
ADSP-BF54x Blackfin® Processor
Hardware Reference (Volume 1 of 2)

Preliminary

Revision 0.4, August 2008

Part Number
82-000000-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

a

Copyright Information
© 2008 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Lockbox Secure Technology Disclaimer

Analog Devices products containing LockboxTM Secure Technology are
warranted by Analog Devices as detailed in the Analog Devices Standard
Terms and Conditions of Sale. To our knowledge, the Lockbox Secure
Technology, when used in accordance with the data sheet and hardware
reference manual specifications, provides a secure method of implement-
ing code and data safeguards. However, Analog Devices does not
guarantee that this technology provides absolute security. ACCORD-
INGLY, ANALOG DEVICES HEREBY DISCLAIMS ANY AND ALL
EXPRESS AND IMPLIED WARRANTIES THAT THE LOCKBOX
SECURE TECHNOLOGY CANNOT BE BREACHED, COMPRO-
MISED OR OTHERWISE CIRCUMVENTED AND IN NO EVENT
SHALL ANALOG DEVICES BE LIABLE FOR ANY LOSS, DAMAGE,
DESTRUCTION OR RELEASE OF DATA, INFORMATION, PHYSI-
CAL PROPERTY OR INTELLECTUAL PROPERTY.

ADSP-BF54x Blackfin Processor Hardware Reference iii

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, the Blackfin logo, CrossCore, EZ-KIT
Lite, SHARC, TigerSHARC, and VisualDSP++ are registered trademarks
of Analog Devices, Inc.

Lockbox is a trademark if Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Contents

iv ADSP-BF54x Blackfin Processor Hardware Reference

CONTENTS

PREFACE

Contents of Two Volumes ... xliii

Purpose of This Manual .. xliv

Intended Audience .. xliv

Manual Contents ... xlv

What’s New in This Manual ... xlviii

Technical or Customer Support ... xlviii

Supported Processors .. xlix

Conventions ... l

Register Diagram Conventions ... li

INTRODUCTION

Peripherals .. 1-2

Memory Architecture .. 1-5

Internal Memory ... 1-6

External Memory .. 1-7

NAND Flash Controller (NFC) .. 1-8

ADSP-BF54x Blackfin Processor Hardware Reference v

Contents

I/O Memory Space .. 1-9

One-Time-Programmable (OTP) Memory 1-9

DMA Support ... 1-10

Host DMA Interface .. 1-12

External Bus Interface Unit ... 1-13

DDR SDRAM Controller .. 1-13

Asynchronous Controller ... 1-14

Ports ... 1-14

General-Purpose I/O (GPIO) ... 1-14

Two-Wire Interface ... 1-15

Controller Area Network ... 1-16

Enhanced Parallel Peripheral Interface (EPPI) 1-17

SPORT Controllers ... 1-19

Serial Peripheral Interface (SPI) Port .. 1-21

Timers .. 1-21

UART Ports .. 1-23

USB On-The-Go, Dual-Role Device Controller 1-24

ATA/ATAPI–6 Interface .. 1-24

Keypad Interface ... 1-25

Secure Digital (SD)/SDIO Controller .. 1-26

Rotary Counter Interface ... 1-26

Security .. 1-27

Media Transceiver Mac Layer (MXVR) .. 1-28

Real-Time Clock ... 1-29

Watchdog Timer ... 1-30

Contents

vi ADSP-BF54x Blackfin Processor Hardware Reference

Clock Signals .. 1-31

Dynamic Power Management ... 1-32

Full On Mode (Maximum Performance) 1-32

Active Mode (Moderate Dynamic Power Savings) 1-32

Sleep Mode (High Dynamic Power Savings) 1-32

Deep Sleep Mode (Maximum Dynamic Power Savings) 1-33

Hibernate State (Maximum Power Savings) 1-33

Voltage Regulation .. 1-34

Boot Modes .. 1-34

Instruction Set Description ... 1-35

Development Tools ... 1-36

CHIP BUS HIERARCHY

Overview .. 2-1

Internal Interfaces ... 2-1

Internal Clocks ... 2-5

Core Bus Overview ... 2-6

System Overview .. 2-8

P Port Interface ... 2-9

D Port Interface .. 2-10

On-Chip L2 Interface ... 2-11

Peripheral Access Bus (PAB) .. 2-15

PAB Performance .. 2-15

PAB Agents (Masters, Slaves) ... 2-16

DMA-Related Buses ... 2-17

ADSP-BF54x Blackfin Processor Hardware Reference vii

Contents

Peripheral DMA .. 2-18

DAB Bus Agents (Masters) .. 2-18

DAB Arbitration ... 2-19

DCB Arbitration ... 2-21

DEB Arbitration ... 2-23

DAB, DCB, and DEB Performance 2-23

External Access Bus (EAB) .. 2-25

EAB/DEB Arbitration ... 2-26

EAB/DEB Performance ... 2-26

MEMORY

Memory Architecture .. 3-2

Internal Memory ... 3-5

Overview of L1 Instruction SRAM 3-6

Overview of L1 Instruction ROM 3-6

Overview of L1 Data SRAM ... 3-7

Overview of Scratchpad Data SRAM 3-7

Overview of On-Chip L2 ... 3-8

 L1 Instruction Memory .. 3-8

Instruction Memory Control Register
(IMEM_CONTROL) .. 3-9

L1 Instruction SRAM ... 3-12

L1 Instruction Cache ... 3-15

Cache Lines .. 3-15

Cache Hits and Misses .. 3-18

Contents

viii ADSP-BF54x Blackfin Processor Hardware Reference

 Cache-Line Fills ... 3-18

Line-Fill Buffer ... 3-19

Cache-Line Replacement .. 3-19

Instruction Cache Management ... 3-21

Instruction Cache Locking by Line 3-21

Instruction Cache Locking by Way 3-22

Instruction Cache Invalidation .. 3-23

Instruction Test Registers .. 3-24

ITEST_COMMAND Register .. 3-25

ITEST_DATA1 Register ... 3-26

ITEST_DATA0 Register ... 3-27

L1 Data Memory .. 3-28

Data Memory Control Register (DMEM_CONTROL) 3-28

L1 Data SRAM ... 3-31

L1 Data Cache .. 3-32

Example of Mapping Cacheable Address
Space into Data Banks ... 3-35

Data Cache Access .. 3-39

Cache Write Method .. 3-41

Write Buffers .. 3-41

Interrupt Priority Register (IPRIO), Write Buffer Depth ... 3-42

Data Cache Control Instructions 3-43

Data Cache Invalidation ... 3-44

Data Test Registers ... 3-44

Data Test Command Register (DTEST_COMMAND) 3-45

ADSP-BF54x Blackfin Processor Hardware Reference ix

Contents

Data Test Data 1 Register (DTEST_DATA1) 3-47

Data Test Data 0 Register (DTEST_DATA0) 3-47

On-Chip Level 2 (L2) Memory ... 3-49

On-Chip L2 Bank Access ... 3-49

Latency ... 3-50

One Time Programmable Memory .. 3-53

External Memory .. 3-53

Memory Protection and Properties .. 3-54

Memory Management Unit ... 3-54

Memory Pages ... 3-55

Memory Page Attributes .. 3-56

Page Descriptor Table .. 3-57

CPLB Management ... 3-58

MMU Application ... 3-60

Examples of Protected Memory Regions 3-62

ICPLB Data Registers (ICPLB_DATAx) 3-63

DCPLB Data Registers (DCPLB_DATAx) 3-65

DCPLB Address Registers (DCPLB_ADDRx) 3-67

ICPLB Address Registers (ICPLB_ADDRx) 3-69

CPLB Status Registers ... 3-70

DCPLB Status Register (DCPLB_STATUS) 3-71

ICPLB Status Register (ICPLB_STATUS) 3-72

CPLB Fault Address Registers .. 3-72

DCPLB Fault Address Register (DCPLB_FAULT_ADDR) 3-73

Contents

x ADSP-BF54x Blackfin Processor Hardware Reference

ICPLB Fault Address Register (ICPLB_FAULT_ADDR) ... 3-74

Memory Transaction Model .. 3-74

Load/Store Operation ... 3-75

Interlocked Pipeline .. 3-76

Ordering of Loads and Stores .. 3-77

Synchronizing Instructions .. 3-78

Speculative Load Execution ... 3-79

Conditional Load Behavior ... 3-80

Working With Memory .. 3-81

Alignment ... 3-81

Cache Coherency .. 3-81

Atomic Operations .. 3-82

Memory-Mapped Registers .. 3-83

Core MMR Programming Code Example 3-83

Terminology ... 3-84

SYSTEM INTERRUPTS

Overview .. 4-1

Features .. 4-2

Interfaces .. 4-2

Description of Operation .. 4-6

Events and Sequencing .. 4-6

System Peripheral Interrupts .. 4-10

Programming Model ... 4-22

System Interrupt Initialization ... 4-22

ADSP-BF54x Blackfin Processor Hardware Reference xi

Contents

System Interrupt Processing Summary 4-22

System Interrupt Controller Registers .. 4-26

System Interrupt Assignment (SIC_IARx) Registers 4-27

System Interrupt Mask (SIC_IMASKx) Registers 4-34

System Interrupt Status (SIC_ISRx) Registers 4-38

System Interrupt Wakeup (SIC_IWRx) Registers 4-40

Programming Examples ... 4-44

Clearing Interrupt Requests ... 4-44

DIRECT MEMORY ACCESS

Overview and Features .. 5-2

DMA Controller Overview .. 5-6

External Interfaces ... 5-8

Internal Interfaces ... 5-8

Peripheral DMA .. 5-10

Memory DMA .. 5-13

Handshaked Memory DMA Mode 5-16

Modes of Operation .. 5-17

Register-Based DMA Operation ... 5-17

Stop Mode .. 5-18

Autobuffer Mode .. 5-19

Two-Dimensional DMA Operation .. 5-19

Examples of Two-Dimensional DMA 5-20

Descriptor-Based DMA Operation ... 5-21

Descriptor List Mode .. 5-22

Contents

xii ADSP-BF54x Blackfin Processor Hardware Reference

Descriptor Array Mode ... 5-23

Variable Descriptor Size .. 5-23

Mixing Flow Modes .. 5-25

Functional Description ... 5-25

DMA Operation Flow ... 5-25

DMA Startup ... 5-25

DMA Refresh ... 5-31

Work Unit Transitions .. 5-33

DMA Transmit and MDMA Source 5-34

DMA Receive ... 5-36

Stopping DMA Transfers .. 5-37

DMA Errors (Aborts) .. 5-38

DMA Control Commands .. 5-40

Restrictions .. 5-44

Transmit Restart or Finish ... 5-45

Receive Restart or Finish ... 5-45

Handshaked Memory DMA Operation 5-46

Pipelining DMA Requests ... 5-48

HMDMA Interrupts ... 5-50

DMA Performance .. 5-51

DMA Throughput .. 5-52

Memory DMA Timing Details .. 5-55

Static Channel Prioritization ... 5-55

Temporary DMA Urgency .. 5-55

ADSP-BF54x Blackfin Processor Hardware Reference xiii

Contents

Memory DMA Priority and Scheduling 5-57

Traffic Control .. 5-59

Programming Model ... 5-61

Synchronization of Software and DMA 5-62

Single-Buffer DMA Transfers .. 5-64

Continuous Transfers Using Autobuffering 5-65

Descriptor Structures .. 5-67

Descriptor Queue Management ... 5-68

Descriptor Queue Using Interrupts on Every Descriptor 5-69

Descriptor Queue Using Minimal Interrupts 5-70

Software-Triggered Descriptor Fetches 5-72

DMA Registers ... 5-74

DMA Channel Registers .. 5-74

Peripheral Map (DMAx_PERIPHERAL_MAP and
MDMA_yy_PERIPHERAL_MAP) Registers 5-79

DMA Configuration Registers ... 5-82

Interrupt Status Registers .. 5-87

Start Address Registers .. 5-91

Current Address Registers .. 5-93

Inner Loop Count Registers .. 5-96

Current Inner Loop Count Registers 5-98

Inner Loop Address Increment Registers 5-101

Outer Loop Count Registers .. 5-103

Current Outer Loop Count egisters 5-105

Outer Loop Address Increment Registers 5-108

Contents

xiv ADSP-BF54x Blackfin Processor Hardware Reference

Next Descriptor Pointer Registers 5-110

Current Descriptor Pointer Registers 5-113

Handshake MDMA (HMDMA) Registers 5-116

Handshake MDMA Control Registers 5-117

Handshake MDMA Initial Block Count Registers 5-120

Handshake MDMA Current Block Count Registers 5-120

Handshake MDMA Current Edge Count Registers 5-121

Handshake MDMA Initial Edge Count Registers 5-123

Handshake MDMA Edge Count Urgent Registers 5-124

Handshake MDMA Edge Count Overflow Registers 5-125

DMA Traffic Control Registers .. 5-125

DMA Traffic Control Counter Period Registers 5-126

DMA Traffic Control Counter Registers 5-127

DMA Controller 1 Peripheral Multiplexer Register 5-129

Programming Examples .. 5-129

Register-Based 2D Memory DMA 5-130

Initializing Descriptors in Memory 5-133

Software-Triggered Descriptor Fetch Example 5-136

Handshake Memory DMA Example 5-139

EXTERNAL BUS INTERFACE UNIT

General Overview ... 6-2

Block Diagram .. 6-5

On-Chip System Interfaces .. 6-8

Error Detection ... 6-8

ADSP-BF54x Blackfin Processor Hardware Reference xv

Contents

System Arbitration .. 6-9

Address Resolution .. 6-10

Reorder Unit ... 6-10

DDR Queue Manager ... 6-12

DDR Arbitration .. 6-12

DDR SDRAM Controller ... 6-16

Features ... 6-16

DDR SDRAM Memory Interface .. 6-17

DDR SDRAM Programming Model 6-18

DDR Registers .. 6-20

Memory Control Register 0 (EBIU_DDRCTL0) 6-21

Memory Control Register 1 (EBIU_DDRCTL1) 6-22

Memory Control Register 2 (EBIU_DDRCTL2) 6-23

Memory Control Register 3, Regular DDR Devices 6-24

Memory Control Register 3, Mobile DDR Devices 6-25

Queue Configuration Register (EBIU_DDRQUE) 6-26

Error Address Register (EBIU_ERRADD) 6-27

Error Master Register (EBIU_ERRMST) 6-28

Reset Control Register (EBIU_RSTCTL) 6-29

Mode of Operation - DDR .. 6-29

Data Flow for 16-bit DDR SDRAMs 6-30

Definition of Standard DDR Terms 6-31

DDR SDRAM System Organization 6-37

DDR SDRAM Configurations Supported 6-39

Contents

xvi ADSP-BF54x Blackfin Processor Hardware Reference

DDR Timing Parameter Definitions 6-41

DDR Metrics Control Registers ... 6-42

DDR Metrics Counter Enable Register 6-42

DDR Metrics Counter Clear Register 6-45

DDR READ Access Count Registers 6-48

DDR WRITE Access Count Registers 6-49

DDR Page ACTIVATE Count Register 6-49

DDR TURN AROUND Count Register 6-50

DDR AUTO-REFRESH Count Register 6-50

DDR Grant Count (EBIU_DDRGCx) Registers 6-50

Asynchronous Memory Interface ... 6-53

Asynchronous Memory Address Decode 6-53

Asynchronous Memory Arbitration .. 6-54

ASYNC Interface Control Registers 6-56

Asynchronous Memory Global Control Register 6-57

Asynchronous Memory Bank Control Registers 6-58

Avoiding Bus Contention .. 6-62

ARDY Input Control .. 6-62

Memory Bank Select Control Register (EBIU_MBSCTL) .. 6-63

Flash Memory Bank Control Registers 6-64

Booting From Page Mode or Synchronous Flash 6-64

Access Mode Selection .. 6-64

Memory Mode Control (EBIU_MODE) Register 6-66

Asynchronous Flash Mode .. 6-66

ADSP-BF54x Blackfin Processor Hardware Reference xvii

Contents

Flash Memory Bank Control (EBIU_FCTL) Register 6-67

Asynchronous Page Mode .. 6-67

Synchronous Burst Mode .. 6-67

EBIU Arbitration Status Register (EBIU_ARBSTAT) 6-69

Programmable Timing Characteristics 6-70

Asynchronous Accesses by Core Instructions 6-71

Asynchronous Reads .. 6-71

Asynchronous Writes ... 6-73

Asynchronous Writes Followed by Reads 6-76

Adding Additional Wait States ... 6-79

Asynchronous Flash Mode Writes and Reads 6-81

Asynchronous Page Mode Reads .. 6-82

Synchronous Burst Mode Read .. 6-83

Bus Request and Grant .. 6-84

PIXEL COMPOSITOR

Overview .. 7-2

Features ... 7-2

Interface Overview .. 7-3

Description of Operation .. 7-5

General Description .. 7-5

Data Buffer Formats .. 7-7

Operation in YUV 4:2:2 Format .. 7-7

Operation in RGB888 Format ... 7-8

DMA Channels ... 7-9

Contents

xviii ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description ... 7-10

Data Overlay .. 7-10

Transparency Control ... 7-16

Transparent Color ... 7-18

Color Space Conversion .. 7-19

Case 1 - Image and Overlay in the Same Format 7-20

Case 2 - Image and Overlay in Different Formats 7-21

Case 3 - Color Space Conversion Only 7-22

Color Space Conversion Matrix Equations 7-23

Color Space Converter Output Thresholds 7-25

YUV Conversion Modes ... 7-25

Upsampling .. 7-25

Downsampling ... 7-26

PIXC Actions ... 7-27

Recommendations .. 7-28

Special Usage Cases .. 7-28

Example 1 - Currently Defined Mode 7-29

Example 1 - Special Usage of This Mode 7-29

Example 2 - Currently Defined Mode 7-30

Example 2 - Special Usage of This Mode 7-31

Example 3 - Currently Defined Mode 7-32

Example 3 - Special Usage of This Mode 7-32

Example 4 - Currently Defined Mode 7-33

Example 4 - Special Usage of This Mode 7-33

ADSP-BF54x Blackfin Processor Hardware Reference xix

Contents

Programming Model ... 7-35

PIXC Registers .. 7-35

PIXC Control (PIXC_CTL) Register 7-38

PIXC Pixels Per Line (PIXC_PPL) Register 7-39

PIXC Lines Per Frame (PIXC_LPF) Register 7-39

PIXC Horizontal Start (PIXC_xHSTART) Registers 7-40

PIXC Horizontal End (PIXC_xHEND) Registers 7-40

PIXC Vertical Start (PIXC_xVSTART) Registers 7-41

PIXC Vertical End (PIXC_xVEND) Registers 7-41

PIXC Transparency Value (PIXC_xTRANSP) Registers 7-42

PIXC Interrupt Status (PIXC_INTRSTAT) Register 7-42

PIXC R/Y Conversion Coefficient (PIXC_RYCON) Register .. 7-43

PIXC G/U Conversion Coefficient (PIXC_GUCON) Register 7-44

PIXC B/V Conversion Coefficient (PIXC_BVCON) Register . 7-45

PIXC Color Conversion Bias (PIXC_CCBIAS) Register 7-46

PIXC Transparency Color Value (PIXC_TC) Register 7-47

Programming Examples ... 7-47

HOST DMA PORT

Overview .. 8-1

Features ... 8-2

Interface Overview .. 8-3

Description of Operation .. 8-4

Architecture .. 8-4

Functional Description .. 8-5

Contents

xx ADSP-BF54x Blackfin Processor Hardware Reference

HOSTDP Configuration .. 8-5

HOSTDP Transactions ... 8-8

Host Read Status .. 8-8

Host Read Data and Host Write Data Operations 8-9

HOSTDP Modes of Operation ... 8-10

Acknowledge Mode .. 8-10

Interrupt Mode ... 8-14

DMA STOP Mode and AUTOBUFFER Mode 8-16

Bus Widths and Endian Order .. 8-17

Access Control .. 8-18

Improving HOSTDP DMA Bus Bandwidth 8-19

Control Commands Between External Host and HOSTDP 8-20

Programming Model ... 8-22

BF54x Slave .. 8-22

Host Processor .. 8-23

Host DMA Port Registers ... 8-24

Host DMA Port Control (HOST_CONTROL) Register 8-25

Host DMA Port Status (HOST_STATUS) Register 8-27

HOSTDP Timeout (HOST_TIMEOUT) Register 8-29

Programming Examples .. 8-31

GENERAL-PURPOSE PORTS

Overview .. 9-1

Features .. 9-2

Module Overview ... 9-3

ADSP-BF54x Blackfin Processor Hardware Reference xxi

Contents

External Interfaces ... 9-4

Internal Interfaces ... 9-4

Pin Multiplexing Scheme .. 9-4

Port A ... 9-9

Port B ... 9-10

Port C ... 9-11

Port D ... 9-12

Port E ... 9-13

Port F ... 9-14

Port G ... 9-15

Port H .. 9-16

Port I .. 9-17

Port J .. 9-18

Port Multiplexing Control ... 9-19

GPIO Functionality .. 9-21

Input Mode ... 9-21

Output Mode .. 9-21

Open-Drain Mode ... 9-22

Pin Interrupts ... 9-23

Programming Model ... 9-26

Port Registers .. 9-30

Port Multiplexing Registers .. 9-35

Port x Function Enable (PORTx_FER) Registers 9-36

Port Multiplexer Control (PORTx_MUX) Registers 9-36

Contents

xxii ADSP-BF54x Blackfin Processor Hardware Reference

GPIO Registers ... 9-38

Port x GPIO Direction Set Register Pairs 9-39

Port x GPIO Input Enable (PORTx_INEN) Registers 9-40

Port x GPIO Data Register Groups 9-41

Pin Interrupt Registers .. 9-44

Pin Interrupt Mask Register Pairs 9-46

Interrupt Request and Latch Registers 9-48

Interrupt Edge Register Pairs ... 9-51

Pin Interrupt Pin State (PINTx_PINSTATE) Register 9-53

Pin Interrupt Invert Set Register Pairs 9-54

Pin Interrupt Assignment (PINTx_ASSIGN) Registers 9-56

Programming Examples .. 9-60

GENERAL-PURPOSE TIMERS

Overview and Features .. 10-1

Features .. 10-2

Interface Overview ... 10-3

External Interface .. 10-5

Internal Interface .. 10-6

Description of Operation .. 10-7

Interrupt Processing .. 10-8

Illegal States .. 10-11

Modes of Operation ... 10-14

Pulse Width Modulation (PWM_OUT) Mode 10-14

Output Pad Disable .. 10-16

ADSP-BF54x Blackfin Processor Hardware Reference xxiii

Contents

Single Pulse Generation ... 10-16

Pulse-Width Modulation Waveform Generation 10-17

PULSE_HI Toggle Mode .. 10-19

Externally-Clocked PWM_OUT 10-23

Stopping the Timer in PWM_OUT Mode 10-24

Pulse-Width Count and Capture (WDTH_CAP) Mode 10-27

Autobaud Mode .. 10-35

Capturing Timings from the GP Counter Module 10-36

External Event (EXT_CLK) Mode 10-36

Programming Model ... 10-37

Timer Registers ... 10-39

Timer Enable (TIMER_ENABLEx) Registers 10-40

Timer Disable (TIMER_DISABLEx) Registers 10-41

Timer Status (TIMER_STATUSx) Registers 10-43

Timer Configuration (TIMERx_CONFIG) Registers 10-47

Timer Counter (TIMERx_COUNTER) Registers 10-49

TIMERx_PERIOD and TIMERx_WIDTH Registers 10-52

Summary .. 10-56

Programming Examples ... 10-58

CORE TIMER

Overview and Features .. 11-1

Timer Overview .. 11-2

External Interfaces ... 11-2

Internal Interfaces ... 11-2

Contents

xxiv ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation .. 11-3

Interrupt Processing .. 11-3

Core Timer Registers .. 11-4

Core Timer Control (TCNTL) Register 11-5

Core Timer Count (TCOUNT) Register 11-6

Core Timer Period (TPERIOD) Register 11-7

Core Timer Scale (TSCALE) Register 11-7

Programming Examples .. 11-8

WATCHDOG TIMER

Overview and Features .. 12-1

Interface Overview ... 12-3

External Interface .. 12-3

Internal Interface .. 12-3

Description of Operation .. 12-4

Watchdog Timer Registers .. 12-6

Watchdog Count (WDOG_CNT) Register 12-6

Watchdog Status (WDOG_STAT) Register 12-7

Watchdog Control (WDOG_CTL) Register 12-8

Programming Examples .. 12-10

ROTARY COUNTER

Overview .. 13-1

Features .. 13-2

Interface Overview ... 13-3

ADSP-BF54x Blackfin Processor Hardware Reference xxv

Contents

Description of Operation .. 13-4

Quadrature Encoder Mode .. 13-4

Binary Encoder Mode .. 13-5

Rotary Counter Mode ... 13-6

Direction Counter Mode ... 13-7

Timed Direction Mode .. 13-7

Functional Description ... 13-8

Input Noise Filtering (Debouncing) 13-8

Zero Marker (Pushbutton) Operation 13-11

Boundary Comparison Modes .. 13-14

Rotary Encoder Events: Control and Signaling 13-16

Illegal Gray/Binary Code Events (Two-Step Detection) 13-16

Up/Down Count Events .. 13-17

Zero Count Events .. 13-17

Overflow Events .. 13-17

Boundary Match Events .. 13-18

Zero Marker Events ... 13-18

Capturing Timing (Using General-Purpose Timer) 13-18

Capturing Time Interval, Successive Counter Events 13-19

Capturing Counter Interval and Read Timing 13-21

Counter Commands .. 13-23

Programming Mode .. 13-24

Rotary Counter Registers .. 13-24

 ... 13-26

Contents

xxvi ADSP-BF54x Blackfin Processor Hardware Reference

Boundary Register Mode .. 13-26

Interrupt Mask (CNT_IMASK) Register 13-28

Status (CNT_STATUS) Register ... 13-29

Command (CNT_COMMAND) Register 13-29

Debounce Prescale (CNT_DEBOUNCE) Register 13-31

Counter (CNT_COUNTER) Register 13-32

Boundary (CNT_MIN and CNT_MAX) Registers 13-32

Programming Examples .. 13-34

REAL-TIME CLOCK

Overview .. 14-1

Interface Overview ... 14-3

Description of Operation .. 14-5

RTC Clock Requirements ... 14-5

Prescaler Enable .. 14-5

RTC Programming Model .. 14-7

Register Writes .. 14-8

Write Latency ... 14-9

Register Reads ... 14-10

Deep Sleep .. 14-10

Event Flags ... 14-11

Setting Time of Day .. 14-13

Using the Stopwatch ... 14-14

Interrupts ... 14-15

State Transitions Summary .. 14-17

ADSP-BF54x Blackfin Processor Hardware Reference xxvii

Contents

RTC Registers ... 14-20

RTC Status (RTC_STAT) Register 14-21

RTC Interrupt Control (RTC_ICTL) Register 14-21

RTC Interrupt Status (RTC_ISTAT) Register 14-22

RTC Stopwatch Count (RTC_SWCNT) Register 14-22

RTC Alarm (RTC_ALARM) Register 14-23

RTC Prescaler Enable (RTC_PREN) Register 14-23

Programming Examples ... 14-24

Enable RTC Prescaler .. 14-24

RTC Stopwatch For Exiting Deep Sleep Mode 14-25

RTC Alarm to Come Out of Hibernate State 14-27

SECURITY

Overview .. 15-2

 .. 15-5

Description of Operation .. 15-6

Secure State Machine ... 15-7

Open Mode .. 15-8

Secure Entry Mode ... 15-9

Secure Mode ... 15-10

SecureMode Control ... 15-10

Functional Description .. 15-13

Digital Signature Authentication 15-13

Digital Signature Authentication Performance 15-16

Protection Features .. 15-17

Contents

xxviii ADSP-BF54x Blackfin Processor Hardware Reference

Operating in Secure Mode ... 15-21

Entering Secure Mode .. 15-21

Exiting Secure Mode ... 15-21

Reset Handling in Secure Mode ... 15-21

Hardware Reset .. 15-21

Clearing Private Data .. 15-22

Public Key Requirements .. 15-24

Storing public cipher key in public OTP 15-26

Cryptographic Ciphers .. 15-26

Keys ... 15-27

Programming Model ... 15-27

Secure Entry Service Routine (SESR) API 15-27

Starting Authentication ... 15-28

Memory Configuration ... 15-29

Message Placement ... 15-30

Digital Signature .. 15-30

Message Size Constraints .. 15-30

Memory Usage ... 15-31

Memory Protection ... 15-31

Secure Function, Secure Entry Service Routine Arguments ... 15-32

Secure Function Arguments .. 15-32

Secure Entry Service Routine Arguments 15-33

usFlags ... 15-33

uslRQMask .. 15-35

ADSP-BF54x Blackfin Processor Hardware Reference xxix

Contents

ulMessageSize ... 15-35

ulSFEntryPoint ... 15-35

ulMessagePtr ... 15-36

Secure Message Execution ... 15-36

Return Codes .. 15-36

Advanced Encryption Standard (AES) API 15-39

ADI_AES_DATA Data Type 15-39

ADI_AES_KEYEXPANSION Data Type 15-41

ADI_AES_CIPHER Data Type 15-41

bfrom_AesInit() ROM Routine 15-43

bfrom_AesKeyexp() ROM Routine 15-44

bfrom_AesInvKeyexp() ROM Routine 15-45

bfrom_AesCipher() ROM Routine 15-45

bfrom_AesInvCipher() ROM Routine 15-46

SECURE HASH ALGORITHM (SHA-1) API 15-47

ADI_SHA1 Data Type .. 15-47

bfrom_Sha1Init ROM Routine 15-48

bfrom_Sha1Hash ROM Routine 15-48

ARC4 API .. 15-49

ADI_ARC4_KEY Data Type 15-49

ADI_ARC4_DATA Data Type 15-49

bfrom_Arc4Init ROM Routine 15-50

bfrom_Arc4Cipher ROM Routine 15-50

Security Registers .. 15-51

Contents

xxx ADSP-BF54x Blackfin Processor Hardware Reference

Secured System Switches ... 15-52

SECURE_SYSSWT (0xFFC04320) 15-52

SECURE_SYSSWT (0xFFC04320) 15-53

SECURE_CONTROL (0xFFC04324) 15-62

SECURE_STATUS (0xFFC04328) 15-65

ONE-TIME PROGRAMMABLE MEMORY

OTP Memory Overview ... 16-1

OTP Memory Map ... 16-2

Error Correction ... 16-5

Error Correction Policy ... 16-6

OTP Access .. 16-9

OTP Timing Parameters ... 16-11

OTP_TIMING Register ... 16-14

Callable ROM Functions for OTP ACCESS 16-14

Initializing OTP ... 16-14

bfrom_OtpCommand ... 16-15

Programming and Reading OTP .. 16-17

bfrom_OtpRead ... 16-17

bfrom_OtpWrite .. 16-19

Error Codes .. 16-23

Write-protecting OTP Memory ... 16-25

Accessing Private OTP Memory .. 16-27

OTP Programming Examples .. 16-28

ADSP-BF54x Blackfin Processor Hardware Reference xxxi

Contents

SYSTEM RESET AND BOOTING

Overview .. 17-1

Reset and Power-up ... 17-4

Hardware Reset ... 17-5

Software Resets .. 17-6

Reset Vector .. 17-7

Servicing Reset Interrupts .. 17-9

Preboot ... 17-10

Factory Page Settings (FPS) ... 17-11

Preboot Page Settings (PBS) ... 17-12

Alternative PBS Pages .. 17-13

Programming PBS Pages .. 17-14

Recovering From Misprogrammed PBS Pages 17-14

Customizing Power Management 17-15

Customizing Booting Options ... 17-18

Customizing the Asynchronous Port 17-19

Customizing the Synchronous Port 17-21

Basic Booting Process .. 17-22

Block Headers ... 17-25

Block Code ... 17-27

Target Address .. 17-31

Byte Count ... 17-32

Argument ... 17-33

Boot Host Wait (HWAIT) Feedback Strobe 17-33

Contents

xxxii ADSP-BF54x Blackfin Processor Hardware Reference

Using HWAIT as RESETOUT Indicator 17-35

Boot Termination ... 17-35

Single Block Boot Streams ... 17-36

Direct Code Execution ... 17-37

Advanced Boot Techniques ... 17-39

Initialization Code .. 17-39

Quick Boot ... 17-43

Indirect Booting .. 17-45

Callback Routines ... 17-46

Error Handler ... 17-48

CRC Checksum Calculation .. 17-49

Load Functions ... 17-49

Calling the Boot Kernel at Run Time 17-50

Debugging the Boot Process .. 17-51

Boot Management .. 17-54

Booting a Different Application .. 17-54

Multi-DXE Boot Streams .. 17-55

Determining Boot Stream Start Addresses 17-61

Initialization Hook Routine .. 17-61

Specific Boot Modes ... 17-62

No Boot Mode .. 17-63

Flash Boot Modes ... 17-64

SDRAM Boot Mode ... 17-69

FIFO Boot Mode .. 17-69

ADSP-BF54x Blackfin Processor Hardware Reference xxxiii

Contents

SPI Master Boot Mode .. 17-70

SPI Device Detection Routine ... 17-72

SPI Slave Boot Mode ... 17-76

TWI Master Boot Mode .. 17-79

TWI Slave Boot Mode ... 17-83

UART Slave Mode Boot .. 17-84

OTP Boot Mode ... 17-89

Host DMA Boot Modes .. 17-90

NAND Flash Boot Mode ... 17-93

Supported Devices .. 17-94

Auto Detection ... 17-98

Boot Stream Processing ... 17-99

Software Configurable NAND Boot Modes 17-101

Sequential Block Mode .. 17-101

Block Skip Mode ... 17-102

Multiple Image Mode .. 17-103

NAND Flash Page Structure .. 17-105

Reset and Booting Registers ... 17-107

Software Reset (SWRST) Register 17-107

System Reset Configuration (SYSCR) Register 17-109

Boot Code Revision Control (BK_REVISION) 17-111

Boot Code Date Code (BK_DATECODE) 17-112

Zero Word (BK_ZEROS) .. 17-113

Ones Word (BK_ONES) ... 17-114

Contents

xxxiv ADSP-BF54x Blackfin Processor Hardware Reference

OTP Memory Pages for Booting ... 17-115

Lower PBS00 Half Page .. 17-115

Upper PBS00 Half Page .. 17-119

Upper PBS01 Half Page .. 17-120

Lower PBS02 Half Page .. 17-122

Upper PBS02 Half Page .. 17-124

Reserved Half Pages .. 17-126

Data Structures ... 17-126

ADI_BOOT_HEADER .. 17-126

ADI_BOOT_BUFFER ... 17-127

ADI_BOOT_DATA ... 17-127

dFlags Word ... 17-131

ADI_BOOT_NAND .. 17-133

ADI_BOOT_NAND_DEVICE .. 17-134

ADI_BOOT_NAND_BUFFER .. 17-136

ADI_BOOT_NAND_ACCESS .. 17-138

ADI_BOOT_NAND_ADDRESS 17-139

ADI_BOOT_NAND_ECC .. 17-141

Callable ROM Functions for Booting 17-144

BFROM_FINALINIT .. 17-144

BFROM_PDMA .. 17-144

BFROM_MDMA ... 17-144

BFROM_MEMBOOT ... 17-145

BFROM_TWIBOOT ... 17-146

ADSP-BF54x Blackfin Processor Hardware Reference xxxv

Contents

BFROM_SPIBOOT .. 17-147

BFROM_OTPBOOT ... 17-149

BFROM_NANDBOOT .. 17-150

BFROM_BOOTKERNEL .. 17-151

BFROM_CRC32 .. 17-151

BFROM_CRC32POLY ... 17-152

BFROM_CRC32CALLBACK ... 17-152

BFROM_CRC32INITCODE ... 17-153

Programming Examples ... 17-154

System Reset ... 17-154

Exiting Reset to User Mode ... 17-155

Exiting Reset to Supervisor Mode 17-155

Initcode (SDRAM Controller Setup) 17-157

Initcode (Power Management Control) 17-158

Initcode (NAND Boot Mode Configuration) 17-160

Quickboot With Restore From SDRAM 17-162

XOR Checksum .. 17-163

Direct Code Execution .. 17-164

Managing PBS Pages in OTP Memory 17-166

DYNAMIC POWER MANAGEMENT

Phase-Locked Loop and Clock Control .. 18-1

PLL Overview ... 18-2

PLL Clock Multiplier Ratios .. 18-3

Core Clock/System Clock Ratio Control 18-5

Contents

xxxvi ADSP-BF54x Blackfin Processor Hardware Reference

Dynamic Power Management Controller 18-7

Operating Modes .. 18-8

Dynamic Power Management Controller States 18-8

Full On Mode .. 18-8

Active Mode ... 18-9

Sleep Mode .. 18-9

Deep Sleep Mode ... 18-10

Hibernate State ... 18-10

Operating Mode Transitions .. 18-11

Programming Operating Mode Transitions 18-14

Dynamic Supply Voltage Control .. 18-16

Power Supply Management ... 18-16

Controlling the Voltage Regulator 18-18

Changing Voltage ... 18-20

Powering Down the Core (Hibernate State) 18-22

Recovery From Hibernate State 18-25

PLL and VR Registers ... 18-26

PLL Divide (PLL_DIV) Register ... 18-27

PLL Control (PLL_CTL) Register 18-28

PLL Status (PLL_STAT) Register .. 18-29

PLL Lock Count (PLL_LOCKCNT) Register 18-29

Voltage Regulator Control (VR_CTL) Register 18-30

System Control ROM Function .. 18-31

Programming Model ... 18-33

ADSP-BF54x Blackfin Processor Hardware Reference xxxvii

Contents

Access System Control ROM Function in C/C++ 18-33

Access System Control ROM Function in Assembly 18-34

Programming Examples ... 18-37

Full On Mode to Active Mode and Back 18-38

Transition to Sleep Mode or Deep Sleep Mode 18-40

Setting Wakeups and Entering Hibernate State 18-42

Perform a System Reset or Soft-Reset 18-44

Change VCO, Core Clock, and System Clock Frequency 18-45

Changing Voltage Levels .. 18-47

SYSTEM DESIGN

Pin Descriptions ... 19-1

Managing Clocks .. 19-2

Managing Core and System Clocks .. 19-2

Configuring and Servicing Interrupts ... 19-2

Semaphores ... 19-3

Example Code for Query Semaphore 19-4

Data Delays, Latencies, and Throughput 19-4

Bus Priorities .. 19-5

System-Level Hardware Design .. 19-5

External Memory Design Issues ... 19-5

DDR Memory .. 19-5

Memory Bus Pin Muxing and Flow Control 19-6

Example Asynchronous Memory Interfaces 19-7

Avoiding Bus Contention .. 19-9

Contents

xxxviii ADSP-BF54x Blackfin Processor Hardware Reference

BURST FLASH ... 19-10

NAND FLASH .. 19-10

USB Controller ... 19-12

ATAPI Bus .. 19-13

Voltage Regulator .. 19-13

Signal Integrity ... 19-14

Decoupling Capacitors and Ground Planes 19-15

5 Volt Tolerance .. 19-17

Resetting the Processor .. 19-18

Recommendations for Unused Pins 19-18

Programmable Outputs and Pin Multiplexing 19-18

Test Point Access ... 19-19

Oscilloscope Probes ... 19-19

Recommended Reading .. 19-19

GLOSSARY

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registers ... A-3

System Reset and Interrupt Control
Registers .. A-4

Watchdog Timer Registers .. A-6

Real-Time Clock Registers .. A-6

UART0 Controller Registers ... A-7

UART1 Controller Registers ... A-7

UART2 Controller Registers ... A-7

ADSP-BF54x Blackfin Processor Hardware Reference xxxix

UART3 Controller Registers .. A-8

SPI0 Controller Registers ... A-8

SPI1 Controller Registers ... A-8

TWI Controller Registers ... A-8

SPORT0 Controller Registers ... A-8

SPORT1 Controller Registers ... A-9

SPORT2 Controller Registers ... A-9

SPORT3 Controller Registers ... A-9

MXVR Registers .. A-9

Keypad Registers .. A-9

SDH Registers ... A-10

ATAPI Registers ... A-10

USB_OTG Registers .. A-10

External Bus Interface Unit Registers .. A-10

DMA/Memory DMA Control Registers A-12

EPPI0 Registers ... A-14

EPPI1 Registers ... A-14

Host DMA Registers .. A-15

PIXC Registers ... A-15

Ports Registers .. A-17

Timer Registers .. A-26

CAN Registers ... A-28

Handshake MDMA Control Registers .. A-29

NAND Flash Controller Registers .. A-30

xl ADSP-BF54x Blackfin Processor Hardware Reference

Core Timer Registers .. A-31

Rotary Counter Registers .. A-31

Security Registers .. A-32

Processor-Specific Memory Registers ... A-33

INDEX

INDEX

ADSP-BF54x Blackfin Processor Hardware Reference xli

 PREFACE

Thank you for purchasing and developing systems using an enhanced
Blackfin® processor from Analog Devices.

Contents of Two Volumes
Contents of Volume 1 and Volume 2 are listed below.

Volume 1 Volume 2

Introduction
Chip Bus Hierarchy
Memory
System Interrupts
Direct Memory Access
External Bus Interface Unit
Pixel Compositor
Host DMA Port
General-Purpose Ports
General-Purpose Timers
Core Timer
Watchdog Timer
Rotary Counter
Real-Time Clock
Security
OTP Memory
System Reset and Booting
Dynamic Power Management
System Design
System MMR Assignments

Introduction
Media Transceiver Module (MXVR)
Keypad Interface
Secure Digital Host
ATAPI Interface
NAND Flash Controller
Enhanced Parallel Peripheral Interface
CAN Module
SPI-Compatible Port Controllers
Two-Wire Interface Controller
SPORT Controllers
UART Port Controllers
USB OTG Controller
System MMR Assignments
Test Features

Purpose of This Manual

xlii ADSP-BF54x Blackfin Processor Hardware Reference

Purpose of This Manual
The ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2)
provides architectural information about the ADSP-BF542,
ADSP-BF544, ADSP-BF547, ADSP-BF548, and ADSP-BF549 proces-
sors. The companion volume, ADSP-BF54x Blackfin Peripheral Processor
Hardware Reference (Volume 2 of 2) provides architectural information
about additional peripheral features of these processors. The architectural
descriptions cover functional blocks, buses, and ports, including all fea-
tures and processes that they support. For programming information, see
the appropriate Blackfin Processor Programming Reference. For timing, elec-
trical, and package specifications, see the ADSP-BF54x Embedded Processor
Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate instruction set reference manuals and data sheets)
that describe your target architecture.

ADSP-BF54x Blackfin Processor Hardware Reference xliii

Preface

Manual Contents
This manual consists of:

• Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

• Chapter 2, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

• Chapter 3, “Memory”
Describes processor-specific memory topics, including L1memories
and processor-specific memory MMRs.

• Chapter 4, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

• Chapter 5, “Direct Memory Access”
Describes the peripheral DMA and memory DMA controllers.
Includes performance and software management of DMA, and
DMA errors.

• Chapter 6, “External Bus Interface Unit”
Describes the external bus interface unit of the processor. The
chapter also discusses the asynchronous memory interface, the
SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.

• Chapter 7, “Pixel Compositor”
Describes the overlay manager of the processor. The overlay man-
ager provides data overlay, transparent color, color space
conversion support for active (TFT) flat-panel digital color and
monochrome LCD displays or analog NTSC and PAL video
output.

Manual Contents

xliv ADSP-BF54x Blackfin Processor Hardware Reference

• Chapter 8, “Host DMA Port”
Describes the Host DMA port of the processor. The Host DMA
port (HOSTDP) facilitates a host device external to the chip to be
a DMA master and transfer data back and forth. The host device
always masters the transactions and the DSP is always a DMA slave
device.

• Chapter 9, “General-Purpose Ports”
Describes the general-purpose I/O ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

• Chapter 10, “General-Purpose Timers”
Describes the general-purpose timer modules that contain identical
32-bit timers.

• Chapter 11, “Core Timer”
Describes the programmable 32-bit interval timer that can generate
periodic interrupts.

• Chapter 12, “Watchdog Timer”
Describes a 32-bit timer that can be used to implement a software
watchdog function. A software watchdog can improve system reli-
ability by generating an event to the processor core if the watchdog
expires before being updated by software.

• Chapter 13, “Rotary Counter”
Describes the rotary (up/down) counter. This counter provides
support for manually controlled rotary controllers, such as the vol-
ume wheel on a radio device. This unit also supports industrial or
motor-control type of wheels.

• Chapter 14, “Real-Time Clock”
Describes a set of digital watch features of the processor, including
time of day, alarm, and stopwatch countdown.

ADSP-BF54x Blackfin Processor Hardware Reference xlv

Preface

• Chapter 15, “Security”
Describes the secure digital interface (SDH) of the processor. The
secure digital interface provides an interface for multi-media cards
(MMC), secure digital memory cards (SD Card), and secure digital
input/output Cards (SDIO).

• Chapter 16, “One-Time Programmable Memory”
Describes an on-chip, one-time-programmable (OTP) memory
array which provides 64k-bits of non-volatile memory. This
includes the array and logic to support read access and
programming.

• Chapter 17, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

• Chapter 18, “Dynamic Power Management”
Describes the clocking (including the PLL) and the dynamic power
management controller.

• Chapter 19, “System Design”
Describes how to use the processor as part of an overall system. The
chapter includes information about bus timing and latency num-
bers, semaphores, and a discussion of the treatment of unused pins.

• Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

• “Glossary”
Contains definitions of terms used in this manual, including
acronyms.

What’s New in This Manual

xlvi ADSP-BF54x Blackfin Processor Hardware Reference

What’s New in This Manual
This is Revision 0.4 of the ADSP-BF54x Blackfin Processor Hardware Ref-
erence (Volume 1 of 2). With each revision of this document,
modifications and corrections shall be based on errata reports against the
manual.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

ADSP-BF54x Blackfin Processor Hardware Reference xlvii

Preface

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

Blackfin (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF52x, ADSP-BF53x, ADSP-BF54x, and ADSP-BF56x.

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
(8-bit, 16-bit, and 32-bit) processors. VisualDSP++ currently supports the
following TigerSHARC families: ADSP-TS101 and ADSP-TS20x.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x,
ADSP-2136x, and ADSP-2137x.

Conventions

xlviii ADSP-BF54x Blackfin Processor Hardware Reference

Conventions
Text conventions used in this manual are identified and described as
follows.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

SWRST software reset
register

Register names appear in UPPERCASE and a special typeface. The
descriptive names of registers are in mixed case and regular typeface.

TMR0E, RESET Pin names appear in UPPERCASE and a special typeface.
Active low signals appear with an OVERBAR.

DRx, I[3:0]
SMS[3:0]

Register, bit, and pin names in the text may refer to groups of registers
or pins:
A lowercase x in a register name (DRx) indicates a set of registers (for
example, DR2, DR1, and DR0).
A colon between numbers within brackets indicates a range of registers
or pins (for example, I[3:0] indicates I3, I2, I1, and I0; SMS[3:0] indi-
cates SMS3, SMS2, SMS1, and SMS0).

0xabcd, b#1111 A 0x prefix indicates hexadecimal; a b# prefix indicates binary.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for device
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-BF54x Blackfin Processor Hardware Reference xlix

Preface

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses (see Table P-1).

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

 Examples of these conventions are shown in Figure P-1.

Conventions

l ADSP-BF54x Blackfin Processor Hardware Reference

Table P-1. Short Form of Register Names

Pattern Description Examples

TIMERx_CONFIG The x refers to multiple instances of the
peripheral.

TIMER0_CONFIG
TIMER1_CONFIG
TIMER2_CONFIG

SIC_IARn The n refers to multiple registers within the
same peripheral or within the same core
component.

SIC_IAR2
ICPLB_DATA15

SPORTx_TCRn The combination of x and n indicates mul-
tiple instances of the peripheral and multi-
ple registers within the same peripheral.

SPORT0_TCR0
SPORT1_TCR1

MDMA_yy_CONFIG The yy represents MemDMA stream 0 or 1,
either destination or source.

MDMA_D0_CONFIG
MDMA_S0_CONFIG
MDMA_D1_CONFIG
MDMA_S1_CONFIG

ADSP-BF54x Blackfin Processor Hardware Reference li

Preface

Figure P-1. Register Diagram Examples

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PF1 pin to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin
1 - Sample UART RX pin

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

Timerx:
See Appendix for
correct register
addresses

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

Conventions

lii ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF54x processors are new members of the Blackfin processor
family that offer significant high performance and low power while retain-
ing their ease-of-use benefits. The ADSP-BF54x processors are completely
pin compatible, differing only in their performance and on-chip memory,
mitigating many risks associated with new product development but
allowing the possibility to scale up or down based on specific application
demands.

The chapter includes the following sections:

• “Peripherals” on page 1-2

• “Memory Architecture” on page 1-5

• “DMA Support” on page 1-10

• “External Bus Interface Unit” on page 1-13

• “Ports” on page 1-14

• “Two-Wire Interface” on page 1-15

• “Controller Area Network” on page 1-16

• “Enhanced Parallel Peripheral Interface (EPPI)” on page 1-17

• “SPORT Controllers” on page 1-19

• “Serial Peripheral Interface (SPI) Port” on page 1-21

• “Timers” on page 1-21

Peripherals

1-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “UART Ports” on page 1-23

• “USB On-The-Go, Dual-Role Device Controller” on page 1-24

• “ATA/ATAPI–6 Interface” on page 1-24

• “Keypad Interface” on page 1-25

• “Secure Digital (SD)/SDIO Controller” on page 1-26

• “Rotary Counter Interface” on page 1-26

• “Security” on page 1-27

• “Media Transceiver Mac Layer (MXVR)” on page 1-28

• “Real-Time Clock” on page 1-29

• “Watchdog Timer” on page 1-30

• “Clock Signals” on page 1-31

Peripherals
The processor system peripherals include combinations of:

• High-speed USB on-the-go (OTG) with integrated PHY

• SD/SDIO controller

• ATA/ATAPI-6 controller

• Up to four synchronous serial ports (SPORTs)

• Up to three serial peripheral interfaces (SPI-compatible)

• Up to four UARTs, two with automatic hardware flow control

• Up to two CAN (controller area network) 2.0B interfaces

ADSP-BF54x Blackfin Processor Hardware Reference 1-3

Introduction

• Up to two TWI (2-Wire interface) controllers

• 8- or 16-bit asynchronous Host DMA interface

• Multiple enhanced parallel peripheral interfaces (EPPI), supporting
ITU-R BT.656 video formats and 18/24-bit LCD connections

• Video data compositor/blender

• Up to eleven 32-bit timers/counters with PWM support

• Real-time clock (RTC) and watchdog timer

• Rotary counter with support for rotary encoder

• Up to 152 general-purpose I/O (GPIOs)

• On-chip PLL capable of 1x to 63x frequency multiplication

• Debug/JTAG interface

These peripherals are connected to the core through several high band-
width buses, as shown in Figure 1-1.

All of the peripherals, except for general-purpose I/O, CAN, TWI, RTC,
and timers, are supported by a flexible DMA structure. There are also two
separate memory DMA channels dedicated to data transfers between the
processor’s memory spaces, which include external DDR1 SDRAM and
asynchronous memory. Multiple on-chip buses provide enough band-
width to keep the processor core running even when there is also activity
on all of the on-chip and external peripherals.

Peripherals

1-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 1-1. ADSP-BF54x Processor Block Diagram

RTC

HOSTDP

JTAG TEST AND
EMULATION

UART (2-3)

B

EXTERNAL PORT
NOR, DDR1 CONTROL

SPI (2)

SPORT (0-1)

SD / SDIO

WATCHDOG
TIMER

BOOT
ROM

32

16

PIXEL
COMPOSITOR

VOLTAGE
REGULATOR

EPPI (0-2)

SPORT (2-3)

SPI (0-1)

UART (0-1)

P
O

R
T

S

PAB

USB

DMAC0
(16-BIT)

DMAC1
(32-BIT)

INTERRUPTS

L2
SRAM

L1
INSTR ROM

L1
INSTR SRAM

L1
DATA SRAM

DAB1

DAB0

OTP

16 16

DDR1 ASYNC

16

NAND FLASH
CONTRLOLLER

ATAPI

DCB 32 EAB 64 DEB 32

P
O

R
T

S

CAN (0-1)

TWI (0-1)

TIMERS
(0-10)

KEYPAD

COUNTER

MXVR

CCLK
DOMAIN

SCLK DOMAIN
(ALL OUTSIDE CCLK)

0

1

2
0

1

2

3

MAB

DCB2

DEB2

DCB3

DEB1

DCB1

DCB0

DEB0

ADSP-BF54x Blackfin Processor Hardware Reference 1-5

Introduction

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems. Table 1-1 shows the memory comparison for the
ADSP-BF54x processors.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
external bus interface unit (EBIU), provides expansion with double-data
SDRAM (DDR1), flash memory, and SRAM, optionally accessing up to
516M bytes of physical memory.

Table 1-1. Memory Configurations

Memory Configurations
(K Bytes)

ADSP-
BF549

ADSP-
BF548

ADSP-
BF547

ADSP-
BF544

ADSP-
BF542

L1 Instruction SRAM/Cache 16 16 16 16 16

L1 Instruction SRAM 48 48 48 48 48

L1 Data SRAM/Cache 32 32 32 32 32

L1 Data SRAM 32 32 32 32 32

L1 Scratchpad SRAM 4 4 4 4 4

L1 ROM1

1 This ROM is not customer configurable.

64 64 64 64 64

L2 128 128 128 64 –

L3 Boot ROM1 4 4 4 4 4

OTP Memory 8 8 8 8 8

Memory Architecture

1-6 ADSP-BF54x Blackfin Processor Hardware Reference

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Certain models of the ADSP-BF54x processor also include an L2 SRAM
memory array which provides up to 128K bytes of high speed SRAM
operating at one half the frequency of the core, and slightly longer latency
than the L1 memory banks. The memory other than L1 is a unified
instruction and data memory and can hold any mixture of code and data
required by the system design.

Internal Memory
The processor has several blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

• L1 instruction ROM, operating at full processor speed. This ROM
is not customer configurable.

• L2 SRAM, providing up to 128K bytes of unified instruction and
data memory, operating at one half the frequency of the core.

• 4K boot ROM that can be seen as L3 memory. It operates at full
SCLK rate.

ADSP-BF54x Blackfin Processor Hardware Reference 1-7

Introduction

External Memory
Through the external bus interface unit (EBIU) the ADSP-BF54x proces-
sors provide glueless connectivity to external 16-bit wide memories, such
as DDR SDRAM, mobile DDR, SRAM, NOR flash, NAND flash, and
FIFO devices. To provide the best performance, the bus system of the
DDR interface is completely separate from the other parallel interfaces.

The DDR memory controller can gluelessly manage up to two banks of
double-rate synchronous dynamic memory (DDR1 SDRAM). The 16-bit
wide interface operates at SCLK frequency, enabling maximum throughput
of 532 Mbyte/s. The DDR or mobile DDR controller is augmented with a
queuing mechanism that performs efficient bursts onto the DDR. The
controller is an industry standard DDR SDRAM controller with each
bank supporting from 64 Mbit to 512 Mbit device sizes and 4-, 8-, or
16-bit widths. The controller supports up to 512 Mbytes in one bank, but
the total in two banks is limited to 512 Mbytes. Each bank is indepen-
dently programmable and is contiguous with adjacent banks regardless of
the sizes of the different banks or their placement.

Traditional 16-bit asynchronous memories, such as SRAM, EPROM, and
flash devices, can be connected to one of the four 64 Mbyte asynchronous
memory banks, represented by four memory select strobes. Alternatively,
these strobes can function as bank-specific read or write strobes preventing
further glue logic when connecting to asynchronous FIFO devices.

In addition, the external bus can connect to advanced flash device tech-
nologies, such as:

• Page-mode NOR flash devices

• Synchronous burst-mode NOR flash devices

• NAND flash devices

Memory Architecture

1-8 ADSP-BF54x Blackfin Processor Hardware Reference

NAND Flash Controller (NFC)

The ADSP-BF54x provides a NAND flash controller (NFC) as part of the
external bus interface. NAND flash devices provide high-density, low-cost
memory. However, NAND flash devices also have long random access
times, invalid blocks, and lower reliability over device lifetimes. Because of
this, NAND flash is often used for read-only code storage. In this case, all
DSP code can be stored in NAND flash and then transferred to a faster
memory (such as DDR or SRAM) before execution. Another common use
of NAND flash is for storage of multimedia files or other large data seg-
ments. In this case, a software file system may be used to manage reading
and writing of the NAND flash device. The file system selects memory
segments for storage with the goal of avoiding bad blocks and equally dis-
tributing memory accesses across all address locations. Hardware features
of the NFC include:

• Support for page program, page read, and block erase of NAND
flash devices, with accesses aligned to page boundaries

• Error checking and correction (ECC) hardware that facilitates error
detection and correction

• A single 8-bit or 16-bit external bus interface for commands,
addresses and data

• Support for SLC (single-level cell) NAND flash devices unlimited
in size, with page sizes of 256 and 512 bytes. Larger page sizes can
be supported in software

• Capability of releasing external bus interface pins during long
accesses

• Support for internal bus requests of 16- or 32-bits

• DMA engine to transfer data between internal memory and
NAND flash device

ADSP-BF54x Blackfin Processor Hardware Reference 1-9

Introduction

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)
at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

One-Time-Programmable (OTP) Memory
The ADSP-BF54x processor also includes an on-chip OTP memory array
which provides 64K bits of non-volatile memory that can be programmed
by the developer only one time. It includes the array and logic to support
read access and programming. A mechanism for error correction is pro-
vided. Additionally, its pages can be write protected.

The OTP is not part of the Blackfin linear memory map. OTP memory is
not accessed directly using the Blackfin memory map, rather, it is accessed
through four 32-bit wide registers (OTP_DATA3–0) which act as the OTP
memory read/write buffer.

This memory is organized into 512 pages each comprised of 128 bits and
equally separated into two distinct areas with privileged access dependant
upon modes of operation when security features are utilized. Approxi-
mately 400 pages are available for developer use. The remaining 100 pages
are utilized for page protection bits, error correction, and ADI factory
reserved areas. One area is read/write accessible at all time (public OTP
memory). The second area maintains privileged access and can only be
accessed (read/write) upon entry to secure mode when security features are
utilized (private OTP memory).

DMA Support

1-10 ADSP-BF54x Blackfin Processor Hardware Reference

All together, OTP memory provides a means to store public keys in public
OTP memory or secrets such as private keys or symmetric keys in private
OTP memory. One page of the public OTP memory is initialized in the
Analog Devices factory with a unique chip ID.

This OTP memory provides a means to store public and private cipher
keys as well as chip, customer, and factory identification data.

DMA Support
ADSP-BF54x processors have multiple, independent DMA channels that
support automated data transfers with minimal overhead for the processor
core. DMA transfers can occur between the ADSP-BF54x processor’s
internal memories and any of its DMA-capable peripherals. Additionally,
DMA transfers can be accomplished between any of the DMA-capable
peripherals and external devices connected to the external memory inter-
faces, including DDR and asynchronous memory controllers.

While the USB controller and MXVR have their own dedicated DMA
controllers, the other on-chip peripherals are managed by two centralized
DMA controllers, called DMAC1 (32-bit) and DMAC0 (16-bit). Both
operate in the SCLK domain. Each DMA controller manages twelve inde-
pendent DMA channels. The DMAC1 controller masters high bandwidth
peripherals over a dedicated 32-bit DMA access bus (DAB32). Similarly,
the DMAC0 controller masters most of serial interfaces over the 16-bit
DAB16 bus. Individual DMA channels have fixed access priority on the
DAB buses. DMA priority of peripherals is managed by flexible periph-
eral-to-DMA channel assignment.

All four DMA controllers use the same 32-bit DCB bus to exchange data
with L1 memory. This includes L1 ROM, but excludes scratchpad mem-
ory. Fine granulation of L1 memory and special DMA buffers minimize
potential memory conflicts, if the L1 memory is accessed by the core con-
temporaneously. Similarly, there are dedicated DMA buses between the

ADSP-BF54x Blackfin Processor Hardware Reference 1-11

Introduction

DMAC1, DMAC0, and USB DMA controllers and the external bus inter-
face unit (EBIU) that arbitrates DMA accesses to external memories and
boot ROM.

The ADSP-BF54x processor DMA controllers support both one-dimen-
sional (1D) and two-dimensional (2D) DMA transfers. DMA transfer
initialization can be implemented from registers or from sets of parameters
called descriptor blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to ±32K elements. Furthermore, the column step size can be less than
the row step size, allowing implementation of interleaved data streams.
This feature is especially useful in video applications where data can be
de-interleaved on-the-fly.

Examples of DMA types supported by the ADSP-BF54x processor DMA
controller include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1D or 2D DMA using a linked list of descriptors

• 2D DMA using an array of descriptors, specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, both the DMAC1
and the DMAC0 controllers feature two memory DMA channel pairs for
transfers between the various memories of the ADSP-BF54x processor sys-
tem. This enables transfers of blocks of data between any of the
memories—including external DDR, ROM, SRAM, and flash memory—
with minimal processor intervention. Like peripheral DMAs, memory
DMA transfers can be controlled by a very flexible descriptor-based meth-
odology or by a standard register-based autobuffer mechanism.

DMA Support

1-12 ADSP-BF54x Blackfin Processor Hardware Reference

The memory DMA channels of the DMAC1 controller (MDMA2 and
MDMA3) can be optionally controlled by the external DMA request
input pins. When used in conjunction with the external bus interface unit
(EBIU) this so-called handshaked memory DMA (HMDMA) scheme can
be used to efficiently exchange data with block-buffered or FIFO-style
devices connected externally. Users can select whether the DMA request
pins control the source or the destination side of the memory DMA. It
allows control of the number of data transfers for memory DMA. The
number of transfers per edge is programmable. This feature can be pro-
grammed to allow memory DMA to have an increased priority on the
external bus relative to the core.

Host DMA Interface
The Host DMA port (HOSTDP) facilitates a host device external to the
ADSP-BF54x to be a DMA master and transfer data back and forth. The
host device always masters the transactions and the processor is always a
DMA slave device.

The HOSTDP port is enabled through the peripheral access bus. Once
enabled, the DMA is controlled by the external host. The external host
can then program the DMA to send/receive data to any valid internal or
external memory location. The HOSTDP port controller includes the
following features:

• Allows an external master to configure DMA read/write data trans-
fers and read port status

• Uses an asynchronous memory protocol for its external interface

• Allows 8- or 16-bit external data interface to the host device

• Supports half-duplex operation

• Supports little/big endian data transfers

ADSP-BF54x Blackfin Processor Hardware Reference 1-13

Introduction

• Acknowledge mode allows flow control on host transactions

• Interrupt mode guarantees a burst of FIFO depth host transactions

External Bus Interface Unit
Through the external bus interface unit (EBIU) the ADSP-BF54x proces-
sors provide glueless connectivity to external 16-bit wide memories, such
as DDR SDRAM, SRAM, NOR flash, NAND flash, and FIFO devices.
To provide the best performance, the bus system of the DDR interface is
completely separate from the other parallel interfaces.

DDR SDRAM Controller
The DDR memory controller can gluelessly manage up to two banks of
double-rate synchronous dynamic memory (DDR1 SDRAM). The 16-bit
wide interface operates at SCLK frequency enabling maximum throughput
of 532M byte/s. The DDR controller is augmented with a queuing mech-
anism that performs efficient bursts onto the DDR. The controller is an
industry-standard DDR SDRAM controller.

The maximum size of supported DDR SDRAM is 512M bit (64M byte).
Most of these memory devices can be configured as x4, x8 and x16. With
x16, one memory chip is configured per “external” bank; with x8 config-
ure two chips; and four chips with x4 configuration. Thus with x4
configuration, 64M byte x 4 = 256M byte per external bank can be sup-
ported. ADSP-BF54x two external banks provide support for a maximum
of 2 x 256M byte = 512M byte.

Each bank is independently programmable and is contiguous with adja-
cent banks regardless of the sizes of the different banks or their placement.

Ports

1-14 ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 64M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Ports
Because of their rich set of peripherals, the ADSP-BF54x processors group
the many peripheral signals to ten ports—referred to as Port A to Port J.
Most ports contain 16 pins, a few have less. Many of the associated pins
are shared by multiple signals. The ports function as multiplexer controls.
Every port has its own set of memory-mapped registers to control port
multiplexing and GPIO functionality.

General-Purpose I/O (GPIO)
Every pin in Port A to Port J can function as a GPIO pin resulting in a
GPIO pin count of 154. While it is unlikely that all GPIOs will be used in
an application as all pins have multiple functions, the richness of GPIO
functionality guarantees nonrestrictive pin usage. Every pin that is not
used by any function can be configured in GPIO mode on an individual
basis.

After reset, all pins are in GPIO mode by default. Neither GPIO output
nor input drivers are active by default. Unused pins can be left uncon-
nected. GPIO data and direction control registers provide flexible

ADSP-BF54x Blackfin Processor Hardware Reference 1-15

Introduction

write-1-to-set and write-1-to-clear mechanisms so that independent soft-
ware threads do not need to protect against each other because of
expensive read-modify-write operations when accessing the same port.

Two-Wire Interface
The ADSP-BF54x processor offers up to two two-wire interface (TWI)
interfaces and is fully compatible with the widely used I2C bus standard.
It is designed with a high level of functionality and is compatible with
multimaster, multislave bus configurations. To preserve processor band-
width, the TWI controller can be set up and a transfer initiated with
interrupts only to service FIFO buffer data reads and writes. Proto-
col-related interrupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with
the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers
many variants of I2C. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multimaster data arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lockup

Controller Area Network

1-16 ADSP-BF54x Blackfin Processor Hardware Reference

• Input filter for spike suppression

• Serial camera control bus support as specified in the OmniVision
Serial Camera Control Bus (SCCB) Functional Specification version
2.1

Controller Area Network
The ADSP-BF54x processor offers up to two CAN controllers that are
communication controllers that implement the controller area network
(CAN) 2.0B (active) protocol. This protocol is an asynchronous commu-
nications protocol used in both industrial and automotive control systems.
The CAN protocol is well suited for control applications due to its capa-
bility to communicate reliably over a network since the protocol
incorporates CRC checking message error tracking, and fault node
confinement.

The ADSP-BF54x CAN controllers offer:

• 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for
receive or transmit)

• Dedicated acceptance masks for each mailbox

• Additional data filtering on first two bytes

• Support for both the standard (11-bit) and extended (29-bit) iden-
tifier (ID) message formats

• Support for remote frames

• Active or passive network support

• CAN wakeup from hibernation mode (lowest static power con-
sumption mode)

• Interrupts, including: TX complete, RX complete, error, global

ADSP-BF54x Blackfin Processor Hardware Reference 1-17

Introduction

The electrical characteristics of each network connection are very demand-
ing so the CAN interface is typically divided into two parts: a controller
and a transceiver. This allows a single controller to support different driv-
ers and CAN networks. The ADSP-BF54x CAN module represents only
the controller part of the interface. The controller interface supports con-
nection to 3.3V high speed, fault-tolerant, single-wire transceivers.

Enhanced Parallel Peripheral Interface
(EPPI)

The ADSP-BF54x processor provides multiple enhanced parallel periph-
eral interfaces (EPPIs), one 16 bits wide and one 18 bits wide. The EPPI
supports the direct connection to active TFT LCD, parallel A/D and D/A
converters, video encoders and decoders, image sensor module and other
general-purpose peripherals.

The following features are supported in the EPPI module.

• Programmable data length: 8, 10, 12, 14, 16, 18, and 24 bits per
clock

• Bidirectional and half-duplex port

• PPI_CLK can be provided externally or can be generated internally

• Various framed and nonframed operating modes. Frame syncs can
be generated internally or can be supplied by an external device

• Various general-purpose modes with one frame syncs, two frame
syncs, three frame syncs and zero frame sync modes for both
receive and transmit

• ITU-656 status word error detection and correction for ITU-656
receive modes

• ITU-656 preamble and status word decode

Enhanced Parallel Peripheral Interface (EPPI)

1-18 ADSP-BF54x Blackfin Processor Hardware Reference

• Three different modes for ITU-656 receive modes: active video
only, vertical blanking only, and entire field mode

• Horizontal and vertical windowing for GP 2 and 3 FS modes

• Optional packing and unpacking of data to/from 32 bits from/to 8,
16 and 24 bits. If packing/unpacking is enabled, endianness can be
altered to change the order of packing/unpacking of bytes/words

• Optional sign extension or zero fill for receive modes

• During receive modes, alternate even or odd data sample can be fil-
tered out

• Programmable clipping of data values for 8-bit and 16-bit transmit
modes

• RGB888 can be converted to RGB666 or RGB565 for transmit
modes

• Various de-interleaving/interleaving modes for receiving/transmit-
ting 4:2:2 YCrCb data

• FIFO watermarks and urgent DMA features

• Clock gating by an external device asserting the clock gating
control

ADSP-BF54x Blackfin Processor Hardware Reference 1-19

Introduction

SPORT Controllers
The ADSP-BF54x processor incorporates up to four dual-channel syn-
chronous serial ports (SPORT0, SPORT1, SPORT2, SPORT3) for serial
and multiprocessor communications. The SPORTs support these features:

• I2S capable operation

Bidirectional operation. Each SPORT has two sets of independent
transmit and receive pins, which enable eight channels of I2S stereo
audio.

• Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

SPORT Controllers

1-20 ADSP-BF54x Blackfin Processor Hardware Reference

• Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single-cycle overhead

Each SPORT can automatically receive and transmit multiple buff-
ers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

ADSP-BF54x Blackfin Processor Hardware Reference 1-21

Introduction

Serial Peripheral Interface (SPI) Port
The ADSP-BF54x processor has up to three SPI-compatible ports that
enable the processor to communicate with multiple SPI-compatible
devices.

Each SPI port uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and seven SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured, general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchro-
nous serial interface, which supports both master and slave modes and
multimaster environments.

The SPI port’s baud rate and clock phase/polarities are programmable. It
has an integrated DMA controller, configurable to support either transmit
or receive data streams. The SPI’s DMA controller can only service unidi-
rectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers
There are up to two timer units in the ADSP-BF54x processors. Depend-
ing on the processor, one unit provides eight general-purpose
programmable timers, and the other unit provides three of them. Each
timer has an external pin that can be configured either as a pulse width
modulator (PWM) or timer output, as an input to clock the timer, or as a
mechanism for measuring pulse widths and periods of external events.

Timers

1-22 ADSP-BF54x Blackfin Processor Hardware Reference

These timers can be synchronized to an external clock input (to the several
other associated GPIO pins) to an external clock input to the PPI_CLK
input pin, or to the internal SCLK.

The timer units can be used in conjunction with the two UARTs and the
CAN controllers to measure the width of the pulses in the data stream to
provide a software auto-baud detect function for the respective serial
channels.

The timers can generate interrupts to the processor core providing peri-
odic events for synchronization, either to the system clock or to a count of
external signals.

In addition to the general-purpose programmable timers, another timer is
also provided by the processor core. This extra timer is clocked by the
internal processor clock and is typically used as a system tick clock for gen-
eration of operating system periodic interrupts.

ADSP-BF54x Blackfin Processor Hardware Reference 1-23

Introduction

UART Ports
The ADSP-BF54x processor provides four full-duplex universal asynchro-
nous receiver/transmitter (UART) ports. Each UART port provides a
simplified UART interface to other peripherals or hosts, providing
half-duplex, DMA-supported, asynchronous transfers of serial data. The
UART ports include support for five to eight data bits; one or two stop
bits; and none, even, or odd parity. The UART ports support two modes
of operation:

• Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double-buffered on both
transmit and receive.

• Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTs have two
dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-
nels because of their relatively low service rates.

The baud rate, serial data format, error code generation and status, and
interrupts of the UARTs can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

USB On-The-Go, Dual-Role Device Controller

1-24 ADSP-BF54x Blackfin Processor Hardware Reference

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

UART1 and UART3 feature a pair of UARTxRTS (request to send) and UAR-
TxCTS (clear to send) signals for hardware flow purposes. The transmitter
hardware is automatically prevented from sending further data when the
UARTxCTS input is deasserted. The receiver can automatically deassert its
UARTxTS output when the enhanced receive FIFO exceeds a certain high
water level.

The capabilities of the UART ports are further extended with support for
the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

USB On-The-Go, Dual-Role Device
Controller

The USB OTG controller provides a low-cost connectivity solution for
consumer mobile devices such as cell phones, digital still cameras and
MP3 players, allowing these devices to transfer data using a point-to-point
USB connection without the need for a PC host. The USBDRC module
can operate in a traditional USB peripheral-only mode as well as the host
mode presented in the on-the-go (OTG) supplement to the USB 2.0 spec-
ification. In host mode, the USB module supports transfers at high-speed
(480 Mbps), full speed (12 Mbps), and low speed (1.5 Mbps) rates.
Peripheral-only mode supports the high and full speed transfer rates.

ATA/ATAPI–6 Interface
The ATA/ATAPI interface connects to CD/DVD and HDD drives and is
ATAPI-6 compliant. The controller implements the peripheral I/O mode,
the multi-DMA mode, and the Ultra DMA mode. The DMA modes

ADSP-BF54x Blackfin Processor Hardware Reference 1-25

Introduction

enable faster data transfer and reduced host management. The ATAPI
Controller supports PIO, multi-DMA, and Ultra DMA ATAPI accesses.
Key features include:

• Supports PIO modes 0, 1, 2, 3, 4

• Supports multiword DMA modes 0, 1, 2

• Supports Ultra DMA modes 0, 1, 2, 3, 4, 5 (up to UDMA 100)

• Programmable timing for ATA interface unit

• Supports CompactFlash card using True IDE mode

Keypad Interface
The keypad interface is a 16-pin interface module that is used to detect
the key pressed in a 8-by-8 (maximum) keypad matrix. The size of the
input keypad matrix is programmable. The interface is capable of filtering
the bounce on the input pins, which is common in keypad applications.
The width of the filtered bounce is programmable. The interface module
is capable of generating an interrupt request to the core once it identifies
that any key is pressed.

The interface supports a press-release-press mode and infrastructure for a
press-hold mode. The former mode identifies a press, a release and
another press of a key as two consecutive presses of the same key. The later
mode checks the input key’s state in periodic intervals to determine the
number of times the same key is meant to be pressed. Key features include:

• Supports a maximum of 8-by-8 keypad matrix

• Programmable input keypad matrix size

• Debounce filter on input signals

• Programmable debounce filter width

Secure Digital (SD)/SDIO Controller

1-26 ADSP-BF54x Blackfin Processor Hardware Reference

• Press-release/press mode supported

• Infrastructure for press-hold mode present

• Interrupt on any key pressed capability

• Multiple key pressed detection and limited multiple key resolution
capability

Secure Digital (SD)/SDIO Controller
The SD/SDIO controller is a serial interface that stores data at a rate of up
to 10M bytes per second using a 4-bit data line. The interface runs at 25
MHz.

The SD/SDIO controller supports the SD memory mode only. The inter-
face supports all the power modes and performs error checking by CRC.

Rotary Counter Interface
A 32-bit rotary counter is provided that can sense 2-bit quadrature or
binary codes as typically emitted by industrial drives or manual thumb-
wheels. The counter can also operate in general-purpose up/down count
modes. Then, count direction is either controlled by a level-sensitive input
pin or by two edge detectors.

A third input can provide flexible zero marker support and can alterna-
tively be used to input the push-button signal of thumb wheels. All three
pins have a programmable debouncing circuit.

An internal signal forwarded to the timer unit enables one timer to mea-
sure the intervals between count events. Boundary registers enable
auto-zero operation or simple system warning by interrupts when pro-
grammable count values are exceeded.

ADSP-BF54x Blackfin Processor Hardware Reference 1-27

Introduction

Security
The ADSP-BF54x Blackfin processor provides security features (Blackfin
Lockbox™ Secure Technology) that enable customer applications to use
secure protocols consisting of code authentication and execution of code
within a secure environment. Implementing secure protocols on Blackfin
processors involve a combination of hardware and software components.
Together these components protect secure memory spaces and restrict
control of security features to authenticated developer code.

• Blackfin Lockbox Secure Technology incorporates a secure hard-
ware platform for confidentiality and integrity protection of secure
code and data with authenticity maintained by secure software.

• This secure platform provides:

• A secure execution mode

• Secure storage for on-chip keys

• On-chip secure ROM

• Secure RAM

• Access to code and data in the secure domain is monitored by the
hardware and any unauthorized access to the secure domain is
prevented.

• The secure ROM code establishes the root of trust for the secure
software in the system.

• The secure RAM provides integrity protection and confidentiality
for authenticated code and data.

Media Transceiver Mac Layer (MXVR)

1-28 ADSP-BF54x Blackfin Processor Hardware Reference

• User-defined cipher key(s) and ID(s) and can be securely stored in
the on-chip OTP memory.

• Every processor ships from the ADI factory with a unique chip ID
value stored in publicly accessible OTP memory area.

Media Transceiver Mac Layer (MXVR)
The ADSP-BF54x processor provides a media transceiver (MXVR) MAC
layer, allowing the processor to be connected directly to a MOST®1 net-
work through just an FOT or electrical PHY.

The MXVR is fully compatible with the industry-standard standalone
MOST controller devices, supporting 22.579 Mbps or 24.576 Mbps data
transfer. It offers faster lock times, greater jitter immunity, a sophisticated
DMA scheme for data transfers. The high-speed internal interface to the
core and L1 memory allows the full bandwidth of the network to be uti-
lized. The MXVR can operate as either the network master or as a network
slave.

The MXVR supports synchronous data, asynchronous packets, and con-
trol messages using dedicated DMA channels which operate
autonomously from the processor core moving data to and from L1 mem-
ory. Synchronous data is transferred to or from the synchronous data
physical channels on the MOST bus through eight programmable DMA
channels. The synchronous data DMA channels can operate in various
modes including modes which trigger DMA operation when data patterns
are detected in the receive data stream. Furthermore two DMA channels
support asynchronous traffic and another two support control message
traffic.

1 MOST is a registered trademark of Standard Microsystems, Corp.

ADSP-BF54x Blackfin Processor Hardware Reference 1-29

Introduction

Interrupts are generated when a user-defined amount of synchronous data
is sent or received by the processor or when asynchronous packets or con-
trol messages have been sent or received.

The MXVR peripheral can wake up the ADSP-BF54x processor from
sleep mode when a wakeup preamble is received over the network or based
on any other MXVR interrupt event. Additionally, detection of network
activity by the MXVR can be used to wake up the ADSP-BF54x processor
from sleep mode or the hibernate state, and wake up the on-chip internal
voltage regulator from a powered-down state. These features allow the
ADSP-BF54x to operate in a low-power state when there is no network
activity or when data is not currently being received or transmitted by the
MXVR.

The MXVR clock is provided through a dedicated external crystal or crys-
tal oscillator. The frequency of the external crystal or the crystal oscillator
can be 256Fs, 384Fs, 512Fs, or 1024Fs for Fs = 38 kHz, 44.1 kHz, or
48 kHz. If using a crystal to provide the MXVR clock, use a parallel-reso-
nant, fundamental mode, microprocessor-grade crystal.

Real-Time Clock
The processor’s real-time clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low-power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

Watchdog Timer

1-30 ADSP-BF54x Blackfin Processor Hardware Reference

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
second resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode or deep sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered-down state.

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

ADSP-BF54x Blackfin Processor Hardware Reference 1-31

Introduction

If configured to generate a hardware reset, the watchdog timer resets both
the core and the ADSP-BF54x processor peripherals. After a reset, soft-
ware can determine if the watchdog was the source of the hardware reset
by interrogating a status bit in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency dur-
ing normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip phase-locked loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (0.5x to
64x) multiplication factor (bounded by specified minimum and maximum
VCO frequencies). The default multiplier is 8x, but it can be modified by a
software instruction sequence. On-the-fly frequency changes can be made
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management

1-32 ADSP-BF54x Blackfin Processor Hardware Reference

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

Full On Mode (Maximum Performance)
In the full on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
maximum performance can be achieved. The processor core and all
enabled peripherals run at full speed.

Active Mode (Moderate Dynamic Power Savings)
In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and L2 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Dynamic Power Savings)
The sleep mode reduces dynamic power dissipation by disabling the clock
to the processor core (CCLK). The PLL and system clock (SCLK), however,
continue to operate in this mode. Typically an external event or RTC
activity wakes up the processor. When in the sleep mode, assertion of any
interrupt enabled in the SIC_IWRx registers causes the processor to sense

ADSP-BF54x Blackfin Processor Hardware Reference 1-33

Introduction

the value of the bypass bit (BYPASS) in the PLL control register (PLL_CTL).
If bypass is disabled, the processor transitions to the full on mode. If
bypass is enabled, the processor transitions to the active mode.

When in the sleep mode, system DMA access to L1 and memory other
than L1 is not supported.

Deep Sleep Mode (Maximum Dynamic Power
Savings)

The deep sleep mode maximizes dynamic power savings by disabling the
processor core and synchronous system clocks (CCLK and SCLK). Asynchro-
nous systems, such as the RTC, may still be running, but cannot access
internal resources or external memory. This powered-down mode can only
be exited by assertion of the reset interrupt or by an asynchronous inter-
rupt generated by the RTC. When in deep sleep mode, an RTC
asynchronous interrupt causes the processor to transition to the active
mode. Assertion of RESET while in deep sleep mode causes the processor to
transition to the full on mode.

Hibernate State (Maximum Power Savings)
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation

1-34 ADSP-BF54x Blackfin Processor Hardware Reference

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate
internal voltage levels. The voltage regulation circuit figure in the data
sheet shows the typical external components required to complete the
power management system. The regulator controls the internal logic volt-
age levels and is programmable with the voltage regulator control register
(VR_CTL) in increments of 50 mV. To reduce standby power consumption,
the internal voltage regulator can be programmed to remove power to the
processor core while keeping I/O power supplied. While in this state,
VDDEXT can still be applied, eliminating the need for external buffers.
The regulator can also be disabled and bypassed at the user’s discretion.
For more information, see the Voltage Regulator Circuit diagram in the
ADSP-BF54x data sheet.

Boot Modes
The ADSP-BF54x processor has many mechanisms (listed in Table 1-2)
for automatically loading internal and external memory after a reset. The
boot mode is defined by four BMODE input pins dedicated to this purpose.
There are two categories of boot modes, master and slave. In master boot
mode, the processor actively loads data from parallel or serial memories. In
slave boot mode, the processor receives data from an external host device.

Table 1-2. Booting Modes

BMODE [3: 0] Description

b#0000 Idle–no boot

b#0001 Boot from 8- or 16-bit external flash memory

b#0010 Boot from 16-bit asynchronous FIFO

b#0011 Boot from serial SPI memory (EEPROM or flash)

ADSP-BF54x Blackfin Processor Hardware Reference 1-35

Introduction

Instruction Set Description
The ADSP-BF54x processor family assembly language instruction set
employs an algebraic syntax designed for ease of coding and readability.
Refer to the appropriate Blackfin Processor Programming Reference for
detailed information. The instructions have been specifically tuned to pro-
vide a flexible, densely encoded instruction set that compiles to a very
small final memory size. The instruction set also provides fully featured
multifunction instructions that allow the programmer to use many of the
processor core resources in a single instruction. Coupled with many fea-
tures more often seen on micro controllers, this instruction set is very
efficient when compiling C and C++ source code. In addition, the archi-

b#0100 Boot from SPI host device

b#0101 Boot from serial TWI memory (EEPROM/flash)

b#0110 Boot from TWI host

b#0111 Boot from UART host

b#1000 Reserved

b#1001 Reserved

b#1010 Boot from (DDR) SDRAM

b#1011 Boot from OTP memory

b#1100 Reserved

b#1101 Boot from 8- or 16-bit NAND flash memory via NFC

b#1110 Boot from 16-Bit Host DMA

b#1111 Boot from 8-Bit Host DMA

Table 1-2. Booting Modes

BMODE [3: 0] Description

Development Tools

1-36 ADSP-BF54x Blackfin Processor Hardware Reference

tecture supports both user (algorithm/application code) and supervisor
(O/S kernel, device drivers, debuggers, ISRs) modes of operation, allowing
multiple levels of access to core resources.

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

• All registers, I/O, and memory-mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools
The processor is supported with a complete set of CrossCore® software
and hardware development tools, including Analog Devices emulators and
the VisualDSP++ development environment. The same emulator hard-
ware that supports other Analog Devices products also fully emulates the
ADSP-BF54x processor family.

ADSP-BF54x Blackfin Processor Hardware Reference 1-37

Introduction

The VisualDSP++ project management environment lets programmers
develop and debug an application. This environment includes an
easy-to-use assembler that is based on an algebraic syntax, an archiver
(librarian/library builder), a linker, a loader, a cycle-accurate, instruc-
tion-level simulator, a C/C++ compiler, and a C/C++ runtime library that
includes DSP and mathematical functions. A key point for these tools is
C/C++ code efficiency. The compiler is developed for efficient translation
of C/C++ code to Blackfin processor assembly. The Blackfin processor has
architectural features that improve the efficiency of compiled C/C++ code.

Debugging both C/C++ and assembly programs with the VisualDSP++
debugger, programmers can:

• View mixed C/C++ and assembly code (interleaved source and
object information)

• Insert breakpoints

• Set conditional breakpoints on registers, memory, and stacks

• Trace instruction execution

• Perform linear or statistical profiling of program execution

• Fill, dump, and graphically plot the contents of memory

• Perform source-level debugging

• Create custom debugger windows

Development Tools

1-38 ADSP-BF54x Blackfin Processor Hardware Reference

The VisualDSP++ Integrated Development Environment (IDE) lets pro-
grammers define and manage software development. Its dialog boxes and
property pages let programmers configure and manage all development
tools, including color syntax highlighting in the VisualDSP++ editor.
These capabilities permit programmers to:

• Control how the development tools process inputs and generate
outputs

• Maintain a one-to-one correspondence with the tool’s com-
mand-line switches

The VisualDSP++ Kernel (VDK) incorporates scheduling and resource
management tailored specifically to address the memory and timing con-
straints of DSP programming. These capabilities enable engineers to
develop code more effectively, eliminating the need to start from the very
beginning, when developing new application code. The VDK features
include threads, critical and unscheduled regions, semaphores, events, and
device flags. The VDK also supports priority-based, preemptive, coopera-
tive, and time-sliced scheduling approaches. In addition, the VDK was
designed to be scalable. If the application does not use a specific feature,
the support code for that feature is excluded from the target system.

Because the VDK is a library, a developer can decide whether to use it or
not. The VDK is integrated into the VisualDSP++ development environ-
ment but can also be used with standard command-line tools. The VDK
development environment assists in managing system resources, automat-
ing the generation of various VDK-based objects, and visualizing the
system state during application debug.

Analog Devices emulators use the IEEE 1149.1 JTAG test access port of
the processor to monitor and control the target board processor during
emulation. The emulator provides full-speed emulation, allowing inspec-
tion and modification of memory, registers, and processor stacks.

ADSP-BF54x Blackfin Processor Hardware Reference 1-39

Introduction

Nonintrusive in-circuit emulation is assured by the use of the processor’s
JTAG interface—the emulator does not affect target system loading or
timing.

In addition to the software and hardware development tools available
from Analog Devices, third parties provide a wide range of tools support-
ing the Blackfin processor family. Hardware tools include the
ADSP-BF54x EZ-KIT Lite standalone evaluation/development cards.
Third party software tools include DSP libraries, real-time operating sys-
tems, and block diagram design tools.

Development Tools

1-40 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 2-1

2 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and factors that determine the system organization. The chapter describes
the system internal chip interfaces and discusses the system interconnects,
including the interfaces between core buses and system buses.

The chapter includes the following sections:

• “Overview” on page 2-1

• “System Overview” on page 2-8

• “Peripheral Access Bus (PAB)” on page 2-15

• “DMA-Related Buses” on page 2-17

• “External Access Bus (EAB)” on page 2-25

Overview
This section provides an overview of the on-chip buses.

Internal Interfaces
Figure 2-1 shows the processor core, on-chip peripherals, and the bus
interfaces between them.

The processor core has several blocks of on-chip memory. The L1 instruc-
tion memory is 48K bytes SRAM plus 16K bytes that can be configured as
a four-way set-associative cache or SRAM.The L1 data memory is

Overview

2-2 ADSP-BF54x Blackfin Processor Hardware Reference

32K bytes SRAM plus 32K bytes that can be configured as a two-way set
associative cache or SRAM. The scratchpad SRAM memory (not shown in
Figure 2-1) consists of 4K bytes, which is only accessible as data SRAM
(cannot be configured as cache memory). The L1 instruction ROM memory
is factory programmed; this ROM is not customer-configurable. The L2
SRAM memory provides 128K bytes of unified instruction and data mem-
ory. Unlike L1 memory - which operates at the full core clock (CCLK) rate -
the memory other than L1 operates at one half the frequency of the
core.The 4K boot ROM is seen as part of L3 memory. Because the boot
ROM is outside the CCLK domain, this ROM operates at the system clock
(SCLK) rate.

External memories, such as DDR and flash, can be accessed through the
external bus interface unit (EBIU).

ADSP-BF54x Blackfin Processor Hardware Reference 2-3

Chip Bus Hierarchy

Figure 2-1. ADSP-BF54x Processor Bus Hierarchy

RTC

HOSTDP

JTAG TEST AND
EMULATION

UART (2-3)

B

EXTERNAL PORT
NOR, DDR1 CONTROL

SPI (2)

SPORT (0-1)

SD / SDIO

WATCHDOG
TIMER

BOOT
ROM

32

16

PIXEL
COMPOSITOR

VOLTAGE
REGULATOR

EPPI (0-2)

SPORT (2-3)

SPI (0-1)

UART (0-1)

P
O

R
T

S

PAB

USB

DMAC0
(16-BIT)

DMAC1
(32-BIT)

INTERRUPTS

L2
SRAM

L1
INSTR ROM

L1
INSTR SRAM

L1
DATA SRAM

DAB1

DAB0

OTP

16 16

DDR1 ASYNC

16

NAND FLASH
CONTRLOLLER

ATAPI

DCB 32 EAB 64 DEB 32

P
O

R
T

S

CAN (0-1)

TWI (0-1)

TIMERS
(0-10)

KEYPAD

COUNTER

MXVR

CCLK
DOMAIN

SCLK DOMAIN
(ALL OUTSIDE CCLK)

0

1

2
0

1

2

3

MAB

DCB2

DEB2

DCB3

DEB1

DCB1

DCB0

DEB0

Overview

2-4 ADSP-BF54x Blackfin Processor Hardware Reference

The ADSP-BF54x processor has many on-chip peripherals. The peripher-
als access memory in the processor core using a set of buses and DMA
controllers. Two buses (DAB32 and DAB16) connect the peripherals and
DMA controllers to support the data transfers between peripherals and
memories.

The processor core has three ports connected to system and memory other
than L1:

• 16-bit core port

This is the system memory-mapped register (MMR) access port.
Through this port, the 16-bit peripheral access bus (PAB) con-
nects all off-core system MMR registers. For more information, see
“Peripheral Access Bus (PAB)” on page 2-15.

• 64-bit core P port

This is the processor core L1 memory access port. The P port pro-
vides the interface to the external bus interface unit (EBIU) and to
the memory other than L1 through the 32-bit external access bus
(EAB) and the 64-bit processor core L2 bus separately. The mem-
ory access request commands from the core are pipelined; no
arbitration logic is needed in this interface. For more information,
see “P Port Interface” on page 2-9.

• 32-bit core D port

DMA controllers (DMAC0, DMAC1, USB, and MXVR) transfer
data to or from core L1 memory through this port. Because there
are multiple DMA controllers that can simultaneously request
access to L1 memory through the 32-bit D port, interface arbitra-
tion logic is provided and described in “D Port Interface” on
page 2-10.

ADSP-BF54x Blackfin Processor Hardware Reference 2-5

Chip Bus Hierarchy

Memory other than L1 also has two ports connected to the following two
buses, which run at core clock frequency (CCLK domain):

• 64-bit core L2 bus

This bus supports memory other than L1 data/instruction accesses
requested by the processor core.

• 32-bit system L2 bus (system L2 bus)

This bus supports DMAC0 and DMAC1 data transfers to or from
L2; could be to or from L1, L2, or external memory.

Overall system functions of the ADSP-BF54x processor are supported by
the following system buses, which run at the system clock frequency (SCLK
domain):

• 16-bit peripheral access bus (PAB)

• 32-bit external access bus (EAB)

• 32-bit DMA core bus (DCB0, DCB1, DCB2, and DCB3)

• 32- and 16-bit DMA access buses (DAB0 and DAB1)

• 32-bit DMA external buses (DEB0, DEB1, and DEB2)

The DDR and ASYNC buses connect between the external bus interface
unit (EBIU) and external memory. These buses run at the system clock
frequency (SCLK domain).

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to the CLKIN input pin. The CCLK rate is divided down from the PLL out-
put rate (VCO). This divider ratio is set using the CSEL parameter of the
PLL_DIV register. For more information, see “Phase-Locked Loop and
Clock Control” on page 18-1.

Overview

2-6 ADSP-BF54x Blackfin Processor Hardware Reference

The peripheral access bus (PAB), the DMA access buses (DAB32 and
DAB16), the external access bus (EAB), the DMA core buses (DCB0,
DCB1, DCB2, and DCB3), the DMA external buses (DEB0, DEB1, and
DEB2), the external port bus (EPB), and the external bus interface unit
(EBIU) run at the system clock frequency (SCLK domain). This divider
ratio is set using the CSEL parameter of the PLL_DIV register. Note that this
divider must be set such that these buses run as specified in the processor
data sheet, running at a speed slower than or equal to the core clock
frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. A subset of the peripherals derive their timing from the SCLK.
For example, the UART baud rate is determined by further dividing this
clock frequency.

Core Bus Overview
Figure 2-2 shows a processor core block diagram that includes a processor
core and L1 memory connected by internal core buses. The core bus struc-
ture between the processor core and L1 memory runs at the full core
frequency (CCLK domain). Data loads are performed using the LD0 and
LD1 buses. The SD bus is used to perform writes. There are two address
buses (DA0 and DA1) used for data fetches. The instruction address and
data buses (IAB and IDB) are used to fetch instructions.

ADSP-BF54x Blackfin Processor Hardware Reference 2-7

Chip Bus Hierarchy

These buses allow the processor core to perform the following L1 memory
accesses per core clock cycle (CCLK):

• One 64-bit instruction fetch through the IDB bus

• One 32-bit data reference through the DA0 bus

• One 32-bit data reference through the DA1 bus

• Two 32-bit data loads through the LD0 and LD1 buses

• One 32-bit data store through the SD bus

Figure 2-2. Processor Core and L1 Memory Block Diagram

32 32 32 32 32 32 64

16 64 32

CORE CLOCK
(CCLK)

DOMAIN
PROCESSOR CORE

MMR PORT P PORT D PORT

L1 DATA MEMORY
(4KB SRAM + CACHE/SRAM)

MEMORY
MANAGEMENT

UNIT

L1 INSTRUCTION MEMORY
(CACHE/SRAM)

LD0 LD1 SD DA0 DA1 IAB IDB

System Overview

2-8 ADSP-BF54x Blackfin Processor Hardware Reference

The processor core has three ports and can generate up to the following
simultaneous off-core accesses per core clock cycle (CCLK):

• One DMA data transfer through the D port

• One L2 or external memory access through the P port

• One MMR register access through the MMR port

The L2 or external memory access through the P port includes normal
data or instruction access and cache read or write operation.

System Overview
The ADSP-BF54x processor system includes a Blackfin processor core, a
128K byte level 2 (L2) memory, the peripheral set (see Figure 2-1 on
page 2-3), the external memory controller (EBIU, AMC and DDR), the
DMA controllers, and bus interfaces.

The external bus interface unit (EBIU) is the primary interface to the chip
pins. Detailed information about the EBIU is discussed in “External Bus
Interface Unit” on page 6-1.

ADSP-BF54x Blackfin Processor Hardware Reference 2-9

Chip Bus Hierarchy

P Port Interface
Figure 2-3 shows the interface between the processor core P port and
memory other than L1 through the 64-bit core L2 bus and shows the
interface between processor core P port and the EBIU through the 32-bit
EAB bus.

At each CCLK cycle, the processor core can:

• Transfer one 64-bit instruction word from memory other than L1

• Or transfer one 32/16/8-bit data word to or from the same (or dif-
ferent) memory other than L1 data bank

• Or transfer one 32/16/8-bit data word to or from external memory

Data transfers requested from the processor core to L2 or the EBIU are
fully pipelined.

Figure 2-3. Core Interface to Memory other than L1 and the EBIU

64 32

PROCESSOR CORE

P PORT

L2 / EXTERNAL
MEMORY PIPELINE

L2 EAB

EBIUL2 MEMORY

System Overview

2-10 ADSP-BF54x Blackfin Processor Hardware Reference

D Port Interface
Figure 2-4 shows the interface between the DMA controllers core access
buses (32-bit DCB buses) and the processor core’s D port. This 32-bit D
port provides DMA access to L1 memory.

The DCB buses provide the following DMA data transfers:

• The DCB0 bus supports up to 16-bit DMA data transfers between
the processor core internal memory and peripheral on the DAB0
bus; or transfers between external memory and internal memory.

Figure 2-4. Core (A or B) Interface to DMA Controllers

PROCESSOR CORE

D PORT

DMA BUS ARBITER

DCB0

16

DMAC0

16

DCB2

MXVR

DCB1

32

DMAC1

DCB3

32

USB

ADSP-BF54x Blackfin Processor Hardware Reference 2-11

Chip Bus Hierarchy

Where internal memory is L1, a DCB bus can also support internal
memory to internal memory transfers. The DCB0 bus is in the
SCLK domain.

• The DCB1 bus supports up to 32-bit DMA data transfer between
the processor core internal memory and peripherals on the DAB1
bus; or between external memory and internal memory. The DCB1
bus is in the SCLK domain.

• The DCB2 bus supports up to 32-bit DMA data transfer between
the processor core internal memory and MXVR. The DCB2 bus is
in the SCLK domain.

• The DCB3 bus supports up to 32-bit DMA data transfer between
the processor core internal memory and USB. The DCB3 bus is in
the SCLK domain.

Because D port access requests can come from multiple independent
DMA controllers, DMA bus arbitration is necessary to resolve possible D
port access conflicts. The D port interface performs DMA bus (DCB0,
DCB1, DCB2, and DCB3) arbitration, converts transactions on these
buses to the core DMA bus protocol, and conducts transactions over the
core DMA buses to L1 memory or over a separate bus to the memory
other than L1. For more information on DMA priority arbitration, see
“DCB Arbitration” on page 2-21.

On-Chip L2 Interface
The L2 SRAM memory block is organized into eight banks that can be
accessed by either two independent buses: the 64-bit processor core L2
bus or the 32-bit sys L2 bus. Figure 2-5 shows this interface diagram. L2 is
organized as a multi-bank architecture of single-ported SRAMs, such that
multiple accesses can occur in parallel, as long as they are to different
banks. L2 has two ports: the processor core L2 port is connected to the
64-bit processor core L2 bus and dedicated to processor core access
requests.

System Overview

2-12 ADSP-BF54x Blackfin Processor Hardware Reference

The sys L2 port is connected to the 32-bit sys L2 bus and dedicated to sys-
tem DMA access requests. Two different banks can be accessed
simultaneously by the 64-bit processor core L2 bus and the 32-bit system
L2 bus. When both buses attempt to access the same bank at the same
time, the L2 arbitration logic resolves the conflict.

An L2 access requires two CCLK cycles for the access itself, plus any latency
involved in the operation (see Table 2-2 on page 2-14). L2 interface con-
trol logic is clocked at the core frequency (CCLK clock domain). The system
DMA access request comes from the DCB0, DCB1, DCB2, and the
DCB3 busses, which run at system clock frequency (SCLK domain). The
interface circuit synchronizes the DCB buses to the core clock domain and
converts them to system L2 bus protocol.

Figure 2-5. L2 Bus Interfaces

L2 MEMORY

CORE/SYSTEM
L2 ARBITER

L2 SYSTEM
BUS ARBITER

DCB0

16

DMAC0

DCB1

32

DMAC1

CORE
L2

BUS

64

CORE

DCB2

16

MXVR

DCB3

32

USB

ADSP-BF54x Blackfin Processor Hardware Reference 2-13

Chip Bus Hierarchy

As shown in Figure 2-5 on page 2-12, there are several arbitration stages
in the interface:

• Arbitration for core L2 port access requests is based on a fixed pri-
ority scheme. There is no arbitration while the current Core L2 bus
requestor is performing locked or cache line fill transactions.

After the processor core is granted the core L2 bus, no other user
can access this bus until the data transaction is accepted by L2.

• Arbitration for system L2 port access request is based on a pro-
grammable priority scheme. After reset, the following fixed priority
is maintained: DCB2 (MXVR) > DCB0 (DMAC0) >DCB1
(DMAC1) > DCB3 (USB) for L2 accesses through the system L2
bus. The priorities between the DCB0 bus and DCB1 bus is pro-
grammable. This can be using the L2DMAPRO bit in the SYSCR
register.

• When both the processor core L2 bus and the system L2 bus
attempt to access the same bank at the same time, bank arbitration
is required. Table 2-1 shows the L2 access bus arbitration.

Table 2-1. L2 Interface Bus Arbitration

Requestor Priority (L2DMAPRIO = 0)
(Default)

Priority (L2DMAPRIO = 1)

Currently locked core access 1 1

Complete current core cache access 2 2

DCB2 (MXVR) 3 3

DCB0 (DMAC0) 4 5

DCB1 (DMAC1) 5 4

DCB3 (USB) 6 6

Core L2 7 7

System Overview

2-14 ADSP-BF54x Blackfin Processor Hardware Reference

Table 2-2 on page 2-14 shows the target latency and throughput for vari-
ous types of accesses. Since the DMA bus has a dedicated port to the L1
and L2 memories, as long as the processor core access and DMA access are
not to the same memory bank, no stalls occur. DMA access to L1 or mem-
ory other than L1 can only be stalled by:

• An access already in progress from another DMA
controller/channel

• A core access already in progress, which locks the bank to be
addressed

For more details about DMA data transfer latency and DMA traffic con-
trol/optimization, please see “DMA Performance” on page 5-51.

When executing code from memory other than L1, a core can fetch a
64-bit word. In the best case, the 64-bit word contains four 16-bit instruc-
tions. For consecutive fetches of single-cycle, 16-bit instructions, the
maximum execution rate is four instructions every nine CCLKs—due to
pre-fetching by the core.

Table 2-2. L2 Interface Data and Instruction Fetch Transaction Latency

Transaction Type Number of Cycles to Complete

Core L2 Read 9 CCLKs for each read

Dual DAG Read (same instruction) 9 CCLKs (first 32-bit fetch)
2 CCLKs (second 32-bit fetch)

Cache Line Fill (data and instruction) 9 CCLKs (first 64-bit fetch)
2-2-2 CCLKs (for next three 64-bit fetches)

Dual DAG Cache Line Miss (same instruction) 9-2-2-2 CCLKs (first miss, four 64-bit fetches)
2-2-2-2 CCLKs (second miss, four 64-bit
fetches)

64-bit Instruction Fetch 9 CCLKs

Sys DMA Read 1 SCLK plus 2 CCLKs

Sys DMA Write 1 SCLK

ADSP-BF54x Blackfin Processor Hardware Reference 2-15

Chip Bus Hierarchy

When the processor core writes to memory other than L1, a write buffer
within the interface of each core improves performance. Up to five writes
can be made to memory other than L1 without stalling a core. The sixth
write, and subsequent writes when the buffer is full, take four CCLKs for
each write. Specifically, a loop of eight writes to memory other than L1
would take five CCLKs for the first five writes plus four CCLKs for each
of the three subsequent writes.

Peripheral Access Bus (PAB)
The ADSP-BF54x has a dedicated peripheral access bus (PAB) that con-
nects all off-core peripherals to system MMR registers. The low-latency
peripheral access bus keeps core stalls to a minimum and allows for man-
ageable interrupt latencies to time-critical peripherals. All peripheral
resources accessed through the PAB bus are mapped into the system MMR
space of the ADSP-BF54x memory map.

The processor core is the only master on the PAB bus. No arbitra-
tion is necessary.

PAB Performance
For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for write transfers on the PAB are two SCLK cycles, and
transfer latencies for read transfers on the PAB are three SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at two times the frequency of the sys-
tem clock, the first and subsequent system MMR write accesses take four
core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

Peripheral Access Bus (PAB)

2-16 ADSP-BF54x Blackfin Processor Hardware Reference

PAB Agents (Masters, Slaves)
The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. System MMR addresses are listed in “System
MMR Assignments” on page A-1.

The slaves on the PAB bus are:

• Event Controller

• Clock and Power Management Controller

• Watchdog Timer

• Real Time Clock

• Timer 0–10

• SPORT 0–3

• SPI 0–2

• General-Purpose Input/Output (GPIOs)

• UART 0–3

• ATAPI

• EPPI0-2

• Pixel Compositor

• Secure Digital Host (SDH)

• USB

• MXVR

• TWI 0–1

ADSP-BF54x Blackfin Processor Hardware Reference 2-17

Chip Bus Hierarchy

• CAN 0–1

• Asynchronous Memory Controller (AMC)

• DDR SDRAM Controller (DDC)

• DMA Controller 0–1 (DMAC0 and DMAC1)

DMA-Related Buses
Figure 2-6 shows the DMA bus connections. These buses run at the sys-
tem clock frequency (SCLK domain).

