDH Status Register (SDH_STATUS)
	SDH Status Clear Register (SDH_STATUS_CLR)
	SDH Interrupt Mask Registers (SDH_MASKx)
	SDH FIFO Counter Register (SDH_FIFO_CNT)
	SDH Data FIFO (SDH_FIFOx) Registers
	SDH Exception Status Register (SDH_E_STATUS)
	SDH Exception Mask Register (SDH_E_MASK)
	SDH Configuration Register (SDH_CFG)
	SDH Read Wait Enable Register (SDH_RD_WAIT_EN)
	SDH Identification Registers (SDH_PIDx)

	Programming Examples

	24 ATAPI Interface
	Interface Overview
	Description of Operation
	Host PIO/Register Transfers
	PIO Data-Out Transfers (Device Write)
	PIO Data-In Transfers (Device Read)

	Host Multiword DMA Transfers
	Host Pausing the Multi-DMA Transfer
	Host Terminating the Multi DMA Transfer
	Device Pausing the Multi-DMA Transfer
	Device Terminating the Multi-DMA Transfer

	Host Ultra DMA Command Protocol Transfers
	Host Pausing the Ultra DMA Data-In Transfer
	Host Terminating the Ultra DMA Data-In Transfer
	Device Pausing the Ultra DMA Data-In Transfer
	Device Terminating the Ultra DMA Data-In Transfer
	Host Pausing Ultra DMA Data-Out Transfer
	Host Terminating Ultra DMA Data-Out Transfer
	Device Pausing the Ultra DMA Data-Out Transfer
	Device Terminating the Ultra DMA Data-Out Transfer

	Functional Description
	Power-on and Hardware Reset Protocol
	Device Selection Protocol
	Programmed I/O (PIO)
	Host Multi DMA Block Implementation
	Host Ultra DMA Block Implementation
	Initiating an Ultra DMA Data-In Burst
	Data-In Transfer
	Device pausing an Ultra DMA Data-In Burst
	Host pausing an Ultra DMA Data-In Burst
	Ultra DMA Timing
	Ultra DMA-Out Timing

	Programming Model
	ATAPI Device Configuration and Setup
	PIO Data-out Transfers Pseudo-code
	Host Multiword DMA Transfers Pseudo-code
	Host Ultra DMA Command Protocol Transfers Pseudo-code

	ATAPI Registers
	ATAPI Control and Status Registers
	ATAPI Control Register (ATAPI_CONTROL)
	ATAPI Status Register (ATAPI_STATUS)
	ATAPI Device Address Register (ATAPI_DEV_ADDR)
	ATAPI Device Transmit Buffer Register (ATAPI_DEV_TXBUF)
	ATAPI Device Receive Buffer Register (ATAPI_DEV_RXBUF)
	ATAPI Interrupt Mask (ATAPI_INT_MASK) Register
	ATAPI Interrupt Status Register (ATAPI_INT_STATUS)
	ATAPI Transfer Length Register (ATAPI_XFER_LEN)
	ATAPI Line Status Register (ATAPI_LINE_STATUS)
	ATAPI State Machine Status Register (ATAPI_SM_STATE)
	ATAPI Host Terminate Register (ATAPI_TERMINATE)
	ATAPI PIO Transfer Count Register (ATAPI_PIO_TFRCNT)
	ATAPI Multiword DMA Transfer Count (ATAPI_MULTI_TFRCNT)
	ATAPI Ultra DMA Transfer Count (ATAPI_ULTRA_IN_TFRCNT)
	ATAPI Ultra DMA OUT Transfer Count (ATAPI_ULTRA_OUT_ TFRCNT)
	ATAPI Register Transfer Timing 0 (ATAPI_REG_TIM_0)
	ATAPI Programmed I/O Timing 0 (ATAPI_PIO_TIM_0)
	ATAPI Programmed I/O Timing 1 (ATAPI_PIO_TIM_1)
	ATAPI Multi DMA Timing 0 (ATAPI_MULTI_TIM_0)
	ATAPI Multi DMA Timing 1 (ATAPI_MULTI_TIM_1)
	ATAPI Multi DMA Timing 2 (ATAPI_MULTI_TIM_2)
	ATAPI Ultra DMA Timing 0 (ATAPI_ULTRA_TIM_0)
	ATAPI Ultra DMA Timing 1 (ATAPI_ULTRA_TIM_1)
	ATAPI Ultra DMA Timing 2 Register (ATAPI_ULTRA_TIM_2)
	ATAPI Ultra DMA Timing 3 (ATAPI_ULTRA_TIM_3) Register