The 32/16-bit DAB bus provides DMA between the peripherals and
L1/L2 internal memory through the DCB bus, or between peripherals and
external memories through the DEB bus. A central DMA controller keeps
track of DMA addresses and mediates the transfers. DMA is handled iden-

Figure 2-6. DMA Bus Connection and Arbitration Block Diagram

DMAC0
CONTROLLER

(16-BIT)

PERIPHERAL
GROUP 0 ARBITER

D
C

B
0

D
A

B
0

CORE
L1/L2

EBIU D
E

B
0

DMAC1
CONTROLLER

(32-BIT)

PERIPHERAL
GROUP 1 ARBITER

D
C

B
1

D
A

B
1

CORE
L1/L2

EBIU D
E

B
1

DMA-Related Buses

2-18 ADSP-BF54x Blackfin Processor Hardware Reference

tically for 8-, 16- and 32-bit data sizes. The maximum bandwidth for any
individual 16-bit peripheral is one 16-bit word transferred for every two
SCLK cycles. Peripherals that are capable of 32-bit DMA (and also config-
ured for 32-bit mode) can transfer up to one 32-bit word every two SCLK
cycles.

Peripheral DMA
The DMA-capable peripherals in the ADSP-BF54x system are managed
by DMA controllers. Each DMA controller also has memory DMA chan-
nels for DMA data transfer between external memory and L1 or memory
other than L1. The peripheral DMA controllers can transfer data between
peripherals and internal or external memory.

The DCB bus arbitration for L2 configured as SRAM is shown in
Table 2-1 on page 2-13. The ADSP-BF54x has programmable priority for
peripherals on the DAB bus. For details about programmable DMA
peripheral and DMA channel mapping, see “Direct Memory Access” on
page 5-1.

DAB Bus Agents (Masters)
All peripherals capable of sourcing a DMA access through one of the cen-
tralized DMA controllers are masters on these buses, as shown in
Table 2-3 on page 2-20 and Table 2-4 on page 2-21. A single arbiter sup-
ports a programmable priority arbitration policy for access to each DAB.

When two or more DMA master channels are actively requesting a DAB,
bus utilization is considerably higher due to the DAB’s pipelined design.
Bus arbitration cycles are concurrent with the previous DMA access data
cycles. The MXVR and USB peripherals have their own DMA channels
and are not part of the DAB.

ADSP-BF54x Blackfin Processor Hardware Reference 2-19

Chip Bus Hierarchy

DAB Arbitration
There are two centralized DMA controllers in the system which together
support 14 peripherals and four memory DMA channels. 32 DMA chan-
nels and bus masters support these devices, with eight channels being
assigned to memory DMA, and the remaining 24 channels being assigned
to peripheral DMA. The memory DMA channels can transfer data
between L1, L2, and external memory. The peripheral DMA controllers
can transfer data between peripherals and internal (L1/L2) or external
memory.

The DAB buses are implemented as two separate bus systems each inter-
facing to a DMA controller and a fixed set of peripheral DMA bus
masters. DAB0 offers 16 bits of data transfer per SCLK cycle and DAB1
offers 32 bits of data transfer per SCLK cycle. Arbitration of channels on
the DAB bus is programmable within each centralized DMA controller.
Table 2-3 and Table 2-4 show the default arbitration priority of each
DMA controller.

DMA-Related Buses

2-20 ADSP-BF54x Blackfin Processor Hardware Reference

Table 2-3. Controller 0 (DAB0) Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

SPORT0 Rx DMA Controller 0 - highest

SPORT1 Rx DMA Controller 1

SPORT0 Tx DMA Controller 3

SPORT1 Tx DMA Controller 2

SPI0 DMA Controller 4

SPI1 DMA Controller 5

UART0 Rx DMA Controller 6

UART0 Tx DMA Controller 7

UART1 Rx DMA Controller 8

UART1 Tx DMA Controller 9

ATAPI Rx DMA Controller 10

ATAPI Tx DMA Controller 11

Memory DMA0 (dest) Controller 12

Memory DMA0 (source) Controller 13

Memory DMA1 (dest) Controller 14

Memory DMA1 (source) Controller 15 - lowest

ADSP-BF54x Blackfin Processor Hardware Reference 2-21

Chip Bus Hierarchy

DCB Arbitration
Each of the two centralized DMA controllers as well as the MXVR trans-
ceiver and the USB controller, access L1 memory through the DCB buses
(DCB0/DCB1/DCB2/DCB3). In the event of simultaneous requests to
L1 memory, access is granted based on a programmable arbitration
scheme.

Table 2-4. Controller 1 (DAB1) Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

EPPI0 DMA Controller 0 - highest

EPPI1 DMA Controller 1

EPPI2 DMA Controller/Host DMA Port 2

Pixel Compositor DMA Controller 0 (input data) 3

Pixel Compositor DMA Controller 1 (overlay data) 4

Pixel Compositor DMA Controller 2 (output data) 5

SPORT2/UART2 Rx DMA Controller 6

SPORT2/UART2 Tx DMA Controller 7

SPORT3/UART3 Rx DMA Controller 8

SPORT3/UART3 Tx DMA Controller 9

SDH/NAND Flash DMA Controller 10

SPI2 DMA Controller 11

Memory DMA 2 (dest) Controller 12

Memory DMA 2 (source) Controller 13

Memory DMA 3 (dest) Controller 14

Memory DMA 3 (source) Controller 15 - lowest

DMA-Related Buses

2-22 ADSP-BF54x Blackfin Processor Hardware Reference

The DCB buses have priority over the core processor on arbitration into
L1 configured as SRAM. These same buses are used to access memory
other than L1, which has a similar arbitration scheme. L1 and L2 accesses
from the DMA controllers may happen in parallel.

Into L1 and memory other than L1, an access by the system bus always
wins over an access by the core. On the system bus, by default, the order
of priority is:

1. MXVR

2. DMAC0

3. DMAC1

4. USB

The priority order for DMAC0 and DMAC1 may be swapped. Table 2-5
describes the priority configuration for L1 accesses, which is defined by
the CDMAPRIO bit of the SYSCR register. For L2 accesses, the L2DMAPRIO bit
in SYSCR is used in the same way. For more information, see “System Reset
Configuration (SYSCR) Register” on page 17-109.

If any of the DMA channels is urgent, it is elevated above the others in
terms of priority. For example, an urgent USB DMA channel is higher
priority than a non-urgent DMAC0 channel.

Table 2-5. D Port DCB0 (DMAC0) and DCB1 (DMAC1) Arbitration

DMA Controllers Priority (CDMAPRIO = 0, default) Priority (CDMAPRIO = 1)

DMAC0 1 2

DMAC1 2 1

ADSP-BF54x Blackfin Processor Hardware Reference 2-23

Chip Bus Hierarchy

DEB Arbitration
Each of the two DMA controllers, as well as the USB controller, access
external memory through the DEB buses (DEB0/DEB1/DEB2).

The MXVR does not have DMA access to external memory.

In the event of simultaneous requests to external memory, access is
granted based on a programmable arbitration scheme. This priority can be
changed by using the DEB_ARB_PRIORITY bits in the EBIU_DDRQUE register.
For off-chip memory, the core has priority over the DEB buses by default.
However, the priorities of the specific DMA bus with respect to the core
can be changed for both synchronous and asynchronous accesses. The
complete arbitration at the EBIU is described in “External Bus Interface
Unit” on page 6-1.

DAB, DCB, and DEB Performance
The ADSP-BF54x DAB buses support 8-bit, 16-bit, and 32-bit data trans-
fers. DAB1 is a 32-bit data bus. DAB0 is a 16-bit bus. Both operate at the
system clock rate, at a maximum frequency of 133 MHz, although a single
peripheral DMA channel on a DAB bus operates at a maximum of
SCLK/2. The DCB buses have a dedicated D port into L1 memory and
another dedicated sys L2 port into memory other than L1. No stalls occur
as long as the core access and the DMA access are not to the same memory
bank. If there is a conflict, DMA is the highest priority requester, followed
by the core. Note that a locked transfer by the core processor (for example,
execution of a TESTSET instruction) effectively disables arbitration for the
addressed memory bank or resource until the memory lock is deasserted.
DMA controllers cannot perform locked transfers. DMA access to L1
memory can only be stalled by an access already in progress from another
DMA channel.

DMA-Related Buses

2-24 ADSP-BF54x Blackfin Processor Hardware Reference

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simulta-
neously. The transfer rate is then determined by adding each transfer plus
an additional cycle between each transfer.

Table 2-6 shows many types of 32-bit memory DMA transfers (on
DMAC1). In the table, it is assumed that no other DMA activity is con-
flicting with ongoing operations. The numbers in the table are theoretical
values. These values may be higher when they are measured on actual
hardware due to a variety of reasons relating to the device that is con-
nected to the EBIU.

For non-DMA accesses (for example, a core access through the EAB), a
32-bit access to DDR SDRAM (of the form R0 = [P0]; where P0 points
to an address in DDR SDRAM) always more efficient than executing two
16-bit accesses (of the form R0 = W[P0++]; where P0 points to an address
in DDR SDRAM). In this example, a 32-bit DDR SDRAM read takes ten
SCLK cycles while two 16-bit reads take nine SCLK cycles each.

Table 2-6. Performance of DMA Access (on DMAC1) to External
Memory

Source Destination Approximate SCLKs for n Words
(Max word size 32-bits) (From Start
of DMA to Interrupt at End)

16-bit DDR SDRAM L1 Data memory n + 14

L1 Data memory 16-bit DDR SDRAM n + 11

16-bit Async memory L1 Data memory xn + 12, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

ADSP-BF54x Blackfin Processor Hardware Reference 2-25

Chip Bus Hierarchy

The EAB and the DEB buses must arbitrate for access to external memory
through the EBIU. Figure 2-6 on page 2-17 shows the bus connection to
the EBIU and the bus arbiters. Users must manage specific memory access
traffic patterns to ensure that isochronous peripherals have enough allo-
cated bandwidth and appropriate maximum data latency for both internal
and external memory accesses.

External Access Bus (EAB)
The external access bus (EAB) provides a way for the processor core and
the Memory DMA controller to directly access off-chip memory and high
throughput memory-to-memory DMA transfers. The EAB supports sin-
gle-word accesses of either 8-bit, 16-bit, or 32-bit data types. The EAB
operates at the system clock rate.

L1 Data memory 16-bit Async memory xn + 9, where x is the number of wait
states + setup/hold SCLK cycles
(minimum x = 2)

16-bit DDR SDRAM 16-bit DDR SDRAM 10 + (17n/7)

16-bit Async memory 16-bit Async memory 10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 Data memory L1 Data memory 2n + 12

Table 2-6. Performance of DMA Access (on DMAC1) to External
Memory (Cont’d)

Source Destination Approximate SCLKs for n Words
(Max word size 32-bits) (From Start
of DMA to Interrupt at End)

External Access Bus (EAB)

2-26 ADSP-BF54x Blackfin Processor Hardware Reference

EAB/DEB Arbitration
Arbitration for use of external memory interface resources (DDR or
ASYNC) is required because of possible contention between the potential
masters of these resources. A fixed-priority arbitration scheme is used to
arbitrate between EAB accesses and DEB accesses, with core accesses win-
ning by default. For more details on arbitration, see “External Bus
Interface Unit” on page 6-1. For information on external memory inter-
face resources, see “DDR SDRAM Memory Interface” on page 6-17 or
“Asynchronous Memory Interface” on page 6-53.

EAB/DEB Performance
The EAB supports single-word accesses of 8-bit, 16-bit, 32-bit, or 64-bit
data types. The EAB operates at the same frequency as the PAB and the
DAB, up to the maximum SCLK frequency specified in the ADSP-BF54x
data sheet.

ADSP-BF54x Blackfin Processor Hardware Reference 2-27

Chip Bus Hierarchy

Table 2-7 shows many types of 16-bit and 32-bit memory DMA transfers.
In the table, it is assumed that no other DMA activity is conflicting with
ongoing operations.

Table 2-7. Performance of DMA Access (on DMAC0) to External
Memory

Source Destination Approximate SCLKs For n
16-bit Words (From Start
of DMA to Interrupt at
Rnd)

Approximate SCLKs For n
32-bit Words (From Start
of DMA to Interrupt at
end)1

1 Note that DMAC0 is only a 16-bit controller although it can be programmed for 32-bit word
accesses. For 32-bit accesses it will take twice as much SCLK cycles as compared to transactions
on DMAC1.

16-bit DDR
SDRAM

L1 Data memory n + 14 2n + 14

L1 Data memory 16-bit DDR
SDRAM

n + 14 2n + 14

16-bit Async
memory

L1 Data memory xn +12, where x is the num-
bre of wait states +
setup/hold SCLK cycles
(mininum x = 2)

2xn +12, where x is the
numbre of wait states +
setup/hold SCLK cycles
(mininum x = 2)

L1 Data memory 16-bit Async
memory

xn +12, where x is the num-
bre of wait states +
setup/hold SCLK cycles
(mininum x = 2)

2xn +12, where x is the
numbre of wait states +
setup/hold SCLK cycles
(mininum x = 2)

16-bit DDR
SDRAM

16-bit DDR
SDRAM

10 + (17n/7) 10 + 2*((17n/7)

16 bit Async
memory

16-bit Async
memory

10 +2xn, where x is the
numbre of wait states +
setup/hold SCLK cycles
(mininum x = 2)

10 + 2*(2xn), where x is the
numbre of wait states +
setup/hold SCLK cycles
(mininum x = 2)

L1 Data memory L1 Data memory 2n + 12 2*2n + 12

External Access Bus (EAB)

2-28 ADSP-BF54x Blackfin Processor Hardware Reference

The corresponding access time for EAB accesses (assuming rows are open
and pre-charged) are:

• 16-bit processor core read from DDR – 8 SCLK cycles

• 32-bit processor core read from DDR – 8 SCLK cycles

• 32 byte cache line fill (8, 4 byte accesses) - 8 + (7*1) SCLK cycles

ADSP-BF54x Blackfin Processor Hardware Reference 3-1

Memory

3 MEMORY

This chapter includes the following sections:

• “Memory Architecture” on page 3-2

• “Instruction Test Registers” on page 3-24

• “L1 Data Memory” on page 3-28

• “Data Test Registers” on page 3-44

• “On-Chip Level 2 (L2) Memory” on page 3-49

• “One Time Programmable Memory” on page 3-53

• “External Memory” on page 3-53

• “Memory Protection and Properties” on page 3-54

• “Memory Transaction Model” on page 3-74

• “Load/Store Operation” on page 3-75

• “Working With Memory” on page 3-81

• “Terminology” on page 3-84

Memory Architecture

3-2 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Architecture
The ADSP-BF54x processor supports a hierarchical memory model with
different performance and size parameters, depending on the memory
location within the hierarchy. Level 1 (L1) memories are located on the
chip and provide faster access. Level 2 (L2) memories are on-chip memory
systems (which are farther from the core) and typically have longer access
latencies. The faster L1 memories, which include instruction SRAM and
instruction ROM, data, and scratchpad memory as part of the Blackfin
core are accessed in a single cycle. The L2 memories, which include an
on-chip SRAM and off-chip synchronous and asynchronous devices, pro-
vide much higher memory space with higher latency.

The ADSP-BF54x processor has a unified 4G byte address range that
spans a combination of on-chip and off-chip memory and mem-
ory-mapped I/O resources. Of this range, 272M byte of address space is
dedicated to internal, on-chip resources. The ADSP-BF54x processor pop-
ulates portions of this internal memory space with:

• L1 and L2 static random access memories (SRAM)

• L1 instruction ROM (IROM)

• A set of memory-mapped registers (MMRs)

• A boot read-only memory (ROM)

A portion of the internal L1 SRAM can also be configured to run as cache.
The ADSP-BF54x processor also provides support for an external memory
space that includes asynchronous memory space and DDR space. See
Chapter 6, “External Bus Interface Unit,” for a detailed discussion of each
of these memory regions and the controllers that support them.

The diagram in Figure 3-1 on page 3-4 provides an overview of the
ADSP-BF54x system memory map. Note that the architecture does not
define a separate I/O space. All resources are mapped through the flat
32-bit address space. The memory is byte-addressable.

ADSP-BF54x Blackfin Processor Hardware Reference 3-3

Memory

As shown in Figure 3-1 on page 3-4, total on-chip memory for the DSP
core occupies 100 Kbytes, as follows:

• 64K byte of instruction SRAM memory:

— 48K byte of instruction SRAM

— 16K byte of instruction cache/SRAM, lockable by way or
line

• 64K byte of instruction ROM

• 64K byte of data memory:

— 32K byte of data cache/SRAM

— 32K byte of SRAM

• 4K byte of data scratch pad SRAM

• 4K byte of boot ROM

An on-chip SRAM provides 128K byte of L2 space. For systems using
some or all ADSP-BF54x processor L1 memory as cache, the on-chip L2
SRAM memory can help provide deterministic, bounded-memory access
times.

The upper portion of internal memory processor space is allocated to the
core and system MMRs of the ADSP-BF54x proceesor. Accesses to this
area are allowed only when the processor is in supervisor mode or emula-
tion mode. (For information about these modes, see the appropriate
Blackfin Processor Programming Reference.)

The lowest 4K byte of internal memory space is occupied by the boot
ROM of the ADSP-BF54x processor . Depending on the booting option
selected, the appropriate boot program is executed from this memory
space when the ADSP-BF54x processor is reset. See “System Reset and
Booting” on page 17-1.

Memory Architecture

3-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-1. Memory Map

IN
T

E
R

N
A

L
 M

E
M

O
R

Y
E

X
T

E
R

N
A

L
 M

E
M

O
R

Y

0XFFE0 0000
0XFFFF FFFF

0XFFC0 0000
0XFFB0 1000
0XFFB0 0000
0XFFA2 4000
0XFFA2 0000
0XFFA1 C000
0XFFA1 8000
0XFFA1 4000
0XFFA1 0000
0XFFA0 C000
0XFFA0 8000
0XFFA0 4000
0XFFA0 0000
0XFF90 8000
0XFF90 4000
0XFF90 0000
0XFF80 8000
0XFF80 4000
0XFF80 0000
0XFF70 1000
0XFF70 0000
0XFF61 4000
0XFF61 0000
0XFF60 C000
0XFF60 8000
0XFF60 4000
0XFF60 0000
0XFF50 8000
0XFF50 4000
0XFF50 0000
0XFF40 8000
0XFF40 4000
0XFF40 0000
0XFEB2 0000
0XFEB0 0000
0XEF00 1000
0XEF00 0000
0X3000 0000
0X2C00 0000
0X2800 0000
0X2400 0000
0X2000 0000

TOP OF LAST
DDR PAGE

(16MB-512MB)

0X0000 0000

CORE MEMORY MAP

ADSP-BF54x MEMORY MAP

RESERVED

RESERVED

RESERVED

CORE MMR REGISTERS
SYSTEM MMR REGISTERS

L1 SCRATCHPAD SRAM (4K BYTE)

RESERVED

L1 INSTRUCTION BANKB ROM (64K BYTE)

L1 INSTRUCTION SRAM/CACHE (16K BYTE)
RESERVED
L1 INSTRUCTION BANKB LOWER SRAM (16K BYTE)
L1 INSTRUCTION BANKA UPPER SRAM (16K BYTE)
L1 INSTRUCTION BANKA LOWER SRAM (16K BYTE)

L1 DATA BANKB SRAM/CACHE (16K BYTE)
L1 DATA BANKB SRAM (16K BYTE)

L1 DATA BANKA SRAM/CACHE (16K BYTE)
L1 DATA BANKA SRAM (16K BYTE)

RESERVED

RESERVED

DDR1 BANK0

DDR1 BANK1

ASYNC MEMORY BANK0 (64M BYTE)
ASYNC MEMORY BANK1 (64M BYTE)
ASYNC MEMORY BANK2 (64M BYTE)
ASYNC MEMORY BANK3 (64M BYTE)
RESERVED

RESERVED
L2 SRAM (128K BYTE)

BOOT ROM (4K BYTE)

ADSP-BF54x Blackfin Processor Hardware Reference 3-5

Memory

Within the external memory map, four banks of asynchronous memory
space and two banks of DDR memory are available. Each of the asynchro-
nous banks is 64M byte and each of the synchronous banks can be
configured 8-256 M byte.

Internal Memory
The ADSP-BF54x L1 memory system performance provides high band-
width and low latency. Because SRAMs provide deterministic access time
and very high throughput, DSP systems have traditionally achieved per-
formance improvements by providing fast SRAM on chip. The
ADSP-BF54x processor supports this memory architecture for applica-
tions that require direct control over access time.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of the L1 memories. Code can be ported to or developed for
the ADSP-BF54x processor quickly without requiring performance opti-
mization for the memory organization.

Each core’s L1 memory provides:

• A modified Harvard architecture, allowing up to four core memory
accesses per clock cycle (one 64-bit instruction fetch, two 32-bit
data loads, and one pipelined 32-bit data store)

• Simultaneous system DMA, cache maintenance, and core accesses

• SRAM access at processor clock rate (CCLK) for critical DSP algo-
rithms and fast context switching

Memory Architecture

3-6 ADSP-BF54x Blackfin Processor Hardware Reference

• Instruction and data cache options for microcontroller code, excel-
lent high-level language (HLL) support, and ease of programming
cache control instructions, such as PREFETCH and FLUSH

• Memory protection

The L1 memories operate at the core clock frequency (CCLK).

Overview of L1 Instruction SRAM

The 64 Kbyte L1 instruction SRAM consists of a dedicated 48 Kbyte
SRAM plus an additional 16 Kbyte bank which can be configured as
either SRAM or cache. The upper 16 Kbyte, L1 instruction memory can
be configured as a 4-way set-associative cache (see Figure 3-4 on page
3-16). Consequently, instructions can be brought into four different ways
of cache, decreasing the frequency of cache-line replacements and increas-
ing overall performance. When the upper 16 Kbyte of L1 memory is
configured as a cache, individual ways or lines of L1 instruction cache can
be locked down, allowing further control over the location of time-critical
code. The cache-locking concept is explained further in “Instruction
Cache Locking by Way” on page 3-22. When configured as SRAM, each
of the four 16K byte banks of memory is broken into 4K byte sub-banks
which can be independently accessed by the processor and DMA. For
more information about L1 instruction SRAM, see “L1 Instruction
SRAM” on page 3-12.

Overview of L1 Instruction ROM

The 64K byte L1 instruction ROM consists of a single 64K byte bank of
read-only memory. The instruction ROM does not have 4K byte
sub-banks which can be independently accessed by the processor and
DMA. At every processor cycle either the processor or the DMA is able to
access the instruction ROM. The instruction ROM is completely con-
tained within instruction bank B without sub-bank divisions.

ADSP-BF54x Blackfin Processor Hardware Reference 3-7

Memory

Write accesses to the instruction ROM region do not generate errors nor
do they modify the data in the ROM. They take the same number of
cycles to execute as if the write was actually occurring.

Multiple read accesses to the instruction ROM region behave as if they
were reads to a single instruction bank B sub-bank.

Overview of L1 Data SRAM

Each core on the ADSP-BF54x processor provides two 32K byte, L1 data
SRAM banks (data bank A and data bank B). Each data bank has a dedi-
cated lower 16K byte SRAM bank plus an additional upper 16K byte bank
which can be configured as SRAM or cache.

When configured as cache, the upper 16K byte bank in each L1 data bank
is a 2-way, set-associative structure. This provides two separate locations
that can hold cached data, decreasing the rate of cache-line replacements
and increasing overall performance.

If configured as SRAM, each of the two upper 16K byte banks of memory
is broken into four 4 Kbyte sub-banks which can be independently
accessed by the processor and DMA. For more information about L1 data
SRAM, see “L1 Data SRAM” on page 3-31.

Overview of Scratchpad Data SRAM
The processor provides a dedicated 4K byte bank of scratchpad data
SRAM. The scratchpad is independent of the configuration of the other
L1 memory banks and cannot be configured as cache or targeted by DMA.

Memory Architecture

3-8 ADSP-BF54x Blackfin Processor Hardware Reference

Typical applications use the scratchpad data memory where speed is criti-
cal. For example, the user and supervisor stacks should be mapped to the
scratchpad memory for the fastest context switching during interrupt
handling.

The L1 memories operate at the core clock frequency (CCLK).
Scratchpad data SRAM cannot be accessed by the DMA controller.

Overview of On-Chip L2
The on-chip level 2 (L2) memory provides 128 Kbyte of low latency,
high-bandwidth capacity. This memory system is referred to as on-chip L2
because it forms an on-chip memory hierarchy with L1 memory. On-chip
L2 provides more capacity than L1 memory, but the latency is higher. The
on-chip L2 is SRAM and cannot be configured as cache. It is capable of
storing both instructions and data. The L1 caches can be configured to
cache instructions and data located in the on-chip L2.

 L1 Instruction Memory
L1 instruction memory consists of a combination of dedicated SRAM and
banks which can be configured as SRAM or cache. For the 16 Kbyte bank
that can be either cache or SRAM, control bits in the IMEM_CONTROL regis-
ter can be used to organize all four sub-banks of the L1 instruction
memory as any of the following:

• A simple SRAM

• A 4-way, set-associative instruction cache

• A cache with as many as four locked ways

L1 instruction memory can be used only to store instructions.

ADSP-BF54x Blackfin Processor Hardware Reference 3-9

Memory

Instruction Memory Control Register
(IMEM_CONTROL)

The instruction memory control (IMEM_CONTROL) register contains control
bits for the L1 instruction memory. By default after reset, cache and
cacheability protection lookaside buffer (CPLB) address checking is dis-
abled (see “L1 Instruction Cache” on page 3-15).

When the LRUPRIORST bit is set to 1, the cached states of all CPLB_LRUPRIO
bits (see “ICPLB Data Registers (ICPLB_DATAx)” on page 3-63) are
cleared. This simultaneously forces all cached lines to be of equal (low)
importance. Cache replacement policy is based first on line importance
indicated by the cached states of the CPLB_LRUPRIO bits, and then on LRU
(least recently used). See “Instruction Cache Locking by Line” on page
3-21 for complete details. This bit must be 0 to allow the state of the
CPLB_LRUPRIO bits to be stored when new lines are cached.

Memory Architecture

3-10 ADSP-BF54x Blackfin Processor Hardware Reference

The ILOC[3:0] bits provide a useful feature only after code is manually
loaded into cache. See “Instruction Cache Locking by Way” on page 3-22.
These bits specify which ways to remove from the cache replacement pol-
icy. This has the effect of locking code present in non-participating ways.
Code in non-participating ways can still be removed from the cache using
an IFLUSH instruction. If an ILOC[3:0] bit is 0, the corresponding way is
not locked and that eay participates in cache replacement policy. If an
ILOC[3:0] bit is 1, the corresponding way is locked and does not partici-
pate in cache replacement policy.

Figure 3-2. L1 Instruction Memory Control Register

L1 Instruction Memory Control Register (IMEM_CONTROL)

Reset = 0x0000 0001

ENICPLB (Instruction CPLB
Enable)LRUPRIORST (LRU

Priority Reset)
0 - LRU priority functionality is enabled
1 - All cached LRU priority bits (LRUPRIO)

are cleared

0 - CPLBs disabled, minimal
address checking only

1 - CPLBs enabled

ILOC[3:0] (Cache way Lock)
0000 - All Ways not locked
0001 - Way0 locked, Way1, Way2, and
 Way3 not locked
1111 - All Ways locked

IMC (L1 instruction memory
Configuration)
0 - Upper 16K byte of LI

instruction memory
configured as SRAM,
also invalidates all cache
lines if previously
configured as cache

1 - Upper 16K byte of L1
instruction memory
configured as cache

0xFFE0 1004
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-11

Memory

The IMC bit reserves a portion of L1 instruction SRAM to serve as cache.
Note: Reserving memory to serve as cache does not alone enable memory
other than L1 accesses to be cached. CPLBs must also be enabled using the
EN_ICPLB bit and the CPLB descriptors (ICPLB_DATAx and ICPLB_ADDRx
registers) must specify desired memory pages as cache-enabled.

Reserving memory to serve as cache does not alone enable memory
other than L1 accesses to be cached. CPLBs must also be enabled
using the EN_ICPLB bit and the CPLB descriptors (ICPLB_DATAx and
ICPLB_ADDRx registers) must specify desired memory pages as
cache-enabled.

Instruction CPLBs are disabled by default after reset. When disabled, only
minimal address checking is performed by the L1 memory interface. This
minimal checking generates an exception to the processor whenever it
attempts to fetch an instruction from:

• Reserved (nonpopulated) L1 instruction memory space

• L1 data memory space

• MMR space

CPLBs must be disabled using this bit prior to updating their descriptors
(DCPLB_DATAx and DCPLB_ADDRx registers). Note since load store ordering is
weak (see “Ordering of Loads and Stores” on page 3-77), disabling of
CPLBs should be proceeded by a CSYNC.

When enabling or disabling cache or CPLBs, immediately follow
the write to IMEM_CONTROL with a SSYNC to ensure proper behavior.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Memory Architecture

3-12 ADSP-BF54x Blackfin Processor Hardware Reference

L1 Instruction SRAM

The ADSP-BF54x processor core reads the instruction memory through
the 64-bit-wide instruction-fetch bus. All addresses from this bus are
64-bit aligned. Each instruction fetch can return any combination of 16-,
32- or 64-bit instructions (for example, four 16-bit instructions, two
16-bit instructions and one 32-bit instruction, or one 64-bit instruction).

The DAGs cannot access L1 instruction memory directly. A DAG refer-
ence to instruction memory SRAM space generates an exception. (For
information about DAG addressing, see the appropriate Blackfin Processor
Programming Reference.)

Write access to the L1 instruction SRAM memory must be made through
the 64-bit system DMA port. Because the SRAM is implemented as a col-
lection of single-ported sub-banks, the instruction memory is effectively
dual-ported. Provided that system and core accesses do not access the same
32-bit polarity (address bits 2 match) of the same sub-bank, effective
dual-porting of the instruction memory is achieved. If both system and
core attempt to access the same 32-bit polarity (address bits 2 match) of
the same bank, the system DMA controller has priority over the core
instruction fetch.

ADSP-BF54x Blackfin Processor Hardware Reference 3-13

Memory

Table 3-1 lists the instruction memory sub-banks.

Before changing the configuration state, be sure to flush the cache
or move all modified data from the SRAM, if so configured.

Figure 3-3 on page 3-14 describes the bank architecture of the L1 instruc-
tion memory. As the figure shows, each 16K byte bank is made up of four
4K byte sub-banks.

Table 3-1. L1 Instruction Memory Sub-banks

Memory Sub-bank Memory Start Location

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

4 0xFFA0 4000

5 0xFFA0 5000

6 0xFFA0 6000

7 0xFFA0 7000

8 0xFFA0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA1 0000

13 0xFFA1 1000

14 0xFFA1 2000

15 0xFFA1 3000

Memory Architecture

3-14 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-3. L1 Instruction Memory Bank Architecture

TO EBIU (AND L2)

CACHE
TAG

CACHE
TAG

CACHE
TAG

CACHE
TAG

4 KB

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

DMA
BUFFER

DMA
BUFFER

DMA
BUFFER

EXTERNAL ACCESS BUS (EAB) 64

ON LARGER MEMORY
DERIVATIVES

ONLY

4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

4 KB 4 KB

DMA CORE BUS (DCB) 32

INSTRUCTION DATA BUS (IDB)

REGISTER ACCESS BUS (RAB)

TO
PROCESSOR
CORE

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 A

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 C

U
P

 T
O

 3
2

K
B

 S
R

A
M

 (
S

E
E

P
R

O
C

E
S

S
O

R
 H

R
M

 T
O

 S
E

E
IF

 T
H

IS
 B

A
N

K
 IS

 P
R

E
S

E
N

T
)

IN
S

T
R

U
C

T
IO

N
 B

A
N

K
 B

U
P

 T
O

 1
6

K
B

 S
R

A
M

A

N
D

 6
4K

B
 IR

O
M

16
 K

B
 C

A
C

H
E

 O
R

 S
R

A
M

INSTRUCTION
 ROM
 64KB

64

64

64

64

TO DMA CONTROLLER

64

32

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

CACHE CONTROL &
MEMORY MANAGEMENT

ADSP-BF54x Blackfin Processor Hardware Reference 3-15

Memory

L1 Instruction Cache
The L1 instruction memory may also be configured as a flexible, 4-way
set-associative instruction 16 Kbyte cache. To improve the average access
latency for critical code sections, each way of the cache can be locked inde-
pendently. When the memory is configured as cache, it cannot be accessed
directly.

When cache is enabled, only memory pages specified as cacheable by
cacheability protection lookaside buffers (CPLBs) are cached. When
CPLBs are enabled, any memory location that is accessed must have an
associated page definition available, or a CPLB exception is generated.
CPLBs are described in “Memory Protection and Properties” on page
3-54.

Figure 3-4 on page 3-16 shows the overall Blackfin processor instruction
cache organization.

Cache Lines

As shown in Figure 3-4, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component:

• The tag component incorporates a 20-bit address tag, least recently
used (LRU) bits, a valid bit, and a line lock bit.

• The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag
and data memory arrays, respectively.

Memory Architecture

3-16 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-4. Blackfin Processor Instruction Cache Organization

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 3

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32 BYTE LINE 2

LINE 127

. . .

WAY 2

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 2

WAY 1VALID

<1> <20>

TAG

LINE ADDRESS TAG
LINE

ADDRESS
INDEX

LINE OFFSET 000

<20> <7> <2> <3>

4:1 MUX

DATA

<64>

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32 BYTE LINE 1

32 BYTE LINE 0

32 BYTE LINE 5

32 BYTE LINE 4

32 BYTE LINE 3
32 BYTE LINE 2

LINE 31

. . .

WAY 0

. . .

VALID

<1> <20>

TAG

SHADED BOXES ACROSS EACH WAY CONSTITUTE A SET.

ADSP-BF54x Blackfin Processor Hardware Reference 3-17

Memory

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4 Kbyte memory
sub-bank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

The valid bit indicates the state of a cache line. A cache line is always valid
or invalid:

• Invalid cache lines have their valid bit cleared, indicating the line is
ignored during an address-tag compare operation.

• Valid cache lines have their valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

 The tag and data components of a cache line are illustrated in Figure 3-5.

Figure 3-5. Cache Line – Tag and Data Portions

TAG

LRUPRIO

LRU V

WD 3 WD 2 WD 1 WD 0

WD - 64-BIT DATA WORD

TAG - 20-BIT ADDRESS TAG
LRUPRIO - LRU PRIORITY BIT FOR LINE LOCKING
LRU - LRU STATE
V - VALID BIT

Memory Architecture

3-18 ADSP-BF54x Blackfin Processor Hardware Reference

Cache Hits and Misses

A cache hit occurs when the address for an instruction-fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction-fetch address to the address tags of valid lines currently stored
in a cache set. The cache set is selected, using bits 9 through 5 of the
instruction-fetch address. If the address-tag compare operation results in a
match, a cache hit occurs. If the address-tag compare operation does not
result in a match, a cache miss occurs.

When a cache hit occurs, the target 64-bit instruction word is first sent to
the instruction alignment unit (IAU) where it is stored in one of two
64-bit instruction buffers.

When a cache miss occurs, the instruction memory unit generates a cache
line-fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the on-chip L2 or external memory access
is the address of the target instruction word. When a cache miss occurs,
the core halts until the target instruction word is returned from on-chip
L2 or external memory.

 Cache-Line Fills

A cache-line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer (a burst of four 64-bit words of data) on its on-chip L2 or
external read-data port. The address for the read transfer is the address of
the target instruction word. When responding to a line-read request from
the instruction memory unit, the on-chip L2 or external memory returns
the target instruction word first. After it has returned the target instruc-
tion word, the next three words are fetched in sequential address order.
This fetch wraps around if necessary, as shown in Table 3-2.

ADSP-BF54x Blackfin Processor Hardware Reference 3-19

Memory

Line-Fill Buffer

As the new cache line is retrieved from on-chip L2 or external memory,
each 64-bit word is buffered into one of two four-entry line-fill buffer
before it is written to a 4 Kbyte memory bank within L1 memory. The
line-fill buffer allows the core to access the data from the new cache line as
the line is being retrieved from on-chip L2 or external memory, rather
than having to wait until the line is written into the cache.

Two separate line-fill buffers are provided to allow a load from slow exter-
nal memory to continue without causing jumps to higher speed on-chip
memory other than L1 to stall. The CPLB_MEMLEV bit in the memory
pages CPLBs determines which line buffer is used. See “Memory Protec-
tion and Properties” on page 3-54.

Cache-Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the valid bits for the selected set are
examined by a cache-line replacement unit to determine the entry to use
for the new cache line, that is, whether to use Way0, Way1, Way2, or
Way3 (see Figure 3-4, “Blackfin Processor Instruction Cache Organiza-
tion,” on page 3-16).

Table 3-2. Cache-Line Word-Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

Memory Architecture

3-20 ADSP-BF54x Blackfin Processor Hardware Reference

The cache-line replacement unit first checks for invalid entries (that is,
entries having its valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
the following priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for
the new cache line.

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is
selected for the new cache line.

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

ADSP-BF54x Blackfin Processor Hardware Reference 3-21

Memory

Instruction Cache Management
The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRs, it is possible to initialize the instruction tag and data arrays indi-
rectly and provide a mechanism for instruction cache test, initialization,
and debug.

The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

For more information, see “Instruction Cache Invalidation” on page 3-23.

Instruction Cache Locking by Line

The CPLB_LRUPRIO bits in the ICPLB_DATAx registers (see “Memory Protec-
tion and Properties” on page 3-54) are used to enhance control over which
code remains resident in the instruction cache. When a cache line is filled,
the state of this bit is stored along with the line’s tag. It is then used in
conjunction with the LRU (least recently used) policy to determine which
way is victimized when all cache ways are occupied when a new cacheable
line is fetched. This bit indicates that a line is of either “low” or “high”
importance. In a modified LRU policy, a high can replace a low, but a low
cannot replace a high. If all ways are occupied by highs, an otherwise
cacheable low will still be fetched for the core, but will not be cached.
Fetched highs seek to replace unoccupied ways first, then least recently
used lows next, and finally other highs using the LRU policy. Lows can
only replace unoccupied ways or other lows, and do so using the LRU pol-
icy. If all previously cached highs ever become less important, they may be
simultaneously transformed into lows by writing to the LRUPRIRST bit in
the IMEM_CONTROL register (see page 3-9).

Memory Architecture

3-22 ADSP-BF54x Blackfin Processor Hardware Reference

Instruction Cache Locking by Way

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four ways of the instruction cache. When the cache is
enabled, L1 instruction memory has four ways available. Setting the lock
bit for a specific way prevents that way from participating in the LRU
replacement policy. Thus, a cached instruction, with its way locked, can
only be removed using an IFLUSH instruction, or “backdoor” MMR
assisted manipulation of the tag array.

An example sequence is provided to demonstrate how to lock down Way0:

• If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Invalidation” on page 3-23).

• Disable interrupts, if required, to prevent Interrupt Service Rou-
tines (ISRs) from potentially corrupting the locked cache.

• Set the locks for the other ways of the cache by setting ILOC[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

• Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1], and set ILOC[0].
The critical code (and the instructions which set ILOC[0]), are now
locked into Way0.

• Re-enable interrupts, if required.

If all four ways of the cache are locked, then further allocation into the
cache is prevented.

ADSP-BF54x Blackfin Processor Hardware Reference 3-23

Memory

Instruction Cache Invalidation

The instruction cache can be invalidated by an address, cache line, or a
complete cache. The IFLUSH instruction can explicitly invalidate cache
lines based on their line addresses. The target address of the instruction is
generated from the P registers. Because the instruction cache should not
contain modified (dirty) data, the cache line is simply invalidated.

In the following example, the P2 register contains the address of a valid
memory location. If this address is brought into cache, the corresponding
cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:

iflush [p2] ; /* Invalidate cache line containing address

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the ADSP-BF54x processor memory map, it is impractical to use this
instruction to invalidate an entire bank of cache. A second, faster tech-
nique can be used to invalidate an entire cache bank directly. This second
technique directly invalidates valid bits by setting the invalid bit of each
cache line to the invalid state. To implement this technique, additional
MMRs (ITEST_COMMAND and ITEST_DATA[1:0]) are available to allow arbi-
trary read/write of all cache entries directly.

For invalidating the complete instruction cache, a third method is avail-
able. By clearing the IMC bit in the IMEM_CONTROL register (see Figure 3-2
on page 3-10), all valid bits in the instruction cache are set to the invalid
state. A second write to the IMEM_CONTROL register to set the IMC bit then
configures the instruction memory as cache again. An SSYNC should be run
before invalidating the cache and a CSYNC should be inserted after each of
these operations.

Instruction Test Registers

3-24 ADSP-BF54x Blackfin Processor Hardware Reference

Instruction Test Registers
The Instruction test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and to provide a mechanism for instruction cache test, initial-
ization, and debug.

When the instruction test command register (ITEST_COMMAND) is used, the
L1 cache data or tag arrays are accessed, and data is transferred through
the instruction test data registers (ITEST_DATA[1:0]). The ITEST_DATAx
registers contain either the 64-bit data that the access is to write to or the
64-bit data that was read during the access. The lower 32 bits are stored in
the ITEST_DATA[0] register, and the upper 32 bits are stored in the
ITEST_DATA[1] register. When the tag arrays are accessed, ITEST_DATA[0]
is used. Graphical representations of the ITEST registers begin with
Figure 3-6 on page 3-25.

The ITEST registers are described in Table 3-3.

Table 3-3. ITEST Registers

Name Description/ Refer to

ITEST_COMMAND Instruction test command register
For more information, see “ITEST_COMMAND Register”
on page 3-25.

ITEST_DATA1 Instruction test data 1 register
For more information, see “ITEST_DATA1 Register” on
page 3-26.

ITEST_DATA0 Instruction test data 0 register
For more information, see “ITEST_DATA0 Register” on
page 3-27.

ADSP-BF54x Blackfin Processor Hardware Reference 3-25

Memory

Access to these registers is possible only in supervisor or emulation mode.
When writing to ITEST registers, always write to the ITEST_DATAx registers
first, then the ITEST_COMMAND register. When reading from ITEST registers,
reverse the sequence—read the ITEST_COMMAND register first, then the
ITEST_DATAx registers.

ITEST_COMMAND Register
When the instruction test command register (ITEST_COMMAND) is written
to, the L1 cache data or tag arrays are accessed, and the data is transferred
through the instruction test data registers (ITEST_DATA[1:0]).

Figure 3-6. Instruction Test Command Register

Instruction Test Command Register (ITEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3
(Address bits [13:12] in
SRAM)

SBNK[1:0] (Sub-bank
Access)

Reset = 0x0000 0000

RW (Read/Write Access)

WAYSEL[1:0] (Access way)
00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3
(Address bits [11:10] in SRAM)

0 - Read access
1 - Write access

TAGSELB (Array Access)
0 - Access tag array
1 - Access data array
DW[1:0] (Double Word
Index)
Selects one of four 64-bit
double words in a 256-bit
line (Address bits [4:3] in
SRAM)

SET[4:0] (Set Index)
Selects one of 32 sets
(Address bits [9:5] in SRAM)

0xFFE0 1300
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction Test Registers

3-26 ADSP-BF54x Blackfin Processor Hardware Reference

ITEST_DATA1 Register
Instruction test data registers (ITEST_DATA[1:0]) are used to access L1
cache data arrays. They contain either the 64-bit data that the access is to
write to or the 64-bit data that the access is to read from. The instruction
test data 1 register (ITEST_DATA1) stores the upper 32 bits.

Figure 3-7. Instruction Test Data 1 Register

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores
the upper 32 bits of 64-bit words of instruction data to be written to or read from by the
access. See “Cache Lines” on page 3-15.

0xFFE0 1404
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-27

Memory

ITEST_DATA0 Register
The instruction test data 0 register (ITEST_DATA0) stores the lower 32 bits
of the 64-bit data to be written to or read from by the access. The
ITEST_DATA0 register is also used to access tag arrays. This register also
contains the valid and dirty bits, which indicate the state of the cache line.

Figure 3-8. Instruction Test Data 0 Register

Instruction Test Data 0 Register (ITEST_DATA0)

Reset = Undefined

Tag[19:4]

Tag[3:2]

Tag[1:0]

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 3-15.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of the
physical address. See “Cache Lines” on page 3-15.

Physical address

Physical address

Physical address

Reset = Undefined

Valid
0 - Cache line is not valid
1 - Cache line contains valid
 data
LRUPRIO
0 - LRUPRIO is cleared for this
 entry
1 - LRUPRIO is set for this entry.
See “ICPLB Data Registers
(ICPLB_DATAx)” on page 3-63
and “Instruction Memory Control
Register (IMEM_CONTROL)” on
page 3-9.

0xFFE0 1400

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

L1 Data Memory

3-28 ADSP-BF54x Blackfin Processor Hardware Reference

L1 Data Memory
The L1 data SRAM/cache is constructed from single-ported subsections,
but organized to reduce the likelihood of access collisions. This organiza-
tion results in apparent multiported behavior. When there are no
collisions, this L1 data traffic could occur in a single core clock cycle:

• Two 32-bit DAG loads

• One pipelined 32-bit DAG store

• One 64-bit DMA I/O

• One 64-bit cache fill/victim access

L1 data memory can be used only to store data.

Data Memory Control Register (DMEM_CONTROL)
The data memory control register (DMEM_CONTROL) contains control bits for
the L1 data memory. See Figure 3-9 on page 3-29.

The PORT_PREF1 bit selects the data port used to process DAG1
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to memory other than L1 full.

The PORT_PREF0 bit selects the data port used to process DAG0
non-cacheable L2 fetches. Cacheable fetches are always processed by the
data port physically associated with the targeted cache memory. Steering
DAG0, DAG1, and cache traffic to different ports optimizes performance
by keeping the queue to memory other than L1 full.

ADSP-BF54x Blackfin Processor Hardware Reference 3-29

Memory

For optimal performance with dual DAG reads, DAG0 and DAG1 should
be configured for different ports. For example, if PORT_PREF0 is configured
as 1, then PORT_PREF1 should be programmed to 0.

Figure 3-9. L1 Data Memory Control Register

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

 address checking only
1 - CPLBs enabled
DMC[1:0] (L1 data memory
Configure)

DCBS (L1 Data Cache Bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11 for ADSP-BF54x.
Determines whether Address bit A[14] or A[23] is
used to select the L1 data cache bank.
0 - Address bit 14 is used to select Bank A or B

for cache access. If bit 14 of address is 1,
select L1 data memory data bank A; if bit 14
of address is 0, select L1 data memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 data memory data bank A; if bit 23 of
address is 0, select L1 data memory Data
Bank B.

See “Example of Mapping Cacheable Address
Space into Data Banks” on page 3-35.

00 - Both data banks are
 SRAM, also invalidates all

 cache lines if previously
 configured as cache

01 - Reserved
10 - data bank A is lower

 16K byte SRAM, upper
 16K byte cache
 data bank B is SRAM

11 - Both data banks are
 lower 16K byte SRAM,
 upper 16K byte cache

0xFFE0 0004

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 0 0 0 0 0 0 0 0 0 0

L1 Data Memory

3-30 ADSP-BF54x Blackfin Processor Hardware Reference

The DCBS bit provides some control over which addresses alias into the
same set. This bit can be used to affect which addresses tend to remain res-
ident in cache by avoiding victimization of repetitively used sets. It has no
affect unless both data bank A and data bank B are serving as cache (bits
DMC[1:0] in this register are set to 11).

The ENDCPLB bit is used to enable/disable the 16 cacheability protection
lookaside buffers (CPLBs) used for data (see “L1 Data Cache” on page
3-32). Data CPLBs are disabled by default after reset. When disabled,
only minimal address checking is performed by the L1 memory interface.
This minimal checking generates an exception when the processor:

• Addresses nonexistent (reserved) L1 memory space

• Attempts to perform a nonaligned memory access

• Attempts to access MMR space either using DAG1 or when in user
mode

• Attempts to write the on-chip boot ROM

CPLBs must be disabled using this bit prior to updating their descriptors
(registers DCPLB_DATAx and DCPLB_ADDRx). Note that since load store order-
ing is weak (see “Ordering of Loads and Stores” on page 3-77), disabling
CPLBs should be preceded by a CSYNC instruction, and enabling CPLBs
should be followed by a CSYNC instruction in order to ensure predictable
behavior.

When enabling or disabling cache or CPLBs, immediately follow
the write to DMEM_CONTROL with a SSYNC to ensure proper behavior.

By default after reset, all L1 data memory serves as SRAM. The DMC[1:0]
bits can be used to reserve portions of this memory to serve as cache
instead. Reserving memory to serve as cache does not enable memory
other than L1 accesses to be cached. To do this, CPLBs must also be

ADSP-BF54x Blackfin Processor Hardware Reference 3-31

Memory

enabled (using the ENDCPLB bit) and CPLB descriptors (registers
DCPLB_DATAx and DCPLB_ADDRx) must specify chosen memory pages as
cache-enabled.

By default after reset, cache and CPLB address checking is disabled.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

L1 Data SRAM
Accesses to SRAM do not collide unless they are to the same 32-bit word
polarity (address bits 2 match), the same 4K byte sub-bank (address bits
13 and 12 match), the same 16K byte half-bank (address bits 16 match),
and the same bank (address bits 21 and 20 match). When an address colli-
sion is detected, access is nominally granted first to the DAGs, then to the
store buffer, and finally to the DMA and cache fill/victim traffic. To
ensure adequate DMA bandwidth, DMA is given highest priority if it is
blocked for more than 16 sequential core clock cycles, or if a second DMA
I/O is queued before the first DMA I/O is processed.

L1 Data Memory

3-32 ADSP-BF54x Blackfin Processor Hardware Reference

Table 3-4 shows how the subbank organization is mapped into memory.

Figure 3-10 on page 3-33 shows the L1 data memory architecture.

L1 Data Cache
For definitions of cache terminology, see “Terminology” on page 3-84.

When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache.

Table 3-4. L1 Data Memory SRAM Sub-bank Start Addresses

Memory Bank and Sub-bank Start Address

Data Bank A, Sub-bank 0 0xFF80 0000

Data Bank A, Sub-bank 1 0xFF80 1000

Data Bank A, Sub-bank 2 0xFF80 2000

Data Bank A, Sub-bank 3 0xFF80 3000

Data Bank A, Sub-bank 4 0xFF80 4000

Data Bank A, Sub-bank 5 0xFF80 5000

Data Bank A, Sub-bank 6 0xFF80 6000

Data Bank A, Sub-bank 7 0xFF80 7000

Data Bank B, Sub-bank 0 0xFF90 0000

Data Bank B, Sub-bank 1 0xFF90 1000

Data Bank B, Sub-bank 2 0xFF90 2000

Data Bank B, Sub-bank 3 0xFF90 3000

Data Bank B, Sub-bank 4 0xFF90 4000

Data Bank B, Sub-bank 5 0xFF90 5000

Data Bank B, Sub-bank 6 0xFF90 6000

Data Bank B, Sub-bank 7 0xFF90 7000

ADSP-BF54x Blackfin Processor Hardware Reference 3-33

Memory

Figure 3-10. L1 Data Memory Architecture for ADSP-BF54x

READ

VICTIM BUFFER
8 X 32 BIT

LOW PRIORITY
WRITE BUFFER

4 X 32 BIT

DMA
BUFFER

DMA

WRITE

L2 MEMORY

DMA
EXTERNAL MEMORY

32 BIT

32 BIT

32 BIT

64 BIT

READ

VICTIM BUFFER
8 X 32 BIT

HIGH PRIORITY
WRITE BUFFER
2 TO 8 X 32 BIT

DMA
BUFFER

DMA

WRITE

32 BIT

32 BIT

32 BIT

64 BIT

STORE BUFFER
6 X 32 BIT

DAG0 LOAD

DAG1 LOAD

DAG1/0 STORE

TO PROCESSOR
CORE

SRAM SRAM OR CACHE IO BUFFERS

S
C

R
A

T
C

H
P

A
D

D
A

T
A

B
A

N
K

A

P
O

R
T

A
P

O
R

T
B

D
A

T
A

B
A

N
K

B

4 KB 4 KB

4 KB 4 KB

4 KB

4 KB 4 KB

4 KB 4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

CACHE
TAG

4 KB

32
B

IT
32

B
IT

32
B

IT

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

HIGH PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

LOW PRIORITY
LINE FILL
BUFFER

8 X 32 BIT

HIGH PRIORITY

LOW PRIORITY

L1 Data Memory

3-34 ADSP-BF54x Blackfin Processor Hardware Reference

For the ADSP-BF54x processor, the upper 16K byte is used. Unlike
instruction cache, which is 4-way set associative, data cache is 2-way
set-associative. When two banks are available and enabled as cache, addi-
tional sets rather than ways are created. When both data bank A and data
bank B have memory serving as cache, the DCBS bit in the DMEM_CONTROL
register may be used to control which half of all address space is handled
by which bank of cache memory. The DCBS bit selects either address bit 14
or 23 to steer traffic between the cache banks. This provides some control
over which addresses alias into the same set. It may therefore be used to
affect which addresses tend to remain resident in cache by avoiding vic-
timization of repetitively used sets.

Accesses to cache do not collide unless they are to the same 4K byte sub-
bank (address bits 13 and 12 match), the same half bank (address bits 16
match), and to the same bank (address bits 21 and 20 match). Cache has
less apparent multiported behavior due to the overhead in maintaining
tags. When cache addresses collide, access is granted first to the DTEST reg-
ister accesses, then to the store buffer, and finally to cache fill/victim
traffic.

Three different cache modes are available:

• Write-through with cache line allocation only on reads

• Write-through with cache line allocation on both reads and writes

• Write-back which allocates cache lines on both reads and writes

Cache mode is selected by the DCPLB descriptors (see “Memory Protection
and Properties” on page 3-54). Any combination of these cache modes can
be used simultaneously since cache mode is selectable for each memory
page independently.

ADSP-BF54x Blackfin Processor Hardware Reference 3-35

Memory

If cache is enabled (controlled by bits DMC[1:0] in the DMEM_CONTROL regis-
ter), data CPLBs should also be enabled (controlled by ENDCPLB bit in the
DMEM_CONTROL register). Only memory pages specified as cacheable by data
CPLBs are cached. The default behavior is no caching when data CPLBs
are disabled.

Erroneous behavior can result when MMR space is configured as
cacheable by data CPLBs, or when data banks serving as L1 SRAM
are configured as cacheable by data CPLBs.

Example of Mapping Cacheable Address
Space into Data Banks

An example of how the cacheable address space maps into two data banks
follows.

When both banks are configured as cache on the ADSP-BF54x processor,
they operate as two independent, 16 Kbyte, 2-way set associative caches
that can be independently mapped into the Blackfin processor address
space.

L1 Data Memory

3-36 ADSP-BF54x Blackfin Processor Hardware Reference

If both data banks are configured as cache, the DCBS bit in the
DMEM_CONTROL register designates address bit A[14] or A[23] as the cache
selector. Address bit A[14] or A[23] selects the cache implemented by data
bank A or the cache implemented by data bank B.

• If DCBS = 0, then A[14] is part of the address index, and all
addresses in which A[14] = 0 use data bank A. All addresses in
which A[14] = 1 use data bank B.

In this case, A[23] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

• If DCBS = 1, then A[23] is part of the address index, and all
addresses where A[23] = 0 use data bank A. All addresses where
A[23] = 1 use data bank B.

In this case, A[14] is treated as merely another bit in the address
that is stored with the tag in the cache and compared for hit/miss
processing by the cache.

ADSP-BF54x Blackfin Processor Hardware Reference 3-37

Memory

The result of choosing DCBS = 0 or DCBS = 1 is:

• If DCBS = 0, A[14] selects data bank A instead of data bank B.

Alternating 16K byte pages of memory map into each of the two
16K byte caches implemented by the two data banks.
Consequently:

Any data in the first 16K byte of memory could be stored
only in data bank A.

Any data in the next address range (16K byte through 32K
byte) – 1 could be stored only in data bank B.

Any data in the next range (32K byte through 48K byte) – 1
would be stored in data bank A.

Alternate mapping would continue.

As a result, the cache operates as if it were a single, contiguous,
2-way set associative 32K byte cache. Each way is 16K byte long,
and all data elements with the same first 14 bits of address index to
a unique set in which up to two elements can be stored (one in each
way).

• If DCBS = 1, A[23] selects data bank A instead of data bank B.

With DCBS = 1, the system functions more like two independent
caches, each a 2-way set associative 16K byte cache. Each Bank
serves an alternating set of 8M byte blocks of memory. For exam-
ple, data bank A caches all data accesses for the first 8M byte of

L1 Data Memory

3-38 ADSP-BF54x Blackfin Processor Hardware Reference

memory address range. That is, every 8M byte of range vies for the
two line entries (rather than every 16K byte repeat). Likewise, data
bank B caches data located above 8M byte and below 16M byte.

For example, if the application is working from a data set that is 1
Mbyte long and located entirely in the first 8M byte of memory, it
is effectively served by only half the cache, that is, by data bank A
(a 2-way set associative 16K byte cache). In this instance, the appli-
cation never derives any benefit from data bank B.

For most applications, it is best to operate with DCBS = 0.

However, if the application is working from two data sets, located in two
memory spaces at least 8 Mbyte apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual MAC operations in which both DAGs are accessing data on every
cycle, by placing DAG0’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

• DAG0 gets its data from data bank A for all of its accesses,

• DAG1 gets its data from data bank B.

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

Figure 3-11 shows an example of how mapping is performed when
DCBS = 1.

The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

ADSP-BF54x Blackfin Processor Hardware Reference 3-39

Memory

Data Cache Access

The cache controller tests the address from the DAGs against the tag bits.
If the logical address is present in L1 cache, a cache hit occurs, and the
data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
through the system interface. The line index and replacement policy for
the cache controller determines the cache tag and data space that are allo-
cated for the data coming back from memory other than L1.

Figure 3-11. Data Cache Mapping When DCBS = 1

DATA BANK B

DATA BANK A

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

L1 Data Memory

3-40 ADSP-BF54x Blackfin Processor Hardware Reference

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line and the cache is configured for write-back storage, the con-
troller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data
write over the old line.

• If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data.

If the line is dirty, the current contents of the cache are copied back
to memory other than L1 before new data is written to the cache.

The processor provides victim buffers and line fill buffers. These buffers
are used if a cache load miss generates a victim cache line that should be
replaced. The line fill operation goes to memory other than L1. The data
cache performs the line fill request to the system as critical (or requested)
word first, and forwards that data to the waiting DAG as it updates the
cache line. In other words, the cache performs critical word forwarding.

The data cache supports hit-under-a-store miss, and hit-under-a-prefetch
miss. In other words, on a write-miss or execution of a PREFETCH instruc-
tion that misses the cache (and is to a cacheable region), the instruction
pipeline incurs a minimum of a four-cycle stall. Furthermore, a subse-
quent load or store instruction can hit in the L1 cache while the line fill
completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
data memory cache and generates a high-latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “System Interrupts” on page 4-1.

ADSP-BF54x Blackfin Processor Hardware Reference 3-41

Memory

Cache Write Method

Cache write memory operations can be implemented by using either a
write-through method or a write-back method:

• For each store operation, write-through caches initiate a write to
memory other than L1 immediately upon the write to cache.

If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to memory other than L1.

• A write-back cache does not write to memory other than L1 until
the line is replaced by a load operation that needs the line.

The L1 data memory employs a full-cache, line-width copyback
buffer on each data bank.

Write Buffers

Two separate write buffers are provided. These buffers allow stores to slow
external memory to continue without causing stores to higher-speed
on-chip memory other than L1 to stall. Which buffer is used is deter-
mined by the CPLB_MEMLEV bit in the data memory page’s CPLBs. See
“Memory Protection and Properties” on page 3-54.

These two write buffers in the L1 data memory accept all stores with each
cache inhibited or store-through protection.

An SSYNC instruction flushes the write buffers.

L1 Data Memory

3-42 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupt Priority Register (IPRIO) and Write Buffer Depth

The interrupt priority register (IPRIO) can be used to control the size of
the high priority write buffer on port A (see “L1 Data Memory Architec-
ture for ADSP-BF54x” on page 3-33).

The IPRIO[3:0] bits can be programmed to reflect the low priority inter-
rupt watermark. When an interrupt occurs, causing the processor to
vector from a low priority interrupt service routine to a high priority inter-
rupt service routine, the size of the low priority write buffer increases from
two to eight 32-bit words deep. This allows the interrupt service routine
to run and post writes without an initial stall, in the case where the low

Figure 3-12. Interrupt Priority Register

Interrupt Priority Register (IPRIO)

Reset = 0x0000 0000

IPRIO_MARK (Priority
Watermark)
0000 - Default, all interrupts

are low priority
0001 - Interrupts 15 through 1

are low priority, interrupt
0 is considered high
priority

0010 - Interrupts 15 through 2
are low priority,
interrupts 1 and 0 are
considered high priority

...
1110 - Interrupts 15 and 14

are low priority,
interrupts 13 through 0
are considered high
priority

1111 - Interrupt 15 is low
priority, all others are
considered high priority

0xFFE0 2110
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 3-43

Memory

priority write buffer was already filled in the low priority interrupt rou-
tine. This is most useful when posted writes are to a slow external memory
device. When returning from a high priority interrupt service routine to a
low priority interrupt service routine or user mode, the core stalls until the
write buffer has completed the necessary writes to return to a two-deep
state. By default, the low priority write buffer is a fixed two-deep FIFO.

Data Cache Control Instructions

The processor defines three data cache control instructions that are acces-
sible in user and supervisor modes. The instructions are PREFETCH, FLUSH,
and FLUSHINV.

• PREFETCH (data cache prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions like a
NOP.

• FLUSH (data cache flush) causes the data cache to synchronize the
specified cache line with memory other than L1. If the cached data
line is dirty, the instruction writes the line out and marks the line
clean in the data cache. If the specified data cache line is already
clean or does not exist, FLUSH functions like a NOP.

• FLUSHINV (data cache line flush and invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to memory other than
L1. The valid bit in the cache line is then cleared. If the line is not
in the cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Test Registers

3-44 ADSP-BF54x Blackfin Processor Hardware Reference

Data Cache Invalidation

Besides the FLUSHINV instruction, two additional methods are available to
invalidate the data cache when flushing is not required. The first tech-
nique directly invalidates valid bits by setting the Invalid bit of each cache
line to the invalid state. To implement this technique, additional MMRs
(DTEST_COMMAND and DTEST_DATA[1:0]) are available to allow arbitrary
reads/writes of all the cache entries directly.

For invalidating the complete data cache, a second method is available. By
clearing the DMC[1:0] bits in the DMEM_CONTROL register (see Figure 3-9 on
page 3-29), all valid bits in the data cache are set to the invalid state. A
second write to the DMEM_CONTROL register sets the DMC[1:0] bits to their
previous state then configures the data memory back to its previous
cache/SRAM configuration. An SSYNC instruction should be run before
invalidating the cache and a CSYNC instruction should be inserted after
each of these operations.

Data Test Registers
Like L1 instruction memory, L1 data memory contains additional MMRs
to allow arbitrary reads/writes of all cache entries directly. The registers
provide a mechanism for data cache test, initialization, and debug.

When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
data test data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] registers
contain the 64-bit data to be written, or they contain the destination for
the 64-bit data read. The lower 32 bits are stored in the DTEST_DATA[0]
register and the upper 32 bits are stored in the DTEST_DATA[1] register.
When the tag arrays are accessed, the DTEST_DATA[0] register is used.

A CSYNC instruction is required after writing the DTEST_COMMAND
MMR.

ADSP-BF54x Blackfin Processor Hardware Reference 3-45

Memory

The DTEST registers are described in the following subsections.

Access to these registers is possible only in supervisor or emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register.

Data Test Command Register (DTEST_COMMAND)
When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATA[1:0]).

The data/instruction access bit allows direct access by way of the
DTEST_COMMAND MMR to L1 instruction SRAM. Note that L1
instruction ROM is not directly accessible. Instruction ROM is
accessible only through instruction fetches or DMA accesses.

Table 3-5. DTEST Registers

Name Description/ Refer to

DTEST_COMMAND Data test command register
For more information, see “Data Test Command Register
(DTEST_COMMAND)” on page 3-45.

DTEST_DATA1 Data test data 1 register
For more information, see “Data Test Data 1 Register
(DTEST_DATA1)” on page 3-47.

DTEST_DATA0 Data test data 0 register
For more information, see “Data Test Data 0 Register
(DTEST_DATA0)” on page 3-47.

Data Test Registers

3-46 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-13. Data Test Command Register

Data Test Command Register (DTEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3

Sub-bank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access
0 - Access Data Bank A / instruction memory 0xFFA0 0000
1 - Access Data Bank B/ instruction memory 0xFFA0 8000

Data Cache Select/
Address Bit 14

0xFFE0 0300

0 - Reserved for data memory Access /
 Instruction bit 14= 0
1 - Selects Data Cache Bank /
 Instruction bit 14 = 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-47

Memory

Data Test Data 1 Register (DTEST_DATA1)
Data test data registers (DTEST_DATA[1:0]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The data
test data 1 register (DTEST_DATA1) stores the upper 32 bits.

Data Test Data 0 Register (DTEST_DATA0)
The data test data 0 register (DTEST_DATA0) stores the lower 32 bits of the
64-bit data to be written, or it contains the lower 32 bits of the destina-
tion for the 64-bit data read.

The DTEST_DATA0 register is also used to access the tag arrays and contains
the valid and dirty bits, which indicate the state of the cache line.

Figure 3-14. Data Test Data 1 Register

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Data Test Registers

3-48 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-15. Data Test Data 0 Register

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

Tag[19:4]

Tag[3:2]

Tag

Dirty
0 - Cache line unmodified

since it was copied from
source memory

1 - Cache line modified
after it was copied
from source memory

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bit 11 of the physical address. See “Cache Lines” on page 3-15.

Physical address

Physical address

Physical address
LRU
0 - Way0 is the least
recently used
1 - Way1 is the least
recently used

Reset = Undefined0xFFE0 0400
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-49

Memory

On-Chip Level 2 (L2) Memory
Configured as SRAM, the on-chip Level 2 (L2) memory of the
ADSP-BF54x processor provides 128 Kbyte of low latency, high band-
width storage capacity. For systems that use some ADSP-BF54x processor
L1 memory as cache, the on-chip L2 SRAM memory system can help pro-
vide deterministic, bounded memory access times.

Simultaneous access to the multi-banked, on-chip memory other than L1
architecture from the cores and system DMA can occur in parallel, pro-
vided they access different banks. A fixed-priority arbitration scheme
resolves conflicts. The on-chip system DMA controllers share a dedicated
32-bit data path into the memory other than L1 system. This interface
operates at SCLK frequency. Dedicated L2 access from the processor core is
also supported.

The processor core has a dedicated, low latency, 64-bit data path into the
L2 SRAM memory. At a core clock frequency of 600 MHz, the peak data
transfer rate across this interface is 4.8G byte/second.

On-Chip L2 Bank Access
The L2 is divided into eight separate 16K sub-banks. Two L2 access ports,
a processor core port and a system port, are provided to allow concurrent
access to the L2, provided the two ports access different memory
sub-banks. If simultaneous access to the same memory sub-bank is
attempted, collision detection logic in the L2 provides arbitration. This is
a fixed priority arbiter; the DMA port always has the highest priority,
unless the core is granted access to the sub-bank for a burst transfer. In
this case, the L2 finishes the burst transfer before the system bus is granted
access.

On-Chip Level 2 (L2) Memory

3-50 ADSP-BF54x Blackfin Processor Hardware Reference

Latency
When cache is enabled, the bus between the core and L2 is fully pipelined
for contiguous burst transfers. The cache line fill from on-chip memory
behaves the same for instruction and data fetches. Operations that miss
the cache trigger a cache line replacement. This replacement fills one
256-bit (32-byte) line with four 64-bit reads. Under this condition, the L1
cache line fills from the L2 SRAM in 9+2+2+2=15 cycles. In other words,
after nine core cycles, the first 64-bit (8-byte) fill is available for the pro-
cessor. Figure 3-16 shows an example of L2 latency with cache on.

In this example, at the end of 15 core cycles, 32 bytes of instructions or
data have been brought into cache and are available to the sequencer. If all
the instructions contain 16 bits, sixteen instructions are brought into
cache at the end of 15 cycles. In addition, the first instruction that is part

Figure 3-16. L2 Latency With Cache On

64 BITS

E F G H

I J K L
M N O P

A B C DA B C D

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+9 ABCD READY
TO EXECUTE

T+11 EFGH READY
TO EXECUTE

T+13 IJKL READY
TO EXECUTE

T+15 MNOP READY
TO EXECUTE

T+10 A EXECUTES

T+11 B EXECUTES

T+12 C EXECUTES

T+13 D EXECUTES

L2 MEMORY

T+15 F EXECUTES

T+14 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT

NOTE: AFTER F EXECUTES, GHIJKLMNOP
EXECUTE ON CONSECUTIVE CYCLES.

AFTER P IS IN PIPELINE,
NEW CACHE LINE FILL IS INITIATED.

CYCLES

64 BITS 64 BITS 64 BITS

T+9 T+11 T+15T+13

EACH INSTRUCTION FETCH IS 32 BYTES

INSTRUCTION ALIGNMENT UNIT

ADSP-BF54x Blackfin Processor Hardware Reference 3-51

Memory

of the cache line fill executes on the tenth cycle; the second instruction
executes on the eleventh cycle, and the third instruction executes on the
twelfth cycle—all of them in parallel with the cache line fill.

Each cache line fill is aligned on a 32-byte boundary. When the requested
instruction or data is not 32-byte aligned, the requested item is always
loaded in the first read; each read is forwarded to the core as the line is
filled. Sequential memory accesses miss the cache only when they reach
the end of a cache line.

When on-chip L2 is configured as non-cacheable, instruction fetches and
data fetches occur in 64-bit fills. In this case, each fill takes seven core
cycles to complete. As shown in Figure 3-17 on page 3-52, on-chip L2 is
configured as non-cacheable. To illustrate the concept of L2 latency with
cache off, simple instructions are used that do not require additional
external data fetches. In this case, consecutive instructions are issued on
consecutive cycles if multiple instructions are brought into the core in a
given fetch.

On-Chip Level 2 (L2) Memory

3-52 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 3-17. L2 Latency With Cache Off

64 BITS

E F G H
A B C D

I J K L

A B C D

INSTRUCTION ALIGNMENT UNIT

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+9 ABCD READY
TO EXECUTE

T+10 A EXECUTES

T+11 B EXECUTES

T+12 C EXECUTES

T+13 D EXECUTES

L2 MEMORY

T+18 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT
CYCLES T+9

EACH INSTRUCTION FETCH IS 64 BITS

T

ADSP-BF54x Blackfin Processor Hardware Reference 3-53

Memory

One Time Programmable Memory
The ADSP-BF54x processor also includes an on-chip OTP memory array
which provides 64K bits of non-volatile memory that can be programmed
by the customer only one time. It includes the array and logic to support
read access and programming. A mechanism for error correction is pro-
vided. Additionally, its pages can be write protected. The OTP is not part
of the Blackfin processor linear memory map. OTP memory is not
accessed directly using the Blackfin processor memory map, rather, it is
accessed through four 32-bit wide registers (OTP_DATA0-3) which act as the
OTP memory read/write buffer.

Because OTP memory usage is required for usage of the security features
of the ADSP-BF54x processor, OTP memory is described in Chapter 16,
“One-Time Programmable Memory.” Note that OTP memory has many
other uses besides support for security.

External Memory
The external memory space is shown in Figure 3-1 on page 3-4. One of
the memory regions is dedicated to two banks of SDRAM support. The
size of each SDRAM bank is programmable and can range in size from
16M byte to 256M byte. The start address of the bank is 0x0000 0000.

Each of the next four banks contains 64M byte and is dedicated to sup-
port asynchronous memories. The start address of the asynchronous
memory bank is 0x2000 0000.

Memory Protection and Properties

3-54 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Protection and Properties
This section describes the memory management unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin processor contains a page-based memory management unit
(MMU). This mechanism provides control over cacheability of memory
ranges, as well as management of protection attributes at page level. The
MMU provides great flexibility in allocating memory and I/O resources
between tasks, with complete control over access rights and cache
behavior.

The MMU is implemented as two 16-entry content addressable memory
(CAM) blocks. Each entry is referred to as a cacheability protection looka-
side buffer (CPLB) descriptor. When enabled, every valid entry in the
MMU is examined on any fetch, load, or store operation to determine
whether there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because L1 memories are separated into instruction and data memories,
the CPLB entries are also divided between instruction and data CPLBs.
Sixteen CPLB entries are used for instruction fetch requests; these are
called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the L1 instruction memory Control
(IMEM_CONTROL) and L1 data memory control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 3-2 on page 3-10 and
Figure 3-9 on page 3-29.

ADSP-BF54x Blackfin Processor Hardware Reference 3-55

Memory

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the
CPLB descriptor.

There are two default CPLB descriptors for data accesses to the scratchpad
data memory and to the system and core MMR space. These default
descriptors define the above space as non-cacheable, so that additional
CPLBs do not need to be set up for these regions of memory.

If valid CPLBs are set up for this space, the default CPLBs are
ignored.

Memory Pages
The 4G byte address space of the processor can be divided into smaller
ranges of memory or I/O referred to as memory pages. Every address
within a page shares the attributes defined for that page. The architecture
supports four different page sizes:

• 1K byte

• 4K byte

Memory Protection and Properties

3-56 ADSP-BF54x Blackfin Processor Hardware Reference

• 1M byte

• 4M byte

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATA[n]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an
integer multiple of their size. For example, a 4M byte page must start on
an address divisible by 4M byte; whereas a 1K byte page can start on any
1K byte boundary. The second word in the descriptor specifies the other
properties or attributes of the page. These properties include:

• Page size

1K byte, 4K byte, 1M byte, 4M byte

• Cacheable/non-cacheable

Accesses to this page use the L1 cache or bypass the cache.

• If cacheable: write-through/write-back

Data writes propagate directly to memory or are deferred until the
cache line is reallocated. If write-through, allocate on read-only, or
read and write.

• Dirty/modified

The data memory in this page has changed since the CPLB was last
loaded.

• Supervisor write access permission

ADSP-BF54x Blackfin Processor Hardware Reference 3-57

Memory

– Enables or disables writes to this page when in supervisor mode.

– Data pages only.

• User write access permission

– Enables or disables writes to this page when in user mode.

– Data pages only

• User read access permission

Enables or disables reads from this page when in user mode

• Valid

Check this bit to determine whether this is valid CPLB data

• Lock

Keep this entry in MMR; do not participate in CPLB replacement
policy.

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than can fit into the
available on-chip CPLB MMRs. When this happens, a memory-based

Memory Protection and Properties

3-58 ADSP-BF54x Blackfin Processor Hardware Reference

data structure, called a page descriptor table, is used; in it can be stored all
the potentially required CPLB descriptors. The specific format for the
page descriptor table is not defined as part of the Blackfin processor archi-
tecture. Different operating systems, which have different memory
management models, can implement page descriptor table structures that
are consistent with the OS requirements. This allows adjustments to be
made between the level of protection afforded versus the performance
attributes of the memory-management support routines.

CPLB Management
When the Blackfin processor issues a memory operation for which no
valid CPLB (cacheability protection look aside buffer) descriptor exists in
an MMR pair, an exception occurs that places the processor into supervi-
sor mode and vectors to the MMU exception handler (see “System
Interrupts” on page 4-1 for more information). The handler is typically
part of the operating system (OS) kernel that implements the CPLB
replacement policy.

Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the page descriptor table and the MMU exception han-
dler. The LOCK bits of these CPLB descriptors are commonly set so
they are not inadvertently replaced in software.

The handler uses the faulting address to index into the page descriptor
table structure to find the correct CPLB descriptor data to load into one of
the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,

ADSP-BF54x Blackfin Processor Hardware Reference 3-59

Memory

and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of 16 CPLBs must be
disabled using:

• The enable DCPLB (ENDCPLB) bit in the DMEM_CONTROL register for
data descriptors, or

• The enable ICPLB (ENICPLB) bit in the IMEM_CONTROL register for
instruction descriptors

The CPLB replacement policy and algorithm used are the responsibility of
the system MMU exception handler. This policy, which is dictated by the
characteristics of the operating system, usually implements a modified
LRU (least recently used) policy, a round-robin scheduling method, or
pseudo random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation is restarted. This operation should
now find a valid CPLB descriptor for the requested address, and it should
proceed normally.

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

• Instruction page miss

• A page miss on DAG0

• A page miss on DAG1

Memory Protection and Properties

3-60 ADSP-BF54x Blackfin Processor Hardware Reference

MMU Application
Memory management is an optional feature in the Blackfin processor
architecture. Its use is predicated on the system requirements of a given
application. Upon reset, all CPLBs are disabled, and the memory manage-
ment unit (MMU) is not used.

If all L1 memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between user and
supervisor modes. To protect memory between tasks, the operating system
can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in user mode
while the operating system and its services run in supervisor mode. It is
desirable to protect code and data structures used by the operating system
from inadvertent modification by a running user mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in supervisor mode. If a
write to a protected memory region is attempted while in user mode, an
exception is generated before the memory is modified. Optionally, the
user mode application may be granted read access for data structures that
are useful to the application. Even supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 instruction memory or the L1 data memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,

ADSP-BF54x Blackfin Processor Hardware Reference 3-61

Memory

the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a result, if the L1 instruction memory is
enabled as cache, then any memory region that contains instructions must
have a valid ICPLB descriptor defined for it. These descriptors must either
reside in MMRs at all times or be resident in a memory-based page
descriptor table that is managed by the MMU exception handler. Like-
wise, if either or both L1 data banks are configured as cache, all potential
data memory ranges must be supported by DCPLB descriptors.

Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Memory Protection and Properties

3-62 ADSP-BF54x Blackfin Processor Hardware Reference

Examples of Protected Memory Regions
In Figure 3-18, a starting point is provided for basic CPLB allocation for
instruction and data CPLBs. Note some ICPLBs and DCPLBs have com-
mon descriptors for the same address space.

Figure 3-18. Examples of Protected Memory Regions

L1 INSTRUCTION: NON-CACHEABLE
1 MB PAGE

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

SDRAM: CACHEABLE
EIGHT 4 MB PAGES

ASYNC: NON-CACHEABLE
ONE 4 MB PAGE

ASYNC: CACHEABLE
TWO 4 MB PAGES

L1 DATA: NON-CACHEABLE
ONE 4 MB PAGE

SDRAM: CACHEABLE
EIGHT 4 MB PAGES

ASYNC: NON-CACHEABLE
ONE 4 MB PAGE

ASYNC: CACHEABLE
ONE 4 MB PAGE

L2 MEMORY: CACHEABLE
1 MB PAGE

L2 MEMORY: CACHEABLE
1 MB PAGE

ADSP-BF54x Blackfin Processor Hardware Reference 3-63

Memory

ICPLB Data Registers (ICPLB_DATAx)
Figure 3-19 describes the ICPLB data registers. Table 3-6 lists the ICPLB
data register memory-mapped adddresses.

To ensure proper behavior and future compatibility, all reserved
bits in this register must be se t to 0 whenever this register is
written.

Figure 3-19. ICPLB Data Registers

ICPLB Data Registers (ICPLB_DATAx)

00 - 1 Kbyte page size
01 - 4 Kbyte page size
10 - 1 Mbyte page size
11 - 4 Mbyte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_LOCK

CPLB_VALID

CPLB_L1_CHBL

Clear this bit whenever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Invalid (disabled) CPLB
 entry
1 - Valid (enabled) CPLB
 entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry

should not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

CPLB_LRUPRIO
See “Instruction Cache Locking by Line” on page 3-21
0 - Low importance
1 - High importance

For memory-
mapped
addresses, see
Table 3-6.

CPLB_MEM_LEV

Determines line buffer. See “Line-Fill Buffer”
on page 3-19 and Figure 3-3 on page 3-14.
This bit has no effect on L1 memory pages.
0 - High priority (usually best for on-chip L2
pages.
1 - Low priority (usually best for off-chip L2
pages.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-64 ADSP-BF54x Blackfin Processor Hardware Reference

Table 3-6. ICPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C

ADSP-BF54x Blackfin Processor Hardware Reference 3-65

Memory

DCPLB Data Registers (DCPLB_DATAx)
Figure 3-20 shows the DCPLB data registers. Table 3-7 lists the DCPLB
data register memory-mapped addresses.

Figure 3-20. DCPLB Data Registers

DCPLB Data Registers (DCPLB_DATAx)

00 - 1 Kbyte page size
01 - 4 Kbyte page size
10 - 1 Mbyte page size
11 - 4 Mbyte page size

PAGE_SIZE[1:0]

Reset = 0x0000 0000

CPLB_DIRTY

CPLB_WT
Operates only in cache mode
0 - Write back
1 - Write through
CPLB_L1_CHBL
Clear this bit when L1 memory is configured
as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

CPLB_L1_AOW
Valid only if write
through cacheable
(CPLB_VALID = 1,
CPLB_WT = 1)
0 - Allocate cache lines

on reads only
1 - Allocate cache lines

on reads and writes

Valid only if write back cacheable (CPLB_VALID = 1, CPLB_WT = 0, and
CPLB_L1_CHBL = 1)
0 - Clean
1 - Dirty
A protection violation exception is generated on store accesses to this page
when this bit is 0. The state of this bit is modified only by writes to this register.
The exception service routine must set this bit.

CPLB_LOCK

CPLB_USER_WR

CPLB_VALID
0 - Invalid (disabled) CPLB entry
1 - Valid (enabled) CPLB entry

Can be used by software in
CPLB replacement algorithms
0 - Unlocked, CPLB entry can

be replaced
1 - Locked, CPLB entry should

not be replaced

0 - User mode read access
generates protection
violation exception

1 - User mode read access
permitted

CPLB_USER_RD

0 - User mode write access
generates protection
violation exception

1 - User mode write access
permitted

CPLB_SUPV_WR
0 - Supervisor mode write

access generates protection
violation exception

1 - Supervisor mode write
access permitted

For memory-
mapped
addresses, see
Table 3-7.

CPLB_MEM_LEV
Determines line fill and write buffers. See “Line-Fill
Buffer” on page 3-19 and Figure 3-10 on page 3-33.
This bit has no effect on L1 memory pages.
0 - High priority (usually best for on-chip L2
 pages.
1 - Low priority (usually best for off-chip L2
 pages.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-66 ADSP-BF54x Blackfin Processor Hardware Reference

To ensure proper behavior and future compatibility, all reserved
bits in this register must be set to 0 whenever this register is
written.

Table 3-7. DCPLB Data Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C

ADSP-BF54x Blackfin Processor Hardware Reference 3-67

Memory

DCPLB Address Registers (DCPLB_ADDRx)
Figure 3-21 shows the DCPLB address registers. Table 3-8 lists the
DCPLB address register memory-mapped addresses.

Figure 3-21. DCPLB Address Registers

DCPLB Address Registers (DCPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

Upper Bits of Address for
Match[5:0]

For memory-
mapped
addresses, see
Table 3-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-68 ADSP-BF54x Blackfin Processor Hardware Reference

Table 3-8. DCPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

ADSP-BF54x Blackfin Processor Hardware Reference 3-69

Memory

ICPLB Address Registers (ICPLB_ADDRx)
Figure 3-22 shows the ICPLB address registers. Table 3-9 lists the ICPLB
address register memory-mapped addresses.

Figure 3-22. ICPLB Address Registers

ICPLB Address Registers (ICPLB_ADDRx)

Upper Bits of Address for
Match[21:6]

Reset = 0x0000 0000

Upper Bits of Address for
Match[5:0]

For memory-
mapped
addresses, see
Table 3-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory Protection and Properties

3-70 ADSP-BF54x Blackfin Processor Hardware Reference

CPLB Status Registers
Bits in the DCPLB status register (DCPLB_STATUS) and ICPLB status
register (ICPLB_STATUS) identify the CPLB entry that triggered
CPLB-related exceptions. The exception service routine can infer the
cause of the fault by examining the CPLB entries.

The DCPLB_STATUS and ICPLB_STATUS registers are valid only while
in the faulting exception service routine.

Table 3-9. ICPLB Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C

ADSP-BF54x Blackfin Processor Hardware Reference 3-71

Memory

DCPLB Status Register (DCPLB_STATUS)

The FAULT_DAG, FAULT_USERSUPV, and FAULT_RW bits in the DCPLB status
register (DCPLB_STATUS) identify the CPLB entry that triggered the
CPLB-related exception (see Figure 3-23).

Figure 3-23. DCPLB Status Register

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_RW

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates the hit/miss
status of the associated
CPLB entry

0 - Access was made in user
mode

1 - Access was made in
supervisor mode

FAULT_USERSUPV

0xFFE0 0008

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

Memory Protection and Properties

3-72 ADSP-BF54x Blackfin Processor Hardware Reference

ICPLB Status Register (ICPLB_STATUS)

The FAULT_USERSUPV bit in the ICPLB status register (ICPLB_STATUS) is
used to identify the CPLB entry that triggered the CPLB-related exception
(see Figure 3-24).

CPLB Fault Address Registers
The DCPLB fault address register (DCPLB_FAULT_ADDR) and ICPLB fault
address register (ICPLB_FAULT_ADDR) hold the address that caused a fault in
the L1 data memory or L1 instruction memory, respectively.

The DCPLB_FAULT_ADDR and ICPLB_FAULT_ADDR registers are valid
only while in the faulting exception service routine.

Figure 3-24. ICPLB Status Register

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to nonexistent memory

Each bit indicates hit/miss
status of associated CPLB
entry

0 - Access was made in user
mode

1 - Access was made in
supervisor mode

FAULT_USERSUPV

0xFFE0 1008

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

ADSP-BF54x Blackfin Processor Hardware Reference 3-73

Memory

DCPLB Fault Address Register (DCPLB_FAULT_ADDR)

Figure 3-25 lists the DCPLB fault address register.

Figure 3-25. DCPLB Fault Address Register

DCPLB Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused
a fault in the L1 data memory

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 data memory

0xFFE0 000C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Memory Transaction Model

3-74 ADSP-BF54x Blackfin Processor Hardware Reference

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Figure 3-26 lists the ICPLB fault address register..

Memory Transaction Model
Both internal and external memory locations are accessed in little endian
byte order. Figure 3-27 shows a data word stored in register R0 and in
memory at address location addr. B0 refers to the least significant byte of
the 32-bit word.

Figure 3-26. ICPLB Fault Address Register

Figure 3-27. Data Stored in Little Endian Order

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
instruction memory

Instruction address that has
caused a fault in the L1
instruction memory

0xFFE0 100C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

ADDR+3 ADDR+2 ADDR+1 ADDR

ADSP-BF54x Blackfin Processor Hardware Reference 3-75

Memory

Figure 3-28 shows 16- and 32-bit instructions stored in memory. The dia-
gram on the left shows 16-bit instructions stored in memory with the
most significant byte of the instruction stored in the high address (byte B1
in addr+1) and the least significant byte in the low address (byte B0 in
addr).

The diagram on the right shows 32-bit instructions stored in memory.
Note the most significant 16-bit half word of the instruction (bytes B3
and B2) is stored in the low addresses (addr+1 and addr), and the least sig-
nificant half word (bytes B1 and B0) is stored in the high addresses
(addr+3 and addr+2).

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a
load/store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Figure 3-28. Instructions Stored in Little Endian Order

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

ADDR+3 ADDR+2 ADDR+1 ADDRADDR+3 ADDR+2 ADDR+1 ADDR

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0

INST 0 INST 0

Load/Store Operation

3-76 ADSP-BF54x Blackfin Processor Hardware Reference

Separating load operations from their associated arithmetic functions
allows compilers or assembly language programmers to place unrelated
instructions between the load and its dependent instructions. The unre-
lated instructions execute in parallel while the processor waits for the
memory system to return the data. If the value is returned before the
dependent operation reaches the execution stage of the pipeline, the oper-
ation completes in one cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and when
subsequent instructions execute is not guaranteed. Moreover, this syn-
chronization is considered unimportant in the context of most memory
operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the
previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instructions that use the read target without requiring the
programmer or compiler to know how many cycles are actually needed for
the memory-read operation to complete. If the instruction immediately
following the load uses the same register, it simply stalls until the value is
returned. Consequently, it operates as the programmer expects. However,

ADSP-BF54x Blackfin Processor Hardware Reference 3-77

Memory

if four other instructions are placed after the load but before the instruc-
tion that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a
subsequent instruction.

• Load operations using data previously written will use the updated
values.

• Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation
waiting on its completion, whereas the processor considers the write oper-
ation complete, and the write does not stall the pipeline if it takes more
cycles to propagate the value out to memory. This behavior could cause a
read that occurs in the program source code after a write in the program
flow to actually return its value before the write is completed. This order-
ing provides significant performance advantages in the operation of most
memory instructions. However, it can cause side effects that the program-
mer must be aware of to avoid improper system operation.

Load/Store Operation

3-78 ADSP-BF54x Blackfin Processor Hardware Reference

When writing to or reading from nonmemory locations such as I/O device
registers, the order of how read and write operations complete is often sig-
nificant. For example, a read of a status register may depend on a write to
a control register. If the address is the same, the read would return a value
from the write buffer rather than from the actual I/O device register, and
the order of the read and write at the register may be reversed. Both these
effects could cause undesirable side effects in the intended operation of the
program and peripheral. To ensure that these effects do not occur in code
that requires precise (strong) ordering of load and store operations, syn-
chronization instructions (CSYNC or SSYNC) should be used.

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures all pending core operations have completed
and the core buffer (between the processor core and the L1 memories) is
flushed before proceeding to the next instruction. Pending core operations
may include any pending interrupts, speculative states (such as branch
predictions), or exceptions.

Consider the following example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:

ADSP-BF54x Blackfin Processor Hardware Reference 3-79

Memory

In the example code, the CSYNC instruction ensures:

• The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been
flushed.

• All pending interrupts or exceptions have been processed before
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, the SSYNC instruction flushes any write buffers
between the L1 memory and the system domain and generates a sync
request to the system that requires acknowledgement before SSYNC
completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

Load/Store Operation

3-80 ADSP-BF54x Blackfin Processor Hardware Reference

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory returns the correct value
earlier than if the operation were stalled until the branch condition was
resolved.

However, in the case of an I/O device, this could cause an undesirable side
effect for a peripheral that returns sequential data from a FIFO or from a
register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is executed again.
This approach minimizes interrupt latency. However, it is possible that a
memory-read cycle was initiated before the load was canceled, and this
would be followed by a second read operation after the load is executed
again. For most memory accesses, multiple reads of the same memory

ADSP-BF54x Blackfin Processor Hardware Reference 3-81

Memory

address have no side effects. However, for some memory-mapped devices,
such as peripheral data FIFOs, reads are destructive. Each time the device
is read, the FIFO advances, and the data cannot be recovered and re-read.

When accessing memory-mapped devices that have state dependen-
cies on the number of read or write operations on a given address
location, disable interrupts before performing the load or store
operation.

Working With Memory
This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment
Nonaligned memory operations are not directly supported. A nonaligned
memory reference generates a misaligned access exception event (see “Sys-
tem Interrupts” on page 4-1). However, because some data streams (such
as 8-bit video data) can properly be nonaligned in memory, alignment
exceptions may be disabled by using the DISALGNEXCPT instruction. More-
over, some instructions in the quad 8-bit group automatically disable
alignment exceptions.

Cache Coherency
For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 3-43), and/or explicit line invalidation
through the core MMRs (see “Data Test Registers” on page 3-44).

Working With Memory

3-82 ADSP-BF54x Blackfin Processor Hardware Reference

Atomic Operations
The processor provides a single atomic operation: TESTSET. Atomic opera-
tions are used to provide noninterruptible memory operations in support
of semaphores between tasks. The TESTSET instruction loads an indirectly
addressed memory half word, tests whether the low byte is zero, and then
sets the most significant bit (MSB) of the low memory byte without
affecting any other bits. If the byte is originally zero, the instruction sets
the CC bit. If the byte is originally nonzero, the instruction clears the CC
bit. The sequence of this memory transaction is atomic—hardware bus
locking ensures that no other memory operation can occur between the
test and set portions of this instruction. The TESTSET instruction can be
interrupted by the core. If this happens, the TESTSET instruction is exe-
cuted again upon return from the interrupt.

The TESTSET instruction can address the entire 4 Gbyte memory space,
but should not target on-core memory (L1 or MMR space) since atomic
access to this memory is not supported.

The memory architecture always treats atomic operations as cache inhib-
ited accesses even if the CPLB descriptor for the address indicates cache
enabled access. However, executing TESTSET operations on cacheable
regions of memory is not recommended since the architecture cannot
guarantee a cacheable location of memory is coherent when the TESTSET
instruction is executed.

ADSP-BF54x Blackfin Processor Hardware Reference 3-83

Memory

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space
(0xFFC0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000–0xFFE0 0000) and core
MMRs (0xFFE0 0000–0xFFFF FFFF).

If strong ordering is required, place a synchronization instruction
after stores to MMRs. For more information, see “Load/Store
Operation” on page 3-75.

All MMRs are accessible only in supervisor mode. Access to MMRs in user
mode generates a protection violation exception. Attempts to access MMR
space using DAG1 will generate a protection violation exception.

All core MMRs are read and written using 32-bit aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved. System MMRs may be 16 bits.

Accesses to nonexistent MMRs generate an illegal access exception. The
system ignores writes to read-only MMRs.

Appendix A provides a summary of all core MMRs. Appendix B provides a
summary of all system MMRs.

Core MMR Programming Code Example
Core MMRs may be accessed only as aligned 32-bit words. Nonaligned
access to MMRs generates an exception event. Listing 3-1 shows the
instructions required to manipulate a generic core MMR.

Listing 3-1. Core MMR Programming

CLI R0; /* stop interrupts and save IMASK */

P0 = MMR_BASE; /* 32-bit instruction to load base of MMRs */

R1 = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */

Terminology

3-84 ADSP-BF54x Blackfin Processor Hardware Reference

BITSET R1, #N; /* set bit N */

[P0 + TIMER_CONTROL_REG] = R1; /* restore control reg */

CSYNC; /* assures that the control reg is written */

STI R0; /* enable interrupts */

The CLI instruction saves the contents of the IMASK register and
disables interrupts by clearing IMASK. The STI instruction restores
the contents of the IMASK register, thus enabling interrupts. The
instructions between CLI and STI are not interruptable.

Terminology
The following terminology is used to describe memory.

cache block. The smallest unit of memory that is transferred to/from the
next level of memory from/to a cache as a result of a cache miss.

cache hit. A memory access that is satisfied by a valid, present entry in the
cache.

cache line. Same as cache block. In this chapter, cache line is used for
cache block.

cache miss. A memory access that does not match any valid entry in the
cache.

direct-mapped. Cache architecture in which each line has only one place
in which it can appear in the cache. Also described as 1-way associative.

dirty or modified. A state bit, stored along with the tag, indicating
whether the data in the data cache line is changed since it was copied from
the source memory and, therefore, needs to be updated in that source
memory.

ADSP-BF54x Blackfin Processor Hardware Reference 3-85

Memory

exclusive, clean. The state of a data cache line indicating the line is valid
and the data contained in the line matches that in source memory. The
data in a clean cache line does not need to be written to source memory
before it is replaced.

fully associative. Cache architecture in which each line can be placed any-
where in the cache.

index. Address portion that is used to select an array element (for example,
a line index).

invalid. Describes the state of a cache line. When a cache line is invalid, a
cache line match cannot occur.

least recently used (LRU) algorithm. Replacement algorithm, used by
cache, that first replaces lines that have been unused for the longest time.

level 1 (L1) memory. Memory that is directly accessed by the core with no
intervening memory subsystems between it and the core.

little endian. The native data store format of the Blackfin processor.
Words and half words are stored in memory (and registers) with the least
significant byte at the lowest byte address and the most significant byte in
the highest byte address of the data storage location.

replacement policy. The function used by the processor to determine
which line to replace on a cache miss. Often, an LRU algorithm is
employed.

set. A group of N-line storage locations in the ways of an N-way cache,
selected by the INDEX field of the address (see Figure 3-4 on page 3-16).

set associative. Cache architecture that limits line placement to a number
of sets (or ways).

tag. Upper address bits, stored along with the cached data line, to identify
the specific address source in memory that the cached line represents.

Terminology

3-86 ADSP-BF54x Blackfin Processor Hardware Reference

valid. A state bit, stored with the tag, indicating the corresponding tag and
data are current and correct and can be used to satisfy memory access
requests.

victim. A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Way. An array of line storage elements in an N-way cache (see Figure 3-4
on page 3-16).

write-back. A cache write policy, also known as copyback. The write data
is written only to the cache line. The modified cache line is written to
source memory only when it is replaced. Cache lines are allocated on both
reads and writes.

write-through. A cache write policy, also known as store through. The
write data is written to both the cache line and to the source memory. The
modified cache line is not written to the source memory when it is
replaced. Cache lines must be allocated on reads, and may be allocated on
writes (depending on mode).

ADSP-BF54x Blackfin Processor Hardware Reference 4-1

4 SYSTEM INTERRUPTS

This chapter discusses the system interrupt controller (SIC), which is spe-
cific to the ADSP-BF54x processor derivatives. While this chapter does
refer to features of the core event controller (CEC), it does not cover all
aspects of it. Refer to the appropriate Blackfin Processor Programming Ref-
erence for more information on the CEC.

The chapter includes the following sections:

• “Overview” on page 4-1

• “Interfaces” on page 4-2

• “Description of Operation” on page 4-6

• “Programming Model” on page 4-22

• “System Interrupt Controller Registers” on page 4-26

• “Programming Examples” on page 4-44

Overview
This chapter describes the system peripheral interrupts, including setup
and clearing of interrupt requests.

Interfaces

4-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The Blackfin processor architecture provides a two-level interrupt process-
ing scheme:

• The core event controller (CEC) runs in the CCLK clock domain. It
interacts closely with the program sequencer and manages the event
vector table (EVT). The CEC processes not only core-related inter-
rupts such as exceptions, core errors, and emulation events, it also
supports software interrupts.

• The system interrupt controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-
nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Interfaces
Figure 4-1, Figure 4-2, and Figure 4-3 provide an overview of how the
individual peripheral interrupt request lines connect to the SIC. They also
show how the 12 interrupt assignment registers (SIC_IARx) control the
assignment to the 9 available peripheral request inputs of the CEC.

The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller.

ADSP-BF54x Blackfin Processor Hardware Reference 4-3

System Interrupts

Figure 4-1. Interrupt Routing Overview-1 of 3

SPI0 Status
UART0 Status

RTC

DMA12 (EPPI0)

DMA1 (SPORT0 TX)
DMA2 (SPORT1 RX)
DMA3 (SPORT1 TX)

DMA4 (SPI0)
DMA6 (UART0 RX)

PLL Wakeup

SPORT0 Error
SPORT1 Error

W
ak

eu
p

C
O

R
E

TI
M

ER
H

A
R

D
W

A
R

E
ER

R
O

R
EX

C
EP

TI
O

N
S

N
M

I

SI
C

_I
A

R
3

SI
C

_I
A

R
2

SI
C

_I
A

R
1

SI
C

_I
A

R
0

3

0
1
2

4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

SI
C

_I
SR

0

SI
C

_I
W

R
0

SI
C

_I
M

A
SK

0

R
ES

ET
EM

U
LA

TI
O

N

IMASK

IPEND

ILAT

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

IV
G

6
IV

G
5

IV
G

3
IV

G
2

IV
G

1
IV

G
0

DMA0 (SPORT0 RX)

DMA7 (UART0 TX)

TIMER 8
TIMER 9

TIMER 10
PINT0

MDMA Stream 0
MDMA Stream 1

DMAC1 Status

Watchdog

SPORT2 Error
SPORT3 Error

MXVR Data
SPI1 Status
SPI2 Status

UART1 Status
UART2 Status

DMAC0 Status
EPPI0 Error

PINT1

IRQ
Channels

IRQ3

IRQ0
IRQ1
IRQ2

IRQ4
IRQ5
IRQ6
IRQ7

IRQ8
IRQ9

IRQ10
IRQ11
IRQ12
IRQ13
IRQ14
IRQ15

IRQ16
IRQ17
IRQ18
IRQ19
IRQ20
IRQ21
IRQ22
IRQ23

IRQ24
IRQ25
IRQ26
IRQ27
IRQ28
IRQ29
IRQ30
IRQ31

Interfaces

4-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 4-2. Interrupt Routing Overview-2 of 3

W
ak

eu
p

SI
C

_I
A

R
7

SI
C

_I
A

R
6

SI
C

_I
A

R
5

SI
C

_I
A

R
4

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

SI
C

_I
SR

1

SI
C

_I
W

R
1

SI
C

_I
SR

1

SI
C

_I
M

A
SK

1

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

DMA10 (ATAPI RX)

TWI0

CAN0 STATUS

DMA20 (SPORT3 RX)

DMA13 (EPPI1)

CAN0 RX

CAN0 TX

MXVR Status

UART3 Status
HOSTDP Status

Reserved

NFC Error
ATAPI Error

CAN1 Status

DMA18 (SPORT2 RX)
DMA19 (SPORT2 TX)

DMA14 (EPPI2, HOSTDP)
DMA5 (SPI1)

DMA23 (SPI2)

DMA21 (SPORT3 TX)

DMA8 (UART1 RX)
DMA9 (UART1 TX)

DMA11 (ATAPI TX)

TWI1

MDMA Stream 2
MDMA Stream 3

MXVR Message
MXVR Packet

EPPI1 Error
EPPI2 Error

PIXC Status

DMAR0 Block Done
DMAR1 Block Done

DMAR0 Overflow
DMAR1 Overflow

IRQ
Channels

IRQ35

IRQ32
IRQ33
IRQ34

IRQ36
IRQ37
IRQ38
IRQ39

IRQ40
IRQ41
IRQ42
IRQ43
IRQ44
IRQ45
IRQ46
IRQ47

IRQ48
IRQ49
IRQ50
IRQ51
IRQ52
IRQ53
IRQ54
IRQ55

IRQ56
IRQ57
IRQ58
IRQ59
IRQ60
IRQ61
IRQ62
IRQ63

Handshake
DMA

Status

ADSP-BF54x Blackfin Processor Hardware Reference 4-5

System Interrupts

Figure 4-3. Interrupt Routing Overview-3 of 3

W
ak

eu
p

SI
C

_I
A

R
11

SI
C

_I
A

R
10

SI
C

_I
A

R
9

SI
C

_I
A

R
8

SI
C

_I
SR

2

SI
C

_I
W

R
2

SI
C

_I
M

A
SK

2

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

USB INT0

USB INT2

DMA15 (PIXC IN0)

DMA22 (SDH/NFC)

KEY

OTPSEC

Reserved

Reserved

TIMER2
TIMER3
TIMER4

TIMER6
TIMER7

PINT2

DMA16 (PIXC IN1)
DMA17 (PIXC OUT)

CAN1 RX
CAN1 TX

SDH Mask 0

Rotary counter (CNT)

SDH Mask 1
Reserved

USB INT1

USB DMA

Reserved
Reserved

Reserved
Reserved

TIMER0
TIMER1

TIMER5

PINT3

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

IRQ
Channels

IRQ67

IRQ64
IRQ65
IRQ66

IRQ68
IRQ69
IRQ70
IRQ71

IRQ72
IRQ73
IRQ74
IRQ75
IRQ76
IRQ77
IRQ78
IRQ79

IRQ80
IRQ81
IRQ82
IRQ83
IRQ84
IRQ85
IRQ86
IRQ87

IRQ88
IRQ89
IRQ90
IRQ91
IRQ92
IRQ93
IRQ94
IRQ95

Description of Operation

4-6 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The following sections describe the operation of the system interrupts.

Events and Sequencing
The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can
be masked in the SIC.

The CEC of the processor manages five types of activities or events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts

Note the word event describes all five types of activities. The CEC man-
ages fifteen different events in all: emulation, reset, NMI, exception, and
eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software-initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be
pre-empted by one of higher priority.

ADSP-BF54x Blackfin Processor Hardware Reference 4-7

System Interrupts

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-1.