	ATAPI Device I/O Registers
	Command Register (R/W)
	Device Control Register (WO)
	Features Register (WO)
	Sector Count Register (R/W)
	Status Register (RO)
	Alternate Status Register (RO)
	Error Register (RO)

	ATAPI Standards Reference
	Summary of IDE/ATA Standards
	ATAPI Timing Summary
	IDE/ATA Transfer Modes and Protocols
	Programmed (I/O) PIO Modes
	Direct Memory Access (DMA) Modes
	Ultra Direct Memory Access (DMA) Modes

	ATAPI Device Selection

	25 NAND Flash Controller
	Overview
	Interface Overview
	Description of Operation
	Internal Bus Interfaces
	Bus Access Types
	Access Timing
	Pin Sharing

	Functional Description
	Page Write
	Page Read
	Additional Operations
	Write Protection
	Chip Enable Don’t Care
	NFC Error Detection
	Error Analysis
	Large Page Size Support

	NFC SmartMedia Support

	Programming Model
	NFC Registers
	NFC Control Register (NFC_CTL)
	NFC Status Register (NFC_STAT)
	NFC Interrupt Status Register (NFC_IRQSTAT)
	NFC Interrupt Mask Register (NFC_IRQMASK)
	NFC ECC Registers (NFC_ECCx)
	NFC Count Register (NFC_COUNT)
	NFC Reset Register (NFC_RST)
	NFC Page Control Register (NFC_PGCTL)
	NFC Read Data Register (NFC_READ)
	NFC Address Register (NFC_ADDR)
	NFC Command Register (NFC_CMD)
	NFC Data Write Register (NFC_DATA_WR)
	NFC Data Read Register (NFC_DATA_RD)

	NFC Programming Examples

	26 Enhanced Parallel Peripheral Interface
	Overview
	Interface Overview
	Description of Operation
	EPPI Reset
	Clock Gating
	Frame Sync Polarity & Sampling Edge
	Interrupts

	Functional Description
	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video
	Vertical Blanking Interval (VBI) only

	ITU-R 656 Output in GP Transmit Modes
	Frame Synchronization in ITU-R 656 Modes
	General-Purpose EPPI Modes
	GP 0 FS Mode
	Frame Synchronization in GP 0 FS External Trigger Mode
	Frame Synchronization in GP 0 FS Internal Trigger Mode

	GP 1 FS Mode
	GP 2 FS Mode
	DEN functionality in GP 2 FS Transmit Mode

	GP 3 FS Mode

	EPPI Data Path Options
	EPPI Data Lengths
	EPPI DMA Channels
	Data Packing For Receive Modes
	Data Unpacking For Transmit Modes
	Sign-Extension and Zero-Filling
	Split Receive Modes
	Split Transmit Modes
	RGB Data Formats
	Programmed Clipping and Thresholding of Data Values
	Data Transfer Examples
	8-Bit Receive Mode
	10/12/14-Bit Receive Modes
	16-Bit Receive Mode
	18-Bit Receive Mode
	24-Bit Receive Mode
	8-Bit Split Receive Mode
	10/12/14/16-Bit Split Receive Mode with SPLT_16 = 0
	16-Bit Split Receive Mode with SPLT_16 = 1
	8-Bit Transmit Mode
	10/12/14-Bit Transmit Modes
	16-Bit Transmit Mode
	18-Bit Transmit Mode
	24-Bit Transmit Mode
	8-Bit Split Transmit Mode
	10/12/14/16-Bit Split Transmit Mode with SPLT_16 = 0
	16-Bit Split Transmit Mode with SPLT_16 = 1

	Programming Model
	DMA Operation
	Elevating EPPI Urgent requests at DDR controller Interface
	System Configuration

	EPPI Registers
	PPIx_CONTROL Register
	PPIx_STATUS Register
	Windowing Registers
	EPPI Lines per Frame Register (PPIx_FRAME)
	EPPI Samples per Line Register (PPIx_LINE)
	EPPI Vertical Delay Register (PPIx_VDELAY)
	EPPI Vertical Transfer Count Register (PPIx_VCOUNT)
	EPPI Horizontal Delay Register (PPIx_HDELAY)
	EPPI Horizontal Transfer Count Register (PPIx_HCOUNT)

	EPPI Clock Divide Register (PPIx_CLKDIV)
	Frame Sync/ Blanking Generation Registers
	EPPI FS1 Width Register / EPPI Horizontal Blanking Samples per Line Register (PPIx_FS1W_HBL)
	EPPI FS2 Width Register/ EPPI Lines of Vertical Blanking Register (PPIx_FS2W_LVB)
	EPPI FS1 Period Register/EPPI Active Video Samples per Line Register (PPIx_FS1P_AVPL)
	EPPI FS2 Period Register/EPPI Lines of Active Video per Frame Register (PPIx_FS2P_LAVF)