Table 4-1. System and Core Event Mapping

Peripheral Interrupt Source Event Source Core Event Name

Core events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware error IVHW

Core timer IVTMR

Description of Operation

4-8 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupts PLL Wakeup Interrupt
DMAC0 Status (generic)
DMAC1 Status (generic)
EPPI0 Error Interrupt
EPPI1 Error Interrupt
EPPI2 Error Interrupt
SPORT0 Error Interrupt
SPORT1 Error Interrupt
SPORT2 Error Interrupt
SPORT3 Error Interrupt
MXVR Synchronous Data Interrupt
SPI0 Status Interrupt
SPI1 Status Interrupt
SPI2 Status Interrupt
UART0 Status Interrupt
UART1 Status Interrupt
UART2 Status Interrupt
UART3 Status Interrupt
HOSTDP Status Interrupt
PIXC Status Interrupt
NFC Status Interrupt
ATAPI Status Interrupt
CAN0 Status Interrupt
CAN1 Status Interrupt
DMAR0 Block Done
DMAR1 Block Done
DMAR0 Overflow
DMAR1 Overflow

IVG7

Real-Time Clock Interrupt
DMA12 Interrupt (EPPI0)
DMA15 Interrupt (PIXC IN0)
DMA16 Interrupt (PIXC IN1)
DMA17 Interrupt (PIXC OUT)
DMA22 Interrupt (SDH/NFC)
Rotary Counter Interrupt
Keypad Interrupt

IVG8

Table 4-1. System and Core Event Mapping (Cont’d)

Peripheral Interrupt Source Event Source Core Event Name

ADSP-BF54x Blackfin Processor Hardware Reference 4-9

System Interrupts

System Interrupts, continued DMA0 Interrupt (SPORT0 RX)
DMA1 Interrupt (SPORT0 TX)
DMA2 Interrupt (SPORT1 RX)
DMA3 Interrupt (SPORT1 TX)
DMA18 Interrupt (SPORT2 RX)
DMA19 Interrupt (SPORT2 TX)
DMA20 Interrupt (SPORT3 RX)
DMA21 Interrupt (SPORT3 TX)
DMA13 Interrupt (EPPI1)
DMA14 Interrupt (EPPI2,HOSTDP)

IVG9

DMA4 Interrupt (SPI0)
DMA6 Interrupt (UART0 RX)
DMA7 Interrupt (UART0 TX)
DMA5 Interrupt (SPI1)
DMA23 Interrupt (SPI2)
DMA8 Interrupt (UART1 RX)
DMA9 Interrupt (UART1 TX)
DMA10 Interrupt (ATAPI RX)
DMA11 Interrupt (ATAPI TX)

IVG10

Timer 8 Interrupt
Timer 9 Interrupt
Timer 10 Interrupt
TWI0 Interrupt
TWI1 Interrupt
CAN0 RX Interrupt
CAN0 TX Interrupt
CAN1 RX Interrupt
CAN1 TX Interrupt
SDH Interrupt 0
SDH Interrupt 1
USB Interrupt 0 (USB_INT0)
USB Interrupt 1 (USB_INT1)
USB Interrupt 2 (USB_INT2)
USB DMA Interrupt (USB_DMAINT)
OTPSEC Interrupt

IVG11

Table 4-1. System and Core Event Mapping (Cont’d)

Peripheral Interrupt Source Event Source Core Event Name

Description of Operation

4-10 ADSP-BF54x Blackfin Processor Hardware Reference

It is common for applications to reserve the lowest or the two lowest pri-
ority interrupts (IVG14 and IVG15) for software interrupts, leaving eight or
seven prioritized interrupt inputs (IVG7 – IVG13) for peripheral purposes.
Refer to Table 4-1.

The system interrupt to core event mappings shown in Table 4-1
are the default values at reset and can be changed by software.

System Peripheral Interrupts
To service the rich set of peripherals, the SIC has 96 interrupt request
inputs and 9 interrupt request outputs which go to the CEC. The primary
function of the SIC is to mask, group, and prioritize interrupt requests
and to forward them to the nine general-purpose interrupt inputs of the

System Interrupts, continued MXVR Asynchronous Packet Interrupt
MXVR Control Message Interrupt
MXVR Status Interrupt
Timer 0 Interrupt
Timer 1 Interrupt
Timer 2 Interrupt
Timer 3 Interrupt
Timer 4 Interrupt
Timer 5 Interrupt
Timer 6 Interrupt
Timer 7 Interrupt

Pin Interrupt 0 (PINT0)
Pin Interrupt 1 (PINT1)
Pin Interrupt 2 (PINT2)
Pin Interrupt 3 (PINT3)

IVG12

MDMA Stream 0
MDMA Stream 1
MDMA Stream 2
MDMA Stream 3
Software Watchdog Timer Interrupt

IVG13

Table 4-1. System and Core Event Mapping (Cont’d)

Peripheral Interrupt Source Event Source Core Event Name

ADSP-BF54x Blackfin Processor Hardware Reference 4-11

System Interrupts

CEC (IVG7–IVG15). Additionally, the SIC controller can enable individual
peripheral interrupts to wake up the processor from idle or power-down
state.

The nine general-purpose interrupt inputs (IVG7–IVG15) of the core event
controller have fixed priority. The IVG0 channel has the highest priority
and IVG15 has the lowest priority. Therefore, the interrupt assignment in
the SIC_IARx registers not only groups peripheral interrupts, but it also
programs their priority by assigning them to individual IVG channels.
However, the relative priority of peripheral interrupts can be set by map-
ping the peripheral interrupt to the appropriate general-purpose interrupt
level in the core. The mapping is controlled by the system interrupt
assignment register (SIC_IARx) settings, as detailed in Figure 4-7 on
page 4-28 through Figure 4-18 on page 4-33. If more than one interrupt
source is mapped to the same interrupt, they are logically OR’ed, with no
hardware prioritization. Software can prioritize the interrupt processing as
required for a particular system application.

For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

The core timer has a dedicated input to the CEC controller. Its interrupts
are not routed through the SIC controller and always have higher priority
than requests from all other peripherals.

The system interrupt mask register (SIC_IMASKx, shown in Figure 4-19 on
page 4-35 through Figure 4-21 on page 4-37) allows software to mask any
peripheral interrupt source at the SIC level. This functionality is indepen-
dent of whether the particular interrupt is enabled at the peripheral itself.
At reset, the contents of SIC_IMASKx are all 0s to mask off all peripheral
interrupts. Turning off a system interrupt mask and enabling the particu-
lar interrupt is performed by writing a 1 to a bit location in the
SIC_IMASKx register.

Description of Operation

4-12 ADSP-BF54x Blackfin Processor Hardware Reference

The SIC includes a read-only system interrupt status register (SIC_ISRx)
with individual bits which correspond to one of the peripheral interrupt
sources. See Figure 4-24 on page 4-40. When the SIC detects the inter-
rupt, the bit is asserted. When the SIC detects that the peripheral
interrupt input is deasserted, the respective bit in the system interrupt sta-
tus register is cleared. Note for some peripherals, such as programmable
flag asynchronous input interrupts, many cycles of latency may pass from
the time an interrupt service routine initiates the clearing of the interrupt
(usually by writing a system MMR) to the time the SIC senses that the
interrupt is deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read the SIC_ISRx register to determine whether more than one of
the peripherals sharing the input has asserted its interrupt output. The ser-
vice routine should fully process all pending, shared interrupts before
executing the RTI, which enables further interrupt generation on that
interrupt input.

When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISRx bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISRx seldom, if ever, needs to be interrogated.

The SIC_ISRx register is not affected by the state of the system interrupt
mask register (SIC_IMASKx) and can be read at any time. Writes to the
SIC_ISRx register have no effect on its contents.

ADSP-BF54x Blackfin Processor Hardware Reference 4-13

System Interrupts

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMAx_PERIPHERAL_MAP registers.
Table 4-2, Figure 4-4, and Figure 4-5 show the default DMA assignment.
For more information on DMA, see Chapter 5, “Direct Memory Access”.
Once a peripheral is assigned to a DMA channel it uses the new DMA
channel’s interrupt ID regardless of whether DMA is enabled or not.
Therefore, clean DMAx_PERIPHERAL_MAP management is required even if the
DMA is not used. The default setup should be the best choice for all
non-DMA applications.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state or from sleep mode to optionally
process the interrupt, simply by enabling the appropriate bit in the system
interrupt wakeup-enable register (SIC_IWRx, refer to Figure 4-25 on
page 4-41). If a peripheral interrupt source is enabled in the SIC_IWRx reg-
ister and the core is idled or in sleep mode, the interrupt causes the
DPMC to initiate the core wakeup sequence in order to optionally process
the interrupt. Note this mode of operation may add latency to interrupt
processing, depending on the power control state. For further discussion
of power modes and the idled state of the core, see Chapter 18, “Dynamic
Power Management”.

The SIC_IWRx register has no effect unless the core is idled or in sleep
mode. By default, all interrupts generate a wakeup request to the core.
However, for some applications it may be desirable to disable this func-
tion for some peripherals, such as for a SPORTx transmit interrupt. The

Description of Operation

4-14 ADSP-BF54x Blackfin Processor Hardware Reference

SIC_IWRx register can be read from or written to at any time. To prevent
spurious or lost interrupt activity, this register should be written to only
when all peripheral interrupts are disabled.

The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in the SIC_IWRx register but
masked-off in the SIC_IMASKx register, the core wakes up if it is
idled or in sleep mode, but it does not generate an interrupt.

Figure 4-4. Default Peripheral-to-DMA Mapping (DMAC0 Controller)

DMA0 IRQDMA0_PERIPHERAL_MAP

DMA1 IRQ

DMA2 IRQ

DMA3 IRQ

DMA4 IRQ

DMA5 IRQ

DMA6 IRQ

DMA7 IRQ

DMA8 IRQ

DMA9 IRQ

DMA10 IRQ

DMA11 IRQ

DMA1_PERIPHERAL_MAP

DMA2_PERIPHERAL_MAP

DMA3_PERIPHERAL_MAP

DMA4_PERIPHERAL_MAP

DMA5_PERIPHERAL_MAP

DMA6_PERIPHERAL_MAP

DMA7_PERIPHERAL_MAP

DMA8_PERIPHERAL_MAP

DMA9_PERIPHERAL_MAP

DMA10_PERIPHERAL_MAP

DMA11_PERIPHERAL_MAP

U
A

R
T0

 T
X

U
A

R
T1

 R
X

SP
I1

 R
X/

TX

SP
O

R
T0

 T
X

SP
O

R
T0

 R
X

SP
O

R
T1

 R
X

SP
I0

 R
X/

TX

U
A

R
T0

 R
X

U
A

R
T1

 T
X

AT
A

PI
 R

X

AT
A

PI
 T

X

SP
O

R
T1

 T
X

ADSP-BF54x Blackfin Processor Hardware Reference 4-15

System Interrupts

Figure 4-5. Default Peripheral-to-DMA Mapping (DMAC1 Controller)

DMA12 IRQDMA12_PERIPHERAL_MAP

DMA13 IRQ

DMA14 IRQ

DMA15 IRQ

DMA16 IRQ

DMA17 IRQ

DMA18 IRQ

DMA19 IRQ

DMA20 IRQ

DMA21 IRQ

DMA22 IRQ

DMA23 IRQ

DMA13_PERIPHERAL_MAP

DMA14_PERIPHERAL_MAP

DMA15_PERIPHERAL_MAP

DMA16_PERIPHERAL_MAP

DMA17_PERIPHERAL_MAP

DMA18_PERIPHERAL_MAP

DMA19_PERIPHERAL_MAP

DMA20_PERIPHERAL_MAP

DMA21_PERIPHERAL_MAP

DMA22_PERIPHERAL_MAP

DMA23_PERIPHERAL_MAP

SP
O

R
T2

 T
X

SP
O

R
T3

 R
X

PI
XC

 O
U

T

EP
PI

1
R

X/
TX

EP
PI

0
R

X/
TX

EP
PI

2/
H

O
ST

D
P

R
X/

TX

PI
XC

 IN
1

SP
O

R
T2

 R
X

SP
O

R
T3

 T
X

SD
H

/N
FC

 R
X/

TX

SP
I2

 R
X/

TX

PI
XC

 IN
0

Description of Operation

4-16 ADSP-BF54x Blackfin Processor Hardware Reference

Table 4-2 shows the peripheral interrupt events, the default mapping of
each event, the peripheral interrupt ID used in the system interrupt
assignment registers (SIC_IARx), and the core interrupt ID. See “System
Interrupt Assignment (SIC_IARx) Registers” on page 4-27.

Table 4-2. System Interrupt Controller (SIC)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

PLL Wakeup Interrupt 0 IVG7 0

SI
C

_I
A

R
0

SI
C

_I
W

R
0,

 S
IC

_I
SR

0
&

 S
IC

_I
M

A
SK

0

DMAC0 Status (generic) 1 IVG7 0

EPPI0 Error Interrupt 2 IVG7 0

SPORT0 Error Interrupt 3 IVG7 0

SPORT1 Error Interrupt 4 IVG7 0

SPI0 Status Interrupt 5 IVG7 0

UART0 Status Interrupt 6 IVG7 0

Real-Time Clock Interrupt 7 IVG8 1

DMA12 Interrupt (EPPI0) 8 IVG8 1
SI

C
_I

A
R

1

DMA0 Interrupt (SPORT0 RX) 9 IVG9 2

DMA1 Interrupt (SPORT0 TX) 10 IVG9 2

DMA2 Interrupt (SPORT1 RX) 11 IVG9 2

DMA3 Interrupt (SPORT1 TX) 12 IVG9 2

DMA4 Interrupt (SPI0) 13 IVG10 3

DMA6 Interrupt (UART0 RX) 14 IVG10 3

DMA7 Interrupt (UART0 TX) 15 IVG10 3

ADSP-BF54x Blackfin Processor Hardware Reference 4-17

System Interrupts

Timer 8 Interrupt 16 IVG11 4

SI
C

_I
A

R
2

SI
C

_I
W

R
0,

 S
IC

_I
SR

0
&

 S
IC

_I
M

A
SK

0

Timer 9 Interrupt 17 IVG11 4

Timer 10 Interrupt 18 IVG11 4

Pin Interrupt 0 (PINT0) 19 IVG12 5

Pin Interrupt 1 (PINT1) 20 IVG12 5

MDMA Stream 0 Interrupt 21 IVG13 6

MDMA Stream 1 Interrupt 22 IVG13 6

Software Watchdog Timer Interrupt 23 IVG13 6

DMAC1 Status (generic) 24 IVG7 0

SI
C

_I
A

R
3

SPORT2 Error Interrupt 25 IVG7 0

SPORT3 Error Interrupt 26 IVG7 0

MXVR Synchronous Data Interrupt 27 IVG7 0

SPI1 Status Interrupt 28 IVG7 0

SPI2 Status Interrupt 29 IVG7 0

UART1 Status Interrupt 30 IVG7 0

UART2 Status Interrupt 31 IVG7 0

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

Description of Operation

4-18 ADSP-BF54x Blackfin Processor Hardware Reference

CAN0 Status Interrupt 32 IVG7 0

SI
C

_I
A

R
4

SI
C

_I
W

R
1,

 S
IC

_I
SR

1
&

 S
IC

_I
M

A
SK

1

DMA18 Interrupt (SPORT2 RX) 33 IVG9 2

DMA19 Interrupt (SPORT2 TX) 34 IVG9 2

DMA20 Interrupt (SPORT3 RX) 35 IVG9 2

DMA21 Interrupt (SPORT3 TX) 36 IVG9 2

DMA13 Interrupt (EPPI1) 37 IVG9 2

DMA14 Interrupt (EPPI2, HOSTDP) 38 IVG9 2

DMA5 Interrupt (SPI1) 39 IVG10 3

DMA23 Interrupt (SPI2) 40 IVG10 3

SI
C

_I
A

R
5

DMA8 Interrupt (UART1 RX) 41 IVG10 3

DMA9 Interrupt (UART1 TX) 42 IVG10 3

DMA10 Interrupt (ATAPI RX) 43 IVG10 3

DMA11 Interrupt (ATAPI TX) 44 IVG10 3

TWI0 Interrupt 45 IVG11 4

TWI1 Interrupt 46 IVG11 4

CAN0 Receive Interrupt 47 IVG11 4

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

ADSP-BF54x Blackfin Processor Hardware Reference 4-19

System Interrupts

CAN0 Transmit Interrupt 48 IVG11 4

SI
C

_I
A

R
6

SI
C

_I
W

R
1,

 S
IC

_I
SR

1
&

 S
IC

_I
M

A
SK

1

MDMA Stream 2 Interrupt 49 IVG13 6

MDMA Stream 3 Interrupt 50 IVG13 6

MXVR Status Interrupt 51 IVG11 4

MXVR Control Message Interrupt 52 IVG11 4

MXVR Asynchronous Packet Interrupt 53 IVG11 4

EPPI1 Error Interrupt 54 IVG7 0

EPPI2 Error Interrupt 55 IVG7 0

UART3 Status Interrupt 56 IVG7 0

SI
C

_I
A

R
7

HOSTDP Status Interrupt 57 IVG7 0

Reserved 58 IVG7 0

Pixel Compositor (PIXC) Status Interrupt 59 IVG7 0

NFC Status Interrupt 60 IVG7 0

ATAPI Status Interrupt 61 IVG7 0

CAN1 Status Interrupt 62 IVG7 0

Handshake DMA Status (logical OR of
DMAR0 Block Interrupt, DMAR1 Block
Interrupt, DMAR0 Overflow Error Inter-
rupt, and DMAR1 Overflow Error Inter-
rupt)

63 IVG7 0

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

Description of Operation

4-20 ADSP-BF54x Blackfin Processor Hardware Reference

DMA15 Interrupt (PIXC IN0) 64 IVG8 1

SI
C

_I
A

R
8

SI
C

_I
W

R
2,

 S
IC

_I
SR

2
&

 S
IC

_I
M

A
SK

2

DMA16 Interrupt (PIXC IN1) 65 IVG8 1

DMA17 Interrupt (PIXC OUT) 66 IVG8 1

DMA22 Interrupt (SDH/NFC) 67 IVG8 1

Rotary Counter (CNT) Interrupt 68 IVG8 1

Keypad (KEY) Interrupt 69 IVG8 1

CAN1 RX Interrupt 70 IVG11 4

CAN1 TX Interrupt 71 IVG11 4

SDH Mask 0 Interrupt 72 IVG11 4

SI
C

_I
A

R
9

SDH Mask 1 Interrupt 73 IVG11 4

Reserved 74 IVG11 4

USB_INT0 Interrupt 75 IVG11 4

USB_INT1 Interrupt 76 IVG11 4

USB_INT2 Interrupt 77 IVG11 4

USB_DMAINT Interrupt 78 IVG11 4

OTPSEC Interrupt 79 IVG11 4

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

ADSP-BF54x Blackfin Processor Hardware Reference 4-21

System Interrupts

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 4-2.

UART2 and UART3 are not assigned to peripheral channels by
default. To assign one of these peripherals to a DMA channel, refer
to Table 5-1 on page 5-10.

Reserved 80 IVG11 4

SI
C

_I
A

R
10

SI
C

_I
W

R
2,

 S
IC

_I
SR

2
&

 S
IC

_I
M

A
SK

2

Reserved 81 IVG11 4

Reserved 82 IVG11 4

Reserved 83 IVG11 4

Reserved 84 IVG11 4

Reserved 85 IVG11 4

Timer 0 Interrupt 86 IVG11 4

Timer 1 Interrupt 87 IVG11 4

Timer 2 Interrupt 88 IVG11 4

SI
C

_I
A

R
11

Timer 3 Interrupt 89 IVG11 4

Timer 4 Interrupt 90 IVG11 4

Timer 5 Interrupt 91 IVG11 4

Timer 6 Interrupt 92 IVG11 4

Timer 7 Interrupt 93 IVG11 4

Pin Interrupt 2 (PINT2) 94 IVG12 5

Pin Interrupt 3 (PINT3) 95 IVG12 5

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt Event Peripheral
Interrupt
ID

Default
Mapping

Default
Core
Interrupt
ID

SIC
Registers

Programming Model

4-22 ADSP-BF54x Blackfin Processor Hardware Reference

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory-mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Programming Model
The programming model for the system interrupts is described in the fol-
lowing sections.

System Interrupt Initialization
If the default assignments shown in Table 4-2 on page 4-16 are accept-
able, then interrupt initialization involves only:

• Initialization of the core event vector table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts in the SIC_IMASKx
register that the system requires

System Interrupt Processing Summary
Referring to Figure 4-6 on page 4-25, note when an interrupt
(interrupt A) is generated by an interrupt-enabled peripheral:

1. The SIC_ISRx register logs the request and keeps track of system
interrupts that are asserted but not yet serviced (that is, an inter-
rupt service routine that has not yet cleared the interrupt).

2. The SIC_IWRx register checks to see if it should wake up the core
from an idled or sleep mode state based on this interrupt request.

ADSP-BF54x Blackfin Processor Hardware Reference 4-23

System Interrupts

3. The SIC_IMASKx register masks-off or enables interrupts from
peripherals at the system level. If interrupt A is not masked, the
request proceeds to Step 4.

4. The SIC_IARx register, which maps the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7–IVG15), deter-
mines the core priority of interrupt A.

5. The ILAT bit adds interrupt A to its log of interrupts latched by the
core but not yet actively being serviced.

6. the IMASK bit masks-off or enables events of different core priori-
ties. If the IVGx event corresponding to interrupt A is not masked,
the process proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s ISR.

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, the IPEND bit tracks all pending interrupts, as well
as those being presently serviced.

9. When the interrupt service routine for interrupt A is executed, the
RTI instruction clears the appropriate IPEND bit. However, the rele-
vant SIC_ISRx bit is not cleared unless the interrupt service routine
clears the mechanism that generated interrupt A, or if the process
of servicing the interrupt clears this bit.

Programming Model

4-24 ADSP-BF54x Blackfin Processor Hardware Reference

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWRx, SIC_ISRx, SIC_IMASKx,
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

ADSP-BF54x Blackfin Processor Hardware Reference 4-25

System Interrupts

Figure 4-6. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
 (SIC_IMASKx)

ASSIGN
SYSTEM

PRIORITY
(SIC_IARx)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS
(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP

(SIC_IWRx)

SYSTEM
STATUS

(SIC_ISRx)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

System Interrupt Controller Registers

4-26 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupt Controller Registers
System interrupt controller (SIC) registers can be read from or written to
at any time in supervisor mode. It is advisable, however, to configure them
in the reset interrupt service routine before enabling interrupts. To pre-
vent spurious or lost interrupt activity, these registers should be written to
only when all peripheral interrupts are disabled.

The SIC registers are described in Table 4-3.

Table 4-3. System Interrupt Controller Registers

Name Description/ Refer to

SIC_IARx System Interrupt Assignment registers
Listing on page 4-27

SIC_IMASKx System Interrupt Mask registers
Listing on page 4-34

SIC_ISRx System Interrupt Status registers
Listing

SIC_IWRx System Interrupt Wakeup registers
Listing on page 4-40

ADSP-BF54x Blackfin Processor Hardware Reference 4-27

System Interrupts

System Interrupt Assignment (SIC_IARx) Registers
Table 4-4 defines the value to write in the SIC_IARx registers to configure
a peripheral for a particular IVG priority.

Table 4-4. IVG Select Definitions

General-Purpose
Interrupt

Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8

System Interrupt Controller Registers

4-28 ADSP-BF54x Blackfin Processor Hardware Reference

The system interrupt assignment registers (SIC_IARx) are shown in
Figure 4-7 through Figure 4-18.

Figure 4-7. System Interrupt Assignment Register 0 (SIC_IAR0)

Figure 4-8. System Interrupt Assignment Register 1 (SIC_IAR1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

PLL Wakeup InterruptSPORT0 Error Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 1 0 0 0 0 0 0 0 0 0 0 0

Real-Time Clock
Interrupt

Reset = 0x1000 0000

SPORT1 Error Interrupt

DMAC0 Status (generic)

0xFFC0 0130 0

EPPI0 Error Interrupt

SPI0 Status InterruptUART0 Status Interrupt

DMA12 Interrupt
(EPPI0)

DMA7 Interrupt
(UART0 TX)

DMA2 Interrupt
(SPORT1 RX)

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x3332 22210xFFC0 0134

DMA6 Interrupt
(UART0 RX)

DMA1 Interrupt
(SPORT0 TX)

DMA0 Interrupt
(SPORT0 RX)

DMA3 Interrupt
(SPORT1 TX)

DMA4 Interrupt (SPI0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 0 0 0 1 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 1 0 0 1 1 0 0 1 1 0 0 10

ADSP-BF54x Blackfin Processor Hardware Reference 4-29

System Interrupts

Figure 4-9. System Interrupt Assignment Register 2 (SIC_IAR2)

Figure 4-10. System Interrupt Assignment Register 3 (SIC_IAR3)

Reset = 0x6665 54440xFFC0 0138

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 0 0 1 1 0 0 1 1 0 0 1 00

Pin Interrupt 1

MDMA Stream 0 Interrupt

Software Watchdog
Timer Interrupt

Timer 9 Interrupt

Timer 8 InterruptPin Interrupt 0

Timer 10 Interrupt

MDMA Stream 1 Interrupt

System Interrupt Assignment Register 2 (SIC_IAR2)

System Interrupt Assignment Register 3 (SIC_IAR3)

Reset = 0x0000 00000xFFC0 013C

DMAC1 Status (generic)

SPORT2 Error InterruptSPORT3 Error Interrupt

SPI1 Status Interrupt

SPI2 Status Interrupt

UART2 Status Interrupt

UART1 Status Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

MXVR Synchronous
Data Interrupt

System Interrupt Controller Registers

4-30 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 4-11. System Interrupt Assignment Register 4 (SIC_IAR4)

Figure 4-12. System Interrupt Assignment Register 5 (SIC_IAR5)

System Interrupt Assignment Register 4 (SIC_IAR4)

Reset = 0x3222 22200xFFC0 0140

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt (EPPI1)

DMA5 Interrupt (SPI1)

DMA14 (EPPI2, HOSTDP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 0 0 1 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 1 1 0 0 1 0 0 0 1 0 0 0 10

DMA20 Interrupt
(SPORT3 RX)

System Interrupt Assignment Register 5 (SIC_IAR5)

Reset = 0x4443 33330xFFC0 0144

DMA23 Interrupt
(SPI2)

DMA8 Interrupt
(UART1 RX)

DMA9 Interrupt
(UART1 TX)

DMA11 Interrupt
(ATAPI TX)

TWI0 Interrupt

CAN0 Receive
Interrupt

TWI1 Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 1 1 0 0 1 1 0 0 1 1 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 0 0 0 1 0 0 0 1 0 0 0 0 10

DMA10 Interrupt
(ATAPI RX)

ADSP-BF54x Blackfin Processor Hardware Reference 4-31

System Interrupts

Figure 4-13. System Interrupt Assignment Register 6 (SIC_IAR6)

Figure 4-14. System Interrupt Assignment Register 7 (SIC_IAR7)

System Interrupt Assignment Register 6 (SIC_IAR6)

Reset = 0x0044 46640xFFC0 0148

CAN0 Transmit Interrupt

MDMA Stream 2 InterruptMDMA Stream 3 Interrupt

EPPI2 Error Interrupt

EPPI1 Error Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 1 0 0 1 1 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 1 0 0 0 1 00

MXVR Status Interrupt

MXVR Control Message
Interrupt

MXVR Asynchronous
Packet Interrupt

System Interrupt Assignment Register 7 (SIC_IAR7)

Reset = 0x0000 00000xFFC0 014C

UART3 Status Interrupt

HOSTDP Status Interrupt

NFC Status Interrupt

CAN1 Status Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

PIXC Status Interrupt

ATAPI Status Interrupt

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error Interrupt

System Interrupt Controller Registers

4-32 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 4-15. System Interrupt Assignment Register 8 (SIC_IAR8)

Figure 4-16. System Interrupt Assignment Register 9 (SIC_IAR9)

System Interrupt Assignment Register 8 (SIC_IAR8)

Reset = 0x4411 11110xFFC0 0150

DMA15 Interrupt
(PIXC Input 0)

DMA16 Interrupt
(PIXC Input 1)

DMA17 Interrupt
(PIXC Output)

Rotary Counter (CNT)
Interrupt

CAN1 RX Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 0 0 1 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 0 0 0 1 0 0 0 0 0 1 0 0 00

DMA22 Interrupt
(SDH/NFC)

Keypad (KEY) Interrupt

CAN1 TX Interrupt

System Interrupt Assignment Register 9 (SIC_IAR9)

Reset = 0x4444 44440xFFC0 0154

SDH Interrupt 0

SDH Interrupt 1

USB Interrupt 1 (USB_INT1)

USB DMA Interrupt (USB_DMAINT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 0 0 1 0 0 0 1 0 0 0 1 00

USB Interrupt 0
(USB_INT0)

USB Interrupt 2 (USB_INT2)

OTPSEC Interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 4-33

System Interrupts

Figure 4-17. System Interrupt Assignment Register 10 (SIC_IAR10)

Figure 4-18. System Interrupt Assignment Register 11 (SIC_IAR11)

System Interrupt Assignment Register 10 (SIC_IAR10)

Reset = 0x4444 44440xFFC0 0158

Timer 0 Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 0 0 1 0 0 0 1 0 0 0 1 00

Timer 1 Interrupt

System Interrupt Assignment Register 11 (SIC_IAR11)

Reset = 0x5544 44440xFFC0 015C

Timer 2 Interrupt

Timer 3 InterruptTimer 4 Interrupt

Timer 6 Interrupt

Pin Interrupt 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 0 0 1 0 0 0 1 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 1 0 1 0 1 0 1 0 0 0 1 00

Timer 5 Interrupt

Timer 7 Interrupt

Pin Interrupt 3

System Interrupt Controller Registers

4-34 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupt Mask (SIC_IMASKx) Registers
The system interrupt mask registers (SIC_IMASKx) are shown in
Figure 4-19 through Figure 4-21.

ADSP-BF54x Blackfin Processor Hardware Reference 4-35

System Interrupts

Figure 4-19. System Interrupt Mask Register 0 (SIC_IMASK0)

System Interrupt Mask Register 0 (SIC_IMASK0)

Reset = 0x0000 00000xFFC0 010C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

PLL Wakeup Interrupt

DMAC0 Status (generic)

EPPI0 Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI0 Status Interrupt

UART0 Status Interrupt

DMA7 Interrupt
(UART0 TX)

DMA6 Interrupt
(UART0 RX)

DMA4 Interrupt (SPI0)

DMA3 Interrupt
(SPORT1 TX)

DMA2 Interrupt
(SPORT0 RX)

DMA1 Interrupt
(SPORT0 TX) DMA12 Interrupt

(EPPI0)

Real-Time Clock Interrupt

DMA0 Interrupt
(SPORT0 RX)

Timer 8 Interrupt

Timer 9 Interrupt

Timer 10 Interrupt

Pin Interrupt 0

Pin Interrupt 1

MDMA Stream 0
Interrupt

UART1 Status Interrupt

SPI2 Status Interrupt

SPI1 Status Interrupt

MXVR Synchronous
Data Interrupt

SPORT3 Error Interrupt

SPORT2 Error Interrupt

Software Watchdog
Timer Interrupt

DMAC1 Status (generic)

MDMA Stream 1
Interrupt

UART2 Status Interrupt

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

System Interrupt Controller Registers

4-36 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 4-20. System Interrupt Mask Register 1 (SIC_IMASK1)

Reset = 0x0000 00000xFFC0 0110

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA20 Interrupt
(SPORT3 RX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt
(EPPI1)
DMA14 Interrupt
(EPPI2, HOSTDP)

CAN0 Receive
Interrupt

TWI1 Interrupt

TWI0 Interrupt

DMA11 Interrupt (ATAPI TX)

DMA10 Interrupt (ATAPI RX)

DMA9 Interrupt (UART1 TX)

DMA5 Interrupt (SPI1)

DMA8 Interrupt (UART1 RX)

CAN0 Transmit Interrupt

MDMA Stream 2
Interrupt

MXVR Status Interrupt
CAN1 Status Interrupt

ATAPI Status Interrupt

NFC Status Interrupt

PIXC Status Interrupt

HOSTDP Status Interrupt

EPPI2 Error InterruptUART3 Status Interrupt

System Interrupt Mask Register 1 (SIC_IMASK1)

MDMA Stream 3
Interrupt

MXVR Asynchronous
Packet Interrupt

EPPI1 Error Interrupt

MXVR Control Message
Interrupt

DMA23 Interrupt (SPI2)

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 3 2 1 09 8 7 6

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error
Interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 4-37

System Interrupts

Figure 4-21. System Interrupt Mask Register 2 (SIC_IMASK2)

Reset = 0x0000 00000xFFC0 0114

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

DMA16 Interrupt
(PIXC Input 1)

Rotary Counter (CNT)
Interrupt
Keypad (KEY) Interrupt

OTPSEC Interrupt

USB DMA Interrupt
(USB_DMAINT)

USB Interrupt 2 (USB_INT2)

USB Interrupt 1 (USB_INT1)

USB Interrupt 0 (USB_INT0)

CAN1 RX Interrupt

SDH Interrupt 1

Pin Interrupt 3

Pin Interrupt 2

Timer 7 Interrupt

Timer 6 Interrupt

Timer 5 Interrupt

Timer 0 Interrupt

System Interrupt Mask Register 2 (SIC_IMASK2)

5 4 3 2 1 09 8 7 6

SDH Interrupt 0

DMA17 Interrupt
(PIXC Output)

DMA22 Interrupt
(SDH/NFC)

CAN1 TX Interrupt

Timer 1 Interrupt

Timer 2 Interrupt

Timer 3 Interrupt

Timer 4 Interrupt

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

DMA15 Interrupt
(PIXC Input 0)

System Interrupt Controller Registers

4-38 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupt Status (SIC_ISRx) Registers
The system interrupt status registers (SIC_ISRx) are shown in Figure 4-22,
Figure 4-23, and Figure 4-24.

Figure 4-22. System Interrupt Status Register 0 (SIC_ISR0)

System Interrupt Status Register 0 (SIC_ISR0)

Reset = 0x0000 00000xFFC0 0118

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

PLL Wakeup Interrupt

DMAC0 Status (generic)

EPPI0 Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI0 Status Interrupt

UART0 Status Interrupt

DMA7 Interrupt
(UART0 TX)

DMA6 Interrupt
(UART0 RX)

DMA4 Interrupt (SPI0)

DMA3 Interrupt (SPORT1 TX)

DMA2 Interrupt (SPORT0 RX)

DMA1 Interrupt (SPORT0 TX)

DMA12 Interrupt (EPPI0)

Real-Time Clock Interrupt
DMA0 Interrupt (SPORT0 RX)

Timer 8 Interrupt

Timer 9 Interrupt

Timer 10 Interrupt

Pin Interrupt 0

Pin Interrupt 1

MDMA Stream 0
Interrupt

UART1 Status Interrupt

SPI2 Status Interrupt

SPI1 Status Interrupt

MXVR Synchronous Data
Interrupt

SPORT3 Error Interrupt

SPORT2 Error Interrupt

Software Watchdog
Timer Interrupt

DMAC1 Status (generic)

MDMA Stream 1
Interrupt

UART2 Status Interrupt

For all bits, 0 - Deasserted, 1 - Asserted

ADSP-BF54x Blackfin Processor Hardware Reference 4-39

System Interrupts

Figure 4-23. System Interrupt Status Register 1 (SIC_ISR1)

Reset = 0x0000 00000xFFC0 011C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA20 Interrupt
(SPORT3 RX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt
(EPPI1)
DMA14 Interrupt
(EPPI2, HOSTDP)

CAN0 Receive
Interrupt

TWI1 Interrupt

TWI0 Interrupt

DMA11 Interrupt (ATAPI TX)

DMA10 Interrupt (ATAPI RX)

DMA9 Interrupt (UART1 TX)

DMA5 Interrupt (SPI1)

DMA8 Interrupt (UART1 RX)

CAN0 Transmit Interrupt

MDMA Stream 2
Interrupt

MXVR Status Interrupt

CAN1 Status Interrupt

ATAPI Status Interrupt

NFC Status Interrupt

PIXC Status Interrupt

HOSTDP Status Interrupt

EPPI2 Error InterruptUART3 Status Interrupt

System Interrupt Status Register 1 (SIC_ISR1)

MDMA Stream 3
Interrupt

MXVR Asynchronous
Packet Interrupt

EPPI1 Error Interrupt

MXVR Control Message
Interrupt

DMA23 Interrupt (SPI2)

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 3 2 1 09 8 7 6

For all bits, 0 - Deasserted, 1 - Asserted

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error
Interrupt

System Interrupt Controller Registers

4-40 ADSP-BF54x Blackfin Processor Hardware Reference

System Interrupt Wakeup (SIC_IWRx) Registers
The system interrupt wakeup registers (SIC_IWRx) are shown in
Figure 4-25, Figure 4-26, and Figure 4-27.

Figure 4-24. System Interrupt Status Register 2 (SIC_ISR2)

Reset = 0x0000 00000xFFC0 0120

15 14 13 12 11 10

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 00

DMA15 Interrupt
(PIXC Input 0)

Rotary Counter (CNT)
Interrupt

Keypad (KEY) Interrupt

OTPSEC Interrupt

USB DMA Interrupt
(USB_DMAINT)

CAN1 RX Interrupt
SDH Interrupt 1

Pin Interrupt 3

Pin Interrupt 2

Timer 7 Interrupt

Timer 6 Interrupt

Timer 5 Interrupt

Timer 0 Interrupt

System Interrupt Status Register 2 (SIC_ISR2)

5 4 3 2 1 09 8 7 6

SDH Interrupt 0

DMA16 Interrupt
(PIXC Input 1)

DMA17 Interrupt
(PIXC Output)

DMA22 Interrupt
(SDH/NFC)

CAN1 TX Interrupt

Timer 1 Interrupt

Timer 2 Interrupt

Timer 3 Interrupt

Timer 4 Interrupt

For all bits, 0 - Deasserted, 1 - Asserted

USB Interrupt 0
(USB_INT0)

USB Interrupt 1
(USB_INT1)

USB Interrupt 2
(USB_INT2)

ADSP-BF54x Blackfin Processor Hardware Reference 4-41

System Interrupts

Figure 4-25. System Interrupt Wakeup Register 0 (SIC_IWR0)

System Interrupt Wakeup Register 0 (SIC_IWR0)

Reset = 0xFFFF FFFF0xFFC0 0124

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 11

PLL Wakeup Interrupt

DMAC0 Status (generic)

EPPI0 Error Interrupt

SPORT0 Error Interrupt

SPORT1 Error Interrupt

SPI0 Status Interrupt

UART0 Status Interrupt

DMA7 Interrupt
(UART0 TX)

DMA6 Interrupt
(UART0 RX)

DMA4 Interrupt (SPI0)

DMA3 Interrupt (SPORT1 TX)

DMA2 Interrupt (SPORT0 RX)

DMA1 Interrupt (SPORT0 TX)

DMA12 Interrupt (EPPI0)

Real-Time Clock Interrupt
DMA0 Interrupt (SPORT0 RX)

Timer 8 Interrupt

Timer 9 Interrupt

Timer 10 Interrupt

Pin Interrupt 0

Pin Interrupt 1

MDMA Stream 0
Interrupt

UART1 Status Interrupt

SPI2 Status Interrupt

SPI1 Status Interrupt

MXVR Synchronous Data
Interrupt

SPORT3 Error Interrupt

SPORT2 Error Interrupt

Software Watchdog
Timer Interrupt

DMAC1 Status (generic)

MDMA Stream 1
Interrupt

UART2 Status Interrupt

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

System Interrupt Controller Registers

4-42 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 4-26. System Interrupt Wakeup Register 1 (SIC_IWR1)

Reset = 0xFFFF FFFF0xFFC0 0128
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 11

CAN0 Status Interrupt

DMA18 Interrupt
(SPORT2 RX)

DMA19 Interrupt
(SPORT2 TX)

DMA20 Interrupt
(SPORT3 RX)

DMA21 Interrupt
(SPORT3 TX)

DMA13 Interrupt
(EPPI1)
DMA14 Interrupt
(EPPI2, HOSTDP)

CAN0 Receive
Interrupt

TWI1 Interrupt

TWI0 Interrupt

DMA11 Interrupt (ATAPI TX)

DMA10 Interrupt (ATAPI RX)

DMA9 Interrupt (UART1 TX)

DMA5 Interrupt (SPI1)

DMA8 Interrupt (UART1 RX)

CAN0 Transmit Interrupt

MDMA Stream 2
Interrupt

MXVR Status Interrupt

CAN1 Status Interrupt

ATAPI Status Interrupt

NFC Status Interrupt

PIXC Status Interrupt

HOSTDP Status Interrupt

EPPI2 Error InterruptUART3 Status Interrupt

System Interrupt Wakeup Register 1 (SIC_IWR1)

MDMA Stream 3
Interrupt

MXVR Asynchronous
Packet Interrupt

EPPI1 Error Interrupt

MXVR Control Message
Interrupt

DMA23 Interrupt (SPI2)

15 14 13 12 11 10

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 4 3 2 1 09 8 7 6

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

DMAR0 Block,
DMAR1 Block,
DMAR0 Overflow Error,
DMAR1 Overflow Error
Interrupt

ADSP-BF54x Blackfin Processor Hardware Reference 4-43

System Interrupts

Figure 4-27. System Interrupt Wakeup Register 2 (SIC_IWR2)

Reset = 0xFFFF FFFF0xFFC0 012C

15 14 13 12 11 10

11 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 11

DMA15 Interrupt
(PIXC Input 0)

Rotary Counter (CNT)
Interrupt
Keypad (KEY) Interrupt

OTPSEC Interrupt

USB DMA Interrupt
(USB_DMAINT)

USB Interrupt 2
(USB_INT2)

USB Interrupt 1
(USB_INT1)

USB Interrupt 0
(USB_INT0)

CAN1 RX Interrupt
SDH Interrupt 1

Pin Interrupt 3

Pin Interrupt 2

Timer 7 Interrupt

Timer 6 Interrupt

Timer 5 Interrupt

Timer 0 Interrupt

System Interrupt Wakeup Register 2 (SIC_IWR2)

5 4 3 2 1 09 8 7 6

SDH Interrupt 0

DMA16 Interrupt
(PIXC Input 1)

DMA17 Interrupt
(PIXC Output)

DMA22 Interrupt
(SDH/NFC)

CAN1 TX Interrupt

Timer 1 Interrupt

Timer 2 Interrupt

Timer 3 Interrupt

Timer 4 Interrupt

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

1 1

Programming Examples

4-44 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
The following sections provide examples for programming system
interrupts.

Clearing Interrupt Requests
When the processor services a core event it automatically clears the
requesting bit in the ILAT register and no further action is required by the
interrupt service routine. It is important to understand that the SIC con-
troller does not provide any interrupt acknowledgment feedback
mechanism from the CEC controller back to the peripherals. Although
the ILAT bits clear in the same way when a peripheral interrupt is serviced,
the signalling peripheral does not release its level-sensitive request until it
is explicitly instructed by software. If however, the peripheral keeps
requesting, the respective ILAT bit is set again immediately and the service
routine is invoked again as soon as its first run terminates by an RTI
instruction.

Every software routine that services peripheral interrupts must clear the
signalling interrupt request in the respective peripheral. The individual
peripherals provide customized mechanisms for how to clear interrupt
requests. Receive interrupts, for example, are cleared when received data is
read from the respective buffers. Transmit requests typically clear when
software (or DMA) writes new data into the transmit buffers. These
implicit acknowledge mechanisms avoid the need for cycle-consuming
software handshakes in streaming interfaces. Other peripherals such as
timers, GPIOs, and error requests require explicit acknowledge instruc-
tions, which are typically performed by efficient W1C (write-1-to-clear)
operations.

Listing 4-1 shows a representative example of how a GPIO interrupt
request might be serviced.

ADSP-BF54x Blackfin Processor Hardware Reference 4-45

System Interrupts

Listing 4-1. Servicing GPIO Interrupt Request

#include <defBF549.h>

.section program;

_portg_a_isr:

/* push used registers */

[--sp] = (r7:7, p5:5);

/* clear interrupt request on GPIO pin PG2 */

/* no matter whether used A or B channel */

p5.l = lo(PORTGIO_CLEAR);

p5.h = hi(PORTGIO_CLEAR);

r7 = PG2;

w[p5] = r7;

/* place user code here */

/* sync system, pop registers and exit */

ssync;

(r7:7, p5:5) = [sp++];

rti;

_portg_a_isr.end:

The W1C instruction shown in this example may require several SCLK
cycles to complete, depending on system load and instruction history. The
program sequencer does not wait until the instruction completes and con-
tinues program execution immediately. The SSYNC instruction ensures that
the W1C command indeed cleared the request in the GPIO peripheral
before the RTI instruction executes. However, the SSYNC instruction does
not guarantee that the release of interrupt request has also been recognized
by the CEC controller, which may require a few more CCLK cycles depend-
ing on the CCLK-to-SCLK ratio. In service routines consisting of a few
instructions only, two SSYNC instructions are recommended between the
clear command and the RTI instruction. However, one SSYNC instruction
is typically sufficient if the clear command performs in the very beginning

Programming Examples

4-46 ADSP-BF54x Blackfin Processor Hardware Reference

of the service routine, or the SSYNC instruction is followed by another set
of instructions before the service routine returns. Commonly, a pop-mul-
tiple instruction is used for this purpose as shown in Listing 4-1.

The level-sensitive nature of peripheral interrupts enables more than one
of them to share the same IVG channel and therefore the same interrupt
priority. This is programmable using the assignment registers. Then a
common service routine typically interrogates the SIC_ISRx register to
determine the signalling interrupt source. If multiple peripherals are
requesting interrupts at the same time, it is up to the service routine to
either service all requests in a single pass or to service them one by one. If
only one request is serviced and the respective request is cleared by soft-
ware before the RTI instruction executes, the same service routine is
invoked another time because the second request is still pending. While
the first approach may require fewer cycles to service both requests, the
second approach enables higher priority requests to be serviced more
quickly in a non-nested interrupt system setup.

ADSP-BF54x Blackfin Processor Hardware Reference 5-1

5 DIRECT MEMORY ACCESS

This chapter describes the direct memory access (DMA) controllers. The
features common to all the DMA channels, as well as how DMA opera-
tions are set up are also described. For specific peripheral features, see the
appropriate peripheral chapter for additional information. Performance
and bus arbitration for DMA operations can be found in “DAB, DCB,
and DEB Performance” on page 2-23.

This chapter does not cover the DMA controllers associated with the USB
and MXVR peripherals. For this information, refer to the appropriate
peripheral chapter.

The chapter includes the following sections:

• “Overview and Features” on page 5-2

• “DMA Controller Overview” on page 5-6

• “Modes of Operation” on page 5-17

• “Functional Description” on page 5-25

• “Programming Model” on page 5-61

• “DMA Registers” on page 5-74

• “Programming Examples” on page 5-129

Overview and Features

5-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview and Features
The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The processor has two DMA controllers: DMAC0 has a 16-bit data bus,
while DMAC1 has a 32-bit data bus.

The DMA controllers can perform several types of data transfers:

• Peripheral DMA transfers data between memory and on-chip
peripherals. The processor has 24 peripheral DMA channels that
support 21 peripherals.

• SPORT0, SPORT1, SPORT2, and SPORT3 (dedicated
DMA channels for each transmit and receive function)

• UART0, UART1, UART2 and UART3 (dedicated DMA
channels for each transmit and receive function)

• EPPI0, EPPI1, and EPPI2/HOSTDP (each transmit and
receive pair shares one DMA channel)

• Pixel compositor (PIXC) (two dedicated DMA channels for
inputs, one for output)

• NFC/SDH (transmit and receive channels share one DMA
channel)

• ATAPI (dedicated DMA channels for transmit and receive)

• SPI0, SPI1, and SPI2 (each transmit and receive pair shares
one DMA channel)

ADSP-BF54x Blackfin Processor Hardware Reference 5-3

Direct Memory Access

• Memory DMA (MDMA) transfers data between memory and
memory. The processor has four MDMA modules, each consisting
of independent memory read and memory write channels.

• Handshaking memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

All DMAs can transport data to and from on-chip and off-chip memories,
including L1, L2, boot ROM, and DDR SDRAM. The L1 scratchpad
memory cannot be accessed by DMA.

DMA transfers on the processor can be descriptor-based or register-based.
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed. Descriptor-based DMA transfers require a
set of parameters stored within memory to initiate a DMA sequence. This
sort of transfer allows the chaining together of multiple DMA sequences.
In descriptor-based DMA operations, a DMA channel can be pro-
grammed to automatically set up and start another DMA transfer after the
current sequence completes.

Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = stop mode)

• A linear buffer with strides equal 1 or greater, zero or negative
(DMAx_X_MODIFY register)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example,
1/2, 1/4) (2D DMA)

Overview and Features

5-4 ADSP-BF54x Blackfin Processor Hardware Reference

• 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing a link pointer
and a 32-bit address }

• 1D DMA, using a linked list of 5-word descriptors containing a
link pointer, a 32-bit address, the length of the buffer, and the
DMA configuration.

• 2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page

• 2D DMA, using a linked list of 9-word descriptors, specifying
everything

The following functions can be served by DMA channels:

• EPPI2–0 receive

• EPPI2–0 transmit

• Host DMA receive/transmit

• PIXC image data (read from memory)

• PIXC overlay data (read from memory)

• PIXC results (write to memory)

• SPORT3–0 receive

• SPORT3–0 transmit

• UART3–0 receive

• UART3–0 transmit

• SPI2–0 receive

• SPI2–0 transmit

ADSP-BF54x Blackfin Processor Hardware Reference 5-5

Direct Memory Access

• NFC receive/transmit

• SDH receive/transmit

• ATAPI receive

• ATAPI transmit

• MDMA3–0 destination

• MDMA3–0 source

DMA Controller Overview

5-6 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Controller Overview
Figure 5-1 and Figure 5-2 provide block diagrams of the DMA
controllers.

Figure 5-1. DMAC0 Controller Block Diagram

DMA 0 CONTROLPMAPFIFO

DMA 1 CONTROLPMAPFIFO

DMA 2 CONTROLPMAPFIFO

DMA 3 CONTROLPMAPFIFO

DMA 4 CONTROLPMAPFIFO

DMA 5 CONTROLPMAPFIFO

DMA 6 CONTROLPMAPFIFO

DMA 7 CONTROLPMAPFIFO

DMA 8 CONTROLPMAPFIFO

DMA 9 CONTROLPMAPFIFO

DMA 10 CONTROLPMAPFIFO

DMA 11 CONTROLPMAPFIFO

MDMA 1 DESTINATION CONTROL
FIFO

MDMA 1 SOURCE CONTROL

MDMA 0 DESTINATION CONTROL
FIFO

MDMA 0 SOURCE CONTROL

DMA TRAFFIC CONTROL

IRQ 9

IRQ 10

IRQ 11

IRQ 12

IRQ 13

IRQ 39

IRQ 14

IRQ 15

IRQ 41

IRQ 42

IRQ 43

IRQ 44

IRQ 22

IRQ 21

IRQ 1
(DMAC0 STATUS)

CCLK SCLK

DCB0 DEB0 DAB0 DGT DRQ PAB

16 16 16 12 163x12

ADSP-BF54x Blackfin Processor Hardware Reference 5-7

Direct Memory Access

In the figures, DRQ = DMA request (see Table 5-21 on page 5-117) and
DGT = DMA grant.

Figure 5-2. DMAC1 Controller Block Diagram

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

PMAPFIFO

DMA 21 CONTROLPMAPFIFO

DMA 22 CONTROLPMAPFIFO

DMA 23 CONTROLPMAPFIFO

MDMA 3 DESTINATION CONTROL
FIFO

MDMA 3 SOURCE CONTROL

MDMA 2 DESTINATION CONTROL
HMDMA0FIFO

MDMA 2 SOURCE CONTROL

DMA TRAFFIC CONTROL

DMAR0 DMAR1

IRQ 8

IRQ 37

IRQ 38

IRQ 64

IRQ 65

IRQ 66

IRQ 33

IRQ 34

IRQ 35

IRQ 36

IRQ 67

IRQ 40

IRQ 50

IRQ 49

IRQ 24
(DMAC1 STATUS)

CCLK SCLK

DCB1 DEB1 DAB1 DGT DRQ PAB

32 32 32 16 3 x 16 16

IRQ 63

HMDMA1

DMA 20 CONTROL

DMA 19 CONTROL

DMA 18 CONTROL

DMA 17 CONTROL

DMA 16 CONTROL

DMA 15 CONTROL

DMA 14 CONTROL

DMA 13 CONTROL

DMA 12 CONTROL

DMA Controller Overview

5-8 ADSP-BF54x Blackfin Processor Hardware Reference

External Interfaces
The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, DDR
SDRAM, FIFOs, or memory-mapped peripheral devices.

Handshaking MDMA operation is supported by two MDMA request
input pins, DMAR0 and DMAR1. The DMAR0 pin controls transfer timing on
the MDMA2 source or destination channel. The DMAR1 pin controls the
source or destination channel of MDMA3. With these pins, external
FIFO devices, ADC or DAC converters, or other streaming or block-pro-
cessing devices can use the MDMA channels to exchange their data or
data buffers with the Blackfin processor memory.

Both DMARx pins reside on port H and are multiplexed with MXVR sig-
nals. To enable their function, PH5 and/or PH6 must be set in the
PORTH_FER registers and the related bit fields in the PORTH_MUX register
must be set to “b#01”. The REP bit in the respective HMDMAx_CONTROL regis-
ter controls whether the DMARx inputs trigger on falling or rising edges of
the connect strobe.

Internal Interfaces
Figure 2-1 on page 2-3 of the “Chip Bus Hierarchy” chapter shows the
dedicated DMA buses used by the DMA controllers to interconnect L1
and L2 memories, the on-chip peripherals, and the EBIU port.

The 16-bit DMA core bus (DCB0) allows DMAC0 to access either a ded-
icated port of L1 memory or the on-chip memory other than L1. A 32-bit
DMA core bus (DCB1) allows DMAC1 to access either a dedicated port
of L1 memory or the on-chip memory other than L1. These buses, along
with DCB2 from MXVR and DCB3 from USB, operate at the system

ADSP-BF54x Blackfin Processor Hardware Reference 5-9

Direct Memory Access

clock (SCLK) frequency. Internal arbitration is performed between accesses
on these four buses and translates the requests into the core clock (CCLK)
domain for either memory other than L1 or L1 memory.

The 16-bit DMA access bus (DAB0) connects DMAC0 to the following
on-chip peripherals: SPORT0, SPORT1, SPI0, SPI1, UART0, UART1,
ATAPI.

The 32-bit DMA access bus (DAB1) connects DMAC1 to the following
on-chip peripherals: EPPI0, EPPI1, EPPI2, HOSTDP, PIXC, SPORT2,
SPORT3, UART2, UART3, SDH, NFC, and SPI2. Both DAB buses
operate at SCLK frequency.

The 16-bit DMA external bus (DEB0) connects the DMAC0 to the EBIU
port. The 32-bit DMA external bus (DEB1) connects DMAC1 to the
EBIU port.

Transferred data can be 8, 16, or 32 bits wide. DMAC0, however, con-
nects only to 16-bit buses. MDMA0 and MDMA1 reside on DMAC0,
while MDMA2 and MDMA3 reside on DMAC1.

In terms of DCB bus performance, L2 memory resembles L1 memory for
the purposes of performance on the DCB buses.

Memory DMA can pass data every SCLK cycle between L1 or memory
other than L1 and the EBIU. Transfers originating from L1 or memory
other than L1 and targeting L1 or memory other than L1 require two
cycles, as the DCB bus is used for both source and destination transfer.
Similarly, transfers between two off-chip devices require EBIU and DEB
resources twice. Peripheral DMA transfers can be performed every other
SCLK cycle.

For more details on DMA performance see “DMA Performance” on
page 5-51.

DMA Controller Overview

5-10 ADSP-BF54x Blackfin Processor Hardware Reference

Peripheral DMA
As can be seen in Figure 5-1 on page 5-6 and Figure 5-2 on page 5-7, the
DMA controllers each feature 12 channels that perform transfers between
peripherals and on-chip or off-chip memories. The user has full control
over the mapping of DMA channels and peripherals. The default configu-
ration, shown in Table 5-1, can be changed by altering the 4-bit PMAP
field in the DMAx_PERIPHERAL_MAP registers for the peripheral DMA
channels.

Table 5-1. Default Mapping of Peripheral to DMA

DMA Channel DMA Controller PMAP Default1, 2 Peripheral Mapped by Default

DMA0 DMAC0 0x0 SPORT0 receive

DMA1 DMAC0 0x1 SPORT0 transmit

DMA2 DMAC0 0x2 SPORT1 receive

DMA3 DMAC0 0x3 SPORT1 transmit

DMA4 DMAC0 0x4 SPI0 receive/transmit

DMA5 DMAC0 0x5 SPI1 receive/transmit

DMA6 DMAC0 0x6 UART0 receive

DMA7 DMAC0 0x7 UART0 transmit

DMA8 DMAC0 0x8 UART1 receive

DMA9 DMAC0 0x9 UART1 transmit

DMA10 DMAC0 0xA ATAPI receive

DMA11 DMAC0 0xB ATAPI transmit

DMA12 DMAC1 0x0 EPPI0 receive/transmit

DMA13 DMAC1 0x1 EPPI1 receive/transmit

DMA14 DMAC1 0x2 EPPI2/Host DMA receive/transmit

DMA15 DMAC1 0x3 PIXC image data (read from memory)

DMA16 DMAC1 0x4 PIXC overlay data (read from memory)

ADSP-BF54x Blackfin Processor Hardware Reference 5-11

Direct Memory Access

The default configuration works in most cases, but there are some cases
where remapping the assignment can be helpful, because of the DMA
channel priorities. In the default configuration, when competing for any
of the system buses, DMA0 has higher priority than DMA1, and so on.

DMA17 DMAC1 0x5 PIXC output data (write to memory)

DMA18 DMAC1 0x6 SPORT2 receive

DMA19 DMAC1 0x7 SPORT2 transmit

DMA20 DMAC1 0x8 SPORT3 receive

DMA21 DMAC1 0x9 SPORT3 transmit

DMA22 DMAC1 0xA SDH/NFC receive/transmit

DMA23 DMAC1 0xB SPI2 receive/transmit

– DMAC1 0xC Note3

– DMAC1 0xD Note3

– DMAC1 0xE Note3

– DMAC1 0xF Note3

1 Host DMA and EPPI2 share a PMAP assignment on DMAC1. Host DMA is given the channel when
it is enabled. Otherwise EPPI2 is given the channel.

2 NFC (NAND flash controller) and SDH (secure digital host) share a PMAP assignment on
DMAC1. For more information on enabling the NFC, see “DMA Controller 1 Peripheral Multi-
plexer (DMAC1_PERIMUX) Register” on page 5-129.

3 UART2 and UART3 are not assigned to peripheral channels by default. To assign one of these pe-
ripherals to a DMA channel, program the selected DMA channel with the following PMAP value:
0xC for UART2 RX, 0xD for UART2 TX, 0xE for UART3 RX, or 0xF for UART3 TX

Table 5-1. Default Mapping of Peripheral to DMA (Cont’d)

DMA Channel DMA Controller PMAP Default1, 2 Peripheral Mapped by Default

DMA Controller Overview

5-12 ADSP-BF54x Blackfin Processor Hardware Reference

DMA11 has the lowest priority of the peripheral DMA channels on
DMAC0. Similarly, DMA12 is the highest priority peripheral DMA
channel on DMAC1, and DMA23 is the lowest.

Memory DMA channels are present on both DMA controllers. On
a per DMA controller basis, memory DMA is treated as the lowest
priority. However, memory DMA channels on the higher priority
DMA controller will have higher priority than the peripheral DMA
channels on the lower priority DMA controller.

There are control bits in the SYSCR register which can change the priorities
of DMAC0 and DMAC1 for L1 and for L2. For more information, see
Table 2-1 on page 2-13 and Table 2-5 on page 2-22.

A 1:1 mapping should exist between DMA channels and peripher-
als. The user is responsible for ensuring that multiple DMA
channels are not mapped to the same peripheral and that multiple
peripherals are not mapped to the same DMA port. If multiple
channels are mapped to the same peripheral, only one channel is
connected (the lowest priority channel). If a nonexistent peripheral
(for example, 0xF in the PMAP field on DMAC0) is mapped to a
channel, that channel is disabled—DMA requests are ignored, and
no DMA grants are issued. The DMA requests are also not for-
warded from the peripheral to the interrupt controller.

The twelve peripheral DMA channels in each controller work completely
independently from each other. The transfer timing is controlled by the
mapped peripheral.

Every DMA channel features its own 4-deep FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory-side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations.

ADSP-BF54x Blackfin Processor Hardware Reference 5-13

Direct Memory Access

Refer to the SYNC bit in the DMAx_CONFIG register for details (see “DMA
Configuration (DMAx_CONFIG and MDMA_yy_CONFIG) Registers”
on page 5-82).

On DMAC1, 32-bit DMA mode (WDSIZE1–0 = “b#10” in
DMAx_CONFIG) is not supported for SPORT2, SPORT3, UART2,
UART3, and SPI2. However, SPORT2 and SPORT3 data word
lengths can still be set to up to 32 bits.

Memory DMA
This section describes the four MDMA controllers, which provide mem-
ory-to-memory DMA transfers among the various memory spaces. These
include L1 and L2 memories, as well as external synchronous/asynchro-
nous memories.

Each MDMA controller contains a DMA FIFO used to transfer data to
and from either L1, L2, or the DCB and DEB buses. MDMA0 and
MDMA1 have an 8-word by 16-bit FIFO, whereas MDMA2 and
MDMA3 have an 8-word by 32-bit FIFO. Typically, memory DMA is
used to transfer data between external memory and internal memory. It
also supports DMA from boot ROM on the DEB bus. The FIFO can also
be used to hold DMA data transferred between two L1 or memory other
than L1 locations or between two external memory locations.

Each MDMA controller provides two DMA channels:

• A source channel (for reading from memory)

• A destination channel (for writing to memory)

DMA Controller Overview

5-14 ADSP-BF54x Blackfin Processor Hardware Reference

A memory-to-memory transfer always requires the source and the destina-
tion channel to be enabled. The four channels on each DMA controller
are hardwired for DMA priorities 12 through 15. Each source/destination
channel forms a “stream,” and these two streams are hardwired for DMA
priorities 12 through 15:

• Priority 12: MDMA0 destination (DMAC0) or MDMA2 destina-
tion (DMAC1)

• Priority 13: MDMA0 source (DMAC0) or MDMA2 source
(DMAC1)

• Priority 14: MDMA1 destination (DMAC0) or MDMA3 destina-
tion (DMAC1)

• Priority 15: MDMA1 source (DMAC0) or MDMA3 source
(DMAC1)

MDMA0 takes precedence over MDMA1, and MDMA2 takes precedence
over MDMA3, unless round-robin scheduling is used or priorities become
urgent as programmed by the DRQ bit field in the HMDMA_CONTROL register.

It is illegal to program a source channel for memory write or a des-
tination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of MDMA0 and MDMA1 connect to 16-bit buses. Source and
destination channel must be programmed to the same word size. In other
words, the MDMA transfer does not perform packing or unpacking of
data; each read results in one write. Both ends of the MDMA FIFO for a
given stream are granted priority at the same time. The source DMA
engine fills the FIFO, while the destination DMA engine empties it. The
FIFO depth allows the burst transfers of the external access bus (EAB) and
DMA access bus (DAB) to overlap, significantly improving throughput on
block transfers between internal and external memory. Two separate

ADSP-BF54x Blackfin Processor Hardware Reference 5-15

Direct Memory Access

descriptor blocks are required to supply the operating parameters for each
MDMA pair, one for the source channel and one for the destination
channel.

Because the source and destination DMA engines share a single FIFO
buffer, the descriptor blocks must be configured to have the same data
size. It is possible to have a different mix of descriptors on both ends as
long as the total transfer count is the same.

To start an MDMA transfer operation, the MMRs for the source and des-
tination channels are written, each in a manner similar to peripheral
DMA.

Note the DMAx_CONFIG register for the source channel must be writ-
ten before the DMAx_CONFIG register for the destination channel.
Also note that an interrupt (if enabled) is generated only upon the
completion of the destination work unit, not the source work unit.

There are default sets of arbitration priorities between the different DMA
controllers. These arbitration priorities are described in “DMA-Related
Buses” on page 2-17.

The priorities between DMAC0 and DMAC1 with respect to each other
are also programmable at each of the bus interfaces (DEB to external
memory, DCB to the core memory and SysBus to memory other than L1).

A peripheral DMA on either DMA controller uses a subset of its DMA
controller bandwidth for a variety of reasons, including data pack-
ing/unpacking. Additionally, the fact that a peripheral runs at some
fraction of the SCLK rate allows other peripherals to access the various
DMA buses as well.

In contrast, a memory DMA channel pair on a given controller can trans-
fer data on every SCLK cycle if no other DMA activity occurs on the same
DMA controller. This throughput difference can cause bandwidth issues
with respect to other DMA controllers. For example, memory DMAs on

DMA Controller Overview

5-16 ADSP-BF54x Blackfin Processor Hardware Reference

the higher priority DMA controller will hold off transfers from peripherals
on the lower priority DMA controller. This transfer holdoff is most appar-
ent at the external memory interface.

To help with this scenario, please refer to the arbitration options in
“DMA-Related Buses” on page 2-17. In addition, please refer to the
descriptions of the DEB_ARB_PRIORITY, DEB0_URGENT, DEB1_URGENT, and
DEB2_URGENT bits in the DDR_QUEUE register (see Table 6-4 on page 6-17)
for additional control information.

Handshaked Memory DMA Mode

Handshaked operation applies only to memory DMA channels on
DMAC1.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMAR0 input is
associated with MDMA2 and the DMAR1 input with MDMA3. Once a trig-
ger event is detected, a programmable portion of data is transferred and
then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful to control the timing of mem-
ory-to-memory transfers, it also enables the MDMA to operate with
asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the AMSx
strobes to deassert or pulse the request signal and to decrement the num-
ber of pending requests accordingly.

ADSP-BF54x Blackfin Processor Hardware Reference 5-17

Direct Memory Access

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 5-46 for a func-
tional description.

Modes of Operation
The following sections describe the DMA operations - register-based,
two-dimensional, and descriptor-based.

Register-Based DMA Operation
Register-based DMA is the traditional kind of DMA operation. Software
writes source or destination address and length of the data to be trans-
ferred into memory-mapped registers and then starts DMA operation.

For basic operation the software performs these steps:

• Write the source or destination address to the 32-bit
DMAx_START_ADDR register.

• Write the number of data words to be transferred to the 16-bit
DMAx_X_COUNT register.

• Write the address modifier to the 16-bit DMAx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. Typically, this register is set to 0x0004 for
32-bit DMA transfers, to 0x0002 for 16-bit transfers, and to
0x0001 for byte transfers.

Modes of Operation

5-18 ADSP-BF54x Blackfin Processor Hardware Reference

• Write the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

• The DMAEN bit enables the DMA channel.

• The WNR bit controls the DMA direction. DMAs that read
from memory keep this bit cleared, for example, transmit-
ting peripheral DMAs and the source channel of memory
DMAs. Receiving DMAs and the destination for memory
DMAs set this bit, because they write to memory.

• The WDSIZE bit controls the data word width for the trans-
fer. It can be 8, 16, or 32 bits wide.

• The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

• Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running, the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.

The DMAx_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-1-to-clear (W1C) operations by the interrupt service routine.

Stop Mode

In stop mode, the DMA operation is executed only once. If started, the
DMA channel transfers the desired number of data words and stops itself
again when finished. If the DMA channel is no longer used, software

ADSP-BF54x Blackfin Processor Hardware Reference 5-19

Direct Memory Access

clears the DMAEN enable bit to disable a paused channel. Stop mode is
entered if the FLOW bit field in the DMA channel’s DMAx_CONFIG register is
0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit for details.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR
is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAx_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation
Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2D) mode the DMAx_X_COUNT register is accompanied
by the DMAx_Y_COUNT register, supporting arbitrary row and column sizes
up to 64K bytes x 64K bytes elements, as well as arbitrary DMAx_X_MODIFY
and DMAx_Y_MODIFY values up to ±32K bytes. Furthermore, DMAx_Y_MODIFY
values can be negative, allowing implementation of interleaved data
streams. The DMAx_X_COUNT and DMAx_Y_COUNT values specify the row and
column sizes, where a DMAx_X_COUNT value must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAx_CONFIG). Misalignment causes a DMA error.

Modes of Operation

5-20 ADSP-BF54x Blackfin Processor Hardware Reference

The DMAx_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing the DMAx_CURR_X_COUNT value from 1 to 0, except that it is
applied on the final transfer when the DMAx_CURR_Y_COUNT value is 1 and
DMAx_CURR_X_COUNT decrements from 1 to 0.

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of the DMAx_CURR_Y_COUNT register. However, the
DMAx_Y_MODIFY value is not applied to the last item in the array on which
the outer loop count (DMAx_CURR_Y_COUNT) also expires by decrementing
from 1 to 0.

After the last transfer completes, registers DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR are equal to the last item’s
address plus DMAx_X_MODIFY. Note if the DMA channel is programmed to
refresh automatically (autobuffer mode), then these registers is loaded
from DMAx_X_COUNT, DMAx_Y_COUNT, and DMAx_START_ADDR upon the first
data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 × 8 block of bytes from a video frame buffer of
size (N × M) pixels:

DMAx_X_MODIFY = 1

DMAx_X_COUNT = 16

DMAx_Y_MODIFY = N–15 (offset from the end of one row to the start

of another)

DMAx_Y_COUNT = 8

ADSP-BF54x Blackfin Processor Hardware Reference 5-21

Direct Memory Access

This produces the following code offset from the start address:

0,1,2,...15,

N,N + 1, ... N + 15,

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15,

Example 2: Receive a video datastream of bytes,
(R,G,B pixels) × (N × M image size):

DMAx_X_MODIFY = (N * M)

DMAx_X_COUNT = 3

DMAx_Y_MODIFY = 1 – 2(N * M) (negative)

DMAx_Y_COUNT = (N * M)

This produces the following code offset from the start address:

0, (N * M), 2(N * M),

1, (N * M) + 1, 2(N * M) + 1,

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

Descriptor-Based DMA Operation
In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus, from memory other than
L1, or from external memory using the DEB bus.

Modes of Operation

5-22 ADSP-BF54x Blackfin Processor Hardware Reference

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAx_NEXT_DESC_PTR register
(or the DMAx_CURR_DESC_PTR register in case of descriptor array mode) and
then performing a write to the configuration register DMAx_CONFIG that sets
the FLOW field to either 0x04, 0x6, or 0x7 and enables the DMAEN bit. This
causes the DMA controller to immediately fetch the descriptor from the
address pointed to by the DMAx_NEXT_DESC_PTR register. The fetch over-
writes the DMAx_CONFIG register again. If the DMAEN bit is still set, the
channel starts DMA processing.

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel, whereas the
DMAx_CURR_DESC_PTR register points to the descriptor value that is to be
fetched next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to either 0x6 (small descriptor mode) or
0x7 (large descriptor mode). In this mode multiple descriptors form a
chained list. Every descriptor contains a pointer to the next descriptor.
When the descriptor is fetched, this pointer value is loaded into the
DMAx_NEXT_DESC_PTR register of the DMA channel. In large descriptor
mode this pointer is 32 bits wide. Therefore, the next descriptor may
reside in any address space accessible through the DCB and DEB buses. In
small descriptor mode this pointer is just 16 bits wide. For this reason, the

ADSP-BF54x Blackfin Processor Hardware Reference 5-23

Direct Memory Access

next descriptor must reside in the same 64K byte address space as the first
one, because the upper 16 bits of the DMAx_NEXT_DESC_PTR register are not
updated.

Descriptor list modes are started by writing first to the
DMAx_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to 0x4. In this mode, the descriptors do
not contain further descriptor pointers. The initial DMAx_CURR_DESC_PTR
value is written by software. It points to an array of descriptors. The indi-
vidual descriptors are assumed to reside next to each other and, therefore,
their address is known.

Variable Descriptor Size

In any descriptor-based mode, the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE field must be
nonzero. The descriptor size can be any value from one entry (the lower
16 bits of DMAx_START_ADDR register only) to nine entries (all the DMA
parameters). Table 5-2 illustrates how a descriptor must be structured in
memory. The values have the same order as the corresponding MMR
addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word and the XCNT and XMOD values. However, it does not load the
YCNT and YMOD values. This might be the case if the DMA operates in
one-dimensional mode or if the DMA is in two-dimensional mode, but
the YCNT and YMOD values do not need to change.

Modes of Operation

5-24 ADSP-BF54x Blackfin Processor Hardware Reference

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAx_CURR_ADDR, DMAx_CURR_X_COUNT, and
DMAx_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

Table 5-2 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded.

Every descriptor fetch consumes bandwidth on either the DCB bus
or DEB bus and the external memory interface, so it is best to keep
the size of descriptors as small as possible.

Table 5-2. Parameter Registers and Descriptor Offsets

Descriptor
Offset

Descriptor Array
Mode

Small Descriptor List
Mode

Large Descriptor List
Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

ADSP-BF54x Blackfin Processor Hardware Reference 5-25

Direct Memory Access

Mixing Flow Modes

The FLOW mode of a DMA is not a global setting. If the DMA configura-
tion word is reloaded with a descriptor fetch, the FLOW and NDSIZE bit
fields can also be altered. A small descriptor might be used to loop back to
the first descriptor if a descriptor array is used in an endless manner.

If the descriptor chain is not endless and the DMA is required to stop after
a certain descriptor is processed, the last descriptor is typically processed
in stop mode, that is, its FLOW and NDSIZE fields are 0, but its DMAEN bit is
still set.

Functional Description
The following sections provide a functional description of DMA - opera-
tion flow, errors, control commands, handshaked memory and
performance.

DMA Operation Flow
Figure 5-3 and Figure 5-4 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it is paused by FLOW = 0 mode.

Before initiating DMA for the first time on a given channel, be
sure to initialize all parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the DMAx_NEXT_DESC_PTR and
DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending on the chosen FLOW mode of operation. Also
note that the DMAx_X_MODIFY and DMAx_Y_MODIFY are not preset to a
default value at reset.

Functional Description

5-26 ADSP-BF54x Blackfin Processor Hardware Reference

To start DMA operation on a given channel, some or all of the DMA
parameter registers must first be written directly. At a minimum, the
DMAx_NEXT_DESC_PTR register (or DMAx_CURR_DESC_PTR register in FLOW = 4
mode) must be written at this stage, but the user may wish to write other
DMA registers that might be static throughout the course of DMA activ-
ity (for example, DMAx_X_MODIFY and DMAx_Y_MODIFY). The contents of
NDSIZE and FLOW in the DMAx_CONFIG register indicate which registers (if
any) are fetched from descriptor elements in memory. After the descriptor
fetch, if any, is completed, DMA operation begins, initiated by writing
DMAx_CONFIG with DMAEN = 1.

ADSP-BF54x Blackfin Processor Hardware Reference 5-27

Direct Memory Access

Figure 5-3. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMAEN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMAEN = 1

DMAEN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

D

Functional Description

5-28 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 5-4. DMA Flow, From DMA Controller’s Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 1

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST SYNC, WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

MEMORY WRITE (DESTINATION)

SYNC = 0 AND
MEMORY READ

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

TEST SYNC, WNR

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

SYNC = 1 AND
MEMORY READ

SYNC = 0 OR
MEMORY WRITE

D
FLOW = 4, 6, OR 7

SYNC = 1 OR
MEMORY WRITE

ADSP-BF54x Blackfin Processor Hardware Reference 5-29

Direct Memory Access

When the DMAx_CONFIG register is written directly by software, the DMA
controller recognizes this as the special startup condition that occurs when
starting DMA for the first time on this channel or after the engine is
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into the DMAx_CONFIG register assumes control.
Before this point, the direct write to DMAx_CONFIG register had control. In
other words, the WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields are taken
from the DMACFG value in the descriptor read from memory, while these
field values initially written to the DMAx_CONFIG register are ignored.

As Figure 5-3 on page 5-27 and Figure 5-4 on page 5-28 show, at startup,
the FLOW and NDSIZE bits in DMAx_CONFIG determine the course of the
DMA setup process. The FLOW value determines whether to load more cur-
rent registers from descriptor elements in memory, while the NDSIZE bits
detail how many descriptor elements to fetch before starting DMA. DMA
registers not included in the descriptor are not modified from their prior
values.

If the FLOW value specifies small or large descriptor list modes, the
DMAx_NEXT_DESC_PTR register is copied into DMAx_CURR_DESC_PTR register.
Then, fetches of new descriptor elements from memory are performed,
indexed by DMAx_CURR_DESC_PTR register, which is incremented after each
fetch. If NDPL and/or NDPH is part of the descriptor, then these values are
loaded into DMAx_NEXT_DESC_PTR register, but the fetch of the current
descriptor continues using DMAx_CURR_DESC_PTR register. After completion
of the descriptor fetch, DMAx_CURR_DESC_PTR register points to the next
16-bit word in memory past the end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR register does not occur. Instead, descriptor fetch
indexing begins with the value in DMAx_CURR_DESC_PTR register.

Functional Description

5-30 ADSP-BF54x Blackfin Processor Hardware Reference

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If
DMACFG register is part of the descriptor, then the DMAx_CONFIG value pro-
grammed by the MMR access controls only the loading of the first
descriptor from memory. The subsequent DMA work operation is con-
trolled by the low byte of the descriptor’s DMACFG and by the parameter
registers loaded from the descriptor. The bits DI_EN, DI_SEL, DMA2D,
WDSIZE, and WNR in the value programmed by the MMR access are
disregarded.

The DMA_RUN and DFETCH status bits in the DMAx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,
provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAx_START_ADDR, DMAx_X_COUNT, DMAx_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAx_CURR_X_COUNT,
DMAx_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows:

• DMAx_START_ADDR is copied to DMAx_CURR_ADDR

• DMAx_X_COUNT is copied to DMAx_CURR_X_COUNT

• DMAx_Y_COUNT is copied to DMAx_CURR_Y_COUNT

ADSP-BF54x Blackfin Processor Hardware Reference 5-31

Direct Memory Access

Then DMA data transfer operation begins, as shown in Figure 5-4 on
page 5-28.

DMA Refresh

On completion of a work unit, the DMA controller:

• Completes the transfer of all data between memory and the DMA
unit.

• If SYNC = 1 and WNR = 0 (memory read). Selects a synchronized
transition. Transfers all data to the peripheral before continuing.

• If enabled by DI_EN, signals an interrupt to the core and sets the
DMA_DONE bit in the channel’s DMAx_IRQ_STATUS register.

• If FLOW = 0 (stop) only. Stops operation by clearing the DMA_RUN bit
in DMAx_IRQ_STATUS after any data in the channel’s DMA FIFO is
transferred to the peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS to 1. At this point, the
DMA operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (descriptor array), then loads a new descriptor from
memory into DMA registers by way of the contents of
DMAx_CURR_DESC_PTR, while incrementing DMAx_CURR_DESC_PTR.
The descriptor size comes from the NDSIZE field of the DMAx_CONFIG
value prior to the beginning of the fetch.

If FLOW = 6 (descriptor list small), then copies the 32-bit
DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, fetches a
descriptor from memory into DMA registers through the new con-
tents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The first descriptor element loaded is a new
16-bit value for the lower 16 bits of DMAx_NEXT_DESC_PTR, followed

Functional Description

5-32 ADSP-BF54x Blackfin Processor Hardware Reference

by the rest of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR will retain their former value. This supports a
shorter, more efficient descriptor than the descriptor list large
model, suitable whenever the application can place the channel’s
descriptors in the same 64K byte range of memory.

if FLOW = 7 (descriptor list large), then copies the 32-bit
DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR. Next, fetches a
descriptor from memory into DMA registers through the new con-
tents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The first descriptor element loaded is a new
32-bit value for the full DMAx_NEXT_DESC_PTR, followed by the rest
of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal or external memory.

Note if it is necessary to link from a descriptor chain whose
descriptors are in one 64K byte area to another chain whose
descriptors are outside that area, only one descriptor needs to use
FLOW = 7—just the descriptor which contains the link leaving the
64K byte range. All the other descriptors located together in the
same 64K byte areas may use FLOW = 6.

ADSP-BF54x Blackfin Processor Hardware Reference 5-33

Direct Memory Access

• If FLOW = 4, 6, or 7 (descriptor array, descriptor list small, or
descriptor list large, respectively), then the DMA controller clears
the DFETCH bit in the DMAx_IRQ_STATUS register.

• If FLOW = any value but 0 (Stop), then the DMA controller begins
the next work unit, contending with other channels for priority on
the memory buses. On the first memory transfer of the new work
unit, the DMA controller updates the current registers from the
start registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR
DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in DMAx_IRQ_STATUS is then cleared, after which the
DMA transfer begins again, as shown in Figure 5-4 on page 5-28.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory during the descriptor fetch
and/or when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at

Functional Description

5-34 ADSP-BF54x Blackfin Processor Hardware Reference

the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data
discarded) between work units.

Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work unit.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, these four operations all
start in parallel:

• The interrupt (if any) is signalled.

• The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the des-
tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral
“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,

ADSP-BF54x Blackfin Processor Hardware Reference 5-35

Direct Memory Access

however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor is required to have the same data
word size, read/write direction, and source memory (internal versus
external) as the current descriptor.

If SYNC = 0 selects continuous transition on a work unit in FLOW = STOP
mode with interrupt enabled, the interrupt service routine may already
run while the final data is still draining from the FIFO to the peripheral.
This is indicated by the DMA_RUN bit in the DMAx_IRQ_STATUS register; if it
is 1, the FIFO is not empty yet. Do not start a new work unit with differ-
ent word size or direction while DMA_RUN = 1. Further, if the channel is
disabled (by writing DMAEN = 0), the data in the FIFO is lost.

If SYNC = 1, a synchronized transition is selected, in which the DMA FIFO
is first drained to the destination memory or peripheral before any inter-
rupt is signalled and before any subsequent descriptor or data is fetched.
This incurs greater latency, but provides direct synchronization between
the DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data is transferred to the periph-
eral, allowing the service routine to properly switch to non-DMA transmit
operation. When the interrupt service routine is invoked, the DMA_DONE bit
is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal as opposed to external). This
can be useful in managing MDMA work unit queues, since it is no longer
necessary to interrupt the queue between dissimilar work units.

Functional Description

5-36 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual
descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = STOP mode, and may be restarted (for exam-
ple, after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is 0 in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions
on the DMA descriptors.

If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then to 1.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAx_CONFIG register
is delivered to memory. Any prior data items transferred from the periph-
eral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not STOP, so that DMA channel did not pause).

ADSP-BF54x Blackfin Processor Hardware Reference 5-37

Direct Memory Access

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

The DMA word size must not change between one descriptor and
the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal versus external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 5-34).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is com-
plete. If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of 0 to the entire register always terminates DMA
gracefully (without DMA abort).

If a channel is stopped abruptly by writing DMAx_CONFIG to 0 (or
any value with DMAEN = 0), the user must ensure that any memory
read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally
be handled by ensuring that the core allocates several idle cycles in

Functional Description

5-38 ADSP-BF54x Blackfin Processor Hardware Reference

a row in its usage of the relevant memory space to allow up to three
pending DMA accesses to issue, plus allowing enough memory
access time for the accesses themselves to complete.

DMA Errors (Aborts)
The DMA controllers flag conditions that cause DMA processes to end
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related
programming errors. DMA errors (aborts) are detected by the DMA chan-
nel module in the cases listed below. When a DMA error occurs, the
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for a DMA controller, which is
asserted whenever any of the channels has detected an error condition.

The DMA_ERROR interrupt handler must do these things for each channel:

• Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register
values).

• Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 = 1).

The following error conditions are detected by the DMA hardware and
result in a DMA abort interrupt.

• The configuration register contains invalid values:

- Incorrect WDSIZE value (WDSIZE = b#11)

- Bit 15 not set to 0

ADSP-BF54x Blackfin Processor Hardware Reference 5-39

Direct Memory Access

- Incorrect FLOW value (FLOW = 2, 3, or 5)

- NDSIZE value does not agree with FLOW.
 See Table 5-3 on page 5-40.

• A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, DMAx_CONFIG register WDSIZE = 1 (16 bit) but the least
significant bit (LSB) of the address is not equal to 0, or WDSIZE = 2
(32 bit) but the two LSBs of the address are not equal to b#00.

• A memory space transition was attempted (internal-to-external or
vice versa). For example, the current DMA address
(DMAx_CURR_ADDR) crossed the 0xF000 0000 boundary, or the cur-
rent descriptor pointer (DMAx_CURR_DESC_PTR) crossed the
0xF000 0000 boundary.

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

• DMAx_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

• DMAx_CONFIG direction bit does not agree with the direction of the
MDMA channel.

• DMAx_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral.

Functional Description

5-40 ADSP-BF54x Blackfin Processor Hardware Reference

• DMAx_CONFIG word size in source and destination of the MDMA
stream are not equal.

• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2D DMA, X_COUNT = 1.

DMA Control Commands
Advanced peripherals on the processor, such as the USB and MXVR port
are capable of managing some of their own DMA operations, thus dramat-
ically improving real-time performance and relieving control and interrupt
demands on the Blackfin processor core. These peripherals may communi-
cate to the DMA controllers using DMA control commands, which are
transmitted from the peripheral to the associated DMA channel over
internal DMA request buses. These request buses consist of three wires per
DMA-management-capable peripheral. The DMA control commands
extend the set of operations available to the peripheral beyond the simple
“request data” command used by peripherals in general. Refer to the
appropriate peripheral chapter for a description on how that peripheral
uses DMA control commands.

Table 5-3. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <= 7 Descriptor array, no descriptor pointer fetched

6 0 < NDSIZE <= 8 Descriptor list, small descriptor pointer fetched

7 0 < NDSIZE <= 9 Descriptor list, large descriptor pointer fetched

ADSP-BF54x Blackfin Processor Hardware Reference 5-41

Direct Memory Access

Note that while these DMA control commands are not visible to or con-
trolled by the user, their use by a peripheral has implications for the
structure of the DMA transfers which that peripheral can support. It is
important that application software be written to comply with certain
restrictions regarding work units and descriptor chains (described later in
this section) so that the peripheral operates properly whenever it issues
DMA control commands.

MDMA channels do not service peripherals and therefore do not support
DMA control commands.

The DMA control commands are shown in Table 5-4.

Table 5-4. DMA Control Commands

Code Name Description

b#000 NOP No operation

b#001 Restart Restarts the current work unit
from the beginning

b#010 Finish Finishes the current work
unit and starts the next

b#011 Interrupt Immediately sets the DMA
completion interrupt in the
associated DMA peripheral
channel

b#100 Request Data Typical DMA data request

b#101 Request Data Urgent Urgent DMA data request

b#110 Request Register Load Request/continue transfer of
DMA channel control register
values by way of DAB.

b#111 - Reserved

Functional Description

5-42 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the control commands includes:

• Restart

The restart control command causes the current work unit to inter-
rupt processing and start over, using the addresses and counts from
DMAx_START_ADDR, DMAx_X_COUNT, and DMAx_Y_COUNT. No interrupt
is signalled.

If a channel programmed for transmit (memory read) receives a
restart control command, the channel momentarily pauses while
any pending memory reads initiated prior to the restart command
are completed.

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO, and starts
prefetch reads from memory. DMA data requests from the periph-
eral are granted as soon as new prefetched data is available in the
DMA FIFO. The peripheral can then use the restart command to
reattempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
restart control command, the channel stops writing to memory,
discards any data held in its DMA FIFO, and resets its counters
and FIFO. As soon as this initialization is complete, the channel
again grants DMA write requests from the peripheral. The periph-
eral can thus use the restart command to abort transfer of received
data into a work unit, and reuse the memory buffer for a later data
transfer.

• Finish

The finish control command causes the current work unit to termi-
nate processing and move on to the next. An interrupt is signalled
as usual, if selected by the DI_EN bit. The peripheral can thus use
the finish command to partition the DMA stream into work units

ADSP-BF54x Blackfin Processor Hardware Reference 5-43

Direct Memory Access

on its own, perhaps as a result of parsing the data currently passing
though its supported communication channel, without direct
real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
finish control command, the channel momentarily pauses while
any pending memory reads initiated prior to the finish command
are completed. During this period of time, the channel does not
grant DMA requests. Once all pending reads are flushed from the
channel’s pipelines, the channel signals an interrupt (if enabled),
and begins fetching the next descriptor (if any). DMA data requests
from the peripheral are granted as soon as new prefetched data is
available in the DMA FIFO.

If a channel programmed for receive (memory write) receives a fin-
ish control command, the channel stops granting new DMA
requests while it drains its FIFO. Any DMA data received by the
DMA controller prior to the finish command is written to mem-
ory. When the FIFO reaches an empty state, the channel signals an
interrupt (if enabled) and begins fetching the next descriptor (if
any). Once the next descriptor is fetched, the channel initializes its
FIFO, and then resumes granting DMA requests from the
peripheral.

• Interrupt

This command immediately sets the DMA completion interrupt in
the DMAx_IRQ_STATUS register of the associated DMA peripheral
channel.

• Request Data

The request data control command is identical to the DMA request
operation of peripherals which are not DMA-management-capable.

Functional Description

5-44 ADSP-BF54x Blackfin Processor Hardware Reference

• Request Data Urgent

The request data urgent control command behaves identically to
the DMA request control command, except that while it is asserted
the DMA channel performs its memory accesses with urgent prior-
ity. This includes both data and descriptor-fetch memory accesses.
A DMA-management-capable peripheral might use this control
command if an internal FIFO is approaching a critical condition,
for example.

• Request Register Load

This command pertains exclusively to the HOSTDP on DMA14
peripheral on the ADSP-BF54x Blackfin processor. The command
allows a “DAB-mastering” peripheral to load values directly into its
DMA channel control registers by way of the DAB bus. Refer to
Chapter 8, “Host DMA Port” for more information on how this
command is used in conjunction with Host DMA port operation.

The DMA channel must be enabled (DMAx_CONFIG register’s DMA_EN
bit =1) to use the request register load command to be used. This
command cannot be used to enable a disabled channel, nor may it
be used to write the channel’s next descriptor pointer.

On the first (non-granted) cycle when the peripheral does not
assert request register load, the DMA channel will cease loading
register values and initiates processing the work unit they specify.

The DMA channel FIFO is not reinitialized when processing
begins. Therefore, any transmit or receive data present in the FIFO
remains in place, unless otherwise configured by the DMAx_CONFIG
register’s SYNC bit (bit 5).

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-
tain restrictions in the sequence of DMA control commands.

ADSP-BF54x Blackfin Processor Hardware Reference 5-45

Direct Memory Access

Transmit Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory read unless both (a) the peripheral has
already performed at least one DMA transfer in the current work unit, and
(b) the current work unit has more than four items remaining in
DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT (thus not yet read from mem-
ory.) Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT of the current work unit is
sufficiently large that it is always at least five more than the maximum data
count prior to any restart or finish command, the above restriction is satis-
fied. This implies that any work unit which might be managed by restart
or finish commands must have DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT
values representing at least five data items.

Note in particular that if the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT reg-
isters are programmed to 0 (representing 65,536 transfers, the maximum
value) the channel operates properly for 1D work units up to 65,531 data
items or 2D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory write unless either (a) the peripheral
already performed at least five DMA transfers in the current work unit, or
(b) the previous work unit terminated by a finish control command and
the peripheral performed at least one DMA transfer in the current work
unit. If five data transfers performed, then at least one data item is written
to memory in the current work unit, which implies that the current work
unit’s descriptor fetch completed before the data grant of the fifth item.
Otherwise, if less than five data items are transferred, it is possible that all
of them are still in the DMA FIFO and that the previous work unit is still
in the process of completion and transition between work units.

Functional Description

5-46 ADSP-BF54x Blackfin Processor Hardware Reference

Similarly, if a finish command ended the previous work unit and at least
one subsequent DMA data transfer occurred, then the fact that the DMA
channel issued the grant guarantees that the previous work unit already
completed the process of draining its data to memory and transitioning to
the new work unit.

Note that if a peripheral terminates all work units with the finish opcode
(effectively assuming responsibility for all work unit boundaries for the
DMA channel), then the peripheral need only ensure that it performs a
single transfer in each work unit before any restart or finish. This requires,
however, that the user programs the descriptors for all work units man-
aged by the channel with DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNTs
representing more data items than the maximum work unit size that the
peripheral encounters. For example, DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNTs of 0 allow the channel to operate properly on 1D
work units up to 65,535 data items and 2D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation
Both DMARx inputs have their own set of control and status registers. hand-
shake operation for MDMA2 is enabled by the HMDMAEN bit in the
HMDMA0_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL
register enables handshake mode for MDMA3.

It is important to understand that the handshake hardware works com-
pletely independent from the descriptor and autobuffer capabilities of the
MDMA, allowing most flexible combinations of logical data organization
versus data portioning as required by FIFO deeps, for example. If, how-
ever, the connected device requires certain behavior of the address lines,
these must be controlled by traditional DMA setup.

Because source and destination channels of a MDMA stream are decou-
pled by an 8-depth FIFO, they are loosely synchronized to each other.
The DMARx functionality requires strong synchronization. So, the

ADSP-BF54x Blackfin Processor Hardware Reference 5-47

Direct Memory Access

HMDMA optionally can be tied to either the destination channel, as by
default, or to the source channel, when the SND (“source not destination”)
bit in the HMDMA_CONTROLx register is set. When data is transferred from
on-chip memory to off-chip space, one may expect the HMDMAx block
to control the destination channel. When data is transferred from off-chip
space to on-chip space, the HMDMAx block should be control the source
channel.

The HMDMAx_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to 1, the peripheral can time every
individual data transfer. If greater than 1, the peripheral must feature suf-
ficient buffer size to provide or consume the number of words
programmed. Once the transfer is requested, no further handshake can
hold off the DMA from transferring the entire block, except by stalling
the EBIU accesses by the ARDY signal or a complete bus request and grant
cycle through the BR and BG pins. Nevertheless, the peripheral may request
a block transfer before the entire buffer is available, by simply taking the
minimum transfer time based on wait-state settings into consideration.

The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32 bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to
65535 transfers.

Once a block transfer is started, the HMDMAx_BCOUNT registers return the
remaining number of transfers to complete the current block. When the
complete block is processed, the HMDMAx_BCOUNT register returns zero. Soft-
ware can force a reload of the HMDMAx_BCOUNT from the HMDMAx_BCINIT
register even during normal operation by writing a 1 to the RBC bit in the
HMDMAx_CONTROL register. Set RBC only when the HMDMA module is
already active, but the MDMA is not enabled.

Functional Description

5-48 ADSP-BF54x Blackfin Processor Hardware Reference

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data, it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAx_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input and are decremented when the
MDMA completes the block transfer. These read-only registers use a
16-bit, two’s-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that have not been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests ignored by the engine. This feature restrains initial pulses
on the DMARx inputs at startup.

The HMDMAx_ECINIT registers reload the HMDMAx_ECOUNT registers every time
the handshake mode is enabled, that is, when the HMDMAEN bit changes
from 0 to 1. If the initial edge count value is 0, the handshake operation
starts with a settled request budget. If positive, the engine starts immedi-
ately transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARx pins. If nega-
tive, the engine disregards the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 5-5 illustrates how an asynchronous FIFO could be connected. In
such a scenario, the REP bit is cleared to let the DMARx request pin listen to
falling edges. The Blackfin processor does not evaluate the full flag such
FIFOs usually provide, because asynchronous polling of that signal
reduces the system throughput drastically. Moreover, the processor first
fills the FIFO by initializing the HMDMAx_ECINIT register by the value 1024
which equals the depth of the FIFO. Once enabled, the MDMA automat-
ically transmits 1024 data words. Afterward it continues to transmit only
if the FIFO is emptied by its read strobe again.

ADSP-BF54x Blackfin Processor Hardware Reference 5-49

Direct Memory Access

Most likely, the HMDMAx_BCINIT register is programmed to be 1 in this
case. In this example, it is recommended to keep the SND bit cleared, so
that the HMDMAx block controls the destination channel of the MDMA.

In the receive example shown in Figure 5-6, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO by its own HMDMAx_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not filled with new data promptly.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO half way and then letting both
consumer and producer run at the same speed. In this case, the
HMDMAx_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half filled.

Figure 5-5. Transmit DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE

Functional Description

5-50 ADSP-BF54x Blackfin Processor Hardware Reference

In this example, it is recommended to set the SND bit, so that the
HMDMAx block controls the source channel of the MDMA.

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems it might happen that the memory
DMAs tend to starve. As this is not acceptable when transferring data
through high-speed FIFOs, the handshake mode provides a high-water
functionality to increase the MDMA’s priority. With the UTE bit in the
HMDMAx_CONTROL register set, the MDMA gets higher priority as soon as a
(positive) value in the HMDMAx_ECOUNT register becomes higher than the
threshold held by the HMDMAx_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. All
interrupt sources (DMAR0 and DMAR1 block done, DMAR0 and
DMAR1 overflow error) are routed to Peripheral Interrupt ID#63. Refer
to Chapter 4, “System Interrupts” for more information. The
HMDMAx_CONTROL registers provide interrupt enable and status bits. The
interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

Figure 5-6. Receive DMA Example Connection

RD
AMSx

1024K x 16 FIFOBLACKFIN

EF

D0 .. D15

DMARx

WR

O0 .. O15 I0 .. I15

ARE

ADSP-BF54x Blackfin Processor Hardware Reference 5-51

Direct Memory Access

The interrupt “block done” signals that a complete MDMA block (as
defined by the HMDMAx_BCINIT register) is transferred, that is, when the
HMDMAx_BCOUNT register decrements to zero. While the BDIE bit enables this
interrupt, the MBDI bit can gate it until the edge count also becomes zero,
meaning that all requested MDMA transfers are now complete.

The overflow interrupt is generated when the HMDMA_ECOUNT register over-
flows. Since it can count up to 32767, which is much more than most
peripheral devices can support, the Blackfin processor features another
threshold register called HMDMA_ECOVERFLOW. It resets to 0xFFFF and is writ-
ten with any positive value by the user before enabling the function by the
OIE bit. Then, the overflow interrupt is issued when the value of the
HMDMA_ECOUNT register exceeds the threshold in the HMDMA_ECOVERFLOW
register.

DMA Performance
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on applica-
tion-level circumstances. For best performance, consider these questions
when designing the system software:

• What is the required DMA bandwidth?

• Which DMA transfers have real-time requirements and which do
not?

• How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

Functional Description

5-52 ADSP-BF54x Blackfin Processor Hardware Reference

• How often do competing DMA channels require the bus systems to
alter direction?

• How often do competing DMA or core accesses cause the DDR
SDRAM to open different pages?

• Is there a way to distribute DMA requests smoothly over time?

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DMA access bus, DAB) from the activity on
the buses between the DMA and memory (the DMA core bus, DCB and
the DMA external bus, DEB. Chapter 2, “Chip Bus Hierarchy” explains
the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

DMA Throughput

Peripheral DMA channels have a maximum transfer rate of one 16-bit
word (on DMAC0) or one 32-bit word (on DMAC1) per two system
clocks, per channel, in either direction. As the DAB and DEB buses do,
the DMA controllers reside in the SCLK domain. The controllers synchro-
nize accesses to and from the DCB bus which is running at CCLK rate.

Memory DMA channels have a maximum transfer rate of one 16-bit word
(on DMAC0) or one 32-bit word (on DMAC1) per one system clock
(SCLK), per channel.

ADSP-BF54x Blackfin Processor Hardware Reference 5-53

Direct Memory Access

When all DMA channels’ traffic is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock on DMAC0, and
one 32-bit transfer per system clock on DMAC1.

• Transfers between the DMA unit and internal memory (L1 or L2)
have a maximum rate of one 16-bit transfer per system clock on
DMAC0, and one 32-bit transfer per system clock on DMAC1.

• Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock on DMAC0,
and one 32-bit transfer per system clock on DMAC1.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing DDR SDRAM
pages, or while filling cache lines.

• Direction change from receive to transmit on the DAB bus imposes
a one SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to DMA registers other than DMAx_CONFIG,
DMAx_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stalls all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

• Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

Functional Description

5-54 ADSP-BF54x Blackfin Processor Hardware Reference

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features.

The MDMA controllers are clocked by SCLK. If source and destination are
in different memory spaces (one internal and one external), the internal
and external memory transfers are typically simultaneous and continuous,
maintaining 100% bus utilization of the internal and external memory
interfaces. This performance is affected by core-to-system clock frequency
ratios. At ratios below about 2.5:1, synchronization and pipeline latencies
result in lower bus utilization in the system clock domain. At a clock ratio
of 2:1, for example, DMA typically runs at 2/3 of the system clock rate. At
higher clock ratios, full bandwidth is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

ADSP-BF54x Blackfin Processor Hardware Reference 5-55

Direct Memory Access

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts, after a latency of three SCLK cycles.

First, if either MDMA channel is selected to use descriptors, the descrip-
tors are fetched from memory. The destination channel descriptors are
fetched first. Then, after a latency of four SCLK cycles after the last descrip-
tor word is returned from memory (or typically eight SCLK cycles after the
fetch of the last descriptor word, due to memory pipelining), the source
MDMA channel begins fetching data from the source buffer. The result-
ing data is deposited in the MDMA channel’s 8-location FIFO, and then
after a latency of two SCLK cycles, the destination MDMA channel begins
writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAx_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service con-
tinuously, they ensure that any time slots unused by peripheral DMA are
applied to MDMA transfers. Refer to Table 5-1 for detailed information
on priority and mapping of peripherals to DMA.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Functional Description

5-56 ADSP-BF54x Blackfin Processor Hardware Reference

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. For example, this may occur if L1 or external
memory is temporarily stalled, perhaps for a DDR SDRAM page swap or
a cache line fill. Congestion might also occur if one or more DMA chan-
nels initiates a flurry of requests, perhaps for descriptor fetches or to fill a
FIFO in the DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if
both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.

For DEB bus transfers, all DMA requests to the DDR controller can be
marked “urgent” under software control by setting the corresponding
DEBx_URGENT bit in the DDR_QUEUE register. Please refer to “DDR Arbitra-
tion” on page 6-12 for more details.

Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARx edge count exceeds the value stored in
the HMDMAx_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAx_CONTROL register.

ADSP-BF54x Blackfin Processor Hardware Reference 5-57

Direct Memory Access

When one or more DMA channels express an urgent memory request, two
events occur:

• All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only urgent request are granted. The urgent
requests compete with each other, if there is more than one, and
directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1, L2, or external), and so are all
prior incomplete memory transfers ahead of it in that memory sys-
tem. This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations within a DMA controller (DMAC0 or DMAC1)
have lower precedence than any peripheral DMA operation within that
controller. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

MDMA0 and MDMA1 are always the lowest priority channels in
DMAC0, but they have higher priority than all DMAC1 channels
by default. Therefore, it is preferable to use MDMA2 and
MDMA3 to avoid starving memory bandwidth to DMAC1 periph-
erals. Refer to “DCB Arbitration” on page 2-21 for a discussion of
switching the relative priorities of DMAC0 and DMAC1.

The following discussion about MDMA stream priority and scheduling
refers to MDMA streams within a DMA controller, not between DMAC0
and DMAC1.

Functional Description

5-58 ADSP-BF54x Blackfin Processor Hardware Reference

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD register may be programmed to select each
stream in turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round-robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMACx_TCPER register (see “Static Channel Prioritization” on
page 5-55).

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are complete. This scheme could be
appropriate in systems where low duration but latency sensitive data buff-
ers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round-robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately
equal data bandwidth.

In round-robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence

ADSP-BF54x Blackfin Processor Hardware Reference 5-59

Direct Memory Access

stream is granted (stream 0 in case of conflict), and that stream’s selection
is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in the
DMACx_TCCNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to mem-
ory). After the transfer corresponding to a count of 1, the MDMA stream
selection is passed automatically to the other stream with zero overhead,
and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the period
value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other MDMA
stream is ready to perform a transfer, the stream selection is locked on the
new MDMA stream. If the other MDMA stream is not ready to perform a
transfer, then no transfer is performed, and on the next cycle the stream
selection unlocks and becomes free again.

If round-robin operation is used when only one MDMA stream is active,
one idle cycle occurs for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).
By selection of various round-robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA through the DAB bus, and whose data FIFOs are ready to
handle the transfer, compete with each other for DAB bus cycles. Simi-
larly but separately, channels whose FIFOs need memory service (prefetch
or post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this

Functional Description

5-60 ADSP-BF54x Blackfin Processor Hardware Reference

way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-
rary DMA Urgency” on page 5-55.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same
direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMACx_TCPER and DMACx_TCCNT registers.
This mechanism performs the optimization without real-time processor
intervention, and without the need to program transfer bursts into the
DMA work unit streams. Traffic can be independently controlled for each
of the three buses (DAB, DCB, and DEB) with simple counters. In addi-
tion, alternation of transfers among MDMA streams can be controlled
with the MDMA_ROUND_ROBIN_COUNT field of the DMACx_TCCNT register. See
“Memory DMA Priority and Scheduling” on page 5-57.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.
When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going “with traffic” and higher priority channel 3 is
going “against traffic,” then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both “against traffic,” then their effective priorities would become 19 and

ADSP-BF54x Blackfin Processor Hardware Reference 5-61

Direct Memory Access

22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMACx_TCPER reg-
ister to 0x0000.