	EPPI Clipping Register (PPIx_CLIP)

	27 CAN Module
	Overview
	Interface Overview
	CAN Mailbox Area
	CAN Mailbox Control
	CAN Protocol Basics

	CAN Operation
	Bit Timing
	Transmit Operation
	Retransmission
	Single Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filter
	Watchdog Mode

	Time Stamps
	Remote Frame Handling
	Temporarily Disabling Mailboxes

	Functional Operation
	CAN Interrupts
	Mailbox Interrupts
	Global CAN Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	CAN Error Handling

	Debug and Test Modes
	Low Power Features
	CAN Built-In Suspend Mode
	CAN Built-In Sleep Mode
	CAN Wakeup From Hibernate State

	CAN Registers
	Global CAN Registers
	CANx_CONTROL Master Control Registers
	CANx_STATUS Global CAN Status Registers
	CANx_DEBUG Registers
	CANx_CLOCK Registers
	CANx_TIMING Registers
	CANx_INTR Interrupt Pending Registers
	CANx_GIM Global CAN Interrupt Mask Registers
	CANx_GIS Global CAN Interrupt Status Registers
	CANx_GIF Global CAN Interrupt Flag Registers

	Mailbox/Mask Registers
	CANx_AMxx Acceptance Mask Registers
	CANx_MBxx_ID1 Registers
	CANx_MBxx_ID0 Registers
	CANx_MBxx_TIMESTAMP Registers
	CANx_MBxx_LENGTH Registers
	CANx_MBxx_DATAx Registers

	Mailbox Control Registers
	CANx_MCx Mailbox Configuration Registers
	CANx_MDx Mailbox Direction Registers
	CANx_RMPx Registers
	CANx_RMLx Registers
	CANx_OPSSx Register
	CANx_TRSx Registers
	CANx_TRRx Registers
	CANx_AAx Registers
	CANx_TAx Registers
	CANx_MBTD Register
	CANx_RFHx Registers
	CANx_MBIMx Registers
	CANx_MBTIFx Registers
	CANx_MBRIFx Registers

	Universal Counter Registers
	CANx_UCCNF Register
	CANx_UCCNT Register
	CANx_UCRC Register

	Error Registers
	CANx_CEC Register
	CANx_ESR Register
	CANx_EWR Register

	Programming Examples
	CAN Setup Code
	Initializing and Enabling CAN Mailboxes
	Initiating CAN Transfers and Processing Interrupts

	28 SPI-Compatible Port Controllers
	Overview
	Interface Overview
	External Interface
	Serial Peripheral Interface Clock Signal (SPIxSCK)
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Serial Peripheral Interface Slave Select Input Signal
	Serial Peripheral Interface Slave Select Enable Output Signals
	Slave Select Inputs
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

	Internal Interfaces
	DMA Functionality

	SPI Transmit Data Buffer
	SPI Receive Data Buffer

	Description of Operation
	SPI Transfer Protocols
	SPI General Operation
	SPI Control
	Clock Signals
	SPI Baud Rate
	Error Signals and Flags
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	Interrupt Output

	Functional Description
	Master Mode Operation
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Programming Model
	Beginning and Ending an SPI Transfer
	Master Mode DMA Operation
	Slave Mode DMA Operation

	SPI Registers
	SPI Baud Rate (SPIx_BAUD) Register
	SPI Control (SPIx_CTL) Register
	SPI Flag (SPIx_FLG) Register
	SPI Status (SPIx_STAT) Register
	SPI Transmit Data Buffer (SPIx_TDBR) Register
	SPI Receive Data Buffer (SPIx_RDBR) Register
	SPI RDBR Shadow (SPIx_SHADOW) Register

	Programming Examples
	Core Generated Transfer
	Initialization Sequence
	Starting a Transfer
	Post Transfer and Next Transfer
	Stopping

	DMA Transfer
	DMA Initialization Sequence
	SPI Initialization Sequence
	Starting a Transfer
	Stopping a Transfer

	29 Two Wire Interface Controllers
	Overview
	Interface Overview
	External Interface
	Serial Clock signal (SCL1-0)
	Serial data signal (SDA1-0)
	TWI Pins

	Internal Interfaces

	Description of Operation
	TWI Transfer Protocols
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	TWI General Operation
	TWI Control
	Clock Signal
	Error Signals and Flags
	TWI Master Status
	TWI Slave Status
	TWI FIFO Status
	TWI Interrupt Status

	Functional Description
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Clock Stretching

	Repeated Start Condition

	Programming Model
	TWI Registers
	TWIx_CONTROL Register
	TWIx_CLKDIV Register
	TWIx_SLAVE_CTL Register
	TWIx_SLAVE_ADDR Register
	TWIx_SLAVE_STAT Register
	TWIx_MASTER_CTL Register
	TWIx_MASTER_ADDR Register
	TWIx_MASTER_STAT Register
	TWIx_FIFO_CTL Register
	TWIx_FIFO_STAT Register
	TWIx_INT_MASK Register
	TWIx_INT_STAT Register
	TWIx_XMT_DATA8 Register
	TWIx_XMT_DATA16 Register
	TWIx_RCV_DATA8 Register
	TWIx_RCV_DATA16 Register

	Programming Examples
	Master Mode Setup
	Slave Mode Setup

	Electrical Specifications

	30 SPORT Controllers
	Overview
	Interface Overview
	SPORT Pin/Line Terminations

	Description of Operation
	SPORT Operation
	SPORT Disable
	Setting SPORT Modes
	Stereo Serial Operation
	Multichannel Operation
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPORTx_MCMC2
	Channel Selection Register
	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2X Clock Recovery Control

	Functional Description
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	SPORT RX, TX, and Error Interrupts
	PAB Errors
	Timing Examples

	SPORT Registers
	Register Writes and Effective Latency
	SPORTx_TCR1 and SPORTx_TCR2 Registers
	SPORTx_RCR1 and SPORTx_RCR2 Registers
	Data Word Formats
	SPORTx_TX Register
	SPORTx_RX Register
	SPORTx_STAT Register
	SPORTx_TCLKDIV and SPORTx_RCLKDIV Registers
	SPORTx_TFSDIV and SPORTx_RFSDIV Register
	SPORTx_MCMCn Registers
	SPORTx_CHNL Register
	SPORTx_MRCSn Registers
	SPORTx_MTCSn Registers

	Programming Examples
	SPORT Initialization Sequence
	DMA Initialization Sequence
	Interrupt Servicing
	Starting a Transfer

	31 UART Port Controllers
	Overview
	Features

	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	UART Transfer Protocol
	UART Transmit Operation
	UART Receive Operation
	Hardware Flow Control
	IrDA Transmit Operation
	IrDA Receive Operation
	Interrupt Processing
	Bit Rate Generation
	Autobaud Detection

	Programming Model
	Non-DMA Mode
	DMA Mode
	Mixing Modes

	UART Registers
	UARTx_LCR Registers
	UARTx_MCR Registers
	UARTx_LSR Registers
	UARTx_MSR Registers
	UARTx_THR Registers
	UARTx_RBR Registers
	UARTx_IER_SET and UARTx_IER_CLEAR Registers
	UARTx_DLL and UARTx_DLH Registers
	UARTx_SCR Registers
	UARTx_GCTL Registers

	Programming Examples

	32 USB OTG Controller
	Overview
	Features

	Interface Overview
	FIFO Configuration
	Interrupts
	Resets

	Description of Operation
	Peripheral Mode Operation
	Endpoint Setup
	IN Transactions as a Peripheral
	High Bandwidth Isochronous IN Endpoints
	OUT Transactions as a Peripheral
	High Bandwidth Isochronous OUT Endpoints
	Peripheral Transfer Workflows
	Peripheral Mode Suspend
	Start Of Frame (SOF) Packets
	Soft Connect / Soft Disconnect
	Error Handling As a Peripheral
	STALLS Issued to Control Transfers
	Zero Length OUT Data Packets in Control Transfers

	Host Mode Operation
	Endpoint Setup and Data Transfer
	Control Transaction as a Host
	Setup Phase as a Host
	IN Data Phase as a Host
	OUT Data as a Host (Control)
	IN Status Phase as a Host (following SETUP phase or OUT Data Phase)
	OUT Status Phase as a Host (following IN Data Phase)
	Host IN Transactions
	Host OUT Transactions
	Transaction Scheduling
	Babble
	Host Mode Reset
	Host Mode Suspend

	Functional Description
	On-Chip Bus Interfaces
	Interface Pins
	Power and Clocking
	UTMI Interface