Programming Model
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 5-13). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

Programming Model

5-62 ADSP-BF54x Blackfin Processor Hardware Reference

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can
guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the DMAx_CURR_ADDR, DMAx_CURR_DESC_PTR, or
DMAx_CURR_X_COUNT/DMAx_CURR_Y_COUNT registers is not recommended as a
method of precisely synchronizing DMA with data processing, due to
DMA FIFOs and DMA/memory pipelining. The current address, pointer,
and count registers change several cycles in advance of the completion of
the corresponding memory operation, as measured by the time at which
the results of the operation are first visible to the core by memory read or
write instructions. For example, in a DMA memory write operation to
external memory, assume a DMA write by channel A is initiated that
causes the DDR SDRAM to perform a page open operation which takes
many system clock cycles. The DMA engine may then move on to another
DMA operation by channel B which does not in itself incur latency, but is
stalled behind the slow operation by channel A. Software monitoring
channel B could not safely conclude whether the memory location pointed
to by channel B’s DMAx_CURR_ADDR has or has not been written, based on
examination of the DMAx_CURR_ADDR register contents.

ADSP-BF54x Blackfin Processor Hardware Reference 5-63

Direct Memory Access

Polling of the current address, pointer, and count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and the length for an
MDMA FIFO is eight locations (four 32-bit data elements). The DMA
does not advance current address/pointer/count registers if these FIFOs
are filled with incomplete work (including reads that have been started but
not yet finished).

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and external bus interface unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. (Note this is a maximum, as the DMA/memory
pipeline may include traffic from other DMA channels.)

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. The total
pipeline length is no greater than the sum of 4 (for the peripheral DMA
FIFO) plus 6 (for the DMA/memory pipeline), or 10 data elements, so it
is safe to conclude that the DMA transfer of the first 40-10 = 30 data ele-
ments is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes an
DMAx_IRQ_STATUS bit, it guarantees that the last memory operation of the

Programming Model

5-64 ADSP-BF54x Blackfin Processor Hardware Reference

work unit is complete and is visible to DSP code. For memory read DMA,
the final memory read data will have been safely received in the DMA’s
FIFO; for memory write DMA, the DMA unit will have received an
acknowledge from L1 or memory other than L1 or the EBIU that the data
is written.

The following examples show methods of synchronizing software with
several different styles of DMA.

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAx_CONFIG and the DMAx_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAx_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAx_CONFIG register, and by the necessary
setup of the system interrupt controller. If it is desirable not to use an
interrupt, the software can poll for completion by reading the
DMAx_IRQ_STATUS register and testing the DMA_RUN bit. If this bit is zero,
the buffer transfer has completed.

ADSP-BF54x Blackfin Processor Hardware Reference 5-65

Direct Memory Access

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1D, interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

• 2D, interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAx_CONFIG) to signal at the completion of each
DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer
could be used to receive 16-bit peripheral data with these settings:

DMAx_START_ADDR = buffer base address
DMAx_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = 01, WNR = 1, DMAEN = 1)
DMAx_X_COUNT = 512

DMAx_X_MODIFY = 2 for 16-bit data
DMAx_Y_COUNT = 2 for two sub-buffers
DMAx_Y_MODIFY = 2, same as DMAx_X_MODIFY for contiguous
sub-buffers

Programming Model

5-66 ADSP-BF54x Blackfin Processor Hardware Reference

• 2D, polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2D multibuffer synchronization scheme may be used. For example,
assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

DMAx_START_ADDR = buffer base address
DMAx_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = 10, WNR = 1, DMAEN = 1)
DMAx_X_COUNT = 16

DMAx_X_MODIFY = 4 for 32-bit data
DMAx_Y_COUNT = 4 for four sub-buffers
DMAx_Y_MODIFY = 4, same as DMAx_X_MODIFY for contiguous
sub-buffers

The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAx_Y_COUNT shows a value of 3, then the software should assume
that sub-buffer 3 is being transferred, but some portion of
sub-buffer 2 may not yet be received. The software could, however,
safely proceed with processing sub-buffers 1 or 0.

• 1D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1D autobuffer mode addressing without any interrupts or polling.

ADSP-BF54x Blackfin Processor Hardware Reference 5-67

Direct Memory Access

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1D or 2D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list as desired
by selecting the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

It is important to remember the meaning of the various fields in the
DMAx_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

• The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example, interrupt-enable,
2D mode).

• The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is restarted, both bytes of the
DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor.

At a minimum, the FLOW, NDSIZE, WNR, and DMAEN fields must all agree with
the current descriptor; the WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields
are taken from the DMAx_CONFIG value in the descriptor read from memory

Programming Model

5-68 ADSP-BF54x Blackfin Processor Hardware Reference

(and the field values initially written to the register are ignored). See “Ini-
tializing Descriptors in Memory” on page 5-133 in the “Programming
Examples” section for information on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests are received or what
these requests might contain. The software could manage these transfers
using a circular linked list of DMA descriptors, where each descriptor’s
NDPH and NDPL members point to the next descriptor, and the last descrip-
tor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (Ix, Lx, Mx, and Bx registers), so that it does not
need to use comparison and conditional instructions to manage the circu-
lar structure. In this case, the NDPH and NDPL members of each descriptor
could even be written once at startup, and skipped over as each descrip-
tor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

• Interrupt on every descriptor

• Interrupt minimally only on the last descriptor

ADSP-BF54x Blackfin Processor Hardware Reference 5-69

Direct Memory Access

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event is
serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMAx_CONFIG value to the
DMA channel’s DMAx_CONFIG register.

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly-queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAx_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAx_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late

Programming Model

5-70 ADSP-BF54x Blackfin Processor Hardware Reference

(that is, the modification of the next-to-last descriptor’s DMAx_CONFIG ele-
ment occurred after that element was read into the DMA unit.) In this
case, the interrupt handler writes the DMAx_CONFIG value appropriate for
the last descriptor to the DMA channel’s DMAx_CONFIG register, increment
the completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts needs to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code queues later descriptors,
forming a waiting portion of the queue that is disconnected from the
active portion of the queue being processed by the DMA unit. In other
words, all but the last active descriptors contain FLOW values >= 4 and have
no interrupt enable set, while the last active descriptor contains a FLOW of 0
and an interrupt enable bit DI_EN set to 1. Also, all but the last waiting
descriptors contain FLOW values >= 4 and no interrupt enables set, while
the last waiting descriptor contains a FLOW of 0 and an interrupt enable bit
DI_EN set to 1. This ensures that the DMA unit can automatically process

ADSP-BF54x Blackfin Processor Hardware Reference 5-71

Direct Memory Access

the whole active queue and then issue one interrupt. Also, this arrange-
ment makes it easy to start the waiting queue within the interrupt handler
by a single DMAx_CONFIG register write.

After queuing a new waiting descriptor, the non-interrupt software leaves
a message for its interrupt handler in a memory mailbox location contain-
ing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting).

It is critical that the software not modify the contents of the active
descriptor queue directly, once processing by the DMA unit is started,
unless careful synchronization measures are taken. In the most straightfor-
ward implementation of a descriptor queue, the DMA manager software
never modifies descriptors on the active queue; instead, the DMA manager
waits until the DMA queue completion interrupt indicates the processing
of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an
active queue. The interrupt handler then passes a message back to the
non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it passes an appropriate message
(for example, zero) back to the non-interrupt software indicating that the
queue has stopped. This simple handler can coded in a very small number
of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (that is, if the mailbox from the interrupt software
is zero), the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMAx_CONFIG value to the channel’s

Programming Model

5-72 ADSP-BF54x Blackfin Processor Hardware Reference

DMAx_CONFIG register). If the queue is not stopped, however, the non-inter-
rupt software must not write the DMAx_CONFIG register (which would cause
a DMA error), but instead it should queue the descriptor onto the waiting
queue and update its mailbox directed to the interrupt handler.

Software-Triggered Descriptor Fetches

If a DMA is stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs is completely processed. Once the DMA_RUN bit clears, it is
safe to restart the DMA by simply writing again to the DMAx_CONFIG regis-
ter. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that is stopped temporarily
with a FLOW = 0 descriptor can be continued with a new write to the con-
figuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

The next descriptor pointer remains valid, if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of oper-
ation, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

ADSP-BF54x Blackfin Processor Hardware Reference 5-73

Direct Memory Access

One possible procedure is:

1. Write to DMAx_NEXT_DESC_PTR register.

2. Write to DMAx_CONFIG register with

 FLOW = 0x8
 NDSIZE >= 0xA
 DI_EN = 0
 DMAEN = 1.

3. Automatically fetched DMACFG register has

 FLOW = 0x0
 NDSIZE = 0x0
 SYNC = 1 (for transmitting DMAs only)
 DI_EN = 1
 DMAEN = 1.

4. In the interrupt routine, repeat step 2. The DMAx_NEXT_DESC_PTR
register is updated by the descriptor fetch.

To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

DMA Registers

5-74 ADSP-BF54x Blackfin Processor Hardware Reference

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 5-46). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software-triggered descriptor fetches are illustrated in Listing 5-7 on
page 5-136. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAx_CONTROL register. This simply
disables the self-generated DMA requests, regardless whether HMDMA is
enabled or not.

DMA Registers
This section describes three categories of DMA registers:

• “DMA Channel Registers” on page 5-74

• “Handshake MDMA (HMDMA) Registers” on page 5-116

• “DMA Traffic Control Registers” on page 5-125

DMA Channel Registers
The processor features 24 peripheral DMA channels and four channel
pairs for memory DMA. All channels have an identical set of registers
summarized in Table 5-5.

ADSP-BF54x Blackfin Processor Hardware Reference 5-75

Direct Memory Access

Table 5-5 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
and the register category.

Table 5-5. Generic Names of the DMA Memory-Mapped
Registers

MMR
Offset

MMR Name MMR
Description

Register
Category

Name of
Corresponding
Descriptor
Element in
Memory

0x00 DMAx_NEXT_DESC_PTR
MDMA_yy_NEXT_DESC_PTR
on page 5-110

Link pointer to
next descriptor

Parameter NDPH (upper
16 bits),
NDPL (lower
16 bits)

0x04 DMAx_START_ADDR
MDMA_yy_START_ADDR
on page 5-91

Start address of
current buffer

Parameter SAH (upper 16
bits),
SAL (lower 16
bits)

0x08 DMAx_CONFIG
MDMA_yy_CONFIG
on page 5-82

DMA configura-
tion register,
including enable
bit

Parameter DMACFG

0x0C Reserved Reserved

0x10 DMAx_X_COUNT
MDMA_yy_X_COUNT
on page 5-96

Inner loop count Parameter XCNT

0x14 DMAx_X_MODIFY
MDMA_yy_X_MODIFY
on page 5-101

Inner loop address
increment, in
bytes

Parameter XMOD

0x18 DMAx_Y_COUNT
MDMA_yy_Y_COUNT
on page 5-103

Outer loop count
(2D only)

Parameter YCNT

0x1C DMAx_Y_MODIFY
MDMA_yy_Y_MODIFY
on page 5-108

Outer loop
address incre-
ment, in bytes

Parameter YMOD

DMA Registers

5-76 ADSP-BF54x Blackfin Processor Hardware Reference

0x20 DMAx_CURR_DESC_PTR
MDMA_yy_CURR_DESC_PTR
on page 5-113

Current descrip-
tor Pointer

Current N/A

0x24 DMAx_CURR_ADDR
MDMA_yy_CURR_ADDR
on page 5-93

Current DMA
address

Current N/A

0x28 DMAx_IRQ_STATUS
MDMA_yy_IRQ_STATUS
on page 5-87

Interrupt status
register:
Contains comple-
tion and DMA
error interrupt sta-
tus and channel
state
(run/fetch/paused)

Control/
Status

N/A

0x2C DMAx_PERIPHERAL_MAP
MDMA_yy_PERIPHERAL_MAP
on page 5-79

Peripheral to
DMA channel
mapping:
Contains a 4-bit
value specifying
the peripheral to
associate with this
DMA channel
(read-only for
MDMA channels)

Control/
Status

N/A

0x30 DMAx_CURR_X_COUNT
MDMA_yy_CURR_X_COUNT
on page 5-98

Current count
(1D) or intra-row
X count (2D);
counts down from
X_COUNT

Current N/A

0x34 Reserved Reserved

Table 5-5. Generic Names of the DMA Memory-Mapped
Registers (Cont’d)

MMR
Offset

MMR Name MMR
Description

Register
Category

Name of
Corresponding
Descriptor
Element in
Memory

ADSP-BF54x Blackfin Processor Hardware Reference 5-77

Direct Memory Access

Channel-specific register names are shown in Table 5-5. For peripheral
DMA channels, the prefix “DMAx_” is used where “x” stands for a channel
number between 0 and 23. For memory DMA channels, the prefix is
“MDMA_yy_”, where “yy” stands for “D0”, “D1”, “D2”, “D3”, “S0”, “S1”,
“S2” or “S3”, and indicates the destination and source channel registers of
MDMA0 through MDMA3. For example, the configuration register of
peripheral DMA channel 6 is called DMA6_CONFIG, and the register for
MDMA1 source channel is called MDMA_S1_CONFIG.

The generic MMR names shown in Table 5-5 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

0x38 DMAx_CURR_Y_COUNT
MDMA_yy_CURR_Y_COUNT
on page 5-105

Current row count
(2D only); counts
down from
Y_COUNT

Current N/A

0x3C Reserved Reserved

Table 5-5. Generic Names of the DMA Memory-Mapped
Registers (Cont’d)

MMR
Offset

MMR Name MMR
Description

Register
Category

Name of
Corresponding
Descriptor
Element in
Memory

DMA Registers

5-78 ADSP-BF54x Blackfin Processor Hardware Reference

DMA channel registers fall into three categories:

• Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT that
can be loaded directly from descriptor elements; descriptor ele-
ments are listed in Table 5-5.

• Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/status registers, such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. The following
registers, however, may also be accessed as 32-bit registers:

• DMAx_NEXT_DESC_PTR

• DMAx_START_ADDR

• DMAx_CURR_DESC_PTR

• DMAx_CURR_ADDR

When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 5-5 shows the relation.

ADSP-BF54x Blackfin Processor Hardware Reference 5-79

Direct Memory Access

Peripheral Map (DMAx_PERIPHERAL_MAP and
MDMA_yy_PERIPHERAL_MAP) Registers

Each DMA channel’s peripheral map registers and addresses
(DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPHERAL_MAP, shown in
Figure 5-7 and Table 5-6) contain bits that:

• Map the channel to a specific peripheral

• Identify whether the channel is a peripheral DMA channel or a
memory DMA channel

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Ensure that DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

Figure 5-7. Peripheral Map Registers

see Table 5-1

Peripheral Map Registers (DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral
Mapped to this
Channel.

CTYPE (DMA Channel Type)
- RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

For memory-
mapped
addresses, see
Table 5-6.

Reset: See Table 5-6
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

5-80 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-6. Peripheral Map Register Addresses and Reset Values

Register Name Memory-Mapped Address Reset Value

DMA0_PERIPHERAL_MAP 0xFFC0 0C2C 0x0000
(SPORT0 Rx)

DMA1_PERIPHERAL_MAP 0xFFC0 0C6C 0x1000

DMA2_PERIPHERAL_MAP 0xFFC0 0CAC 0x2000

DMA3_PERIPHERAL_MAP 0xFFC0 0CEC 0x3000

DMA4_PERIPHERAL_MAP 0xFFC0 0D2C 0x4000

DMA5_PERIPHERAL_MAP 0xFFC0 0D6C 0x5000

DMA6_PERIPHERAL_MAP 0xFFC0 0DAC 0x6000

DMA7_PERIPHERAL_MAP 0xFFC0 0DEC 0x7000

DMA8_PERIPHERAL_MAP 0xFFC0 0E2C 0x8000

DMA9_PERIPHERAL_MAP 0xFFC0 0E6C 0x9000

DMA10_PERIPHERAL_MAP 0xFFC0 0EAC 0xA000

DMA11_PERIPHERAL_MAP 0xFFC0 0EEC 0xB000

DMA12_PERIPHERAL_MAP 0xFFC0 1C2C 0x0000

DMA13_PERIPHERAL_MAP 0xFFC0 1C6C 0x1000

DMA14_PERIPHERAL_MAP 0xFFC0 1CAC 0x2000

DMA15_PERIPHERAL_MAP 0xFFC0 1CEC 0x3000

DMA16_PERIPHERAL_MAP 0xFFC0 1D2C 0x4000

DMA17_PERIPHERAL_MAP 0xFFC0 1D6C 0x5000

DMA18_PERIPHERAL_MAP 0xFFC0 1DAC 0x6000

DMA19_PERIPHERAL_MAP 0xFFC0 1DEC 0x7000

DMA20_PERIPHERAL_MAP 0xFFC0 1E2C 0x8000

DMA21_PERIPHERAL_MAP 0xFFC0 1E6C 0x9000

DMA22_PERIPHERAL_MAP 0xFFC0 1EAC 0xA000

DMA23_PERIPHERAL_MAP 0xFFC0 1EEC 0xB000

ADSP-BF54x Blackfin Processor Hardware Reference 5-81

Direct Memory Access

Table 5-1 on page 5-10 lists the peripheral map settings for each
DMA-capable peripheral.

MDMA_D0_PERIPHERAL_MAP 0xFFC0 0F2C 0x0040

MDMA_S0_PERIPHERAL_MAP 0xFFC0 0F6C 0x0040

MDMA_D1_PERIPHERAL_MAP 0xFFC0 0FAC 0x0040

MDMA_S1_PERIPHERAL_MAP 0xFFC0 0FEC 0x0040

MDMA_D2_PERIPHERAL_MAP 0xFFC0 1F2C 0x0040

MDMA_S2_PERIPHERAL_MAP 0xFFC0 1F6C 0x0040

MDMA_D3_PERIPHERAL_MAP 0xFFC0 1FAC 0x0040

MDMA_S3_PERIPHERAL_MAP 0xFFC0 1FEC 0x0040

Table 5-6. Peripheral Map Register Addresses and Reset Values (Cont’d)

Register Name Memory-Mapped Address Reset Value

DMA Registers

5-82 ADSP-BF54x Blackfin Processor Hardware Reference

DMA Configuration (DMAx_CONFIG and MDMA_yy_CONFIG)
Registers

The DMA configuration registers and addresses (DMAx_CONFIG and
MDMA_yy_CONFIG), shown in Figure 5-8 and Table 5-7, set up DMA
parameters and operating modes. Note that writing the DMAx_CONFIG regis-
ter while DMA is already running causes a DMA error unless writing with
the DMAEN bit set to 0.

Figure 5-8. DMA Configuration Registers

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an
interrupt

1 - Allow completion of work unit
to generate a data interrupt

0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in stop or autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

FLOW[2:0] (Next
Operation)

DMAEN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE[1:0] (Transfer
Word Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved
DMA2D (DMA Mode)
0 - Linear (one-dimensional)
1 - Two-dimensional (2D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

SYNC (Work Unit
Transitions)

0 - Continuous transition
1 - Synchronized transition

For memory-
mapped
addresses,
see Table 5-7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 5-83

Direct Memory Access

Table 5-7. DMA Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CONFIG 0xFFC0 0C08

DMA1_CONFIG 0xFFC0 0C48

DMA2_CONFIG 0xFFC0 0C88

DMA3_CONFIG 0xFFC0 0CC8

DMA4_CONFIG 0xFFC0 0D08

DMA5_CONFIG 0xFFC0 0D48

DMA6_CONFIG 0xFFC0 0D88

DMA7_CONFIG 0xFFC0 0DC8

DMA8_CONFIG 0xFFC0 0E08

DMA9_CONFIG 0xFFC0 0E48

DMA10_CONFIG 0xFFC0 0E88

DMA11_CONFIG 0xFFC0 0EC8

DMA12_CONFIG 0xFFC0 1C08

DMA13_CONFIG 0xFFC0 1C48

DMA14_CONFIG 0xFFC0 1C88

DMA15_CONFIG 0xFFC0 1CC8

DMA16_CONFIG 0xFFC0 1D08

DMA17_CONFIG 0xFFC0 1D48

DMA18_CONFIG 0xFFC0 1D88

DMA19_CONFIG 0xFFC0 1DC8

DMA20_CONFIG 0xFFC0 1E08

DMA21_CONFIG 0xFFC0 1E48

DMA22_CONFIG 0xFFC0 1E88

DMA23_CONFIG 0xFFC0 1EC8

DMA Registers

5-84 ADSP-BF54x Blackfin Processor Hardware Reference

The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAx_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may
be restarted simply by another write to the DMAx_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMAx MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to

MDMA_D0_CONFIG 0xFFC0 0F08

MDMA_S0_CONFIG 0xFFC0 0F48

MDMA_D1_CONFIG 0xFFC0 0F88

MDMA_S1_CONFIG 0xFFC0 0FC8

MDMA_D2_CONFIG 0xFFC0 1F08

MDMA_S2_CONFIG 0xFFC0 1F48

MDMA_D3_CONFIG 0xFFC0 1F88

MDMA_S3_CONFIG 0xFFC0 1FC8

Table 5-7. DMA Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 5-85

Direct Memory Access

the DMAEN bit in the DMAx_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

• NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

• DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

• DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2D
DMA operation.

• SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 5-33.

DMA Registers

5-86 ADSP-BF54x Blackfin Processor Hardware Reference

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next
work unit.

Work unit transitions for MDMA streams are controlled by SYNC
bit of the MDMA source channel’s DMAx_CONFIG register. The SYNC
bit of the MDMA destination channel is reserved and must be 0.

• DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimensional
DMA) or also involves DMAx_Y_COUNT and DMAx_Y_MODIFY
(two-dimensional DMA).

• WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The DMA address pointer registers’ increment
sizes (strides) must be a multiple of the transfer unit size—1 for
8-bit, 2 for 16-bit, 4 for 32-bit.

• WNR (DMA direction). This bit specifies DMA direction—memory
read (0) or memory write (1).

• DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

ADSP-BF54x Blackfin Processor Hardware Reference 5-87

Direct Memory Access

Interrupt Status (DMAx_IRQ_STATUS and
MDMA_yy_IRQ_STATUS) Registers

The interrupt status registers and addresses (DMAx_IRQ_STATUS and
MDMA_yy_IRQ_STATUS), shown in Figure 5-9 and Table 5-8, contain bits
that record whether the DMA channel:

• Is enabled and operating, enabled but stopped, or disabled

• Is fetching data or a DMA descriptor

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted

• Has logged occurrence of a DMA error

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event is signaled. It does not
indicate the status of the DMA FIFO.

For MDMA transfers where it is not desired to use an interrupt to
notify when the DMA operation has ended, software should poll
the DMA_DONE bit, and not the DMA_RUN bit, to determine when the
transaction has completed.

DMA Registers

5-88 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 5-9. Interrupt Status Registers

This bit is set to 1 automatically when
the DMAx_CONFIG register is written.
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor
 Fetch) - RO

DMA_RUN (DMA Channel
Running) - RO

DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
current registers are
unspecified. Control/
status and parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
with FLOW modes 4–7.
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor

For memory-
mapped
addresses, see
Table 5-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 5-89

Direct Memory Access

Table 5-8. Interrupt Status Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_IRQ_STATUS 0xFFC0 0C28

DMA1_IRQ_STATUS 0xFFC0 0C68

DMA2_IRQ_STATUS 0xFFC0 0CA8

DMA3_IRQ_STATUS 0xFFC0 0CE8

DMA4_IRQ_STATUS 0xFFC0 0D28

DMA5_IRQ_STATUS 0xFFC0 0D68

DMA6_IRQ_STATUS 0xFFC0 0DA8

DMA7_IRQ_STATUS 0xFFC0 0DE8

DMA8_IRQ_STATUS 0xFFC0 0E28

DMA9_IRQ_STATUS 0xFFC0 0E68

DMA10_IRQ_STATUS 0xFFC0 0EA8

DMA11_IRQ_STATUS 0xFFC0 0EE8

DMA12_IRQ_STATUS 0xFFC0 1C28

DMA13_IRQ_STATUS 0xFFC0 1C68

DMA14_IRQ_STATUS 0xFFC0 1CA8

DMA15_IRQ_STATUS 0xFFC0 1CE8

DMA16_IRQ_STATUS 0xFFC0 1D28

DMA17_IRQ_STATUS 0xFFC0 1D68

DMA18_IRQ_STATUS 0xFFC0 1DA8

DMA19_IRQ_STATUS 0xFFC0 1DE8

DMA20_IRQ_STATUS 0xFFC0 1E28

DMA21_IRQ_STATUS 0xFFC0 1E68

DMA22_IRQ_STATUS 0xFFC0 1EA8

DMA Registers

5-90 ADSP-BF54x Blackfin Processor Hardware Reference

The processor supports a flexible interrupt control structure with three
interrupt sources:

• Data driven interrupts (see Table 5-9)

• Peripheral error interrupts

• DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data and periph-
eral error interrupts, and DMA error interrupts.

DMA23_IRQ_STATUS 0xFFC0 1EE8

MDMA_D0_IRQ_STATUS 0xFFC0 0F28

MDMA_S0_IRQ_STATUS 0xFFC0 0F68

MDMA_D1_IRQ_STATUS 0xFFC0 0FA8

MDMA_S1_IRQ_STATUS 0xFFC0 0FE8

MDMA_D2_IRQ_STATUS 0xFFC0 1F28

MDMA_S2_IRQ_STATUS 0xFFC0 1F68

MDMA_D3_IRQ_STATUS 0xFFC0 1FA8

MDMA_S3_IRQ_STATUS 0xFFC0 1FE8

Table 5-9. Data Driven Interrupts

Interrupt Name Description

No interrupt Interrupts can be disabled for a given work unit.

Peripheral interrupt These are peripheral (non-DMA) interrupts.

Table 5-8. Interrupt Status Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 5-91

Direct Memory Access

The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual IRQ_STATUS words
of each channel can be read to identify the channel that caused the DMA
error interrupt.

The DMA_DONE and DMA_ERR interrupt indicators are write-1-to-clear
(W1C).

When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(through the appropriate peripheral registers or SIC_IMASKx) so
that no unintended interrupt is generated on the shared
DMA/interrupt request line.

Start Address (DMAx_START_ADDR and
MDMA_yy_START_ADDR) Registers

The start address registers and addresses (DMAx_START_ADDR and
MDMA_yy_START_ADDR), shown in Figure 5-10 and Table 5-10, contain the
start address of the data buffer currently targeted for DMA.

Row completion DMA Interrupts can occur on the completion of a row
(CURR_X_COUNT expiration).

Buffer completion DMA Interrupts can occur on the completion of an entire
buffer (when CURR_X_COUNT and CURR_Y_COUNT
expire).

Table 5-9. Data Driven Interrupts (Cont’d)

Interrupt Name Description

DMA Registers

5-92 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 5-10. Start Address Registers

Table 5-10. Start Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_START_ADDR 0xFFC0 0C04

DMA1_START_ADDR 0xFFC0 0C44

DMA2_START_ADDR 0xFFC0 0C84

DMA3_START_ADDR 0xFFC0 0CC4

DMA4_START_ADDR 0xFFC0 0D04

DMA5_START_ADDR 0xFFC0 0D44

DMA6_START_ADDR 0xFFC0 0D84

DMA7_START_ADDR 0xFFC0 0DC4

DMA8_START_ADDR 0xFFC0 0E04

DMA9_START_ADDR 0xFFC0 0E44

DMA10_START_ADDR 0xFFC0 0E84

DMA11_START_ADDR 0xFFC0 0EC4

DMA12_START_ADDR 0xFFC0 1C04

DMA Start
Address[31:16]

Start Address Registers (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

DMA Start
Address[15:0]

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel

For memory-
mapped
addresses, see
Table 5-10.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 5-93

Direct Memory Access

Current Address (DMAx_CURR_ADDR and
MDMA_yy_CURR_ADDR) Registers

The current address registers and addresses (DMAx_CURR_ADDR and
MDMA_yy_CURR_ADDR), shown in Figure 5-11 and Table 5-11, contain the
present DMA transfer address for a given DMA session. On the first mem-

DMA13_START_ADDR 0xFFC0 1C44

DMA14_START_ADDR 0xFFC0 1C84

DMA15_START_ADDR 0xFFC0 1CC4

DMA16_START_ADDR 0xFFC0 1D04

DMA17_START_ADDR 0xFFC0 1D44

DMA18_START_ADDR 0xFFC0 1D84

DMA19_START_ADDR 0xFFC0 1DC4

DMA20_START_ADDR 0xFFC0 1E04

DMA21_START_ADDR 0xFFC0 1E44

DMA22_START_ADDR 0xFFC0 1E84

DMA23_START_ADDR 0xFFC0 1EC4

MDMA_D0_START_ADDR 0xFFC0 0F04

MDMA_S0_START_ADDR 0xFFC0 0F44

MDMA_D1_START_ADDR 0xFFC0 0F84

MDMA_S1_START_ADDR 0xFFC0 0FC4

MDMA_D2_START_ADDR 0xFFC0 1F04

MDMA_S2_START_ADDR 0xFFC0 1F44

MDMA_D3_START_ADDR 0xFFC0 1F84

MDMA_S3_START_ADDR 0xFFC0 1FC4

Table 5-10. Start Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

5-94 ADSP-BF54x Blackfin Processor Hardware Reference

ory transfer of a DMA work unit, the DMAx_CURR_ADDR register is loaded
from the DMAx_START_ADDR register, and it is incremented as each transfer
occurs. The current address register contains 32 bits.

Figure 5-11. Current Address Registers

Current Address[31:16]

Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

Current Address[15:0]

Reset = Undefined

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

For memory-
mapped
addresses, see
Table 5-11.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 5-95

Direct Memory Access

Table 5-11. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CURR_ADDR 0xFFC0 0C24

DMA1_CURR_ADDR 0xFFC0 0C64

DMA2_CURR_ADDR 0xFFC0 0CA4

DMA3_CURR_ADDR 0xFFC0 0CE4

DMA4_CURR_ADDR 0xFFC0 0D24

DMA5_CURR_ADDR 0xFFC0 0D64

DMA6_CURR_ADDR 0xFFC0 0DA4

DMA7_CURR_ADDR 0xFFC0 0DE4

DMA8_CURR_ADDR 0xFFC0 0E24

DMA9_CURR_ADDR 0xFFC0 0E64

DMA10_CURR_ADDR 0xFFC0 0EA4

DMA11_CURR_ADDR 0xFFC0 0EE4

DMA12_CURR_ADDR 0xFFC0 1C24

DMA13_CURR_ADDR 0xFFC0 1C64

DMA14_CURR_ADDR 0xFFC0 1CA4

DMA15_CURR_ADDR 0xFFC0 1CE4

DMA16_CURR_ADDR 0xFFC0 1D24

DMA17_CURR_ADDR 0xFFC0 1D64

DMA18_CURR_ADDR 0xFFC0 1DA4

DMA19_CURR_ADDR 0xFFC0 1DE4

DMA20_CURR_ADDR 0xFFC0 1E24

DMA21_CURR_ADDR 0xFFC0 1E64

DMA22_CURR_ADDR 0xFFC0 1EA4

DMA Registers

5-96 ADSP-BF54x Blackfin Processor Hardware Reference

Inner Loop Count (DMAx_X_COUNT and MDMA_yy_X_COUNT)
Registers

For 2D DMA, the inner loop count registers and addresses (DMAx_X_COUNT
and MDMA_yy_X_COUNT), shown in Figure 5-12 and Table 5-12, contain the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “Two-Dimensional DMA Operation” on
page 5-19. A value of 0 in DMAx_X_COUNT corresponds to 65,536 elements.

DMA23_CURR_ADDR 0xFFC0 1EE4

MDMA_D0_CURR_ADDR 0xFFC0 0F24

MDMA_S0_CURR_ADDR 0xFFC0 0F64

MDMA_D1_CURR_ADDR 0xFFC0 0FA4

MDMA_S1_CURR_ADDR 0xFFC0 0FE4

MDMA_D2_CURR_ADDR 0xFFC0 1F24

MDMA_S2_CURR_ADDR 0xFFC0 1F64

MDMA_D3_CURR_ADDR 0xFFC0 1FA4

MDMA_S3_CURR_ADDR 0xFFC0 1FE4

Figure 5-12. Inner Loop Count Registers

Table 5-11. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

X_COUNT[15:0] (Inner
Loop Count)

Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

For memory-
mapped
addresses, see
Table 5-12.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 5-97

Direct Memory Access

Table 5-12. Inner Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_X_COUNT 0xFFC0 0C10

DMA1_X_COUNT 0xFFC0 0C50

DMA2_X_COUNT 0xFFC0 0C90

DMA3_X_COUNT 0xFFC0 0CD0

DMA4_X_COUNT 0xFFC0 0D10

DMA5_X_COUNT 0xFFC0 0D50

DMA6_X_COUNT 0xFFC0 0D90

DMA7_X_COUNT 0xFFC0 0DD0

DMA8_X_COUNT 0xFFC0 0E10

DMA9_X_COUNT 0xFFC0 0E50

DMA10_X_COUNT 0xFFC0 0E90

DMA11_X_COUNT 0xFFC0 0ED0

DMA12_X_COUNT 0xFFC0 1C10

DMA13_X_COUNT 0xFFC0 1C50

DMA14_X_COUNT 0xFFC0 1C90

DMA15_X_COUNT 0xFFC0 1CD0

DMA16_X_COUNT 0xFFC0 1D10

DMA17_X_COUNT 0xFFC0 1D50

DMA18_X_COUNT 0xFFC0 1D90

DMA19_X_COUNT 0xFFC0 1DD0

DMA20_X_COUNT 0xFFC0 1E10

DMA21_X_COUNT 0xFFC0 1E50

DMA22_X_COUNT 0xFFC0 1E90

DMA23_X_COUNT 0xFFC0 1ED0

DMA Registers

5-98 ADSP-BF54x Blackfin Processor Hardware Reference

Current Inner Loop Count (DMAx_CURR_X_COUNT and
MDMA_yy_CURR_X_COUNT) Registers

The current inner loop count registers and addresses (DMAx_CURR_X_COUNT
and MDMA_yy_CURR_X_COUNT), shown in Figure 5-13 and Table 5-13, hold
the number of transfers remaining in the current DMA row (inner loop).

On the first memory transfer of each DMA work unit, it is loaded with
the value in the DMAx_X_COUNT register and then decremented. For 2D
DMA, on the last memory transfer in each row except the last row, it is
reloaded with the value in the DMAx_X_COUNT register; this occurs at the
same time that the value in the DMAx_CURR_Y_COUNT register is decre-
mented. Otherwise it is decremented each time an element is transferred.
Expiration of the count in this register signifies that DMA is complete.

MDMA_D0_X_COUNT 0xFFC0 0F10

MDMA_S0_X_COUNT 0xFFC0 0F50

MDMA_D1_X_COUNT 0xFFC0 0F90

MDMA_S1_X_COUNT 0xFFC0 0FD0

MDMA_D2_X_COUNT 0xFFC0 1F10

MDMA_S2_X_COUNT 0xFFC0 1F50

MDMA_D3_X_COUNT 0xFFC0 1F90

MDMA_S3_X_COUNT 0xFFC0 1FD0

Table 5-12. Inner Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 5-99

Direct Memory Access

In 2D DMA, the DMAx_CURR_X_COUNT register value is 0 only when the
entire transfer is complete. Between rows it is equal to the value of the
DMAx_X_COUNT register.

Figure 5-13. Current Inner Loop Count Registers

Table 5-13. Current Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_X_COUNT 0xFFC0 0C30

DMA1_CURR_X_COUNT 0xFFC0 0C70

DMA2_CURR_X_COUNT 0xFFC0 0CB0

DMA3_CURR_X_COUNT 0xFFC0 0CF0

DMA4_CURR_X_COUNT 0xFFC0 0D30

DMA5_CURR_X_COUNT 0xFFC0 0D70

DMA6_CURR_X_COUNT 0xFFC0 0DB0

DMA7_CURR_X_COUNT 0xFFC0 0DF0

DMA8_CURR_X_COUNT 0xFFC0 0E30

DMA9_CURR_X_COUNT 0xFFC0 0E70

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/
MDMA_yy_CURR_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

For memory-
mapped
addresses, see
Table 5-13.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

5-100 ADSP-BF54x Blackfin Processor Hardware Reference

DMA10_CURR_X_COUNT 0xFFC0 0EB0

DMA11_CURR_X_COUNT 0xFFC0 0EF0

DMA12_CURR_X_COUNT 0xFFC0 1C30

DMA13_CURR_X_COUNT 0xFFC0 1C70

DMA14_CURR_X_COUNT 0xFFC0 1CB0

DMA15_CURR_X_COUNT 0xFFC0 1CF0

DMA16_CURR_X_COUNT 0xFFC0 1D30

DMA17_CURR_X_COUNT 0xFFC0 1D70

DMA18_CURR_X_COUNT 0xFFC0 1DB0

DMA19_CURR_X_COUNT 0xFFC0 1DF0

DMA20_CURR_X_COUNT 0xFFC0 1E30

DMA21_CURR_X_COUNT 0xFFC0 1E70

DMA22_CURR_X_COUNT 0xFFC0 1EB0

DMA23_CURR_X_COUNT 0xFFC0 1EF0

MDMA_D0_CURR_X_COUNT 0xFFC0 0F30

MDMA_S0_CURR_X_COUNT 0xFFC0 0F70

MDMA_D1_CURR_X_COUNT 0xFFC0 0FB0

MDMA_S1_CURR_X_COUNT 0xFFC0 0FF0

MDMA_D2_CURR_X_COUNT 0xFFC0 1F30

MDMA_S2_CURR_X_COUNT 0xFFC0 1F70

MDMA_D3_CURR_X_COUNT 0xFFC0 1FB0

MDMA_S3_CURR_X_COUNT 0xFFC0 1FF0

Table 5-13. Current Inner Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 5-101

Direct Memory Access

Inner Loop Address Increment (DMAx_X_MODIFY and
MDMA_yy_X_MODIFY) Registers

The inner loop address increment registers and addresses (DMAx_X_MODIFY
and MDMA_yy_X_MODIFY), shown in Figure 5-14 and Table 5-14, contain a
signed, two’s-complement byte-address increment. In 1D DMA, this
increment is the stride that is applied after transferring each element.

 DMAx_X_MODIFY is specified in bytes, regardless of the DMA trans-
fer size.

In 2D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAx_Y_MODIFY register
is applied instead, except on the very last transfer of each work unit. The
DMAx_X_MODIFY register is always applied on the last transfer of a work
unit.

The DMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 5-14. Inner Loop Address Increment Registers

X_MODIFY[15:0] (Inner
Loop Address Increment)

Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take
after each decrement of
CURR_X_COUNT

For memory-
mapped
addresses, see
Table 5-14.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

5-102 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-14. Inner Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_X_MODIFY 0xFFC0 0C14

DMA1_X_MODIFY 0xFFC0 0C54

DMA2_X_MODIFY 0xFFC0 0C94

DMA3_X_MODIFY 0xFFC0 0CD4

DMA4_X_MODIFY 0xFFC0 0D14

DMA5_X_MODIFY 0xFFC0 0D54

DMA6_X_MODIFY 0xFFC0 0D94

DMA7_X_MODIFY 0xFFC0 0DD4

DMA8_X_MODIFY 0xFFC0 0E14

DMA9_X_MODIFY 0xFFC0 0E54

DMA10_X_MODIFY 0xFFC0 0E94

DMA11_X_MODIFY 0xFFC0 0ED4

DMA12_X_MODIFY 0xFFC0 1C14

DMA13_X_MODIFY 0xFFC0 1C54

DMA14_X_MODIFY 0xFFC0 1C94

DMA15_X_MODIFY 0xFFC0 1CD4

DMA16_X_MODIFY 0xFFC0 1D14

DMA17_X_MODIFY 0xFFC0 1D54

DMA18_X_MODIFY 0xFFC0 1D94

DMA19_X_MODIFY 0xFFC0 1DD4

DMA20_X_MODIFY 0xFFC0 1E14

DMA21_X_MODIFY 0xFFC0 1E54

DMA22_X_MODIFY 0xFFC0 1E94

DMA23_X_MODIFY 0xFFC0 1ED4

ADSP-BF54x Blackfin Processor Hardware Reference 5-103

Direct Memory Access

Outer Loop Count (DMAx_Y_COUNT and
MDMA_yy_Y_COUNT) Registers

For 2D DMA, the outer loop count registers and addresses (DMAx_Y_COUNT
and MDMA_yy_Y_COUNT), shown in Figure 5-15 and Table 5-15, contain the
outer loop count. It is not used in 1D DMA mode. This register contains
the number of rows in the outer loop of a 2D DMA sequence. For details,
see “Two-Dimensional DMA Operation” on page 5-19.

MDMA_D0_X_MODIFY 0xFFC0 0F14

MDMA_S0_X_MODIFY 0xFFC0 0F54

MDMA_D1_X_MODIFY 0xFFC0 0F94

MDMA_S1_X_MODIFY 0xFFC0 0FD4

MDMA_D2_X_MODIFY 0xFFC0 1F14

MDMA_S2_X_MODIFY 0xFFC0 1F54

MDMA_D3_X_MODIFY 0xFFC0 1F94

MDMA_S3_X_MODIFY 0xFFC0 1FD4

Figure 5-15. Outer Loop Count Registers

Table 5-14. Inner Loop Address Increment Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

Y_COUNT[15:0]
(Outer Loop Count)

Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2D
DMA sequence

For memory-
mapped
addresses, see
Table 5-15.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DMA Registers

5-104 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-15. Outer Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_Y_COUNT 0xFFC0 0C18

DMA1_Y_COUNT 0xFFC0 0C58

DMA2_Y_COUNT 0xFFC0 0C98

DMA3_Y_COUNT 0xFFC0 0CD8

DMA4_Y_COUNT 0xFFC0 0D18

DMA5_Y_COUNT 0xFFC0 0D58

DMA6_Y_COUNT 0xFFC0 0D98

DMA7_Y_COUNT 0xFFC0 0DD8

DMA8_Y_COUNT 0xFFC0 0E18

DMA9_Y_COUNT 0xFFC0 0E58

DMA10_Y_COUNT 0xFFC0 0E98

DMA11_Y_COUNT 0xFFC0 0ED8

DMA12_Y_COUNT 0xFFC0 1C18

DMA13_Y_COUNT 0xFFC0 1C58

DMA14_Y_COUNT 0xFFC0 1C98

DMA15_Y_COUNT 0xFFC0 1CD8

DMA16_Y_COUNT 0xFFC0 1D18

DMA17_Y_COUNT 0xFFC0 1D58

DMA18_Y_COUNT 0xFFC0 1D98

DMA19_Y_COUNT 0xFFC0 1DD8

DMA20_Y_COUNT 0xFFC0 1E18

DMA21_Y_COUNT 0xFFC0 1E58

DMA22_Y_COUNT 0xFFC0 1E98

DMA23_Y_COUNT 0xFFC0 1ED8

ADSP-BF54x Blackfin Processor Hardware Reference 5-105

Direct Memory Access

Current Outer Loop Count (DMAx_CURR_Y_COUNT and
MDMA_yy_CURR_Y_COUNT) Registers

The current outer loop count registers and addresses (DMAx_CURR_Y_COUNT
and MDMA_yy_CURR_Y_COUNT), shown in Figure 5-16 and Table 5-16, used
only in 2D mode, hold the number of full or partial rows (outer loops)
remaining in the current work unit.

On the first memory transfer of each DMA work unit, it is loaded with
the value of the DMAx_Y_COUNT register. The register is decremented each
time the DMAx_CURR_X_COUNT register expires during 2D DMA operation
(1 to DMAx_X_COUNT or 1 to 0 transition), signifying completion of an
entire row transfer. After a 2D DMA session is complete,
DMAx_CURR_Y_COUNT = 1 and DMAx_CURR_X_COUNT = 0.

MDMA_D0_Y_COUNT 0xFFC0 0F18

MDMA_S0_Y_COUNT 0xFFC0 0F58

MDMA_D1_Y_COUNT 0xFFC0 0F98

MDMA_S1_Y_COUNT 0xFFC0 0FD8

MDMA_D2_Y_COUNT 0xFFC0 1F18

MDMA_S2_Y_COUNT 0xFFC0 1F58

MDMA_D3_Y_COUNT 0xFFC0 1F98

MDMA_S3_Y_COUNT 0xFFC0 1FD8

Table 5-15. Outer Loop Count Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA Registers

5-106 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 5-16. Current Outer Loop Count Registers

Table 5-16. Current Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_Y_COUNT 0xFFC0 0C38

DMA1_CURR_Y_COUNT 0xFFC0 0C78

DMA2_CURR_Y_COUNT 0xFFC0 0CB8

DMA3_CURR_Y_COUNT 0xFFC0 0CF8

DMA4_CURR_Y_COUNT 0xFFC0 0D38

DMA5_CURR_Y_COUNT 0xFFC0 0D78

DMA6_CURR_Y_COUNT 0xFFC0 0DB8

DMA7_CURR_Y_COUNT 0xFFC0 0DF8

DMA8_CURR_Y_COUNT 0xFFC0 0E38

DMA9_CURR_Y_COUNT 0xFFC0 0E78

DMA10_CURR_Y_COUNT 0xFFC0 0EB8

DMA11_CURR_Y_COUNT 0xFFC0 0EF8

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

Current Outer Loop Count Registers (DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not
used for 1D DMA

For memory-
mapped
addresses, see
Table 5-16.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 5-107

Direct Memory Access

DMA12_CURR_Y_COUNT 0xFFC0 1C38

DMA13_CURR_Y_COUNT 0xFFC0 1C78

DMA14_CURR_Y_COUNT 0xFFC0 1CB8

DMA15_CURR_Y_COUNT 0xFFC0 1CF8

DMA16_CURR_Y_COUNT 0xFFC0 1D38

DMA17_CURR_Y_COUNT 0xFFC0 1D78

DMA18_CURR_Y_COUNT 0xFFC0 1DB8

DMA19_CURR_Y_COUNT 0xFFC0 1DF8

DMA20_CURR_Y_COUNT 0xFFC0 1E38

DMA21_CURR_Y_COUNT 0xFFC0 1E78

DMA22_CURR_Y_COUNT 0xFFC0 1EB8

DMA23_CURR_Y_COUNT 0xFFC0 1EF8

MDMA_D0_CURR_Y_COUNT 0xFFC0 0F38

MDMA_S0_CURR_Y_COUNT 0xFFC0 0F78

MDMA_D1_CURR_Y_COUNT 0xFFC0 0FB8

MDMA_S1_CURR_Y_COUNT 0xFFC0 0FF8

MDMA_D2_CURR_Y_COUNT 0xFFC0 1F38

MDMA_S2_CURR_Y_COUNT 0xFFC0 1F78

MDMA_D3_CURR_Y_COUNT 0xFFC0 1FB8

MDMA_S3_CURR_Y_COUNT 0xFFC0 1FF8

Table 5-16. Current Outer Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

5-108 ADSP-BF54x Blackfin Processor Hardware Reference

Outer Loop Address Increment (DMAx_Y_MODIFY and
MDMA_yy_Y_MODIFY) Registers

The outer loop address increment registers and addresses (DMAx_Y_MODIFY
and MDMA_yy_Y_MODIFY), shown in Figure 5-17 and Table 5-17, contain a
signed, two’s-complement value. This byte-address increment is applied
after each decrement of the DMAx_CURR_Y_COUNT register except for the last
item in the 2D array where the DMAx_CURR_Y_COUNT also expires. The value
is the offset between the last word of one “row” and the first word of the
next “row.” For details, see “Two-Dimensional DMA Operation” on
page 5-19.

DMAx_Y_MODIFY is specified in bytes, regardless of the DMA transfer
size.

Figure 5-17. Outer Loop Address Increment Registers

Table 5-17. Outer Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_Y_MODIFY 0xFFC0 0C1C

DMA1_Y_MODIFY 0xFFC0 0C5C

DMA2_Y_MODIFY 0xFFC0 0C9C

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of
CURR_Y_COUNT

For memory-
mapped
addresses, see
Table 5-17.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ADSP-BF54x Blackfin Processor Hardware Reference 5-109

Direct Memory Access

DMA3_Y_MODIFY 0xFFC0 0CDC

DMA4_Y_MODIFY 0xFFC0 0D1C

DMA5_Y_MODIFY 0xFFC0 0D5C

DMA6_Y_MODIFY 0xFFC0 0D9C

DMA7_Y_MODIFY 0xFFC0 0DDC

DMA8_Y_MODIFY 0xFFC0 0E1C

DMA9_Y_MODIFY 0xFFC0 0E5C

DMA10_Y_MODIFY 0xFFC0 0E9C

DMA11_Y_MODIFY 0xFFC0 0EDC

DMA12_Y_MODIFY 0xFFC0 1C1C

DMA13_Y_MODIFY 0xFFC0 1C5C

DMA14_Y_MODIFY 0xFFC0 1C9C

DMA15_Y_MODIFY 0xFFC0 1CDC

DMA16_Y_MODIFY 0xFFC0 1D1C

DMA17_Y_MODIFY 0xFFC0 1D5C

DMA18_Y_MODIFY 0xFFC0 1D9C

DMA19_Y_MODIFY 0xFFC0 1DDC

DMA20_Y_MODIFY 0xFFC0 1E1C

DMA21_Y_MODIFY 0xFFC0 1E5C

DMA22_Y_MODIFY 0xFFC0 1E9C

DMA23_Y_MODIFY 0xFFC0 1EDC

MDMA_D0_Y_MODIFY 0xFFC0 0F1C

MDMA_S0_Y_MODIFY 0xFFC0 0F5C

MDMA_D1_Y_MODIFY 0xFFC0 0F9C

Table 5-17. Outer Loop Address Increment Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

5-110 ADSP-BF54x Blackfin Processor Hardware Reference

Next Descriptor Pointer (DMAx_NEXT_DESC_PTR and
MDMA_yy_NEXT_DESC_PTR) Registers

The next descriptor pointer registers and addresses (DMAx_NEXT_DESC_PTR
and MDMA_yy_NEXT_DESC_PTR), shown in Figure 5-18 and Table 5-18,
specify where to look for the start of the next descriptor block when the
DMA activity specified by the current descriptor block finishes. This reg-
ister is used in small and large descriptor list modes. At the start of a
descriptor fetch in either of these modes, the 32-bit DMAx_NEXT_DESC_PTR
register is copied into the DMAx_CURR_DESC_PTR register. Then, during the
descriptor fetch, the DMAx_CURR_DESC_PTR register increments after each
element of the descriptor is read in.

In small and large descriptor list modes, the DMAx_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly through MMR access before starting DMA
operation.

MDMA_S1_Y_MODIFY 0xFFC0 0FDC

MDMA_D2_Y_MODIFY 0xFFC0 1F1C

MDMA_S2_Y_MODIFY 0xFFC0 1F5C

MDMA_D3_Y_MODIFY 0xFFC0 1F9C

MDMA_S3_Y_MODIFY 0xFFC0 1FDC

Table 5-17. Outer Loop Address Increment Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 5-111

Direct Memory Access

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR
register.

Figure 5-18. Next Descriptor Pointer Registers

Table 5-18. Next Descriptor Pointer Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_NEXT_DESC_PTR 0xFFC0 0C00

DMA1_NEXT_DESC_PTR 0xFFC0 0C40

DMA2_NEXT_DESC_PTR 0xFFC0 0C80

DMA3_NEXT_DESC_PTR 0xFFC0 0CC0

DMA4_NEXT_DESC_PTR 0xFFC0 0D00

DMA5_NEXT_DESC_PTR 0xFFC0 0D40

DMA6_NEXT_DESC_PTR 0xFFC0 0D80

DMA7_NEXT_DESC_PTR 0xFFC0 0DC0

DMA8_NEXT_DESC_PTR 0xFFC0 0E00

Next Descriptor
Pointer[31:16]

Next Descriptor Pointer Registers (DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Next Descriptor
Pointer[15:0]

For memory-
mapped
addresses, see
Table 5-18.

Reset = Undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

DMA Registers

5-112 ADSP-BF54x Blackfin Processor Hardware Reference

DMA9_NEXT_DESC_PTR 0xFFC0 0E40

DMA10_NEXT_DESC_PTR 0xFFC0 0E80

DMA11_NEXT_DESC_PTR 0xFFC0 0EC0

DMA12_NEXT_DESC_PTR 0xFFC0 1C00

DMA13_NEXT_DESC_PTR 0xFFC0 1C40

DMA14_NEXT_DESC_PTR 0xFFC0 1C80

DMA15_NEXT_DESC_PTR 0xFFC0 1CC0

DMA16_NEXT_DESC_PTR 0xFFC0 1D00

DMA17_NEXT_DESC_PTR 0xFFC0 1D40

DMA18_NEXT_DESC_PTR 0xFFC0 1D80

DMA19_NEXT_DESC_PTR 0xFFC0 1DC0

DMA20_NEXT_DESC_PTR 0xFFC0 1E00

DMA21_NEXT_DESC_PTR 0xFFC0 1E40

DMA22_NEXT_DESC_PTR 0xFFC0 1E80

DMA23_NEXT_DESC_PTR 0xFFC0 1EC0

MDMA_D0_NEXT_DESC_PTR 0xFFC0 0F00

MDMA_S0_NEXT_DESC_PTR 0xFFC0 0F40

MDMA_D1_NEXT_DESC_PTR 0xFFC0 0F80

MDMA_S1_NEXT_DESC_PTR 0xFFC0 0FC0

MDMA_D2_NEXT_DESC_PTR 0xFFC0 1F00

MDMA_S2_NEXT_DESC_PTR 0xFFC0 1F40

MDMA_D3_NEXT_DESC_PTR 0xFFC0 1F80

MDMA_S3_NEXT_DESC_PTR 0xFFC0 1FC0

Table 5-18. Next Descriptor Pointer Register Memory-Mapped Addresses
(Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 5-113

Direct Memory Access

Current Descriptor Pointer (DMAx_CURR_DESC_PTR and
MDMA_yy_CURR_DESC_PTR) Registers

The current descriptor pointer registers and addresses
(DMAx_CURR_DESC_PTR and MDMA_yy_CURR_DESC_PTR), shown in Figure 5-19
and Table 5-19, contain the memory address for the next descriptor ele-
ment to be loaded. For FLOW mode settings that involve descriptors
(FLOW = 4, 6, or 7), this register is used to read descriptor elements into
appropriate MMRs before a DMA work block begins. For descriptor list
modes (FLOW = 6 or 7), this register is initialized from the
DMAx_NEXT_DESC_PTR register before loading each descriptor. Then, the
address in the DMAx_CURR_DESC_PTR register increments as each descriptor
element is read in.

When the entire descriptor is read, the DMAx_CURR_DESC_PTR register con-
tains this value:

Descriptor Start Address + (2 x Descriptor Size) (# of elements)

For descriptor array mode (FLOW = 4), this register, and not the
DMAx_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

DMA Registers

5-114 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 5-19. Current Descriptor Pointer Registers

Table 5-19. Current Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_DESC_PTR 0xFFC0 0C20

DMA1_CURR_DESC_PTR 0xFFC0 0C60

DMA2_CURR_DESC_PTR 0xFFC0 0CA0

DMA3_CURR_DESC_PTR 0xFFC0 0CE0

DMA4_CURR_DESC_PTR 0xFFC0 0D20

DMA5_CURR_DESC_PTR 0xFFC0 0D60

DMA6_CURR_DESC_PTR 0xFFC0 0DA0

DMA7_CURR_DESC_PTR 0xFFC0 0DE0

DMA8_CURR_DESC_PTR 0xFFC0 0E20

DMA9_CURR_DESC_PTR 0xFFC0 0E60

Current Descriptor
Pointer[31:16]

Current Descriptor Pointer Registers (DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Upper 16 bits of
memory address of
the next descriptor
element

Current Descriptor
Pointer[15:0]
Lower 16 bits of
memory address of
the next descriptor
element

For memory-
mapped
addresses, see
Table 5-19.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X XX

ADSP-BF54x Blackfin Processor Hardware Reference 5-115

Direct Memory Access

DMA10_CURR_DESC_PTR 0xFFC0 0EA0

DMA11_CURR_DESC_PTR 0xFFC0 0EE0

DMA12_CURR_DESC_PTR 0xFFC0 1C20

DMA13_CURR_DESC_PTR 0xFFC0 1C60

DMA14_CURR_DESC_PTR 0xFFC0 1CA0

DMA15_CURR_DESC_PTR 0xFFC0 1CE0

DMA16_CURR_DESC_PTR 0xFFC0 1D20

DMA17_CURR_DESC_PTR 0xFFC0 1D60

DMA18_CURR_DESC_PTR 0xFFC0 1DA0

DMA19_CURR_DESC_PTR 0xFFC0 1DE0

DMA20_CURR_DESC_PTR 0xFFC0 1E20

DMA21_CURR_DESC_PTR 0xFFC0 1E60

DMA22_CURR_DESC_PTR 0xFFC0 1EA0

DMA23_CURR_DESC_PTR 0xFFC0 1EE0

MDMA_D0_CURR_DESC_PTR 0xFFC0 0F20

MDMA_S0_CURR_DESC_PTR 0xFFC0 0F60

MDMA_D1_CURR_DESC_PTR 0xFFC0 0FA0

MDMA_S1_CURR_DESC_PTR 0xFFC0 0FE0

MDMA_D2_CURR_DESC_PTR 0xFFC0 1F20

MDMA_S2_CURR_DESC_PTR 0xFFC0 1F60

MDMA_D3_CURR_DESC_PTR 0xFFC0 1FA0

MDMA_S3_CURR_DESC_PTR 0xFFC0 1FE0

Table 5-19. Current Descriptor Pointer Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

5-116 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA (HMDMA) Registers
The Blackfin processor features two HMDMA blocks. HMDMA0 is asso-
ciated with MDMA2, and HMDMA1 is associated with MDMA3.
Table 5-20 lists the naming conventions for these registers.

Table 5-20. Naming Conventions for Handshake MDMA Registers

Handshake MDMA MMR Name (x = 0 or 1) Memory-Mapped Address

HMDMA0_CONTROL (on page 5-117) 0xFFC0 4500

HMDMA0_ECINIT (on page 5-123) 0xFFC0 4504

HMDMA0_BCINIT (on page 5-120) 0xFFC0 4508

HMDMA0_ECURGENT (on page 5-124) 0xFFC0 450C

HMDMA0_ECOVERFLOW (on page 5-125) 0xFFC0 4510

HMDMA0_ECOUNT (on page 5-121) 0xFFC0 4514

HMDMA0_BCOUNT (on page 5-120) 0xFFC0 4518

HMDMA1_CONTROL (on page 5-117) 0xFFC0 4540

HMDMA1_ECINIT (on page 5-123) 0xFFC0 4544

HMDMA1_BCINIT (on page 5-120) 0xFFC0 4548

HMDMA1_ECURGENT (on page 5-124) 0xFFC0 454C

HMDMA1_ECOVERFLOW (on page 5-125) 0xFFC0 4550

HMDMA1_ECOUNT (on page 5-121) 0xFFC0 4554

HMDMA1_BCOUNT (on page 5-120) 0xFFC0 4558

ADSP-BF54x Blackfin Processor Hardware Reference 5-117

Direct Memory Access

Handshake MDMA Control (HMDMAx_CONTROL) Registers

The handshake MDMA control registers (HMDMAx_CONTROL), shown in
Figure 5-20, set up HMDMA parameters and operating modes.

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 5-21).

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

The HMDMA[10:11] bits are used to control the gating of Core, DMAC0,
PIXC and MDMA during EPPI urgency conditions. For more informa-
tion please refer to section "Elevating EPPI Urgent requests at the DDR
Controller Interface" in ADSP-BF54x Blackfin Hardware Reference Volume
2 of 2.

Table 5-21. DRQ[1:0] Values

DRQ[1:0] Priority Description

b#00 Disabled The MDMA request is disabled.

b#01 Enabled/S Normal MDMA channel priority. The channel in this
mode is limited to single memory transfers separated by
one idle system clock. Request single transfer from
MDMA channel.

b#10 Enabled/M Normal MDMA channel functionality and priority.
Request multiple transfers from MDMA channel
(default).

b#11 Urgent The MDMA channel priority is elevated to urgent. In
this state, it has higher priority for memory access than
non-urgent channels. If two channels are both urgent,
the lower-numbered channel has priority.

DMA Registers

5-118 ADSP-BF54x Blackfin Processor Hardware Reference

Table 5-22. EPPI_DMA_URGENT_ACCESS

HMDMA1[11] HMDMA[10] Action

0 0 Do not gate-off core, PIXC or DMAC0 on EPPI(0,1 2)
urgent conditions

0 1 Gate-off core only

1 0 Gate-off PIXC, DMAC0 and USB

1 1 Gate-off ALL - core, pixc, DMAC0 and USB

ADSP-BF54x Blackfin Processor Hardware Reference 5-119

Direct Memory Access

Figure 5-20. Handshake MDMA Control (HMDMAx_CONTROL)
Registers

PS (Pin Status) - RO
0 - Request pin is 0
1 - Request pin is 1

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Handshake MDMA Control Registers (HMDMAx_CONTROL)

DRQ[1:0] (Default MDMA Request
When Handshake DMA is
Disabled EN=0)
00 - No request
01 - Request single transfer from
MDMA channel
10 - Request multiple transfers from
MDMA channel (default)
11 - Request urgent multiple trans-
fersfrom MDMA channel

BDI (Block Done
Interrupt Generated)
- W1C

HMDMAEN (Handshake MDMA
Enable)
0 - Disable handshake operation
1 - Enable handshake operation

REP (HMDMA Request Polarity)
0 - Increment ECOUNT on

falling edges of DMARx input
1 - Increment ECOUNT on rising
edges of DMARx input
UTE (Urgency Threshold Enable)
0 - Disable urgency threshold
1 - Enable urgency threshold
OIE (Overflow Interrupt Enable)

0 - Disable overflow interrupt
1 - Enable overflow interrupt

Reset = 0x0200

BDIE (Block Done Interrupt Enable)
0 - Disable block done interrupt
1 - Enable block done interrupt

HMDMA0:
0xFFC0 4500

HMDMA1:
0xFFC0 4540

 MBDI (Mask Block Done Interrupt)
BDIE must = 1
0 - Interrupt generated when

BCOUNT decrements to 0
1 - Interrupt generated when

BCOUNT decrements to 0
and ECOUNT = 0

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

OI (Overflow Interrupt
Generated) - W1C

RBC (Force Reload of
BCOUNT) - WO
0 - Reload not active
1 - Force reload of BCOUNT
with BCINIT.
Write 1 to activate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

SND (Source/Not Destination)
0 - HMDMA controls
 destination side of MDMA
1 - HMDMA controls source
 side of MDMA

SYS_EPPI_PRIO

0 - DMAC0, USB, PIXC, and MDMA2/3
accesses to DDR are not blocked under
EPPI urgent conditions.
1 - DMAC0, USB, PIXC, and MDMA2/3
accesses to DDR are not blocked under
EPPI urgent conditions.

CORE_EPPI_PRIO
0 - Core accesses to DDR are
not blocked during EPPI urgent
conditions.
1 - Core accesses to DDR are
blocked during EPPI urgent
conditions.

DMA Registers

5-120 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA Initial Block Count (HMDMAx_BCINIT)
Registers

The handshake MDMA initial block count registers (HMDMAx_BCINIT),
shown in Figure 5-21, hold the number of transfers to complete per edge
of the DMARx control signal.

Handshake MDMA Current Block Count (HMDMAx_BCOUNT)
Registers

The handshake MDMA current block count registers (HMDMAx_BCOUNT),
shown in Figure 5-22, hold the number of transfers remaining for the cur-
rent edge. MDMA requests are generated if this count is greater than 0.

Examples:

• 0x0000 = 0 transfers remaining

• 0xFFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAx_CONTROL register is
written to a 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

Figure 5-21. Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers

Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)

BCINIT[15:0] (Initial Block
Count)

Reset = 0x0000HMDMA0:
0xFFC0 4508

HMDMA1:
0xFFC0 4548

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 5-121

Direct Memory Access

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAx_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. Note if BCINIT is 0, no block done interrupt is gener-
ated, since no DMA requests were generated or grants received.

Handshake MDMA Current Edge Count (HMDMAx_ECOUNT)
Registers

The handshake MDMA current edge count registers (HMDMAx_ECOUNT),
shown in Figure 5-23, hold a signed number of edges remaining to be ser-
viced. This number is in a signed, two’s-complement representation. An
edge is detected on the respective DMARx input. Requests occur if this count
is greater than or equal to 0, and BCOUNT is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N is a positive or
negative signed number.

Figure 5-22. Handshake MDMA Current Block Count
(HMDMAx_BCOUNT) Registers

Handshake MDMA Current Block Count Register (HMDMAx_BCOUNT)

BCOUNT[15:0] (Transfers
Remaining for Current
Edge)

Reset = 0x0000HMDMA0:
0xFFC0 4518

HMDMA1:
0xFFC0 4558

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Registers

5-122 ADSP-BF54x Blackfin Processor Hardware Reference

Examples:

• 0x7FFF = 32767 edges remaining

• 0x0000 = 0 edges remaining

• 0x8000 = –32768: ignore the next 32768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Figure 5-23. Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers

Handshake MDMA Current Edge Count Register (HMDMAx_ECOUNT)

ECOUNT[15:0] (Edges
Remaining to be Serviced)

Reset = 0x0000HMDMA0:
0xFFC0 4514

HMDMA1:
0xFFC0 4554

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF54x Blackfin Processor Hardware Reference 5-123

Direct Memory Access

Handshake MDMA Initial Edge Count (HMDMAx_ECINIT)
Registers

The handshake MDMA initial edge count registers (HMDMAx_ECINIT),
shown in Figure 5-24, hold a signed number that is loaded into current
edge count (HMDMAx_ECOUNT) when the handshake DMA is enabled. This
number is in a signed, two’s-complement representation.

Figure 5-24. Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers

Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)

ECINIT[15:0] (Initial Edge
Count)

Reset = 0x0000HMDMA0:
0xFFC0 4504

HMDMA1:
0xFFC0 4544

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Registers

5-124 ADSP-BF54x Blackfin Processor Hardware Reference

Handshake MDMA Edge Count Urgent (HMDMAx_ECURGENT)
Registers

The handshake MDMA edge count urgent registers s (HMDMAx_ECURGENT),
shown in Figure 5-25 and, hold the urgent threshold. If the ECOUNT field
in the handshake MDMA edge count register is greater than this thresh-
old, the MDMA request is urgent and might get higher priority.

Figure 5-25. Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

UTHE[15:0] (Urgent
Threshold)

Reset = 0xFFFFHMDMA0:
0xFFC0 450C

HMDMA1:
0xFFC0 454C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ADSP-BF54x Blackfin Processor Hardware Reference 5-125

Direct Memory Access

Handshake MDMA Edge Count Overflow Interrupt
(HMDMAx_ECOVERFLOW) Registers

The handshake MDMA edge count overflow interrupt registers,
(HMDMAx_ECOVERFLOW), shown in Figure 5-26, hold the interrupt threshold.
If the ECOUNT field in the handshake MDMA edge count register is greater
than this threshold, an overflow interrupt is generated.

DMA Traffic Control Registers
The DMACx_TCPER registers and the DMACx_TCCNT registers work with other
DMA registers to define traffic control.

Traffic control works within one DMA controller (DMAC0 or
DMAC1), not between DMA controllers.

Figure 5-26. Handshake MDMA Edge Count Overflow Interrupt
(HMDMAx_ECOVERFLOW) Registers

Table 5-23. DMA Traffic Control Registers

Register Name Refer to Memory-Mapped Address

DMAC0_TCPER Listing on page 5-126 0xFFC0 0B0C

DMAC0_TCCNT Listing on page 5-127 0xFFC0 0B10

DMAC1_TCPER Listing on page 5-126 0xFFC0 1B0C

DMAC1_TCCNT Listing on page 5-127 0xFFC0 1B10

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

ITHR[15:0] (Interrupt
Threshold)

Reset = 0xFFFFHMDMA0:
0xFFC0 4510

HMDMA1:
0xFFC0 4550

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DMA Registers

5-126 ADSP-BF54x Blackfin Processor Hardware Reference

This section also describes the DMAC1_PERIMUX register on page 5-129.

DMA Traffic Control Counter Period (DMACx_TCPER) Registers

The DMA traffic control counter period registers (DMACx_TCPER) are
shown in Figure 5-27.

Figure 5-27. DMA Traffic Control Counter Period (DMACx_TCPER)
Registers

Maximum length of MDMA round-
robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DMA Traffic Control Counter Period Register (DMACx_TCPER)

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

MDMA_ROUND_ROBIN_
PERIOD[4:0]

DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

000 - No DCB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DCB
bus between the DMA and
internal L1 memory

000 - No DEB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DEB
bus between the DMA and
external memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0For memory-
mapped
addresses, see
Table 5-23.

ADSP-BF54x Blackfin Processor Hardware Reference 5-127

Direct Memory Access

DMA Traffic Control Counter (DMACx_TCCNT) Registers

The DMA traffic control counter registers (DMACx_TCCNT) are shown in
Figure 5-28.

The MDMA_ROUND_ROBIN_COUNT field shows the current transfer count
remaining in the MDMA round-robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMACx_TCPER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMACx_TCPER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated

Figure 5-28. DMA Traffic Control Counter (DMACx_TCCNT) Registers

RO

Current transfer count remaining in
the MDMA round-robin period

DMA Traffic Control Counter Register (DMACx_TCCNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_
COUNT[4:0]

DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0For memory-
mapped
addresses, see
Table 5-23.

DMA Registers

5-128 ADSP-BF54x Blackfin Processor Hardware Reference

preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMACx_TCPER is written, or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMACx_TCPER is written, or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

ADSP-BF54x Blackfin Processor Hardware Reference 5-129

Direct Memory Access

DMA Controller 1 Peripheral Multiplexer (DMAC1_PERIMUX)
Register

The DMAC1_PERIMUX register is shown in Figure 5-29.

The DMAC1_PERIMUX register controls the common sharing of a single
DMA channel between the NAND flash controller (NFC) and the secure
digital host (SDH) module. The sharing of this resource prevents the
simultaneous use of the NFC and the SDH with DMA access to internal
and external memory. DMAC1_PERIMUX controls the peripheral that gains
access to DMA resources. DMAC1_PERIMUX is a 16-bit wide register and
requires 16-bit access.

Programming Examples
The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters in Volume 2.

Figure 5-29. DMA Controller 1 Peripheral Multiplexer
(DMAC1_PERIMUX) Register

R/W
DMA Controller 1 Peripheral Multiplexer Register (DMAC1_PERIMUX)

0xFFC0 4340

PMUXSDH (Peripheral Multiplex SDH/NFC)
0 – NAND flash controller has control of DMA22 channel resources
1 – Secure Digital Host has control of DMA22 channel resources

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Programming Examples

5-130 ADSP-BF54x Blackfin Processor Hardware Reference

Register-Based 2D Memory DMA
Listing 5-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel re-sorts ele-
ments of the two-dimensional data array. See Figure 5-30.

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory, memory other than L1, and DDR SDRAM. For the
case where the destination array resides in DDR SDRAM, it is a good idea
to let the source channel re-sort elements and to let the destination buffer
store linearly.

Listing 5-1. Register-Based 2-D Memory DMA

#include <defBF54x.h>

#define X 5

#define Y 6

.section L1_data_a;

.byte2 aSource[X*Y] =

1, 7, 13, 19, 25,

2, 8, 14, 20, 26,

3, 9, 15, 21, 27,

4, 10, 16, 22, 28,

5, 11, 17, 23, 29,

Figure 5-30. DMA Example, 2D Array

1

2

3

4

5

6

8

7

9

10

11

12

19

18

17

16

15

14

13

20

21

22

23

24

26

27

28

29

25

30

1 2 3 4 5 6

87 9 10 11 12

19

181716151413

20 21 22 23 24

26 27 28 2925 30

ADSP-BF54x Blackfin Processor Hardware Reference 5-131

Direct Memory Access

6, 12, 18, 24, 30;

.section L1_data_b;

.byte2 aDestination[X*Y];

.section L1_code;

.global _main;

_main:

 p0.l = lo(MDMA_S0_CONFIG);

 p0.h = hi(MDMA_S0_CONFIG);

 call memdma_setup;

 call memdma_wait;

_main.forever:

 jump _main.forever;

_main.end:

The setup routine shown in Listing 5-2 initializes either MDMA0 or
MDMA1 depending on whether the MMR address of MDMA_S0_CONFIG or
MDMA_S1_CONFIG is passed in the P0 register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel, because only those interrupts
indicate completion of both DMA read and write operations.

Listing 5-2. 2-D Memory DMA Setup Example

memdma_setup:

 [--sp] = r7;

/* setup 1D source DMA for 16-bit transfers */

 r7.l = lo(aSource);

 r7.h = hi(aSource);

 [p0 + MDMA_S0_START_ADDR - MDMA_S0_CONFIG] = r7;

 r7.l = 2;

 w[p0 + MDMA_S0_X_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = X * Y;

 w[p0 + MDMA_S0_X_COUNT - MDMA_S0_CONFIG] = r7;

Programming Examples

5-132 ADSP-BF54x Blackfin Processor Hardware Reference

 r7.l = WDSIZE_16 | DMAEN;

 w[p0] = r7;

/* setup 2D destination DMA for 16-bit transfers */

 r7.l = lo(aDestination);

 r7.h = hi(aDestination);

 [p0 + MDMA_D0_START_ADDR - MDMA_S0_CONFIG] = r7;

 r7.l = 2*Y;

 w[p0 + MDMA_D0_X_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = Y;

 w[p0 + MDMA_D0_Y_COUNT - MDMA_S0_CONFIG] = r7;

 r7.l = X;

 w[p0 + MDMA_D0_X_COUNT - MDMA_S0_CONFIG] = r7;

 r7.l = -2 * (Y * (X-1) - 1);

 w[p0 + MDMA_D0_Y_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;

 w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

 r7 = [sp++];

 rts;

memdma_setup.end:

For simplicity, the example shown in Listing 5-3 polls the DMA status
rather than using interrupts, which is the normal case in a real application.

ADSP-BF54x Blackfin Processor Hardware Reference 5-133

Direct Memory Access

Listing 5-3. Polling DMA Status

memdma_wait:

 [--sp] = r7;

memdma_wait.test:

 r7 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

 CC = bittst (r7, bitpos(DMA_DONE));

 if !CC jump memdma_wait.test;

 r7 = DMA_DONE (z);

 w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r7;

 r7 = [sp++];

 rts;

memdma_wait.end:

Initializing Descriptors in Memory
Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run time. Many times, however, the descriptors—
or at least large portions of them—can be static and therefore initialized at
boot time. How to set up descriptors in global memory depends heavily
on the programming language and the toolset used. The following exam-
ples show how this is best performed in the VisualDSP++ tools’ assembly
language.

Listing 5-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other mutually. At the end of the second
work unit an interrupt is generated without discontinuing the DMA pro-
cessing. The trailing “.end” label is required to let the linker know that a
descriptor forms a logical unit. It prevents the linker from removing vari-
ables when optimizing.

Programming Examples

5-134 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 5-4. Two Descriptors in Small List Flow Mode

.section sdram;

.byte2 arrBlock1[0x400];

.byte2 arrBlock2[0x800];

.section L1_data_a;

.byte2 descBlock1 = lo(descBlock2);

.var descBlock1.addr = arrBlock1;

.byte2 descBlock1.cfg = FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;

.byte2 descBlock1.len = length(arrBlock1);

 descBlock1.end:

.byte2 descBlock2 = lo(descBlock1);

.var descBlock2.addr = arrBlock2;

.byte2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

.byte2 descBlock2.len = length(arrBlock2);

 descBlock2.end:

Another method featured by the VisualDSP++ tools takes advantage of
C-style structures in global header files. The header file descriptor.h
could look like Listing 5-5.

Listing 5-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__

#define __INCLUDE_DESCRIPTORS__

#ifdef _LANGUAGE_C

typedef struct {

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

ADSP-BF54x Blackfin Processor Hardware Reference 5-135

Direct Memory Access

short dYModify;

} dma_desc_arr;

typedef struct {

void *pNext;

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_list;

#endif // _LANGUAGE_C

#endif // __INCLUDE_DESCRIPTORS__

Note that near pointers are not natively supported by the C language,
pointers are always 32 bits wide. Therefore, the scheme above cannot be
used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 5-6.

Listing 5-6. Using Descriptor Structures

#include "descriptors.h"

.import "descriptors.h";

.section L1_data_a;

.align 4;

.var arrBlock3[N];

.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {

 descBlock4, arrBlock3,

 FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,

Programming Examples

5-136 ADSP-BF54x Blackfin Processor Hardware Reference

 length(arrBlock3), 4,

 0, 0 /* unused values */

};

.struct dma_desc_list descBlock4 = {

 descBlock3, arrBlock4,

 FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,

 length(arrBlock4), 4,

 0, 0 /* unused values */

};

Software-Triggered Descriptor Fetch Example
Listing 5-7 demonstrates a large list of descriptors that provide flow stop
mode configuration. Consequently, the DMA stops by itself as soon as the
work unit has finished. Software triggers the next work unit by simply
writing the proper value into the DMA configuration registers. Since these
values instruct the DMA controller to fetch descriptors in large list mode,
after being started, the DMA immediately fetches the descriptor and then
overwrites the configuration value again with the new settings.

Note the requirement that source and destination channels stop after the
same number of transfers. In between stops the two channels can have
completely individual structure.

Listing 5-7. Software-Triggered Descriptor Fetch

#define N 4

.section L1_data_a;

.byte2 arrSource1[N] = { 0x1001, 0x1002, 0x1003, 0x1004 };

.byte2 arrSource2[N] = { 0x2001, 0x2002, 0x2003, 0x2004 };

.byte2 arrSource3[N] = { 0x3001, 0x3002, 0x3003, 0x3004 };

.byte2 arrDest1[N];

ADSP-BF54x Blackfin Processor Hardware Reference 5-137

Direct Memory Access

.byte2 arrDest2[2*N];

.struct dma_desc_list descSource1 = {

 descSource2, arrSource1,

 WDSIZE_16 | DMAEN,

 length(arrSource1), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descSource2 = {

 descSource3, arrSource2,

 FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,

 length(arrSource2), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descSource3 = {

 descSource1, arrSource3,

 WDSIZE_16 | DMAEN,

 length(arrSource3), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descDest1 = {

 descDest2, arrDest1,

 DI_EN | WDSIZE_16 | WNR | DMAEN,

 length(arrDest1), 2,

 0, 0 /* unused values */

};

.struct dma_desc_list descDest2 = {

 descDest1, arrDest2,

 DI_EN | WDSIZE_16 | WNR | DMAEN,

 length(arrDest2), 2,

 0, 0 /* unused values */

};

.section L1_code;

Programming Examples

5-138 ADSP-BF54x Blackfin Processor Hardware Reference

_main:

/* write descriptor address to next descriptor pointer */

 p0.h = hi(MDMA_S0_CONFIG);

 p0.l = lo(MDMA_S0_CONFIG);

 r0.h = hi(descDest1);

 r0.l = lo(descDest1);

 [p0 + MDMA_D0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

 r0.h = hi(descSource1);

 r0.l = lo(descSource1);

 [p0 + MDMA_S0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

/* start first work unit */

 r6.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|DMAEN;

 w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

 r7.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|WNR|DMAEN;

 w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

/* wait until destination channel has finished and W1C latch */

_main.wait:

 r0 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

 CC = bittst (r0, bitpos(DMA_DONE));

 if !CC jump _main.wait;

 r0.l = DMA_DONE;

 w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r0;

/* wait for any software or hardware event here */

/* start next work unit */

 w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

 w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

 jump _main.wait;

_main.end:

ADSP-BF54x Blackfin Processor Hardware Reference 5-139

Direct Memory Access

Handshake Memory DMA Example
The functional block for the handshake MDMA operation can be seen
completely separately from the MDMA channels themselves. Therefore
the following HMDMA setup routine can be combined with any of the
MDMA examples discussed above. Be sure that the HMDMA module is
enabled before the MDMA channels.

Listing 5-8 enables the HMDMA1 block which is controlled by the DMAR1
pin and is associated with the MDMA1 channel pair.

Listing 5-8. HMDMA1 Block Enable

/* optionally, enable all four bank select strobes */

 p1.l = lo(EBIU_AMGCTL);

 p1.h = hi(EBIU_AMGCTL);

 r0.l = 0x0009;

 w[p1] = r0;

/* function enable for DMAR1 */

 p1.l = lo(PORTH_FER);

 r0.l = PH6;

 w[p1] = r0;

 p1.l = lo(PORTH_MUX);

r0.l = lo(MUX6_1);

r0.h = hi(MUX6_1);

 [p1] = r0;

/* every single transfer requires one DMAR1 event */

 p1.l = lo(HMDMA1_BCINIT);

 r0.l = 1;

 w[p1] = r0;

/* start with balanced request counter */

 p1.l = lo(HMDMA1_ECINIT);

Programming Examples

5-140 ADSP-BF54x Blackfin Processor Hardware Reference

 r0.l = 0;

 w[p1] = r0;

/* enable for rising edges */

 p1.l = lo(HMDMA1_CONTROL);

 r2.l = REP | HMDMAEN;

 w[p1] = r2;

If the HMDMA intent is to copy from internal memory to external
devices, the above setup is appropriate. It controls the Memory DMA’s
destination channel. If the intent is to read data from external memory, set
the SND bit in the HMDMAx_CONTROL register to control the source channel
instead.

ADSP-BF54x Blackfin Processor Hardware Reference 6-1

6 EXTERNAL BUS
INTERFACE UNIT

The external bus interface unit (EBIU) provides a glueless interface to a
variety of external memories. The EBIU supports both synchronous and
asynchronous memories. The synchronous interface supports dual data
rate (DDR) SDRAM memories. The asynchronous interface supports
memories such as SRAM and flash memories including synchronous NOR
flash.

The synchronous interface is controlled by a DDR controller. The asyn-
chronous interface is controlled by the asynchronous memory controller
(AMC). The asynchronous interface is further shared by an on-chip
NAND flash controller and an ATAPI controller. The ATAPI and the
NAND flash controllers are not part of EBIU; they just share the asyn-
chronous interface pins. An asynchronous pin control module (APCM)
controls and arbitrates the asynchronous interface between the ASYNC,
NAND, and ATAPI controllers.

The chapter includes the following sections:

• “General Overview” on page 6-2

• “DDR Arbitration” on page 6-12

• “DDR SDRAM Controller” on page 6-16

• “DDR SDRAM Memory Interface” on page 6-17

• “DDR Registers” on page 6-20

• “DDR Metrics Control Registers” on page 6-42

General Overview

6-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “Asynchronous Memory Interface” on page 6-53

• “ASYNC Interface Control Registers” on page 6-56

General Overview
The EBIU services requests for external memory from the Blackfin core
and from three on-chip DMA controllers (DMAC0, DMAC1, and USB
DMA). An address decoder inside EBIU determines whether the request is
serviced by the DDR memory controller or the asynchronous memory
controller and routes the requests to the appropriate controller. Requests
from different sources are prioritized based on a programmable priority
scheme.

The EBIU is clocked by the system clock (SCLK), which runs at a maxi-
mum frequency that is specified in the ADSP-BF54x processor data sheet.
All DDR SDRAM memories interfaced to the device operate at SCLK
frequency.

The external memory space is shown in Figure 6-1. Two of the memory
regions are dedicated to DDR SDRAM. The DDR SDRAM interface tim-
ing and the size of each DDR SDRAM region are programmable. Each
external DDR SDRAM bank can be populated up to 256M bytes. The
start address of bank 0 is 0x0000 0000 and the start address of bank 1 fol-
lows contiguously from the previous bank. Depending upon the memory
configuration, the area from the end of bank 1 to address 0x2000 0000 is
reserved.

The next four regions are dedicated to support asynchronous memories.
Each asynchronous memory region can be independently programmed to
support different memory device characteristics. Each region has its own
memory select output pin from the EBIU. Also, each of the asynchronous
memory regions can be independently programmed to support burst
mode or page mode flash memories.

ADSP-BF54x Blackfin Processor Hardware Reference 6-3

External Bus Interface Unit

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. When either of the
DMAC0, DMAC1, or the USB DMA controllers address this region, the
EBIU sends an error response on the internal buses to the controllers. The
EBIU generates the hardware error (HWE) interrupt to the core when it is
requested to access this reserved off-chip memory space.

General Overview

6-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-1. External Memory Map

0x0000 0000

TOP OF LAST
DDR SDRAM PAGE

0x2000 0000

0x2C00 0000

0x2400 0000

0x2800 0000

0xEEFF FFFF

ASYNC MEMORY BANK 3
(64 MBYTES)

RESERVED

ASYNC MEMORY BANK 2
(64 MBYTES)

ASYNC MEMORY BANK 1
(64 MBYTES)

ASYNC MEMORY BANK 0
(64 MBYTES)

RESERVED

EXT DDR BANK 1
(256 MBYTES MAX)

EXT DDR BANK 0
(256 MBYTES MAX)

ADSP-BF54x Blackfin Processor Hardware Reference 6-5

External Bus Interface Unit

Block Diagram
Figure 6-2 shows a conceptual block diagram of the EBIU. Note that the
pins for the synchronous DDR memory interface are dedicated, whereas
pins for the asynchronous memories are shared.

Figure 6-2. External Bus Interface Unit (EBIU) Diagram

A
S

Y
N

C
 (

M
U

X
E

D
)

PA
D

S

ND_CE
ND_RB

ATAPI_CS1–0
ATAPI_DMACK
ATAPI_DMARQ
ATAPI_INTRQ
ATAPI_IORDY

ADDR24–1

D15–0

ARDY / WAIT

AMS3–0 / NR_CE3–0

ABE1 / ND_ALE

AOE / NR_ADV

ARE

AWE

BR, BG, BGH

D
D

R
 P

A
D

S

DCLK2–1
DCKE
DCS1–0
DBA1–0
DCAS
DRAS
DWE
DQS1–0
DQ15–0
DQM1–0
DA12–0

ASYNC
 PIN
 CTL

A
S

Y
N

C
 P

IN
 M

U
X

A
D

D
R

E
S

S
 D

E
C

O
D

E
R

D
D

R
 C

O
N

T
R

O
L

L
E

R

D
D

R
 A

R
B

IT
E

R

DEB2 QUEUE

DEB1 QUEUE

DEB0 QUEUE

 ASYNC
ARBITER SRAM

 CTL

 NOR
FLASH
 CTLHWE

PAB

DEB2

DEB1

DEB0

EAB

ATA_REQ

NAND_REQ

ATA_BUS

NAND_BUS

16

32

32

32

32

ABE0 / ND_CLE

ADDR25 / NR_CLK

DCLK2–1

DDR1

32

32

ASYNC

CLKOUT

General Overview

6-6 ADSP-BF54x Blackfin Processor Hardware Reference

The EBIU allows the on-chip NAND flash controller and ATAPI control-
ler to share its asynchronous interface pins. An asynchronous pin control
module (APCM) in the EBIU automatically controls the accesses to the
asynchronous memory interface pins, based on requests from the AMC,
NAND, and ATAPI with a set priority. No extra configuration is needed.
The multiplexing scheme of the shared pins is summarized in Table 6-1.
When reading Table 6-1, note that an “x” indicates that the pin is used by
the interface, a “–” indicates that the pin is not used by the interface, and
an alternate pin name indicates that the pin is used for an alternate func-
tion by the interface.

Table 6-1. EBIU Pin List (With Multiplexing)

Pins ASYNC FLASH NAND
FLASH

ATAPI DDR

ADDR24–1 x x – x1 –

ADDR25 x NR_CLK – - –

D15–0 x x x x –

AMS3–0 x NR_CE3–0 – – –

ABE0 x – ND_CLE – –

ABE1 x – ND_ALE – –

AOE x NR_ADV – – –

ARE x x x - –

AWE x x x - –

ARDY x WAIT – – –

CLKOUT x – – – –

ND_CE – – x – –

ND_RB – – x – –

ATAPI_CS1–0 – – – x –

ATAPI_DMACK – – – x –

ADSP-BF54x Blackfin Processor Hardware Reference 6-7

External Bus Interface Unit

ATAPI_INTR – – – x –

ATAPI_DMARQ – – – x –

ATAPI_IORDY – – – x –

BR x – – – –

BG x – – – –

BGH x – – – –

DCLK2–1 – – – – x

DCLK2–1 – – – – x

DCKE – – – – x

DCS1–0 – – – – x

DBA1–0 – – – – x

DCAS – – – – x

DRAS – – – – x

DWE – – – – x

DQS1–0 – – – – x

DQ15–0 – – – – x

DQM1–0 – – – – x

DA12–0 – – – – x

1 Note that some of the pins listed in Table 6-1 are multiplexed with GPIO, especially the address
lines ADDR4_ADDR25. So please set the general purpose port multiplexing before using them
as asynchronous memory interface, NAND flash interface, or ATAPI interface. Please refer to
Chapter 9, General Purpose Ports for more information.

Table 6-1. EBIU Pin List (With Multiplexing) (Cont’d)

Pins ASYNC FLASH NAND
FLASH

ATAPI DDR

General Overview

6-8 ADSP-BF54x Blackfin Processor Hardware Reference

On-Chip System Interfaces
The EBIU functions as a slave on five buses internal to the ADSP-BF54x
processor, as follows:

• A 32-bit external access bus (EAB), mastered by the core, for exter-
nal memory access

• A 16-bit DMA external bus (DEB0), mastered by DMA
controller1, in response to external memory access requests from
any DMAC0 (16-bit) channel

• A 32-bit DMA external bus (DEB1), mastered by DMA
controller2, in response to external memory access request from
any DMAC1 (32-bit) channel

• A 32-bit DMA external bus (DEB2), mastered by the DMA con-
troller in the USB module

• A 16-bit PAB bus, mastered by the core, to access the system mem-
ory-mapped registers (SMMR) in the EBIU

These are synchronous interfaces, clocked by SCLK. The EAB, DEB0,
DEB1, and DEB2 (USB) provide access to both synchronous DDR
SDRAM and asynchronous external memories, including page mode and
burst mode NOR flash memories.

Error Detection
The EBIU responds to any bus operation that addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory. It responds by completing the bus operation

ADSP-BF54x Blackfin Processor Hardware Reference 6-9

External Bus Interface Unit

(asserting the appropriate number of acknowledges as specified by the bus
master) and by asserting the bus error signal for the following error
conditions:

• Any access to the reserved off-chip memory space

• Any access to disabled external memory bank

• Any access to an unpopulated area of a DDR SDRAM memory
bank

If the core requested the faulting bus operation, the bus error response
from the EBIU is routed to the HWE interrupt internal to the core. If the
DMA master issues the request for the faulting bus operation, then the
bus error is captured in that controller and can optionally generate an
interrupt to the core. In both cases, the error address is latched in the cor-
responding EBIU error address register.

System Arbitration
As mentioned earlier, the EBIU implements two different memory inter-
faces that provide simultaneous accesses to DDR SDRAM and
asynchronous memory in response to requests on any of the four internal
data access buses. For example, while the DDR controller services a core
request to DDR SDRAM memory, the AMSYNC could service a DMA
request to asynchronous or flash memory. Although the synchronous and
asynchronous memories run at different speeds, the EBIU ensures that
data is returned to the requestor in the correct order.

To take advantage of the high performance DDR interface and the inde-
pendent asynchronous memory interface, and to maintain correct order of
data transfers on the internal buses, the EBIU implements some arbitra-
tion modules that augment the DDR controller and the AMSYNC
memory.

General Overview

6-10 ADSP-BF54x Blackfin Processor Hardware Reference

Address Resolution
The EBIU address decoder block accepts the commands (read/writes)
from the EAB and DMA buses (DEB0, DEB1, and DEB2). It then pro-
cesses them and transfers them to the DDR queue manager (QM) block or
the asynchronous memory controller block based on the address being
accessed.

If the address happens to be in the reserved region (based on the memory
configuration), it generates accordingly the required number of acknowl-
edgements along with the error signal.

Reorder Unit
Because of simultaneous support of varying speed interfaces, there is a
reorder engine in the EBIU for each of the system buses (DEB0, DEB1,
DEB2, and EAB). The reorder engine handles out-of-order responses and
makes sure that all responses from the interfaces (DDR SDRAM, asyn-
chronous SRAM/flash) are still in the same order in which they were
accepted and issued. For all read accesses, it keeps track of the states of all
the requests that went to the EBIU controllers and makes sure that the
responses are sent back to the original requestors in order. For write
requests, each queue maintains the order in which the responses were
transferred with the bus.

The following example shows out-of-order execution between the DDR
interface and the asynchronous memory controller (ASYNC) interface.

The order in which the requests are accepted and issued to the controllers
is as follows:

• Cycle 1: ASYNC Read Request-1

• Cycle 2: DDR Read Request-1

• Cycle 3: DDR Read Request-2

ADSP-BF54x Blackfin Processor Hardware Reference 6-11

External Bus Interface Unit

• Cycle 4: DDR Read Request-3

• Cycle 5: DDR Read Request-4

Since the DDR interface is much faster than the ASYNC interface, the
DDR read data is be available from the DDR QM block much earlier than
the ASYNC interface. So the reorder engine instructs the DDR QM to
stop giving the read data and hold it until the ASYNC read data is
available.

• Cycle 4: DDR Read Data-1 is available but is blocked and stored in
DDR QM block

• Cycle 5: DDR Read Data-2 is available but is blocked and stored in
DDR QM block

• Cycle 6: ASYNC Read Data-1 is available and DDR Read Data-3
is available

• Only ASYNC Read Data-1 is now passed on to the system bus

• Cycle 7: DDR Read Data-1 is passed on to the system bus

• Cycle 8: DDR Read Data-2 is passed on to the system bus

• Cycle 9: DDR Read Data-3 is passed on to the system bus

The first access request from the system bus to ASYNC is issued immedi-
ately (same cycle). Subsequent requests are issued only when the first
access request is completed. Two consecutive requests to ASYNC block
the next access (any, including DDR access from that bus that initiated
the accesses). However, accesses to DDR from other buses are not
blocked.

DDR Arbitration

6-12 ADSP-BF54x Blackfin Processor Hardware Reference

DDR Queue Manager
To optimize for the high throughput of the DDR interface, the EBIU
implements three identical queue modules for each of the DEB buses. The
queue managers perform the following functions:

• Enable peripherals to utilize higher throughput provided by DDR
SDRAM

• Optimize requests to the DDR controller to achieve maximum
utilization of the DDR memory bus

• Handle data coherency between the DEB and core buses

DDR Arbitration
The DDR arbiter handles requests from all four system interface buses
(DEB0, DEB1, DEB2, and EAB) and prefetches requests from all the
DEB queue blocks. The arbiter has a fixed priority as shown in the
following:

1. Core TESTSET instruction (highest)

2. Forced write access (by DEB queue manager)

3. Urgent DMA access

4. Core access

5. Normal DMA read access through DEB queue manager

6. Normal DMA write access through DEB queue manager

7. Prefetch buffer access (lowest)

ADSP-BF54x Blackfin Processor Hardware Reference 6-13

External Bus Interface Unit

Note, there is a further programmable priority scheme for the three DEB
buses when DMA wins arbitration (urgent or normal access). The arbitra-
tion priority between the DEB buses are determined by bits [10:8] of the
DDR queue configuration register (EBIU_DDRQUE) as follows:

000:DEB0>DEB1>DEB2 (default)

001:DEB1>DEB0>DEB2

010:DEB2>DEB0>DEB1

Table 6-2 summarizes the arbitration scheme, in DDR SDRAM memory
interface.

Table 6-2. DDR Arbiter Priority Scheme

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

Core TESTSET Core TESTSET Core TESTSET

Forced DEB Writes
 DEB0 WRITE
 DEB1 WRITE
 DEB2 WRITE

Forced DEB Writes
 DEB1 WRITE
 DEB0 WRITE
 DEB2 WRITE

Forced DEB Writes
 DEB2 WRITE
 DEB0 WRITE
 DEB1 WRITE

Urgent DMA
 DEB0 READ
 DEB1 READ
 DEB2 READ
 DEB0 WRITE
 DEB1 WRITE
 DEB2 WRITE

Urgent DMA
 DEB1 READ
 DEB0 READ
 DEB2 READ
 DEB1 WRITE
 DEB0 WRITE
 DEB2 WRITE

Urgent DMA
 DEB2 READ
 DEB0 READ
 DEB1 READ
 DEB2 WRITE
 DEB0 WRITE
 DEB1 WRITE

Core READ/WRITE Core READ/WRITE Core READ/WRITE

Normal DMA READ
 DEB0 READ
 DEB1 READ
 DEB2 READ

Normal DMA READ
 DEB1 READ
 DEB0 READ
 DEB2 READ

Normal DMA READ
 DEB2 READ
 DEB0 READ
 DEB1 READ

DDR Arbitration

6-14 ADSP-BF54x Blackfin Processor Hardware Reference

The EBIU adds further control to the DDR arbitration by allowing a nor-
mal DMA access to be elevated to urgent DMA access by setting bits
[14:12] in the DDR queue configuration register (EBIU_DDRQUE) as
follows:

Bit[12] = 1 : DEB0 Normal DMA treated as Urgent

0 : DEB0 Normal DMA treated as Normal (Default)

Bit[13] = 1 : DEB1 Normal DMA treated as Urgent

0 : DEB1 Normal DMA treated as Normal (Default)

Bit[14] = 1 : DEB2 Normal DMA treated as Urgent

0 : DEB2 Normal DMA treated as Normal (Default)

Normal DMA WRITE
 DEB0 READ
 DEB1 READ
 DEB2 READ

Normal DMA WRITE
 DEB1 READ
 DEB0 READ
 DEB2 READ

Normal DMA WRITE
 DEB2 READ
 DEB0 READ
 DEB1 READ

Prefetch Access
 DEB0 READ
 DEB1 READ
 DEB2 READ

Prefetch Access
 DEB1 READ
 DEB0 READ
 DEB2 READ

Prefetch Access
 DEB2 READ
 DEB0 READ
 DEB1 READ

Table 6-2. DDR Arbiter Priority Scheme (Cont’d)

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

ADSP-BF54x Blackfin Processor Hardware Reference 6-15

External Bus Interface Unit

Table 6-3 summarizes the arbitration scheme for Asynchronous memory
interface.

The priority schemes described in Table 6-2 (for DDR) and
Table 6-3 (for ASYNC) are from the arbiters’ perspective. The pri-
ority schemes are followed by the arbiters only when they are ready
to arbitrate, not when the EBIU receives requests on the DEB or
processor buses. For example, a DEB bus may indicate urgent dur-
ing a request, but if the urgent signal goes away before the arbiter
arbitrates, the DEB request is treated as a regular request. Also
note, that the DEB queue logic blocks optimize the DEB bus
requests (for example, line hit, prefetch during reads, packing dur-
ing writes, and others). Because of these optimizations, the DEB
bus requests may not show up at the arbiters immediately and they
may be in a different order.

Table 6-3. ASYNC Arbiter Priority Scheme

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

Core TESTSET Core TESTSET Core TESTSET

Urgent DMA
 DEB0 READ/WRITE
 DEB1 READ/WRITE
 DEB2 READ/WRITE

Urgent DMA
 DEB1 READ/WRITE
 DEB0 READ/WRITE
 DEB2 READ/WRITE

Urgent DMA
 DEB2 READ/WRITE
 DEB0 READ/WRITE
 DEB1 READ/WRITE

Core READ/WRITE Core READ/WRITE Core READ/WRITE

Normal DMA
 DEB0 READ/WRITE
 DEB1 READ/WRITE
 DEB2 READ/WRITE

Normal DMA
 DEB1 READ/WRITE
 DEB0 READ/WRITE
 DEB2 READ/WRITE

Normal DMA
 DEB2 READ/WRITE
 DEB0 READ/WRITE
 DEB1 READ/WRITE

DDR SDRAM Controller

6-16 ADSP-BF54x Blackfin Processor Hardware Reference

DDR SDRAM Controller
The DDR SDRAM controller (SDC) enables a transfer of data to and
from synchronous DDR SDRAM with a maximum data rate of 532M
bytes per second at a clock frequency of 133 MHz using both the edges of
the clock. It supports a glueless interface with two external banks, con-
trolled by the memory chip select pins (DCS1–0), of standard DDR
SDRAMs of 64M bit to 512M bit with configurations x4, x8, x16 as
shown in the following tables, up to a maximum total capacity of 256M
bytes of SDRAM per chip select. The interface includes timing options to
support additional buffers between DDR SDRAM and the EBIU to han-
dle capacitive loads of large memory arrays.

Features
The features of the DDR SDRAM controller (SDC) are:

• Supports industry-standard, double-data rate (DDR SDRAM)
from 64M bit to 512M bit device sizes with a configuration of x4,
x8, or x16

• Provides 16-bit data interface to DDR SDRAM

• Supports up to 256M bytes of DDR SDRAM with one external
bank

• Supports up to two external banks

• Provides page hit detection to support multiple column accesses
within the same row

• Provides eight internal row address registers to keep track of eight
open rows (two chip select with four internal banks each)

ADSP-BF54x Blackfin Processor Hardware Reference 6-17

External Bus Interface Unit

• Supports fixed SDRAM burst length of two

• Provides programmable SDRAM access timing parameters

• Provides automatic refresh generation with programmable refresh
intervals

• Supports self-refresh mode to reduce system power consumption

• Provides support for connection to mobile DDR

DDR SDRAM Memory Interface
This is a DDR SDRAM compliant interface. None of the signals in this
interface is multiplexed with any other signals on the chip. This interface
has a 2.5 V power supply to support the DDR specification. This interface
can also be connected to mobile DDR devices at 1.8 V.

Table 6-4. DDR SDRAM Memory Interface

Name Type Description

DCLK1 / DCLK1 O Output clock signals to DDR SDRAM chips.
Use as differential clock signals to DDR SDRAM.

DCLK2 / DCLK2 O Output clock signals to DDR SDRAM chips.
Use as differential clock signals to DDR SDRAM. Same
as DDR_CLK1.

DCKE O Clock enable

DCS1–0 O Clock enable output to the DDR SDRAM

DBA1–0 O Chip select: One chip select for each of the two external
banks

DCAS O Column address select

DRAS O Row address select

DWE O Write enable

DDR SDRAM Memory Interface

6-18 ADSP-BF54x Blackfin Processor Hardware Reference

DDR SDRAM Programming Model
This section describes the programming model of the EBIU. This model is
based on system memory-mapped registers (SMMRs), used to program
the EBIU. This set of control registers is accessed across the peripheral
access bus (PAB) of the extended core.

The control and status registers in the DDR controller include:

• Memory control register 0 (EBIU_DDRCTL0) Address 0xFFC0 0A20

• Memory control register 1 (EBIU_DDRCTL1) Address 0xFFC0 0A24

• Memory control register 2 (EBIU_DDRCTL2) Address 0xFFC0 0A28

• Memory control register 3 (EBIU_DDRCTL3) Address 0xFFC0 0A2C

DQS1–0 IO Data Strobe: output with write data, input with read
data. DQS is edge aligned with read data, but centered
with write data. It is generated by the DDR controller
during write access.

DQ15–0 IO DDR data input and output. DDR SDRAM has twice
the data rate.

DQM1–0 IO Data mask for writes. DM turns the out buffers off for
writes. For Write, DM specifies the bytes to be written.
It is also used to mask a single Write during an access
cycle of burst length = 2.

DA12–0 O Memory address bits: Indicates row and column address
and signals auto-precharge. When 64M bit and 128M
bit SDRAM are used, only DDR_ADDR[11:0] are used
as addresses and BA [1:0] are used as bank select. When
256M bit and 512M bit DDR SDRAM are used,
DDR_ADDR [12:0] are used as address and BA [1:0]
are used as bank select.

Table 6-4. DDR SDRAM Memory Interface (Cont’d)

Name Type Description

ADSP-BF54x Blackfin Processor Hardware Reference 6-19

External Bus Interface Unit

• DDR queue manager configuration register (EBIU_DDRQUE) Address
0xFFC0 0A30

• Error address register (EBIU_ERRADD) Address 0xFFC0 0A34

• Error master register (EBIU_ERRMST) Address 0xFFC0 0A38

• Reset control register (EBIU_RSTCTL) Address 0xFFC0 0A3C

Access to the DDR controller registers ONLY can be made after releasing
the DDR controller soft reset bit in the reset control register by writing a
1 in bit[0] in the register.

The user may write to the DDR control registers as long as the controller
is not accessing memory devices. Otherwise, the controller responds to
any writes to its registers after it finishes any ongoing memory accesses.

The DDR control registers contain sensitive timing parameters and set-
tings for the DDR SDRAM. Carefully program these registers with values
that are in the operating range of the DDR used.

Values in the reserved fields in these registers must be maintained accord-
ing to the specification. Writing to reserved fields or writing any reserved
values in register bits cause the DDR to function erroneously.

The user must not change prefetch length fields of this register during an
ongoing transfer on DEB buses; otherwise unpredictable behavior may
happen.

DDR SDRAM Memory Interface

6-20 ADSP-BF54x Blackfin Processor Hardware Reference

DDR Registers
This section provides descriptions of the EBIU’s memory-mapped regis-
ters (MMRs) for DDR programming.