	Programming Model
	OTG Session Request
	Starting a Session
	Detecting Activity

	Host Negotiation/Configuration
	Software Clock Control
	Wakeup from Hibernate State
	Wakeup without Re-Enumeration
	Data Transfer
	Loading/Unloading Packets from Endpoints
	DMA Master Channels
	DMA Bus Cycles
	Transferring Packets Using DMA
	Individual Packet: Rx Endpoint
	Individual Packet: TX Endpoint
	Multiple Packets: Rx Endpoint
	Multiple Packets: TX Endpoints

	USB OTG Registers
	USB Function Address (USB_FADDR) Register
	USB Power Management (USB_POWER) Register
	USB Transmit Interrupt (USB_INTRTX) Register
	USB Receive Interrupt (USB_INTRRX) Register
	USB Transmit Interrupt Enable (USB_INTRTXE) Register
	USB Receive Interrupt Enable (USB_INTRRXE) Register
	USB Common Interrupts (USB_INTRUSB) Register
	USB Common Interrupt Enable (USB_INTRUSBE) Register
	USB Frame Number (USB_FRAME) Register
	USB Index (USB_INDEX) Register
	USB Test Mode (USB_TESTMODE) Register
	USB Global Interrupt (USB_GLOBINTR) Register
	USB Global Control (USB_GLOBAL_CTL) Register
	USB Tx Max Packet (USB_TX_MAX_PACKET) Register
	USB Control/Status EP0 (USB_CSR0) Register
	USB Tx Control/Status EPx (USB_TXCSR) Register
	USB Rx Max Packet (USB_RX_MAX_PACKET) Register
	USB Rx Control/Status (USB_RXCSR) Register
	USB Count 0 (USB_COUNT0) Register
	USB Rx Byte Count EPx (USB_RXCOUNT) Register
	USB Tx Type (USB_TXTYPE) Register
	USB NAK Limit 0 (USB_NAKLIMIT0) Register
	USB Tx Interval (USB_TXINTERVAL) Register
	USB Rx Type (USB_RXTYPE) Register
	USB Rx Interval (USB_RXINTERVAL) Register
	USB Tx Byte Count EPx (USB_TXCOUNT) Register
	USB Endpoint FIFO (USB_EPx_FIFO) Registers
	USB OTG Device Control (USB_OTG_DEV_CTL) Register
	USB OTG VBUS Interrupt (USB_OTG_VBUS_IRQ) Register
	USB OTG VBUS Mask (USB_OTG_VBUS_MASK) Register
	USB Link Info (USB_LINKINFO) Register
	USB VBUS Pulse Length (USB_VPLEN) Register
	USB High-Speed EOF 1 (USB_HS_EOF1) Register
	USB Full-Speed EOF 1 (USB_FS_EOF1) Register
	USB Low-Speed EOF 1 (USB_LS_EOF1) Register
	USB APHY Control 2 (USB_APHY_CNTRL2) Register
	USB PLL OSC Control (USB_PLLOSC_CTRL) Registers
	USB SRP Clock Divider (USB_SRP_CLKDIV) Register
	USB DMA Interrupt (USB_DMA_INTERRUPT) Register
	USB DMAx Control (USB_DMA_CONTROL) Registers
	USB DMAx Address Low (USB_DMAxADDRLOW) Registers
	USB DMAx Address High (USB_DMAxADDRHIGH) Registers
	USB DMAx Count Low (USB_DMAxCOUNTLOW) Registers
	USB DMAx Count High (USB_DMAxCOUNTHIGH) Registers

	Programming Examples
	References
	Glossary of USB Terms

	A System MMR Assignments
	Dynamic Power Management Registers
	System Reset and Interrupt Control Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	Timer Registers
	Ports Registers
	External Bus Interface Unit Registers
	DMA/Memory DMA Control Registers
	Handshake MDMA Control Registers
	Host DMA Registers
	PIXC Registers
	Rotary Counter Registers
	Security Registers
	Core Timer Registers
	Processor-Specific Memory Registers
	MXVR Registers
	Keypad Registers
	SDH Registers
	ATAPI Registers
	NAND Flash Controller Registers
	EPPI1 Registers
	EPPI2 Registers
	CANx Registers
	SPI0 Controller Registers
	SPI1 Controller Registers
	TWI Registers
	SPORT0 Controller Registers
	SPORT1 Controller Registers
	SPORT2 Controller Registers
	SPORT3 Controller Registers
	UART0 Controller Registers
	UART1 Controller Registers
	UART2 Controller Registers
	UART3 Controller Registers
	USB OTG Registers

	B Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST - Binary Code 00000
	SAMPLE/PRELOAD - Binary Code 10000
	BYPASS - Binary Code 11111
	IDCODE - Binary Code 00010

	Boundary-Scan Register

	I Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