This section describes the following registers:

• “Memory Control Register 0 (EBIU_DDRCTL0)”

• “Memory Control Register 1 (EBIU_DDRCTL1)”

• “Memory Control Register 2 (EBIU_DDRCTL2)”

• “Memory Control Register 3 (EBIU_DDRCT3), Regular DDR
Devices”

• “Memory Control Register 3 (EBIU_DDRCTL3) Mobile DDR
Devices”

• “Error Master Register (EBIU_ERRMST)”

• “Error Address Register (EBIU_ERRADD)”

• “Reset Control Register (EBIU_RSTCTL)”

ADSP-BF54x Blackfin Processor Hardware Reference 6-21

External Bus Interface Unit

Memory Control Register 0 (EBIU_DDRCTL0)

Figure 6-3. Memory Control Register 0 (EBIU_DDRCTL0)

Memory Control Register 0 (EBIU_DDRCTL0)

R/W
Number of clock cycles
needed for DDR to recover
from a precharge com-
mand and ready to accept
next ACTIVE command
(Default: 0x3)

tRP (Precharge-to-Active
Command Period)[3:0]

Reset = 0x098E 8411

tREFI
(Refresh Interval)[13:0]

tRFC
(AUTO-REFRESH Command Period) [3:0]

R/W
Number of clock cycles needed for
DDR to recover from a refresh to be
ready for next ACTIVE command
(tRFC/Clock Period) (Default: 0xA)

R/W
Number of clock cycles from
one refresh cycle to next
refresh cycle. To obtain this
value, divide the DDR refresh
period (tREF) by total number
of rows to be refreshed. Then
divide the result by total time.
(Default: 0x0411)

0xFFC00A20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 1 0 0 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 1 0 0 1 1 0 0 0 1 1 1

R/W
Number of clock cycles from an ACTIVE
command until a PRECHARGE command
is issued. To obtain this value, one should
divide the minimum RAS to pre-charge
delay of SDRAM by clock cycle time
(Default: 0x6).

tRAS (Minimum Active-to-Precharge
time)[3:0]

R/W
Number of clock cycles
from an ACTIVE command
to next ACTIVE command
(Default: 0x2)

tRC (Active-to-Active)[3:0]

DDR SDRAM Memory Interface

6-22 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Control Register 1 (EBIU_DDRCTL1)

Figure 6-4. Memory Control Register 1 (EBIU_DDRCTL1)

Memory Control Register 1 (EBIU_DDRCTL1)

R/W
00: Individual DDR, 4-bit wide
01: Individual DDR, 8-bit wide
10: Individual DDR, 16-bit
(Default)
11: Reserved

DDR_DEVWIDTH (DDR Device
Width) [1:0]

Reset = 0x1002 6223

tRCD
(Active-to-Read/Write)[3:0]

EXTBANKS (External
Banks) [1:0]

R/W
00: 1 external bank (DBA0)
01: 2 external bank (DBA0,
DBA1) (Default)
10: Reserved
11: Reserved

R/W
Number of clock cycles from an
active command to a read/write
assertion. To obtain this value,
divide the RAS# delay to CAS#
delay time (tRCD) by the clock
cycle time. (Default: 0x11)

0xFFC00A24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 1 0 0 0 1 0 0 0 1 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 1 0 0 0 0 0 0 0 0 0 0 1

R/W
The Write-to-read delay (last
write data to the next read com-
mand as specified by DDR
datasheet (Default: 0x1)

tWTR (Write-to-Read
Delay)[3:0]

tMRD (Mode register set to
active)[3:0]
R/W
Number of clock cycles after the
setting of the mode register in
DDR and before the issue of
next command. (Default: 0x10)

tWR (Write Recovery time)
[1:0]

R/W
Number of clock cycles needed
for DDR to recover from a write
and be able to accept a pre-
charge command. (Default:
0x10)

DDR_DATAWIDTH [1:0]

R/W
Total DDR Data Width
(16-bit only)
10: Only this value is
allowed

R/W
00: Individual DDR, 512 Mbit
(Default)
01: Individual DDR, 64 Mbit
10: Individual DDR, 128 Mbit
11: Individual DDR, 256 Mbit

DDR_DEVSIZE (DDR Device
Size) [1:0]

ADSP-BF54x Blackfin Processor Hardware Reference 6-23

External Bus Interface Unit

Memory Control Register 2 (EBIU_DDRCTL2)

Figure 6-5. Memory Control Register 2 (EBIU_DDRCTL2)

Memory Control Register 2 (EBIU_DDRCTL2)

Reset = 0x0000 0021

BURSTLENGTH (Burst
Length) [2:0]

REGE
(Register Mode Enable)

R/W
This bit should be high when exter-
nal registers are inserted in the
control and address signals
between DDR SDRAM. An example
is when the register mode DDR
SDRAM is used. (Default: 0)

RO
001: Read only value is set to a
burst length of 2

0xFFC00A28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00

CASLATENCY (CAS Latency)
[2:0]
R/W
W The number of clock cycles
from assertion of read/write sig-
nal to SDRAM until first valid
data on output from SDRAM.
101: 1.5
010: 2 (Default)
110: 2.5
011: 3

DLLRESET

R/W
0: Normal operation (Default)
1: Normal operation with DLL
reset

0

DDR SDRAM Memory Interface

6-24 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Control Register 3 (EBIU_DDRCT3), Regular DDR Devices

Figure 6-6. Memory Control Register 3 (EBIU_DDRCTL3), Regular DDR
Devices

Memory Control Register 3 (EBIU_DDRCTL3)

Reset = 0x0000 0003

DLL

0xFFC00A2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00

DS

R/W
Memory chip output drive
strength.
0: Normal strength
1: Reduced strength (Default).
This the ONLY value supported.
Valid ONLY in regular DDR
mode

0

R/W
0: Enable
1: Disable (Default)
Valid ONLY in regular DDR
mode

ADSP-BF54x Blackfin Processor Hardware Reference 6-25

External Bus Interface Unit

Memory Control Register 3 (EBIU_DDRCTL3) Mobile DDR Devices

Figure 6-7. Memory Control Register 3 (EBIU_DDRCTL3) Mobile DDR
Devices

Memory Control Register 3 (EBIU_DDRCTL3)

Reset = 0x0000 0020

PASR [2:0][31:7]

R/W
Reserved. Only 0s are allowed to
write.
Valid ONLY in mobile DDR.

R/W
Partial Array Self-Refresh
(PASR)
000: Full array (all banks)
(Default)
001: Half array (BA1=0)
010: Quarter Array
(BA1=BA0=0)
011: Reserved
100: Reserved
101: 1/8 array (BA1=BA0=Row
Addr MSB=0)
110: 1/16 array
(BA1=BA0=Row Addr MSBs=0)
111: Reserved
Valid ONLY in mobile DDR
mode.

0xFFC00A2C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

TCSR [1:0]

RO
Reserved. Reads 0s.
Valid ONLY in mobile DDR
mode.

DS [1:0]

R/W
Defaults to 01 (Half Strength).
This is the ONLY value sup-
ported.
Valid ONLY in mobile DDR
mode.

DDR SDRAM Memory Interface

6-26 ADSP-BF54x Blackfin Processor Hardware Reference

Queue Configuration Register (EBIU_DDRQUE)

Figure 6-8. Queue Configuration Register (EBIU_DDRQUE)

Queue Configuration Register (EBIU_DDRQUE)

Reset = 0x0000 1115

DEB2_URGENT

R/W
1: Treat any DEB2
(USB) request as
Urgent
2: Treat DEB2
(USB) request as
Normal (default)

0xFFC00A30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 1 0 0 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

xx x x x x x x x x x x x x x x

DEB0_PFLEN [1:0]

R/W
Prefetch Length for DEB0 accesses.
Based on these bits, DQM instructs
DDR Controller to perform 2-beat,
4-beat or 8-beat bursts for prefetch
read data.
01: 4 half-words (default)
10: 8 half-words
11: 16-half words
 00: Single access performs. 16-bit
read to DDR controller. Second edge
is not used.

DEB_ARB_PRIORITY [2:0]

R/W
Arbitration Priority between all DEB buses
for External DDR memory:
000: DEB0>DEB1>DEB2
001: DEB1>DEB0>DEB2 (default)
010: DEB2>DEB0>DEB1
011: Reserved
In addition, the following fixed order of arbi-
tration is maintained:
1. Core lock access
2.Urgent DMA access
3.Core access
4.Normal DMA access
5.Prefetch reads

DEB1_URGENT

R/W
1: Treat any DEB1
(USB) request as
Urgent
2: Treat DEB1
(USB) request as
Normal (default)

DEB0_URGENT

R/W
1: Treat any DEB0 (USB) request as Urgent
2: Treat DEB0 (USB) request as Normal
(default)

DEB1_PFLEN [1:0]

R/W
Prefetch Length for DEB1 accesses. Based
on these bits, DQM instructs DDR Controller
to perform 2-beat, 4-beat or 8-beat bursts
for prefetch read data.
01: 4 half-words (default)
10: 8 half-words
11: 16-half words
 00: Single access performs. 16-bit read to
DDR controller. Second edge is not used.

DEB2_PFLEN [1:0]

R/W
Prefetch Length for DEB2 accesses. Based
on these bits, DQM instructs DDR Controller
to perform 2-beat, 4-beat or 8-beat bursts
for prefetch read data.
01: 4 half-words (default)
10: 8 half-words
11: 16-half words
 00: Single access performs. 16-bit read to
DDR controller. Second edge is not used.

[31:16], [15], [11], [7:6] Reserved. Do not modify.

ADSP-BF54x Blackfin Processor Hardware Reference 6-27

External Bus Interface Unit

Error Address Register (EBIU_ERRADD)

Figure 6-9. Error Address Register (EBIU_ERRADD)

Error Address Register (EBIU_ERRADD)

Reset = 0x0000 0000

ERROR_ADDRESS (Error Address) [31:0]

RO
The error address to which any Bus Master
(DEB0, DEB1, DEB2, Core) had accessed.
This register captures the first error address
by an individual bus. If two errors accesses
happen by two buses, the address with the
later bus will be captured.

0xFFC00A34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 1 0 0 0 0 0 1 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DDR SDRAM Memory Interface

6-28 ADSP-BF54x Blackfin Processor Hardware Reference

Error Master Register (EBIU_ERRMST)

Figure 6-10. Error Master Register (EBIU_ERRMST)

Error Master Register (EBIU_ERRMST)

R/W
Set whenever an access from
the DEB0 happens on to Exter-
nal Memory which is reserved.
Cleared by the Core by Writing
1. Write 0 has no effect.

DEB0_ERROR

Reset = 0x00000xFFC00A38
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W
Set whenever Core accesses any
reserved External Memory space
and CORE_ERROR bit still set.
Cleared by the Core by Writing 1.
Write 0 has no effect.

CORE_MERROR

R/W
Set whenever an access from
the DEB1 happens on to Exter-
nal Memory which is reserved.
Cleared by the Core by Writing
1. Write 0 has no effect.

DEB1_ERROR

R/W
Set whenever an access from
the DEB2 (USB) happens on to
External Memory which is
reserved. Cleared by the Core
by Writing 1. Write 0 has no
effect.

DEB2_ERROR

R/W
Set whenever the Core
accesses any reserved External
Memory space. Cleared by the
Core by Writing 1. Write 0 has
no effect.

CORE_ERROR

R/W
Set whenever DEB2 (USB) accesses
any reserved External Memory space
and DEB2_ERROR bit still set.
Cleared by the Core by Writing 1.
Write 0 has no effect.

DEB2_MERROR

R/W
Set whenever DEB1 accesses any
reserved External Memory space
and DEB1_ERROR bit still set.
Cleared by the Core by Writing 1.
Write 0 has no effect.

DEB1_MERROR

R/W
Set whenever DEB0 accesses any
reserved External Memory space
and DEB0_ERROR bit still set.
Cleared by the Core by Writing 1.
Write 0 has no effect.

DEB0_MERROR

ADSP-BF54x Blackfin Processor Hardware Reference 6-29

External Bus Interface Unit

Reset Control Register (EBIU_RSTCTL)

Mode of Operation - DDR
The DDR SDRAM controller performs the DDR SDRAM read and write
accesses based on external SDRAM memory requests by the processor core

Figure 6-11. Reset Control Register 0 (EBIU_RSTCTL)

Reset Control Register (EBIU_RSTCTL)

R/W
DDR Controller Soft Reset
Reset control to DDR Controller
0: Reset the DDR Controller
1: Release the reset of DDR Con-
troller.
This bit is directly connected to
DDR Controller. The only way
that the DDR Controller comes
out of Reset State is by setting
this bit to 1. After this bit is set,
the DDR Controller initiates the
Power-up sequence on DDR
memory which takes around 2 us
of time.

DDR_SRESET (DDR Controller
Soft Reset)

Reset = 0x00020xFFC00A3C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x x x x x x x x x x x 0 0 0 1

RO
Self Refresh Ack
Acknowledgement from DDR Controller that
the DDR memory is in Self Refresh Mode
1: Self Refresh Mode
0: Not in Self Refresh Mod.

SRACK (Self Refresh ACK)

SRREQ (Self Refresh Request)

Must set (write 1 to) this bit for
correct operation (Default: 1)

R/W
Self Refresh Request
1: Request the DDR Memory to be
in Self Refresh Mode. The control-
ler starts a self refresh sequence
of DDR. This bit should be set
until the DDR has entered self
refresh state (to be monitored by
checking Self Refresh Ack bit)
and should remain set to 1 as long
as the DDR should remain in self
refresh state. The DDR starts to
exit self refresh mode once this bit
is Cleared to 0.

Reserved. Do not modify

DDR SDRAM Memory Interface

6-30 ADSP-BF54x Blackfin Processor Hardware Reference

EAB, DEB0, DEB1, and DEB2 buses.

The DDR SDRAM timing, such as row and column latency, precharge
timing, and row access time are programmed to default values at system
reset. They also can be programmed during run time if the application
wishes to optimize the system performance. The internal counters in the
DDR controller handle all the timing parameters.

Data between the DDR SDRAM controller and the DDR SDRAM device
transfers at both the rising edge and falling edge of clock. The DDR
SDRAM controller has the built-in data path to handle all data generation
and sampling tasks.

Data Flow for 16-bit DDR SDRAMs

For read access, the DDR SDRAM drives 16 bits of data at both edges of
the SDRAM clock. The DQS strobe is sampled by the DDR controller
data path (synchronized with internal clock) and transferred to the DDR
arbiter as a single 32-bit data. The DDR arbiter transfers the 32-bit data
to the corresponding queues for which the read request command is
accepted. The queue in turn transfers the same on to DMA buses or
unpacks the 32-bit data word into two single half-words (16-bit) or 4 sin-
gle bytes (8-bit), depending upon the DMA data width, before
transferring them on to DMA buses. In the case of 32-bit wide DMA
transfers, no unpacking is done.

In case of a core read request, the DDR arbiter transfers the 32-bit data to
the core.

For write accesses, each DEB queue accepts byte/half-word/word requests
from the corresponding DMA bus and packs into a 32-bit DDR SDRAM
data word. A write request to the DDR arbiter is then made. The DDR
arbiter then accepts a 32-bit write requests from DEB queues and the core
bus, arbitrates based on arbitration priority and transfers one of the write
request on to DDR controller. The DDR controller in turn writes as two
16-bit half-words on both edges of the clock (DQS strobe).

ADSP-BF54x Blackfin Processor Hardware Reference 6-31

External Bus Interface Unit

In case of write requests from the core, write commands are sent directly
to the DDR arbiter without any packing.

The DDR SDRAM controller supports SDRAM devices of sizes of 64,
128, 256, 512 Mbits. For all device sizes it supports configurations of x4,
x8 and x16 data width per SDRAM. The user can use multiple SDRAM
devices to build a SDRAM data width of 16-bits. Both the device size and
SDRAM data word size is programmable by user.

The DDR SDRAM controller supports an open page policy. Open page
policy takes advantage of the fact that once a row is activated, multiple
accesses can be made to the same row (page) without precharging the
bank.

The pipeline feature of the DDR controller and the queuing feature of the
queue manager block consecutive page hit write or consecutive page hit
read to/from DDR without any idle cycles between accesses.

Definition of Standard DDR Terms
The following are definitions used in the rest of this chapter.

Active command. The active command is used to open (or activate) a row
in a particular bank for subsequent access. The value on the DBA1–0 pins
selects DDR’s internal bank, and address provided on DA12–0 pins selects

Figure 6-12. DDR Terms

ROW ACTIVE COMMAND PRECHARGE ROW ACTIVE

tRCD

tRAS

tRC

tRP

DDR SDRAM Memory Interface

6-32 ADSP-BF54x Blackfin Processor Hardware Reference

the row. The open row is also referred to as the open page. This row
(page) remains open for accesses until a precharge command is issued to
that bank. In a particular bank, only one row can be open at any time. A
precharge command must be issued before opening a different row in the
same bank.

Precharge command. The precharge command is used to close (or deacti-
vate) the open row in a particular bank or the open row in all internal
banks. Once a bank is precharged, it is in an idle state and must be acti-
vated prior to any read or write commands being issued to the same bank.

Read command. Precharge not supported

Write command: Precharge not supported

Auto refresh command. The DDR data needs to be refreshed within a
certain interval to prevent loss of data. The DDR controller automatically
issues a auto refresh command to the DDR SDRAM device to refresh its
memory. The DDR controller refreshes one row each time.

The refresh interval is programmable by the user in the control register.
All control registers can be programmed during run time. The refresh
interval field in the control register measures the interval for auto-refresh
in terms of clock cycles. If the cycle time of the system clock is 10ns, the
refresh interval value should be 780 to indicate 7.8 µs refresh interval
time.

The DDR SDRAM controller has an internal counter to count the refresh
period. When the counter expires, the controller precharges all the banks
and then issues an auto-refresh command to the SDRAM, if the SDRAM
is in idle state. If the SDRAM is being accessed for read, write or other
commands, the precharge and auto refresh commands are delayed until
the current command is completed.

If there is a request for an access to DDR SDRAM while auto refresh is in
progress, the same would be delay till auto refresh is completed.

ADSP-BF54x Blackfin Processor Hardware Reference 6-33

External Bus Interface Unit

Enter Self-Refresh Mode. The DDR SDRAM controller enters the
self-refresh mode under user control to minimize power consumption,
When the SRREQ bit is set (in the EBIU_RSTCTL register), it starts the self
refresh sequence. This enables the SDRAM to continue to refresh its
memory array while minimizing power consumption, resulting in no data
loss. Once the SRREQ bit is set, it should not be cleared until DDR
SDRAM enters a self refresh state, indicated by SRACK=1 in the reset con-
trol register. The processor or DMA should not issue any further
commands until the SRACK bit is set.

The DDR controller bring the DDR SDRAM to self-refresh mode by
issuing self-refresh and de-asserts the DCKE signal. The DCKE signal is kept
low until the DDR exits self-refresh mode.

Exit from Self-Refresh Mode. To exit from self-refresh mode, the SRREQ
bit must be de-asserted by user. The controller asserts the DCKE signal and
then issues an auto-refresh after waiting for 16 clock cycles. However,
DDR SDRAM devices are required to wait for 200 clock cycles before
process any read/write request. The DDR SDRAM Controller keeps the
SRACK bit asserted high for 200 cycle after the DCKE is asserted. After the
SRACK is cleared, SDRAM is operational again and user can issue normal
SDRAM requests. So the processor should check for SRACK being cleared
and then issue any commands.

Mode Register Set. The mode register is the DDR’s internal configura-
tion register containing user-defined parameters. The mode register set
command is issued by the DDR controller automatically during power on
initialization and when the user writes to EBIU_DDRCTL2.

DDR SDRAM Memory Interface

6-34 ADSP-BF54x Blackfin Processor Hardware Reference

Extended Mode Register Set. The extended mode register set command is
issued by the DDR controller automatically during power on initialization
and when the user writes to EBIU_DDRCTL3. Extended mode register set and
mode register set differ by encoding of the DBA1–0 signals.

Burst Length. The burst length determines the number of words the
DDR stores or delivers after detecting a single write or read command,
respectively. The burst length is programmed in the SDRAM mode regis-
ter during the power-up sequence. The DDR controller, for the
ADSP-BF54x processor, only supports burst length=2 mode.

Burst Stop Command. The burst stop command is one of several ways to
terminate a burst read or write operation. Since the SDRAM burst length
is always programmed to be 2, the DDR controller does not do any burst
stop command.

Table 6-5. DDR SDRAM Commands

CS# RAS# CAS# WE# BA[1:0] Commands

L L L L 00 Mode register set

L L L L 01 Extended mode register set

H X X X X Command inhibit (NOP)

L L H H X Active

L H L H X Read

L H L L X Write

L L H L X Precharge

L L L H X Refresh

L L L L X Mode register set/extended mode register
set

L H H L X Burst terminate

- - - - L Write enable/output enable

- - - - H Write inhibit/output high -Z

ADSP-BF54x Blackfin Processor Hardware Reference 6-35

External Bus Interface Unit

Burst Type. The burst type determines the access order in which the
DDR delivers burst data after detecting a read command or stores burst
data after detecting a write command. The burst type is programmed in
the DDR mode register during the power-up sequence. Burst type can be
sequential or interleaved. Since the DDR controller only supports burst
length of 2, the burst type does not matter. The ADSP-BF54x processor ‘s
DDR controller always sets the burst type to sequential-accesses-only dur-
ing the SDRAM power-up sequence.

CAS Latency (also tAA, tCAC, tCL). The column address strobe (DCAS)
latency is the delay, in clock cycles, between when the SDRAM detects the
read command and when it provides the data at its output pins. The DCAS
latency is programmed in the SDRAM mode register during the power-up
sequence. The speed grade of the device and the application’s clock fre-
quency determine the value of the DCAS latency. The DDR controller
supports DCAS latency of 1.5, 2 , 2.5, and 3 clocks.

CBR (CAS before RAS) Auto-Refresh. When the DDR controller refresh
counter times out, it precharges all four banks of SDRAM and then issues
an auto-refresh command to them. This causes the SDRAMs to generate
an internal CBR refresh cycle. When the internal refresh completes, all
four DDR internal banks are precharged.

DQM Data I/O Mask Function. The DQM1–0 pins provide a byte masking
capability on 8-bit writes to DDR. The DQM1–0 pins are not used to mask
data on read cycles.

Internal Bank. In a DDR, there are several internal memory banks. These
banks are selected by the bank address (DBA1–0) pins.

Page Hit Detection. The DDR controller stores the row address in the
row address register every time it activates a bank. Internally the DDR
controller has four row address registers, one for each bank. Once a bank
is activated for read or write, the bank remains active. When a new access
request arrives to the DDR SDRAM controller, it automatically checks

DDR SDRAM Memory Interface

6-36 ADSP-BF54x Blackfin Processor Hardware Reference

the internal row address register. If the new access is for the same row
(page hit), the DDR SDRAM controller skips the active command and
directly issues the read/write command to access the DDR.

Maximum Bank Active Time. Each DDR bank can remain in an active
state up to hundreds of microseconds, but it must be precharged again
before the maximum active to precharge time is exceeded. The DDR
SDRAM controller assures that each bank does not exceed the maximum
active-to-precharge time by use of refresh interval. Since the refresh period
is smaller than maximum active–to–precharge time in SDRAMs and all
banks must be idle before a refresh can be issued, no bank will remain in
active state for more than the active-to-pre-charge time. For each refresh
issued, the DDR SDRAM controller checks that all banks are idle. If any
bank is active, the controller issues an all bank precharge command to
DDR before the refresh command.

The user must make sure that the refresh cycle that is programmed in
EBIU_DDRCTL0 is smaller than the active to precharge time.

Page Miss Access. When a DDR SDRAM access generates a page miss
that the bank is precharged (deactivated), the DDR controller starts the
access with the ACTIVE command. If the bank is active but the row
address is a mismatch, the DDR controller first issues a precharge com-
mand. After the precharge-to-active delay, the DDR controller issues the
active command and then read or write command to access the memory.
If the bank is already precharged, the precharge command is skipped.

Register Mode DDR Support. The DDR SDRAM controller supports
DDR SDRAM systems with and without external registers for address and
control signals. Buffered mode is functionally identical to using single dis-
crete SDRAM devices. The control and address signals are buffered on the
board to reduce loading to the SDRAM controller. The REGE bit must be
set to 0 to support discrete and buffered mode.

ADSP-BF54x Blackfin Processor Hardware Reference 6-37

External Bus Interface Unit

Register mode is designed for systems that have external registers for each
control and address signal between the DDR controller and the DDR
SDRAM. The REGE bit is set to 1 to enable the register mode. When regis-
ter mode is enabled, the latency of all accesses is increased by one system
clock cycle.

DDR SDRAM System Organization
DDR devices are available with 4-, 8-, and16-bit data width. To build a
memory system with 16-bit data, multiple x4 or x8 DDR SDRAM devices
can be connected in parallel to provide total data bits. Different data word
sizes do not affect the address bit used to access the SDRAM. The word
size on the interface between the DDR SDRAM controller and the DDR
queue block is always double the width of the data path to the DDR
because the DDR transfers two bits of data per pin per clock cycle.

All the address and control signals, with the exception of DQM1–0, are com-
mon to all SDRAM chips. The DQM1–0 signal must match with the data
bits with which they are associated.

DDR SDRAM Memory Interface

6-38 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-13 shows a DDR system of 16-bit data word made by using
512M bit (64M bytes) SDRAM devices with x8 configuration, producing
128M bytes per external memory bank.

Figure 6-13. 16-bit Data Bus DDR System

DCLK2/DCLK2

DRAS

DBA1–0

DCLKE

DCAS
DWE

DQS1–0

DQ15–0

DQM1–0

DA12–0

DCS1

DCS0

8

8

1

1 1

1

2

2

16

DDR3 DDR2

DDR0DDR1

ADSP-BF54x

64 Mbyte 64 Mbyte

64 Mbyte64 Mbyte

1 1 8

1 1 8

DCLK1/DCLK1

ADSP-BF54x Blackfin Processor Hardware Reference 6-39

External Bus Interface Unit

DDR SDRAM Configurations Supported
The ADSP-BF54x DDR SDRAM controller supports different sizes of
SDRAM chips from 64 Mbit to 512 Mbit. The following tables lists all
the supported sizes.

Table 6-6. Using 64 Mbit (8M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
Needed

Total Size
per
External
Bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 32M
bytes

22:11 10:1 24:23 26:25

16 x8 2 16M
bytes

21:10 9:1 23:22 25:24

16 x16 1 8M bytes 20:9 8:1 22:21 24:23

Table 6-7. Using 128 Mbit (16M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
 Needed

Total Size
per
External
Bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 64M
bytes

23:12 11 :1 25:24 27:26

16 x8 2 32M
bytes

22:11 10:1 24:23 26:25

16 x16 1 16M
bytes

21:10 9:1 23:22 25:24

DDR SDRAM Memory Interface

6-40 ADSP-BF54x Blackfin Processor Hardware Reference

Table 6-8. Using 256 Mbit (32M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
Needed

Total Size
per Exter-
nal bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 128M
bytes

24:12 11:1 26:25 28:27

16 x8 2 64 M
bytes

23:11 10:1 25:24 27:26

16 x16 1 32 M
bytes

22:10 9:1 24:23 26:25

Table 6-9. Using 512 Mbit (64 M bytes) SDRAM Chips

SDRAM
Data
Width

Individual
SDRAM
Width

Total
SDRAM
Needed

Total Size
per Exter-
nal bank

Row
Address
Bits

Column
Address
Bits

Bank
Address
Bits

External
Chip
Selects

16 x4 4 256 M
bytes

25:13 12:1 27:26 29:28

16 x8 2 128 M
bytes

24:12 11:1 26:25 28:27

16 x16 1 64 M
bytes

23:11 10:1 25:24 27:26

ADSP-BF54x Blackfin Processor Hardware Reference 6-41

External Bus Interface Unit

DDR Timing Parameter Definitions
tRAS: ACTIVE-to-PRECHARGE Command Delay. Required delay
between issuing an ACTIVE command and issuing a PRECHARGE com-
mand and between the SELF-REFRESH command and the exit from
SELF-REFRESH.

tRP: PRECHARGE Command Period. Required delay between issuing a
PRECHARGE command and issuing an Activate command, between a
Precharge command and issuing an Auto-Refresh command, and between
a Precharge command and issuing a Self-Refresh command.

tRC: ACTIVE_A-to-ACTIVE_A Delay. Required delay between issuing
successive Activate commands to the same SDRAM internal bank. User
must ensure that tRAS + tRP >= tRC.

tRCD: ACTIVE-to-READ/WRITE Delay. Required delay between an
ACTIVE command and the start of the first READ or WRITE command

tRFC: AUTO-REFRESH Command Period. Required delay between
issuing an AUTO-REFRESH command and an ACTIVE command.

tREFI: Average Refresh Interval. Number of cycles from one REFRESH
command to next REFRESH command.

tWTR: WRITE-to-READ Delay. Number of cycles between last WRITE
data and next READ command.

tWR: Write Recovery Time. The clock cycles needed for the SDRAM to
recover from a WRITE command and be able to accept a PRECHARGE
command.

tMRD: LOAD MODE REGISTER Command Cycle Time. The number
of clock cycles after setting of the Mode Register in the DDR and before
issue of next command.

DDR SDRAM Memory Interface

6-42 ADSP-BF54x Blackfin Processor Hardware Reference

DDR Metrics Control Registers
The EBIU provides a set of registers and counters to monitor performance
and activities on the DDR SDRAM interface and in the DDR arbiter for
accesses to DDR SDRAM memory. There are 23 counters and two con-
trol registers, each 32-bits wide, for this purpose.

The following sections describe the DDR metrics control registers:

• “DDR Metrics Counter Enable (EBIU_DDRMCEN) Register” on
page 6-42

• “DDR Metrics Counter Clear (EBIU_DDRMCCL) Register” on
page 6-45

• “DDR READ Access Count (EBIU_DDRBRCx) Registers” on
page 6-48

• “DDR WRITE Access Count (EBIU_DDRBWCx) Registers” on
page 6-49

• “DDR Page ACTIVATE Count (EBIU_DDRACCT) Register” on
page 6-49

• “DDR TURN AROUND Count (EBIU_DDRTACT) Register”
on page 6-50

• “DDR AUTO-REFRESH Count (EBIU_DDRARCT) Register”
on page 6-50

• “DDR Grant Count (EBIU_DDRGCx) Registers” on page 6-50

DDR Metrics Counter Enable (EBIU_DDRMCEN) Register

This 32-bit SMMR independently controls different DDR metrics
counters. Each bit in this register (except bit[25:24]) enables and disables
the corresponding counter. When a bit is set to 1, the corresponding
counter starts. When a bit is 0, the corresponding counter stops counting

ADSP-BF54x Blackfin Processor Hardware Reference 6-43

External Bus Interface Unit

but is not cleared. The corresponding bit in the DDR metrics counter
clear (EBIU_DDRMCCL) register must be set to clear the counter. Refer to
Table 6-10 and Table 6-11.

Table 6-10. DDR Metrics Counter Enable Register

Address Register Name Size Reset Value

0xFFC00AC0 DDR Metrics Counter
Enable Register

32 0x00000000

Table 6-11. DDR Metrics Counter Enable Register Bits

Name Offset Access Description

Reserved 31:30 RO Reads 0

GCCONTROL
DDR Grant Count Control

25:24 R/W Specifies 4 different schemes for DDR Grants
Count (see Table 6-14 on page 6-52):
00: Core, DEB0, DEB1, DEB2,(Default)
01: Core, DEB0WR, DEB0RD, DEB0PF
10: Core, DEB1WR, DEB1RD, DEB1PF
11: Core, DEB2WR, DEB2RD, DEB2PF

GC3ENABLE
DDR Grant Count Register
3 Enable

23 R/W 1: Enable Grant Count Register 3
0: Disable Grant Count Register 3(Default)

GC2ENABLE
DDR Grant Count Register
2 Enable

22 R/W 1: Enable Grant Count Register 2
0: Disable Grant Count Register2(Default)

GC1ENABLE
DDR Grant Count Register
1 Enable

21 R/W 1: Enable Grant Count Register 1
0: Disable Grant Count Register1(Default)

GC0ENABLE
DDR Grant Count Register
0 Enable

20 R/W 1: Enable Grant Count Register 0
0: Disable Grant Count Register01(Default)

Reserved 19 RO Reads 0

DDR SDRAM Memory Interface

6-44 ADSP-BF54x Blackfin Processor Hardware Reference

ARCENABLE
Total DDR Auto-Refresh
Count Enable

18 R/W 1: Enable Auto-Refresh Count
0: Disable Auto-Refresh Count (Default)

RWTCENABLE
Total DDR R/W Turn
Around Count Enable

17 R/W 1: Enable Turn Around Count
0: Disable Turn Around Count (Default)

ROWACTCENABLE
Total DDR Row
ACTIVATE Count Enable

16 R/W 1: Enable Row Activate Count
0: Disable Row Activate Count (Default)

B7RCENABLE
Bank7 Read Count Enable

15 R/W 1: Enable Read Count to Bank7
0: Disable Read Count to Bank7(Default)

B6RCENABLE
Bank6 Read Count Enable

14 R/W 1: Enable Read Count to Bank6
0: Disable Read Count to Bank6(Default)

B5RCENABLE
Bank5 Read Count Enable

13 R/W 1: Enable Read Count to Bank5
0: Disable Read Count to Bank5(Default)

B4RCENABLE
Bank4 Read Count Enable

12 R/W 1: Enable Read Count to Bank4
0: Disable Read Count to Bank4(Default)

B3RCENABLE
Bank3 Read Count Enable

11 R/W 1: Enable Read Count to Bank3
0: Disable Read Count to Bank3(Default)

B2RCENABLE
Bank2 Read Count Enable

10 R/W 1: Enable Read Count to Bank2
0: Disable Read Count to Bank2(Default)

B1RCENABLE
Bank1 Read Count Enable

9 R/W 1: Enable Read Count to Bank1
0: Disable Read Count to Bank1(Default)

B0RCENABLE
Bank0 Read Count Enable

8 R/W 1: Enable Read Count to Bank0
0: Disable Read Count to Bank0(Default)

B7WCENABLE
Bank7 WRite Count Enable

7 R/W 1: Enable Write Count to Bank7
0: Disable Write Count to Bank7(Default)

B6WCENABLE
Bank6 WRite Count Enable

6 R/W 1: Enable Write Count to Bank6
0: Disable Write Count to Bank6(Default)

B5WCENABLE
Bank5 WRite Count Enable

5 R/W 1: Enable Write Count to Bank5
0: Disable Write Count to Bank5(Default)

Table 6-11. DDR Metrics Counter Enable Register Bits (Cont’d)

ADSP-BF54x Blackfin Processor Hardware Reference 6-45

External Bus Interface Unit

DDR Metrics Counter Clear (EBIU_DDRMCCL) Register

This 32-bit SMMR controls independent clearing of DDR metrics
counters. Each bit in this register, when set to 1, clears the corresponding
counter. Writing 0 in a bit position has no affect on the corresponding
counter. This register is used to clear the corresponding counter(s) before
starting them. Refer to Table 6-12 and Table 6-13.

B4WCENABLE
Bank4 WRite Count Enable

4 R/W 1: Enable Write Count to Bank4
0: Disable Write Count to Bank4(Default)

B3WCENABLE
Bank3 WRite Count Enable

3 R/W 1: Enable Write Count to Bank3
0: Disable Write Count to Bank3(Default)

B2WCENABLE
Bank2 WRite Count Enable

2 R/W 1: Enable Write Count to Bank2
0: Disable Write Count to Bank2(Default)

B1WCENABLE
Bank1 WRite Count Enable

1 R/W 1: Enable Write Count to Bank1
0: Disable Write Count to Bank1(Default)

B0WCENABLE
Bank0 WRite Count Enable

0 R/W 1: Enable Write Count to Bank0
0: Disable Write Count to Bank0(Default)

Table 6-12. DDR Metrics Counter Clear Register

Address Register Name Size Reset Value

0xFFC00AC4 DDR Metrics Counter
Clear Register

32 0x00000000

Table 6-13. DDR Metrics Counter Clear Register Bits

Name Offset Access Description

Reserved 31:24 RO Reads 0s

Table 6-11. DDR Metrics Counter Enable Register Bits (Cont’d)

DDR SDRAM Memory Interface

6-46 ADSP-BF54x Blackfin Processor Hardware Reference

CG3COUNT
Clear DDR Grant Count
Register 3

23 R/W 1: Clear Grant Count Register 3
0: Do not Clear (Default)

CG2COUNT
Clear DDR Grant Count
Register 2

22 R/W 1: Clear Grant Count Register 2
0: Do not Clear (Default)

CG1COUNT
Clear DDR Grant Count
Register 1

21 R/W 1: Clear Grant Count Register 1
0: Do not Clear (Default)

CG0COUNT
Clear DDR Grant Count
Register 0

20 R/W 1: Clear Grant Count Register 0
0: Do not Clear (Default)

Reserved 19 RO Reads 0

CARCOUNT
Clear Total DDR
Auto-Refresh Count

18 R/W 1: Clear Auto-Refresh Count
0: Do not Clear (Default)

CRWTACOUNT
Clear Total DDR R/W Turn
Around Count

17 R/W 1: Clear Turn Around Count
0: (Default)

CRACOUNT
Clear Total DDR Row
ACTIVATE Count

16 R/W 1: Clear Row Activate Count
0: Do not Clear (Default)

CB7RCOUNT
Clear Bank7 Read Count

15 R/W 1: Clear Read Count to Bank7
0: Do not Clear (Default)

CB6RCOUNT
Clear Bank6 Read Count

14 R/W 1: Clear Read Count to Bank6
0: Do not Clear (Default)

CB5RCOUNT
Clear Bank5 Read Count

13 R/W 1: Clear Read Count to Bank5
0: Do not Clear (Default)

CB4RCOUNT
Clear Bank4 Read Count

12 R/W 1: Clear Read Count to Bank4
0: Do not Clear (Default)

CB3RCOUNT
Clear Bank3 Read Count

11 R/W 1: Clear Read Count to Bank3
0: Do not Clear (Default)

Table 6-13. DDR Metrics Counter Clear Register Bits (Cont’d)

ADSP-BF54x Blackfin Processor Hardware Reference 6-47

External Bus Interface Unit

CB2RCOUNT
Clear Bank2 Read Count

10 R/W 1: Clear Read Count to Bank2
0: Do not Clear (Default)

CB1RCOUNT
Clear Bank1 Read Count

9 R/W 1: Clear Read Count to Bank1
0: Do not Clear (Default)

CB0RCOUNT
Clear Bank0 Read Count

8 R/W 1: Clear Read Count to Bank0
0: Do not Clear (Default)

CB7WCOUNT
Clear Bank7 Write Count

7 R/W 1: Clear Write Count to Bank7
0: Do not Clear (Default)

CB6WCOUNT
Clear Bank6 Write Count

6 R/W 1: Clear Write Count to Bank6
0: Do not Clear (Default)

CB5WCOUNT
Clear Bank5 Write Count

5 R/W 1: Clear Write Count to Bank5
0: Do not Clear (Default)

CB4WCOUNT
Clear Bank4 Write Count

4 R/W 1: Clear Write Count to Bank4
0: Do not Clear (Default)

CB3WCOUNT
Clear Bank3 Write Count

3 R/W 1: Clear Write Count to Bank3
0: Do not Clear (Default)

CB2WCOUNT
Clear Bank2 Write Count

2 R/W 1: Clear Write Count to Bank2
0: (Default)

CB1WCOUNT
Clear Bank1 Write Count

1 R/W 1: Clear Write Count to Bank1
0: Do not Clear (Default)

CB0WCOUNT
Clear Bank0 Write Count

0 R/W 1: Clear Write Count to Bank0
0: Do not Clear (Default)

Table 6-13. DDR Metrics Counter Clear Register Bits (Cont’d)

DDR SDRAM Memory Interface

6-48 ADSP-BF54x Blackfin Processor Hardware Reference

DDR READ Access Count (EBIU_DDRBRCx) Registers

Each of the following eight registers counts read accesses to the corre-
sponding DDR SDRAM bank, when enabled. Bank4 through Bank7
imply banks in the second external memory bank.

• DDR Bank0 Read Count (EBIU_DDRBRC0) Register
(Address: 0xFFC0_0A60)

• DDR Bank1 Read Count (EBIU_DDRBRC1) Register
(Address: 0xFFC0_0A64)

• DDR Bank2 Read Count (EBIU_DDRBRC2) Register
(Address: 0xFFC0_0A68)

• DDR Bank3 Read Count (EBIU_DDRBRC3) Register
(Address: 0xFFC0_0A6C)

• DDR Bank4 Read Count (EBIU_DDRBRC4) Register
(Address: 0xFFC0_0A70)

• DDR Bank5 Read Count (EBIU_DDRBRC5) Register
(Address: 0xFFC0_0A74)

• DDR Bank6 Read Count (EBIU_DDRBRC6) Register
(Address: 0xFFC0_0A78)

• DDR Bank7 Read Count (EBIU_DDRBRC7) Register
(Address: 0xFFC0_0A7C)

ADSP-BF54x Blackfin Processor Hardware Reference 6-49

External Bus Interface Unit

DDR WRITE Access Count (EBIU_DDRBWCx) Registers

Each of the following eight registers counts write accesses to the corre-
sponding DDR SDRAM bank, when enabled. Bank4 through Bank7
imply banks in the second external memory bank.

• DDR Bank0 Write Count Register (EBIU_DDRBWC0)
(Address: 0xFFC0_0A80)

• DDR Bank1 Write Count Register (EBIU_DDRBWC1)
(Address: 0xFFC0_0A84)

• DDR Bank2 Write Count Register (EBIU_DDRBWC2)
(Address: 0xFFC0_0A88)

• DDR Bank3 Write Count Register (EBIU_DDRBWC3)
(Address: 0xFFC0_0A8C)

• DDR Bank4 Write Count Register (EBIU_DDRBWC4)
(Address: 0xFFC0_0A90)

• DDR Bank5 Write Count Register (EBIU_DDRBWC5)
(Address: 0xFFC0_0A94)

• DDR Bank6 Write Count Register (EBIU_DDRBWC6)
(Address: 0xFFC0_0A98)

• DDR Bank7 Write Count Register (EBIU_DDRBWC7)
(Address: 0xFFC0_0A9C)

DDR Page ACTIVATE Count (EBIU_DDRACCT) Register

(Address: 0xFFC0_0AA0) This register counts total number of times page
ACTIVATE command was issued to the DDR SDRAM, for all banks.

DDR SDRAM Memory Interface

6-50 ADSP-BF54x Blackfin Processor Hardware Reference

DDR TURN AROUND Count (EBIU_DDRTACT) Register

(Address: 0xFFC0_0AA8) This register counts total number of times there
was a turn around between READ and WRITE or between WRITE and
READ commands, for all banks.

DDR AUTO-REFRESH Count (EBIU_DDRARCT) Register

(Address: 0xFFC0_0AAC) This register counts total number of times
AUTO-REFRESH command was issued, for all banks.

DDR Grant Count (EBIU_DDRGCx) Registers

There are four DDR grant count registers. These counters may be used to
monitor how the four requesters (for example, EAB, DEB0, DEB1,
DEB2) are granted access to the DDR memory:

• DDR Grant Count Register 0 (EBIU_DDRGC0)
(Address: 0xFFC0_0AB0) This register counts, when enabled, total
number of times the EAB was granted access to DDR SDRAM, if
the DDR grant control field of the DDR metrics counter enable
register (bit[25:24]) is set to 0.

• DDR Grant Count Register 1 (EBIU_DDRGC1)
(Address: 0xFFC0_0AB4) This register, when enabled, counts total
number of times the DEB0 was granted access to DDR SDRAM, if
the DDR grant control field of the DDR metrics counter enable
register (bit[25:24]) is set to 0.

ADSP-BF54x Blackfin Processor Hardware Reference 6-51

External Bus Interface Unit

• DDR Grant Count Register 2 (EBIU_DDRGC2)
(Address: 0xFFC0_0AB8) This register counts, when enabled, total
number of times the DEB1 was granted access to DDR SDRAM, if
the DDR grant control field of the DDR metrics counter enable
register (bit[25:24]) is set to 0.

• DDR Grant Count Register 3 (EBIU_DDRGC3)
(Address: 0xFFC0_0ABC) This register counts, when enabled,
total number of times the DEB2 was granted access to DDR
SDRAM, if the DDR grant control field of the DDR metrics
counter enable register (bit[25:24]) is set to 0.

More Grant Counter Options

The grant count registers can be configured to record grants in different
ways, depending upon the DDR grant control field of the DDR metrics
counter enable register (bit[25:24]). Table 6-14 enumerates different ways
user can configure these counters.

DDR Grant Count Control

The DDR grant count control field in the EBIU_DDRMCEN register
(bit[25:24]) helps monitor arbitration activities inside the EBIU’s arbiter.

• When this field is set to 0, the DDR grant count register 0, 1, 2,
and 3 count the number of grants given to EAB, DEB0, DEB1,
and DEB2 buses respectively for access requests to DDR SDRAM.

• When this field is set to 1, DDR grant count register 1, 2, and 3
count the total number of grants given to DEB0, number of grants
given to DEB0 write requests, number of grants given to DEB0
read requests and number of grants given to DEB0 prefetch read
requests, respectively. (grant count register 0 counts the number of
grants given to EAB).

DDR SDRAM Memory Interface

6-52 ADSP-BF54x Blackfin Processor Hardware Reference

• When this field is set to 2, DDR grant count register 1, 2, and 3
count the total number of grants given to DEB1, number of grants
given to DEB1 write requests, number of grants given to DEB0
read requests and number of grants given to DEB1 prefetch read
requests, respectively. (grant count register 0 counts the number of
grants given to EAB).

• When this field is set to 3, DDR grant count register 1, 2, and 3
count the total number of grants given to DEB2, number of grants
given to DEB2 write requests, number of grants given to DEB2
read requests and number of grants given to DEB2 prefetch read
requests, respectively. (grant count register 0 counts the number of
grants given to EAB).

Table 6-14. DDR Grant Control Scheme

DDR Grant
Control
Field[1:0]

DDR Grant
Count Register 1

DDR Grant
Count Register 2

DDR Grant
Count Register 3

DDR Grant
Count Register 4

00 Total EAB
Grants

Total DEB0
Grants

Total DEB1
Grants

Total DEB2
Grants

01 Total EAB
Grants

DEB0 WR
Grants

DEB0 RD
Grants

DEB0 Prefetch
Grants

10 Total EAB
Grants

DEB1 WR
Grants

DEB1 RD
Grants

DEB1 Prefetch
Grants

11 Total EAB
Grants

DEB2 WR
Grants

DEB2 RD
Grants

DEB2 Prefetch
Grants

ADSP-BF54x Blackfin Processor Hardware Reference 6-53

External Bus Interface Unit

Asynchronous Memory Interface
The EBIU interface allows a view into a variety of memory and peripheral
devices, including SRAM, ROM, EPROM, NOR flash memory, and
FPGA/ASIC devices. Four asynchronous memory regions (banks) are sup-
ported. Each has a unique memory select associated with it, shown in
Table 6-15.

Although it is called asynchronous memory interface, each bank in the
asynchronous memory region supports synchronous memory device like
NOR flash memory. Each bank may be individually configured for one of
three operating modes:

• Asynchronous read/write

• Asynchronous page mode read

• Synchronous burst read

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at
64M bytes. Many code and data structures may fit within the confines of a
single memory bank and not all of an enabled memory bank need be
populated.

Table 6-15. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2C00 0000 2FFF FFFF

AMS[2] 2800 0000 2BFF FFFF

AMS[1] 2400 0000 27FF FFFF

AMS[0] 2000 0000 23FF FFFF

Asynchronous Memory Interface

6-54 ADSP-BF54x Blackfin Processor Hardware Reference

Accesses to unpopulated memory of partially populated ASYNC banks do
not result in a bus error and will alias to valid ASYNC addresses.

The asynchronous memory signals are defined in Table 6-16. The timing
of these pins is programmable to allow a flexible interface to devices of dif-
ferent speeds. Certain pins switch between asynchronous and flash
functions depending on the access mode selected for the memory bank
being accessed. For example interfaces, see Chapter 18, “System Design”.

Asynchronous Memory Arbitration
The asynchronous memory arbiter accepts requests from the address reso-
lution block for each of the DEB0, DEB1, DEB2, and the external access
bus. The arbiter in the asynchronous memory controller follows a similar,
to DDR, but simplified arbitration scheme, where DMA reads and writes
have same priority, which, in turn, eliminates the need for “forced write”.
Also, there is no prefetch access in ASYNC.

Table 6-16. Asynchronous Memory Interface Pins

Pin Name Type Asynchronous Function FLASH Function Changes with Mode?

ADDR25 O Address Bus Clock Output (CLK) Yes

ADDR24–1 O Address Bus Address Bus No

DATA15–0 I/O Data Bus Data Bus No

AMSx O Memory Select Chip Enable (CE#) No

ABE0 O Lower Byte Enable -- Yes

ABE1 O Upper Byte Enable -- Yes

AOE O Output Enable Address Valid (ADV#) Yes

ARE O Read Enable Output Enable (OE#) No

AWE O Write Enable Write Enable (WE#) No

ARDY O Ready Wait (WAIT#) No

ADSP-BF54x Blackfin Processor Hardware Reference 6-55

External Bus Interface Unit

Table 6-17 summarizes the arbitration scheme for asynchronous memory
interface. The DEB_ARB_PRIORITY bits of the EBIU_DDRQUE regis-
ter control the arbitration.

The priority schemes described above are from the arbiter’s perspective.
The priority schemes are followed by the arbiter only when they are ready
to arbitrate, not when EBIU receives requests on the DEB or EAB buses.
For example, a DEB bus may indicate Urgent during a request, but if the
urgent signal goes away before the arbiter arbitrates, the DEB request is
treated as regular request. Burst requests, from core, are arbitrated only in
the first beat of a burst; for example, once processor core access is granted,
it is granted for the whole burst.

Table 6-17. ASYNC Arbiter Priority Scheme

DEB_ARB_PRIORITY:
000 (0>1>2)

DEB_ARB_PRIORITY:
001 (1>0>2)

DEB_ARB_PRIORITY:
010 (2>0>1)

Core TESTSET Core TESTSET Core TESTSET

Urgent DMA
DEB0READ/WRITE
DEB1 READ/WRITE
DEB2 READ/WRITE

Urgent DMA
DEB1 READ/WRITE
DEB0 READ/WRITE
DEB2 READ/WRITE

Urgent DMA
DEB2 READ/WRITE
DEB0 READ/WRITE
DEB1 READ/WRITE

Core READ/WRITE Core READ/WRITE Core READ/WRITE

Normal DMA
DEB0 READ/WRITE
DEB1 READ/WRITE
DEB2 READ/WRITE

Normal DMA
DEB1 READ/WRITE
DEB0 READ/WRITE
DEB2 (USB)

READ/WRITE

Normal DMA
DEB2 (USB)

READ/WRITE
DEB0 READ/WRITE
DEB1 READ/WRITE

Asynchronous Memory Interface

6-56 ADSP-BF54x Blackfin Processor Hardware Reference

ASYNC Interface Control Registers
The EBIU contains memory-mapped registers that control the access
characteristics for each asynchronous memory bank. In addition, a status
register is provided to reflect the arbiter status.

Table 6-18. EBIU Memory-Mapped Registers

Name Address Description

EBIU_AMGCTL 0xFFC0 0A00 Asynchronous memory global control register
(on page 6-57)

EBIU_AMBCTL0 0xFFC0 0A04 Asynchronous memory bank control 0 register
(on page 6-58)

EBIU_AMBCTL1 0xFFC0 0A08 Asynchronous memory bank control 1 register
(on page 6-58)

EBIU_AMBSCTL 0xFFC0 0A0C Memory bank select control register
(on page 6-63)

EBIU_ARBSTAT 0xFFC0 0A10 Arbiter status register (on page 6-69)

EBIU_MODE 0xFFC0 0A14 Memory mode control register (on page 6-66)

EBIU_FCTL 0xFFC0 0A18 Flash control register (on page 6-67)

Reserved 0xFFC0 0A1C Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 6-57

External Bus Interface Unit

Asynchronous Memory Global Control Register
(EBIU_AMGCTL)

The EBIU_AMGCTL register configures global aspects of the controller. It
contains bank enables and other information as described in this section.
Do not program this register while the ASYNC is in use (for example,
when code is being executed from this memory space).

The EBIU_AMGCTL register should be the last control register written to
when configuring the processor to access asynchronous memory-mapped
asynchronous devices.

If a bus operation accesses a disabled asynchronous memory bank, the
EBIU responds by acknowledging the transfer and asserting the error sig-
nal on the requesting bus. The error signal propagates back to the
requesting bus master. This generates a hardware exception to the core, if
it is the requester. For DMA-mastered requests, the error is captured in
the respective status register.

Figure 6-14. Asynchronous Memory Global Control (EBIU_AMGCTL)
Register

0 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0] AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1

0 - Disable CLKOUT for asynchronous
memory region accesses
1 - Enable CLKOUT for asynchronous
memory region accesses

Enable asynchronous memory banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2 enabled
1xx - All banks (Bank0, Bank1, Bank2,
Bank3) enabled

Reset = 0x0002

Address = 0xFFC00A00

Asynchronous Memory Interface

6-58 ADSP-BF54x Blackfin Processor Hardware Reference

If a bank is not fully populated with memory, then the memory likely
aliases into multiple address regions within the bank. This aliasing condi-
tion is not detected by the EBIU, and no error response is asserted.

For external devices that need a clock, CLKOUT can be enabled by setting
the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not use CLK-
OUT, set the AMCKEN bit to 0.

Asynchronous Memory Bank Control Registers
(EBIU_AMBCTL0, EBIU_AMBCTL1)

The EBIU asynchronous memory controller has two memory bank con-
trol registers (EBIU_AMBCTL0 and EBIU_AMBCTL1). They contain bits for
counters for setup, strobe, and hold time, bits to determine memory type
and size, and bits to configure use of ARDY. The configuration in these reg-
isters applies in all three operating modes. These registers should not be
programmed while the ASYNC is in use.

The timing characteristics of the ASYNC can be programmed using these
four parameters:

• Setup: the time between the beginning of a memory cycle (AMSx
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low).

• Read Access: the time between read-enable assertion (ARE low) and
deassertion (ARE high).

• Write Access: the time between write-enable assertion (AWE low)
and deassertion (AWE high).

• Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMSx high).

ADSP-BF54x Blackfin Processor Hardware Reference 6-59

External Bus Interface Unit

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

Setup ≥ 1 cycle

Read Access ≥ 1 cycle

Write Access ≥ 1 cycle

Hold ≥ 0 cycle

Asynchronous Memory Interface

6-60 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-15. Asynchronous Memory Bank Control 0 (EBIU_AMBCTL0)
Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank1 hold time (number of cycles between AWE or
ARE deasserted, and AMS1 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank1 setup time (number of cycles after AMS1
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank1 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank1 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank1 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank0 hold time (number of cycles between AWE or
ARE deasserted, and AMS0 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank0 setup time (number of cycles after AMS0
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank0 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank0 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Address = 0xFFC00A04

ADSP-BF54x Blackfin Processor Hardware Reference 6-61

External Bus Interface Unit

Figure 6-16. Asynchronous Memory Bank Control 1 (EBIU_AMBCTL1)
Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank3 hold time (number of cycles between AWE or
ARE deasserted, and AMS3 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank3 setup time (number of cycles after AMS3
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank3 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank3 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank2 hold time (number of cycles between AWE or
ARE deasserted, and AMS2 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank2 setup time (number of cycles after AMS2
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank2 ARDY polarity
0 - Transaction completes if
ARDY sampled low
1 - Transition completes if ARDY
sampled high

Bank2 ARDY enable
0 - Ignore ARDY for accesses to
this memory bank
1 - After access time countdown,
use state of ARDY to determine
completion of access

Address = 0xFFC00A08

Asynchronous Memory Interface

6-62 ADSP-BF54x Blackfin Processor Hardware Reference

Avoiding Bus Contention

Because the three-stateable data bus is shared by multiple devices in a sys-
tem, be careful to avoid contention. Contention causes excessive power
dissipation and can lead to device failure. Contention occurs during the
time one device is getting off the bus and another is getting on. If the first
device is slow to three-state and the second device is quick to drive, the
devices contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different
memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required.

The ARDY input is treated as an asynchronous input, however it must reach
the desired value (either asserted or deasserted) more than one SCLK cycle
before the scheduled rising edge of AWE or ARE. This determines whether
the access is extended or not. Once the transaction is extended by the
assertion of ARDY, the transaction completes in the cycle after ARDY is sam-
pled asserted.

ADSP-BF54x Blackfin Processor Hardware Reference 6-63

External Bus Interface Unit

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding Additional Wait States” on page 6-79.

When using flash memory, the WAIT input should be connected to ARDY.

Memory Bank Select Control Register (EBIU_MBSCTL)

External FIFO devices often do not have a separate chip select pin. As a
result, for a read, the FIFO’s output enable (OE) pin must be connected
the OR (negative AND) of the AMS and the ARE. Similarly, the write case
requires an OR between AMS and AWE. The Blackfin processor provides this
function in the EBIU so that an external OR gate is not required. The
appropriate AMS function can be selected for each memory bank region in
the EBIU_MBSCTL register.

Figure 6-17. Memory Bank Select Control Register (EBIU_MBSCTL)

Memory Bank Select Control Register (EBIU_MBSCTL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AMSB1CTL[1:0]

AMSB0CTL[1:0]

00 - AMS_B[1]
01 - AMS_B[1] or’ed with ARE_B
10 - AMS_B[1] or’ed with AOE_B
11 - AMS_B[1] or’ed with AWE_B

Address 0xFFC0 0A0C

00 - AMS_B[0]
01 - AMS_B[0] or’ed with ARE_B
10 - AMS_B[0] or’ed with AOE_B
11 - AMS_B[0] or’ed with AWE_B

AMSB3CTL[1:0]

00 - AMS_B[3]
01 - AMS_B[3] or’ed with ARE_B
10 - AMS_B[3] or’ed with AOE_B
11 - AMS_B[3] or’ed with AWE_B

AMSB2CTL[1:0]

00 - AMS_B[2]
01 - AMS_B[2] or’ed with ARE_B
10 - AMS_B[2] or’ed with AOE_B
11 - AMS_B[2] or’ed with AWE_B

Asynchronous Memory Interface

6-64 ADSP-BF54x Blackfin Processor Hardware Reference

Flash Memory Bank Control Registers (EBIU_FCTL, EBIU_MODE)

The asynchronous memory controller (ASYNC) also has two flash mem-
ory bank control registers.

• “Flash Memory Bank Control (EBIU_FCTL) Register” on
page 6-67

• “Memory Mode Control (EBIU_MODE) Register” on page 6-66

They contain bits for mode selection, page access configuration, and syn-
chronous access configuration. These registers should not be programmed
while the ASYNC is in use.

Booting From Page Mode or Synchronous Flash

The EBIU resets to asynchronous mode access. This allows slow asynchro-
nous access to any device during booting without configuration of the
EBIU control registers. Synchronous burst mode and asynchronous page
mode flash devices power up in asynchronous access mode and thus sup-
port an initial access of this type. Once configuration information is read
from the external device, the boot code may select a higher performance
operating mode.

Access Mode Selection

The EBIU may be configured for standard asynchronous mode access,
asynchronous flash mode, asynchronous page mode access, or synchro-
nous burst access. Asynchronous mode access should be used for most
devices other than flash. Burst mode and page mode should only be used
for read accesses. Flash mode (MODE=01) must be used for all writes to flash
devices. The burst mode and page mode controls have no effect unless the
corresponding access mode is selected.

ADSP-BF54x Blackfin Processor Hardware Reference 6-65

External Bus Interface Unit

Pin functionality and supported device width change with mode, as
described in Table 6-19.

Table 6-19. EBIU Pin Configuration by Mode

Mode AOE ADDR[25] Device Width

Asynchronous AOE ADDR[25] 8 or 16 bit

Asynchronous flash ADV ADDR[25] 16 bit

Asynchronous page ADV ADDR[25] 16 bit

Synchronous burst ADV CLK 16 bit

Asynchronous Memory Interface

6-66 ADSP-BF54x Blackfin Processor Hardware Reference

Memory Mode Control (EBIU_MODE) Register

Asynchronous Flash Mode

When the access selected mode is asynchronous flash (MODE=01), external
bank accesses operate exactly the same as in standard asynchronous mode,
except for the pin configuration. This mode should be used when access-
ing burst devices in non-read array modes.

Figure 6-18. Memory Mode Control (EBIU_MODE) Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Memory Mode Control Register (EBIU_MODE)

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B0MODE[1:0]
Bank0 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

Address = 0xFFC00A14

B1MODE[1:0]
Bank1 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

B3MODE[1:0]
Bank3 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

B2MODE[1:0]
Bank2 Access Mode
00 - Asynchronous Mode
01 - Asynchronous Flash Mode
10 - Asynchronous Page Mode
11 - Synchronous (Burst) Mode

ADSP-BF54x Blackfin Processor Hardware Reference 6-67

External Bus Interface Unit

Flash Memory Bank Control (EBIU_FCTL) Register

Asynchronous Page Mode

When asynchronous page mode access is selected (MODE=10), asynchro-
nous page reads are enabled. Page sizes of 4 or 8 words are supported.
When performing a page mode read, the first access in the page proceeds
according to the read access time configured in EBIU_AMBCTLx. This opens
the page. Subsequent reads in that page extend the strobe time by one
SCLK plus the number of page wait states. Page mode access is only sup-
ported for back-to-back accesses, such as cache line fills (16 words), 64-bit
instruction reads (4 words) and 32-bit DMA reads (2 words).

Synchronous Burst Mode

When synchronous mode access is selected (MODE=11), synchronous reads
are enabled. The burst clock frequency can be configured for SCLK/2,
SCLK/3 or SCLK/4.

Figure 6-19. Flash Memory Bank Control (EBIU_FCTL) Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Flash Memory Bank Control Register (EBIU_FCTL)

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0006

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 1

BCLK[1:0]PGWS[2:0]
Page Wait States
000 to 100 - 0 to 4 cycles

Burst Clock Frequency
00 - Reserved
01 - SCLK/2
10 - SCLK/3
11 - SCLK/4

Address = 0xFFC00A18

TESTSETLOCK
0 - Normal Operation
1 - Only the core can

access Asynchronous
Memory through ASYNC

PGSZ
Page Size; set to match size of memory device
0 - 4 words
1 - 8 words

Asynchronous Memory Interface

6-68 ADSP-BF54x Blackfin Processor Hardware Reference

This is the frequency of the clock output and determines the frequency of
latching data for subsequent beats of a burst. It does not affect any of the
other timing parameters (which are still determined by EBIU_AMBCTLx).

During the setup time of an access, ADV is asserted and the burst clock
begins running. The flash device must be configured to latch the address
on the rising edge of the clock. ADV is asserted for the entire setup time.
The first rising edge of CLK occurs one SCLK cycle before setup ends.

The setup time must be configured appropriately with respect to
the SCLK-to-CLK (burst clock) ratio, as follows:

• SCLK : CLK : 4 :1 => Setup time = 3 SCLK cycles

• SCLK : CLK : 3 :1 => Setup time = 2 SCLK cycles

• A minimum of 2 SCLK cycles must be programmed regardless of
SCLK to CLK ratio.

Once the address is latched, the initial burst access occurs based on the
read access timing for that bank. The strobe time is then extended by a
burst clock duration for each subsequent beat of the burst. Any access in
the burst may be extended by connecting the flash WAIT to ARDY. The flash
device must be configured to deassert ARDY at the same time that data is
valid. Depending on the flash behavior, it may be necessary to disable the
ARDY input before asynchronous read or write accesses.

The synchronous read may be burst or single mode, depending on the
type of transfer requested. Burst access is only supported for back-to-back
reads, such as cache line fills (16 words), 64-bit instruction reads (4
words), and 32-bit DMA reads (2 words). Burst access is not supported
for 8-bit accesses. To support any of these burst types, the flash device
must be configured for 16-word wrapping burst mode.

When programming the ASYNC, before setting the ASYNC to synchro-
nous burst mode (MODE=11), it is necessary to do SSYNC instruction and
then wait for (BxST + BxWAT + BxHT) SCLK cycles, where x is the bank

ADSP-BF54x Blackfin Processor Hardware Reference 6-69

External Bus Interface Unit

being accessed and the terms are the configuration values from
EBIU_AMBCTL0 or EBIU_AMBCTL1. This is to prevent the potential conten-
tion of previous FLASH device operation and the upcoming mode change.

EBIU Arbitration Status Register (EBIU_ARBSTAT)

When the external flash device is put in non-read array mode for program-
ming, erasing, or checking status, accesses to memory locations in the
flash do not return the stored data. As a result, an arbitration locking
mechanism is provided to allow the core to prevent DMA access during
these operations.

Specifically, the EBIU may be configured to only allow DSP core accesses
to the asynchronous memory banks, by setting the TESTSETLOCK bit in
EBIU_FCTL. Once this bit is set, only the core can win arbitration for future
accesses. Depending on the speed of any outstanding accesses, it may take
many cycles before the arbitration lock takes effect. The EBIU_ARBSTAT
register contains a status bit to indicate when the arbiter is locked. Once
the arbiter is locked, any DMA access to the asynchronous memory banks
is stalled until the TESTSETLOCK bit is cleared.

Asynchronous Memory Interface

6-70 ADSP-BF54x Blackfin Processor Hardware Reference

It is recommended that software manage flash memory programming and
DMA activities to prevent stalling of the DMA with arbiter locked status.

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the ASYNC,
whether initiation is from the core or from DMA, and the sequence of
transactions (read followed by read, read followed by write, and others).

Figure 6-20. Arbiter Status Register (EBIU_ARBSTAT)

Arbiter Status Register (EBIU_ARBSTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARBSTAT

Address 0xFFC0 0A10

0 - Arbiter not locked
1 - Arbiter locked
BGSTAT
0 - External bus not granted
1 - External bus granted

ADSP-BF54x Blackfin Processor Hardware Reference 6-71

External Bus Interface Unit

Asynchronous Accesses by Core Instructions

Some asynchronous memory accesses are caused by core instructions of
the type:

R0.L = W[P0++] ; /* Read from Asynchronous Memory, where P0

points to a location in Asynchronous Memory */

or:

W[P0++] = R0.L ; /* Write to Asynchronous Memory */

Asynchronous Reads

Figure 6-21 shows two core-initiated asynchronous read bus cycles to the
same bank, with timing programmed with setup = 1 cycle, read access = 3
cycles, hold = 2 cycles, and transition time = 1 cycle.

Asynchronous read bus cycles proceed as:

• At the start of the setup period, AMSx, the address bus, and ABE1–0
become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle,
ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of CLKOUT. The ARE pin deasserts after this rising edge.

• At the end of the hold period, AOE and AMSx deassert.

Asynchronous Memory Interface

6-72 ADSP-BF54x Blackfin Processor Hardware Reference

Unless another read of the same memory bank is queued internally, the
ASYNC appends the programmed number of memory transition time
cycles.

Figure 6-21. Core-Initiated Asynchronous Read Bus Cycles

Setup
3 cycles

Read Access
2 cycles

TimeHold
1 cycle

 Transition

1 cycle
Setup

3 cycles
Read Access

2 cycles
TimeHold

1 cycle

 Transition

1 cycle

AOE

DATA [15:0]

ADDR[19:1]

ABE[1:0]

AMS [x]

CLKOUT

ARE

ADSP-BF54x Blackfin Processor Hardware Reference 6-73

External Bus Interface Unit

Asynchronous Writes

Figure 6-22 shows two core-initiated asynchronous write bus cycles to the
same bank, with timing programmed with setup = 1 cycle, write access = 2
cycles, hold = 2 cycles, and transition time = 1 cycle.

Figure 6-22. Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

2 cycles
Hold

1 cycle
Setup

2 cycles

Write
Access

2 cycles
Hold

1 cycle

AWE

AOE

DATA [15:0]

ADDR[19:1]

ABE[1:0]

AMS [x]

CLKOUT

Asynchronous Memory Interface

6-74 ADSP-BF54x Blackfin Processor Hardware Reference

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx remains low for the next setup period
of the next access.

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx is still asserted. The address
and data buses and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx deasserts.

Figure 6-23 shows two higher-speed asynchronous write bus cycles to the
same bank, with timing programmed with setup = 1 cycle, write access = 2
cycles, hold = 0 cycles, and transition time = 1 cycle.

ADSP-BF54x Blackfin Processor Hardware Reference 6-75

External Bus Interface Unit

Figure 6-23. High Speed Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

1 cycle
Setup

2 cycles

Write
Access

1 cycle

AWE

AOE

DATA [15:0]

ADDR [19:1]

ABE[1:0]

AMS [x]

CLKOUT

Asynchronous Memory Interface

6-76 ADSP-BF54x Blackfin Processor Hardware Reference

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx deasserts.

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMSx deasserts.

Asynchronous Writes Followed by Reads

Figure 6-24 shows an asynchronous write bus cycle followed by two asyn-
chronous read cycles to the same bank, with timing programmed with
setup = 1 cycle, write access = 2 cycles, read access = 2 cycles, hold = 2
cycles, and transition time = 1 cycle.

ADSP-BF54x Blackfin Processor Hardware Reference 6-77

External Bus Interface Unit

Figure 6-24. Core-Initiated Write and Read Bus Cycles

Setup
2 cycles

Write Access
2 cycles
Hold

1 cycle 1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

AWE

AOE

DATA [15:0]

ADDR [19:1]

ABE[1:0]

AMS[x]

CLKOUT

ARE

Asynchronous Memory Interface

6-78 ADSP-BF54x Blackfin Processor Hardware Reference

The asynchronous write bus cycles proceed as:

• At the start of the setup period, AMSx, the address bus, data buses,
and ABE1–0 become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts and AMSx
remains low for the setup period of the next access.

The first asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMSx is still asserted. The address
bus, and ABE[1:0] become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMSx deassert.

The second asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMSx, the address bus, and ABE1–0
become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts again.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMSx deassert.

Unless another read of the same memory bank is queued internally, the
ASYNC appends the programmed number of memory transition time
cycles.

ADSP-BF54x Blackfin Processor Hardware Reference 6-79

External Bus Interface Unit

Adding Additional Wait States

The ARDY pin is used to insert extra wait states. An example of this behav-
ior is shown in Figure 6-25, where setup = 2 cycles, read access = 4 cycles,
and hold = 1 cycle. Note the read access period must be programmed to a
minimum of two cycles to make use of the ARDY input.

Asynchronous Memory Interface

6-80 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 6-25. Inserting Wait States Using ARDY

SETUP

2

PROGRAMMED READ ACCESS

4

ACCESS EXTENDED

3

HOLD

1

CLKOUT

AMSx

ABE[1:0]

ADDR[19:1]

DATA[15:0}

AOE

ARE

AWE

BE

DATA
LATCHEDREADY SAMPLED

ARDY

ADDRESS

READ D

ADSP-BF54x Blackfin Processor Hardware Reference 6-81

External Bus Interface Unit

Asynchronous Flash Mode Writes and Reads

Figure 6-26 shows an asynchronous flash write bus cycle followed by a
read bus cycle to the same bank. Timing is programmed with setup = 1
cycle, write access = 2 cycles, read access = 2 cycles, hold =2 cycles, and
transition = 1 cycle. The bus cycles are identical to the asynchronous
mode case, except for the behavior of AOE. In this case, AOE is used to indi-
cate a valid address (ADV).

Figure 6-26. Asynchronous Flash Write and Read Bus Cycle

CLKOUT

AMS[x}

AWE

ARE

ADV

ADDR[25:1]

DATA[15:0]

SETUP
1 CYCLE

WRITE ACCESS HOLD HOLDREAD ACCESSSETUP
2 CYCLES 2 CYCLES 1 CYCLE 2 CYCLES 2 CYCLES

TRANS.
1 CYCLE

Asynchronous Memory Interface

6-82 ADSP-BF54x Blackfin Processor Hardware Reference

Asynchronous Page Mode Reads

Figure 6-27 shows an asynchronous page read bus cycle. Timing is pro-
grammed with setup = 1 cycle, read access = 3 cycles, hold =1 cycle, and
transition = 1 cycle. One wait state (as specified in the PGWS field of the
EBIU_FCTL register) is added to each access in the open page. AOE is used to
indicate a valid address (ADV).

Note: Asynchronous Page Mode is only valid for read operations.

Figure 6-27. Asynchronous Page Mode Read Bus Cycle

CLKOUT

AMS[X}

AWE

ARE

ADV

ADDR[25:1]

DATA[15:0]

SETUP

1 CYCLE
READ ACCESS PAGE TRANS.HOLDPAGE

3 CYCLES 2 CYCLES 2 CYCLES 1 CYCLE 1 CYCLE

DATA
LATCHED

DATA
LATCHED

DATA
LATCHED

ADSP-BF54x Blackfin Processor Hardware Reference 6-83

External Bus Interface Unit

Synchronous Burst Mode Read

Figure 6-28 shows a synchronous burst read bus cycle. Timing is pro-
grammed with setup = 3 cycles, read access = 2 cycles, hold = 1 cycle, and
transition = 1 cycle. The burst clock frequency is SCLK/2. The initial
burst access is extended using ARDY and the subsequent beats of the burst
are latched on every rising CLK edge. AOE is used to indicate a valid
address (ADV) and ADDR25 (pin ADDR25) is used as the burst clock (CLK).

Figure 6-28. Synchronous Burst Mode Read Bus Cycle

CLKOUT

AMS[x}

AWE

ARE

ADV

ADDR[24:1]

DATA[15:0]

SETUP

2 CYCLES

READ ACCESS TRANS.HOLDACCESS EXTENDED

3 CYCLES 7 CYCLES 1 CYCLE 1 CYCLE

DATA
LATCHED

DATA
LATCHED

DATA
LATCHED

CLK

ARDY

Asynchronous Memory Interface

6-84 ADSP-BF54x Blackfin Processor Hardware Reference

Note: Synchronous mode is only valid for read operations, but does sup-
port both burst and non-burst operations.

Bus Request and Grant
The processor can relinquish control of the data and address buses to an
external device. The processor three-states its memory interface to allow
an external controller to access either external asynchronous or synchro-
nous memory parts.

When the external device requires access to the bus, it asserts the bus
request (BR) signal. The BR signal is arbitrated with NFC, ATAPI, and
ASYNC requests. If no internal request is pending, the external bus
request is granted. The processor initiates a bus grant by:

• Three-stating the data and address buses and the asynchronous
memory control signals. The synchronous memory control signals
can optionally be three-stated.

• Asserting the bus grant (BG) signal.

The processor may halt program execution if the bus is granted to an
external device and an instruction fetch or data read/write request is made
to external memory. When the external device releases BR, the processor
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external
port access, but is held off because the bus was previously granted. When
the bus is granted, the BGSTAT bit in the EBIU_ARBSTAT register is set. This
bit can be used by the processor to check the bus status to avoid initiating
a transaction that would be delayed by the external bus grant.

ADSP-BF54x Blackfin Processor Hardware Reference 7-1

7 PIXEL COMPOSITOR

This chapter describes the pixel compositor (PIXC) and includes the fol-
lowing sections:

• “Overview” on page 7-2

• “Interface Overview” on page 7-3

• “Description of Operation” on page 7-5

• “Functional Description” on page 7-10

• “Programming Model” on page 7-35

• “PIXC Registers” on page 7-35

• “Programming Examples” on page 7-47

Overview

7-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview
The pixel compositor (PIXC) for the ADSP-BF54x processor provides
data overlay, transparent color, and color space conversion support for
active (TFT) flat-panel digital color/monochrome LCD displays or analog
NTSC/PAL video output. The color space conversion and text/graphic
overlay capabilities, along with visual effect controls, such as transparency
control, shorten the processing time on an image data stream, reduce
power consumption and save system board space by removing the need for
external glue logic.

The PIXC DMA channels should be configured for 32-bit transfers
in order to ensure correct operation.

Features
The PIXC includes these features:

• Hardware-based graphics and text overlays

• YUV 4:2:2 or RGB888 input data formats

• Programmable color space conversion on the main image or the
overlay image data path

• Overlay content transparency ratio control

• Transparent color, specified in the desired color space (RGB or
YUV)

• Two DMA input channels and one DMA output channel

• Image data stream outputs for active-matrix TFT LCD panels or
analog NTSC/PAL displays

ADSP-BF54x Blackfin Processor Hardware Reference 7-3

Pixel Compositor

Interface Overview
A top-level micro architecture diagram of the PIXC appears in Figure 7-1.
As shown in Figure 7-1, the PIXC requires three DMA channels: one for
the image data, one for the overlay data and one for storing the results
back to L3, L2 or L1 memory. Frame C can also be fed back to the PIXC
for multiple stages of processing, taking the place of frame A when this
happens. The EPPI can then format the data for an LCD (for example,
RGB888 to RGB666 or RGB565).

Only one color conversion or chroma resampling takes place for each
given use of the PIXC block. The user can assume that a color space con-
verter is present in each of the three places shown above. In reality, any
input format (for both image and overlay) and any output format can be
supported using a single appropriately-positioned color space converter.

Figure 7-1. Pixel Compositor Top-Level Diagram

A RGB/YUV

TV

LCD

MEMORY

422/444

444/422

YUV/RGB

RGB/YUV

422/444

444/422

YUV/RGB

RGB/YUV

422/444

444/422

YUV/RGB

B

MAIN IMAGE
RGB/YUV

OVERLAY
RGB/YUV

C

Interface Overview

7-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 7-2 shows a more detailed functional view of the PIXC block and
shows the relevant connections to the DAB and system interrupt control-
ler (SIC).

Figure 7-2. Pixel Compositor Functional Block Diagram

FIFO

32

8

FIFO

32

8

DMA CONTR.
(DMAC 1)

SIC
CONTROLLER

FIFO
4

32

REQUEST

GRANT

PAB

DAB

32

32

PIXC
INTERRUPT

DMA15_IMAGE
DEFAULT

DMA16_OVERLAY
DEFAULT

DMA17_RESULT
DEFAULT

1

SCLK

SCLK

32

32

32

16

SCLK

BYPASS (OPTIONAL)

PIXC_CTL

PIXC_INTRSTAT

PIXC_XHSTART

PIXC_XHEND

PIXC_XVSTART

PIXC_XVEND

RGB/YUV 444/422

YUV/RGB422/444

BYPASS (OPTIONAL)
FIFO

32

8

PIXC_RYCON

PIXC_GUCON
PIXC_PPL

PIXC_CCBIAS

PIXC_TC

RGB/YUV 444/422

YUV/RGB422/444

RGB/YUV 444/422

YUV/RGB422/444

BYPASS (OPTIONAL)

PIXC_LFP

FIFO
4

FIFO
4

PIXEL COMPOSITOR
(PIXC)

ADSP-BF54x Blackfin Processor Hardware Reference 7-5

Pixel Compositor

Description of Operation
This section describes the operation of the pixel compositor (PIXC).

General Description
The PIXC is used to combine and format the data streams required by a
wide variety of digital LCD panels and NTSC/PAL analog video encoders.
It provides all the control needed to allow two data streams from two sep-
arate data buffers to be combined and converted into appropriate formats
for both LCD panels and video output displays. The main image buffer
provides the basic background image presented in the data stream. The
overlay image buffer allows the user to add foreground text and graphics
on top of the main image data stream. This feature is useful for printing
additional graphical or textual information on the screen, such as symbols
or a menu, while showing the main image in the background.

Overlay is an option and can be enabled or disabled. If it is disabled, the
blender/compositor is bypassed and the data stream from the main image
buffer goes directly to memory, with optional color space conversion.

Transparent color is just a special case of blending, masking off the blend
operation on a pixel-by-pixel basis. In other words, if the overlay region
consists of sub-regions that need to be transparent, this can be done by
having these sub-regions in any particular color convenient to the pro-
grammer, and enabling the transparent color feature of the PIXC. Then, if
the color data for a given overlay pixel matches the specified transparent
color, the overlay function is masked for that pixel and its data is taken
solely from the main image buffer, which is stored in memory in either
YUV 4:2:2 interleaved format or RGB888 format.

Description of Operation

7-6 ADSP-BF54x Blackfin Processor Hardware Reference

Regardless of the data format or buffer structure, each color element is 8
bits wide. If overlay is enabled, a graphics/text overlay data buffer is
defined in memory. The color space converter can switch positions among
any of the three locations shown in Figure 7-1 on page 7-3; it can be in
the image data path, the overlay data path, or after the blender. The exact
position of the color space converter depends on the input and output
data formats, which are discussed in more detail in the following sections.

Two dedicated DMA channels, with 32-bit bus widths, are used to trans-
fer data from the main image data buffer and the overlay image data buffer
into two separate PIXC FIFO buffers, where the data is then unpacked.
Each of these FIFO buffers is 32 bits wide and contains 8 entries. The
overlay data buffer can not be larger than the image buffer, and the over-
lay can be set to affect only selected portions of the main image. The
position of the overlay in the main image is controlled by mem-
ory-mapped registers (MMRs) in the PIXC. In the blender, (8-bit) pixel
elements from two buffers are mixed together. One dedicated DMA chan-
nel transfers the combined pixel data back to memory.

Since the end display may be a TV (NTSC/PAL) or an LCD panel, and
since the image/overlay input buffers may be in either RGB888 or YUV
4:2:2 format, a color space conversion may be needed. The color space
conversion is selected according to the input data stream format of the
PIXC. A YUV-to-RGB format conversion is necessary if the end display is
an LCD and if either of the PIXC input data streams is in YUV 4:2:2 for-
mat. Similarly, an RGB-to-YUV format conversion is necessary if the end
display is a TV and if either of the PIXC input data streams is in RGB888
format.

If the final display device is an LCD, the output RGB data stream is
always be packed in RGB 8-bit serial format when transferring back to
memory. Similarly, if the final display device is a TV, the YUV data
stream is always packed in YUV 4:2:2 interleaved format when transfer-
ring back to memory.

ADSP-BF54x Blackfin Processor Hardware Reference 7-7

Pixel Compositor

Data Buffer Formats
For the implementation of overlay, the PIXC needs two input data
streams from two separate data buffers, a main image buffer and an over-
lay buffer. The input data in these buffers must be in YUV 4:2:2 or
RGB888 format (the main image data and the overlay data can be in dif-
ferent formats). The output data is also in one of these two formats,
depending on the output display device being used.

Operation in YUV 4:2:2 Format

Each Y/U/V component is stored in 8 bits of data. The PIXC only accepts
a YUV 4:2:2 interleaved format, in the following sequence:

V1, Y1, U1, Y2, V3, Y3, U3, Y4 …

(Two components with the same suffix number (for example, V1 and U1)
implies they are extracted from the same pixel.)

It is the user’s responsibility to ensure that the YUV source data to the
PIXC is in the correct interleaved format. Therefore, data preprocessing
may be necessary in order to meet this requirement.

Figure 7-3 and Figure 7-4 illustrate correct PIXC input buffer structure
and data stream format.

Figure 7-3. YUV 4:2:2 Data in an Interleaved Data Buffer Structure

V2 1 Y2 1 U2 1 Y2 2 U2 639 Y2 640

V1 1 Y1 1 U1 1 Y1 2 U1 639 Y1 640

V480 1 Y480 1 U480 1 Y480 2 U480 639 Y480 640

ADDR_BASE + 0

ADDR_BASE + 1280

ADDR_BASE + (479 x 1280)

Description of Operation

7-8 ADSP-BF54x Blackfin Processor Hardware Reference

The number of pixels per line in YUV mode must be an even number (for
both input buffers), and the first chroma component in each line must be
a V component.

Operation in RGB888 Format

Each R/G/B component is stored in 8 bits of data. Figure 7-5 and
Figure 7-6 illustrate correct PIXC input buffer structure and data stream
format.

Figure 7-4. YUV 4:2:2 Expected Data Stream Format to PIXC

Figure 7-5. RGB888 Data Expected Data Buffer Structure

Y2 U1 Y1 V1

Y4 U3 Y3 V3

B31 B0B16 B15

...

...

R2 1 R2 1 B2 1 B2 2 G2 640 B2 640

R1 1 G1 1 B1 1 R1 2 G1 640 B1 640

R480 1 G480 1 B480 1 R480 2 G480 640 B480 640

ADDR_BASE + 0

ADDR_BASE + 1920

ADDR_BASE + (479 x 1920)

ADSP-BF54x Blackfin Processor Hardware Reference 7-9

Pixel Compositor

For operation in RGB format, the total number of pixels in both input
buffers must be a multiple of 4, so that the image boundary aligns with a
32-bit DMA word boundary.

DMA Channels
Three peripheral DMA channels can be assigned to the PIXC, as follows:

• A first input DMA channel is used for transferring either a part of
the image or the entire main image data to the PIXC from memory
(L3, L2, or L1).

• A second input DMA channel is used for transferring the overlay
image to the PIXC from memory (L3, L2, or L1).

• An output DMA channel is used for transferring the blended data
to memory (L3, L2 or L1).

For more information, see “Direct Memory Access” on page 5-1.

The two input DMA channels take the image data and overlay graph-
ics/text data from their buffers into two separate FIFOs.

Figure 7-6. RGB888 Expected Data Stream Format to PIXC

R12 B11 G11 R11

G13 R13 B12 G12

B31 B0B16 B15

...

...

Functional Description

7-10 ADSP-BF54x Blackfin Processor Hardware Reference

Whenever the PIXC is enabled, at least two DMA channels should be
enabled and configured appropriately: the image DMA channel and the
output DMA channel. Furthermore, when the overlay function of PIXC is
enabled, the overlay DMA channel should be enabled and configured as
well.

Functional Description
The PIXC implements the following main functions:

• Graphics/text overlay (including video overlay for small frame
sizes)

• Transparency control (alpha blending) of the overlay pixel data

• Transparent color (chroma keying) of the overlay stream

• Color space conversion for LCD panels or NTSC/PAL displays

Data Overlay
Overlay is an optional function, so it can be enabled or disabled. If it is
disabled, all overlay functionality is bypassed, and a single data stream
from the main image data buffer goes directly to the image output buffer,
after an optional format conversion. If it is enabled, the blender combines
the pixel data from the two image input buffers.

The overlay image is located in a user-defined rectangle within the main
image and, in most cases, the overlay image is smaller than the main
image. Figure 7-7 illustrates an example of the main and overlay image
regions on a screen, where a foreground triangle overlay sits on top of the
main image in the background. Although the figure does not show this
explicitly, (H-Start, V-Start) can equal (0,0).

In certain situations, it may be beneficial to only DMA the region of the
main image that is affected by the overlay instead of bringing in the entire
main image. For example, in a situation where the intent is to overlay an

ADSP-BF54x Blackfin Processor Hardware Reference 7-11

Pixel Compositor

image over the main image and to store the result back over the main
image, one could setup a 2D-DMA to only bring in the area of the main
image that is affected by the overlay. This may reduce the amount of
DMA activity thus potentially improving system performance.

There are two steps to implement the overlay process:

1. Defining an overlay buffer

The user must define a rectangular region that covers the whole
overlay region no matter what shape the overlay content is. The
overlay buffer holds the pixel data in the entire rectangular overlay
region, which can include some areas where there is no overlay. In
memory, these areas have to be filled with the transparent color
value. (See “Transparency Control” on page 7-16.)

Figure 7-7. Main Image and Overlay Image Region

H-START

MAIN IMAGE

OVERLAY H-END

V-START V-END

Functional Description

7-12 ADSP-BF54x Blackfin Processor Hardware Reference

2. Configuring the overlay DMA

The user must define a single DMA descriptor for the overlay data
transfer. The user must also fill the overlay coordinate registers in
the PIXC with appropriate values. The overlay coordinate register
set consists of two pairs of registers that specify the top left corner
(H-Start, V-Start) and bottom right corner (H-End, V-End) of the
overlay, along with a 4-bit register that specifies the α (transpar-
ency ratio) value. Each overlay is thus completely specified by a set
of five registers. The widths and addresses of these registers are
given in “PIXC Registers” on page 7-35.

There is a set of an additional five such registers that can be used to specify
a second overlay region, so that two separate overlay blocks can be defined
simultaneously. Furthermore, either or both of these overlay coordinate
register sets can be enabled or disabled at one time, since separate enable
bits (OVR_A_EN and OVR_B_EN) exist in the PIXC control register for each of
the overlay register sets.

If there are more than two overlay blocks needed in a given application,
the two sets of overlay registers must be managed by the user to perform
the additional overlays. This can be done using an interrupt service rou-
tine, where the interrupt from the PIXC is used to re-program the overlay
coordinate registers.

The PIXC can generate an interrupt under two conditions: at the end of
the last valid overlay and at the end of a frame.

Either of these interrupts can be enabled or disabled. However, the PIXC
only has one interrupt line output, so it raises an interrupt (under the
appropriate condition) when either of these two interrupts is triggered. If
both interrupts are enabled, the interrupt status register of the PIXC indi-
cates which of the two conditions caused the interrupt to occur. Once the
PIXC generates an interrupt, it stalls the pixel processing until software

ADSP-BF54x Blackfin Processor Hardware Reference 7-13

Pixel Compositor

(ISR) clears the interrupt. However, the FIFOs do not stall and keep fill-
ing up even when the PIXC is in a stalled state. Both interrupts can be
cleared by writing a 1 to the respective interrupt status bits.

After each interrupt (whether it is a last-valid-overlay interrupt or an
end-of-frame interrupt), the PIXC restarts processing with coordinate reg-
ister set A. In other words, at the time of clearing the interrupt:

• If coordinate set A is enabled (OVR_A_EN = 1), the PIXC assumes
that the first incoming data over the DAB is to be overlaid on the
area specified in coordinate set A.

• If coordinate set A is disabled (OVR_A_EN = 0), and coordinate set B
is enabled (OVR_B_EN = 1), the PIXC assumes that the first incom-
ing data over the DAB is to be overlaid on the area specified in
coordinate set B.

• If both coordinate sets are disabled, the PIXC flushes the overlay
FIFO and make no more data requests on the overlay DMA
channel.

The overlay enable bits OVR_A_EN and OVR_B_EN should only be
changed inside the interrupt service routines of the PIXC inter-
rupts, or when the overlay block is disabled.

Note that the module enable bit (PIXC_EN) is the root enable for the PIXC.
Both OVR_A_EN and OVR_B_EN are gated with PIXC_EN, so if PIXC_EN is set to
zero, the individual overlay enable bits have no effect, and the module
remains disabled. When PIXC_EN is programmed to zero, both the image
and overlay FIFOs are flushed and no more DMA requests are made on
either of the DMA channels.

Once the DMAs are enabled, the PIXC keeps track of the current pixel
being displayed from the main image data by reading from two user-pro-
grammable registers: PIXC_PPL, which stores the number of pixels per line,
and PIXC_LPF, which stores the number of lines per frame of the display
device.

Functional Description

7-14 ADSP-BF54x Blackfin Processor Hardware Reference

When the pixel count reaches the top left corner (H-Start, V-Start) of
overlay data, the PIXC starts the overlay. When the pixel count reaches
the top right corner (H-End, V-Start) of overlay data, the PIXC stops the
overlay. It starts again at the next line at (H-Start, V-Start+1) and stop at
(H-End, V-Start + 1), and so on until the entire overlay frame is
processed.

Internally, the start of the overlay DMA would have been pre-
empted by the PIXC before the actual processing of the first
overlay pixel, and DMA data would have been requested until the
overlay FIFO were full. Similarly, the overlay DMA does not stop
at the end of a line. The overlay FIFO continues to be filled with
DMA data, even when the current pixel is not an overlay pixel, but
the supply of overlay pixels from the overlay FIFO is simply halted.

The PIXC decides whether or not to perform overlay mixing for the cur-
rent pixel by using the various PIXC register values. Therefore:

• The PIXC_PPL and PIXC_LPF must be programmed correctly (and
cannot be 0).

• The HSTART and HEND must be less than or equal to PIXC_PPL.

• The VSTART and VEND must be less than or equal to PIXC_LPF.

The user can define multiple rectangular regions covering several separate
overlays, using the same number of DMA descriptors, where each DMA
descriptor corresponds to an overlay region.

Multiple overlay regions are split into two cases:

1. Overlay regions with no horizontal overlap.

This is a straightforward case (shown in Figure 7-8). Software can
maintain separate areas in memory for both overlay regions, with
separate H-Start, V-Start, H-End, and V-End coordinates for each

ADSP-BF54x Blackfin Processor Hardware Reference 7-15

Pixel Compositor

region. After the first overlay is completed, the DMA chain pointer
can load the next overlay parameters (index, count, and modifier)
to the DMA registers of the corresponding DMA channel.

2. Overlay regions with horizontal overlap

In these cases (see Figure 7-9), software has to maintain a com-
bined overlay region in memory. This includes some in-between
area where there is no overlay. This region of memory has to be
filled with the transparent color value (explained below). The
H-Start, V-Start, H-End and V-End coordinates contain the values
of the combined overlay region.

Figure 7-8. Overlay Regions With No Horizontal Overlap

MAIN IMAGE

OVERLAY

Functional Description

7-16 ADSP-BF54x Blackfin Processor Hardware Reference

Transparency Control

When the overlay function is enabled, each overlay pixel is combined with
each main image pixel to generate the displayed output pixel to be dis-
played. Each pixel combination is controlled by a transparency ratio value
alpha (α), a 4-bit value that determines the proportion of overlay and
main image that contribute to the output pixel. The pixel combination
algorithm can be expressed as:

• A: 8-bit pixel data in main frame buffer (“background”)

• B: 8-bit pixel data in overlay buffer (“foreground”)

Figure 7-9. Overlay Regions With Horizontal Overlap

H-START

MAIN IMAGE

OVERLAY H-END

V-START

V-END

C B α 1+()
16

---------------------- A 15 α–()
16

-------------------------+=

ADSP-BF54x Blackfin Processor Hardware Reference 7-17

Pixel Compositor

• C: 8-bit combined pixel data

• α: Transparency ratio code, which is a 4-bit value present in a
memory-mapped register

Table 1 lists the multiplying factors for various α values.

Passing the image alone can be achieved by disabling the overlay
function.

Table 7-1. Multiplying Factors for Various α Values

α Overlay
Multiplying
Factor

Image
Multiplying
Factor

0 1/16 15/16

1 2/16 14/16

2 3/16 13/16

3 4/16 12/16

4 5/16 11/16

5 6/16 10/16

6 7/16 9/16

7 8/16 8/16

8 9/16 7/16

9 10/16 6/16

10 11/16 5/16

11 12/16 4/16

12 13/16 3/16

13 14/16 2/16

14 15/16 1/16

15 1 0

Functional Description

7-18 ADSP-BF54x Blackfin Processor Hardware Reference

Rounding is performed at the output of the blender, which rounds the
combined pixel data to the nearest integer value.

Transparent Color

A transparent color is a specific color that is removed from one image to
reveal another “behind” it. This technique is also referred to as chroma
keying. The principal subject is photographed or filmed against a back-
ground having a single color, usually in the blue or green spectrums.
When the phase of the chroma signal corresponds to the pre-programmed
state associated with the background color(s) behind the principal subject,
the signal from the alternate background (which in this case comes from
the main image channel) is inserted in the composite signal and presented
at the output. When the phase of the chroma signal deviates from that
associated with the background color(s) behind the principal subject, the
picture data associated with the principal subject (in this case, the overlay
image) is presented at the output. Figure 7-10 illustrates this concept.

Figure 7-10. Transparent Color (Chroma Keying)

MAIN IMAGE

OVERLAY BLOCK
RECTANGLE

A

B C

DE

CHROMA-KEYING
AREAS

OVERLAY CONTENT
TRIANGLE

ADSP-BF54x Blackfin Processor Hardware Reference 7-19

Pixel Compositor

In order to display the main image in the two triangle areas ΔABE and
ΔCDE in overlay block ABCD, the data in the overlay buffer correspond-
ing to the pixels in the triangle areas ΔABE and ΔCDE must hold a
specific value, called the transparent color.

The PIXC provides a 24-bit MMR (storing three 8-bit color components),
for each of the two overlay blocks, in order to designate a particular RGB
or YUV value as the transparent color. The transparent color must be in
the same format (YUV 4:2:2 or RGB888) as the overlay data, regardless of
whether or not a color space conversion is present in the overlay data path.
The PIXC then compares each input pixel value on the overlay channel
with this transparent color. If there is a match, the overlay pixel at this
location is ignored by the blender, and the main image pixel at that loca-
tion is assigned 100% weight.

If YUV 4:2:2 is the overlay channel input data format, artifacts
may occur at the edge of the transparent color region. In this case,
it is preferable to set the UDS_MOD bit to 0 (duplicating-dropping
mode), in order to get better control of the U and V components at
the edge of the transparent color region.

Color Space Conversion

As shown in Figure 7-1 on page 7-3, depending on the input data format
and display device used, there may be a color space conversion performed
on the data stream of the PIXC. If the input data is in YUV format, a
YUV-to-RGB conversion can be performed for output to an LCD panel.
If the input data is in RGB format, a RGB-to-YUV conversion can be per-
formed for output to NTSC/PAL displays. The color space conversion
may happen on any of the three paths (for example, the main image data
path, the overlay image data path, or the combined data path). Register
bits are used to specify the input, overlay and output formats.

Functional Description

7-20 ADSP-BF54x Blackfin Processor Hardware Reference

The color space converter block has three main cases of operation:

1. Both the image and the overlay data are in the same format

2. The image and the overlay data are in different formats

3. Color space conversion only

These are all described in the following section, along with several special
usage cases. Note that various scenarios may be shown in the same figure
based on the output device chosen, though only a single output destina-
tion is supported at one time.

Case 1 - Image and Overlay in the Same Format

Both input data streams (main image and overlay) are in the same format,
either YUV 4:2:2 or RGB888, so a color space conversion may be per-
formed after alpha blending, depending on the output type. See
Figure 7-11 and Figure 7-12.

Figure 7-11. Both Input Data Streams in YUV 4:2:2 Format

TV

LCD

MEMORY

YUV

MAIN IMAGE
YUV

OVERLAY
YUV RGB

ADSP-BF54x Blackfin Processor Hardware Reference 7-21

Pixel Compositor

Case 2 - Image and Overlay in Different Formats

In this case, the two input data streams are not in the same format. The
PIXC has to perform a color space conversion on either the main input
stream or the overlay input stream (depending on the required output for-
mat) before alpha blending can take place. See Figure 7-13 and
Figure 7-14.

Figure 7-12. Both Input Data Streams in RGB888 Format

Figure 7-13. Main Image in YUV 4:2:2 and Overlay in RGB888

LCD

TV

MEMORY

RGB

MAIN IMAGE
RGB

OVERLAY
RGB YUV

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV

OVERLAY
RGB

YUV RGB

Functional Description

7-22 ADSP-BF54x Blackfin Processor Hardware Reference

Case 3 - Color Space Conversion Only

In this case, there is no overlay blending. The main image is brought into
the PIXC, the color space converted, and then sent back to memory. See
Figure 7-15 and Figure 7-16.

Figure 7-14. Main Image in RGB888 and Overlay in YUV 4:2:2

Figure 7-15. Main Image in RGB888 and Output in YUV 4:2:2
(No Overlay)

YUV RGB

TV

LCD

MEMORY
MAIN IMAGE

RGB

OVERLAY
YUV

RGB YUV

TV

LCD

MEMORY

MAIN IMAGE
RGB

RGB YUV

ADSP-BF54x Blackfin Processor Hardware Reference 7-23

Pixel Compositor

For this mode, the register settings are: PIXC_EN = 1, OVR_A_EN = 0
and OVR_B_EN = 0.

Color Space Conversion Matrix Equations

The PIXC color space conversion block implements the following matrix
equation:

The Axx coefficients are 10-bit signed values represented in two’s comple-
ment format. A11…A33 are coefficient multipliers (for most cases, it is
sufficient to specify these as integers between -512 and 511), and A14,
A24, A34 are simply offsets added to the result for each row. B1, B2, B3
represent the input pixel component values (for example, YUV or RGB)
and C1, C2, C3 are the output pixel component values. Output pixel val-
ues are rounded to the nearest integer.

Figure 7-16. Main Image in YUV 4:2:2 and Output in RGB888
(No Overlay)

LCD

TV

MEMORY

MAIN IMAGE
YUV

YUV RGB

K
A11 A12 A13
A21 A22 A23
A31 A32 A33

×
B1
B2
B3

A14
A24
A34

+
C1
C2
C3

=

Functional Description

7-24 ADSP-BF54x Blackfin Processor Hardware Reference

The constant K equals 1/512. For example, to set A11’s effective value to
0.299, this coefficient's MMR should be programmed to
ROUND(.299*512), or 153. If a coefficient needs to be programmed
with a value greater than 1, an extra bit exists in each coefficient's MMR
to specify if an extra multiply by 4 must be performed after multiplying
the input value by its coefficient. However, this setting can only be speci-
fied for an entire row, so if this bit is set, all the coefficients for that row
(Ax1-Ax3) should be calculated as ROUND(coeff*512/4). In other words,
the constant K effectively becomes 1/128 for that row.

For reference, the matrix equations representing conversion between YUV
and RGB formats are:

For YUV-to-RGB conversion, the PIXC expects the input data to
be arranged in the following order: VYUY, VYUY, and so on (see
Figure 7-3). As a result, if the input data is instead arranged as
UYVY, UYVY, and so on, then, the columns Ax2 and Ax3 of the
coefficient matrix are swapped.

For RGB-to-YUV conversion, the PIXC arranges the output data
by default in the following order: VYUY, VYUY, and so on. If the
output data is desired to instead be arranged as UYVY, UYVY, and
so on, then, rows A2x and A3x of the coefficient and bias matrices
are swapped.

Y
U
V

0.299 0.587 0.114
0.168– 0.330– 0.498
0.498 0.417– 0.081–

R
G
B

0
128
128

+=

R
G
B

1.000 0.000 1.397
1.000 0.343– 0.711–
1.000 1.765 0.000

Y
U
V

179–
135
226–

+=

ADSP-BF54x Blackfin Processor Hardware Reference 7-25

Pixel Compositor

Color Space Converter Output Thresholds

Each PIXC output sample is 8 bits wide, whether it is an R, G, B, Y, U or
V component value. Therefore, any output sample must be in the 0 to 255
range. Since all the coefficients are programmable, some of the inputs,
when operated upon by the coefficients, may produce an output outside
the 0 to 255 range. In such cases, the PIXC clips the output component’s
value to 0 or 255.

YUV Conversion Modes

When the color space converter operates between two color spaces, it
requires all components of each pixel to be present in the data stream.
Therefore, the PIXC internally upsamples the YUV 4:2:2 data stream
before a YUV-to-RGB conversion and similarly downsamples the YUV
4:4:4 data stream after a RGB-to-YUV conversion. The resampling always
takes place between YUV 4:2:2 and YUV 4:4:4 formats, but a certain flex-
ibility is provided with regard to how the resampling is done by the PIXC
in each case.

Upsampling

A YUV 4:2:2-to-YUV 4:4:4 conversion can be performed either by averag-
ing or by duplicating the pixel components. The UDS_MOD bit in the
PIXC_CTL register specifies the upsampling mode. The default setting of
this bit is 0, which corresponds to duplication of the chroma components
(Us and Vs) from the odd pixels to the even pixels:

YUV 4:2:2 input: V1Y1, U1Y2, V3Y3, U3Y4, …

YUV 4:4:4 conversion: Y1U1V1, Y2U1V1, Y3U3V3, Y4U3V3, …

Functional Description

7-26 ADSP-BF54x Blackfin Processor Hardware Reference

Setting the UDS_MOD bit to 1 enables the averaging of the chroma compo-
nents of the preceding and succeeding pixels to obtain the intermediate
chroma value. In other words, two consecutive odd-numbered pixels’
chroma components are averaged to obtain the intermediate even-num-
bered pixel’s chroma components:

If the sum of the preceding and succeeding pixels’ U/V components is an
odd number, the average is rounded down (truncated to an integer value).

Since the last pixel on a line is always an even-numbered pixel, the last odd
pixel value on that line is used as the last even pixel value during
upsampling.

Downsampling

A YUV 4:4:4-to-YUV 4:2:2 conversion can be performed either by averag-
ing or by dropping the pixel components. The UDS_MOD bit also governs
the downsampling mode. Setting the UDS_MOD bit to 0 (default) enables the
dropping of the chroma components of the even numbered pixels:

Setting the UDS_MOD bit to 1 enables the averaging of the chroma compo-
nents of two consecutive pixels to obtain a single chroma value for a pixel
pair:

YUV 4:2:2 input: V1Y1, U1Y2, V3Y3, U3Y4, …

YUV 4:4:4 conversion: Y1U1V1, Y2U2V2 [U2=(U1+U3)/2,
V2=(V1+V3)/2],Y3U3V3, Y4U4V4
[U4=(U3+U5)/2, V4=(V3+V5)/2], …

YUV 4:4:4 input: Y1U1V1, Y2U2V2, Y3U3V3, Y4U4V4, …

YUV 4:2:2 conversion: V1Y1, U1Y2, V3Y3, U3Y4, …

ADSP-BF54x Blackfin Processor Hardware Reference 7-27

Pixel Compositor

PIXC Actions

Table 2 lists the PIXC actions that take place based on any possible com-
bination of image, overlay, and output data formats.

• CSC = Color Space Conversion
• US = Upsampling
• DS = Downsampling
• YUV = YUV 4:2:2 format
• RGB = RGB888 format

YUV 4:4:4 input: Y1U1V1, Y2U2V2, Y3U3V3, Y4U4V4, …

YUV 4:2:2 conversion: V12Y1, U12Y2, V34Y3, U34Y4, …

[U12 = (U1+U2)/2, U34=(U3+U4)/2]

[V12 = (V1+V2)/2, V34=(V3+V4)/2]

Table 7-2. PIXC Actions

Image
Data
format

Overlay
Data
format

Output
Data
format

PIXC Actions

YUV No overlay RGB US followed by CSC

RGB No overlay YUV CSC followed by DS

YUV YUV YUV US in both paths followed by DS before output

YUV RGB RGB US in image path, CSC in image path

YUV YUV RGB US in both paths, followed by CSC

YUV RGB YUV CSC in overlay path, US in image path, DS before output

RGB YUV YUV CSC in image path, US in overlay path, DS before output

RGB YUV RGB US in overlay path, CSC in overlay path

RGB RGB YUV CSC followed by DS

RGB RGB RGB No CSC, No US, No DS

Functional Description

7-28 ADSP-BF54x Blackfin Processor Hardware Reference

Recommendations

For best results, the overlay should start on an odd-numbered pixel so that
the U and V components of the image and the overlay are aligned. Other-
wise artifacts may occur in the combined image.

When both the image and the overlay are in YUV 4:2:2 format and the
output is also in YUV 4:2:2 format, the duplicating-dropping mode
(UDS_MOD) should be used to prevent a low-pass filtering effect on the
images.

Special Usage Cases

There are ways by which the PIXC can be made to operate on certain data
formats that it does not support in any standard modes. For example,
YUV 4:4:4 is similar to RGB 888 with respect to the number of pixels per
32-bit DMA word. So the PIXC can be configured to work with the YUV
4:4:4 data format by intelligently programming the IMG_FORM, OVR_FORM,
and OUT_FORM bit fields and the color space conversion coefficients.

These special usage cases are shown in Figure 7-17 through Figure 7-20.

ADSP-BF54x Blackfin Processor Hardware Reference 7-29

Pixel Compositor

Example 1 - Currently Defined Mode

Example 1 - Special Usage of This Mode

• IMG_FORM = YUV

• OVR_FORM = YUV

• OUT_FORM = RGB

• All CSC coefficients = 1

Figure 7-17. Example 1 - Currently Defined Mode

TV

LCD

MEMORY

YUV

MAIN IMAGE
YUV 4:2:2

OVERLAY
YUV 4:2:2 RGB

RGB

YUV 4:2:2

Functional Description

7-30 ADSP-BF54x Blackfin Processor Hardware Reference

In the special usage of this mode, YUV 4:2:2 inputs produce a blended
YUV 4:4:4 data stream. A CSC matrix with coefficients of 1 is needed.

Example 2 - Currently Defined Mode

• IMG_FORM = RGB

• OVR_FORM = RGB

• OUT_FORM = YUV

• All CSC coefficients = 1

Figure 7-18. Example 1 - Special Usage

Figure 7-19. Example 2 - Currently Defined Mode

TV

LCD

MEMORY

YUV

MAIN IMAGE
YUV 4:2:2

OVERLAY
YUV 4:2:2 RGB

YUV 4:4:4

YUV 4:2:2

LCD

TV

MEMORY

RGB

MAIN IMAGE
RGB

OVERLAY
RGB YUV

YUV 4:2:2

RGB

ADSP-BF54x Blackfin Processor Hardware Reference 7-31

Pixel Compositor

Example 2 - Special Usage of This Mode

In the special usage of this mode, YUV 4:4:4 input produces a blended
YUV 4:2:2 or YUV 4:4:4 data stream. A CSC matrix with coefficients of 1
is needed.

Figure 7-20. Example 2 - Special Usage

LCD

TV

MEMORY

RGB

MAIN IMAGE
YUV 4:4:4

OVERLAY
YUV 4:4:4 YUV

YUV 4:2:2

YUV 4:4:4

Functional Description

7-32 ADSP-BF54x Blackfin Processor Hardware Reference

Example 3 - Currently Defined Mode

Example 3 - Special Usage of This Mode

In the special usage of this mode, a YUV 4:4:4 input stream and a YUV
4:2:2 input stream can be blended to produce either a YUV 4:4:4 or a
YUV 4:2:2 output stream.

Figure 7-21. Example 3 - Currently Defined Mode

Figure 7-22. Example 3 - Special Usage

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV 4:2:2

OVERLAY
RGB

YUV RGB

RGB

YUV 4:2:2

RGB YUV

LCD

TV

MEMORY

MAIN IMAGE
YUV 4:2:2

OVERLAY
YUV 4:4:4

YUV RGB

YUV 4:4:4

YUV 4:2:2

ADSP-BF54x Blackfin Processor Hardware Reference 7-33

Pixel Compositor

If the image format is YUV 4:2:2 and the overlay format is YUV 4:4:4:

• For YUV 4:2:2 output, program IMG_FORM = YUV,
OVR_FORM = RGB, and OUT_FORM = YUV. Also program all the CSC
coefficients to 1.

• For YUV 4:4:4 output, program IMG_FORM = YUV,
OVR_FORM = RGB, and OUT_FORM = RGB. Also program all the CSC
coefficients to 1.

If the image format is YUV4:4:4 and the overlay format is YUV 4:2:2,
simply interchange IMG_FORM and OVR_FORM in the above programming
cases.

Example 4 - Currently Defined Mode

Example 4 - Special Usage of This Mode

• PIXC_EN = 1

• OVR_A_EN = 0

• OVR_B_EN = 0

• IMG_FORM = RGB

Figure 7-23. Example 4 - Currently Defined Mode

TV

MEMORY

MAIN IMAGE
RGB

RGB YUV
YUV 4:2:2

Functional Description

7-34 ADSP-BF54x Blackfin Processor Hardware Reference

• OUT_FORM = YUV

• All CSC coefficients = 1

In the special usage of this mode, a simple downsampling from YUV 4:4:4
to YUV 4:2:2 is performed. Only color space conversion is enabled, using
the PIXC_EN bit. A CSC matrix with coefficients of 1 is needed.

Figure 7-24. Example 4 - Special Usage

TV

MEMORY

MAIN IMAGE
YUV 4:4:4

RGB YUV
YUV 4:2:2

ADSP-BF54x Blackfin Processor Hardware Reference 7-35

Pixel Compositor

Programming Model
The following sections describe the PIXC programming model.

The output destination of the PIXC can be either an L3 frame buffer or an
L2/L1 line buffer. As a recommendation for saving DMA bandwidth:

• If the size of the overlay content is relatively big, it is more efficient
to send, through the DMA, the output of the PIXC to an L2/L1
line buffer, and then send the data from that line buffer directly
through the EPPI to the display device.

• If the size of the overlay content is relatively small, it is more effi-
cient to send, through the DMA, the output of the PIXC back to
the L3 frame buffer, and then send the data from that frame buffer
through the EPPI to the display device.

PIXC Registers
The PIXC has memory-mapped registers (MMRs) that regulate its opera-
tion. These registers are listed in Table 7-3. Descriptions and bit diagrams
for each of these MMRs are provided in the following sections.

Table 7-3. List of PIXC Memory-Mapped Registers

Name Width Address Function

PIXC_CTL
on page 7-38

16 0xFFC04400 Overlay enable, resampling mode selection,
input/output data format selection, transparent
color enable, watermark level selection,
image/overlay FIFO status.

PIXC_PPL
on page 7-39

16 0xFFC04404 Holds the number of pixels per line of the dis-
play.

PIXC_LPF
on page 7-39

16 0xFFC04408 Holds the number of lines per frame of the dis-
play.

PIXC Registers

7-36 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC_AHSTART
on page 7-40

16 0xFFC0440C Contains horizontal start pixel information of
the overlay data (set A).

PIXC_AHEND
on page 7-40

16 0xFFC04410 Contains horizontal end pixel information of
the overlay data (set A).

PIXC_AVSTART
on page 7-41

16 0xFFC04414 Contains vertical start pixel information of the
overlay data (set A).

PIXC_AVEND
on page 7-40

16 0xFFC04418 Contains vertical end pixel information of the
overlay data (set A).

PIXC_ATRANSP
on page 7-42

16 0xFFC0441C Contains the transparency ratio (set A).

PIXC_BHSTART
on page 7-40

16 0xFFC04420 Contains horizontal start pixel information of
the overlay data (set B).

PIXC_BHEND
on page 7-40

16 0xFFC04424 Contains horizontal end pixel information of
the overlay data (set B).

PIXC_BVSTART
on page 7-41

16 0xFFC04428 Contains vertical start pixel information of the
overlay data (set B).

PIXC_BVEND
on page 7-41

16 0xFFC0442C Contains vertical end pixel information of the
overlay data (set B).

PIXC_BTRANSP
on page 7-42

16 0xFFC04430 Contains the transparency ratio (set B).

PIXC_INTRSTAT
on page 7-42

16 0xFFC0443C Overlay interrupt configuration/status.

PIXC_RYCON
on page 7-43

32 0xFFC04440 Color space conversion matrix register. Con-
tains the R/Y conversion coefficients.

PIXC_GUCON
on page 7-44

32 0xFFC04444 Color space conversion matrix register. Con-
tains the G/U conversion coefficients.

PIXC_BVCON
on page 7-45

32 0xFFC04448 Color space conversion matrix register. Con-
tains the B/V conversion coefficients.

PIXC_CCBIAS
on page 7-46

32 0xFFC0444C Bias values for the color space conversion
matrix.

PIXC_TC
on page 7-47

32 0xFFC04450 Holds the transparent color value.

Table 7-3. List of PIXC Memory-Mapped Registers (Cont’d)

Name Width Address Function

ADSP-BF54x Blackfin Processor Hardware Reference 7-37

Pixel Compositor

All PIXC registers have a default value of zero, except the transparency
ratio registers which have a default value of 0xF.

The programmer should avoid writing to any of the MMRs when
the module is enabled. Writing to the MMRs during the module
enabled state can lead to unpredictable behavior of the PIXC. All
MMRs can be read when the PIXC is in the enabled state, and this
does not cause any change of status in the PIXC, but register writes
should happen only when the PIXC is disabled, or stalled by an
interrupt condition.

The following sections provide bit descriptions of the PIXC registers.

PIXC Registers

7-38 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Control (PIXC_CTL) Register
The PIXC_CTL register (Figure 7-25) provides overlay enable, resampling
mode selection, input/output data format selection, transparent color
enable, watermark level selection, and image/overlay FIFO status.

Watermarking is described in the ADSP-BF54x Hardware Refer-
ence (Volume 2 of 2).

Figure 7-25. PIXC Control (PIXC_CTL) Register

PIXC Control Register (PIXC_CTL)

Reset = 0x0000

Read/Write

0xFFC0 4400

PIXC_EN (Pixel Comp Enable)

0 - Disable PIXC operation
1 - Enable PIXC operation

OVR_A_EN (Overlay A Enable)

0 - Disable
1 - Enable

IMG_FORM (Image Data Format)

0 - YUV
1 - RGB

OVR_B_EN (Overlay B Enable)

0 - Disable
1 - Enable

OVR_FORM (Overlay Data Format)

0 - YUV
1 - RGB

OUT_FORM (Output Data Format)

0 - YUV
1 - RGB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

WM_LVL
(Watermark Level—Both FIFOs)

00 - one location empty
01 - 25% empty
10 - 50% empty
11 - 75% empty

IMG_STAT (Image FIFO Status)

10 - Empty
01 - Full

OVR_STAT (Overlay FIFO Status)

10 - Empty
01 - Full

TC_EN (Transparent Color Enable)

0 - Disable transparent color
1 - Enable transparent color

UDS_MOD (Resampling Mode)

0 - Duplicating for upsampling and
dropping for downsampling

1 - Averaging for both upsampling
and downsampling

ADSP-BF54x Blackfin Processor Hardware Reference 7-39

Pixel Compositor

PIXC Pixels Per Line (PIXC_PPL) Register
The PIXC_PPL register (Figure 7-26) provides the number of pixels per line
of the display.

PIXC Lines Per Frame (PIXC_LPF) Register
The PIXC_LPF register (Figure 7-26) provides the number of lines per
frame of the display.

Figure 7-26. PIXC Pixels Per Line (PIXC_PPL) Register

Figure 7-27. PIXC Lines Per Frame (PIXC_LPF) Register

PIXC Pixels Per Line Register (PIXC_PPL)

Reset = 0x0000

Read/Write

0xFFC0 4404

PPL (Pixel Per Line)

0xFFFF-0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Lines Per Frame Register (PIXC_LPF)

Reset = 0x0000

Read/Write

0xFFC0 4408

LPF (Lines Per Frame)

0xFFFF-0x0001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Registers

7-40 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Horizontal Start (PIXC_xHSTART) Registers
The PIXC_AHSTART and PIXC_BHSTART registers (Figure 7-28) provide the
horizontal start pixel coordinates of the overlay data.

PIXC Horizontal End (PIXC_xHEND) Registers
The PIXC_AHEND and PIXC_BHEND registers (Figure 7-29) provide the hori-
zontal end pixel coordinates of the overlay data.

Figure 7-28. PIXC Horizontal Start (PIXC_xHSTART) Registers

Figure 7-29. PIXC Horizontal End (PIXC_xHEND) Registers

PIXC Overlay x Horizontal Start Registers (PIXC_xHSTART)

Reset = 0x0000

Read/Write

0xFFC0 440C

0xFFC0 4420

A/B_HSTART
(Horizontal Start Coordinates)
0xFFF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Overlay x Horizontal End Registers (PIXC_xHEND)

Reset = 0x0000

Read/Write

0xFFC0 4410

0xFFC0 4424

A/B_HEND
(Horizontal End Coordinates)
0xFFF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 7-41

Pixel Compositor

PIXC Vertical Start (PIXC_xVSTART) Registers
The PIXC_AVSTART and PIXC_BVSTART registers (Figure 7-30) provide the
vertical start pixel coordinates of the overlay data.

PIXC Vertical End (PIXC_xVEND) Registers
The PIXC_AVEND and PIXC_BVEND registers (Figure 7-31) provide the verti-
cal end pixel coordinates of the overlay data.

Figure 7-30. PIXC Vertical Start (PIXC_xVSTART) Registers

Figure 7-31. PIXC Vertical End (PIXC_xVEND) Registers

PIXC Overlay x Vertical Start Registers (PIXC_xVSTART)

Reset = 0x0000

Read/Write

0xFFC0 4414

0xFFC0 4428

A/B_VSTART
(Vertical Start Coordinates)
0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Overlay x Vertical End Registers (PIXC_xVEND)

Reset = 0x0000

Read/Write

0xFFC0 4418

0xFFC0 442C

A/B_VEND
(Vertical End Coordinates)
0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Registers

7-42 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Transparency Value (PIXC_xTRANSP)
Registers

The PIXC_ATRANSP and PIXC_BTRANSP registers (Figure 7-32) provide the
overlay transparency ratio values.

PIXC Interrupt Status (PIXC_INTRSTAT) Register
The PIXC_INTRSTAT register (Figure 7-33) provides overlay interrupt con-
figuration and status information.

Figure 7-32. PIXC Transparency Value (PIXC_xTRANSP) Registers

Figure 7-33. PIXC Interrupt Status (PIXC_INTRSTAT) Register

PIXC Overlay x Transparency Value Registers (PIXC_xTRANSP)

Reset = 0x0000

Read/Write

0xFFC0 441C

0xFFC0 4430

A/B_TRANSP
(Overlay Transparency Value)
0xF-0x0 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIXC Interrupt Status Register (PIXC_INTRSTAT)

Reset = 0x0000

Read/Write/W1C

0xFFC0443C

OVR_INT_EN (Overlay IRQ Enable)

0 - Disable interrupt
1 - Enable interrupt at the end

of the last valid overlay

FRM_INT_EN (Frame IRQ Enable)

0 - Disable
1 - Enable interrupt at the end

of the frame

OVR_INT_STAT (Overlay IRQ Status)

Overlay interrupt status. Write 1-to clear
interrupt.

FRM_INT_STAT (Frame IRQ Status)

Frame interrupt status. Write 1-to- clear
interrupt.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

ADSP-BF54x Blackfin Processor Hardware Reference 7-43

Pixel Compositor

PIXC R/Y Conversion Coefficient (PIXC_RYCON)
Register

The PIXC_RYCON register (Figure 7-34) provides the R/Y conversion coeffi-
cients in the color space conversion matrix.

Figure 7-34. PIXC R/Y Conversion Coefficient (PIXC_RYCON) Register

PIXC R/Y Conversion Coefficient Register (PIXC_RYCON)

Reset = 0x0000

Read/Write

0xFFC0 4440

A11 (A11 element in
the coefficient matrix)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

(Bits 19–10)
A12 (A12 element in
the coefficient matrix)

0x3FF-0x000 values

A13 (A13 element in
the coefficient matrix)

0x3FF-0x000 values

RY_MULT4
(Multiply the Row by 4)

0 – Disable
1 – Enable

PIXC Registers

7-44 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC G/U Conversion Coefficient (PIXC_GUCON)
Register

The PIXC_GUCON register (Figure 7-35) provides the G/U conversion coef-
ficients in the color space conversion matrix.

Figure 7-35. PIXC G/U Conversion Coefficient (PIXC_GUCON)
Register

PIXC G/U Conversion Coefficient Register (PIXC_GUCON)

Reset = 0x0000

Read/Write

0xFFC0 4444

A21 (A21 element in
the coefficient matrix)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

A22 (A22 element in
the coefficient matrix)

0x3FF-0x000 values

A23 (A23 element in
the coefficient matrix)

0x3FF-0x000 values

GU_MULT4
(Multiply The Row By 4)

0 – Disable
1 – Enable

ADSP-BF54x Blackfin Processor Hardware Reference 7-45

Pixel Compositor

PIXC B/V Conversion Coefficient (PIXC_BVCON)
Register

The PIXC_BVCON register (Figure 7-36) provides the B/V conversion coeffi-
cients in the color space conversion matrix.

Figure 7-36. PIXC B/V Conversion Coefficient (PIXC_BVCON) Register

PIXC B/V Conversion Coefficient Register (PIXC_BVCON)

Reset = 0x0000

Read/Write

0xFFC0 4448

A31 (A31 element in
the coefficient matrix)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

A32 (A32 element in
the coefficient matrix)

0x3FF-0x000 values

A33 (A33 element in
the coefficient matrix)

0x3FF-0x000 values

BV_MULT4
(Multiply the Row by 4)

0 – Disable
1 – Enable

PIXC Registers

7-46 ADSP-BF54x Blackfin Processor Hardware Reference

PIXC Color Conversion Bias (PIXC_CCBIAS)
Register

The PIXC_CCBIAS register (Figure 7-37) provides the bias values in the
color space conversion matrix.

Figure 7-37. PIXC Color Conversion Bias (PIXC_CCBIAS) Register

PIXC Color Conversion Bias Register (PIXC_CCBIAS)

Reset = 0x0000

Read/Write

0xFFC0 444C

A14
(A14 in bias vector)

0x3FF-0x000 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

A24
(A24 in bias vector)

0x3FF-0x000 values

A34
(A34 in bias vector)

0x3FF-0x000 values

ADSP-BF54x Blackfin Processor Hardware Reference 7-47

Pixel Compositor

PIXC Transparency Color Value (PIXC_TC) Register
The PIXC_TC register (Figure 7-38) provides the transparent color value.

Programming Examples
Programming examples to be provided when code is available.

Figure 7-38. PIXC Transparency Color Value (PIXC_TC) Register

PIXC Transparency Color Value Register (PIXC_TC)

Reset = 0x0000

Read/Write

0xFFC0 4450

RY_TRANS
(Trans. color – R/Y component)

0xFF-0x00 values

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BV_TRANS
(Trans. color – B/V component)

0xFF-0x00 values

GU_TRANS
(Trans. color – G/U component)

0xFF-0x00 values

Programming Examples

7-48 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 8-1

8 HOST DMA PORT

This chapter describes the Host DMA port (HOSTDP) and includes the
following sections:

• “Overview” on page 8-1

• “Interface Overview” on page 8-3

• “Description of Operation” on page 8-4

• “Programming Model” on page 8-22

• “Host DMA Port Registers” on page 8-24

• “Programming Examples” on page 8-31

Overview
The Host DMA port (HOSTDP) facilitates a host device external to the
ADSP-BF54x Blackfin processor to be a direct memory access (DMA)
master and transfer data back and forth. The host device always masters
the transactions and the Blackfin processor is always a DMA slave device.

Pay particular attention to nomenclature involving the Host DMA
port. The Host DMA port is sometimes abbreviated as HOSTDP.
All register and pin names have a HOST_ prefix. The HOSTDP is a

Overview

8-2 ADSP-BF54x Blackfin Processor Hardware Reference

peripheral on the ADSP-BF54x processor, which is referred to as
the slave processor or Blackfin slave. The host processor is also
referred to as the host, master, external host, or external master.

When using one of the HOSTDP boot modes, the boot kernel
does not disable the HOSTDP module or the associated DMA
channels when the boot completes.

The HOSTDP is enabled through the peripheral access bus (PAB) inter-
face. Once enabled, the DMA is controlled by an external host. The
external host can then program the DMA to send/receive data to any valid
internal or external memory location.

Features
The HOSTDP controller includes the following features:

• External master to configure DMA READ/WRITE data transfers
and read port status

• Flexible asynchronous memory protocol for external interface

• 8/16-bit external data interface to host device

• Half-duplex operation

• Little/big endian data transfer

• Internal FIFO which holds sixteen 32-bit words

• Acknowledge mode allows flow control on host transactions

• Interrupt mode guarantees a burst of FIFO depth host transactions

• Ability to enable and disable data reads/writes

• DMA bandwidth control

ADSP-BF54x Blackfin Processor Hardware Reference 8-3

Host DMA Port

Interface Overview
Table 8-1 defines the pins for the HOSTDP interface. The interface uses a
flexible asynchronous memory interface, which can be gluelessly con-
nected to a variety of host processors.

Due to the Blackfin processor’s use of multiplexed pins, utilizing
the Host DMA port can preclude the use of other peripherals.
EPP2 is unavailable when using the HOSTDP, and EPP1 can be
used in 8-bit mode if the HOSTDP is also in 8-bit mode. Refer to
“General-Purpose Ports” on page 9-1 for a complete description of
the pin multiplexing scheme.

Table 8-1. HOSTDP External Pins

Pin Description

Port D - HOST_DATA <15:0> 16-bit data port

PG5- HOST_CE Chip enable for the HOSTDP

PG7 - HOST_WR Write strobe

PG6- HOST_RD Read strobe

PH3 - HOST_ADDR Address pin 0: data port access 1: configuration port access

PH4 - HOST_ACK (HRDY/FRDY) Flow control pin: HRDY-acknowledge mode and
FRDY- interrupt mode

Description of Operation

8-4 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The following sections describe the operation of the HOSTDP interface.

Architecture
The HOSTDP block diagram, shown in Figure 8-1, illustrates the overall
architecture of the HOSTDP.

The HOSTDP is enabled/disabled through PAB writes to the
HOST_CONTROL register. Once enabled, the HOSTDP interfaces to the
external world using asynchronous memory protocol and handshakes with
the DMA controller internally using the DMA access bus (DAB). The

Figure 8-1. HOSTDP Block Diagram

DMA

I
N
T
E
R
F
A
C
E

DAB1
(32-BIT)

PAB

FIFO

CONTROL

P
A
B

CONTROL

REGS

HOSTDP

 EXTERNAL
 INTERFACE
 (HEI)

INTERFACE

INTERRUPT

ASYNCHRONOUS

HOST_DATA15–0

HOST_CE

HOST_RD

HOST_WR

HOST_ADDR

HOST_ACK

MEMORY
INTERFACE

ADSP-BF54x Blackfin Processor Hardware Reference 8-5

Host DMA Port

HOSTDP allows the external host to program the DMA to transfer data
in either direction. The HOSTDP can be broken into five functional
blocks, identified as follows:

• Host External Interface (HEI): This block interfaces to the exter-
nal host and based on inputs from the host device initiates data or
control message transfers.

• PAB Interface: The HOSTDP is programmed/queried for status
by reads or writes to appropriate registers in this block through the
PAB.

• FIFO: A dual-port FIFO is used for data transfers and can store up
to sixteen 32-bit words.

• Control: The control block handles the HOSTDP’s different states
as well as the handshakes between the external host device and
DMA interfaces.

• DMA Interface: This block is connected to the DAB and interacts
with the DMA to transfer control messages and data between
DMA and external host device.

Functional Description
The following sections describe the functional operation of the Host
DMA port (HOSTDP).

HOSTDP Configuration

Before any data transfer can occur, the DMA engine must be configured
by the host processor. Because the host is unaware of the internal state of
the Host DMA port peripheral and its associated DMA activity, the host
processor is required to check the ALLOW_CNFG bit in HOST_STATUS register
before attempting configuration writes. Additionally, this status read sets

Description of Operation

8-6 ADSP-BF54x Blackfin Processor Hardware Reference

some internal states inside the Host DMA port. Configuration requires
seven 16-bit words to be written in the following order to the configura-
tion port before host read data or host write data operations can occur:

• HOST_CONFIG

• START_ADDR.L

• START_ADDR.H

• XCOUNT

• XMODIFY

• YCOUNT

• YMODIFY

The only word different from the standard DMA described in the DMA
chapter is the HOST_CONFIG word. Each bit is described there. Refer to
Figure 8-2 for a description.

Figure 8-2. HOSTDP Configuration Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 0 1 0 1 0 0

HOSTDP Config Word (HOST_CONFIG)

WNR (DMA Direction)
0 - DMA is a host read operation
1 - DMA is a host write operation

FLOW (Next Operation)
0 - Stop mode
1 - Autobuffer mode

DMA2D (DMA Mode)
0 - Linear (1D)
1 - Two-dimensional (2D)

ADSP-BF54x Blackfin Processor Hardware Reference 8-7

Host DMA Port

Additional information for the HOST_CONFIG bits includes the following:

• Host DMA Direction (WNR):
If this bit is written high, DMA writes to memory (host write). If
this bit is written low, DMA reads from memory (host read).

• Host DMA Mode (DMA2D):
If written low, it is linear one dimensional (1D) DMA. If written
high, it is two-dimensional mode (2D).

• FLOW (FLOW):
When this bit is cleared, the DMA runs in STOP mode. When this
bit is set, the DMA runs in AUTOBUFFER mode.

For information on how these words are used to configure the DMA, refer
to “Direct Memory Access” on page 5-1.

Before accessing the data port, the host processor must write all seven
descriptor words. The HOSTDP module does not forward descriptors to
the DMA channel until it has received all seven words. Similarly, the host
processor is not permitted to provide new descriptor data before all data
words of the former work unit are transferred. However, the host can
truncate an initiated transfer using the DMA_FINISH control command. As
always, ALLOW_CNFG in the HOST_STATUS register must be polled before
writing a new configuration to the Host DMA port. Please see “Control
Commands Between the External Host and HOSTDP” on page 8-20 for
additional information.

Additional latency is incurred when a host read data operation follows a
host write data operation. Even though the configuration for the host read
is complete, the DMA engine must first empty the FIFO for the host write
operation and then change directions and start filling the FIFO for the
host read data operation.

Description of Operation

8-8 ADSP-BF54x Blackfin Processor Hardware Reference

HOSTDP Transactions

The HOSTDP is enabled by writing to the HOSTDP_EN bit of the
HOST_CONTROL register. In order to disable the HOSTDP, the HOSTDP_RST
bit must be asserted before clearing HOSTDP_EN. There are four types of
host port transactions. Each type of access is controlled by the HOST_ADDR
and whether the HOST_RD or HOST_WR signal is asserted.

When chip enable (HOST_CE) is inactive, the HOSTDP stays idle. Modes
listed in Table 8-2 are only possible when HOST_CE is active.

Host Read Status

The Host DMA port is robust against on-the-fly changes of data direc-
tion. However, in acknowledge mode, it is encouraged not to initiate a
new work unit with different data direction before the FIFOEMPTY bit in
the HOST_STATUS register is cleared. This is to avoid excessive wait states
inserted by HRDY.

The external host can read the HOST_STATUS register at any time. By per-
forming this operation, the external host can query the status of the
HOSTDP. Note that in 8-bit configurations, the host can only read the
lower byte of the HOST_STATUS register. HOST_STATUS can also be read
through a PAB access. When accessed through the PAB, all 16 bits of
HOST_STATUS are always read. The contents of HOST_STATUS are detailed in
“Host DMA Port Registers” on page 8-24.

Table 8-2. Types of Host Port Transactions

Address HOST_RD HOST_WR HOST_CE Function

0x0 0 1 0 Host read data operation

0x0 1 0 0 Host write data operation

0x1 1 0 0 Host write configuration or control command

0x1 0 1 0 Host read HOST_STATUS register

ADSP-BF54x Blackfin Processor Hardware Reference 8-9

Host DMA Port

Host Read Data and Host Write Data Operations

After the HOSTDP is configured and enabled by way of PAB accesses and
the DMA channel is configured through host write configuration accesses,
data can be transferred.

All DMAs between the HOSTDP FIFO and memory are 32-bit
transactions. It is important to realize this when setting XMODIFY
and YMODIFY. The amount of data moved between the host proces-
sor and the HOSTDP must be a multiple of the FIFO depth
(sixteen 32-bit words). The user is required to set the
XCOUNT/YCOUNT values and to also ensure that the correct number of
host data reads or host data writes are performed.

A host write data operation is used to transfer data from the host to the
slave processor. The host performs write transactions and the HOSTDP
writes the data from these transactions into its FIFO. The DMA engine
concurrently moves data from the HOSTDP’s FIFO to the location in
memory specified by the DMA configuration words.

A host read data operation is used to transfer data from the slave processor
to the host. The DMA engine moves data from the specified location in
the Blackfin processor slave’s memory into the HOSTDP’s FIFO. The
host performs read accesses to read data out of this FIFO.

In the case of host writes, the host processor must “pad” the end of the
transfer with dummy data to ensure this (for example, if the host wants 31
words it must send an extra dummy word to equal 32). In the case of host
reads, dummy reads must be performed at the end and the host can then
throw away the results. This is true in both interrupt mode and acknowl-
edge mode.

Since all DMAs from the HOSTDP are 32-bits, data is packed into 32-bit
words in the HOSTDP FIFO on host data write operations. Data (32-bit)
in the FIFO is unpacked into 8-bit or 16-bit words (depending on the
HOSTDP_DATA_SIZE setting in HOST_CONTROL) for transmission during host

Description of Operation

8-10 ADSP-BF54x Blackfin Processor Hardware Reference

data read operations. Because all DMAs are 32-bits and the data bus is
either 8-bits or 16-bits, the total of XCOUNT * YCOUNT is 1/4 (8-bit) or 1/2
(16-bit) the number of data reads or writes the host processor performs.

HOSTDP Modes of Operation

There are two modes of flow control in the HOSTDP: acknowledge mode
and interrupt mode. These two modes provide flow control between the
host and the slave processor by way of a single hardware signal pin. This
signal has different names depending upon the mode of operation. The
flow control mode is configured by the slave processor when enabling the
HOSTDP (see HOST_CONTROL register).

In acknowledge mode, the signal is called HRDY and is used to add wait
states to a host transaction when the HOSTDP is not ready to transfer
data. The HRDY signal is level-sensitive.

In interrupt mode, the signal is called FRDY and is used as an edge-trig-
gered signal. This signal is connected to the host as an interrupt input. A
falling edge on it signals the host that the HOSTDP is ready for a guaran-
teed FIFO depth number of back-to-back transactions. For host write
operations, this occurs when the FIFO is empty. For host read operations,
this occurs when the FIFO is full.

Acknowledge Mode

For host data write operations, HRDY negates when the FIFO is full,
thereby inserting wait states. As soon as the DMA engine moves data out
of the FIFO, HRDY asserts, indicating to the host the host data write opera-
tion is complete.

ADSP-BF54x Blackfin Processor Hardware Reference 8-11

Host DMA Port

For host data read operations, HRDY will negate when the FIFO is empty,
thereby inserting wait states. As soon as the DMA engine moves data into
the FIFO, HRDY asserts indicating to the host the host data read operation
is complete.

The HRDY signal must be pulled high by an external pull-up resistor
by default at power-up/reset and when the HOSTDP is not
enabled. HRDY is only driven when HOST_CE is asserted low.

When the host is performing a host write configuration or HOST_STATUS
reads, HRDY always remains asserted and no wait states are added.

Acknowledge Mode Timing Diagrams

This section gives further details on the HOSTDP timings for acknowl-
edge mode. The host processor must follow these rules on every bus cycle
independent of the nature of the access and the status of slave processor.

(It is assumed that the Blackfin slave processor has booted and the
HOSTDP is functional.)

As discussed in the following section, HRDY has an external pull-up register:

1. If HOST_CE is high, HRDY is three-stated (not driven).

2. HRDY is driven by the slave processor only when HOST_CE is asserted
low by the external host device.

3. If HOST_CE as well as either HOST_RD or HOST_WR are asserted and
HOST_ADDR is high (configuration port access or status read), HRDY
remains driven high (READY).

Description of Operation

8-12 ADSP-BF54x Blackfin Processor Hardware Reference

4. If HOST_CE as well as either HOST_RD or HOST_WR are asserted, and
HOST_ADDR is low (data port access), one of two things happen:

a. If HOST_RD is asserted and the desired FIFO data can be
transferred on the data bus pins within time T, HRDY
remains driven high. If HOST_WR is asserted and if the data
can be stored in the FIFO within time T, HRDY remains
high.

b. If the desired FIFO data cannot be transferred on the data
bus pins or stored in the FIFO within time T, HRDY is driven
low quickly. At some later time after the FIFO data can be
transferred, HRDY is driven high.

The two timing diagrams, shown in Figure 8-3 and Figure 8-4, are neces-
sary to understand the function of HRDY.

Figure 8-3. No Delay in Host Bus Cycle

MINIMUM ACCESS TIME “T”

HOST_RD
 OR
HOST_WR

HOST_CE

HOST_ADDR

HOST_DATA

HRDY

VALID 8
 OR
16 BITS

ADSP-BF54x Blackfin Processor Hardware Reference 8-13

Host DMA Port

Host Bus Timeout

In acknowledge mode, an optional host bus timeout feature is imple-
mented as a mechanism to alert the host when a programmed period of
time has expired during a host read/write data transaction and the
HOSTDP is still unable to complete the transaction with HRDY assertion.
This condition can occur when the internal shared DMA bus has a lot of
traffic from other peripherals on it. (This situation should never occur in a
working system, but could occur if a mistake was made in software. An
example is mistakenly disabling the DMA channel while the HOSTDP is
attempting to transfer data.)An internal timer is started when HOST_CE and
either HOST_RD or HOST_WR are asserted. The timer is reset whenever HRDY is
asserted.

The feature can be enabled by the BT_EN bit in the HOST_CONTROL register.
When enabled, the HOSTDP generates an interrupt when a prepro-
grammed timeout value set in the HOST_TIMEOUT register expires. In a
typical application, the interrupt service routine toggles a GPIO pin which

Figure 8-4. Delay in Host Bus Cycle Caused by HRDY

HOST_ADDR

HOST_DATA

HRDY

VALID 8
 OR
16 BITS

ACCESS TIME > “T” DUE TO
HRDY ASSERTION

HOST_CE

HOST_RD
 OR
HOST_WR

Description of Operation

8-14 ADSP-BF54x Blackfin Processor Hardware Reference

is connected to the host processor to alert it of this condition. Addition-
ally, the interrupt service routine can perform writes to the HOST_CONTROL
register to perform the following:

• Stop the DMA channel by clearing the DMAEN bit in the
DMAx_CONFIG register

• Write the HRDY_OVR bit in the HOST_CONTROL register to assert the
HRDY pin to allow the host bus cycles to continue while the host is
being signaled of this condition by way of a GPIO pin

• Disable the HOSTDP by clearing the HOSTDP_EN bit in the
HOST_CONTROL register

The actual timeout value can be programmed in the HOSTDP_TOUT register.

Because it is important for the host to be aware that a timeout condition
occurred, it is required that the host processor read the HOST_STATUS regis-
ter and check the HOSTDP_TOUT bit. The ADSP-BF54x slave processor reads
the actual bit, allowing it to take the timeout interrupt, and
write-one-to-clear the HOSTDP_TOUT bit. The host processor reads a special
shadow version of this bit which remains set until the host has read it or a
hard reset occurs.

Interrupt Mode

The FRDY signal acts as an edge-sensitive (high-to-low transition) signal to
provide an interrupt to the external host to indicate when data transfer can
proceed. The interrupt provided by the slave processor to the external host
device by way of the FRDY signal is used to indicate the status of the Host
DMA port’s FIFO. Host data read and host data write accesses are
described next. The host device always masters the transactions and the
Blackfin processor is always a DMA slave device.

In interrupt mode, the FRDY signal always is driven by the slave processor
and does not require an external pull-up resistor.

ADSP-BF54x Blackfin Processor Hardware Reference 8-15

Host DMA Port

For host write operations, the FRDY signal transitions from high to low
whenever the FIFO is empty, causing an interrupt to the host to tell it to
write to HOSTDP. The host can then perform a buffer depth number of
write cycles to fill the FIFO. During these writes, the FRDY signal transi-
tions high again, but this is ignored by the host. After the FIFO's contents
have been moved to memory by the DMA engine, the FIFO becomes
empty. At this time, FRDY will once again transition from high to low to
interrupt the host to do another buffer depth number of write cycles to fill
the FIFO. This process continues until the configured number of words
have been transferred.

For host read operations, the FRDY signal transitions from high to low
whenever the FIFO is full, causing an interrupt to the host to tell it to read
from the HOSTDP. The host can then perform a buffer depth number of
read cycles to empty the FIFO. During these reads, the FRDY signal transi-
tions high again, but this is ignored by the host. The DMA engine fills the
FIFO from data in memory. Once the FIFO becomes full again, the FRDY
signal once again transitions from high to low to interrupt the host to do
another buffer depth number of write cycles to fill the FIFO. This process
continues until the configured number of words have been transferred.

In interrupt mode, the FRDY signal always reflects the status of the FIFO.
For host configuration writes or host reads of HOST_STATUS, accesses always
meets the minimum cycle time T and the FRDY signal is not used for flow
control of these accesses.

Description of Operation

8-16 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 8-5 shows the timing of the interrupt mode transactions. The total
number of words in the transfer are divided into blocks that contain a
FIFO depth’s number of words. These blocks are transferred whenever a
high-to-low transition occurs on the FRDY signal.

DMA STOP Mode and AUTOBUFFER Mode

The FLOW bit in HOST_CONFIG word controls whether the DMA channel
runs in stop mode or autobuffer mode.

In stop mode, the DMA performs a block transfer once as programmed by
the HOST_CONFIG, XCOUNT/YCOUNT, XMODIFY/YMODIFY, START_ADDR.L/H reg-
isters. To perform another block transfer requires the host to reconfigure
these parameters. For stop mode, the interrupt service routine is required
to set the DMA_CMPLT bit in the HOST_STATUS register. This prepares the
HOSTDP for the next transfer. The host is not required to poll the
DMA_CMPLT bit before starting a new work unit.

In autobuffer mode, the DMA performs continuous block transfers based
on the parameters programmed by the HOST_CONFIG, XCOUNT/YCOUNT,
XMODIFY/YMODIFY, START_ADDR.L/H registers. Once the number of words
specified by XCOUNT/YCOUNT are transferred, the DMA engine sets its
address pointer back to START_ADDR.L/H and performs another block
transfer. For autobuffer mode, the interrupt service routine should only

Figure 8-5. Interrupt Mode Bus Cycles

. . .

1st BLOCK 2nd BLOCK LAST BLOCK

FRDY

FIFO
DEPTH
OF
TRANSFERS

FIFO
DEPTH
OF
TRANSFERS

FIFO
DEPTH
OF
TRANSFERS

. . .

ADSP-BF54x Blackfin Processor Hardware Reference 8-17

Host DMA Port

set the DMA_CMPLT bit in the HOST_STATUS register when it wishes to com-
plete the transfers. After this bit is set, the HOSTDP block expects to be
reprogrammed with a new set of DMA register values.

Bus Widths and Endian Order

The HOSTDP can be programmed to be 16-bits wide or 8-bits wide.
Additionally, the byte order can be programmed as little endian or big
endian. All ensuing data and configuration transactions with the host
occur in the programmed endianess setting.

For 16-bit transfers, shown in Figure 8-6, the upper and lower bytes are
based on the big/little endian setting. When set to little endian, the order
of the bytes on the HOST_DATA[15:0] bus is unchanged. For big endian,
the upper and lower bytes of HOST_DATA[15:0] are swapped before being
stored internally.

Figure 8-6. 16-Bit Transfer Byte Order

MEMORY

ADDRESS: DATA: HOST_DATA BUS
LITTLE ENDIAN

HOST_DATA BUS
BIG ENDIAN

0x0

0x1

A

B B A

15 0

A B

15 0

Description of Operation

8-18 ADSP-BF54x Blackfin Processor Hardware Reference

For 8-bit transfers, the order in which the bytes are sent are based on the
bit/little endian setting as shown in Figure 8-7. Consider a 16-bit word
stored in internal memory:

Access Control

Configurations only occur when they are allowed. The ALLOW_CNFG bit
does not go low after configuration words are written if the access type is
disallowed. In the case of a disallowed configuration, the configuration
words are not driven on the DAB bus, and DMA controller does not get
programmed. There is no NACK provided to the host in the event of a
disallowed configuration.

By default, the HOSTDP module prohibits the external host from per-
forming host data read and writes. Blackfin software is required to enable
host reads or writes. Host data reads and writes are enabled or disabled
separately by the EHR and EHW bits in the HOST_CONTROL register. Once
enabled, the host can perform read or write transactions. Writes to the
configuration port, control commands and status reads are permitted
regardless of the EHR and EHW settings. It is very important that the
EHR/EHW bits are written once before ever allowing configuration from
the Host and then not changed later.

For more information, see the memory configuration discussion in
“Security” on page 15-1.

Figure 8-7. 8-Bit Transfer Byte Order

ADDRESS: DATA:

0x0

0x1

A

B

LITTLE ENDIAN:

1st A, 2nd B

BIG ENDIAN:

1st B, 2nd A

ADSP-BF54x Blackfin Processor Hardware Reference 8-19

Host DMA Port

In acknowledge mode, if the transactions are disabled, host writes are still
allowed on the bus, but the actual write data is ignored. Similarly, host
reads still occur on the bus, but the data returned is indeterminate.

In interrupt mode, transitions on FRDY never occur.

The host cannot interrogate the HOSTDP to see whether only
read or write access is granted. Therefore, keep the EHR and EHW
settings global without altering them.

Improving HOSTDP DMA Bus Bandwidth

Since the HOSTDP can be configured as a 16-bit wide parallel interface,
data can move into and out of the peripheral quickly as compared to other
serial peripherals on the chip. A FIFO is used to buffer this data and inter-
nal DMA bus requests are made judiciously to minimize the amount of
DMA bandwidth that is used on the DMA bus. DAB bus arbitration over-
head and direction change penalties are minimized. This is the default
behavior (BDR=1 in HOST_CONTROL) and the Host DMA port generally fol-
lows this behavior, shown in Table 8-3, for receive (host write) operations:

For example, if there are ten words written into the FIFO by the host pro-
cessor, on the eighth SCLK cycle, DMA is requested. Once the DAB
approves the request, it transfers four words. Assuming the host processor
does not write any new words to the FIFO, the HOSTDP again requests

Table 8-3. Host Write Operations

32-Bit Words in FIFO DMA Request Freq
(SCLK cycles)

Bursts per DMA Request

1 – 4 24 Up to 4

5 – 8 16 4

9 – 12 8 4

>12 2 0

Description of Operation

8-20 ADSP-BF54x Blackfin Processor Hardware Reference

DMA 16 cycles later and another four words are transferred. Twenty-four
SCLK cycles later, the remaining two words are transferred. Note that
words stored in the FIFO are 32 bits.

For transmit (host read) operation, the values look similar. Refer to
Table 8-4.

This default behavior can be overridden by clearing the burst DMA
requests (BDR) bit in the HOST_CONTROL register. This allows the HOSTDP
to perform internal DMA bus requests whenever there is a single word of
data in the FIFO for host writes and at least one empty slot for host reads.
In this case, DMA bus requests are made more often. This allows higher
throughput through the HOSTDP at the expense of the other peripherals
on the chip.

Control Commands Between the External Host and HOSTDP

Control commands can be sent from the host to the HOSTDP by writing
to the configuration port with bits 3 and 2 of the data high. When the
Host DMA port is waiting for configuration, a control command cannot
be sent because it will be misinterpreted as a configuration write. After
configuration is finished, control commands can be issued at any time. If
the host is unsure of whether configuration is pending, it needs to read the
HOST_STATUS register to check.

Table 8-4. Host Read Operation

32-bit Words in FIFO DMA Request Freq
(SCLK cycles)

Bursts per DMA Request

0 – 4 2 0

5 – 8 8 4

9 – 12 16 4

>12 24 Up to 4

ADSP-BF54x Blackfin Processor Hardware Reference 8-21

Host DMA Port

The commands that are supported are shown in Table 8-5.

The host IRQ command provides a mechanism for the host to interrupt
the HOSTDP. When the host writes a host IRQ command to the config-
uration port, the HIRQ bit in the HOST_STATUS register is set and a
HOSTDP status interrupt is signaled.

The handshake bit (HSHK) in HOST_STATUS can be set or cleared anytime by
the slave processor. This bit can be used as a flag which the host can read.
In an application, the host might interrupt with the host IRQ command
requesting information. The interrupt service routine could then set or
clear the HSHK bit. The host could then read the status register and test for
the value of the HSHK bit.

The DMA finish command performs all the same functions as the
HOSTDP reset (HOSTDP_RST) bit in HOST_CONTROL, except modifying the
HOST_STATUS register contents. In addition, it stops any DMA activity.
The DMA FINISH command may not complete right away, instead it
completes only after the DAB state machine has moved to a particular idle
state.

There are additional restrictions on when a DMA Finish command may
be sent by the host processor. Refer to "DMA Control Commands" on
page 5-39 of the "Direct Memory Access" chapter for more information.

When the HOSTDP module receives a FINISH command from the host
during a write operation, the DMA channel’s FIFO is still drained grace-
fully and requests a DMA completion interrupt. However, the

Table 8-5. Control Commands

HOST_DATA[7:0] Command

8'b000111xx Host IRQ

8'b001011xx DMA finish

8'b001111xx to 8'b111111xx Ignored

Programming Model

8-22 ADSP-BF54x Blackfin Processor Hardware Reference

HOSTDP’s FIFO is flushed immediately. To avoid loss of data, the host
may want to wait until the FIFOEMPTY bit in HOST_STATUS is asserted before
issuing the finish command.

Programming Model

BF54x Slave
Figure 8-8 shows how to enable the Host DMA port. It shows how to
properly set up interrupt service routines for both host read and write
which clear the interrupts and prepare the HOSTDP for to be configured
by the host again.

Figure 8-8. Enable the Host DMA Port

ENABLE PORT IN
HOST_CONTROL

TEST DMA_DONE
IN DMA_IRQ_STATUS

WAIT FOR INTERRUPTS
IN THE SELECTED IVG

W1C DMA_DONE

SET DMA_CMPLT
IN HOST_STATUS

DMA_DONE = 0

DMA_DONE = 1

DMA CHANNEL INTERRUPT SERVICE
ROUTINE. ENTRY CAUSED BY INTERRUPTS,
EXITS AFTER AN RTI INSTRUCTION.

START

BF54xSLAVE PROGRAMING MODEL STOP MODE
HOST READ OR WRITE

RTI

FIND AND CLEAR
INTERRUPT CAUSE

ADSP-BF54x Blackfin Processor Hardware Reference 8-23

Host DMA Port

Host Processor
Figure 8-9 and Figure 8-10 demonstrate how to program a host processor
to send a configuration to the ADSP-BF54x slave. They also show when to
send or receive data in both acknowledge and interrupt modes.

Figure 8-9. Program Host Processor, Part 1

POLL ALLOW_CNFG
IN HOST_STATUS

WRITE ALL SEVEN
CONFIGURATION WORDS

POLL DMA_RDY
IN HOST_STATUS

READ OR WRITE THE AMOUNT OF
DATA SPECIFIED IN CONFIG VALUES

END

FOLLOW-ON
TRANSACTION?

START

ALLOW_CNFG = 0

READY = 0

ALLOW_CNFG = 1

NO

YES

READY = 1

HOST PROCESSOR
ACKNOWLEDGE MODE WITH DMA

SET TO STOP MODE

Host DMA Port Registers

8-24 ADSP-BF54x Blackfin Processor Hardware Reference

Host DMA Port Registers
Descriptions and bit diagrams for each of the MMRs discussed in this
chapter are provided in the following sections:

• “Host DMA Port Control (HOST_CONTROL) Register” on
page 8-25

• “Host DMA Port Status (HOST_STATUS) Register” on
page 8-27

• “HOSTDP Timeout (HOST_TIMEOUT) Register” on page 8-29

Figure 8-10. Program Host Processor, Part 2

POLL ALLOW_CNFG
IN HOST_STATUS

WRITE ALL SEVEN
CONFIGURATION WORDS

READ OR WRITE FIFO DEPTH OF DATA

END

FOLLOW-ON
TRANSACTION?

START

ALLOW_CNFG = 0

ALLOW_CNFG = 1

NO

YES

HOST PROCESSOR
INTERRUPT MODE WITH DMA

SET TO STOP MODE

WAIT FOR FALLING EDGE
ON FRDY

ALL DATA READ
OR WRITTEN?

YES

NO

FRDY INTERRUPT
SERVICE ROUTINE

ADSP-BF54x Blackfin Processor Hardware Reference 8-25

Host DMA Port

Host DMA Port Control (HOST_CONTROL) Register
The HOSTDP control register (HOST_CONTROL), shown in Figure 8-11, is
used to enable the HOSTDP module as well as to establish transfer modes
of operation.

Additional information for the HOST_CONTROL register bits include:

• HOSTDP Enable (HOSTDP_EN):
This bit enables the HOSTDP interface. This bit controls the
muxing of the shared HOSTDP and PPI pins. Before disabling the
HOSTDP, always reset it first.

• Little/Big Endian (HOSTDP_END):
When set, this bit swaps the lower and upper byte of data when
reading or writing to HOSTDP FIFO. A value of 0 represents little
endian and a value of 1 represents big endian.

Figure 8-11. HOSTDP Control (HOST_CONTROL) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 0 0 0 0 0 0

HOSTDP Control Register (HOST_CONTROL)

HOSTDP Enable (HOSTDP_EN)Burst DMA Requests (BDR)

Reset = 0x0400

HOSTDP Endian (HOSTDP_END)

0xFFC03A00

Enable Host Writes (EHW)

Bus Timeout Enable (BT_EN)

Interrupt Mode (INT_MODE)

HRDY Override (HRDY_OVR)

8/16 Bit Mode
(HOSTDP_DATA_SIZE)

HOSTDP Reset (HOSTDP_RST)

 Enable Host Reads (EHR)

Host DMA Port Registers

8-26 ADSP-BF54x Blackfin Processor Hardware Reference

• 8/16-Bit Host Data Transfer (HOSTDP_DATA_SIZE):
This bit sets the HOSTDP external data transfer width. This bit,
along with HOSTDP_EN, controls the muxing of the HOSTDP data
pins and the EPPI pins. A value of 0 is 8-bit data and a value of 1 is
16-bit

• HOSTDP Reset (HOSTDP_RST):
This is a soft reset which does not affect the contents of
HOST_CONTROL. Programming this bit causes the FIFO to flush,
turns off the DMA channel, and returns the HOSTDP to a state
where it is waiting for configuration. It also causes HOST_STATUS to
clear to the same value as a hard reset with the exception of the BTE
bit, which is always the same as BT_EN in HOST_CTL. Host DMA
port reset will not complete right away, instead it completes only
after the DAB state machine has moved to a particular idle state.
This bit is always read as a binary 0.

• Host Ready Override (HRDY_OVR):
Setting this bit high forces HRDY high. If HRDY_OVR bit is written
high, HRDY is driven high for all remaining FIFO transfers. Also, the
ALLOW_CNFG bit is driven low to prevent accidental configurations.

• Interrupt Mode (INT_MODE):
This bit, when set, is used to select interrupt mode. When cleared,
it selects acknowledge Mode. A value of 0 selects acknowledge
mode and a value of 1 selects interrupt mode.

• Bus Timeout Enable (BT_EN):
This bit, when set, enables HOSTDP’s interrupt to occur when a
current host transaction has not finished before a programmed tim-
eout value occurs.

• Enable HOSTDP Write (EHW):
This bit, when set, enables HOSTDP’s writes to occur. If disabled,
host writes appear to occur on the pins, but the actual write data is
ignored.

ADSP-BF54x Blackfin Processor Hardware Reference 8-27

Host DMA Port

• Enable HOSTDP Read (EHR):
This bit, when set, enables HOSTDP’s reads to occur. If disabled,
host reads return zero data.

• Burst DMA Requests (BDR):
When set, as by default, the HOSTDP’s module groups multiple
data words and requests DMA bursts to the DAB bus. When
cleared, every individual data word requests its separate DMA
transfer.

Host DMA Port Status (HOST_STATUS) Register
The HOSTDP status register (HOST_STATUS), shown in Figure 8-12, holds
the key status information of the HOSTDP. Bits in this register are read
by the external host to query status of transaction. This register can also be
read and written through PAB. Note the differences in how to write and
clear bits as well as the many bits which are read-only.

Figure 8-12. HOSTDP Status (HOST_STATUS) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 1 0

HOSTDP Status Register (HOST_STATUS)

DMA Ready (DMA_RDY)Bus Timeout Enabled (BTE)

Reset = 0x000C

FIFO Full (FIFOFULL)DMA direction (DMA_DIR)

0xFFC03A04

Allow Config (ALLOW_CNFG)

Host Timeout (HOSTDP_TOUT)

DMA Complete (DMA_CMPLT)

Host Handshake (HSHK)

FIFO Empty (FIFOEMPTY)

Host Interrupt Request (HIRQ)

Host DMA Port Registers

8-28 ADSP-BF54x Blackfin Processor Hardware Reference

Additional information for the HOST_STATUS register bits include:

• DMA Ready (DMA_RDY) - read-only:
This bit is set one cycle after the last control word (YMODIFY) is
written to the DMA. The bit is cleared when the COMPLETE bit is set
by software.

• FIFO Full (FIFOFULL) - read-only:
This bit is set when the HOSTDP FIFO is full.

• FIFO Empty (FIFOEMPTY) - read-only:
This bit is set when the HOSTDP FIFO is empty.

• DMA Complete (DMA_CMPLT) - write-1-to-set:
This bit must be set by software in the interrupt service routine
called when the DMA operation is completed. This bit is cleared
after the last control word (YMODIFY) is written to the DMA
controller.

• HOSTDP Handshake (HSHK) - read/write:
This bit is set and cleared by software and functions as a gen-
eral-purpose handshake bit. Often it is used to indicate an error to
the host device. This bit does not control HOSTDP hardware and
is cleared by the HOSTDP_RST bit.

• HOSTDP Timeout (HOSTDP_TOUT) - write-1-to-clear:
This bit is set when the HOSTDP time-out occurs. When set, it
requests a HOSTDP status interrupt. The interrupt service routine
(ISR) must write this bit to one to clear it.

• HOSTDP Interrupt Request (HIRQ) - write-1-to-clear:
This bit is set when the host writes a HOSTDP IRQ control com-
mand to the configuration port. When set, this bit requests a
HOSTDP status interrupt. The interrupt service routine (ISR)
must write this bit to one to clear it.

ADSP-BF54x Blackfin Processor Hardware Reference 8-29

Host DMA Port

• Allow Configurations (ALLOW_CNFG) - read-only:
The host processor is required to poll this bit to see when the Host
DMA port is enabled and configuration writes are allowed. This bit
is cleared when the last configuration word (YMODIFY) is written by
the host. The bit is set again when the descriptor is completely
passed to the DMA channel.

• DMA Direction (DMA_DIR) - read-only:
This bit is set to 0 when DMA is set for read and set to 1 for DMA
writes. It reflects the WNR bit in the DMA_CONFIG word. If a former
work unit was active, the bit does not update until the DMA_CPLT bit
is set by software.

• Bus Timeout Enabled (BTE) - read-only:
This bit is just a copy of the BT_EN bit in the HOST_CONTROL register.
The host can read this bit to determine if software has enabled the
bus timeout feature.

This bit must be set by the interrupt service routine software which
is called when the DMA is finished.

HOSTDP Timeout (HOST_TIMEOUT) Register
The HOSTDP timeout feature is previously described in “Acknowledge
Mode” on page 8-10.

Figure 8-13. HOSTDP Timeout (HOST_TIMEOUT) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HOSTDP Timeout Register (HOST_TIMEOUT)

Reset = 0x00000xFFC03A08

Host DMA Port Registers

8-30 ADSP-BF54x Blackfin Processor Hardware Reference

The HOSTDP timeout register (HOST_TIMEOUT), shown in Figure 8-13,
holds the timeout value. A timer is loaded with this value when a host
transaction is started. If HOSTDP does not respond with HRDY within the
programmed amount of time, the TIMEOUT bit in the HOST_STATUS register
is set and an interrupt is generated. This feature takes effect only when the
BT_EN bit in the HOST_CONTROL register is set to 1.

The length of the timeout generated by this register is governed by the fol-
lowing equation:

For example, using an SCLK frequency of 133 MHz and HOST_TIMEOUT =
0x7ED, the timeout period is approximately one second.

timeout 2^16 * HOST_TIMEOUT() sclk_freq()⁄=

ADSP-BF54x Blackfin Processor Hardware Reference 8-31

Host DMA Port

Programming Examples

Listing 8-1. Enable 8-Bit HOSTDP data in pin MUXing

/* Enable 8-bit HOSTDP data in pin MUXing */

P5.H = hi(PORTD_FER);

P5.L = lo(PORTD_FER);

R5.L = PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | nPD7

| nPD6 | nPD5 | nPD4 | nPD3 | nPD2 | nPD1 | nPD0;

w[P5] = R5.L;

P5.H=hi(PORTD_MUX);

P5.L=lo(PORTD_MUX);

R5.H=hi(MUX(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0));

R5.L=lo(MUX(1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0));

[P5] = R5;

/* Enable 16-bit HOSTDP data in pin MUXing */

P5.H = hi(PORTD_FER);

P5.L = lo(PORTD_FER);

R5.L = PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7

Programming Examples

8-32 ADSP-BF54x Blackfin Processor Hardware Reference

| PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0;

w[P5] = R5.L;

P5.H=hi(PORTD_MUX);

P5.L=lo(PORTD_MUX);

R5.H=hi(MUX(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1));

R5.L=lo(MUX(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1));

[P5] = R5;

/* Enable HOSTDP Control Signals in pin MUXing */

P5.H = hi(PORTG_FER);

P5.L = lo(PORTG_FER);

R5.L = nPG15 | nPG14 | nPG13 | nPG12 | PG11 | nPG10 | nPG9 | nPG8

| PG7 | PG6 | PG5 | nPG4 | nPG3 | nPG2 | nPG1 | nPG0;

w[P5] = R5.L;

P5.H=hi(PORTH_MUX);

P5.L=lo(PORTH_MUX);

R5.H=hi(MUX(0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0));

R5.L=lo(MUX(0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0));

[P5] = R5;

ADSP-BF54x Blackfin Processor Hardware Reference 8-33

Host DMA Port

P5.H = hi(PORTH_FER);

P5.L = lo(PORTH_FER);

R5.L = nPH15 | nPH14 | nPH13 | nPH12 | nPH11 | nPH10 | nPH9 | nPH8

| nPH7 | nPH6 | nPH5 | PH4 | PH3 | nPH2 | nPH1 | nPH0;

w[P5] = R5.L;

P5.H=hi(PORTH_MUX);

P5.L=lo(PORTH_MUX);

R5.H=hi(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0));

R5.L=lo(MUX(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

[P5] = R5;

/* Enable 16-bit HOSTDP */

P5.H = hi(HOST_CONTROL);

P5.L = lo(HOST_CONTROL);

R5 = HOSTDP_EN /* HOSTDP Enable */

| nHOSTDP_END /* Little endian transfers */

| HOSTDP_DATA_SIZE /* 16-bit Data Size */

| nINT_MODE /* Acknowledge Mode */

| nBT_EN /* Bus timeout disabled */

Programming Examples

8-34 ADSP-BF54x Blackfin Processor Hardware Reference

| EHW /* Enable Host Writes */

| EHR /* Enable Host Reads */

| BDR (z); /* Burst DMA Requests On */

ADSP-BF54x Blackfin Processor Hardware Reference 9-1

9 GENERAL-PURPOSE PORTS

This chapter describes general-purpose ports, pin multiplexing, gen-
eral-purpose input/output (GPIO) functionality, and pin interrupts. This
chapter includes the following sections:

• “Overview” on page 9-1

• “Module Overview” on page 9-3

• “Pin Multiplexing Scheme” on page 9-4

• “GPIO Functionality” on page 9-21

• “Pin Interrupts” on page 9-23

• “Programming Model” on page 9-26

• “Port Registers” on page 9-30

• “Programming Examples” on page 9-60

Overview
The general-purpose ports cover three jobs:

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupts

This chapter characterizes each of the three topics in detail.

Overview

9-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The peripheral pins are functionally organized into ten general-purpose
ports designated port A through port J. These ports feature:

• Up to 152 general-purpose I/O (GPIO) pins

• Input mode, output mode, and open-drain mode of GPIO
operation

• Port multiplexing controlled by individual pin-per-pin base

• Identical port multiplexing scheme on all ADSP-BF54x Blackfin
processor family derivatives

• No glue hardware required for unused pins

• Four interrupt channels dedicated to pin interrupts

• All port pins provide interrupt functionality

• Byte-wide pin-to-interrupt assignment

ADSP-BF54x Blackfin Processor Hardware Reference 9-3

General-Purpose Ports

Module Overview
A simplified illustration of the GPIO and pin interrupt signal flow is
shown in Figure 9-1.

Figure 9-1. Simplified GPIO and Pin Interrupt Signal Flow

PERIPHERAL 2 (DATA OUT)

PERIPHERAL 1 (DATA OUT)

PERIPHERAL 1 (OUTPUT ENABLE)

PERIPHERAL 2 (OUTPUT ENABLE)

PERIPHERAL 2 (INPUT ENABLE)

PERIPHERAL 1 (INPUT ENABLE)

PORTx_MUX PORTx_FER

PAD

ALL PERIPHERALS (DATA IN)

PORTx (WRITE)

PORTx_DIR

PORTx_INEN

PINTx_PINSTATE
PINTx_EDGE

PORTx (READ)

PINTx_INVERT

PINTx_ASSIGN

PINTx_REQUEST (READ)

PINTx_MASK

PINTx_LATCH (READ)

PINTx_LATCH (W1C)

PINTx_REQUEST (W1C)

Pin Multiplexing Scheme

9-4 ADSP-BF54x Blackfin Processor Hardware Reference

External Interfaces
The pin multiplexing hardware can be seen as a layer between the on-chip
peripherals and the pads of the silicon. All pins grouped into the ports
“port A” to “port J” are controlled by this unit.

Internal Interfaces
All MMR registers of the pin multiplexing, GPIO and pin interrupt con-
trol blocks can be accessed through the PAB bus. There is no DMA
support. Every one of the four pin interrupt modules has its own and ded-
icated interrupt request output signal that connects directly to the SIC
controller, as shown in Figure 9-2 on page 9-23.

Pin Multiplexing Scheme
ADSP-BF54x Blackfin processors feature a rich set of on-chip peripherals.
Each set of peripherals has a combination of input and output signals asso-
ciated with them. In total, these are many more signals than pins available
on the processors. Therefore, a powerful pin multiplexing scheme provides
best flexibility to external application space.

ADSP-BF54x Blackfin Processor Hardware Reference 9-5

General-Purpose Ports

Table 9-1 shows all peripheral signals that are accessible off the chip
through the general-purpose ports. The individual members of the
ADSP-BF54x Blackfin processor family do not feature all the listed
peripherals at the same time. Note that some signals are optional and are
not necessarily required in all operating modes.

Table 9-1. General-Purpose and Special Function Signals

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

EBIU (async)

Address (22) H, I

x x x x x
Bus Handshake (3) J

Clock (1) I

Ready (1) J

NAND Flash
Controller

Control (2) J
x x x x x

ATAPI
Control (8) J

x x x - x
Reset (1) H

HostDMA Port
(HOSTDP)

Data (16) D

x x x x -
Control (3) B, G, H

Address (1) H

Acknowledge (1) H

SD/SDIO
Controller

Data (4) C

x x x - xClock (1) C

Command (1) C

EPPI0

Data (24) D, F

x x x x -Clock (1) G

Frame Sync (3) G, H

Pin Multiplexing Scheme

9-6 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI1

Data (16) D

x x x x xClock (1) E

Frame Sync (3) E, H

EPPI2

Data (8) D

x x x x xClock (1) G

Frame Sync (3) G, H

SPORT0

Data (4) C

x x x - -Clock (2) C

Frame Sync (2) C

SPORT1

Data (4) D

x x x x xClock (2) D

Frame Sync (2) D

SPORT2

Data (4) A

x x x x xClock (2) A

Frame Sync (2) A

SPORT3

Data (4) A

x x x x xClock (2) A

Frame Sync (2) A

SPI0

Data (2) E

x x x x x
Clock (1) E

Slave Select (1) E

Slave Enable (3) E

Table 9-1. General-Purpose and Special Function Signals (Cont’d)

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

ADSP-BF54x Blackfin Processor Hardware Reference 9-7

General-Purpose Ports

SPI1

Data (2) G

x x x x x
Clock (1) G

Slave Select (1) G

Slave Enable (3) G

SPI2

Data (2) B

–x –x x - -
Clock (1) B

Slave Select (1) B

Slave Enable (3) B

UART0 Data (2) E x x x x x

UART1
Data (2) H

x x x x x
Control (2) E

UART2 Data (2) B x x x - -

UART3
Data (2) B

x x x x x
Control (2) B

High Speed USB
OTG

x x x - x

CAN01 Data (2) G x x - x x

CAN11 Data (2) G – x - x -

TWI0
Data (1) E

x x x x x
Clock (1) E

TWI1
Data (1) B

x x x x -
Clock (1) B

Timer 0-7

PWM/Capture/Clock (8) A, B

x x x x xAlternate Clock Input (8) A

Alternate Capture Input (7) A, B, E, G, H

Table 9-1. General-Purpose and Special Function Signals (Cont’d)

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

Pin Multiplexing Scheme

9-8 ADSP-BF54x Blackfin Processor Hardware Reference

Read from Page 0x05 of the on-chip OTP memory when determining
whether a module is available on a respective ADSP-BF54x Blackfin pro-
cessor. For details, see “System Reset and Booting” on page 17-1.

The peripheral pins of the ADSP-BF54x Blackfin processors are function-
ally organized into ten general-purpose ports which are designated Port A
through port J. Most ports consist of 16 pins; a few have fewer. By default,
all port pins are configured for GPIO operation after reset. In total, there
are 152 GPIO-capable pins. Pin interrupt functionality is covered by a
separate functional block.

The individual ports are discussed in the following sections.

Timer 8-10

PWM/Capture/Clock (3) H

x x x x -Alternate Clock Input (3) H

Alternate Capture Input (3) H

Up/ Down
Counter

Up / Dir (1) H

x x x x xDown / Gate (1) H

Zero Marker (1) G

KEYPAD
Rows (8) D, E

x –x x - x
Columns (8) D, E

MXVR

Data (2) H

x – – - -Clock (2) C

Control (2) G, H

GPIOs GPIOs (152) A-J x x x x x

1 Automotive only.

Table 9-1. General-Purpose and Special Function Signals (Cont’d)

Module Signals On Ports

A
D

SP
-B

F5
49

A
D

SP
-B

F5
48

A
D

SP
-B

F5
47

A
D

SP
-B

F5
44

A
D

SP
-B

F5
42

ADSP-BF54x Blackfin Processor Hardware Reference 9-9

General-Purpose Ports

Port A
Port A consists of 16 pins, referred to as PA0 to PA15, as shown in
Table 9-2. Besides the 16 GPIOs, this port homes all SPORT2 and SPORT3
signals. If the secondary data pins are not needed, the corresponding pins
can be used for general-purpose timer purposes.

Table 9-2. Port A Pin Configuration

Pin GPIO PORTA
_MUX

1st
Function

(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PA0 PA0 1:0 SPORT2 TFS - - - -

PA1 PA1 3:2 SPORT2 DTSEC TMR4 - - -

PA2 PA2 5:4 SPORT2 DTPRI - - - -

PA3 PA3 7:6 SPORT2 TSCLK - - - -

PA4 PA4 9:8 SPORT2 RFS - - - -

PA5 PA5 11:10 SPORT2 DRSEC TMR5 - - -

PA6 PA6 13:12 SPORT2 DRPRI - - - -

PA7 PA7 15:14 SPORT2 RSCLK - - - TACLK01

1 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral must enable
the pin input driver. This driver is not enabled by the timer.

PA8 PA8 17:16 SPORT3 TFS - - - TACLK11

PA9 PA9 19:18 SPORT3 DTSEC TMR6 - - -

PA10 PA10 21:20 SPORT3 DTPRI - - - TACLK21

PA11 PA11 23:22 SPORT3 TSCLK - - - TACLK31

PA12 PA12 25:24 SPORT3 RFS - - - TACLK41

PA13 PA13 27:26 SPORT3 DRSEC TMR7 - - TACLK51

PA14 PA14 29:28 SPORT3 DRPRI - - - TACLK61

PA15 PA15 31:30 SPORT3 RSCLK - - - TACI71,
TACLK71

Pin Multiplexing Scheme

9-10 ADSP-BF54x Blackfin Processor Hardware Reference

Port B
Port B consists of 15 pins, referred to as PB0 to PB14, as shown in
Table 9-3. Besides the 15 GPIOs, this port homes TW1, UART2, UART3 and
SPI2 signals. If the SPI2 slave select signals are not needed, the corre-
sponding pins can be used for general-purpose timer purposes.

Table 9-3. Port B Pin Configuration

Pin GPIO PORTB
_MUX

1st
Function

(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PB0 PB0 1:0 TWI1 SCL1

1 PB_0 and PB_1 are I2C pins which also have GPIO capability. Since the I2C pads can only drive low, the
GPIO for these two bits cannot drive a 1. These pads should be used with an external pull-up, so that a 1 is
seen when they are not pulling down.

- - - -

PB1 PB1 3:2 TWI1 SDA1 - - - -

PB2 PB2 5:4 UART3 RTS - - - -

PB3 PB3 7:6 UART3 CTS - - - -

PB4 PB4 9:8 UART2 TX - - - -

PB5 PB5 11:10 UART2 RX - - - TACI22

2 To enable timer alternate capture and clock Inputs, either the GPIO or the multiplexed peripheral must enable
the pin input driver. This driver is not enabled by the timer.

PB6 PB6 13:12 UART3 TX - - - -

PB7 PB7 15:14 UART3 RX - - - TACI32

PB8 PB8 17:16 SPI2 SS TMR0 - - -

PB9 PB9 19:18 SPI2 SSEL1 TMR1 - - -

PB10 PB10 21:20 SPI2 SSEL2 TMR2 - - -

PB11 PB11 23:22 SPI2 SSEL3 TMR3 - - HWAIT3

PB12 PB12 25:24 SPI2 SCK - - - -

PB13 PB13 27:26 SPI2 MOSI - - - -

PB14 PB14 29:28 SPI2 MISO - - - -

ADSP-BF54x Blackfin Processor Hardware Reference 9-11

General-Purpose Ports

Port C
Port C consists of 14 pins, referred to as PC0 to PC13, as shown in
Table 9-4. Besides the 14 GPIOs, this port homes SPORT0 and SDIO
signals.

3 The Boot Host Wait (HWAIT) signal is a GPIO output that is driven and toggled by the boot kernel at boot
time. An external pulling resistor is required for proper operation. A pull-up resistor instructs the HWAIT sig-
nal to behave active high (low when ready for data). A pull-down resistor instructs the HWAIT signal to behave
active low (high when ready for data). After boot it can be used for other purposes. If PB11 is used for other
purposes (for example, timer or SPI operation), the HWAITA signal on PH7 can be used alternatively. The
Alternate Host Wait (HWAITA) can be alternatively used instead of HWAIT on PH7 when programming the
OTP_ALTERNATE_HWAIT bit in the PBS_MAIN_LO OTP memory page. For details, see “System Reset
and Booting” on page 17-1.

Table 9-4. Port C Pin Configuration

Pin GPIO PORTC
_MUX

1st
Function

(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PC0 PC0 1:0 SPORT0 TFS - - - -

PC1 PC1 3:2 SPORT0 DTSEC MMCLK - - -

PC2 PC2 5:4 SPORT0 DTPRI - - - -

PC3 PC3 7:6 SPORT0 TSCLK - - - -

PC4 PC4 9:8 SPORT0 RFS - - - -

PC5 PC5 11:10 SPORT0 DRSEC MBCLK - - -

PC6 PC6 13:12 SPORT0 DRPRI - - - -

PC7 PC7 15:14 SPORT0 RSCLK - - - -

PC8 PC8 17:16 SD D0 - - - -

PC9 PC9 19:18 SD D1 - - - -

PC10 PC10 21:20 SD D2 - - - -

PC11 PC11 23:22 SD D3 - - - -

PC12 PC12 25:24 SD CLK - - - -

PC13 PC13 27:26 SD CMD - - - -

Pin Multiplexing Scheme

9-12 ADSP-BF54x Blackfin Processor Hardware Reference

Port D
Port D consists of 16 pins, referred to as PD0 to PD15, as shown in
Table 9-5. Besides the 16 GPIOs, this port homes data signals of all three
EPPI ports and of the host port. Additionally, there are the SPORT1 signals
and four columns and four rows of the keypad peripheral.

This port provides flexible configurations, whereby 8-, 16-, or 24-bit
EPPI configurations can be balanced against 8- or 16-bit host operation.

Table 9-5. Port D Pin Configuration

Pin GPIO PORTD
_MUX

1st
Function

(MUX = 00)

2nd
Function

(MUX = 01)

3rd
Function

(MUX = 10)

4th
Function

(MUX = 11)

Additional
Use

PD0 PD0 1:0 PPI1 D0 HOST D8 SPORT1 TFS PPI0 D18 -

PD1 PD1 3:2 PPI1 D1 HOST D9 SPORT1 DTSEC PPI0 D19 -

PD2 PD2 5:4 PPI1 D2 HOST D10 SPORT1 DTPRI PPI0 D20 -

PD3 PD3 7:6 PPI1 D3 HOST D11 SPORT1 TSCLK PPI0 D21 -

PD4 PD4 9:8 PPI1 D4 HOST D12 SPORT1 RFS PPI0 D22 -

PD5 PD5 11:10 PPI1 D5 HOST D13 SPORT1 DRSEC PPI0 D23 -

PD6 PD6 13:12 PPI1 D6 HOST D14 SPORT1 DRPRI - -

PD7 PD7 15:14 PPI1 D7 HOST D15 SPORT1 RSCLK - -

PD8 PD8 17:16 PPI1 D8 HOST D0 PPI2 D0 KEY ROW0 -

PD9 PD9 19:18 PPI1 D9 HOST D1 PPI2 D1 KEY ROW1 -

PD10 PD10 21:20 PPI1 D10 HOST D2 PPI2 D2 KEY ROW2 -

PD11 PD11 23:22 PPI1 D11 HOST D3 PPI2 D3 KEY ROW3 -

PD12 PD12 25:24 PPI1 D12 HOST D4 PPI2 D4 KEY COL0 -

PD13 PD13 27:26 PPI1 D13 HOST D5 PPI2 D5 KEY COL1 -

PD14 PD14 29:28 PPI1 D14 HOST D6 PPI2 D6 KEY COL2 -

PD15 PD15 31:30 PPI1 D15 HOST D7 PPI2 D7 KEY COL3 -

ADSP-BF54x Blackfin Processor Hardware Reference 9-13

General-Purpose Ports

Port E
Port E consists of 16 pins, referred to as PE0 to PE15, as shown in
Table 9-6. Besides the 16 GPIOs, this port homes data signals for SPI0,
UART0, and TWI0. Furthermore, there are UART1 hardware flow control sig-
nals and PPI1 clock and frame sync signals. If not all signals of the SPI0
are needed in an application, the associated pins can operate as rows and
columns for the keypad peripheral.

Table 9-6. Port E Pin Configuration

Pin GPIO PORTE
_MUX

1st
Function

(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PE0 PE0 1:0 SPI0 SCK KEY COL7 - - -

PE1 PE1 3:2 SPI0 MISO KEY ROW6 - - -

PE2 PE2 5:4 SPI0 MOSI KEY COL6 - - -

PE3 PE3 7:6 SPI0 SS KEY ROW5 - - -

PE4 PE4 9:8 SPI0 SEL1 KEY COL5 - - -

PE5 PE5 11:10 SPI0 SEL2 KEY ROW4 - - -

PE6 PE6 13:12 SPI0 SEL3 KEY COL4 - - -

PE7 PE7 15:14 UART0 TX KEY ROW7 - - -

PE8 PE8 17:16 UART0 RX - - - TACI01

1 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral must enable
the pin input driver. This driver is not enabled by the timer.

PE9 PE9 19:18 UART1 RTS - - - -

PE10 PE10 21:20 UART1 CTS - - - -

PE11 PE11 23:22 PPI1 CLK - - - -

PE12 PE12 25:24 PPI1 FS1 - - - -

PE13 PE13 27:26 PPI1 FS2 - - - -

PE14 PE14 29:28 TWI0 SCL - - - -

PE15 PE15 31:30 TWI0 SDA - - - -

Pin Multiplexing Scheme

9-14 ADSP-BF54x Blackfin Processor Hardware Reference

Port F
Port F consists of 16 pins, referred to as PF0 to PF15, as shown in
Table 9-7. Besides the 16 GPIOs, this port homes 16 data signals of the
PPI0 interface. This port can alternatively provide the ATAPI data signals
if not multiplexed with the asynchronous bus.

Table 9-7. Port F Pin Configuration

Pin GPIO PORTF
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PF0 PF0 1:0 PPI0 D0 ATAPI D0A1

1 ATAPI data and address signals are routed to alternate homes when PORTF_MUX[1:0] == b#01.

- - -

PF1 PF1 3:2 PPI0 D1 ATAPI D1A1 - - -

PF2 PF2 5:4 PPI0 D2 ATAPI D2A1 - - -

PF3 PF3 7:6 PPI0 D3 ATAPI D3A1 - - -

PF4 PF4 9:8 PPI0 D4 ATAPI D4A1 - - -

PF5 PF5 11:10 PPI0 D5 ATAPI D5A1 - - -

PF6 PF6 13:12 PPI0 D6 ATAPI D6A1 - - -

PF7 PF7 15:14 PPI0 D7 ATAPI D7A1 - - -

PF8 PF8 17:16 PPI0 D8 ATAPI D8A1 - - -

PF9 PF9 19:18 PPI0 D9 ATAPI D9A1 - - -

PF10 PF10 21:20 PPI0 D10 ATAPI D10A1 - - -

PF11 PF11 23:22 PPI0 D11 ATAPI D11A1 - - -

PF12 PF12 25:24 PPI0 D12 ATAPI D12A1 - - -

PF13 PF13 27:26 PPI0 D13 ATAPI D13A1 - - -

PF14 PF14 29:28 PPI0 D14 ATAPI D14A1 - - -

PF15 PF15 31:30 PPI0 D15 ATAPI D15A1 - - -

ADSP-BF54x Blackfin Processor Hardware Reference 9-15

General-Purpose Ports

Port G
Port G consists of 16 pins, referred to as PG0 to PG15, as shown in
Table 9-8. Besides the 16 GPIOs, this port homes EPPI0 control signals,
all CAN signals, as well as the SPI1 signals. If additional SPI1 slave select
signals are not needed by an application, the associated pins can alterna-
tively function as Host DMA port or EPPI2 control signals. Also, the zero
marker input of the counter module is there.

Table 9-8. Port G Pin Configuration

Pin GPIO PORTG
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PG0 PG0 1:0 PPI0 CLK - - - TMRCLK1

1 TMRCLK serves all eleven general-purpose timers.

PG1 PG1 3:2 PPI0 FS1 - - - -

PG2 PG2 5:4 PPI0 FS2 ATAPI A0A2

2 ATAPI data and address signals are routed to alternate homes when PORTF_MUX[1:0] == b#01.

- - -

PG3 PG3 7:6 PPI0 D16 ATAPI A1A2 - - -

PG4 PG4 9:8 PPI0 D17 ATAPI A2A2 - - -

PG5 PG5 11:10 SPI1 SEL1 HOST CE PPI2 FS2 CNT CZM -

PG6 PG6 13:12 SPI1 SEL2 HOST RD PPI2 FS1 - -

PG7 PG7 15:14 SPI1 SEL3 HOST WR PPI2 CLK - -

PG8 PG8 17:16 SPI1 SCK - - - -

PG9 PG9 19:18 SPI1 MISO - - - -

PG10 PG10 21:20 SPI1 MOSI - - - -

PG11 PG11 23:22 SPI1 SS MTXONB - - -

PG12 PG12 25:24 CAN0 TX - - - -

PG13 PG13 27:26 CAN0 RX - - - TACI43

PG14 PG14 29:28 CAN1 TX - - - -

PG15 PG15 31:30 CAN1 RX - - - TACI53

Pin Multiplexing Scheme

9-16 ADSP-BF54x Blackfin Processor Hardware Reference

Port H
Port H consists of 14 pins, referred to as PH0 to PH13, as shown in
Table 9-9. Besides the 14 GPIOs, this port homes six address lines of the
parallel asynchronous memory interface. Furthermore, there are the UART1
data signals and set of miscellaneous control signals, such as Host DMA
port strobes, handshaked-memory DMA request strobes, the third EPPI
frame syncs, and the up- and down-count inputs of the counter module.

The boot host wait (HWAIT) and alternate boot host wait (HWAITA) are not
associated with any hardware block. It is a normal GPIO pin that has a
special purpose during booting. For details, see “System Reset and Boot-
ing” on page 17-1.

3 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral must enable
the pin input driver. This driver is not enabled by the timer.

Table 9-9. Port H Pin Configuration

Pin GPIO PORTH
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PH0 PH0 1:0 UART1 TX PPI1 FS3 - - -

PH1 PH1 3:2 UART1 RX EPPI0 FS3 - - TACI11

PH2 PH2 5:4 ATAPI RESET TMR8 EPPI2 FS3 - -

PH3 PH3 7:6 HOST ADDR TMR9 CNT CDG - -

PH4 PH4 9:8 HOST ACK TMR10 CNT CUD - -

PH5 PH5 11:10 MTX DMAR0 - - TACI81,
TACLK81

PH6 PH6 13:12 MRX DMAR1 - - TACI91,
TACLK91

PH7 PH7 15:14 MRXONB - - - TACI101,
TACLK101,

HWAIT2

PH8 PH8 17:16 A4 - - -

PH9 PH9 19:18 A5 - - - -

ADSP-BF54x Blackfin Processor Hardware Reference 9-17

General-Purpose Ports

Port I
Port I consists of 16 pins, referred to as PI0 to PI15, as shown in
Table 9-10. Besides the 16 GPIOs, this port homes the upper 16 address
lines of the parallel asynchronous memory interface and the clock for the
synchronous NOR flash interface.

PH10 PH10 21:20 A6 - - - -

PH11 PH11 23:22 A7 - - - -

PH12 PH12 25:24 A8 - - - -

PH13 PH13 27:26 A9 - - - -

1 To enable timer alternate capture and clock inputs, either the GPIO or the multiplexed peripheral must enable
the pin input driver. This driver is not enabled by the timer.

2 The Boot Host Wait (HWAIT) signal is a GPIO output that is driven and toggled by the boot kernel at boot
time. An external pulling resistor is required for proper operation. A pull-up resistor instructs the HWAIT
signal to behave active high (low when ready for data). A pull-down resistor instructs the HWAIT signal to
behave active low (high when ready for data). After boot, it can be used for other purposes. If PH7 is used for
other purposes (for example, MXVR operation), the HWAITA signal on PB11 can be used alternatively.
HWAITA operation is enabled by programming the OTP_ALTERNATE_HWAIT bit in the PBS_MAIN_LO
OTP memory page. For details, see “System Reset and Booting” on page 17-1.

Table 9-10. Port I Pin Configuration

Pin GPIO PORTI
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PI0 PI0 1:0 A10 - - - -

PI1 PI1 3:2 A11 - - - -

PI2 PI2 5:4 A12 - - - -

PI3 PI3 7:6 A13 - - - -

PI4 PI4 9:8 A14 - - - -

PI5 PI5 11:10 A15 - - - -

Table 9-9. Port H Pin Configuration (Cont’d)

Pin GPIO PORTH
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

Pin Multiplexing Scheme

9-18 ADSP-BF54x Blackfin Processor Hardware Reference

Port J
Port J consists of 16 pins, referred to as PJ0 to PJ15, as shown in
Table 9-11. Besides the 16 GPIOs, this port provides various control sig-
nals for the NAND flash, NOR flash, and ATAPI interfaces.

PI6 PI6 13:12 A16 - - - -

PI7 PI7 15:14 A17 - - - -

PI8 PI8 17:16 A18 - - - -

PI9 PI9 19:18 A19 - - - -

PI10 PI10 21:20 A20 - - - -

PI11 PI11 23:22 A21 - - - -

PI12 PI12 25:24 A22 - - - -

PI13 PI13 27:26 A23 - - - -

PI14 PI14 29:28 A24 - - - -

PI15 PI15 31:30 A25 NOR CLK - - -

Table 9-11. Port J Pin Configuration

Pin GPIO PORTJ
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

PJ0 PJ0 1:0 AMC ARDY /
NOR WAIT

- - - -

PJ1 PJ1 3:2 NAND CE - - - -

PJ2 PJ2 5:4 NAND RB - - - -

PJ3 PJ3 7:6 ATAPI DIOR - - - -

PJ4 PJ4 9:8 ATAPI DIOW - - - -

PJ5 PJ5 11:10 ATAPI CS0 - - - -

Table 9-10. Port I Pin Configuration (Cont’d)

Pin GPIO PORTI
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

ADSP-BF54x Blackfin Processor Hardware Reference 9-19

General-Purpose Ports

Port Multiplexing Control
By default, after reset, all port pins are in GPIO input mode with their
output and input drivers disabled. As a result, all unused port pins can be
left unconnected. Disabled pins appear in high-impedance mode to exter-
nal circuits and are pulled low to internal logic.

Each port has two dedicated MMRs that control the port multiplexing,
the 16-bit function enable (PORTx_FER) registers, and the 32-bit port
multiplexing (PORTx_MUX) registers.

In this chapter, the naming convention for registers and bits uses a
lowercase “x” to represent A to J. For example, the name PORTx_FER
represents PORTA_FER, PORTB_FER, and so on, through PORTJ_FER.
The bit name Px0 represents PA0, PB0, and so on, through PJ0.
This convention is used in register descriptions common to the ten
ports.

PJ6 PJ6 13:12 ATAPI CS1 - - - -

PJ7 PJ7 15:14 ATAPI DMACK - - - -

PJ8 PJ8 17:16 ATAPI DMARQ - - - -

PJ9 PJ9 19:18 ATAPI INTRQ - - - -

PJ10 PJ10 21:20 ATAPI IORDY - - - -

PJ11 PJ11 23:22 AMC BR - - - -

PJ12 PJ12 25:24 AMC BG - - - -

PJ13 PJ13 27:26 AMC BGH - - - -

Table 9-11. Port J Pin Configuration (Cont’d)

Pin GPIO PORTJ
_MUX

1st Function
(MUX = 00)

2nd Function
(MUX = 01)

3rd Function
(MUX = 10)

4th Function
(MUX = 11)

Additional
Use

Pin Multiplexing Scheme

9-20 ADSP-BF54x Blackfin Processor Hardware Reference

Each bit in the 16-bit PORTx_FER registers represents one port pin. For
example, bit 1 of the PORTA_FER register sets the PA1 pin to GPIO opera-
tion mode when cleared. When set, one of the available peripheral
functions becomes active. The PA1 pin can either operate as a secondary
transmit data signal of SPORT2 or as PWM/capture/clock pin of Timer 4.

Every pair of bits in the PORTx_MUX registers controls the multiplexing
between the peripheral functions available to a pin. This is a 2-bit field
because some pins provide up to four options. The truth table of the bit
field is identical to all ADSP-BF54x Blackfin processor family derivatives,
regardless of whether all options are available on a given silicon.

In the case of the PA1 example, bit 3 and bit 2 control the multiplexer of
the PA1 pin. The truth table of the entire function enable and multiplexing
control is shown in Table 9-12.

The port multiplexing scheme provides best granularity, as every pin can
be controlled on an individual basis. If SPORT2 is used in any mode that
does not require the secondary transmit data feature, the PA1 pin can still
be used as GPIO or as TMR4.

Table 9-12. Port Multiplexing Control Example

PORTA_FER [1] PORTA_MUX [3:2] PA1 Function

0 00 GPIO

0 01 GPIO

0 10 GPIO

0 11 GPIO

1 00 SPORT2 DTSEC

1 01 TMR4

1 10 Reserved

1 11 Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 9-21

General-Purpose Ports

GPIO Functionality
Every port pin can operate in GPIO mode. This is the default after reset
and is controlled by the port-specific PORTx_FER function enable register.
Every port has a dedicated set of MMR registers that control GPIO func-
tionality. Every bit in these registers represents a certain GPIO pin of the
specific port. Refer to Figure 9-2 for a related diagram.

In this chapter, the naming convention for registers and bits uses a
lowercase “x” to represent A through J. For example, the name
PORTx_FER represents PORTA_FER, PORTB_FER, and so on, through
PORTJ_FER. The bit name Px0 represents PA0, PB0, and so on,
through PJ0. This convention is used to discuss registers common
to the ten ports.

By default, every GPIO is in input mode. The input drivers are not
enabled which avoids the need for unnecessary current sinks and the exter-
nal pulling of resistors on unused or do not care pins.

Input Mode
The default mode of every GPIO pin after reset is input mode, but the
input drivers are not enabled. To enable any GPIO input drivers, set the
corresponding bits in the input enable register PORTx_INEN. When
enabled, a read from the PORTx register returns the logical state of the
input pin. The input signal does not overwrite the state of the flip-flop
used for the output case. That state can only be altered by software. If the
input driver is enabled, a write to the PORTx register can alter the state of
the flip-flop, but the change cannot be read back.

Output Mode
Any GPIO pin can be configured for output mode. The GPIO output
drivers are enabled by setting the corresponding bits in the direction regis-
ters. Direction registers are implemented as a pair of write-1-to-set (W1S)

GPIO Functionality

9-22 ADSP-BF54x Blackfin Processor Hardware Reference

and write-1-to-clear (W1C) MMRs, called PORTx_DIR_SET and
PORTx_DIR_CLEAR. This way, direction of the signal flow of individual
GPIO pins can be altered by separate software threads without mutually
impacting other GPIOs on the same port. Both registers return the same
value when read. A logical 1 indicates an enabled output.

The state of output pins is controlled by the PORTx registers. A logical 0
drives the output low. A logical 1 drives the output high. While the PORTx
register can be written to alter all GPIOs of a specific port at once, there is
also a pair of W1S and W1C MMRs, called PORTx_SET and PORTx_CLEAR
that enable manipulation of individual GPIO outputs. The state of the
outputs can be obtained by reading the PORTx registers.

Because the state of the GPIO output can already be controlled before the
output driver is enabled, it is recommended to first set or clear the
flip-flop to avoid any volatile levels on the output.

Open-Drain Mode
Every GPIO can also be used in open-drain mode. To accomplish this,
first, clear the respective bit in the PORTx or PORTx_CLEAR register then set
the one bit in the PORTx_INEN register. Reads from the PORTx register then
return the status from the pin and do not return the state of the internal
flip-flop. By toggling the output driver through the PORTx_DIR_SET and
PORTx_DIR_CLEAR register pair, the output signal can be pulled low or
three-stated as required. Note that the polarity of the driven signal can be
inverted when the internal flip-flop is set instead. When a GPIO port is
used in open-drain mode, care must be taken not to exceed the VIH oper-
ating condition associated with the respective pin.

ADSP-BF54x Blackfin Processor Hardware Reference 9-23

General-Purpose Ports

Pin Interrupts
On the ADSP-BF54x Blackfin processor family, the pin interrupts have
been completely decoupled from basic GPIO functionality due to the fol-
lowing set of advantages:

• Flexible mapping scheme enables pins from up to four different
ports to be grouped to one common interrupt scheme.

• Interrupts work on input and output pins regardless of whether in
GPIO or functional mode.

ADSP-BF54x Blackfin processors have four SIC interrupt channels dedi-
cated to pin interrupt purposes. These channels are managed by four
hardware blocks, called PINT0, PINT1, PINT2, and PINT3. Every PINTx block
can sense to up to 32 pins. While PINT0 and PINT1 can sense the pins of
port A and port B, PINT2 and PINT3 manage all the pins from port C to
port J as shown in Figure 9-2.

Figure 9-2. Signal Flow

IRQ19 IRQ20 IRQ94 IRQ95

PORT C - PORT JPORT A - PORT B

PINT0 PINT1 PINT2 PINT3

Pin Interrupts

9-24 ADSP-BF54x Blackfin Processor Hardware Reference

The diagram shown in Figure 9-1 on page 9-3 shows the signal flow from
the pin through the PINTx module to the SIC controller. Special attention
is required with regard to how the pins are assigned to the PINTx modules
as shown in Figure 9-3.

The ten ports are subdivided into 8-bit half ports, resulting in lower and
upper half 8-bit units. The PINTx_ASSIGN registers control the 8-bit multi-
plexers shown in Figure 9-3. Lower half units of eight pins can be

Figure 9-3. Pin-to-Interrupt Assignment

IRQ19 PAB IRQ20 PAB

PINT0 PINT1

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0 BYTE 3 BYTE 2 BYTE 1 BYTE 0

BYTE 3 BYTE 2 BYTE 1 BYTE 0BYTE 3 BYTE 2 BYTE 1 BYTE 0

PINT2 PINT3

IRQ94 PAB IRQ95 PAB

P
C

.H
P

D
.H

P
E

.H
P

F.
H

P
G

.H
P

H
.H

P
I.H

P
J.

H

P
C

.L
P

D
.L

P
E

.L
P

F.
L

P
G

.L
P

H
.L

P
I.L

P
J.

L

P
C

.L
P

D
.L

P
E

.L
P

F.
L

P
G

.L
P

H
.L

P
I.L

P
J.

L

P
C

.H
P

D
.H

P
E

.H
P

F.
H

P
G

.H
P

H
.H

P
I.H

P
J.

H

P
C

.H
P

D
.H

P
E

.H
P

F.
H

P
G

.H
P

H
.H

P
I.H

P
J.

H

P
C

.L
P

D
.L

P
E

.L
P

F.
L

P
G

.L
P

H
.L

P
I.L

P
J.

L

P
C

.L
P

D
.L

P
E

.L
P

F.
L

P
G

.L
P

H
.L

P
I.L

P
J.

L

P
C

.H
P

D
.H

P
E

.H
P

F.
H

P
G

.H
P

H
.H

P
I.H

P
J.

H

PA
.H

P
B

.H

PA
.L

P
B

.L

PA
.H

P
B

.H

PA
.L

P
B

.L

PA
.H

P
B

.H

PA
.L

P
B

.L

PA
.H

P
B

.H

PA
.L

P
B

.L

ADSP-BF54x Blackfin Processor Hardware Reference 9-25

General-Purpose Ports

forwarded to either byte 0 or byte 2 of either associated PINTx block.
Upper half units can be forwarded to either byte 1 or byte 3 of the pin
interrupt blocks, without further restrictions.

When a half port is assigned to a byte in any PINTx block, the state of the
eight pins (regardless of GPIO or function, input or output) can be seen
in the PINTx_PINSTATE register. While neither input nor output drivers of
the pin are enabled, the pin state is read as zero. The PINTx_PINSTATE reg-
ister reports the inverted state of the pin if the signal inverter is activated
by the PINTx_INVERT_SET register. The inverter can be enabled on a indi-
vidual bit by bit basis. Every bit in the PINTx_INVERT_SET/CLEAR register
pair represents a pin signal.

As shown in Figure 9-1 on page 9-3, the interrupt can be generated on an
active high level of the signal or a raising edge of the signal. The default
behavior is level sensitivity. PINTx_EDGE_SET register can be used to change
the behavior to edge sensitivity. By enabling the inverter using the
PINTx_INVERT_SET register, the interrupt behavior can be altered to trigger
on active-low signals or falling edges.

Regardless whether in level-sensitive or edge-sensitive mode, an interrupt
is always latched by the hardware. Latched signals can be read from the
PINTx_LATCH registers. Latches can only be cleared by software or a hard-
ware reset. To clear, W1C the PINTx_REQUEST or the PINTx_LATCH register.
If the pin state does not change by the time the interrupt service routine
returns, the interrupt is requested again, when in level-sensitive mode.

Because every PINTx block groups up to 32 pin signals, the
PINTx_MASK_SET/CLEAR register pair can control which of the signals can
request an interrupt at system level. Software may interrogate the
PINTx_REQUEST register for signaling pins. PINTx_REQUEST bits represent a
logical AND between the mask and the latch. When any of these bits is
set, an interrupt is forwarded to the SIC controller.

Programming Model

9-26 ADSP-BF54x Blackfin Processor Hardware Reference

All MMR registers in the pin interrupt module are 32 bits wide. Individ-
ual bits of PINTx registers represent the associated pins. Nevertheless, the
32 bits can also be seen as four groups of eight bits. Each group can man-
age up to eight pins out of either the lower or an upper half of any
associated port.

Programming Model
Figure 9-4, Figure 9-5, and Figure 9-6 show the programming model of
the general-purpose ports. This includes GPIO input and output opera-
tion, as well as open-drain mode. Figure 9-6 (the third part of the
diagram) illustrates the model of the pin interrupt PINTx modules.

ADSP-BF54x Blackfin Processor Hardware Reference 9-27

General-Purpose Ports

Figure 9-4. GPIO Programming Model Flow (Part 1)

GPIO OR

PERIPHERAL?

PERIPHERAL
WRITE PORTX_FER TO ENABLE FEATURE

WRITE PORTX_MUX TO SELECT PERIPHERAL

SEE PERIPHERAL FOR MORE DETAILS

WRITE PORTX_FER TO CLEAR REQUIRED BITS (OPTIONAL

IF PORTX_FER HAS NOT BEEN MODIFIED AFTER RESET).

GPIO

WRITE PORTX_SET (W1S) FOR REQUIRED PINS

GPIO OUTPUT OR

INPUT/OPEN-DRAIN?

INITIAL STATE

WRITE PORTX_CLEAR (W1C) REQUIRED PINS

SET CLEAR

WRITE PORTX TO SET OR CLEAR APPROPRIATE BITS

SET & CLEAR

WRITE PORTX_DIR_SET (W1S) TO ENABLE

OUTPUT DRIVERS FOR REQUIRED PINS

OUTPUT

CHANGE STATE

WRITE PORTX_SET (W1S) FOR REQUIRED PINS WRITE PORTX_CLEAR (W1C) FOR REQUIRED PINS

WRITE PORTX TO SET OR CLEAR APPROPRIATE BITS

SET CLEAR

SET & CLEAR

START

CHANGE STATE

YES

NO
DONE

A

INPUT/
OPEN-DRAIN

Programming Model

9-28 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-5. GPIO Programming Model Flow (Part 2)

WRITE PORTX_DIR_CLEAR

(W1C) TO SET APPROPRIATE PINS

AS INPUTS

WRITE PORTX_INEN TO SET

APPROPRIATE BITS TO ENABLE THE

INPUT DRIVERS

PIN POLARITY

INVERTED *

WRITE PINTX_INVERT_SET

(W1S) TO INVERT THE POLARITY OF

THE APPROPRIATE PINS

WRITE PINTX_INVERT_CLEAR

(W1C) TO DISABLE THE INVERTERS

ON THE APPROPRIATE PINS

NOYES

INTERRUPT ABILITY

NO

YES

B
DONE

INPUT OR

OPEN-DRAIN**

INPUT

WRITE PORTX_CLEAR (W1C)

FOR REQUIRED PINS

WRITE PORTX_INEN TO SET

APPROPRIATE BITS TO ENABLE THE

INPUT DRIVERS

OPEN-DRAIN

WRITE PORTX_DIR_SET

(W1S) TO SET APPROPRIATE PINS

AS OUTPUTS AND ENTER ACTIVE

STATE (LOGIC 0)

CHANGE STATE

WRITE PORTX_DIR_CLEAR

(W1C) TO SET APPROPRIATE PINS

AS INPUTS AND ENTER NON-

ACTIVE STATE (LOGIC 1)

ACTIVE OR NON-ACTIVE

STATE

ACTIVE NON-ACTIVE

YES

DONE

NO

A

* The pin polarity set at this point will effect the behaviour of the interrupt functionality detailed in the next figure. If the invert
bit is set for a given pin, and edge sensitive interrupts are configured. The interrupt will be latched on detection of a falling edge.
If the inverse bit is clear, edge sensitive interrupts are generated on the rising edge. For level sensitive interrupts, enabling the
inverter will result in interrupts being detected on a low signal. Disabling the inverter will result in interrupts being latched on high
signals.

** Open-drain mode assumes an external pull-up resistor is fitted

ADSP-BF54x Blackfin Processor Hardware Reference 9-29

General-Purpose Ports

Figure 9-6. GPIO Programming Model Flow (Part 3)

B

REGISTER ISR TO REQUIRED

EVTX

ASSIGN PINTX TO REQUIRED

IVGX VIA SIC_IARX

UNMASK PINTX INTERRUPT VIA

SIC_IMASKX

UNMASK EVT_IVGX INTERRUPT

VIA IMASK

ASSIGN PORT PINS TO

APPROPRIATE PINTX BLOCK VIA

PINTX_ASSIGN

UNMASK PINTX INTERRUPT VIA

PINTX_MASK_SET (W1S)

EDGE OR LEVEL

SENSITIVE
WRITE PINTX_EDGE_SET

(W1S) TO SET APPROPRIATE

BITS FOR EDGE SENSITIVITY

WRITE PINTX_EDGE_CLEAR

(W1C) TO SET APPROPRIATE

BITS FOR LEVEL SENSITIVITY

LEVEL EDGE

CLEAR POTENTIAL LATCHES DUE TO

HISTORY VIA PINTX_LATCH

(W1C)

WRITE PORTX_INEN TO SET

APPROPRIATE BITS TO ENABLE THE

INPUT DRIVERS

DONE

Port Registers

9-30 ADSP-BF54x Blackfin Processor Hardware Reference

Port Registers
The general-purpose ports are programmed using memory-mapped
registers.

Table 9-13 and Table 9-14 list the registers for port control and pin inter-
rupt programming.

Table 9-13. Port Control Registers (Multiplexing and GPIO)

Address Offset Register Name More Informa-
tion begins ...

Supported
Operation

Reset Value

0xFFC014C0 PORTA_FER on page 9-36 R / W 0x0000

0xFFC014C4 PORTA on page 9-41 R / W 0x0000

0xFFC014C8 PORTA_SET on page 9-41 R / W1S 0x0000

0xFFC014CC PORTA_CLEAR on page 9-41 R / W1C 0x0000

0xFFC014D0 PORTA_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC014D4 PORTA_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC014D8 PORTA_INEN on page 9-40 R / W 0x0000

0xFFC014DC PORTA_MUX on page 9-36 R / W 0x000000001

0xFFC014E0 PORTB_FER on page 9-36 R / W 0x0000

0xFFC014E4 PORTB on page 9-41 R / W 0x0000

0xFFC014E8 PORTB_SET on page 9-41 R / W1S 0x0000

0xFFC014EC PORTB_CLEAR on page 9-41 R / W1C 0x0000

0xFFC014F0 PORTB_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC014F4 PORTB_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC014F8 PORTB_INEN on page 9-40 R / W 0x0000

0xFFC014FC PORTB_MUX on page 9-36 R / W 0x000000001

0xFFC01500 PORTC_FER on page 9-36 R / W 0x0000

0xFFC01504 PORTC on page 9-41 R / W 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 9-31

General-Purpose Ports

0xFFC01508 PORTC_SET on page 9-41 R / W1S 0x0000

0xFFC0150C PORTC_CLEAR on page 9-41 R / W1C 0x0000

0xFFC01510 PORTC_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC01514 PORTC_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC01518 PORTC_INEN on page 9-40 R / W 0x0000

0xFFC0151C PORTC_MUX on page 9-36 R / W 0x000000001

0xFFC01520 PORTD_FER on page 9-36 R / W 0x0000

0xFFC01524 PORTD on page 9-41 R / W 0x0000

0xFFC01528 PORTD_SET on page 9-41 R / W1S 0x0000

0xFFC0152C PORTD_CLEAR on page 9-41 R / W1C 0x0000

0xFFC01530 PORTD_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC01534 PORTD_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC01538 PORTD_INEN on page 9-40 R / W 0x0000

0xFFC0153C PORTD_MUX on page 9-36 R / W 0x000000001

0xFFC01540 PORTE_FER on page 9-36 R / W 0x0000

0xFFC01544 PORTE on page 9-41 R / W 0x0000

0xFFC01548 PORTE_SET on page 9-41 R / W1S 0x0000

0xFFC0154C PORTE_CLEAR on page 9-41 R / W1C 0x0000

0xFFC01550 PORTE_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC01554 PORTE_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC01558 PORTE_INEN on page 9-40 R / W 0x0000

0xFFC0155C PORTE_MUX on page 9-36 R / W 0x000000001

0xFFC01560 PORTF_FER on page 9-36 R / W 0x0000

0xFFC01564 PORTF on page 9-41 R / W 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name More Informa-
tion begins ...

Supported
Operation

Reset Value

Port Registers

9-32 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC01568 PORTF_SET on page 9-41 R / W1S 0x0000

0xFFC0156C PORTF_CLEAR on page 9-41 R / W1C 0x0000

0xFFC01570 PORTF_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC01574 PORTF_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC01578 PORTF_INEN on page 9-40 R / W 0x0000

0xFFC0157C PORTF_MUX on page 9-36 R / W 0x000000001

0xFFC01580 PORTG_FER on page 9-36 R / W 0x0000

0xFFC01584 PORTG_DIR_CLEAR on page 9-36 R / W 0x0000

0xFFC01588 PORTG_SET on page 9-41 R / W1S 0x0000

0xFFC0158C PORTG_CLEAR on page 9-41 R / W1C 0x0000

0xFFC01590 PORTG_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC01594 PORTG on page 9-41 R / W1C 0x0000

0xFFC01598 PORTG_INEN on page 9-40 R / W1S 0x0000

0xFFC0159C PORTG_MUX on page 9-36 R / W 0x000000001

0xFFC015A0 PORTH_FER on page 9-36 R / W 0x0000

0xFFC015A4 PORTH on page 9-41 R / W 0x0000

0xFFC015A8 PORTH_SET on page 9-41 R / W1S 0x0000

0xFFC015AC PORTH_CLEAR on page 9-41 R / W1C 0x0000

0xFFC015B0 PORTH_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC015B4 PORTH_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC015B8 PORTH_INEN on page 9-40 R / W 0x0000

0xFFC015BC PORTH_MUX on page 9-36 R / W 0x000000001

0xFFC015C0 PORTI_FER on page 9-36 R / W 0x0000

0xFFC015C4 PORTI on page 9-41 R / W 0x0000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name More Informa-
tion begins ...

Supported
Operation

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 9-33

General-Purpose Ports

Table 9-14 and Table 9-13 list the registers for pin interrupt and port
control programming.

0xFFC015C8 PORTI_SET on page 9-41 R / W1S 0x0000

0xFFC015CC PORTI_CLEAR on page 9-41 R / W1C 0x0000

0xFFC015D0 PORTI_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC015D4 PORTI_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC015D8 PORTI_INEN on page 9-40 R / W 0x0000

0xFFC015DC PORTI_MUX on page 9-36 R / W 0x000000001

0xFFC015E0 PORTJ_FER on page 9-36 R / W 0x0000

0xFFC015E4 PORTJ on page 9-41 R / W 0x0000

0xFFC015E8 PORTJ_SET on page 9-41 R / W1S 0x0000

0xFFC015EC PORTJ_CLEAR on page 9-41 R / W1C 0x0000

0xFFC015F0 PORTJ_DIR_SET on page 9-39 R / W1S 0x0000

0xFFC015F4 PORTJ_DIR_CLEAR on page 9-39 R / W1C 0x0000

0xFFC015F8 PORTJ_INEN on page 9-40 R / W 0x0000

0xFFC015FC PORTJ_MUX on page 9-36 R / W 0x000000001

1 May differ on certain derivatives and BMODE settings.

Table 9-14. Pin Interrupt Registers

Address
Offset

Register Name More Infor-
mation
begins...

Supported
Operation

Reset Value

0xFFC01400 PINT0_MASK_SET on page 9-46 R / W1S 0x00000000

0xFFC01404 PINT0_MASK_CLEAR on page 9-46 R / W1C 0x00000000

Table 9-13. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Address Offset Register Name More Informa-
tion begins ...

Supported
Operation

Reset Value

Port Registers

9-34 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC01408 PINT0_REQUEST on page 9-48 R / W1C 0x00000000

0xFFC0140C PINT0_ASSIGN on page 9-56 R / W 0x00000101

0xFFC01410 PINT0_EDGE_SET on page 9-51 R / W1S 0x00000000

0xFFC01414 PINT0_EDGE_CLEAR on page 9-51 R / W1C 0x00000000

0xFFC01418 PINT0_INVERT_SET on page 9-54 R / W1S 0x00000000

0xFFC0141C PINT0_INVERT_CLEAR on page 9-54 R / W1C 0x00000000

0xFFC01420 PINT0_PINSTATE on page 9-53 RO 0x00000000

0xFFC01424 PINT0_LATCH on page 9-48 R / W1C 0x00000000

0xFFC01430 PINT1_MASK_SET on page 9-46 R / W1S 0x00000000

0xFFC01434 PINT1_MASK_CLEAR on page 9-46 R / W1C 0x00000000

0xFFC01438 PINT1_REQUEST on page 9-48 R / W1C 0x00000000

0xFFC0143C PINT1_ASSIGN on page 9-56 R / W 0x01010000

0xFFC01440 PINT1_EDGE_SET on page 9-51 R / W1S 0x00000000

0xFFC01444 PINT1_EDGE_CLEAR on page 9-51 R / W1C 0x00000000

0xFFC01448 PINT1_INVERT_SET on page 9-54 R / W1S 0x01010000

0xFFC0144C PINT1_INVERT_CLEAR on page 9-54 R / W1C 0x00000000

0xFFC01450 PINT1_PINSTATE on page 9-53 RO 0x00000000

0xFFC01454 PINT1_LATCH on page 9-48 R / W1C 0x00000000

0xFFC01460 PINT2_MASK_SET on page 9-46 R / W1S 0x00000000

0xFFC01464 PINT2_MASK_CLEAR on page 9-46 R / W1C 0x00000000

0xFFC01468 PINT2_REQUEST on page 9-48 R / W1C 0x00000000

0xFFC0146C PINT2_ASSIGN on page 9-56 R / W 0x00000101

0xFFC01470 PINT2_EDGE_SET on page 9-51 R / W1S 0x00000000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name More Infor-
mation
begins...

Supported
Operation

Reset Value

ADSP-BF54x Blackfin Processor Hardware Reference 9-35

General-Purpose Ports

Port Multiplexing Registers
The port multiplexing registers are described in the following sections:

• “Port x Function Enable (PORTx_FER) Registers” on page 9-36

• “Port Multiplexer Control (PORTx_MUX) Registers” on
page 9-36

For information on using these registers, see “Pin Multiplexing Scheme”
on page 9-4.

0xFFC01474 PINT2_EDGE_CLEAR on page 9-51 R / W1C 0x00000000

0xFFC01478 PINT2_INVERT_SET on page 9-54 R / W1S 0x00000000

0xFFC0147C PINT2_INVERT_CLEAR on page 9-54 R / W1C 0x00000000

0xFFC01480 PINT2_PINSTATE on page 9-53 RO 0x00000000

0xFFC01484 PINT2_LATCH on page 9-48 R / W1C 0x00000000

0xFFC01490 PINT3_MASK_SET on page 9-46 R / W1S 0x00000000

0xFFC01494 PINT3_MASK_CLEAR on page 9-46 R / W1C 0x00000000

0xFFC01498 PINT3_REQUEST on page 9-48 R / W1C 0x00000000

0xFFC0149C PINT3_ASSIGN on page 9-56 R / W 0x02020303

0xFFC014A0 PINT3_EDGE_SET on page 9-51 R / W1S 0x00000000

0xFFC014A4 PINT3_EDGE_CLEAR on page 9-51 R / W1C 0x00000000

0xFFC014A8 PINT3_INVERT_SET on page 9-54 R / W1S 0x00000000

0xFFC014AC PINT3_INVERT_CLEAR on page 9-54 R / W1C 0x00000000

0xFFC014B0 PINT3_PINSTATE on page 9-53 RO 0x00000000

0xFFC014B4 PINT3_LATCH on page 9-48 R / W1C 0x00000000

Table 9-14. Pin Interrupt Registers (Cont’d)

Address
Offset

Register Name More Infor-
mation
begins...

Supported
Operation

Reset Value

Port Registers

9-36 ADSP-BF54x Blackfin Processor Hardware Reference

Port x Function Enable (PORTx_FER) Registers

After reset, all pins default to GPIO mode (See Figure 9-7). Setting a bit
in the port function enable registers enables a peripheral module to take
ownership of the pin. The function enable bits impact output control
only. Regardless of the setting of the function enable bits, both GPIO and
peripherals can still sense the pin input. Once a function is enabled, it is
up to the PORTx_MUX registers as to which peripheral takes control.

Port Multiplexer Control (PORTx_MUX) Registers

The multiplexer controls which peripheral takes ownership of a pin, if not
in GPIO mode. Some ports have up to four different functions, while oth-
ers have just a single function. Two bits are required to describe every
multiplexer on an individual pin-by-pin scheme.

Figure 9-7. Port x Function Enable Registers (PORTx_FER)

Port x Function Enable Registers (PORTx_FER)

R/W

Reset = 0x0000A: 0xFFC0 14C0
B: 0xFFC0 14E0
C: 0xFFC0 1500
D: 0xFFC0 1520
E: 0xFFC0 1540
F: 0xFFC0 1560
G: 0xFFC0 1580
H: 0xFFC0 15A0
I: 0xFFC0 15C0
J: 0xFFC0 15E0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – GPIO mode
1 – Peripheral mode

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-37

General-Purpose Ports

As a result, PORTx_MUX registers are 32 bits wide. Bit 0 and Bit 1 control
the multiplexer of Pin 0. Bit 2 and Bit 3 control the multiplexer of Pin 1.
Bit 30 and Bit 31 control the multiplexer of Pin 15.

The value of any MUXy bit has no affect on the port pins when the associ-
ated Pxy bit in the PORTx_FER registers is 0. Even if a port has only one
function, the PORTx_MUX register is still present. For single function ports
(no multiplexing is needed), leave the MUXy bits at 0 (default).

Normally, the PORTx_MUX register is accessed by 32-bit load/store instruc-
tions over the PAB bus (See Figure 9-8). The lower 16 bits can be accessed
faster by 16-bit operations, alternately.

Figure 9-8. Port x Multiplexer Control Registers (PORTx_MUX)

Port x Multiplexer Control Registers (PORTx_MUX)

R/W

Reset = 0x0000 0000A: 0xFFC0 14DC
B: 0xFFC0 14FC
C: 0xFFC0 151C
D: 0xFFC0 153C
E: 0xFFC0 155C
F: 0xFFC0 157C
G: 0xFFC0 159C
H: 0xFFC0 15BC
I: 0xFFC0 15DC
J: 0xFFC0 15FC

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bit fields:
00 = MUXy_0

= default peripheral option
01 = MUXy_1

= 1st alt. peripheral option
10 = MUXy_2

= 2nd alt. peripheral option
11 = MUXy_3

= 3rd alt. peripheral option

MUX15 (Port x Mux 15)

MUX14 (Port x Mux 14)

MUX13 (Port x Mux 13)

MUX12 (Port x Mux 12) MUX11 (Port x Mux 11)

MUX10 (Port x Mux 10)

MUX9 (Port x Mux 9)

MUX8 (Port x Mux 8)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

MUX0 (Port x Mux 0)

MUX1 (Port x Mux 1)

MUX2 (Port x Mux 2)

MUX3 (Port x Mux 3)MUX4 (Port x Mux 4)

MUX5 (Port x Mux 5)

MUX6 (Port x Mux 6)

MUX7 (Port x Mux 7)

31 30 29 28 27 1617181920212223242526

Port Registers

9-38 ADSP-BF54x Blackfin Processor Hardware Reference

GPIO Registers
The general-purpose I/O registers are described in the following sections.

• “Port x GPIO Direction Set (PORTx_DIR_SET/CLEAR) Register
Pairs” on page 9-39

• “Port x GPIO Input Enable (PORTx_INEN) Registers” on
page 9-40

• “Port x GPIO Data (PORTx/PORTx_SET/PORTx_CLEAR)
Register Groups” on page 9-41

For information on using these registers, see “GPIO Functionality” on
page 9-21.

ADSP-BF54x Blackfin Processor Hardware Reference 9-39

General-Purpose Ports

Port x GPIO Direction Set (PORTx_DIR_SET/CLEAR) Register
Pairs

The direction registers control the output drivers of the GPIOs (See
Figure 9-9 and Figure 9-10)). If set, the output driver is enabled and the
GPIO is in output mode. If cleared as by default, the output driver is dis-
abled. Note that the input driver is not enabled by default.

Figure 9-9. Port x GPIO Direction Set Registers (PORTx_DIR_SET)

Port x GPIO Direction Set Registers (PORTx_DIR_SET)

R/W1S

Reset = 0x0000A: 0xFFC0 14D0
B: 0xFFC0 14F0
C: 0xFFC0 1510
D: 0xFFC0 1530
E: 0xFFC0 1550
F: 0xFFC0 1570
G: 0xFFC0 1590
H: 0xFFC0 15B0
I: 0xFFC0 15D0
J: 0xFFC0 15F0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Output disabled
1 – Output enabled

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port Registers

9-40 ADSP-BF54x Blackfin Processor Hardware Reference

Port x GPIO Input Enable (PORTx_INEN) Registers

By default, the input drivers are disabled after reset. To use a pin in GPIO
input mode, the input driver must be enabled by writing a “1” to the
PORTx_INEN register. If the input is enabled, reads from the
PORTx/PORTx_SET/PORTx_CLEAR ports return the state of the pins.

Figure 9-10. Port x GPIO Direction Clear Registers
(PORTx_DIR_CLEAR)

Port x GPIO Direction Clear Registers (PORTx_DIR_CLEAR)

R/W1C

Reset = 0x0000A: 0xFFC0 14D4
B: 0xFFC0 14F4
C: 0xFFC0 1514
D: 0xFFC0 1534
E: 0xFFC0 1554
F: 0xFFC0 1574
G: 0xFFC0 1594
H: 0xFFC0 15B4
I: 0xFFC0 15D4
J: 0xFFC0 15F4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Output disabled
1 – Output enabled

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-41

General-Purpose Ports

However, the state of the output is not overwritten by the input (See
Figure 9-11). It is altered by software writes only. Input and output driv-
ers can be enabled at the same time. In this case, a read of the data register
returns the true value of the data register and not the pin state.

Port x GPIO Data (PORTx/PORTx_SET/PORTx_CLEAR) Register
Groups

This group of registers controls the state of GPIO pins in output mode.
Writes to the PORTx register impact the state of all pins of the port that are
in output mode, for instance, that have their output driver enabled by the
PORTx_DIR_SET and PORTx_DIR_CLEAR registers. The PORTx_SET and
PORTx_CLEAR registers enable the software to set or clear specific pins with-
out impacting other pins of the port.

Figure 9-11. Port x GPIO Input Enable Registers (PORTx_INEN)

Port x GPIO Input Enable Registers (PORTx_INEN)

R/W

Reset = 0x0000A: 0xFFC0 14D8
B: 0xFFC0 14F8
C: 0xFFC0 1518
D: 0xFFC0 1538
E: 0xFFC0 1558
F: 0xFFC0 1578
G: 0xFFC0 1598
H: 0xFFC0 15B8
I: 0xFFC0 15D8
J: 0xFFC0 15F8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Input disabled
1 – Input enabled

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port Registers

9-42 ADSP-BF54x Blackfin Processor Hardware Reference

When the input driver is enabled by the PORTx_INEN register, reads from
any of the three registers return the state of the respective pins (See
Figure 9-12 through Figure 9-14). When the input driver is not enabled
as by default, reads from any of the registers return the value previously
written to the registers.

Figure 9-12. Port x GPIO Data Registers (PORTx)

Port x GPIO Data Registers (PORTx)

R/W

Reset = 0x0000A: 0xFFC0 14C4
B: 0xFFC0 14E4
C: 0xFFC0 1504
D: 0xFFC0 1524
E: 0xFFC0 1544
F: 0xFFC0 1564
G: 0xFFC0 1584
H: 0xFFC0 15A4
I: 0xFFC0 15C4
J: 0xFFC0 15E4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Signal low
1 – Signal high

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-43

General-Purpose Ports

Figure 9-13. Port x GPIO Data Set Registers (PORTx_SET)

Port x GPIO Data Set Registers (PORTx_SET)

W1S

Reset = 0x0000A: 0xFFC0 14C8
B: 0xFFC0 14E8
C: 0xFFC0 1508
D: 0xFFC0 1528
E: 0xFFC0 1548
F: 0xFFC0 1568
G: 0xFFC0 1588
H: 0xFFC0 15A8
I: 0xFFC0 15C8
J: 0xFFC0 15E8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – Signal low
1 – Signal high

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

Port Registers

9-44 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupt Registers
All PINTx registers are 32 bits wide and can be accessed by 32-bit
load/store instructions. They also support 16-bit type of operation where
the upper 16 bits are ignored and the application uses the lower 16 bits
only. Consequently, all PINTx registers support 32-bit PAB accesses as well
as 16-bit PAB accesses for the lower half words. Applications may use
faster 16-bit accesses as long as they do not require functionality of upper
register halves.

Figure 9-14. Port x GPIO Data Clear Registers (PORTx_CLEAR)

Port x GPIO Data Clear Registers (PORTx_CLEAR)

W1C

Reset = 0x0000A: 0xFFC0 14CC
B: 0xFFC0 14EC
C: 0xFFC0 150C
D: 0xFFC0 152C
E: 0xFFC0 154C
F: 0xFFC0 156C
G: 0xFFC0 158C
H: 0xFFC0 15AC
I: 0xFFC0 15CC
J: 0xFFC0 15EC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Px0 (Port x Bit 0)

For all bits:
0 – signal low
1 – signal high

Px1 (Port x Bit 1)

Px2 (Port x Bit 2)

Px3 (Port x Bit 3)

Px4 (Port x Bit 4)

Px5 (Port x Bit 5)

Px6 (Port x Bit 6)

Px7 (Port x Bit 7)

Px15 (Port x Bit 15)

Px14 (Port x Bit 14)

Px13 (Port x Bit 13)

Px12 (Port x Bit 12)

Px11 (Port x Bit 11)

Px10 (Port x Bit 10)

Px9 (Port x Bit 9)

Px8 (Port x Bit 8)

ADSP-BF54x Blackfin Processor Hardware Reference 9-45

General-Purpose Ports

The pin interrupt registers are described in the following sections.

• “Pin Interrupt Mask
(PINTx_MASK_SET/PINTx_MASK_CLEAR) Register Pairs” on
page 9-46

• “Interrupt Request and Latch
(PINTx_REQUEST/PINTx_LATCH) Registers” on page 9-48

• “Interrupt Edge (PINTx_EDGE_SET/PINTx_EDGE_CLEAR)
Register Pairs” on page 9-51

• “Pin Interrupt Pin State (PINTx_PINSTATE) Register” on
page 9-53

• “Pin Interrupt Invert Set
(PINTx_INVERT_SET/PINTx_INVERT_CLEAR) Register
Pairs” on page 9-54

• “Pin Interrupt Assignment (PINTx_ASSIGN) Registers” on
page 9-56

Port Registers

9-46 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupt Mask (PINTx_MASK_SET/PINTx_MASK_CLEAR)
Register Pairs

The pairs of W1S and W1C registers enable interrupt functionality on
respective pins (See Figure 9-15 and Figure 9-16). Setting a bit enables
the interrupt. After reset, all bits are cleared. Note that the mask cannot be
written directly by the PAB bus (no data register). Masks are controlled by
W1S and W1C operations only.

Figure 9-15. Pin Interrupt Mask Set Registers (PINTx_MASK_SET)

Pin Interrupt Mask Set Registers (PINTx_MASK_SET)

W1S

Reset = 0x0000 00000: 0xFFC01400
1: 0xFFC01430
2: 0xFFC01460
3: 0xFFC01490

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Interrupt disable
1 – Interrupt enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-47

General-Purpose Ports

Figure 9-16. Pin Interrupt Mask Clear Registers
(PINTx_MASK_CLEAR)

Pin Interrupt Mask Clear Registers (PINTx_MASK_CLEAR)

W1C

Reset = 0x0000 00000: 0xFFC01404
1: 0xFFC01434
2: 0xFFC01464
3: 0xFFC01494

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Interrupt disable
1 – Interrupt enable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-48 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupt Request and Latch (PINTx_REQUEST/PINTx_LATCH)
Registers

Both registers indicate whether an interrupt request is latched on the
respective pin (See Figure 9-17). The PINTx_LATCH register is a latch that
operates regardless of the interrupt masks. Bits of the PINTx_REQUEST regis-
ter depend on the mask register. The PINTx_REQUEST register is a logical
AND of the PINTx_LATCH register and the interrupt mask.

Figure 9-17. Pin Interrupt Request Registers (PINTx_REQUEST)

Pin Interrupt Request Registers (PINTx_REQUEST)

W1C

Reset = 0x0000 00000: 0xFFC01408
1: 0xFFC01438
2: 0xFFC01468
3: 0xFFC01498

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – No interrupt request
1 – Interrupt request

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-49

General-Purpose Ports

Having two separate registers here enables the user to interrogate certain
pins in polling mode while others work in interrupt mode. The
PINTx_LATCH registers can be used for edge detection or pin activity
detection.

Both registers have W1C behavior (See Figure 9-18). Writing a 1 to either
clears respective bits in both registers. For interrupt operation, the user
may prefer to W1C the PINTx_REQUEST register (address still loaded in Px
pointer). In polling mode it might be cleaner to W1C the PINTx_LATCH
register.

Port Registers

9-50 ADSP-BF54x Blackfin Processor Hardware Reference

Regardless whether in edge-sensitive mode or level-sensitive mode,
PINTx_LATCH bits are never cleared by hardware except at system reset.
Even in level-sensitive mode, the PINTx_LATCH register functions as latch.

Figure 9-18. Pin Interrupt Latch Registers (PINTx_LATCH)

Pin Interrupt Latch Registers (PINTx_LATCH)

W1C

Reset = 0x0000 00000: 0xFFC01424
1: 0xFFC01454
2: 0xFFC01484
3: 0xFFC014B4

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – No interrupt latched
1 – Interrupt latched

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-51

General-Purpose Ports

Interrupt Edge (PINTx_EDGE_SET/PINTx_EDGE_CLEAR) Register
Pairs

This register pair controls whether the individual interrupts are edge-sen-
sitive or level-sensitive (See Figure 9-19). Level sensitivity is default. After
a W1S operation to the PINTx_EDGE_SET register, edge sensitivity for the
interrupt is enabled.

Figure 9-19. Pin Interrupt Edge Set Registers (PINTx_EDGE_SET)

Pin Interrupt Edge Set Registers (PINTx_EDGE_SET)

W1S

Reset = 0x0000 00000: 0xFFC01410
1: 0xFFC01440
2: 0xFFC01470
3: 0xFFC014A0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Level sensitive
1 – Edge sensitive

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-52 ADSP-BF54x Blackfin Processor Hardware Reference

After the W1S operation, the PINTx_PINSTATE bits change from logical “0”
to 1. (See Figure 9-20)

After a W1C operation to the PINTx_EDGE_CLEAR register, edge sensitivity
for the interrupt is disabled, and the interrupt returns to level sensitivity.

Figure 9-20. Pin Interrupt Edge Clear Registers (PINTx_EDGE_CLEAR)

Pin Interrupt Edge Clear Registers (PINTx_EDGE_CLEAR)

W1C

Reset = 0x0000 00000: 0xFFC01414
1: 0xFFC01444
2: 0xFFC01474
3: 0xFFC014A4

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Level sensitive
1 – Edge sensitive

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-53

General-Purpose Ports

Pin Interrupt Pin State (PINTx_PINSTATE) Register

The pin interrupt pin state registers enable the service routine to read the
current state of the pin without reading from GPIO space (See
Figure 9-21). If there was an edge-sensitive interrupt, the service routine
can check whether the state of the pin is still high or turned low.

Note that the content of the PINTx_PINSTATE register depends on the
polarity setting of the PINTx_INVERT_SET/PINTx_INVERT_CLEAR registers.

Figure 9-21. Pin Interrupt Pin State Registers (PINTx_PINSTATE)

Pin Interrupt Pin State Registers (PINTx_PINSTATE)

RO

Reset = 0x0000 00000: 0xFFC01420
1: 0xFFC01450
2: 0xFFC01480
3: 0xFFC014B0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Inverter output low
1 – Inverter output high

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-54 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupt Invert Set
(PINTx_INVERT_SET/PINTx_INVERT_CLEAR) Register Pairs

These register pairs control the inverters at the input of the module (See
Figure 9-22). After reset, the inverters are cleared and the PINTx_PINSTATE
bits contain an exact copy of the pin state. With the inverters on,
PINTx_PINSTATE register reads the inverted/negated pin state.

Figure 9-22. Pin Interrupt Invert Set Registers (PINTx_INVERT_SET)

Pin Interrupt Invert Set Registers (PINTx_INVERT_SET)

W1S

Reset = 0x0000 00000: 0xFFC01418
1: 0xFFC01448
2: 0xFFC01478
3: 0xFFC014A8

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Input not inverted
1 – Input inverted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

ADSP-BF54x Blackfin Processor Hardware Reference 9-55

General-Purpose Ports

In level-sensitive mode, the interrupt is active when PINTx_PINSTATE is
logical “1”. For instance, when the pin is high and the inverter is off, or
when the pin is low amd the inverter is on.

In edge-sensitive mode, the rising edges are latched when the inverter is
off (See Figure 9-23). With the inverter on, falling edges generate the
interrupt.

Figure 9-23. Pin Interrupt Invert Clear Registers
(PINTx_INVERT_CLEAR)

Pin Interrupt Invert Clear Registers (PINTx_INVERT_CLEAR)

W1C

Reset = 0x0000 00000: 0xFFC0141C
1: 0xFFC0144C
2: 0xFFC0147C
3: 0xFFC014AC

00 0 0 0 0 0 0 0 0 0 0 0 00 0

For all bits:
0 – Input not inverted
1 – Input inverted

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

PIQ0 (Pin Interrupt 0)

PIQ1 (Pin Interrupt 1)

PIQ2 (Pin Interrupt 2)

PIQ3 (Pin Interrupt 3)PIQ12 (Pin Interrupt 12)

PIQ13 (Pin Interrupt 13)

PIQ14 (Pin Interrupt 14)

PIQ15 (Pin Interrupt 15)

31 30 29 28 27 1617181920212223242526

PIQ7 (Pin Interrupt 7)

PIQ6 (Pin Interrupt 6)

PIQ5 (Pin Interrupt 5)

PIQ4 (Pin Interrupt 4)

PIQ8 (Pin Interrupt 8)

PIQ9 (Pin Interrupt 9)

PIQ10 (Pin Interrupt 10

PIQ11 (Pin Interrupt 11)

PIQ16 (Pin Interrupt 16)

PIQ17 (Pin Interrupt 17)

PIQ18 (Pin Interrupt 18)

PIQ19 (Pin Interrupt 19)PIQ28 (Pin Interrupt 28)

PIQ29 (Pin Interrupt 29)

PIQ30 (Pin Interrupt 30)

PIQ31 (Pin Interrupt 31)

PIQ23 (Pin Interrupt 23)

PIQ22 (Pin Interrupt 22)

PIQ21 (Pin Interrupt 21)

PIQ20 (Pin Interrupt 20)

PIQ24 (Pin Interrupt 24)

PIQ25 (Pin Interrupt 25)

PIQ26 (Pin Interrupt 26

PIQ27 (Pin Interrupt 27)

Port Registers

9-56 ADSP-BF54x Blackfin Processor Hardware Reference

Pin Interrupt Assignment (PINTx_ASSIGN) Registers

The 32-bit pin interrupt assignment registers control the pin-to-interrupt
assignment in a byte-wide manner. Unlike the other pin interrupt regis-
ters, the pin interrupt assignment registers do not consist of 32 individual
bits. They consist of four control bytes each that function as a multiplexer
control.

On ADSP-BF54x Blackfin processors, only three bits of each byte are
populated. The other bits are reserved. Both PINT0 and PINT1 blocks can
sense to signals of port A and port B. The lower eight pins of port A or
port B for example, can be forwarded to either the byte 0 or byte 2 of the
pin interrupt registers. Similarly, the upper eight pins can be forwarded to
byte 1 or byte 3 of the pin interrupt registers. Both PINT2 and PINT3
blocks can sense to signals of port C to port J. The lower eight pins of any
of those ports can be mapped to byte 0 or byte 2 of the pin interrupt reg-
isters. Similarly, the upper eight pins of any two ports can be mapped to
byte 1 and byte 3.

Figure 9-24 shows the PINT0_ASSIGN register.

Figure 9-24. Pin Interrupt Assignment Register 0 (PINT0_ASSIGN)

Pin Interrupt Assignment Register 0 (PINT0_ASSIGN)

R/W

Reset = 0x000001010xFFC0140C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 1 0 0 0 0 0 0 00 0

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

0xFFC0140C

B0MAP (Byte 0 Mapping)
000= B0MAP_PAL: byte 0 = PA.L
001= B0MAP_PBL: byte 0 = PB.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PAH: byte 1 = PA.H
001= B1MAP_PBH: byte 1 = PB.H

B2MAP (Byte 2 Mapping)
000= B2MAP_PAL: byte 2 = PA.L
001= B2MAP_PBL: byte 2 = PB.L

B3MAP (Byte 3 Mapping)
000= B3MAP_PAH: byte 3 = PA.H
001= B3MAP_PBH: byte 3 = PB.H

ADSP-BF54x Blackfin Processor Hardware Reference 9-57

General-Purpose Ports

Figure 9-25 shows the PINT1_ASSIGN register.

Figure 9-25. Pin Interrupt Assignment Register 1 (PINT1_ASSIGN)

Pin Interrupt Assignment Register 1 (PINT1_ASSIGN)

R/W

Reset = 0x010100000xFFC0143C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 16

10 0 0 0 0 1 0 0 0 0 0 0 00 0

17181920212223242526

B0MAP (Byte 0 Mapping)
000=B0MAP_PAL: byte 0 = PA.L
001= B0MAP_PBL: byte 0 = PB.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PAH: byte 1 = PA.H
001= B1MAP_PBH: byte 1 = PB.H

B2MAP (Byte 2 Mapping)
000= B2MAP_PAL: byte 2 = PA.L
001= B2MAP_PBL: byte 2 = PB.L

B3MAP (Byte 3 Mapping)
000= B3MAP_PAH: byte 3 = PA.H
001= B3MAP_PBH: byte 3 = PB.H

Port Registers

9-58 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 9-26 shows the PINT2_ASSIGN register.

Figure 9-26. Pin Interrupt Assignment Register 2 (PINT2_ASSIGN)

Pin Interrupt Assignment Register 2 (PINT2_ASSIGN)

R/W

Reset = 0x000001010xFFC0146C

B2MAP (Byte 2 Mapping)
000= B2MAP_PCL: byte 2 = PC.L
001= B2MAP_PDL: byte 2 = PD.L
010= B2MAP_PEL: byte 2 = PE.L
011= B2MAP_PFL: byte 2 = PF.L
100= B2MAP_PGL: byte 2 = PG.L
101= B2MAP_PHL: byte 2 = PH.L
110= B2MAP_PIL: byte 2 = PI.L
111= B2MAP_PJL: byte 2 = PJ.L

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 1 0 0 0 0 0 0 00 0

31 30 29 28 27 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

17181920212223242526

B0MAP (Byte 0 Mapping)
000= B0MAP_PCL: byte 0 = PC.L
001= B0MAP_PDL: byte 0 = PD.L
010= B0MAP_PEL: byte 0 = PE.L
011= B0MAP_PFL: byte 0 = PF.L
100= B0MAP_PGL: byte 0 = PG.L
101= B0MAP_PHL: byte 0 = PH.L
110= B0MAP_PIL: byte 0 = PI.L
111= B0MAP_PJL: byte 0 = PJ.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PCH: byte 1 = PC.H
001= B1MAP_PDH: byte 1 = PD.H
010= B1MAP_PEH: byte 1 = PE.H
011= B1MAP_PFH: byte 1 = PF.H
100= B1MAP_PGH: byte 1 = PG.H
101= B1MAP_PHH: byte 1 = PH.H
110= B1MAP_PIH: byte 1 = PI.H
111= B1MAP_PJH: byte 1 = PJ.H

B3MAP (Byte 3 Mapping)
000= B3MAP_PCH: byte 3 = PC.H
001= B3MAP_PDH: byte 3 = PD.H
010= B3MAP_PEH: byte 3 = PE.H
011= B3MAP_PFH: byte 3 = PF.H
100= B3MAP_PGH: byte 3 = PG.H
101= B3MAP_PHH: byte 3 = PH.H
110= B3MAP_PIH: byte 3 = PI.H
111= B3MAP_PJH: byte 3 = PJ.H

ADSP-BF54x Blackfin Processor Hardware Reference 9-59

General-Purpose Ports

Figure 9-27 shows the PINT3_ASSIGN register.

Figure 9-27. Pin Interrupt Assignment Register 3 (PINT3_ASSIGN)

Pin Interrupt Assignment Register 3 (PINT3_ASSIGN)

R/W

Reset = 0x020203030xFFC0149C

B2MAP (Byte 2 Mapping)
000= B2MAP_PCL: byte 2 = PC.L
001= B2MAP_PDL: byte 2 = PD.L
010= B2MAP_PEL: byte 2 = PE.L
011= B2MAP_PFL: byte 2 = PF.L
100= B2MAP_PGL: byte 2 = PG.L
101= B2MAP_PHL: byte 2 = PH.L
110= B2MAP_PIL: byte 2 = PI.L
111= B2MAP_PJL: byte 2 = PJ.L

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 1 1 0 0 0 0 0 0 10 0

31 30 29 28 27 16

00 0 0 0 1 0 0 0 0 0 0 0 10 0

17181920212223242526

B0MAP (Byte 0 Mapping)
000= B0MAP_PCL: byte 0 = PC.L
001= B0MAP_PDL: byte 0 = PD.L
010= B0MAP_PEL: byte 0 = PE.L
011= B0MAP_PFL: byte 0 = PF.L
100= B0MAP_PGL: byte 0 = PG.L
101= B0MAP_PHL: byte 0 = PH.L
110= B0MAP_PIL: byte 0 = PI.L
111= B0MAP_PJL: byte 0 = PJ.L

B1MAP (Byte 1 Mapping)
000= B1MAP_PCH: byte 1 = PC.H
001= B1MAP_PDH: byte 1 = PD.H
010= B1MAP_PEH: byte 1 = PE.H
011= B1MAP_PFH: byte 1 = PF.H
100= B1MAP_PGH: byte 1 = PG.H
101= B1MAP_PHH: byte 1 = PH.H
110= B1MAP_PIH: byte 1 = PI.H
111= B1MAP_PJH: byte 1 = PJ.H

B3MAP (Byte 3 Mapping)
000= B3MAP_PCH: byte 3 = PC.H
001= B3MAP_PDH: byte 3 = PD.H
010= B3MAP_PEH: byte 3 = PE.H
011= B3MAP_PFH: byte 3 = PF.H
100= B3MAP_PGH: byte 3 = PG.H
101= B3MAP_PHH: byte 3 = PH.H
110= B3MAP_PIH: byte 3 = PI.H
111= B3MAP_PJH: byte 3 = PJ.H

Programming Examples

9-60 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 9-1 illustrates how to enable the output drivers of the port pins
PG6 and PG7 on port G. The pins are toggled afterward.

Listing 9-1. Output Driver Enable

/* enable GPIO mode. */

/* This is optional as all PORTx_FER register

are cleared by default after reset */

P5.H = hi(PORTG_FER);

P5.L = lo(PORTG_FER);

R7 = PG7 | PG6 (z);

R6 = ~R7;

R5 = w[P5](z);

R5 = R5 & R6;

w[P5] = R5;

/* start with PG7=0 and PG6=1 */

P5.L = lo(PORTG);

R5 = w[P5] (z);

R5 = R5 & R6;

bitset(R5, bitpos(PG6));

w[P5] = R5;

/* enable output drivers */

P5.L = lo(PORTG_DIR_SET);

w[P5] = R7;

...

/* clear PG6 */

ADSP-BF54x Blackfin Processor Hardware Reference 9-61

General-Purpose Ports

P5.L = lo(PORTG_CLEAR);

R5 = PG6;

w[P5] = R5;

/* set PG7 */

P5.L = lo(PORTG_CLEAR);

R5 = PG7;

w[P5] = R5;

Note that the level of the GPIO flags can be defined before the output is
enabled. With the separate set and clear ports of the data and direction
registers multiple software threads can control their own pins individually.

Listing 9-2 programs the port pin PG8 on port G in open-drain mode. It
assumes an external pull-up resistor. Once the PG8 bit is also set in the
PORTG_INEN register reads from PORTG register return the actual state of the
pin.

Listing 9-2. Open-Drain Mode Programming

/* set the internal flag to zero */

P5.H = hi(PORTG_CLEAR);

P5.L = lo(PORTG_CLEAR);

R5 = PG8 (z);

w[P5] = R5;

/* enable input driver */

P5.L = lo(PORTG_INEN);

P5.H = hi(PORTG_INEN);

R6 = w[P5] (z);

R6 = R5 | R6;

w[P5] = R6;

/* drive the PG8 pin low */

P5.L = lo(PORTG_DIR_SET);

Programming Examples

9-62 ADSP-BF54x Blackfin Processor Hardware Reference

w[P5] = R5;

...

/* three-state the PG8 pin again */

P5.L = lo(PORTG_DIR_CLEAR);

w[P5] = R5;

Listing 9-3 illustrates the pin interrupt functionality. The input pin PB8 in
configured to request an IVG6 interrupt through the pin interrupt block
PINT0 every time a raising edge is detected.

Listing 9-3. Pin Interrupt Functionality

#include <blackfin.h>

.section program;

.global _main;

_main:

/* register interrupt service routines */

R7.L = lo(_isr_PB8);

R7.H = hi(_isr_PB8);

P5.L = lo(EVT7);

P5.H = hi(EVT7);

[P5] = R7;

/* interrupt assignment PINT0 => IVG7 */

R7.L = lo(0xFFFF0FFF);

R7.H = hi(0xFFFF0FFF);

P5.L = lo(SIC_IAR2);

P5.H = hi(SIC_IAR2);

[P5] = R7;

/* interrupt unmasking */

R7.L = lo(IRQ_PINT0);

ADSP-BF54x Blackfin Processor Hardware Reference 9-63

General-Purpose Ports

R7.H = hi(IRQ_PINT0);

P5.L = lo(SIC_IMASK0);

P5.H = hi(SIC_IMASK0);

[P5] = R7;

R7 = EVT_IVG7;

P5.L = lo(IMASK);

P5.H = hi(IMASK);

[P5] = R7;

/* enable input drivers for push-button on Port B */

/* pin can be also output or input enabled by other functions

*/

P5.L = lo(PORTB_INEN);

P5.H = hi(PORTB_INEN);

R6 = w[P5] (z);

R7 = PB8 (z);

R6 = R6 | R7;

w[P5] = R6;

/* assign PB8 to PINT0 byte 1 */

P5.L = lo(PINT0_ASSIGN);

P5.H = hi(PINT0_ASSIGN);

R7.L = lo(B1MAP_PBH);

R7.H = hi(B1MAP_PBH);

[P5] = R7;

/* set to raising edge sensitivity */

R7.L = lo(PB8);

R7.H = hi(PB8);

P5.L = lo(PINT0_INVERT_CLEAR);

P5.H = hi(PINT0_INVERT_CLEAR);

[P5] = R7;

P5.L = lo(PINT0_EDGE_SET);

P5.H = hi(PINT0_EDGE_SET);

Programming Examples

9-64 ADSP-BF54x Blackfin Processor Hardware Reference

[P5] = R7;

/* W1C potential latches due to history */

P5.L = lo(PINT0_LATCH);

P5.H = hi(PINT0_LATCH);

[P5] = R7;

/* unmask interrupts */

P5.L = lo(PINT0_MASK_SET);

P5.H = hi(PINT0_MASK_SET);

[P5] = R7;

JUMP 0;

_main.end:

ADSP-BF54x Blackfin Processor Hardware Reference 9-65

General-Purpose Ports

Listing 9-4 shows the fragments of an interrupt service routine that
matches for Listing 9-3. The interrupt request can be cleared by W1C
operation to either the PINT0_REQUEST or the PINT0_LATCH register.

Listing 9-4. Interrupt Service Routine Programming

_isr_PB8:

[--SP] = ASTAT;

[--SP] = (R7:5, P5:4);

/* clear interrupt request early in the ISR*/

P5.L = lo(PINT0_REQUEST);

P5.H = hi(PINT0_REQUEST);

R7 = PB8 (z);

[P5] = R7;

/* more service code goes to here */

SSYNC;

(R7:5, P5:4) = [SP++];

ASTAT = [SP++];

RTI;

_isr_PB8.end:

Programming Examples

9-66 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 9-5 provides a C version of Listing 9-3 and Listing 9-4. Addition-
ally, every interrupt event toggles the output on the PF6 GPIO pin.

Listing 9-5. Pin Interrupts and Interrupt Service in C

#include <blackfin.h>

#include <ccblkfn.h>

#include <sys/exception.h>

short dPattern;

/* interrupt service routine */

EX_INTERRUPT_HANDLER(IsrPB8)

{

/* clear interrupt request */

*pPINT0_REQUEST = PB8;

/* toggle output on PG6 */

if (dPattern & PG6)

{

*pPORTG_CLEAR = PG6;

}

else

{

*pPORTG_SET = PG6;

}

dPattern^= PG6;

}

void main (void)

{

/* register interrupt routine */

register_handler(ik_ivg7, IsrPB8);

/* assign PINT0 interrupt to IVG7 */

ADSP-BF54x Blackfin Processor Hardware Reference 9-67

General-Purpose Ports

*pSIC_IAR2 = 0xFFFF0FFFL;

*pSIC_IMASK0 = IRQ_PINT0;

/* enable the PB8 input driver */

*pPORTB_INEN = PB8;

/* assign PB8 to PINT0 byte 1 */

*pPINT0_ASSIGN = B1MAP_PBH;

/* set to raising edge sensitivity */

*pPINT0_INVERT_CLEAR = PB8;

*pPINT0_EDGE_SET = PB8;

/* W1C potential latches due to history */

*pPINT0_LATCH = PB8;

/* unmask interrupts */

*pPINT0_MASK_SET = PB8;

/* initialize PG6 to high */

*pPORTG_SET = PG6;

*pPORTG_DIR_SET = PG6;

dPattern = PG6;

while (1);

}

Programming Examples

9-68 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 9-6 illustrates how to control the port multiplexing. In the exam-
ple, Port H is configured to provide the following signals: UART1 TX and
RX, TMR8, CDG and CUD, DMAR0 and DMAR1 and A4 to A9. PH7 operates in
GPIO mode.

Listing 9-6. Port Multiplexing Example

P5.H = hi(PORTH_FER);

P5.l = lo(PORTH_FER);

R5.L = PH15 | PH14 | PH13 | PH12 | PH11 | PH10 | PH9 |PH8

| nPH7 | PH6 | PH5 | PH4 | PH3 | PH2 | PH1 | PH0;

w[P5] = R5;

P5.H = hi(PORTH_MUX);

P5.L = lo(PORTH_MUX);

R5.H = MUX15_0 |MUX14_0 |MUX13_0 | MUX12_0

| MUX11_0 | MUX10_0 | MUX9_0 | MUX8_0;

R5.L = MUX7_0 |MUX6_1 | MUX5_1 | MUX4_2

| MUX3_2 | MUX2_1 | MUX1_0 | MUX0_0;

[P5] = R5;

/*For the second part where the PORTH_MUX register is configured,

a more compact syntax can be used as shown below.*/

P5.H=hi(PORTH_MUX);

P5.L=lo(PORTH_MUX);

R5.H=hi(MUX(0,0, 0,0,0,0,0,0, 0, 1,1, 2,2, 1, 0,0));

R5.L=lo(MUX(0,0, 0,0,0,0,0,0, 0, 1,1, 2,2, 1, 0,0));

[P5] = R5;

ADSP-BF54x Blackfin Processor Hardware Reference 10-1

10 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose timer modules and includes
the following sections:

• “Overview and Features” on page 10-1

• “Interface Overview” on page 10-3

• “Description of Operation” on page 10-7

• “Modes of Operation” on page 10-14

• “Programming Model” on page 10-37

• “Timer Registers” on page 10-39

• “Programming Examples” on page 10-58

Overview and Features
The ADSP-BF544, ADSP-BF547, ADSP-BF548, and ADSP-BF549
Blackfin processors feature two general-purpose timer modules that con-
tain eleven identical 32-bit timers. The ADSP-BF542 processors feature
only one timer module with eight timers. Every timer can operate in vari-
ous operating modes on individual configuration. Although the timers
operate completely independent from each other, all of them can be
started and stopped simultaneously for synchronous operation.

Overview and Features

10-2 ADSP-BF54x Blackfin Processor Hardware Reference

Features
The general-purpose timers support the following operating modes:

• Singleshot mode for interval timing and single pulse generation

• Pulse-width modulation (PWM) generation with consistent update
of period and pulse width values

• External signal capture mode with consistent update of period and
pulse width values

• External event counter mode

Feature highlights include:

• Synchronous operation of all timers

• Consistent management of period and pulse width values

• Autobaud detection for CAN and both UART modules

• Period measurement for the GP counter module

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

ADSP-BF54x Blackfin Processor Hardware Reference 10-3

General-Purpose Timers

Interface Overview
Figure 10-1 shows the derivative-specific block diagram of the gen-
eral-purpose timer module.

Interface Overview

10-4 ADSP-BF54x Blackfin Processor Hardware Reference

The timer module features a global infrastructure to control synchronous
operation of all timers if required. The internal structure of the individual
timers is illustrated by Figure 10-2, which shows the details of timer 0 rep-
resentatively. The other timers have identical structure.

Figure 10-1. Timer Block Diagram

16

BlackfinPAB

GP TIMERS

TIMER_STATUS0

T
M

R
0

T
IM

E
R

 0
T

A
C

I0

T
A

C
L

K
0

P
B

8

(U
A

R
T

0
R

X
)

P
E

8

P
A

7

T
M

R
1

T
IM

E
R

 1
T

A
C

I1

T
A

C
L

K
1

P
B

9

(U
A

R
T

1
R

X
)

P
H

1

P
A

8

T
M

R
2

T
IM

E
R

 2
T

A
C

L
K

2

P
B

10

P
A

10

T
M

R
3

T
IM

E
R

 3
T

A
C

L
K

3

P
B

11

P
A

11

T
M

R
4

T
IM

E
R

 4
T

A
C

L
K

4

P
A

1

P
A

12

T
M

R
5

T
IM

E
R

 5
T

A
C

L
K

5

P
A

5

P
A

13

T
M

R
6

T
IM

E
R

 6
T

A
C

I6

T
A

C
L

K
6

P
A

9

P
A

14

T
M

R
7

T
IM

E
R

 7
T

A
C

L
K

7

P
A

13

TIMER_ENABLE0

TIMER_DISABLE0

T
M

R
C

L
K

(P
P

I0
C

L
K

)
P

G
0

SIC2 CONTROLLER

IR
Q

93

IR
Q

92

IR
Q

91

IR
Q

90

IR
Q

89

IR
Q

88

IR
Q

87

IR
Q

86

T
IM

E
R

 8

T
IM

E
R

 9

T
IM

E
R

 1
0

IR
Q

18

IR
Q

17

IR
Q

16

TIMER_STATUS1

TIMER_ENABLE1

T
A

C
I2

(U
A

R
T

2
R

X
)

P
B

5

T
A

C
I3

(U
A

R
T

3
R

X
)

P
B

7

T
A

C
I4

(C
A

N
0

R
X

)
P

G
13

T
A

C
I5

(C
A

N
1

R
X

)
P

G
15

T
A

C
I7

P
A

15

COUNTER

T
M

R
8

T
A

C
L

K
8

P
H

2
T

A
C

I8

T
M

R
9

T
A

C
L

K
9

P
H

3
T

A
C

I9

T
M

R
10

T
A

C
L

K
10

P
H

4
T

A
C

I1
0

P
H

5

P
H

6

P
H

7

SIC0 CONTROLLER

PORT CONTROL

TIMER_DISABLE1

ADSP-BF54x Blackfin Processor Hardware Reference 10-5

General-Purpose Timers

External Interface
Every timer has a dedicated TMRx pin that can be found on ports A, B, and
H. If enabled, the TMRx pins output the singlepulse or PWM signals gener-
ated by the timer. They function as input in capture and counter modes.
Polarity of the signals is programmable.

Figure 10-2. Internal Timer Structure

TIMER0_CONFIG

PERIOD
MATCH

SCLK

ENABLE
LATCH

32

TMRCLK
TACLK0

TMR0

TIMER0_PERIOD (WRITE)

TIMER0_PERIOD (READ)

COMPARATOR

TIMER0_COUNTER

COMPARATOR

TIMER0_WIDTH (READ)

TIMER0_WIDTH (WRITE)

32

32

32

32

32 INTERRUPT
CONTROL

PIN
CONTROL

EDGE
DETECTOR

32

TRAILING EDGE

LEADING EDGE

OVERFLOW

WIDTH MATCH

PAB

16

TIMEN0

TIMDIS0

TRUN0

TOVF_ERR0

TIMIL0

TMR0

TACI0

TIMER 0

Interface Overview

10-6 ADSP-BF54x Blackfin Processor Hardware Reference

Alternate clock (TACLKx) and capture (TACIx) inputs are found on ports A,
B, E, G, and H. The TACLKx pins can alternatively clock the timers in
PWM_OUT mode.

In WDTH_CAP mode, timers 0-5 feature TACIx inputs that can be used for bit
rate detection on CAN and UART inputs. The TACI0-TACI3 pins connect,
respectively, to the UART0-UART3 RX inputs. Additionally, the TACI4
input connects to the CAN0 RX input, and the TACI5 input connects to
the CAN1 RX input. The TACI6 input senses to an output of the general
purpose counter module and supports capturing of the event timing this
way. The TACI7, TACI8, TACI9 and TACI10 inputs are available on pins for
various purposes. TACIx inputs can be used with or without the respective
UART or CAN peripheral enabled. If the peripheral is not enabled, the
input drivers of the TACIx inputs must be explicitly enabled.

The TMRCLK input is another clock input common to all 11 timers. The
EPPI0 unit is clocked by the same pin; therefore any of the timers can be
clocked by EPPI0_CLK.

In order to enable TMRCLK, the PORTG_FER bit 0 must be set and input
enable for GPIO bit 0 needs to be set in the PORTG_INEN register.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the
maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be one SCLK minimum. The maximum
allowed frequency of timer input signals is SCLK/2.

Internal Interface
Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

ADSP-BF54x Blackfin Processor Hardware Reference 10-7

General-Purpose Timers

Every timer has its dedicated interrupt request output that connects to the
SIC controller, for a total of 11 interrupt outputs.

Description of Operation
The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMERx_COUNTER register. Depending on operation
mode, the counter is reset to either 0x0000 0000 or 0x0000 0001 when
the timer is enabled. The counter always counts upward. Usually, it is
clocked by SCLK. In PWM mode it can be clocked by the alternate clock
input TACLKx, or the common timer clock input TMRCLK alternatively. In
counter mode, the counter is clocked by edges on the TMRx input. The sig-
nificant edge is programmable.

After 232-1 clocks, the counter overflows. In this case, this is reported by
the overflow/error bit TOVF_ERRx in the TIMER_STATUSx registers. In PWM
and counter mode, the counter is reset by hardware when its content
reaches the values stored in the TIMERx_PERIOD register. In capture mode
the counter is reset by leading edges on the input pin TMRx or TACIx. If
enabled, these events cause the interrupt latch TIMILx in the
TIMER_STATUSx registers to be set and issue a system interrupt request. The
TOVF_ERRx and TIMILx latches are sticky and should be cleared by software
using W1C operations to clear the interrupt request. Each global
TIMER_STATUSx register is 32 bits wide. A single atomic 32-bit read can
consistently report the status of all timers within a given TIMER_STATUSx
register.

Before a timer can be enabled, its mode of operation is programmed in its
timer-specific TIMERx_CONFIG register. Then, one or more timers are
started by writing a 1 to the representative bits in one or more of the
TIMER_ENABLEx registers.

The TIMER_ENABLEx registers can be used to enable some or all timers
within a block simultaneously, through “write-1-to-set” control bits, one
for each timer. Likewise, the TIMER_DISABLEx registers can be used to dis-

Description of Operation

10-8 ADSP-BF54x Blackfin Processor Hardware Reference

able some or all timers within a block at the same time, through
“write-1-to-clear” control bits. The TIMER_ENABLE0 and TIMER_DISABLE0
registers control timers 0-7, while the TIMER_ENABLE1 and TIMER_DISABLE1
registers control timers 8-10. Either the TIMER_ENABLEx or
TIMER_DISABLEx register for a given timer block can be read back to check
the enable status of the timers. A 1 indicates that the corresponding timer
is enabled. The timer starts counting three SCLK cycles after the TIMENx bit
is set.

While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMERx_WIDTH and TIMERx_PERIOD register pair. In capture mode these reg-
isters are read-only. Hardware always captures both values. Regardless of
whether in PWM or capture mode, shadow buffers always ensure consis-
tency between the TIMERx_WIDTH and TIMERx_PERIOD values. In PWM
mode, hardware performs a plausibility check by the time the timer is
enabled. In this case the error type is reported by the TIMERx_CONFIG regis-
ter and signalled by the TOVF_ERRx bit.

Interrupt Processing
Each of the 11 timers can generate a single interrupt. The 11 resulting
interrupt signals are routed to the system interrupt controller block for
prioritization and masking. The TIMER_STATUSx registers latch the timer
interrupts to provide a means for software to determine the interrupt
source.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASKx registers. To poll the TIMILx bit
without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERRx bits.

ADSP-BF54x Blackfin Processor Hardware Reference 10-9

General-Purpose Timers

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their
interrupt requests simultaneously. In this case, the service routine might
clear all TIMILx latch bits at once (for timers 0-7) by writing 0x000F 000F
to the TIMER_STATUS0 register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx bit in the TIMER_STATUSx register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMILx clear command from the RTI instruction,
an extra SSYNC instruction may need to be inserted. In EXT_CLK mode, reset
the TIMILx bit in the TIMER_STATUSx register at the very beginning of the
interrupt service routine to avoid missing any timer events. Figure 10-3
shows the timers interrupt structure.

Description of Operation

10-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-3. Timers Interrupt Structure

ERROR EVENT

IRQ_ENA

TIMILx

TIMER
IRQx PROCESSOR

CORE

TMODE
PWM_OUT WDTH_CAP EXT_CLK

TOVF_ERRx

RST RST

SET SET

INTERRUPT
EVENT

RESET

TOVF_ERRx WRITE DATA
TIMILx WRITE DATA

MMR WRITE TO
TIMER_STATUSx

COUNTER
OVERFLOW

ILLEGAL
TIMERx_PERIOD

ILLEGAL
TIMERx_WIDTH

1 0 1 0PERIOD_CNT

LEADING
EDGE

TRAILING
EDGE

COUNT = WIDTH

COUNT = PERIOD

TMODE
PWM_OUT WDTH_CAP EXT_CLK

SYSTEM
INTERRUPT

CONTROLLER

ADSP-BF54x Blackfin Processor Hardware Reference 10-11

General-Purpose Timers

Illegal States
Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width versus period plausibility checks.
Errors are reported by the TOVF_ERRx bits in the TIMER_STATUSx register
and the ERR_TYP bit field in the individual TIMERx_CONFIG registers.
Table 10-1 provides a summary of error conditions, by using these terms:

• Startup. The first clock period when the timer counter is running
after the timer is enabled by writing TIMER_ENABLEx register.

• Rollover. The time when the current count matches the value in
TIMERx_PERIOD register and the counter is reloaded with the value
1.

• Overflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged. No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there is no error since this timer
was enabled.

• When TOVF_ERR is unchanged, it reads 0 if there is no error
since this timer was enabled, or if software has performed a
W1C to clear any previous error. If a previous error has not
been acknowledged by software, TOVF_ERR reads 1.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write-1-to-clear TOVF_ERR to acknowledge the error.

Description of Operation

10-12 ADSP-BF54x Blackfin Processor Hardware Reference

Table 10-1 can be read as: “In mode __ at event __, if TIMERx_PERIOD
is __ and TIMERx_WIDTH is __, then ERR_TYP is __ and
TOVF_ERR is __.”

Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMRx pin.

Table 10-1. Overview of Illegal States

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

PWM_OUT,
PERIOD_
CNT = 1

Startup
(No boundary
condition tests
performed on
TIMERx_
WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

>= 2 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

>= 2 == 0 b#11 Set

>= 2 < TIMERx_
PERIOD

Unchanged Unchanged

>= 2 >= TIMERx_
PERIOD

b#11 Set

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

ADSP-BF54x Blackfin Processor Hardware Reference 10-13

General-Purpose Timers

PWM_OUT,
PERIOD_
CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an overflow
error once the counter counts through its entire range.

Anything >= 1 Unchanged Unchanged

Rollover Rollover is not possible in this mode.

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
WIDTH == 0.

Anything Anything b#01 Set

WDTH_CAP Startup TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Rollover TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Table 10-1. Overview of Illegal States (Cont’d)

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

Modes of Operation

10-14 ADSP-BF54x Blackfin Processor Hardware Reference

Modes of Operation
The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode
Use the PWM_OUT mode for PWM signal or single-pulse generation, for
interval timing or for periodic interrupt generation. Figure 10-4 illustrates
PWM_OUT mode.

Setting the TMODE field to b#01 in the timer configuration (TIMERx_CONFIG)
register enables PWM_OUT mode. Here, the timer TMRx pin is an output, but
it can be disabled by setting the OUT_DIS bit in the TIMERx_CONFIG register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

Once a timer is enabled, TIMERx_COUNTER register is loaded with a starting
value. If CLK_SEL = 0, the timer counter starts at 0x1. If CLK_SEL = 1, it is
reset to 0x0 as in EXT_CLK mode. The timer counts upward to the value of
the TIMERx_PERIOD register. For either setting of CLK_SEL, when the timer
counter equals the timer period, the timer counter is reset to 0x1 on the
next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMERx_WIDTH register, generates one
asserting and one deasserting edge, then generates an interrupt (if enabled)
and stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMERx_PERIOD and TIMERx_WIDTH registers and
generates a repeating (and possibly modulated) waveform. It generates an

ADSP-BF54x Blackfin Processor Hardware Reference 10-15

General-Purpose Timers

interrupt (if enabled) at the end of each period and stops only after it is
disabled. A setting of PERIOD_CNT = 0 counts to the end of the width; a set-
ting of PERIOD_CNT = 1 counts to the end of the period.

The TIMERx_PERIOD and TIMERx_WIDTH registers are read-only in
some operation modes. Be sure to set the TMODE field in the
TIMERx_CONFIG register to b#01 before writing to these registers.

Figure 10-4. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMRx

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

TACLKx

TMRCLK

TIMERx_COUNTER

TIMERx_PERIOD TIMERx_WIDTH

Modes of Operation

10-16 ADSP-BF54x Blackfin Processor Hardware Reference

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS
bit in the TIMERx_CONFIG register. The TMRx pin is then three-stated
regardless of the setting of PULSE_HI and TOGGLE_HI. This can reduce
power consumption when the output signal is not being used. The TMRx
pin can also be disabled by the PORTx_FER and the PORTx_MUX registers.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMRx pin. This mode can also be used to implement a precise delay.
The pulse width is defined by the TIMERx_WIDTH register, and the
TIMERx_PERIOD register is not used. See Figure 10-5.

At the end of the pulse, the timer interrupt latch bit TIMILx is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLEx register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMRx pin. If the PULSE_HI bit is not set, the pulse is active
low.

Figure 10-5. Timer Enable and Automatic Disable Timing

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLEx

ADSP-BF54x Blackfin Processor Hardware Reference 10-17

General-Purpose Timers

The pulse width may be programmed to any value from 1 to (232-1),
inclusive.

Pulse-Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally-clocked timer generates rectan-
gular signals with well-defined period and duty cycles (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

The 32-bit timer period (TIMERx_PERIOD) and timer pulse width
(TIMERx_WIDTH) registers are programmed with the values required by the
PWM signal.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the counter equals the value of the TIMERx_WIDTH
register. The pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding TIMERx_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMRx pin is driven to the deasserted level.

Figure 10-6 shows timing details.

Modes of Operation

10-18 ADSP-BF54x Blackfin Processor Hardware Reference

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine (ISR) must clear the interrupt latch bit (TIMILx)
and might alter period and/or width values. In pulse-width modulation
(PWM) applications, the software needs to update period and pulse width
values while the timer is running. When software updates either period or
pulse width registers, the new values are held by special buffer registers
until the period expires. Then the new period and pulse width values
become active simultaneously. Reads from TIMERx_PERIOD and
TIMERx_WIDTH return the old values until the period expires.

The TOVF_ERRx status bit signifies an error condition in PWM_OUT mode.
The TOVF_ERRx bit is set if TIMERx_PERIOD = 0 or TIMERx_PERIOD = 1 at
startup, or when TIMERx_COUNTER rolls over. It is also set if the
TIMERx_WIDTH register value is greater than or equal to the TIMERx_PERIOD
register value by the time the counter rolls over. The ERR_TYP bits are set
when the TOVF_ERRx bit is set.

Although the hardware reports an error if the TIMERx_WIDTH value equals
the TIMERx_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore

Figure 10-6. Timer Enable Timing

SCLK

TIMERx_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLEx

ADSP-BF54x Blackfin Processor Hardware Reference 10-19

General-Purpose Timers

the TOVL_ERRx flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMERx_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMRx output pin, set the
period value to 2 and the pulse width to 1. This makes TMRx toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-
grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (period – 1), inclusive.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (through
the TIMERx_WIDTH register). When two timers are running synchronously
by the same period settings, the pulses are aligned to the asserting edge as
shown in Figure 10-7.

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent

Figure 10-7. Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

Modes of Operation

10-20 ADSP-BF54x Blackfin Processor Hardware Reference

active low and active high pulses, taken together, create two halves of a
fully arbitrary rectangular waveform. The effective waveform is still active
high when PULSE_HI is set and active low when PULSE_HI is cleared. The
value of the TOGGLE_HI bit has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 10-8 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMERx_WIDTH registers
control the phase between the signals.

ADSP-BF54x Blackfin Processor Hardware Reference 10-21

General-Purpose Timers

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 10-9).

Figure 10-8. Three Timers With Same Period Settings

Figure 10-9. Two Timers With Non-Overlapping Clocks

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

Modes of Operation

10-22 ADSP-BF54x Blackfin Processor Hardware Reference

When TOGGLE_HI = 0, software updates the TIMERx_PERIOD and
TIMERx_WIDTH registers once per waveform period. When TOGGLE_HI = 1,
software updates the TIMERx_PERIOD and TIMERx_WIDTH registers twice per
waveform. Period values are half as large. In odd-numbered periods, write
(Period – Width) instead of Width to TIMERx_WIDTH in order to obtain
center-aligned pulses.

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, period) ;

write(TIMERx_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

ADSP-BF54x Blackfin Processor Hardware Reference 10-23

General-Purpose Timers

write(TIMERx_PERIOD, per1) ;

write(TIMERx_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per2) ;

write(TIMERx_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

The timer enable latch (TRUNx bit in the TIMER_STATUSx register) is
updated only at the end of even-numbered periods in TOGGLE_HI mode.
When TIMER_DISABLEx is written to 1, the current pair of counter periods
(one waveform period) completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if the TIMERx_PERIOD register
is either set to 0 or 1, or when the width value is greater than or equal to
the period value.

Externally-Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the timer configuration (TIMERx_CONFIG) register is set, the
timer is clocked by PWM_CLK. The PWM_CLK is normally input from the
TACLKx pin, but may also be taken from the common TMRCLK pin. Differ-
ent timers may receive different signals on their PWM_CLK inputs,
depending on configuration. As selected by the PERIOD_CNT bit, the
PWM_OUT mode either generates pulse-width modulation waveforms or gen-
erates a single pulse with pulse width defined by the TIMERx_WIDTH
register.

Modes of Operation

10-24 ADSP-BF54x Blackfin Processor Hardware Reference

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMRx pin transitions on rising edges
of PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMRx pin (the interrupt occurs on an SCLK edge, the pin transitions on
a later PWM_CLK edge). It is still safe to program new period and pulse
width values as soon as the interrupt occurs. After a period expires, the
counter rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The alternate timer clock inputs (TACLKx) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the PORTx_MUX and PORTx_FER registers.

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLEx) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMRx pin. The processor can determine when the timer stops running
by polling for the corresponding TRUNx bit in the TIMER_STATUSx register
to read 0 or by waiting for the last interrupt (if enabled). Note the timer
cannot be reconfigured (TIMERx_CONFIG cannot be written to a new value)
until after the timer stops and TRUNx reads 0.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to
write TIMER_DISABLEx to stop the timer. At the end of the pulse, the timer
stops automatically, the corresponding bit in TIMER_ENABLEx (and
TIMER_DISABLEx) are cleared, and the corresponding TRUNx bit is cleared

ADSP-BF54x Blackfin Processor Hardware Reference 10-25

General-Purpose Timers

(See Figure 10-5 on page 10-16). To generate multiple pulses, write a 1 to
TIMER_ENABLEx, wait for the timer to stop, then write another 1 to
TIMER_ENABLEx.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLEx register. To prevent
the ongoing PWM pattern from being spoiled in unpredictable fashion,
the timer does not stop immediately when the corresponding 1 is written
to the TIMER_DISABLEx register. Rather, the write simply clears the enable
latch and the timer still completes the ongoing PWM patterns gracefully.
It stops cleanly at the end of the first period when the enable latch is
cleared. During this final period the TIMENx bit returns 0, but the TRUNx
bit still reads as a 1.

If the TRUNx bit is not cleared explicitly, and the enable latch can be
cleared and re-enabled all before the end of the current period, the TRUNx
bit will continue to run as if nothing happened. Typically, software should
disable a PWM_OUT timer and then wait for it to stop itself.

Figure 10-10 shows detailed timing.

Modes of Operation

10-26 ADSP-BF54x Blackfin Processor Hardware Reference

If necessary, the processor can force a timer in PWM_OUT mode to abort
immediately. Do this by first writing a 1 to the corresponding bit in
TIMER_DISABLEx, and then writing a 1 to the corresponding TRUNx bit in
TIMER_STATUSx. This stops the timer whether the pending stop was wait-
ing for the end of the current period (PERIOD_CNT = 1) or the end of the
current pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMRx pin.

When timers are disabled, the TIMERx_COUNTER registers retain their state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The TIMERx_COUNTER registers are read-only. Software
cannot overwrite or preset the timer counter value directly.

Figure 10-10. Timer Disable Timing

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLEx

SCLK

TIMERx_PERIOD

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

ADSP-BF54x Blackfin Processor Hardware Reference 10-27

General-Purpose Timers

Pulse-Width Count and Capture (WDTH_CAP)
Mode

Use the WDTH_CAP mode, often simply called “capture mode,” to measure
pulse widths on the TMRx or TACIx input pins, or to “receive” PWM sig-
nals. Figure 10-11 shows a flow diagram for WDTH_CAP mode.

In WDTH_CAP mode, the TMRx pin is an input pin. The internally-clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMERx_CONFIG register enables this mode.

When enabled in this mode, the timer resets the count in the
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMRx pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMERx_COUNTER register into the width buffer
register. At the next leading edge, the timer transfers the current 32-bit
value of the TIMERx_COUNTER register into the period buffer register. The
count register is reset to 0x0000 0001 again, and the timer continues
counting and capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMRx pin, the PULSE_HI bit in the TIMERx_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the TIMERx_COUNTER is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HI bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on
the falling edge, and to the period buffer on the next rising edge.

Modes of Operation

10-28 ADSP-BF54x Blackfin Processor Hardware Reference

In WDTH_CAP mode, these three events always occur at the same time as one
unit:

1. The TIMERx_PERIOD register is updated from the period buffer
register.

2. The TIMERx_WIDTH register is updated from the width buffer
register.

3. The TIMILx bit gets set (if enabled) but does not generate an error.

Figure 10-11. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLEx

RESET

INTERRUPT

PERIOD_CNT

TMRx

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMRx

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_WIDTHTIMERx_PERIOD

ADSP-BF54x Blackfin Processor Hardware Reference 10-29

General-Purpose Timers

The PERIOD_CNT bit in the TIMERx_CONFIG register controls the point in
time when this set of transactions is executed. Taken together, these three
events are called a measurement report. The TOVF_ERRx bit does not get set
at a measurement report. A measurement report occurs once per input sig-
nal period (at most).

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMERx_PERIOD and TIMERx_WIDTH are ready
to be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer register captures its value (at a leading edge).
When the PERIOD_CNT bit is cleared, the measurement report occurs just
after the width buffer register captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (see Figure 10-12),
then the TIMERx_PERIOD and TIMERx_WIDTH registers report the pulse
period and pulse width measured in the period that just ended. If the
PERIOD_CNT bit is cleared and a trailing edge occurred (see Figure 10-13),
then the TIMERx_WIDTH register reports the pulse width measured in the
pulse that just ended, but the TIMERx_PERIOD register reports the pulse
period measured at the end of the previous period.

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMERx_PERIOD value
in this case returns 0, as shown in Figure 10-13. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer register. Instead, an error report interrupt is
generated (if enabled) when the counter range is exceeded and the counter
wraps around. In this case, both TIMERx_WIDTH and TIMERx_PERIOD read 0

Modes of Operation

10-30 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-12. Example of Period Capture Measurement Report Timing
(WDTH_CAP Mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 4 5 1X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2 3

TIMERx_WIDTH BUFFER

4

TIMERx_PERIOD

2

8

8

3

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

ADSP-BF54x Blackfin Processor Hardware Reference 10-31

General-Purpose Timers

Figure 10-13. Example of Width Capture Measurement Report Timing
(WDTH_CAP Mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1X

TIMERx_COUNTER

8 4

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Modes of Operation

10-32 ADSP-BF54x Blackfin Processor Hardware Reference

(because no measurement report occurred to copy the value captured in
the width buffer register to TIMERx_WIDTH). See the first interrupt in
Figure 10-14.

When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in prepara-
tion for another measurement. This procedure prevents the timer
from free-running after the width measurement and logging errors
generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if TIMERx_COUNTER wraps
around from 0xFFFF FFFF to 0 in the absence of a leading edge. At that
point, the TOVF_ERRx bit in the TIMER_STATUSx register and the ERR_TYP
bits in the TIMERx_CONFIG register are set, indicating a count overflow due
to a period greater than the counter’s range. This is called an error report.
When a timer generates an interrupt in WDTH_CAP mode, either an error has
occurred (an error report) or a new measurement is ready to be read (a
measurement report), but never both at the same time. The
TIMERx_PERIOD and TIMERx_WIDTH registers are never updated at the time
an error is signaled. Refer to Figure 10-14 and Figure 10-15 for more
information.

ADSP-BF54x Blackfin Processor Hardware Reference 10-33

General-Purpose Timers

Figure 10-14. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP Mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 1 2 3 40X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Modes of Operation

10-34 ADSP-BF54x Blackfin Processor Hardware Reference

Both TIMILx and TOVF_ERRx are sticky bits, and software has to explicitly
clear them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMERx_PERIOD nor the TIMERx_WIDTH register were updated. If the timer

Figure 10-15. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP Mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 1 2 3 40X

TIMERx_COUNTER

4X

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

3

ADSP-BF54x Blackfin Processor Hardware Reference 10-35

General-Purpose Timers

overflowed and PERIOD_CNT = 0, the TIMERx_PERIOD and TIMERx_WIDTH
registers were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than
0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to
the total for the period, but the width is ambiguous. For example, in
Figure 10-14 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2 with a 50% duty cycle. Under these conditions,
the WDTH_CAP mode timer would measure Period = 2 and
Pulse Width = 1.

Autobaud Mode

In WDTH_CAP mode, some of the timers can provide autobaud detection for
the universal asynchronous receiver/transmitter (UART) and controller
area network (CAN) interfaces. The timer input select (TIN_SEL) bit in the
TIMERx_CONFIG register causes the timer to sample the TACIx pin instead of
the TMRx pin, when enabled for WDTH_CAP mode. Autobaud detection can
be used for initial bit rate negotiations as well as for detection of bit rate
drifts while the interface is in operation. For details with the UART inter-
face, see the “UART Port Controllers” chapter in the ADSP-BF54x
Blackfin Processor Hardware Reference (Volume 2 of 2). For details with the
CAN interface, see the “CAN Module” chapter in the ADSP-BF54x Black-
fin Processor Hardware Reference (Volume 2 of 2).

Modes of Operation

10-36 ADSP-BF54x Blackfin Processor Hardware Reference

Capturing Timings from the GP Counter Module

In WDTH_CAP mode, one of the timers can sense to an internal signal of the
GP counter module through the TACI6 input. This enables the timer to
capture the period between counter events. For details, see “Capturing
Timing Information (Using the General-Purpose Timer)” on page 13-18.

External Event (EXT_CLK) Mode
Use the EXT_CLK mode, sometimes referred to as the “counter mode,” to
count external events, that is, signal edges on the TMRx pin which is an
input in this mode. Figure 10-16 shows a flow diagram for EXT_CLK mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMERx_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMERx_CONFIG register enables this
mode. The TIMERx_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period, and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer is enabled, it resets TIMERx_COUNTER to 0x0 and then waits
for the first leading edge on the TMRx pin. This edge causes
TIMERx_COUNTER to be incremented to the value 0x1. Every subsequent
leading edge increments the count register. After reaching the period
value, the TIMILx bit is set, and an interrupt is generated. The next leading
edge reloads TIMERx_COUNTER again with 0x1. The timer continues count-
ing until it is disabled. The PULSE_HI bit determines whether the leading
edge is rising (PULSE_HI set) or falling (PULSE_HI cleared).

ADSP-BF54x Blackfin Processor Hardware Reference 10-37

General-Purpose Timers

The configuration bits, TIN_SEL and PERIOD_CNT, have no effect in this
mode. The TOVF_ERRx and ERR_TYP bits are set if TIMERx_COUNTER wraps
around from 0xFFFF FFFF to 0 or if Period = 0 at startup, or when
TIMERx_COUNTER rolls over (from Count = Period to Count = 0x1).
TIMERx_WIDTH is unused.

Programming Model
The architecture of the timer block enables any timer to work individually
or synchronously along with others in its group. That is, timers 0-7 are
members of the same group, and timers 8-10 are members of a separate

Figure 10-16. Timer Flow Diagram, EXT_CLK Mode

CLOCKRESET

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_PERIOD

TIMER_ENABLEx

INTERRUPT

EQUAL?

Y

PULSE_HI TMRx

DATA BUS

Programming Model

10-38 ADSP-BF54x Blackfin Processor Hardware Reference

group. Regardless of the operation mode, the timers’ programming model
is always straightforward. Because of the error-checking mechanism,
always follow this order when enabling timers:

1. Set timer mode.

2. Write TIMERx_WIDTH and TIMERx_PERIOD registers as applicable.

3. Enable timer.

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMERx_WIDTH and
TIMERx_PERIOD may result in an error condition, because the registers are
read-only in some modes. Accordingly, the timer may not start as
expected.

If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1. Set timer mode to PWM_OUT.

2. Write first TIMERx_WIDTH and TIMERx_PERIOD value pair.

3. Enable timer.

4. Immediately write second TIMERx_WIDTH and TIMERx_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is
usually performed by an interrupt service routine. In PWM_OUT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP
mode it must store captured values for further processing. In any case, the
service routine should clear the TIMILx bits of the timers it controls.

ADSP-BF54x Blackfin Processor Hardware Reference 10-39

General-Purpose Timers

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of 11 identical timer units.

Each timer provides four registers:

• TIMERx_CONFIG[15:0] – timer configuration register
(on page 10-47)

• TIMERx_WIDTH[31:0] – timer pulse width register (on page 10-52)

• TIMERx_PERIOD[31:0] – timer period register (on page 10-52)

• TIMERx_COUNTER[31:0] – timer counter register (on page 10-49)

Additionally, three register sets are shared between the 11 timers:

• TIMER_ENABLEx[15:0] – timer enable registers (on page 10-40)

• TIMER_DISABLEx[15:0] – timer disable registers (on page 10-41)

• TIMER_STATUSx[31:0] – timer status registers (on page 10-43)

TIMER_ENABLE0, TIMER_DISABLE0, and TIMER_STATUS0 control timers 0-7.
TIMER_ENABLE1, TIMER_DISABLE1, and TIMER_STATUS1 control timers 8-10.

The size of accesses is enforced. A 32-bit access to a TIMERx_CONFIG regis-
ter or a 16-bit access to a TIMERx_WIDTH, TIMERx_PERIOD, or
TIMERx_COUNTER register results in a memory-mapped register (MMR)
error. Both 16- and 32-bit accesses are allowed for the TIMER_ENABLEx,
TIMER_DISABLEx, and TIMER_STATUSx registers. On a 32-bit read of one of
the 16-bit registers, the upper word returns all 0s.

Table 10-6 on page 10-56 summarizes control bit and register usage in
each timer mode.

Timer Registers

10-40 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Enable (TIMER_ENABLEx) Registers
The TIMER_ENABLEx registers, shown in Figure 10-17 and Figure 10-18,
allow all timers within a group to be enabled simultaneously in order to
make them run completely synchronously. For each timer there is a single
W1S control bit. Writing a 1 enables the corresponding timer; writing a 0
has no effect. The bits can be set individually or in any combination. A
read of the TIMER_ENABLEx register shows the status of the enable for the
corresponding timers within a group. A 1 indicates that the timer is
enabled. All unused bits return 0 when read.

Figure 10-17. Timer Enable 0 (TIMER_ENABLE0) Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable 0 Register (TIMER_ENABLE0)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 1680

TIMEN3 (Timer3 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN7 (Timer7 Enable)

TIMEN6 (Timer6 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN5 (Timer5 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN4 (Timer4 Enable)
1 - Enable timer
Read as 1 when enabled

ADSP-BF54x Blackfin Processor Hardware Reference 10-41

General-Purpose Timers

Timer Disable (TIMER_DISABLEx) Registers
The TIMER_DISABLEx registers, shown in Figure 10-19 and Figure 10-20
allow all timers within a group to be disabled simultaneously. For each
timer there is a single W1C control bit. Writing a 1 disables the corre-
sponding timer; writing a 0 has no effect. The bits within a disable register
can be cleared individually or in any combination. A read of the
TIMER_DISABLEx register returns a value identical to a read of the corre-
sponding TIMER_ENABLEx register. A 1 indicates that the timer is enabled.
All unused bits return 0 when read.

Figure 10-18. Timer Enable 1 (TIMER_ENABLE1) Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable 1 Register (TIMER_ENABLE1)

TIMEN8 (Timer8 Enable)

TIMEN9 (Timer9 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN10 (Timer10 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 0640

Timer Registers

10-42 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-19. Timer Disable 0 (TIMER_DISABLE0) Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable 0 Register (TIMER_DISABLE0)

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 1684

TIMDIS3 (Timer3 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS7 (Timer7 Disable)

TIMDIS6 (Timer6 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS5 (Timer5 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

ADSP-BF54x Blackfin Processor Hardware Reference 10-43

General-Purpose Timers

In PWM_OUT mode, a write of a 1 to TIMER_DISABLEx does not stop the cor-
responding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a 1 to the correspond-
ing bit in TIMER_DISABLEx, and then writing a 1 to the corresponding
TRUNx bit in TIMER_STATUSx. See “Stopping the Timer in PWM_OUT
Mode” on page 10-24.

In WDTH_CAP and EXT_CLK modes, a write of a 1 to TIMER_DISABLEx stops
the corresponding timer immediately.

Timer Status (TIMER_STATUSx) Registers
The TIMER_STATUSx registers are used to check the status of all timers
within a group with a single read (see Figure 10-21 and Figure 10-22).
Status bits are sticky and W1C. The TRUNx bits can clear themselves,
which they do when a PWM_OUT mode timer stops at the end of a period.
During a TIMER_STATUSx register read access, all reserved or unused bits
return a 0.

Figure 10-20. Timer Disable 1 (TIMER_DISABLE1) Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable 1 Register (TIMER_DISABLE1)

TIMDIS8 (Timer8 Disable)

TIMDIS9 (Timer9 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS10 (Timer10 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 0644

Timer Registers

10-44 ADSP-BF54x Blackfin Processor Hardware Reference

For detailed behavior and usage of the TRUNx bit see “Stopping the Timer
in PWM_OUT Mode” on page 10-24. Writing the TRUNx bits has no
effect in other modes or when a timer has not been enabled. Writing the
TRUNx bits to 1 in PWM_OUT mode has no effect on a timer that has not first
been disabled.

Error conditions are explained in “Illegal States” on page 10-11.

ADSP-BF54x Blackfin Processor Hardware Reference 10-45

General-Purpose Timers

Figure 10-21. Timer Status 0 (TIMER_STATUS0) Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0

TIMIL4 (Timer4 Interrupt)

Reset = 0x0000 00000

Timer Status Register 0 (TIMER_STATUS0)

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL5 (Timer5 Interrupt)

TRUN6 (Timer6 Slave
Enable Status)

TIMIL6 (Timer6 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR4 (Timer4
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN5 (Timer5 Slave
Enable Status)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN4 (Timer4 Slave Enable
Status)

TOVF_ERR5 (Timer5
Counter Overflow)TOVF_ERR7 (Timer7 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

0xFFC0 1688

TIMIL7 (Timer7 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort in
PWM_OUT mode

TRUN7 (Timer7
Slave Enable Status)

TOVF_ERR6 (Timer6 Counter Overflow)
Indicates that an error or an overflow occurred

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt)

0

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL1 (Timer1 Interrupt)

TRUN2 (Timer2 Slave
Enable Status)

TIMIL2 (Timer2 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR0 (Timer0
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN1 (Timer1 Slave
Enable Status)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

TRUN0 (Timer0 Slave Enable
Status)

TOVF_ERR1 (Timer1
Counter Overflow)TOVF_ERR3 (Timer3 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

TIMIL3 (Timer3 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort
in PWM_OUT mode

TRUN3 (Timer3
Slave Enable Status)

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred

Timer Registers

10-46 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-22. Timer Status 1 (TIMER_STATUS1) Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 Reset = 0x0000 00000

Timer Status Register 1 (TIMER_STATUS1)

0xFFC0 0648

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL8 (Timer8 Interrupt)

0

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL9 (Timer9 Interrupt)

TRUN10 (Timer10 Slave
Enable Status)

TIMIL10 (Timer10 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR8 (Timer8
Counter Overflow)Read as 1 if timer running, W1C

to abort in PWM_OUT mode

TRUN9 (Timer9 Slave
Enable Status)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

TRUN8 (Timer8 Slave Enable
Status) TOVF_ERR9 (Timer9

Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurredTOVF_ERR10 (Timer10 Counter Overflow)

Indicates that an error or an overflow occurred

ADSP-BF54x Blackfin Processor Hardware Reference 10-47

General-Purpose Timers

Timer Configuration (TIMERx_CONFIG) Registers
Each timer’s operating mode is specified by its TIMERx_CONFIG register
(Figure 10-23 and Table 10-2), which may be written only when the
timer is not running. After disabling the timer in PWM_OUT mode, make
sure the timer has stopped running by checking its TRUNx bit in
TIMER_STATUSx before attempting to reprogram TIMERx_CONFIG. The
TIMERx_CONFIG registers may be read at any time. The ERR_TYP field is
read-only. It is cleared at reset and when the timer is enabled. Each time
TOVF_ERRx is set, ERR_TYP[1:0] is loaded with a code that identifies the
type of error that was detected. This value is held until the next error or
timer enable occurs. For an overview of error conditions, see Table 10-1
on page 10-12. The TIMERx_CONFIG register also controls the behavior of
the TMRx pin, which becomes an output in PWM_OUT mode (TMODE = 01)
when the OUT_DIS bit is cleared.

Timer Registers

10-48 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 10-23. Timer Configuration (TIMERx_CONFIG) Registers

Table 10-2. Timer Configuration Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

TIMER0_CONFIG 0xFFC0 1600

TIMER1_CONFIG 0xFFC0 1610

TIMER2_CONFIG 0xFFC0 1620

TIMER3_CONFIG 0xFFC0 1630

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - TIMERx_PERIOD programming error
11 - TIMERx_WIDTH programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

PWM_OUT Mode
0 - Clock from TACLKx

input if CLK_SEL = 1
1 - Clock from TMRCLK

input if CLK_SEL = 1
WDTH_CAP Mode
0 - Sample TMRx input
1 - Sample TACI input

TIN_SEL (Timer Input
Select)

0 - Enable TMRx pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

For memory-
mapped
addresses, see
Table 10-2.

ADSP-BF54x Blackfin Processor Hardware Reference 10-49

General-Purpose Timers

Timer Counter (TIMERx_COUNTER) Registers
These read-only registers retain their state when disabled. When enabled,
the TIMERx_COUNTER register is reinitialized by hardware based on configu-
ration and mode. The TIMERx_COUNTER register, shown in Figure 10-24
and Table 10-3, may be read at any time (whether the timer is running or
stopped), and it returns an atomic 32-bit value. Depending on the opera-
tion mode, the incrementing counter can be clocked by four different
sources: SCLK, the TMRx pin, the alternative timer clock pin TACLKx, or the
common TMRCLK pin, which is most likely used as the EPPI0 clock
(EPPI0_CLK).

When the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMERx_COUNTER also halts its
counting during an emulation access in order to remain synchronized with
the software. While stopped, the count does not advance—in PWM_OUT
mode, the TMRx pin waveform is “stretched”; in WDTH_CAP mode, measured
values are incorrect; in EXT_CLK mode, input events on TMRx may be
missed. All other timer functions such as register reads and writes, inter-

TIMER4_CONFIG 0xFFC0 1640

TIMER5_CONFIG 0xFFC0 1650

TIMER6_CONFIG 0xFFC0 1660

TIMER7_CONFIG 0xFFC0 1670

TIMER8_CONFIG 0xFFC0 0600

TIMER9_CONFIG 0xFFC0 0610

TIMER10_CONFIG 0xFFC0 0620

Table 10-2. Timer Configuration Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

Timer Registers

10-50 ADSP-BF54x Blackfin Processor Hardware Reference

rupts previously asserted (unless cleared), and the loading of
TIMERx_PERIOD and TIMERx_WIDTH in WDTH_CAP mode remain active during
an emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMERx_CONFIG to enable this behavior.

ADSP-BF54x Blackfin Processor Hardware Reference 10-51

General-Purpose Timers

Figure 10-24. Timer Counter (TIMERx_COUNTER) Registers

Table 10-3. Timer Counter Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

TIMER0_COUNTER 0xFFC0 1604

TIMER1_COUNTER 0xFFC0 1614

TIMER2_COUNTER 0xFFC0 1624

TIMER3_COUNTER 0xFFC0 1634

TIMER4_COUNTER 0xFFC0 1644

TIMER5_COUNTER 0xFFC0 1654

TIMER6_COUNTER 0xFFC0 1664

TIMER7_COUNTER 0xFFC0 1674

TIMER8_COUNTER 0xFFC0 0604

TIMER9_COUNTER 0xFFC0 0614

TIMER10_COUNTER 0xFFC0 0624

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Registers (TIMERx_COUNTER)

For memory-
mapped
addresses, see
Table 10-3.

Timer Registers

10-52 ADSP-BF54x Blackfin Processor Hardware Reference

TIMERx_PERIOD and TIMERx_WIDTH Registers
Usage of the TIMERx_PERIOD register, shown in Figure 10-25 and
Table 10-3, and the TIMERx_WIDTH register, shown in Figure 10-26 and
Table 10-4, varies depending on the mode of the timer:

• In pulse width modulation mode (PWM_OUT), both the
TIMERx_PERIOD and TIMERx_WIDTH register values can be updated
“on-the-fly” since these values change simultaneously.

• In pulse-width and period capture mode (WDTH_CAP), the timer
period and timer pulse width buffer values are captured at the
appropriate time. The TIMERx_PERIOD and TIMERx_WIDTH registers
are then updated simultaneously from their respective buffers. Both
registers are read-only in this mode.

• In external event capture mode (EXT_CLK), the TIMERx_PERIOD is
writable and can be updated “on-the-fly.” TIMERx_WIDTH is not
used.

When a timer is enabled and running, and the software writes new
values to TIMERx_PERIOD and TIMERx_WIDTH, the writes are buffered
and do not update the registers until the end of the current period
(when the value in TIMERx_COUNTER equals the value in
TIMERx_PERIOD).

If new values are not written to TIMERx_PERIOD or TIMERx_WIDTH, the value
from the previous period is reused. Writes to the 32-bit TIMERx_PERIOD
and TIMERx_WIDTH registers are atomic; it is not possible for the high word
to be written without the low word also being written.

Values written to the TIMERx_PERIOD or TIMERx_WIDTH registers are always
stored in the buffer registers. Reads from the TIMERx_PERIOD or
TIMERx_WIDTH registers always return the current, active value of period or
pulse width. Written values are not read back until they become active.

ADSP-BF54x Blackfin Processor Hardware Reference 10-53

General-Purpose Timers

When the timer is enabled, they do not become active until after
TIMERx_PERIOD and TIMERx_WIDTH are updated from their respective buff-
ers at the end of the current period. See Figure 10-2 on page 10-5.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the TIMERx_PERIOD or TIMERx_WIDTH register so that
they are ready for use in the first timer period. For example, to change the
values for the TIMERx_PERIOD or TIMERx_WIDTH registers in order to use a
different setting for each of the first three timer periods after the timer is
enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Timer Registers

10-54 ADSP-BF54x Blackfin Processor Hardware Reference

Each new setting is then programmed when a timer interrupt is received.

In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both TIMERx_PERIOD and TIMERx_WIDTH. The next
period may use one old value and one new values.

In order to prevent “pulse width >= period” errors, write
TIMERx_WIDTH before TIMERx_PERIOD when decreasing the values, and write
TIMERx_PERIOD before TIMERx_WIDTH when increasing the value.

Figure 10-25. Timer Period (TIMERx_PERIOD) Registers

Table 10-4. Timer Period Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_PERIOD 0xFFC0 1608

TIMER1_PERIOD 0xFFC0 1618

TIMER2_PERIOD 0xFFC0 1628

TIMER3_PERIOD 0xFFC0 1638

TIMER4_PERIOD 0xFFC0 1648

TIMER5_PERIOD 0xFFC0 1658

TIMER6_PERIOD 0xFFC0 1668

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD)

For memory-
mapped
addresses, see
Table 10-4.

ADSP-BF54x Blackfin Processor Hardware Reference 10-55

General-Purpose Timers

TIMER7_PERIOD 0xFFC0 1678

TIMER8_PERIOD 0xFFC0 0608

TIMER9_PERIOD 0xFFC0 0618

TIMER10_PERIOD 0xFFC0 0628

Figure 10-26. Timer Width (TIMERx_WIDTH) Registers

Table 10-5. Timer Width Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_WIDTH 0xFFC0 160C

TIMER1_WIDTH 0xFFC0 161C

TIMER2_WIDTH 0xFFC0 162C

TIMER3_WIDTH 0xFFC0 163C

TIMER4_WIDTH 0xFFC0 164C

TIMER5_WIDTH 0xFFC0 165C

TIMER6_WIDTH 0xFFC0 166C

TIMER7_WIDTH 0xFFC0 167C

Table 10-4. Timer Period Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH)

For memory-
mapped
addresses, see
Table 10-5.

Timer Registers

10-56 ADSP-BF54x Blackfin Processor Hardware Reference

Summary
Table 10-6 summarizes control bit and register usage in each timer mode.

TIMER8_WIDTH 0xFFC0 060C

TIMER9_WIDTH 0xFFC0 061C

TIMER10_WIDTH 0xFFC0 062C

Table 10-6. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLEx 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLEx 1 - Disable timer at
end of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high
width
0 - Generate low width

1 - Measure high
width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after
measuring period
0 - Interrupt after
measuring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

Table 10-5. Timer Width Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF54x Blackfin Processor Hardware Reference 10-57

General-Purpose Timers

TIN_SEL Depends on
CLK_SEL:

If CLK_SEL = 1,
1 - Count TMRCLK
clocks
0 - Count TACLKx
clocks

If CLK_SEL = 0,
Unused

1 - Select TACI input
0 - Select TMRx input

Unused

OUT_DIS 1 - Disable TMRx pin
0 - Enable TMRx pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

TOGGLE_HI 1 - One waveform
period every two
counter periods
0 - One waveform
period every one
counter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as
appropriate

Reports b#00 or b#01,
as appropriate

Reports b#00, b#01,
or b#10, as appropri-
ate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on
OUT_DIS:
1 - Three-state
0 - Output

Depends on
TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Table 10-6. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

Programming Examples

10-58 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 10-1 configures the PORTA_FER register in a way that all eight TMRx
pins are connected to port A.

Listing 10-1. Port Setup

timer_port_setup:

 [--sp] = (r7:7, p5:5);

Counter RO: Counts up on
SCLK or PWM_CLK

RO: Counts up on
SCLK

RO: Counts up on
TMRx event

TRUNx Read: Timer slave
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or roll-
over if period = 0

IRQ Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter equals
period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter cap-
tures period and
PERIOD_CNT = 1 or
when counter cap-
tures width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 10-6. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

ADSP-BF54x Blackfin Processor Hardware Reference 10-59

General-Purpose Timers

 p5.h = hi(PORTA_FER);

 p5.l = lo(PORTA_FER);

 r7.l = PA1|PA5;

 w[p5] = r7;

 p5.l = lo(PORTA_MUX);

 r7.l = PFTE;

 w[p5] = r7;

 (r7:7, p5:5) = [sp++];

 rts;

timer_port_setup.end:

Listing 10-2 generates signals on the TMR4 (PA1) and TMR5 (PA5) outputs.
By default, timer 5 generates a continuous PWM signal with a duty cycle
of 50% (period = 0x40 SCLKs, width = 0x20 SCLKs) while the PWM sig-
nal generated by timer 4 has the same period but 25% duty cycle
(width = 0x10 SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMRx pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKs (timer 5)
duration.

In any case, the timers are started synchronously and the rising edges are
aligned, that is, the pulses are left-aligned.

Listing 10-2. Signal Generation

// #define SINGLE_PULSE

timer45_signal_generation:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

#ifdef SINGLE_PULSE

 r7.l = PULSE_HI | PWM_OUT;

#else

 r7.l = PERIOD_CNT | PULSE_HI | PWM_OUT;

Programming Examples

10-60 ADSP-BF54x Blackfin Processor Hardware Reference

#endif

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 w[p5 + TIMER4_CONFIG - TIMER_ENABLE0] = r7;

 r7 = 0x10 (z);

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r7;

 r7 = 0x20 (z);

 [p5 + TIMER4_WIDTH - TIMER_ENABLE0] = r7;

#ifndef SINGLE_PULSE

 r7 = 0x40 (z);

 [p5 + TIMER5_PERIOD - TIMER_ENABLE0] = r7;

 [p5 + TIMER4_PERIOD - TIMER_ENABLE0] = r7;

#endif

 r7.l = TIMEN5 | TIMEN4;

 w[p5] = r7;

 (r7:7, p5:5) = [sp++];

 rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Listing 10-3 illustrates how inter-
rupts are generated and how interrupt service routines can be registers. In
this example, the timer 5 interrupt is assigned to the IVG7 interrupt chan-
nel of the CEC controller.

Listing 10-3. Interrupt Setup

timer5_interrupt_setup:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(IMASK);

 p5.l = lo(IMASK);

/* register interrupt service routine */

 r7.h = hi(isr_timer5);

 r7.l = lo(isr_timer5);

 [p5 + EVT7 - IMASK] = r7;

/* unmask IVG7 in CEC */

 r7 = [p5];

ADSP-BF54x Blackfin Processor Hardware Reference 10-61

General-Purpose Timers

 bitset(r7, bitpos(EVT_IVG7));

 [p5] = r7;

 p5.h = hi(SIC_IMASK2);

 p5.l = lo(SIC_IMASK2);

/* assign timer 5 IRQ = IRQ91 to IVG7 */

 r7.h = hi(P91_IVG(7));

 r7.l = lo(P91_IVG(7));

 [p5 + SIC_IAR11 - SIC_IMASK2] = r7;

/* enable timer 5 IRQ */

 r7 = [p5];

 bitset(r7, 27);

 [p5] = r7;

/* enable interrupt nesting */

 (r7:7, p5:5) = [sp++];

 [--sp] = reti;

 rts;

timer5_interrupt_setup.end:

The example shown in Listing 10-4 does not drive the TMRx pin. It gener-
ates periodic interrupt requests every 0x1000 SCLK cycles. If the
preprocessor constant SINGLE_PULSE is defined, timer 5 requests an inter-
rupt only once. Unlike in a real application, the purpose of the interrupt
service routine shown in this example is clearing of the interrupt request
and counting interrupt occurrences.

Listing 10-4. Periodic Interrupt Requests

// #define SINGLE_PULSE

timer5_interrupt_generation:

 [--sp] = (r7:7, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

#ifdef SINGLE_PULSE

 r7.l = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;

#else

Programming Examples

10-62 ADSP-BF54x Blackfin Processor Hardware Reference

 r7.l = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;

#endif

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 r7 = 0x1000 (z);

#ifndef SINGLE_PULSE

 [p5 + TIMER5_PERIOD - TIMER_ENABLE0] = r7;

 r7 = 0x1 (z);

#endif

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r7;

 r7.l = TIMEN5;

 w[p5] = r7;

 (r7:7, p5:5) = [sp++];

 r0 = 0 (z);

 rts;

timer5_interrupt_generation.end:

isr_timer5:

 [--sp] = astat;

 [--sp] = (r7:7, p5:5);

 p5.h = hi(TIMER_STATUS0);

 p5.l = lo(TIMER_STATUS0);

 r7.h = hi(TIMIL5);

 r7.l = lo(TIMIL5);

 [p5] = r7;

 r0+= 1;

 ssync;

 (r7:7, p5:5) = [sp++];

 astat = [sp++];

 rti;

isr_timer5.end:

ADSP-BF54x Blackfin Processor Hardware Reference 10-63

General-Purpose Timers

Figure 10-27 explains how the signal waveform represented by the period
P and the pulse width W translates to timer period and width values.
Table 10-7 summarizes the register writes.

Figure 10-27. Non-Overlapping Clock Pulses

Table 10-7. Register Writes for Non-Overlapping Clock Pulses

Register Before
Enable

After
Enable

At IRQ1 At IRQ2

TIMER5_PERIOD P/2

TIMER5_WIDTH P/2 -W/2 W/2 P/2 - W/2 W/2

TIMER4_PERIOD P P/2

TIMER4_WIDTH P -W/2 W/2 P/2-W-2

PF4 (TMR5)

ENABLE IRQ1 IRQ2

P/2 - W/2

PF5 (TMR4)

IRQ3

W/2 W/2 W/2 W/2

P/2 P/2 P/2 P/2

P - W/2

P W

Programming Examples

10-64 ADSP-BF54x Blackfin Processor Hardware Reference

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the
same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 10-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both
timers are running in PWM_OUT mode with PERIOD_CNT = 1 and
PULSE_HI = 1.

Listing 10-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern.

Listing 10-5. Non-Overlapping Clock Pulses

#define P 0x1000 /* signal period */

#define W 0x0600 /* signal pulse width */

#define N 4 /* number of pulses before disable */

timer45_toggle_hi:

 [--sp] = (r7:1, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

/* config timers */

 r7.l = IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 r7.l = PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

 w[p5 + TIMER4_CONFIG - TIMER_ENABLE0] = r7;

/* calculate timers widths and period */

 r0.l = lo(P);

 r0.h = hi(P);

 r1.l = lo(W);

 r1.h = hi(W);

 r2 = r1 >> 1; /* W/2 */

 r3 = r0 >> 1; /* P/2 */

ADSP-BF54x Blackfin Processor Hardware Reference 10-65

General-Purpose Timers

 r4 = r3 - r2; /* P/2 - W/2 */

 r5 = r0 - r2; /* P - W/2 */

/* write values for initial period */

 [p5 + TIMER4_PERIOD - TIMER_ENABLE0] = r0;

 [p5 + TIMER4_WIDTH - TIMER_ENABLE0] = r5;

 [p5 + TIMER5_PERIOD - TIMER_ENABLE0] = r3;

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r4;

/* start timers */

 r7.l = TIMEN5 | TIMEN4 ;

 w[p5 + TIMER_ENABLE0 - TIMER_ENABLE0] = r7;

/* write values for second period */

 [p5 + TIMER4_PERIOD - TIMER_ENABLE0] = r3;

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r2;

/* r0 functions as signal period counter */

 r0.h = hi(N * 2 - 1);

 r0.l = lo(N * 2 - 1);

 (r7:1, p5:5) = [sp++];

 rts;

timer45_toggle_hi.end:

isr_timer5:

 [--sp] = astat;

 [--sp] = (r7:5, p5:5);

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

/* clear interrupt request */

 r7.h = hi(TIMIL5);

 r7.l = lo(TIMIL5);

 [p5 + TIMER_STATUS0 - TIMER_ENABLE0] = r7;

/* toggle width values (width = period - width) */

 r7 = [p5 + TIMER5_PERIOD - TIMER_ENABLE0];

 r6 = [p5 + TIMER5_WIDTH - TIMER_ENABLE0];

 r5 = r7 - r6;

 [p5 + TIMER5_WIDTH - TIMER_ENABLE0] = r5;

 r5 = [p5 + TIMER4_WIDTH - TIMER_ENABLE0];

Programming Examples

10-66 ADSP-BF54x Blackfin Processor Hardware Reference

 r7 = r7 - r5;

 CC = r7 < 0;

 if CC r7 = r6;

 [p5 + TIMER4_WIDTH - TIMER_ENABLE0] = r7;

/* disable after a certain number of periods */

 r0+= -1;

 CC = r0 == 0;

 r5.l = 0;

 r7.l = TIMDIS5 | TIMDIS4;

 if !CC r7 = r5;

 w[p5 + TIMER_DISABLE0 - TIMER_ENABLE0] = r7;

 (r7:5, p5:5) = [sp++];

 astat = [sp++];

 rti;

isr_timer5.end:

Listing 10-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code can be used to receive N PWM patterns generated by one
of the other timers. Ensure that the PWM generator uses the same
PERIOD_CNT and PULSE_HI settings.

Listing 10-6. Timer Configured in WDTH_CAP Mode

.section L1_data_a;

.align 4;

#define N 1024

.var buffReceive[N*2];

.section L1_code;

timer5_capture:

 [--sp] = (r7:7, p5:5);

/* setup DAG2 */

 r7.h = hi(buffReceive);

 r7.l = lo(buffReceive);

 i2 = r7;

 b2 = r7;

ADSP-BF54x Blackfin Processor Hardware Reference 10-67

General-Purpose Timers

 l2 = length(buffReceive)*4;

/* config timer for high pulses capture */

 p5.h = hi(TIMER_ENABLE0);

 p5.l = lo(TIMER_ENABLE0);

 r7.l = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;

 w[p5 + TIMER5_CONFIG - TIMER_ENABLE0] = r7;

 r7.l = TIMEN5;

 w[p5 + TIMER_ENABLE0 - TIMER_ENABLE0] = r7;

 (r7:7, p5:5) = [sp++];

 rts;

timer5_capture.end:

isr_timer5:

 [--sp] = astat;

 [--sp] = (r7:7, p5:5);

/* clear interrupt request first */

 p5.h = hi(TIMER_STATUS0);

 p5.l = lo(TIMER_STATUS0);

 r7.h = hi(TIMIL5);

 r7.l = lo(TIMIL5);

 [p5] = r7;

 r7 = [p5 + TIMER0_PERIOD - TIMER_STATUS0];

 [i2++] = r7;

 r7 = [p5 + TIMER0_WIDTH - TIMER_STATUS0];

 [i2++] = r7;

 ssync;

 (r7:7, p5:5) = [sp++];

 astat = [sp++];

 rti;

isr_timer5.end:

Programming Examples

10-68 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 11-1

11 CORE TIMER

This chapter describes the core timer and includes the following sections:

• “Overview and Features” on page 11-1

• “Timer Overview” on page 11-2

• “Description of Operation” on page 11-3

• “Core Timer Registers” on page 11-4

• “Programming Examples” on page 11-8

Overview and Features
The core timer is a programmable, 32-bit interval timer that can generate
periodic interrupts. Unlike other peripherals, the core timer resides inside
the Blackfin processor core and runs at the core clock (CCLK) rate.

Core timer features include:

• 32-bit timer with 8-bit prescaler

• Operation at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

Timer Overview

11-2 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Overview

External Interfaces
The core timer does not directly interact with any pins of the chip.

Internal Interfaces
The core timer is accessed through the 32-bit register access bus (RAB).
The module is clocked by the core clock CCLK. The timer has its dedicated
interrupt request signal which is of higher priority than all other peripher-
als’ requests.

Figure 11-1 provides a block diagram of the core timer.

Figure 11-1. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE REGISTER ACCESS BUS (RAB)

32

ADSP-BF54x Blackfin Processor Hardware Reference 11-3

Core Timer

Description of Operation
It is up to software to initialize the core timer’s counter (TCOUNT) before the
timer is enabled. The TCOUNT register can be written directly. However,
writes to the TPERIOD register are also passed through to the counter,
TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every time
the prescaler (TSCALE) expires, that is, every TSCALE + 1 number of CCLK
clock cycles. When the value of the TCOUNT register reaches 0, an interrupt
is generated and the TINT bit is set in the TCNTL register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR bit is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

Hardware behavior is undefined if TMREN bit is set when TMPWR = 0.

Interrupt Processing
The core timer has its dedicated interrupt request signal which is of higher
priority than all other peripherals’ requests. The requests goes directly to
the Core Event Controller (CEC) and does not pass the System Interrupt
Controller (SIC). Therefore, the interrupt processing is also completely in
the CCLK domain.

Unlike requests from other Blackfin processor peripherals, the core
interrupt request is edge sensitive and cleared by hardware auto-
matically as soon as the interrupt is serviced.

Core Timer Registers

11-4 ADSP-BF54x Blackfin Processor Hardware Reference

The TINT bit in the TCNTL register indicates that an interrupt is generated.
Note that this is not a W1C bit. Write a 0 to clear it. However, the write is
optional. It is not required to clear interrupt requests. The core time mod-
ule does not provide any further interrupt enable bit. When the timer is
enabled, interrupts can be masked in the CEC controller.

Core Timer Registers
The core timer includes the following four core memory-mapped registers
(MMRs):

• “Core Timer Control (TCNTL) Register” on page 11-5

• “Core Timer Count (TCOUNT) Register” on page 11-6

• “Core Timer Period (TPERIOD) Register” on page 11-7

• “Core Timer Scale (TSCALE) Register” on page 11-7

Similar to all core MMRs, these registers are always accessed by 32-bit
read and write operations.

ADSP-BF54x Blackfin Processor Hardware Reference 11-5

Core Timer

Core Timer Control (TCNTL) Register
The core timer control (TCNTL) register, shown in Figure 11-2, functions
as a control and status register.

Figure 11-2. Core Timer Control (TCNTL) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count

0xFFE0 3000

Core Timer Registers

11-6 ADSP-BF54x Blackfin Processor Hardware Reference

Core Timer Count (TCOUNT) Register
The core timer count register (TCOUNT) shown in Figure 11-3 decrements
once every TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0,
an interrupt is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register as well. Nevertheless, the TCOUNT register can be written
directly. In auto-reload mode the value written to TCOUNT may differ from
the TPERIOD value to let the initial period be shorter or longer than the fol-
lowing ones. To do this, write to TPERIOD first and overwrite TCOUNT
register afterward.

Writes to TCOUNT are ignored once the timer is running.

Figure 11-3. Core Timer Count (TCOUNT) Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

ADSP-BF54x Blackfin Processor Hardware Reference 11-7

Core Timer

Core Timer Period (TPERIOD) Register
When auto-reload is enabled, the TCOUNT register is reloaded with the
value of the core timer period register (TPERIOD, shown in Figure 11-4),
whenever TCOUNT register reaches 0. Writes to TPERIOD register are ignored
when the timer is running.

Core Timer Scale (TSCALE) Register
The core timer scale register (TSCALE, shown in Figure 11-5,) stores the
scaling value that is one less than the number of cycles between decre-
ments of TCOUNT register . For example, if the value in the TSCALE register
is 0, the counter register decrements once every CCLK clock cycle. If the
value of TSCALE register is 1, the counter decrements once every two
cycles.

Figure 11-4. Core Timer Period (TPERIOD) Register

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

Programming Examples

11-8 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 11-1 configures the core timer in auto reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 s. The initial period is twice
as long as the others.

Listing 11-1. Core Timer Configuration

#include <blackfin.h>

.section L1_code;

.global _main;

_main:

/* Register service routine at EVT6 and unmask interrupt */

 p1.l = lo(IMASK);

 p1.h = hi(IMASK);

 r0.l = lo(isr_core_timer);

 r0.h = hi(isr_core_timer);

 [p1 + EVT6 - IMASK] = r0;

 r0 = [p1];

 bitset(r0, bitpos(EVT_IVTMR));

 [p1] = r0;

Figure 11-5. Core Timer Scale (TSCALE) Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value[7:0]

0xFFE0 3008

ADSP-BF54x Blackfin Processor Hardware Reference 11-9

Core Timer

/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000

*/

 p1.l = lo(TCNTL);

 p1.h = hi(TCNTL);

 r0 = 50 (z);

 [p1 + TSCALE - TCNTL] = r0;

 r0.l = lo(10000000);

 r0.h = hi(10000000);

 [p1 + TPERIOD - TCNTL] = r0;

 r0 <<= 1;

 [p1 + TCOUNT - TCNTL] = r0;

/* R6 counts interrupts */

 r6 = 0 (z);

/* start in auto-reload mode */

 r0 = TAUTORLD | TMPWR | TMREN (z);

 [p1] = r0;

_main.forever:

 jump _main.forever;

_main.end:

/* interrupt service routine simple increments R6 */

isr_core_timer:

 [--sp] = astat;

 r6+= 1;

 astat = [sp++];

 rti;

isr_core_timer.end:

Programming Examples

11-10 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 12-1

12 WATCHDOG TIMER

This chapter describes the watchdog timer and includes the following
sections:

• “Overview and Features” on page 12-1

• “Interface Overview” on page 12-3

• “Description of Operation” on page 12-4

• “Watchdog Timer Registers” on page 12-6

• “Programming Examples” on page 12-10

Overview and Features
The Blackfin processor includes a 32-bit timer that can be used to imple-
ment a software watchdog function. A software watchdog can improve
system reliability by generating an event to the processor core if the watch-
dog expires before being updated by software.

Watchdog timer key features include:

• 32-bit watchdog timer

• 8-bit disable bit pattern

• System reset on expire option

• NMI on expire option

• General-purpose interrupt option

Overview and Features

12-2 ADSP-BF54x Blackfin Processor Hardware Reference

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner so that the downward counting timer never expires (never
becomes 0). An expiring timer then indicates that system software might
be out of control. At this point a special error handler may recover the sys-
tem. For safety, however, it is often better to reset and reboot the system
directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the part to reboot. In this case, the processor may reset without
booting again and may negotiate with the host device by the time program
execution starts. Alternatively, a watchdog event can cause an NMI event.
The NMI service routine may request the host device to reset and/or
reboot the Blackfin processor.

Often, the watchdog timer is also programmed to let the processor wake
up from sleep mode after a programmable period of time.

For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

ADSP-BF54x Blackfin Processor Hardware Reference 12-3

Watchdog Timer

Interface Overview
Figure 12-1 provides a block diagram of the watchdog timer.

External Interface
The watchdog timer does not directly interact with any pins of the chip.

Internal Interface
The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus PAB. The 32-bit regis-
ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

Figure 12-1. Watchdog Timer Block Diagram

EVENT
CONTROL

WRITE

SCLK

WDOG_CNT

32

PAB

READ

RELOAD

RESET
WDOG_STAT

WDOG_CTL

WDEV

WDEN

16

EXPIRE

WDRO

NMI

IRQ23

WATCHDOG

Description of Operation

12-4 ADSP-BF54x Blackfin Processor Hardware Reference

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the core event controller
(CEC) or a general-purpose interrupt request is passed to the system inter-
rupt controller (SIC).

Description of Operation
If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL
register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not yet enabled, the write to the WDOG_CNT regis-
ters automatically preloads the WDOG_STAT register as well.

2. In the watchdog control register (WDOG_CTL), select the event to
generate upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register.

ADSP-BF54x Blackfin Processor Hardware Reference 12-5

Watchdog Timer

If software does not serve the watchdog in time, WDOG_STAT register con-
tinues decrementing until it reaches 0. Then, the programmed event is
generated. The counter stops decrementing and remains at zero. Addition-
ally, the WDRO latch bit in the WDOG_CTL register is set and can be
interrogated by software in case event generation is not enabled.

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog reset the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see Chapter 17, “Sys-
tem Reset and Booting”.

To prevent the watchdog from expiring, software serves the watchdog by
performing dummy writes to the WDOG_STAT register address in time. The
values written are ignored, but the write commands cause the WDOG_STAT
register to reload from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to 0xFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value
(WDDIS) to the WDEN field in the WDG_CTL register.

Watchdog Timer Registers

12-6 ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Timer Registers
The watchdog timer is controlled by three registers.

• “Watchdog Count (WDOG_CNT) Register” on page 12-6

• “Watchdog Status (WDOG_STAT) Register” on page 12-7

• “Watchdog Control (WDOG_CTL) Register” on page 12-8

Watchdog Count (WDOG_CNT) Register
The watchdog count register (WDOG_CNT, shown in Figure 12-2) holds the
32-bit unsigned count value. The WDOG_CNT register must always be
accessed with 32-bit read/writes.

The watchdog count register holds the programmable count value. A valid
write to the watchdog count register also preloads the watchdog counter.
For added safety, the watchdog count register can be updated only when
the watchdog timer is disabled. A write to the watchdog count register
while the timer is enabled does not modify the contents of this register.

ADSP-BF54x Blackfin Processor Hardware Reference 12-7

Watchdog Timer

Watchdog Status (WDOG_STAT) Register
The 32-bit watchdog status register (WDOG_STAT, shown in Figure 12-3)
contains the current count value of the watchdog timer. Reads to
WDOG_STAT register return the current count value. Values cannot be stored
directly in WDOG_STAT register, but are instead copied from WDOG_CNT regis-
ter. This can happen in two ways:

• While the watchdog timer is disabled, writing the WDOG_CNT register
preloads the WDOG_STAT register.

• While the watchdog timer is enabled, but not yet rolled over,
writes to the WDOG_STAT register load it with the value in WDOG_CNT
register.

Enabling the watchdog timer does not automatically reload
WDOG_STAT register from WDOG_CNT register.

Figure 12-2. Watchdog Count (WDOG_CNT) Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 0204

Watchdog Timer Registers

12-8 ADSP-BF54x Blackfin Processor Hardware Reference

The WDOG_STAT register is a 32-bit unsigned system memory-mapped regis-
ter that must be accessed with 32-bit reads and writes.

Watchdog Control (WDOG_CTL) Register
The watchdog control register (WDOG_CTL, shown in Figure 12-4) is a
16-bit system memory-mapped register used to control the watchdog
timer.

The watchdog event (WDEV[1:0]) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the system interrupt mask register
(SIC_IMASK) should be appropriately configured to unmask that interrupt.
If the generation of watchdog events is disabled, the watchdog timer oper-
ates as described, except that no event is generated when the watchdog
timer expires.

The watchdog enable (WDEN[7:0]) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable value
(0xAD) into this field enables the watchdog timer. This multibit disable
key minimizes the chance of inadvertently disabling the watchdog timer.

Figure 12-3. Watchdog Status (WDOG_STAT) Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 0208

ADSP-BF54x Blackfin Processor Hardware Reference 12-9

Watchdog Timer

Software can determine whether the watchdog has expired by interrogat-
ing the watchdog rolled over (WDRO) status bit of the watchdog control
register. This is a sticky bit that is set whenever the watchdog timer count
reaches 0. It can be cleared only by writing a 1 to the bit when the watch-
dog has been disabled first.

Figure 12-4. Watchdog Control (WDOG_CTL) Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD00xFFC0 0200

Programming Examples

12-10 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 12-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event is caused by the watchdog. Additionally, the example sets the
NOBOOT bit to prevent the memory from being rebooted.

Listing 12-1. Watchdog Timer Configuration

#include <blackfin.h>

#define WDOGPERIOD 0x00200000

.section L1_code;

.global _reset;

_reset:

 ...

/* optionally, test whether reset was caused by watchdog */

 p0.h=hi(SWRST);

 p0.l=lo(SWRST);

 r6 = w[p0] (z);

 CC = bittst(r6, bitpos(RESET_WDOG));

 if !CC jump _reset.no_watchdog_reset;

/* optionally, warn at system level or host device here */

_reset.no_watchdog_reset:

/* optionally, set NOBOOT bit to avoid reboot in case */

 p0.h=hi(SYSCR);

 p0.l=lo(SYSCR);

 r0 = w[p0](z);

 bitset(r0,bitpos(NOBOOT));

 w[p0] = r0;

ADSP-BF54x Blackfin Processor Hardware Reference 12-11

Watchdog Timer

/* start watchdog timer, reset if expires */

 p0.h = hi(WDOG_CNT);

 p0.l = lo(WDOG_CNT);

 r0.h = hi(WDOGPERIOD);

 r0.l = lo(WDOGPERIOD);

 [p0] = r0;

 p0.l = lo(WDOG_CTL);

 r0.l = WDEN | WDEV_RESET;

 w[p0] = r0;

 ...

 jump _main;

_reset.end:

The subroutine shown in Listing 12-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.

Listing 12-2. Service Watchdog

service_watchdog:

 [--sp] = p5;

 p5.h = hi(WDOG_STAT);

 p5.l = lo(WDOG_STAT);

 [p5] = r0;

 p5 = [sp++];

 rts;

service_watchdog.end:

Programming Examples

12-12 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 12-3 is an interrupt service routine that restarts the watchdog.
Note that the watchdog must be disabled first.

Listing 12-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:

 [--sp] = astat;

 [--sp] = (p5:5, r7:7);

 p5.h = hi(WDOG_CTL);

 p5.l = lo(WDOG_CTL);

 r7.l = WDDIS;

 w[p5] = r7;

 bitset(r7, bitpos(WDRO));

 w[p5] = r7;

 r7 = [p5 + WDOG_CNT - WDOG_CTL];

 [p5 + WDOG_CNT - WDOG_CTL] = r7;

 r7.l = WDEN | WDEV_GPI;

 w[p5] = r7;

 (p5:5, r7:7) = [sp++];

 astat = [sp++];

 rti;

isr_watchdog.end:

ADSP-BF54x Blackfin Processor Hardware Reference 13-1

13 ROTARY COUNTER

This chapter describes the rotary (up/down) counter, which provides
support for manually-controlled rotary controllers, such as the volume
wheel on a radio device. This unit also supports industrial encoders.

This chapter describes the rotary counter and includes the following
sections:

• “Overview” on page 13-1

• “Interface Overview” on page 13-3

• “Description of Operation” on page 13-4

• “Functional Description” on page 13-8

• “Programming Mode” on page 13-24

• “Rotary Counter Registers” on page 13-24

• “Programming Examples” on page 13-34

Overview
The primary purpose of the rotary counter is to convert pulses from incre-
mental position encoders into data that is representative of the actual
position. This is done by integrating (counting) pulses on one or two
inputs.

Overview

13-2 ADSP-BF54x Blackfin Processor Hardware Reference

Since integration provides relative position, some devices also feature a
zero position input (zero marker) that can be used to establish a reference
point or alternative to verify that the acquired position does not drift over
time.

In addition, the incremental position information can be used to deter-
mine speed, if the time intervals are measured.

The rotary counter interface provides various and flexible ways to establish
position information. When used in conjunction with the general-purpose
(GP) timer block, the rotary counter interface allows for the acquisition of
coherent position/timestamp information that enables speed calculation.

Features
The rotary counter includes the following features:

• 32-bit rotary counter

• Quadrature encoder mode (gray code)

• Binary encoder mode

• Alternative frequency-direction mode

• Timed direction and up/down counting modes

• Zero marker/pushbutton support

• Capture event timing in association with GP timer

• Boundary comparison and boundary setting features

• Input pin noise filtering (debouncing)

• Flexible error detection/signaling

ADSP-BF54x Blackfin Processor Hardware Reference 13-3

Rotary Counter

Interface Overview
A block diagram of the rotary counter interface is shown in Figure 13-1.
There are two input pins, the count up and direction (CUD) pin and the
count down and gate (CDG) pin, that accept various forms of incremental
inputs and are processed by the 32-bit counter. The third input, count
zero marker (CZM), is the zero marker input. The module interfaces to the
processor by way of the peripheral access bus (PAB) and can optionally
generate an interrupt request through the IRQ line. There is also an out-
put that can be used by the timer module to generate timestamps on
certain events.

The timer output signal is connected internally to the alternate capture
input (TACI6) of the general-purpose timer 6. The interrupt signal goes to
the IRQ68 input of the SIC2 controller.

Figure 13-1. Block Diagram of the Rotary Counter Interface

 QUADRATURE
 32-bit

NOISE FILTERING
PROGRAMMABLE

 AND
 CONTROL BLOCK

 PROCESSOR
 LOGIC AND EVENT
 BOUNDARY DETECTION

 GENERATION

CUD

CDG

CZM

IRQ PAB BUS

TO (GP TIMER
OUTPUT)

 COUNTER

 INTERFACE

Description of Operation

13-4 ADSP-BF54x Blackfin Processor Hardware Reference

Description of Operation
The rotary encoder block has five modes of operation that are described in
this section.

With the exception of the timed direction mode, the rotary timer block
can operate in conjunction with the GP timer block in order to capture
additional timing information (timestamps) associated with events
detected by this block.

The third input (CZM) may be used as a zero marker or to sense the press-
ing of a pushbutton. Refer to “Zero Marker (Pushbutton) Operation” on
page 13-11 for more details.

The three input pins may be filtered (debounced) prior to being evaluated
by the rotary encoder. Refer to “Input Noise Filtering (Debouncing)” on
page 13-8 for more details.

The encoder block also features a flexible boundary comparison. In all of
the operating modes, the counter can be compared to an upper and lower
limit. A variety of actions can be taken when these limits are reached.
Refer to “Boundary Comparison Modes” on page 13-14 for more details.

Quadrature Encoder Mode
In this mode, the CUD:CDG inputs expect a quadrature-encoded signal that
is interpreted as a 2-bit gray code. The order of transitions of the CUD and
CDG inputs determines whether the counter increments or decrements. The
register CNT_COUNTER contains the number of transitions that have
occurred. Refer to Figure 13-2 for more details.

Figure 13-2 shows an example of a series of count up events which is caus-
ing CNT_COUNTER to increment.

ADSP-BF54x Blackfin Processor Hardware Reference 13-5

Rotary Counter

Optionally, an interrupt is generated if both inputs change within one
SCLK cycle. Such transitions are not allowed by gray coding. Therefore, the
register CNT_COUNTER remains unchanged and an error condition is
signaled.

It is possible to reverse the count direction of the gray-coded signal. This
can be achieved by enabling the polarity inverter of either the CUD pin or
the CDG pin, inverting both pins does not alter the behavior. This feature
can be enabled with the CDGINV and CUDINV bits in the CNT_CONFIG register.

As an example, if the CDG:CUD inputs are 00 respectively and the next tran-
sition is to 01, this would normally increment the counter as is seen in
Figure 13-2. If the CUD polarity is inverted this generates a received input
of 01 followed by 00. This will result in a decrement of the counter, alter-
ing the behavior of the connected hardware.

Binary Encoder Mode
This mode is almost identical to the previous mode, with the exception
that the CUD:CDG inputs expect a binary-encoded signal. The order of tran-
sitions of the CUD and CDG inputs determines whether the counter
increments or decrements. The register CNT_COUNTER contains the number
of transitions that have occurred. Refer to Figure 13-3.

In Figure 13-3, a series of binary up count events are causing the
CNT_COUNTER register to increment.

Figure 13-2. Quadrature Events and Counting Mechanism

CDG:CUD inputs

CNT_COUNTER
register value

-3 -2 -1 +1 +2 +3-4 +40

01 11 10 01 11 1000 0000

Description of Operation

13-6 ADSP-BF54x Blackfin Processor Hardware Reference

Optionally, an interrupt is generated if the detected code steps by more
than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the register CNT_COUNTER remains
unchanged and an error condition is signaled.

Reversing the CUD and CDG pin polarity has a different effect for the binary
encoder mode than from the quadrature encoder mode. Inverting the
polarity of the CUD pin only or inverting both the CUD and CDG pins result
in reversing the count direction.

Rotary Counter Mode
In this general-purpose mode, the counter is incremented or decremented
at every active edge of the input pins.

If an active edge is detected at the CUD input, the counter increments. The
active edge can be selected by way of the CUDINV bit in the CNT_CONFIG reg-
ister. If this bit is cleared, a rising edge increments the counter. If the
configuration bit is set, a falling edge increments the counter.

If an active edge is detected at the CDG input, the counter decrements. The
active edge can be selected by way of the CDGINV bit in the CNT_CONFIG reg-
ister. If this bit is cleared, a rising edge decrements the counter. If the
configuration bit is set, a falling edge decrements the counter.

If simultaneous edges occur on pin CDG and pin CUD, the counter remains
unchanged and both up-count and down-count events are signaled in the
CNT_STATUS register.

Figure 13-3. Binary Events and Counting Mechanism

CDG:CUD inputs

CNT_COUNTER
register value

-3 -2 -1 +1 +2 +3-4 +40

01 10 11 01 10 1100 0000

ADSP-BF54x Blackfin Processor Hardware Reference 13-7

Rotary Counter

Direction Counter Mode
In this mode the CUD input pin is used to determine direction and the
CDG input is used as a gate.

In this general-purpose mode, the counter is incremented or decremented
at every active edge of the CDG input pin.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by way of the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input selects the direc-
tion to increment, a low input selects the direction to decrement. If the
configuration bit is set, the polarity is inverted.

If an active edge is detected at the CDG input, the counter value changes by
one in the selected direction. The active edge can be selected by way of the
CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a rising edge
decrements the counter. If the configuration bit is set, a falling edge decre-
ments the counter.

Timed Direction Mode
In this general-purpose mode, the counter is incremented or decremented
at each SCLK cycle.

The state of the CUD input determines whether the counter increments or
decrements. The polarity can be selected by way of the CUDINV bit in the
CNT_CONFIG register. If this bit is cleared, a high CUD input will increment
the counter, a low input decrements it. If the configuration bit is set, the
polarity is inverted.

The CDG pin can be used to gate the clock. The polarity can be selected by
way of the CDGINV bit in the CNT_CONFIG register. If this bit is cleared, a
high CDG input enables the counter, a low input will stop it. If the configu-
ration bit is set, the polarity is inverted.

Functional Description

13-8 ADSP-BF54x Blackfin Processor Hardware Reference

Functional Description
The following sections describe the rotary counter in more detail.

Input Noise Filtering (Debouncing)
The rotary inputs are asynchronous to the system clock so hardware syn-
chronizes them internally before using. This synchronization causes a
fixed delay of a few clocks before any actions result from the toggling of
the inputs.

Because of the synchronization, the minimum pulse width of the input
signals must be the period of the system clock. For signals which don't
require debouncing, the maximum input frequency is the same as the sys-
tem clock.

In all modes, the three input pins can be optionally filtered in order to
present clean signals to the subsequent rotary encoder logic. This feature
can be enabled or disabled by way of the DEBE bit in the CNT_CONFIG
register.

The filtering mechanism is implemented using counters for each pin. The
counter for each pin is initialized from the DPRESCALE field of the
CNT_DEBOUNCE register. Whenever a transition is detected on a pin, the cor-
responding counter starts counting up to the programmed number of SCLK
cycles. The state of the pin is then latched after time tFILTER, as deter-
mined by the equation below and passed on to the subsequent logic. The
5-bit DPRESCALE field in the CNT_DEBOUNCE register (see Figure 13-12 on
page 13-31) is used to program the desired cycle number and therefore the
debouncing time. The number of SCLK cycles used to program the
counters for each pin can be selected in eighteen steps by way of this regis-
ter, see Table 13-1 on page 13-10.

ADSP-BF54x Blackfin Processor Hardware Reference 13-9

Rotary Counter

The time tfilter is determined, given SCLK and the DPRESCALE value con-
tained in the CNT_DEBOUNCE register, by the following formula:

where, DPRESCALE can contain values from 0 (minimum filtering) to 17
(maximum filtering).

Figure 13-4 shows the filtering operation for the CUD pin.

Assuming an SCLK frequency of 133 MHz, the filter time range is shown
by the following two equations, Figure 13-5 on page 13-10, Table 13-1
on page 13-10, and Table 13-2 on page 13-12:

DPRESCALE = 0b00000: tFILTER = 128*1*7.5 ns = 960 ns = (approx.) 1 �s

DPRESCALE = 0b10001: tFILTER = 128*131072*7.5 ns = 125829 �s = (approx.)
128 ms

Figure 13-4. Programmable Noise Filtering

tFILTER 128 2DPRESCALE SCLK÷()×=

NOISY EDGES

CUD FILTERED

CUD

t filter

Functional Description

13-10 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 13-5. Filtering Range

Table 13-1. DPRESCALE Filtering Range

DPRESCALE Cycles Debounce Time

00000 1x ~1 μs

00001 2x ~2 μs

00010 4x ~4 μs

00011 8x ~8 μs

00100 16x ~16 μs

001001 32x ~32 μs

00110 64x ~64 μs

00111 128x ~128 μs

01000 256x ~256 μs

01001 512x ~512 μs

01010 1024x ~1 ms

01011 2048x ~2 ms

01100 4096x ~4 ms

01101 8192x ~82 ms

01110 16384x ~16 ms

01111 32768x ~32 ms

CNT_DEBOUNCE
5 bits, R/W

@RESET

SEE TABLE BELOW FOR VALUES

0x0000000

ADSP-BF54x Blackfin Processor Hardware Reference 13-11

Rotary Counter

Zero Marker (Pushbutton) Operation
The CZM input pin can be used to sense the zero marker output of a rotary
device or detect pressing of a pushbutton. There are four programming
schemes all of which are functional in all counter modes. They are listed as
follows:

• Pushbutton mode: This mode is enabled by setting the CZMIE bit
in the CNT_IMASK register. An active edge at the CZM input sets the
CZMII bit in the CNT_STATUS register. If enabled by the
peripheral interrupt controller, this generates an interrupt request.
The active edge is selected by the CZMINV bit in the CNT_CONFIG reg-
ister: rising edge if cleared, falling edge if set to one.

10000 65536x ~64 ms

10001 131072x ~128 ms

Table 13-1. DPRESCALE Filtering Range (Cont’d)

DPRESCALE Cycles Debounce Time

Functional Description

13-12 ADSP-BF54x Blackfin Processor Hardware Reference

Table 13-2. Prescale Value Programming to Debounce Filter Circuit

Bit Location Name Type Function

4:0 DPRESCALE R/W These bits are used to program the prescale value to
the debounce filter circuit in the counter module.
The predefined count value for “x” (128) determines
the number of SCLK cycles to be counted.

00000b: 1x cycles = 128 SCLK cycles

00001b: 2x cycles = 256 SCLK cycles

00010: 4x cycles = 512 SCLK cycles

00011: 8x cycles = 1024 SCLK cycles

00100: 16x cycles = 2048 SCLK cycles

00101: 32x cycles = 4056 SCLK cycles

00110: 64x cycles = 8112 SCLK cycles

00111: 128x cycles = 16224 SCLK cycles

01000b: 256x cycles = 32448 SCLK cycles

01001b: 512x cycles = 64896 SCLK cycles

01010b: 1024x cycles = 129792 SCLK cycles

01011b: 2048x cycles = 259584 SCLK cycles

01100b: 4096x cycles = 519168 SCLK cycles

011001b: 8192x cycles = 1038336 SCLK cycles

01110b: 16384x cycles = 2076672 SCLK cycles

01111b: 32768x cycles = 4153344 SCLK cycles

10000b: 65536x cycles = 8306688 SCLK cycles

10001b: 131072x cycles = 16613376 SCLK cycles

10010b - 11111b: Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 13-13

Rotary Counter

• Zero-marker-zeros-counter mode: This mode is enabled by setting
the ZMZC bit in the CNT_ CONFIG register. An active level at the CZM
input clears the CNT_COUNTER register and holds it until the CZM pin
is deactivated. In addition, if enabled by the CZMZIE bit in the
CNT_IMASK register, this mode sets the CZMZII bit in the CNT_STATUS
register. If enabled by the peripheral interrupt controller, this gen-
erates an interrupt request. The active level is selected by the
CZMINV bit in the CNT_CONFIG register: active high if cleared, active
low if set to one.

• Zero-marker-error mode: This mode is used to detect discrepan-
cies between the counter value and the zero marker output of
certain rotary encoder devices. It is enabled by setting the CZMEIE
bit in the CNT_IMASK register. When an active edge is detected at the
CZM input pin, the four LSBs of the CNT_COUNTER register are com-
pared to zero. If they are not zero, a mismatch is signaled by way of
the CZMEII bit in the CNT_STATUS register. If enabled by the periph-
eral interrupt controller, this mode generates an interrupt request.
The active edge is selected by the CZMINV bit in the CNT_CONFIG reg-
ister: rising edge if cleared, falling edge if set to one.

• Zero-once mode: This mode is used to perform an initial reset of
the counter value when an active zero marker is detected. After
that, the zero marker is ignored (the counter is not reset anymore).
This mode is enabled by setting the W1ZMONCE bit in the
CNT_COMMAND register. The CNT_COUNTER register and the W1ZMONCE
bit are cleared on the next active edge on the CZM pin. Thus, the
W1ZMONCE bit can be read to check whether the event has already
occurred, if desired. The active edge of the CZM pin is selected by
the CZMINV bit in the CNT_CONFIG register: rising edge if cleared,
falling edge if set to one.

Functional Description

13-14 ADSP-BF54x Blackfin Processor Hardware Reference

Boundary Comparison Modes
The rotary encoder block includes two boundary registers, CNT_MIN
(lower) and CNT_MAX (upper). The counter value is compared to the lower
and upper boundary. Depending on which mode is selected, different
actions are taken if the count value reaches either of the boundary values.

For all boundary modes, compares do not occur if the change to
CNT_MIN/CNT_MAX/CNT_COUNTER was due to a software event. Soft-
ware events include writing these registers, or events caused by
writing the CNT_COMMAND register. Boundary compare events ONLY
occur due to up/down actions from the counter. This includes set-
ting MINCII/MAXCII and zeroing the counter on a compare to either
CNT_MIN or CNT_MAX.

There are four boundary modes:

• Boundary-compare mode: The two boundary registers are simply
compared to the CNT_COUNTER register. If CNT_COUNTER after incre-
menting equals CNT_MAX, the MAXCII bit in the CNT_STATUS register
is set. If the MAXCIE bit in the CNT_IMASK register is set, an interrupt
request is generated. Similarly CNT_COUNTER after decrementing
equals CNT_MIN, the MINCII status bit is set. If the MINCIE bit in the
CNT_IMASK register is set, an interrupt request is generated. The
MAXCII and MINCII bits are not set if the CNT_MAX and CNT_MIN reg-
isters are updated by software. For MINCII and MAXCII to be set, all
that needs to happen is for CNT_COUNTER to equal them, regardless
of the direction. As an example, if CNT_MIN=2 and CNT_COUNTER=1
and an up event occurs, MINCII will still be set. Likewise, if
CNT_MAX=2, CNT_COUNTER=3 and a down event occurs, MAXCII wil
still be set.

For the special case of CNT_MIN equals CNT_MAX, if CNT_COUNTER
reaches the value in the boundary register both MINCII and MAXCII
are set.

ADSP-BF54x Blackfin Processor Hardware Reference 13-15

Rotary Counter

• Boundary-zero mode: This mode is similar to the boundary-com-
pare mode. In addition to setting the status bits and requesting
interrupts, the counter value in the CNT_COUNTER register is also set
to zero.

• Boundary auto-extend mode: In this mode, the boundary registers
are modified by hardware whenever the counter value reaches
either of them. At startup, the application software should set both
boundary registers to the initial CNT_COUNTER value. The CNT_MAX
register is loaded with the current CNT_COUNTER value if the latter
increments beyond the CNT_MAX value. Similarly, the CNT_MIN regis-
ter is loaded with the CNT_COUNTER value if the latter decrements
below the CNT_MIN value. This mode may be used to keep track (in
hardware) of the widest angle the wheel ever reported, even if the
software did not serve interrupts. The MAXCII and MINCII status
bits are still set when the counter value matches the boundary regis-
ter, not only when it extends the boundary.

In this mode it is envisioned that software would never change
CNT_MIN or CNT_MAX by writing to them or an action from the
CNT_COMMAND register. If software does this, the behavior is best
described by a few examples:

Example 1: CNT_MAX=2, CNT_COUNTER=1. With three up events,
CNT_COUNTER=CNT_MAX=4. Now if software writes CNT_MAX=2, the
rotary will not auto extend until CNT_COUNTER decrements back
down to two, then increments again.

Example 2: CNT_MIN=2, CNT_COUNTER=3. With three down events
CNT_COUNTER=CNT_MIN=0. Now if software writes CNT_MIN=2, the
rotary will not auto extend until CNT_COUNTER increments back up
to two, then decrements again.

• Boundary-capture mode: In this mode, the CNT_COUNTER value is
latched into the CNT_MIN register at one detected edge of the CZM
input pin, and latched into CNT_MAX at the opposite edge. If the

Functional Description

13-16 ADSP-BF54x Blackfin Processor Hardware Reference

CZMINV bit in the CNT_CONFIG register is cleared, a rising edge cap-
tures into CNT_MIN and a falling edge into CNT_MAX. If the CZMINV bit
is set, the edges are inverted. The MAXCII and MINCII status bits
report the capture event.

The comparison is performed with signed arithmetic. The bound-
ary registers and the counter value are all treated as signed integer
values.

Rotary Encoder Events: Control and Signaling
There are a total of 11 events that can be signaled to the processor by way
of status information and optional interrupt requests. The interrupts are
enabled by the respective bits in the CNT_IMASK register. Dedicated status
bits in the CNT_STATUS register report events. When an interrupt from the
rotary encoder is acknowledged, the application software is responsible for
correct interpretation of the events. It is recommended to logically AND the
content of the CNT_IMASK and CNT_STATUS registers to identify pending
interrupts. Interrupt requests are cleared by write-one-to-clear (W1C)
operations to the CNT_STATUS register. Hardware does not clear the status
bits automatically, unless the counter module is disabled. There are four
boundary modes. Status bits are available in any of the counter modes dis-
cussed in “Description of Operation” on page 13-4.

Illegal Gray/Binary Code Events (Two-Step Detection)

As described in the quadrature encoder mode and binary encoder mode
sections, illegal transitions can be detected in these two modes. If this
event occurs, the ICII status bit is set. If enabled by the ICIE bit, an inter-
rupt request is generated. The ICIE bit should only be used (set) in these
two modes.

ADSP-BF54x Blackfin Processor Hardware Reference 13-17

Rotary Counter

Up/Down Count Events

The UCII status bit informs whether the counter is incremented. Similarly,
the DCII bit reports decrements. The two events are independent. For
instance, if the counter first increments by one and then decrements by
two, both bits remain set, even though the resulting counter value shows a
decrement by one. In rotary counter mode, hardware may detect simulta-
neous active edges on the CUD and CDG inputs. In that case, the
CNT_COUNTER remains unchanged, but both the UCII and DCII bits are set.

Interrupt requests for these events may be enabled through the UCIE and
DCIE bits. This feature should be used carefully when the counter is
clocked at high rates. This is especially critical when the counter operates
in DIR_TMR mode, as interrupts would be generated every SCLK cycle.

These events can also be used for additional pushbuttons, if rotary
encoder features are not needed. When rotary counter mode is enabled,
these count events can be used to report interrupts from pushbuttons that
connect to the CUD and CDG inputs.

Zero Count Events

The CZEROII status bit indicates that the CNT_COUNTER has reached a value
equal to 0x0000 0000 after an increment or decrement. This bit is not set
when the counter value is set to zero directly by way of a software write
(write to CNT_COUNTER or setting the W1LCNT_ZERO bit in the CNT_COMMAND
register). If enabled by the CZEROIE bit, an interrupt request is generated.

Overflow Events

There are two status bits that indicate whether the signed counter register
has overflowed from a positive to a negative value or vice versa.

Functional Description

13-18 ADSP-BF54x Blackfin Processor Hardware Reference

The COV31II bit reports that the 32-bit CNT_COUNT register has either incre-
mented from 0x7FFF.FFFF to 0x8000.0000 or decremented from
0x8000.0000 to 0x7FFF.FFFF. If enabled by the COV31IE bit, an interrupt
request is generated.

Similarly, in applications where only the lower 16 bits of the counter are
of interest, the COV15II status bit reports counter transitions from
0xxxxx.7FFF to 0xxxxx.8000 or reversed. If enabled by the COV15IE bit, an
interrupt request is generated.

Boundary Match Events

The MINCII and MAXCII status bits report boundary events as described in
“Boundary Comparison Modes” on page 13-14. These bits are not set if
the CNT_COUNTER, CNT_MAX or CNT_MIN registers are updated by software or
the CNT_COMMAND register is written to.

The MINCIE and MAXCIE bits in the CNT_IMASK register enable interrupt
generation on boundary events.

Zero Marker Events

There are three status bits CZMII, CZMEII and CZMZII associated with zero
marker events, as described in “Zero Marker (Pushbutton) Operation” on
page 13-11. Each of these events can optionally generate an interrupt
request, if enabled by the corresponding CZMIE, CZMEIE and CZMZIE bits in
the CNT_IMASK register.

Capturing Timing Information (Using the
General-Purpose Timer)

In many applications, in addition to accurate count encoder pulses (count
events), it is important to measure the time between two count events.
This information allows for calculating speed. For more accuracy, particu-
larly at very low speeds, it is also necessary to obtain the time that has

ADSP-BF54x Blackfin Processor Hardware Reference 13-19

Rotary Counter

elapsed since the last count event. This additional information allows for
estimating how much the rotary encoder has advanced since the last
counter event.

For this purpose, the rotary counter has an internal timer output that con-
nects to the alternate capture inputs (TACIx) of one of the timers as
explained in “Interface Overview” on page 13-3. It is functional in all
modes, with the exception of the timed direction mode.

In order to use the timing measurements, the associated timer must be
used in pulse width count and capture mode (WDTH_CAP). The alternative
capture input is selected by setting the TIN_SEL bit in the timer’s configu-
ration register. For more information about the GP Timers and their
operating modes refer “Capturing Timings from the GP Counter Mod-
ule” on page 10-36.

Capturing Time Interval Between Successive Counter Events

When the only timing information of interest is the interval between suc-
cessive count events, the associated timer should be programmed in
WDTH_CAP mode with PULSE_HI=1, PERIOD_CNT=1 and TIN_SEL=1. Typi-
cally, this information is sufficient if the speed of rotary encoder events is
known not to reach very low values. Figure 13-6 on page 13-20 shows the
operation of the rotary encoder module and the GP timer in this mode.
TO generates a pulse every time a count event occurs. The general-pur-
pose timer will update the TIMERx_PERIOD register with the period
(measured from rising edge to rising edge) of the TO signal. The
TIMERx_PERIOD register is updated at every rising edge of the TO signal
and contains the number of system clock (SCLK) cycles that have elapsed
since the previous rising edge. Incidentally, the TIMERx_WIDTH register is
also updated at the same time, but is generally of no interest in this mode
of operation. If no reads of the CNT_COUNTER register occur between
counter events, the TIMERx_WIDTH register only contains the width of the

Functional Description

13-20 ADSP-BF54x Blackfin Processor Hardware Reference

TO pulse. If a read of the CNT_COUNTER has occurred between events, the
TIMERx_WIDTH register will contain the time between the read of the
CNT_COUNTER and the next event.

This mode can also be used with PULSE_HI=0. In this case, the period of
TO is measured between falling edges. It will result in the same values as
in the previous case, only the latching occurs one SCLK cycle later.

Figure 13-6. Timer Period Register

CUD

CDG

TIMERx_PERIOD
REGISTER

TIMERx_COUNTER
REGISTER

COUNT EVENTS
 =

TO

CNT_COUNTER
REGISTER

ADSP-BF54x Blackfin Processor Hardware Reference 13-21

Rotary Counter

Capturing Counter Interval and CNT_COUNTER Read Timing

It is possible to also capture the time elapsed since the last count event. In
this mode, the associated timer should be programmed in WDTH_CAP mode
with PULSE_HI=0, PERIOD_CNT=0 and TIN_SEL=1. Typically, this additional
information is used to estimate the advancement of the rotary encoder
since the last count event, if the speed is very low. Figure 13-7 shows the
operation of the rotary encoder module and the general-purpose timer in
this mode. TO generates a pulse every time a count event occurs. In addi-
tion, when the processor reads the CNT_COUNTER register, the TO signal
presents a pulse which is extended (high) until the next count event. The
general-purpose timer will update the TMRx_PERIOD register with the
period (measured from falling edge to falling edge, because PULSE_HI=0)
of the TO signal. The TMRx_WIDTH register is updated with the pulse width
(the portion where TO is low, again because PULSE_HI=0). Both registers
are updated at every rising edge of the TO signal (because PERIOD_CNT=0).
Therefore, the period register will contains the period between the last two
count events and the width register will contains the time since the last
count event and the read of the CNT_COUNTER register, both measured in
number of system clock (SCLK) cycles.

The result is that when reading the CNT_COUNTER register, the two time
measurements are also latched and the user has a coherent triplet of infor-
mation to calculate speed and position.

Restrictions apply to the use of the TO signal in terms of speed.
Therefore, the user must take care to not operate at very high count
events. For instance, if CNT_COUNTER is incremented/decremented
every SCLK cycle (timed direction mode), the TO signal is
incorrect.

Functional Description

13-22 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 13-7. Timer Registers

TIMERx_PERIOD
Register

Read Counter
Register

TIMERx_WIDTH
Register*

* The solid line indicates the time between the last event and the CNT_COUNTER read.
Register contents marked with dotted lines do not reflect relevant time measurements
and should be ignored.

TIMERx_COUNTER
Register

Count Events +
Read Event =
TO

CUD

CDG

CNT COUNTER
Register

ADSP-BF54x Blackfin Processor Hardware Reference 13-23

Rotary Counter

Counter Commands
In order to facilitate initialization of the peripheral, a register is provided
to perform various operations such as zeroing a counter register, copying
or swapping boundary registers and so on. These actions are taken by writ-
ing a 1 to the appropriate bit in the CNT_COMMAND register.

The CNT_COUNTER, CNT_MIN and CNT_MAX registers can be initialized to zero
by writing a 1 to the W1LCNT_ZERO, W1LMIN_ZERO and W1LMAX_ZERO fields.
In addition to clearing registers, the boundary registers can be modified in
a number of ways. The current counter value in CNT_COUNT can be cap-
tured and loaded into either of the two boundary registers CNT_MAX and
CNT_MIN to create new boundary limits. This is performed by setting the
W1LMAX_CNT and W1LMIN_CNT bits. Alternatively the counter can be loaded
from CNT_MAX or CNT_MIN through the W1LCNT_MAX and W1LCNT_MIN bits. It
is also possible to transfer the current CNT_MAX into CNT_MIN or vice versa
through the W1LMIN_MAX and W1LMAX_MIN bits. The final supported opera-
tion is the ability to only have the zero marker clear the CNT_COUNT register
once as described in “Zero Marker (Pushbutton) Operation” on
page 13-11.

It is possible for multiple actions to be performed simultaneously by set-
ting multiple bits in the CNT_COMMAND register. The bits associated with
each command have been grouped together such that all bits that involve a
write to the CNT_COUNTER register are located within the bits 3:0 of the
CNT_COMMAND register. All commands that involve a write to the CNT_MIN
register are located within bits 7:4 of the CNT_COMMAND register and all
commands that involve a write to the CNT_MAX register are located within
bits 11:8 of the CNT_COMMAND register. Please refer to the register diagram
(Figure 13-11 on page 13-30) for more details.

A maximum of three commands can be issued at any one time,
excluding the W1ZMONCE command. No two commands issued
simultaneously can involve a load to the same counter register. The
following commands must be used exclusively: W1LCNT_MIN,
W1LCNT_MAX, and W1LCNT_ZERO. Never set more than one of them at

Programming Mode

13-24 ADSP-BF54x Blackfin Processor Hardware Reference

the same time. The same requirement stands true for W1LMAX_MIN,
W1LMAX_CNT and W1LMAX_ZERO and also for W1LMIN_MAX, W1LMIN_CNT,
and W1LMIN_ZERO.

Programming Mode
In a typical application, the user initializes the rotary encoder to the
desired mode, without enabling it. Normally, it is chosen to process the
events of interest by way of interrupts rather than polling the status bit.
Therefore, clear all status bits and activate the generation of interrupt
requests by way of the CNT_IMASK register. Set up the peripheral interrupt
controller and core interrupts. If timing information is required, set up
appropriate timer in WDTH_CAP mode with the settings described in “Cap-
turing Timing Information (Using the General-Purpose Timer)” on
page 13-18. Then, enable interrupts and the peripheral itself.

Rotary Counter Registers
The rotary encoder interface has eight memory-mapped registers (MMRs)
that regulate its operation.

Refer to Table 13-3 for an overview of all MMRs associated with the
rotary encoder interface.

Table 13-3. Counter Module Register Overview

Address Register Name Width PAB Operation Reset Value

0xFFC04200 CNT_CONFIG
(on page 13-26)

16 bits R/W 0x0000

0xFFC04204 CNT_IMASK
(on page 13-28)

16 bits R/W 0x0000

0xFFC04208 CNT_STATUS
(on page 13-29)

16 bits R/W1C 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 13-25

Rotary Counter

Descriptions and bit diagrams for MMRs are provided in the following
sections.

0xFFC0420c CNT_COMMAND
(on page 13-29)

16 bits R/W1ACTION 0x0000

0xFFC04210 CNT_DEBOUNCE
(on page 13-31)

16 bits R/W 0x0000

0xFFC04214 CNT_COUNTER
(on page 13-32)

32 bits R/W (16/32 bits) 0x0000 0000

0xFFC04218 CNT_MAX
(on page 13-32)

32 bits R/W (16/32 bits) 0x0000 0000

0xFFC0421c CNT_MIN
(on page 13-32)

32 bits R/W (16/32 bits) 0x0000 0000

Table 13-3. Counter Module Register Overview (Cont’d)

Address Register Name Width PAB Operation Reset Value

Rotary Counter Registers

13-26 ADSP-BF54x Blackfin Processor Hardware Reference

Configuration (CNT_CONFIG) Register
The configuration (CNT_CONFIG) register is used to configure counter
modes and input pins and to enable the peripheral. It can be accessed at
any time with 16-bit read and write operations.

To avoid false glitches on startup, write all bits in CNT_CONFIG
first followed by a second write to the register which enables the
counter (CNTE=1).

Boundary Register Mode

Since CUD, CDG, and CZM input pins are muxed with other pins, these
pins might be used for a function other than rotary counter. Specifically:

• If the application needs only the pushbutton (CZM) function,
then write INPDIS=0 to ignore CUD and CDG. This allows a
debounced pushbutton interrupt source.

• If the application needs just the rotary pins CUD and CDG, but
not the CZM, then write INPDIS=1. Then ensure your software
does not enable any of the pushbutton functions in the rotary
counter registers.

For further information, see BNDMODE bit in Figure 13-8.

ADSP-BF54x Blackfin Processor Hardware Reference 13-27

Rotary Counter

Figure 13-8. Configuration (CNT_CONFIG) Register

Configuration Register (CNT_CONFIG)

Reset = 0x00000xFFC04200
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNTE (Counter
Enable)
0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

CDGINV (CDG Pin
Polarity Invert)
0 = Active high, rising
 edge
1 = Active low, falling
 edge

CUDINV (CUD Pin
Polarity Invert)
0 = Active high, rising
 edge
1 = Active low, falling
 edge
CZMINV (CZM Pin
Polarity Invert)
0 = Active high, rising
 edge
1 = Active low, falling
 edge

CNTMODE (Counter Operating Mode)
000: QUAD_ENC - quadrature encoder mode
001: BIN_ENC - binary encoder mode
010: UD_CNT - rotary counter mode
011: Reserved
100: DIR_CNT - direction counter mode
101: DIR_TMR - direction timer mode
110: Reserved
111: Reserved

ZMZC (CZM Zeroes Counter
Enable)

BNDMODE
(Boundary Register Mode)
00: BND_COMP
01: BIN_ENC
10: BND_CAPT
11: BND_AEXT

INPDIS (CUD and
CDG Input
Disable)

DEBE (Debounce
Enable)

0 = Enabled
1 = Disabled

Level sensitive - active CZM pin
zeroes CNT_COUNTER

Rotary Counter Registers

13-28 ADSP-BF54x Blackfin Processor Hardware Reference

Interrupt Mask (CNT_IMASK) Register
The interrupt mask (CNT_IMASK) register is used to enable interrupt
request generation from each of the eleven events (See Figure 13-9). It can
be accessed at any time with 16-bit read and write operations.

Figure 13-9. Interrupt Mask (CNT_IMASK) Register

Interrupt Mask Register (CNT_IMASK)

Reset = 0x00000xFFC04204
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

ICIE (Illegal gray/binary code
interrupt enable) (two step
detection)

UCIE (Upcount interrupt
enable)

DCIE (Downcount interrupt
enable)

MINCIE (Min count interrupt
enable) (CNT_COUNTER ==
CNT_MIN)

MAXCIE (Max count interrupt
enable) (CNT_COUNTER ==
CNT_MAX)

COV31IE (Bit 31 overflow
interrupt enable)

(0x7FFF.FFFF to 0x8000.0000
or reverse order)

COV15IE (Bit 15 overflow inter-
rupt enable) (0xxxxx.7FFF to
0xxxxx.8000 or reverse order)

CZMZIE (Counter zeroed by
zero marker interrupt enable)

CZMEIE (Zero marker error
interrupt enable) (edge on CZM
AND CNT_COUNTER[3:0]
!= b#0000)

CZMIE (CZM pin interrupt
enable/ pushbutton interrupt)

CZEROIE (CNT_COUNTER)
Counts to zero interrupt enable
(CNT_COUNTER == 0x000.0000)

For all bits:
0 = Interrupt disabled
1 = Interrupt enabled

ADSP-BF54x Blackfin Processor Hardware Reference 13-29

Rotary Counter

Status (CNT_STATUS) Register
The status (CNT_STATUS) register provides status information for each of
the eleven events where 0 = no interrupt pending and 1 = interrupt pend-
ing (See Figure 13-10). When an event is detected, the corresponding bit
in this register is set. It remains set until either software writes a 1to the bit
(write-1-to-clear) or the rotary encoder peripheral is disabled.

Command (CNT_COMMAND) Register
The command (CNT_COMMAND) register is used to perform various actions
that are needed occasionally. Each bit performs the indicated action when
a 1 is written to it (See Figure 13-11).

Figure 13-10. Status (CNT_STATUS) Register

Status Register (CNT_STATUS)

Reset = 0x00000xFFC04208
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

COV31II (Bit 31 overflow
interrupt) (W1C)

COV15II (Bit 15 overflow
interrupt) (W1C)

CZMZIE (Counter zeroed by
zero marker) (W1C)

CZMEII (Zero marker error
interrupt) (W1C)

CZMII (CZM pin interrupt/
pushbutton interrupt) (W1C)

CZEROII (CNT_COUNTER
counts to zero interrupt)
(W1C)

ICII (Illegal gray/binary
code interrupt) (W1C)

UCII (Upcount interrupt)
(W1C)

DCII (Downcount interrupt)
(W1C)

MINCII (Min interrupt)
(W1C)

MAXCII (Max interrupt)
(W1C)

For all bits:
0 = No interrupt pending
1 = Interrupt pending

Rotary Counter Registers

13-30 ADSP-BF54x Blackfin Processor Hardware Reference

Read operations from this register do not return meaningful values. One
exception is the W1ZONCE bit. It is the only bit that returns a value if the
register is read. A one indicates that the bit is set by software before, but
no zero marker event is detected on the CZM pin yet. Refer to the “Zero
Marker (Pushbutton) Operation” on page 13-11 for more details.

Note that W1LCNT_MIN, W1LCNT_MAX and W1LCNT_ZERO have to be
used exclusively. Never set more than one of them at the same
time. The same requirement stands for W1LMAX_MIN, W1LMAX_CNT
and W1LMAX_ZERO and also for W1LMIN_MAX, W1LMIN_CNT and
W1LMIN_ZERO.

Figure 13-11. Command (CNT_COMMAND) Register

Command Register (CNT_COMMAND)

Reset = 0x00000xFFC0420c
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

W1LCNT_ZERO (Write one to
zero CNT_COUNTER) (W1A)

W1LCNT_MIN (Write one to
zero CNT_COUNTER (W1A)

W1LCNT_MAX (Write one to
load CNT_COUNTER from
CNT_MAX) (W1A)

W1LMIN_ZERO (Write one to
zero CNT_MIN register) (W1A)

W1LMIN_CNT (Write one to
capture CNT_COUNTER to
CNT_MIN register) (W1A)W1LMIN_MAX (Write one to

copy former CNT_MAX to new
CNT_MIN) (W1A)

W1LMAX_ZERO (Write one to zero
CNT_MAX Register) (W1A)

W1LMAX_CNT (Write one to cap-
ture CNT_COUNTER to CNT_MAX
Register) (W1A)

W1LMAX_MIN (Write one to copy
former CNT_MIN to new
CNT_MAX) (W1A)

W1ZMONCE (Write one to
enable single zero marker
clear CNT_COUNT action)
(W1A/R)

ADSP-BF54x Blackfin Processor Hardware Reference 13-31

Rotary Counter

Debounce Prescale (CNT_DEBOUNCE) Register
The debounce prescale (CNT_DEBOUNCE) register is used to select the noise
filtering characteristic of the input pins (See Figure 13-12). Bits [4:0]
determine the filter time. The register can be accessed at any time with
16-bit read and write operations.

Figure 13-12. Debounce (CNT_DEBOUNCE) Register

tfilter 128 2DPRESCALE SCLK÷()×=

Debounce Register (CNT_DEBOUNCE)

Reset = 0x00000xFFC04210
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

DPRESCALE (Load Counter Register)

00000: 1x cycles = 128 SCLK cycles
00001: 2x cycles = 256 SCLK cycles
00010: 4x cycles = 512 SCLK cycles
00011: 8x cycles = 1024 SCLK cycles
00100: 16x cycles = 2048 SCLK cycles
00101: 32x cycles = 4056 SCLK cycles
00110: 64x cycles = 8112 SCLK cycles
00111: 128x cycles = 16224 SCLK cycles
01000: 256x cycles = 32448 SCLK cycles
01001: 512x cycles = 64896 SCLK cycles
01010: 1024x cycles = 129792 SCLK cycles
01011: 2048x cycles = 259584 SCLK cycles
01100: 4096x cycles = 519168 SCLK cycles
01101: 8192x cycles = 1038336 SCLK cycles
01110: 16384x cycles = 2076672 SCLK cycles
01111: 32768x cycles = 4153344 SCLK cycles
10000: 65536x cycles = 8306688 SCLK cycles
10001: 131072x cycles = 16613376 SCLK cycles

10010 - 11111: Reserved

Rotary Counter Registers

13-32 ADSP-BF54x Blackfin Processor Hardware Reference

Counter (CNT_COUNTER) Register
The counter (CNT_COUNTER) register holds the 32-bit, two’s-complement,
count value (See Figure 13-13). It can be read and written at any time.
Hardware ensures that reads and writes are atomic, by providing respec-
tive shadow registers. This register can be accessed with either 32-bit or
16-bit operations. This allows use of the rotary encoder as a 16-bit
counter, if sufficient for the application.

Boundary (CNT_MIN and CNT_MAX) Registers
The boundary (CNT_MIN and CNT_MAX) registers hold the 32-bit,
two’s-complement, lower and upper boundary values (See Figure 13-14
and Figure 13-15). They can be read from and written to at any time.
Hardware ensures that reads and writes are atomic, by providing respec-
tive shadow registers. This register can be accessed with either 32-bit or
16-bit operations. This allows for using the rotary encoder as a 16-bit
counter if sufficient for the application.

Figure 13-13. Counter (CNT_COUNTER) Register

Counter Register (CNT_COUNTER)

Count Value [31:16]

Reset = 0x0000 00000xFFC04214

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

Count Value [15:0]

ADSP-BF54x Blackfin Processor Hardware Reference 13-33

Rotary Counter

Figure 13-14. Maximal Count (CNT_MAX) Register

Figure 13-15. Minimal Count (CNT_MIN) Register

Maximal Count Register (CNT_MAX)

Reset = 0x0000 00000xFFC04218

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

CNT_MAX [31:16] (Counter Max)
R/W and Reset Value = 0

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MAX [15:0] (Counter Max)
R/W and Reset Value = 0

Minimal Count Register (CNT_MIN)

Reset = 0x0000 00000xFFC0421c

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00

15

0

31 30 29 28 27 26

00 0 0 0 0 0 0 0 0 0 0 0 00

16171819202122232425

0

CNT_MIN [31:16] (Counter Max)
R/W and Reset Value = 0

CNT_MIN [15:0] (Counter Max)
R/W and Reset Value = 0

Programming Examples

13-34 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
Listing 13-1 illustrates how to configure the port registers to enable rotary
counter functionality through the PORTx_MUX and PORTx_FER registers.

Listing 13-1. Configuring the Port Registers to Enable Rotary Counter

/* enable CDG and CUD features. */

P5.H = hi(PORTH_FER);

P5.L = lo(PORTH_FER);

R5.L = nPH15 | nPH14 | nPH13 | nPH12 | PH11 | nPH10 | nPH9 | nPH8

| nPH7 | nPH6 | nPH5 | PH4 | PH3 | nPH2 | nPH1 | nPH0;

w[P5] = R5.L;

/* enable CZM feature. */

P5.H = hi(PORTG_FER);

P5.L = lo(PORTG_FER);

R5.L = nPG15 | nPG14 | nPG13 | nPG12 | PG11 | nPG10 | nPG9 | nPG8

| nPG7 | nPG6 | nPG5 | nPG4 | PG3 | nPG2 | nPG1 | nPG0;

w[P5] = R5.L;

/* enable CDG and CUD MUX mode. */

P5.H = hi(PORTH_MUX);

P5.L = lo(PORTH_MUX);

R5.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0));

R5.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0));

[P5] = R5;

/* enable CZM MUX mode. */

P5.H = hi(PORTG_MUX);

P5.L = lo(PORTG_MUX);

R5.H = hi(MUX(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0));

R5.L = lo(MUX(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0));

ADSP-BF54x Blackfin Processor Hardware Reference 13-35

Rotary Counter

[P5] = R5;

Listing 13-2 illustrates how to initialize the rotary counter for a required
functionality. The required rotary counter interrupts are first unmasked.
The rotary counter is then configured for the required mode of operation.
Note at this point we do not enable the rotary counter. Finally we clear
some of the rotary counter registers before also clearing any pending inter-
rupts that may be pending in the CNT_STATUS register.

Listing 13-2. Initializing the Rotary Counter

/* Setup Counter Interrupts */

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = nCZMZIE /* Counter zeroed by zero marker interrupt */

| CZMEIE /* Zero marker error interrupt */

| CZMIE /* CZM pin interrupt (pushbutton) */

| CZEROIE /* Counts to zero interrupt */

| nCOV15IE /* Counter bit 15 overflow interrupt */

| nCOV31IE /* Counter bit 31 overflow interrupt */

| MAXCIE /* Max count interrupt */

| MINCIE /* Min count interrupt */

| DCIE /* Downcount interrupt */

| UCIE /* Upcount interrupt */

| ICIE (z); /* Illegal gray/binary code interrupt */

w[P5] = R5;

/* Configure the Rotary Counter mode of operation */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = nINPDIS /* Enable CUD and CDG inputs */

| BNDMODE_COMP /* Boundary compare mode */

| nZMZC /* Disable Zero Counter Enable */

| CNTMODE_QUADENC /* Quadrature Encoder Mode */

Programming Examples

13-36 ADSP-BF54x Blackfin Processor Hardware Reference

| CZMINV /* Polarity of CZM pin */

| nCUDINV /* Polarity of CUD pin */

| nCDGINV /* Polarity of CDG Pin */

| nDEBE /* Disable the debounce */

| nCNTE (z); /* Disable the counter */

w[P5] = R5;

/* Zero the CNT_COUNT, CNT_MIN and CNT_MAX registers

This is optional as after reset they are default to zero */

P5.H = hi(CNT_COMMAND);

P5.L = lo(CNT_COMMAND);

R5 = W1LCNT_ZERO | W1LMIN_ZERO | W1LMAX_ZERO (z);

w[P5] = R5;

/* Clear any identified interrupts */

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R5.L = ICII /* Illegal Gray/Binary Code Interrupt Identifier

*/

| UCII /* Up count Interrupt Identifier */

| DCII /* Down count Interrupt Identifier */

| MINCII /* Min Count Interrupt Identifier */

| MAXCII /* Max Count Interrupt Identifier */

| COV31II /* Bit 31 Overflow Interrupt Identifier */

| COV15II /* Bit 15 Overflow Interrupt Identifier */

| CZEROII /* Count to Zero Interrupt Identifier */

| CZMII /* CZM Pin Interrupt Identifier */

| CZMEII /* CZM Error Interrupt Identifier */

| CZMZII; /* CZM Zeroes Counter Interrupt Identifier */

w[P5] = R5;

ADSP-BF54x Blackfin Processor Hardware Reference 13-37

Rotary Counter

Listing 13-3 illustrates how to set up the peripheral and core interrupts for
the rotary counter. The counter interrupts generated on IRQ68 are mapped
to the IVG7 interrupt. Finally the system and peripheral interrupts are
unmasked and then the rotary counter is enabled.

Listing 13-3. Setting Up the Interrupts for the Rotary Counter

/* Assign the CNT interrupt to IVG7 */

P5.H = hi(SIC_IAR8);

P5.L = lo(SIC_IAR8);

R6.H = hi(0xFFF0FFFF);

R6.L = lo(0xFFF0FFFF);

R7.H = hi(0x00000000);

R7.L = lo(0x00000000);

R5 = [P5];

R5 = R5 & R6; /* zero the Counter interrupt field */

R5 = R5 | R7; /* set Counter interrupt to required priority */

[P5] = R5;

/* Set up the interrupt vector for the rotary counter */

R5.H = hi(_IVG7_handler);

R5.L = lo(_IVG7_handler);

P5.H = hi(EVT7);

P5.L = lo(EVT7);

[P5] = R5;

/* Unmask IVG7 interrupt in the IMASK register */

P5.H = hi(IMASK);

P5.L = lo(IMASK);

R5 = [P5];

bitset(R5, bitpos(EVT_IVG7));

[P5] = R5;

/* Unmask interrupt 68 generated by the counter */

Programming Examples

13-38 ADSP-BF54x Blackfin Processor Hardware Reference

P5.H = hi(SIC_IMASK2);

P5.L = lo(SIC_IMASK2);

R5 = [P5];

bitset(R5, bitpos(IRQ_CNT));

[P5] = R5;

/* Enable the Rotary Counter */

P5.H = hi(CNT_CONFIG);

P5.L = lo(CNT_CONFIG);

R5 = w[P5](z);

bitset(R5, bitpos(CNTE));

w[P5] = R5.L;

Listing 13-4 illustrates a sample interrupt handler that is responsible for
servicing the rotary counter interrupts. On entry to the handler, the
SIC_ISR2 register is interrogated to determine if the counter is waiting for
a service interrupt. If a counter interrupt is waiting to be serviced, then the
handler that is responsible for processing all counter interrupts is called.

Listing 13-4. Sample Interrupt Handler Rotary Counter Interrupts

_IVG7_handler:

/* Stack management */

[--SP] = RETS;

[--SP] = ASTAT;

[--SP] = (R7:0, P5:0);

/* Was it a counter interrupt? */

P5.H = hi(SIC_ISR2);

P5.L = lo(SIC_ISR2);

R5 = [P5];

CC = bittst(R5, bitpos(IRQ_CNT));

IF !CC JUMP _IVG7_handler.completed;

CALL _IVG7_handler.counter;

ADSP-BF54x Blackfin Processor Hardware Reference 13-39

Rotary Counter

_IVG7_handler.completed:

SSYNC;

/* Restore from stack */

(R7:0, P5:0) = [SP++];

ASTAT = [SP++];

RETS = [SP++];

RTI; /* Exit the interrupt service routine */

_IVG7_handler.end:

_IVG7_handler.counter:

/* Stack management */

[--SP] = RETS;

[--SP] = (R7:0, P5:0);

/* Determine what counter interrupts we wish to service */

P5.H = hi(CNT_IMASK);

P5.L = lo(CNT_IMASK);

R5 = w[P5](z);

P5.H = hi(CNT_STATUS);

P5.L = lo(CNT_STATUS);

R6 = w[P5](z);

R5 = R5 & R6;

/* Interrupt handlers for all rotary counter interrupts */

_IVG7_handler.counter.illegal_code:

CC = bittst(R5, bitpos(ICII));

IF !CC JUMP _IVG7_handler.counter.up_count;

/* Clear the serviced request */

R6 = ICII (z);

w[P5] = R6;

Programming Examples

13-40 ADSP-BF54x Blackfin Processor Hardware Reference

/* insert illegal code handler here */

_IVG7_handler.counter.illegal_code.end:

_IVG7_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG7_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

_IVG7_handler.counter.up_count.end:

_IVG7_handler.counter.down_count:

CC = bittst(R5, bitpos(DCII));

IF !CC JUMP _IVG7_handler.counter.min_count;

/* Clear the serviced request */

R6 = DCII (z);

w[P5] = R6;

/* insert down count handler here */

_IVG7_handler.counter.down_count.end:

_IVG7_handler.counter.min_count:

CC = bittst(R5, bitpos(MINCII));

IF !CC JUMP _IVG7_handler.counter.max_count;

ADSP-BF54x Blackfin Processor Hardware Reference 13-41

Rotary Counter

/* Clear the serviced request */

R6 = MINCII (z);

w[P5] = R6;

/* insert min count handler here */

_IVG7_handler.counter.min_count.end:

_IVG7_handler.counter.max_count:

CC = bittst(R5, bitpos(MAXCII));

IF !CC JUMP _IVG7_handler.counter.b31_overflow;

/* Clear the serviced request */

R6 = MAXCII (z);

w[P5] = R6;

/* insert max count handler here */

_IVG7_handler.counter.max_count.end:

_IVG7_handler.counter.b31_overflow:

CC = bittst(R5, bitpos(COV31II));

IF !CC JUMP _IVG7_handler.counter.b15_overflow;

/* Clear the serviced request */

R6 = COV31II (z);

w[P5] = R6;

/* insert bit 31 overflow handler here */

_IVG7_handler.counter.b31_overflow.end:

_IVG7_handler.counter.b15_overflow:

Programming Examples

13-42 ADSP-BF54x Blackfin Processor Hardware Reference

CC = bittst(R5, bitpos(COV15II));

IF !CC JUMP _IVG7_handler.counter.count_to_zero;

/* Clear the serviced request */

R6 = COV15II (z);

w[P5] = R6;

/* insert bit 15 overflow handler here */

_IVG7_handler.counter.b15_overflow.end:

_IVG7_handler.counter.count_to_zero:

CC = bittst(R5, bitpos(CZEROII));

IF !CC JUMP _IVG7_handler.counter.czm;

/* Clear the serviced request */

R6 = CZEROII (z);

w[P5] = R6;

/* insert count to zero handler here */

_IVG7_handler.counter.count_to_zero.end:

_IVG7_handler.counter.czm:

CC = bittst(R5, bitpos(CZMII));

IF !CC JUMP _IVG7_handler.counter.czm_error;

/* Clear the serviced request */

R6 = CZMII (z);

w[P5] = R6;

/* insert czm handler here */

_IVG7_handler.counter.czm.end:

ADSP-BF54x Blackfin Processor Hardware Reference 13-43

Rotary Counter

_IVG7_handler.counter.czm_error:

CC = bittst(R5, bitpos(CZMEII));

IF !CC JUMP _IVG7_handler.counter.czm_zeroes_counter;

/* Clear the serviced request */

R6 = CZMEII (z);

w[P5] = R6;

/* insert czm error handler here */

_IVG7_handler.counter.czm_error.end:

_IVG7_handler.counter.czm_zeroes_counter:

CC = bittst(R5, bitpos(CZMZII));

IF !CC JUMP _IVG7_handler.counter.all_serviced;

/* Clear the serviced request */

R6 = CZMZII (z);

w[P5] = R6;

/* insert czm zeroes counter handler here */

_IVG7_handler.counter.czm_zeroes_counter.end:

_IVG7_handler.counter.all_serviced:

/* Restore from stack */

(R7:0, P5:0) = [SP++];

RETS = [SP++];
RTS;

_IVG7_handler.counter.end:

Programming Examples

13-44 ADSP-BF54x Blackfin Processor Hardware Reference

Listing 13-5 illustrates how to set up timer 6 in order to capture the
period of counter events. The timer is configured for WDTH_CAP mode and
the period between the last two successive counter events is read from
within the up count interrupt handler that was provided in Listing 13-4.

Listing 13-5. Setting Up Timer 6 for Counter Event Period Capture

/* configure the timer for WDTH_CAP mode */

P5.H = hi(TIMER6_CONFIG);

P5.l = lo(TIMER6_CONFIG);

R5 = PULSE_HI | PERIOD_CNT | TIN_SEL | WDTH_CAP (z);

w[P5] = R5.l;

/* Enable Timer 6 */

P5.H = hi(TIMER_ENABLE0);

P5.L = lo(TIMER_ENABLE0);

R5 = TIMEN6 (z);

w[P5] = R5.l;

...

_IVG7_handler.counter.up_count:

CC = bittst(R5, bitpos(UCII));

IF !CC JUMP _IVG7_handler.counter.down_count;

/* Clear the serviced request */

R6 = UCII (z);

w[P5] = R6;

/* insert up count handler here */

/* Read the period between the last two successive events */

P5.H = hi(TIMER6_PERIOD);

P5.L = lo(TIMER6_PERIOD);

ADSP-BF54x Blackfin Processor Hardware Reference 13-45

Rotary Counter

R5 = [P5];

P5.H = hi(_event_period);

P5.L = lo(_event_period);

[P5] = R5;

_IVG7_handler.counter.up_count.end:

Programming Examples

13-46 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 14-1

14 REAL-TIME CLOCK

This chapter describes the real-time clock (RTC) and includes the follow-
ing sections:

• “Overview” on page 14-1

• “Interface Overview” on page 14-3

• “Description of Operation” on page 14-5

• “RTC Programming Model” on page 14-7

• “RTC Registers” on page 14-20

• “Programming Examples” on page 14-24

Overview
The RTC provides a set of digital watch features to the processor, includ-
ing time of day, alarm, and stopwatch countdown. It is typically used to
implement either a real-time watch or a life counter, which counts the
elapsed time since the last system reset.

The RTC watch features are clocked by a 32.768 kHz crystal external to
the processor. The RTC uses dedicated power supply pins and is indepen-
dent of any reset, which enables it to maintain functionality even when
the rest of the processor is powered down.

Overview

14-2 ADSP-BF54x Blackfin Processor Hardware Reference

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60-second counter

• 60-minute counter

• 24-hour counter

• 32768-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 32768-day counter
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds).
Interrupts can be issued periodically, either every second, every minute,
every hour, or every day. Each of these interrupts can be independently
controlled.

The RTC provides two alarm features, programmed with the RTC alarm
register (RTC_ALARM). The first is a time of day alarm (hour, minute, and
second). When the alarm interrupt is enabled, the RTC generates an inter-
rupt each day at the time specified. The second alarm feature allows the
application to specify a day as well as a time. When the day alarm inter-
rupt is enabled, the RTC generates an interrupt on the day and time
specified. The alarm interrupt and day alarm interrupt can be enabled or
disabled independently.

The RTC provides a stopwatch function that acts as a countdown timer.
The application can program a second count into the RTC stopwatch
count register (RTC_SWCNT). When the stopwatch interrupt is enabled and
the specified number of seconds has elapsed, the RTC generates an
interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 14-3

Real-Time Clock

Interface Overview
The RTC external interface consists of two clock pins, which together
with the external components form the reference clock circuit for the
RTC. The RTC interfaces internally to the processor system through the
peripheral access bus (PAB), and through the interrupt interface to the
SIC (system interrupt controller).

Interface Overview

14-4 ADSP-BF54x Blackfin Processor Hardware Reference

The RTC has dedicated power supply pins that power the clock functions
at all times, including when the core power supply is turned off.
Figure 14-1 provides a block diagram of the RTC.

Figure 14-1. RTC Block Diagram

DAYS
COUNTER

DAY
ALARM
EVENT

24 HOURS
EVENT

1

0

9

RTC_ALARM REGISTER

RTC_PREN

EQUAL?

HOURS
COUNTER

MINUTES
COUNTER

SECONDS
COUNTER

HOURS
EVENT

MINUTES
EVENT

SECONDS
EVENT

PRESCALE
COUNTER

5 6 6

9 5 6 6

ALARM
EVENT

Y Y Y Y

32.768
kHz

1 TICK

SET

RST

STOPWATCH
EVENT

STOPWATCH
ENABLE

Y

16

STOPWATCH
COUNTER

WRITE
RTC_SWCNT

EQUAL?

EQUAL 0?

EQUAL? EQUAL?

RTXI

ADSP-BF54x Blackfin Processor Hardware Reference 14-5

Real-Time Clock

Description of Operation
The following sections describe the operation of the RTC.

RTC Clock Requirements
The RTC timer is clocked by a 32.768 kHz crystal external to the proces-
sor. The RTC system memory-mapped registers (MMRs) are clocked by
this crystal. When the prescaler is disabled, the RTC MMRs are clocked at
the 32.768 kHz crystal frequency. When the prescaler is enabled, the
RTC MMRs are clocked at the 1 Hz rate.

There is no way to disable the RTC counters from software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with
hardware tie-offs. Tie the RTXI and RTCGND pins to EGND, tie the RTCVDD
pin to EVDD, and leave the RTXO pin unconnected. Additionally, writing
RTC_PREN to 0 saves a small amount of power.

Prescaler Enable
The single active bit of the RTC prescaler enable register (RTC_PREN) is
written using a synchronization path. Clearing of the bit is synchronized
to the 32.768 kHz clock. This faster synchronization allows the module to
be put into high-speed mode (bypassing the prescaler) without waiting the
full 1 second for the write to complete that would be necessary if the mod-
ule were already running with the prescaler enabled. When this bit is
cleared, the prescaler is disabled, and the RTC runs at the 32.768 kHz
crystal frequency.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled.
The write complete status/interrupt works as usual when enabling or dis-
abling the prescale counter. The new RTC clock rate is in effect before the
write complete status is set. In order for the RTC to operate at the proper

Description of Operation

14-6 ADSP-BF54x Blackfin Processor Hardware Reference

rate, software must set the prescaler enable bit after initial powerup. When
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of
1 Hz.

Write RTC_PREN and then wait for the write complete event before pro-
gramming the other registers. It is safe to write RTC_PREN to 1 every time
the processor boots. The first time sets the bit, and subsequent writes have
no effect, as no state is changed.

Do not disable the prescaler by clearing the bit in RTC_PREN with-
out making sure that there are no writes to RTC MMRs in
progress. Do not switch between fast and slow mode during normal
operation by setting and clearing this bit, as this disrupts the accu-
rate tracking of real time by the counters. To avoid these potential
errors, initialize the RTC during startup through RTC_PREN and do
not dynamically alter the state of the prescaler during normal
operation.

Running without the prescaler enabled is provided primarily as a test
mode. All functionality works, just 32,768 times as fast. Typical software
should never program RTC_PREN to 0. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick
predictably occurs a few RTXI cycles after a 0-to-1 transition of RTC_PREN.

Use the following sequence to achieve synchronization to within 100 μs.

1. Write RTC_PREN to 0.

2. Wait for the write to complete.

3. Wait for the external event.

4. Write RTC_PREN to 1.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

ADSP-BF54x Blackfin Processor Hardware Reference 14-7

Real-Time Clock

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC interrupt control
register (RTC_ICTL) and the RTC interrupt status register (RTC_ISTAT) pro-
vide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. At reset, all interrupts are
disabled. The RTC state can be read through the system MMR status reg-
isters at any time.

The primary RTC functionality, shown in Figure 14-1 on page 14-4, con-
sists of registers and counters that are powered by an independent RTC
VDD supply. This logic is never reset; it comes up in an unknown state
when RTC VDD is first powered on.

The RTC also contains logic powered by the same internal VDD as the
processor core and other peripherals. This logic contains some control
functionality, holding registers for PAB write data, and prefetched PAB
read data shadow registers for each of the five RTC VDD-powered regis-
ters. This logic is reset by the same system reset and clocked by the same
SCLK as the other peripherals.

Figure 14-2 shows the connections between the RTC VDD-powered RTC
MMRs and their corresponding internal VDD-powered write holding reg-
isters and read shadow registers. In the figure, “REG” means each of the
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can
synchronize to the 1 Hz tick by waiting for the seconds event flag to set or
by waiting for the seconds interrupt (if enabled).

RTC Programming Model

14-8 ADSP-BF54x Blackfin Processor Hardware Reference

Register Writes
Writes to all RTC MMRs, except the RTC interrupt status register
(RTC_ISTAT), are saved in write holding registers and then are synchro-
nized to the RTC 1 Hz clock. The write pending status bit in RTC_ISTAT
indicates the progress of the write. The write pending status bit is set when
a write is initiated and is cleared when all writes are complete. The falling
edge of the write pending status bit causes the write complete flag in
RTC_ISTAT to be set. This flag can be configured in RTC_ICTL to cause an

Figure 14-2. RTC Register Architecture

FALLING
EDGE DETECT

WRITE
COMPLETE
EVENT

N

1 Hz
TICK

RST

SET
PAB

16/32

REG WRITE
PENDING

REG WRITE
HOLDING

REG READ
SHADOW RTC_ISTAT

REG

161616/32

N

MMR WRITE
TO REG

5

WRITE
PENDING
STATUS

POWERED BY RTC VDD
CLOCKED BY 1 Hz TICK

POWERED BY INTERNAL VDD
CLOCKED BY SCLK

ADSP-BF54x Blackfin Processor Hardware Reference 14-9

Real-Time Clock

interrupt. Software does not have to wait for writes to an RTC MMR to
complete before writing to another RTC MMR. The write pending status
bit is set if any writes are in progress, and the write complete flag is set
only when all writes are complete.

Any writes in progress when peripherals are reset are aborted. Do
not stop SCLK (enter deep sleep mode) or remove Internal VDD
power until all RTC writes have completed.

Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

Reading a register that is written before the write complete flag is
set returns the old value. Always check the write pending status bit
before attempting a read or write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock.
When setting the time of day, do not factor in the delay when writing to
the RTC MMRs. The most accurate method of setting the RTC is to
monitor the seconds (1 Hz) event flag or to program an interrupt for this
event and then write the current time to the RTC status register
(RTC_STAT) in the interrupt service routine (ISR). The new value is
inserted ahead of the incrementer. Hardware adds one second to the writ-
ten value (with appropriate carries into minutes, hours and days) and
loads the incremented value at the next 1 Hz tick, when it represents the
then-current time.

Writes posted at any time are properly synchronized to the 1 Hz clock.
Writes complete at the rising edge of the 1 Hz clock. A write posted just
before the 1 Hz tick may not be completed until the 1 Hz tick one second
later. Any write posted in the first 990 μs after a 1 Hz tick completes on
the next 1 Hz tick, but the simplest, most predictable and recommended

RTC Programming Model

14-10 ADSP-BF54x Blackfin Processor Hardware Reference

technique is to only post writes to RTC_STAT, RTC_ALARM, RTC_SWCNT,
RTC_ICTL, or RTC_PREN immediately after a seconds interrupt or event. All
five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately.

Register Reads
There is no latency when reading RTC MMRs, as the values come from
the read shadow registers. The shadows are updated and ready for reading
by the time any RTC interrupts or event flags for that second are asserted.
Once the internal VDD logic completes its initialization sequence after
SCLK starts, there is no point in time when it is unsafe to read the RTC
MMRs for synchronization reasons. They always return coherent values,
although the values may be unknown.

Deep Sleep
When the dynamic power management controller (DPMC) state is deep
sleep, all clocks in the system (except RTXI and the RTC 1 Hz tick) are
stopped. In this state, the RTC VDD counters continue to increment.
During deep sleep, the internal VDD shadow registers are not updated, but
neither can they be read.

During deep sleep state, all bits in RTC_ISTAT are cleared. Events that
occur during deep sleep are not recorded in RTC_ISTAT. The internal VDD
RTC control logic generates a virtual 1 Hz tick within one RTXI period
(30.52 μs) after SCLK restarts. This loads all shadow registers with
up-to-date values and sets the seconds event flag. Other event flags may
also be set. When the system wakes up from deep sleep, whether by an
RTC event or a hardware reset, all of the RTC events that occurred during
that second (and only that second) are reported in RTC_ISTAT.

ADSP-BF54x Blackfin Processor Hardware Reference 14-11

Real-Time Clock

When the system wakes up from deep sleep state, software does not need
to write-1-to-clear the W1C bits in RTC_ISTAT. All W1C bits are already
cleared by hardware. The seconds event flag is set when the RTC internal
VDD logic has completed its restart sequence. Software should wait until
the seconds event flag is set and then may begin reading or writing any
RTC register.

Event Flags
The unknown values in the registers at powerup can cause event
flags to set before the correct value is written into each of the regis-
ters. By catching the 1 Hz clock edge, the write to RTC_STAT can
occur a full second before the write to RTC_ALARM. This would cause
an extra second of delay between the validity of RTC_STAT and
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as
the value written to RTC_STAT. Wait for the writes to complete on
these registers before using the flags and interrupts associated with
their values.

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) event flag

Always set on the positive edge of the 1 Hz clock and after shadow
registers have updated after waking from deep sleep. This is valid as
long as the RTC 1 Hz clock is running. Use this flag or interrupt to
validate the other flags.

• Write complete and write pending status

Always valid.

• Minutes event flag

Valid only after the second field in RTC_STAT is valid. Use the write

RTC Programming Model

14-12 ADSP-BF54x Blackfin Processor Hardware Reference

complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Hours event flag

Valid only after the minute field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• 24 Hours event flag

Valid only after the hour field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Stopwatch event flag

Valid only after the RTC_SWCNT register is valid. Use the write com-
plete and write pending status flags or interrupts to validate the
RTC_SWCNT value before using this flag value or enabling the
interrupt.

• Alarm event and day alarm event flags

Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use
the write complete and write pending status flags or interrupts to
validate the RTC_STAT and RTC_ALARM values before using this flag
value or enabling its interrupt.

ADSP-BF54x Blackfin Processor Hardware Reference 14-13

Real-Time Clock

Writes posted together at the beginning of the same second take effect
together at the next 1 Hz tick. The following sequence is safe and does not
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write-1-to-clear the RTC_ISTAT flags for alarm, day alarm, stop-
watch, and/or per-interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.

4. Write new value for RTC_ICTL with alarm, day alarm, stopwatch,
and/or per-interval interrupts enabled.

5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Setting Time of Day
The RTC status register (RTC_STAT) is used to read or write the current
time. Reads return a 32-bit value that always reflects the current state of
the days, hours, minutes, and seconds counters. Reads and writes must be
32-bit transactions; attempted 16-bit transactions result in an MMR
error. Reads always return a coherent 32-bit value. The hours, minutes,
and seconds fields are usually set to match the real time of day. The day
counter value is incremented every day at midnight to record how many
days have elapsed since it was last modified. Its value does not correspond
to a particular calendar day. The 15-bit day counter provides a range of 89
years, 260 or 261 days (depending on leap years) before it overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

RTC Programming Model

14-14 ADSP-BF54x Blackfin Processor Hardware Reference

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.

Using the Stopwatch
The RTC stopwatch count (RTC_SWCNT) register contains the countdown
value for the stopwatch. The stopwatch counts down seconds from the
programmed value and generates an interrupt (if enabled) when the count
reaches 0. The counter stops counting at this point and does not resume
counting until a new value is written to RTC_SWCNT. Once running, the
counter may be overwritten with a new value. This allows the stopwatch
to be used as a watchdog timer with a precision of one second.

The stopwatch can be programmed to any value between 0 and (216 – 1)
seconds, which is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds.
To produce an exact delay, software can compensate by writing N – 1 to
get a delay of nearly N seconds. This implies that you cannot achieve a
delay of 1 second with the stopwatch. Writing a value of 1 immediately
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later.
To wait one second, software should just wait for the next 1 Hz tick.

The RTC_SWCNT register is not reset. After initial powerup, it may be run-
ning. When the stopwatch is not used, writing it to 0 to force it to stop
saves a small amount of power.

ADSP-BF54x Blackfin Processor Hardware Reference 14-15

Real-Time Clock

Interrupts
The RTC can provide interrupts at several programmable intervals:

• Per second, minute, hour, and day—based on increments to the
respective counters in RTC_STAT

• On countdown from a programmable value—value in RTC_SWCNT
transitions to 0 or is written with 0 by software (whether it was pre-
viously running or already stopped with a count of 0)

• Daily at a specific time—all fields of RTC_ALARM must match
RTC_STAT except the day field

• On a specific day and time—all fields of RTC_ALARM register must
match RTC_STAT

The RTC can be programmed to provide an interrupt at the completion
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, and RTC_PREN). The eight RTC interrupt events can
be individually masked or enabled by the RTC interrupt control register
(RTC_ICTL). The seconds interrupt is generated on each 1 Hz clock tick, if
enabled. The minutes interrupt is generated at the 1 Hz clock tick that
advances the seconds counter from 59 to 0. The hour interrupt is gener-
ated at the 1 Hz clock tick that advances the minute counter from 59 to 0.
The 24-hour interrupt occurs once per 24-hour period at the 1 Hz clock
tick that advances the time to midnight (00:00:00). Any of these inter-
rupts can generate a wakeup request to the processor, if enabled. All
implemented bits are read/write.

This register is only partially cleared at reset, so some events may appear to
be enabled initially. However, the RTC interrupt and the RTC wakeup to
the PLL are handled specially and are masked (forced low) until after the
first write to the RTC_ICTL register is complete. Therefore, all interrupts
act as if they were disabled at system reset (as if all bits of RTC_ICTL were
zero), even though some bits of RTC_ICTL may read as nonzero. If no RTC

RTC Programming Model

14-16 ADSP-BF54x Blackfin Processor Hardware Reference

interrupts are needed immediately after reset, it is recommended to write
RTC_ICTL to 0x0000 so that later read-modify-write accesses function as
intended.

Interrupt status can be determined by reading the RTC interrupt status
register (RTC_ISTAT). All bits in RTC_ISTAT are sticky. Once set by the cor-
responding event, each bit remains set until cleared by a software write to
this register. Event flags are always set; they are not masked by the inter-
rupt enable bits in RTC_ICTL. Values are cleared by writing a 1 to the
respective bit location, except for the write pending status bit, which is
read-only. Writes of 0 to any bit of the register have no effect. This regis-
ter is cleared at reset and during deep sleep.

The RTC interrupt is set whenever an event latched into the RTC_ISTAT
register is enabled in the RTC_ICTL register. The pending RTC interrupt is
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when
all bits in RTC_ICTL corresponding to pending events are cleared.

As shown in Figure 14-3, the RTC generates an interrupt request (IRQ)
to the processor core for event handling and wake-up from a sleep state.
The RTC generates a separate signal for wake-up from a deep sleep or
from an internal VDD power-off state. The deep sleep wake-up signal is
asserted at the 1 Hz tick when any RTC interval event enabled in
RTC_ICTL occurs. The assertion of the deep sleep wake-up signal causes the
processor core clock (CCLK) and the system clock (SCLK) to restart. Any
enabled event that asserts the RTC deep sleep wake-up signal also causes
the RTC IRQ to assert once SCLK restarts.

ADSP-BF54x Blackfin Processor Hardware Reference 14-17

Real-Time Clock

State Transitions Summary
Table 14-1 shows how each RTC MMR is affected by the system states.
The phase-locked loop (PLL) states (reset, full on, active, sleep, and deep
sleep) are defined in Chapter 18, “Dynamic Power Management”. “No
power” means none of the processor power supply pins are connected to a
source of energy. “Off” means the processor core, peripherals, and mem-
ory are not powered (internal VDD is off), while the RTC is still powered
and running. External VDD may still be powered. Registers described as
“as written” are holding the last value software wrote to the register. If the
register has not been written since RTC VDD power was applied, then the
state is unknown (for all bits of RTC_STAT, RTC_ALARM, and RTC_SWCNT, and
for some bits of RTC_ISTAT, RTC_PREN, and RTC_ICTL).

Figure 14-3. RTC Interrupt Structure

VOLTAGE
REGULATOR

WRITE
COMPLETE
EVENT

1 Hz
TICK

PLL

RTC_ISTAT ICTL READ
SHADOW

RTC_ICTL

7

RTC
IRQ

7

POWERED BY
RTC VDD

7

7

7

DAY,
HOURS,
SECONDS,
STOPWATCH

24 HOURS,
MINUTES,
ALARM,
EVENTS

POWERED BY
INTERNAL VDD

POWERED BY
EXTERNAL VDD

7 SYSTEM
INTERRUPT

CONTROLLER

PROCESSOR
CORE

WRITE
COMPLETE
ENABLE

77

WAKE FROM
DEEP SLEEP

WAKE
FROM
POWER
OFF

RTC Programming Model

14-18 ADSP-BF54x Blackfin Processor Hardware Reference

Table 14-2 summarizes software’s responsibilities with respect to the RTC
at various system state transition events.

Table 14-1. Effect of States on RTC MMRs

RTC
VDD

IVDD System
State

RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No
power

X X X X

On On Reset As written 0 Counting As written

On On Full on As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep
sleep

As written 0 Counting As written

On Off Off As written X Counting As written

Table 14-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power on from no power Write RTC_PREN = 1.
Wait for write complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.

Full on after reset
or
Full on after power on from off

Wait for seconds event, or write RTC_PREN = 1 and
wait for write complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.
Read RTC MMRs as required.

ADSP-BF54x Blackfin Processor Hardware Reference 14-19

Real-Time Clock

Wake from deep sleep Wait for seconds event flag to set.
Write RTC_ISTAT to acknowledge RTC deep sleep
wakeup.
Read RTC MMRs as required.
The PLL state is now active. Transition to full on as
needed.

Wake from sleep If wakeup came from RTC, seconds event flag is set. In
this case, write RTC_ISTAT to acknowledge RTC
wakeup IRQ.
Always, read RTC MMRs as required.

Before going to sleep If wakeup by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC interrupt
sources for wakeup.
Wait for write complete.
Enable RTC for wakeup in the system interrupt
wakeup-enable register (SIC_IWR).

Before going to deep sleep Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC event
sources for deep sleep wakeup.
Wait for write complete.

Before going to off Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable any desired RTC event
sources for powerup wakeup.
Wait for write complete.
Set the wake bit in the voltage regulator control register
(VR_CTL).

Table 14-2. RTC System State Transition Events (Cont’d)

At This Event: Execute This Sequence:

RTC Registers

14-20 ADSP-BF54x Blackfin Processor Hardware Reference

RTC Registers
The following sections provide register definitions. Illustrations are shown
in Figure 14-4 through Figure 14-9.

Table 14-3 shows the functions of the RTC registers.

Table 14-3. RTC Register Mapping

Register Name Function For More Info Notes

RTC_STAT RTC status register on page 14-21 Holds time of day

RTC_ICTL RTC interrupt control
register

on page 14-21 Bits 14:7 are reserved

RTC_ISTAT RTC interrupt status
register

on page 14-22 Bits 13:7 are reserved

RTC_SWCNT RTC stopwatch count
register

on page 14-22 Undefined at reset

RTC_ALARM RTC alarm register on page 14-23 Undefined at reset

RTC_PREN Prescaler enable register on page 14-23 Always set PREN =
1 for 1 Hz ticks

ADSP-BF54x Blackfin Processor Hardware Reference 14-21

Real-Time Clock

RTC Status (RTC_STAT) Register

RTC Interrupt Control (RTC_ICTL) Register

Figure 14-4. RTC Status (RTC_STAT) Register

Figure 14-5. RTC Interrupt Control (RTC_ICTL) Register

Day Counter[14:0]
(0-32767)

Hours[3:0]
(0-23)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 0300

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X XX X

31 30 29 28 27 16

XX X X X X X X X X X X X XX

17181920212223242526

X

Hours[4]
(0-23)

Seconds[5:0]
(0-59)

Minutes[5:0]
(0-59)

Minutes Interrupt
EnableHours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 0304
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 X X X X X X0 0

Write Complete
Interrupt Enable

Reserved

Day Alarm Interrupt Enable
(Day, Hour, Minute, Second)

24 Hours Interrupt Enable

Stopwatch Interrupt
Enable

Alarm Interrupt Enable
(Hour, Minute, Second)

Seconds (1Hz) Interrupt
Enable

RTC Registers

14-22 ADSP-BF54x Blackfin Processor Hardware Reference

RTC Interrupt Status (RTC_ISTAT) Register

RTC Stopwatch Count (RTC_SWCNT) Register

Figure 14-6. RTC Interrupt Status (RTC_ISTAT) Register

Figure 14-7. RTC Stopwatch Count (RTC_SWCNT) Register

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

0xFFC0 0308
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Write Complete
0 - Writes (if any) not yet

complete
1 - All pending writes

complete

Day Alarm Event Flag

Write Pending
Status (RO)
0 - No writes pending
1 - At least one write

pending

0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reserved

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag

0 - No event
1 - Event occurred

Minutes Event Flag

0 - No event
1 - Event occurred

Hours Event Flag

Stopwatch Count[15:0]
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 030C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X XX X

ADSP-BF54x Blackfin Processor Hardware Reference 14-23

Real-Time Clock

RTC Alarm (RTC_ALARM) Register

RTC Prescaler Enable (RTC_PREN) Register

Figure 14-8. RTC Alarm (RTC_ALARM) Register

Figure 14-9. Prescaler Enable (RTC_PREN) Register

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 0310

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X XX X

31 30 29 28 27 16

XX X X X X X X X X X X X XX

17181920212223242526

X

Hours[4]
(0 to 23)

Day[14:0]
(0 to 32767)

Seconds[5:0]
(0 to 59)

Minutes[5:0]
(0 to 59)

Hours[3:0]
(0 to 23)

PREN (Prescaler Enable)

RTC Prescaler Enable Register (RTC_PREN)

Reset = Undefined0xFFC0 0314
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 00 0

Reserved

Programming Examples

14-24 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples
The following RTC code examples show how to enable the RTC pres-
caler, how to set up a stopwatch event to take the RTC out of deep sleep
mode, and how to use the RTC alarm to exit hibernate state. Each of these
code examples assumes that the appropriate header file is included in the
source code (that is, #include <defBF54x.h> for ADSP- BF54x projects).

Enable RTC Prescaler
Listing 14-1 properly enables the prescaler and clears any pending
interrupts.

Listing 14-1. Enabling the RTC Prescaler

RTC_Initialization:

P0.H = HI(RTC_PREN);

P0.L = LO(RTC_PREN);

R0=PREN(Z); /* enable pre-scalar for 1 Hz ticks */

W[P0] = R0.L;

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC;

RTS;

ADSP-BF54x Blackfin Processor Hardware Reference 14-25

Real-Time Clock

RTC Stopwatch For Exiting Deep Sleep Mode
Listing 14-2 sets up the RTC to utilize the stopwatch feature to come out
of deep sleep mode. This code assumes that the _RTC_Interrupt is prop-
erly registered as the ISR for the real-time clock event, the RTC interrupt
is enabled in both IMASK and SIC_IMASK, and that the RTC prescaler has
already been enabled properly.

Listing 14-2. RTC Stopwatch Interrupt to Exit Deep Sleep

/* RTC Wake-Up Interrupt To Be Used With Deep Sleep Code */

_RTC_Interrupt:

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITCLR (R0, BITPOS(BYPASS));

W[P0] = R0; /* BYPASS Set By Default, Must Clear It */

IDLE; /* Must go to IDLE for PLL changes to be effected */

R0 = 0x807F(Z);

P0.H = HI(RTC_ISTAT);

P0.L = LO(RTC_ISTAT);

W[P0] = R7; /* clear pending RTC IRQs */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC_IRQ: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC_IRQ;

RTI;

Deep_Sleep_Code:

P0.H = HI(RTC_SWCNT);

Programming Examples

14-26 ADSP-BF54x Blackfin Processor Hardware Reference

P0.L = LO(RTC_SWCNT);

R1 = 0x0010(Z); /* set stop-watch to 16 seconds */

W[P0] = R1.L; /* will produce ~15 second delay */

P0.L = LO(RTC_ICTL);

R1 = STOPWATCH(Z);

W[P0] = R1.L; /* enable Stop-Watch interrupt */

P0.L = LO(RTC_ISTAT);

R1 = 0x807F(Z);

W[P0] = R1.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct stop-watch count and interrupts

*/

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITSET (R0, BITPOS(PDWN)); /* set PDWN To Go To Deep Sleep */

W[P0] = R0.L; /* Issue Command for Deep Sleep */

CLI R0; /* Perform PLL Programming Sequence */

IDLE;

STI R0; /* In Deep Sleep When Idle Exits */

RTS;

ADSP-BF54x Blackfin Processor Hardware Reference 14-27

Real-Time Clock

RTC Alarm to Come Out of Hibernate State
Listing 14-3 sets up the RTC to utilize the alarm feature to come out of
hibernate state. This code assumes that the prescaler has already been
properly enabled.

Listing 14-3. Setting RTC Alarm to Exit Hibernate State

Hibernate_Code:

P0.H = HI(RTC_ALARM);

P0.L = LO(RTC_ALARM);

R0 = 0x0010(Z); /* set alarm to 16 seconds from now */

W[P0] = R0.L;

P0.L = LO(RTC_STAT);

R0 = 0; /* Clear RTC Status to Start Counting at 0 */

W[P0] = R0.L;

P0.L = LO(RTC_ICTL);

R0 = ALARM(Z);

W[P0] = R0.L; /* enable Alarm interrupt */

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z);

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct RTC status */

GoToHibernate:

Programming Examples

14-28 ADSP-BF54x Blackfin Processor Hardware Reference

P0.H = HI(VR_CTL);

P0.L = LO(VR_CTL);

R0 = W[P0](Z);

BITCLR(R0, 0); /* Clear FREQ (bits 0 and 1) to */

BITCLR(R0, 1); /* go to Hibernate State */

BITSET(R0, BITPOS(WAKE)); /* Enable RTC Wakeup */

W[P0] = R0.L;

CLI R0; /* Use PLL programming sequence to */

IDLE; /* make VR_CTL changes take effect */

RTS; /* Should Never Execute This */

ADSP-BF54x Blackfin Processor Hardware Reference 15-1

15 SECURITY

This chapter describes security features of the ADSP-BF54x Blackfin
processor and how they can be used to facilitate a secure system.

This chapter includes the following sections:

• “Overview” on page 15-2

• “Description of Operation” on page 15-6

• “Programming Model” on page 15-27

• “Security Registers” on page 15-51

This chapter describes the security features and functionality of the
ADSP-BF54x Blackfin processor. Following an overview and a list of key
features are a description of operation and functional modes of operation.

The intention of the chapter is to describe security features of the
ADSP-BF54x Blackfin processor and how they can be used to facilitate a
secure system. It is beyond the scope of this chapter to fully describe vari-
ous ways to implement secure systems or to describe security protocols
and primitives in any great detail.

Overview

15-2 ADSP-BF54x Blackfin Processor Hardware Reference

Overview
LockboxTM Secure Technology for Analog Devices Blackfin processors is
comprised of a mix of hardware and software mechanisms designed to pre-
vent unauthorized accesses and allow trusted code to execute on the
processor. Throughout the rest of this chapter, the terms Blackfin Lock-
boxTM secure technology and Lockbox will be used interchangeably.

The developer’s decision to use security features is completely
optional. No security features are enabled by default. The devel-
oper can choose to never implement security features in their
application if it is so desired. The Blackfin will always power
up/boot in Open Mode with no security features or restrictions
enabled.

Blackfin Lockbox™ secure technology allows users to:

• Safeguard as little as a single function, as much as a complete sys-
tem, or anything in-between.

• Uniquely identify each processor by a Unique Chip ID.

• Utilize secure key storage provided by non-volatile, write-protect-
able One Time Programmable (OTP) memory.

• Perform digital signature authentication using elliptic curve cryp-
tography (ECC) and secure one-way hash (SHA-1) algorithms
implemented in firmware.

• Keep secret information in secure OTP Memory.

• Use any encryption algorithm to protect code or other assets.

• Ensure data integrity through digital signature authentication.

• Safeguard confidentiality via encryption of any or all of the system
-from core IP (code security) to data integrity.

ADSP-BF54x Blackfin Processor Hardware Reference 15-3

Security

These features in combination provide the following benefits.

• Authenticity/Origin verification - Lockbox secure technology
allows for verification of a code image against its associated digital
signature, and provides for a process to identify entities and data
origins.

• Integrity - Developers can use a digital signature authentication
process to ensure that the message or the content of the storage
media has not been altered in any way. If either the message or it’s
digital signature was altered, Lockbox will fail during the authenti-
cation process.

• Confidentiality - Cryptographic encryption/decryption supports
situations that require the ability to prevent unauthorized users
from seeing and using designated files and streams. Lockbox’s
secure processing environment (Secure Mode) and secure memory
support methods for ensuring confidentiality.

• Renewability

Renewability refers to the updating of system components to
enhance security.

Lockbox’s Unique Chip ID enables end users to identify each
Blackfin processor and hence each OEM device in which the pro-
cessor resides.

This Lockbox feature can be used in support of revocation and
renewability of licenses in case of security violations in digital
rights management systems, for example:

Overview

15-4 ADSP-BF54x Blackfin Processor Hardware Reference

Unique Chip ID, in combination with a trusted DRM agent
(sourced by the OEM), enables developers to implement renew-
ability in DRM systems.

Unique Chip ID provides capability to identify each OEM device
and “blacklist” devices to remove them from a system.

• Prevention of Mass Copying - Lockbox supports cryptographic
encryption/decryption algorithms for situations when confidential-
ity is required. The Unique Chip ID can also be utilized to “bind”
the processor to one specific boot source/device and can be used to
facilitate antitheft schemes and prevent OEM device cloning.

The ADSP-BF54x Blackfin processors featuring Lockbox™ secure tech-
nology provide security features that enable developer’s applications to use
secure protocols consisting of code authentication and execution of code
within a secure environment. Together these features protect secure mem-
ory spaces and restrict control of security features to authenticated
developer code.

ADSP-BF54x Blackfin Processor Hardware Reference 15-5

Security

Features
Lockbox is comprised of a combination of hardware and software ele-
ments. These elements are:

• OTP Memory. An array of non-volatile write-protectable memory
that can be programmed by the developer only one time. Half of
the array is public (accessible in any mode) and the other half is
private (only accessible in secure mode). For more information on
OTP memory, refer to Chapter 16 One-Time-Programmable
(OTP) Memory of the ADSP-BF54x Blackfin Processor Hardware
Reference manual.

• Secured System Switches. Programmable bitfields in the Secured
System Switches MMR to disable and enable different methods of
memory access in support of a secured environment. Some of these
protection mechanisms include disabling DMA access to L1 and
L2 memory and disabling ADI JTAG instructions from the ICE
port.

• Secure Mode Control. This involves the Secure State Machine
hardware required to support a transition from an unsecured state
of operation (Open Mode), through an authentication state
(Secure Entry Mode) and finally to a secured state (Secure Mode)
where secrets are accessible.

• Firmware. Code that resides in on-chip L1 instruction ROM and
performs digital signature authentication. Having the code that
performs the digital signature authentication in ROM ensures
integrity of the code.

Description of Operation

15-6 ADSP-BF54x Blackfin Processor Hardware Reference

• User callable cryptographic ciphers. In addition to the control
code that resides in the on-chip L1 instruction ROM used for
authentication, there exists a number of cryptographic functions
(SHA-1, AES and ARC4) that are callable. The APIs are docu-
mented in the Programming Model section of this chapter.

• Unique Chip ID. Each ADSP-BF54x Blackfin processor will have
a 128-bit Unique Chip ID value stored in public OTP memory
which will be unique. The Unique Chip ID will always be pro-
grammed and write protected before a processor leaves the Analog
Devices factory and it will always be located at the same OTP page
address.

The 128-bit Unique Chip ID value can be read but cannot be
modified by the developer or end user. A total of 64K-bits of OTP
memory is available to the developer if additional user-defined ID
values are desired. These IDs can be stored in either public or pri-
vate areas of OTP memory depending on application requirements.
Please refer to Chapter 16 One-Time-Programmable (OTP) Mem-
ory for more details.

Description of Operation
Blackfin Lockbox technology is based upon the concept of authentication
of digital signatures using standards-based algorithms and provides a
secure processing environment in which to execute code and access pro-
tected assets.

Digital signatures are created using a public-key signature algorithm, the
Elliptic Curve Cryptography (ECC) public-key cipher, and a secure
one-way hash algorithm, SHA-1. A public-key algorithm actually uses two
different keys; the public key and the private key (called a key pair). The
private key is known only to its owner and is not stored on-chip, while the
public key can be available to anyone and is stored in the public OTP
memory region on-chip. Public-key algorithms such as ECC are designed

ADSP-BF54x Blackfin Processor Hardware Reference 15-7

Security

so that if one key is used for encryption, the other is necessary for decryp-
tion. Furthermore, the encryption key cannot be reasonably calculated
from the decryption key. In a digital signature authentication scheme like
Lockbox, the private key is used to generate the signature and the corre-
sponding public key is used to validate it. Each ADSP-BF54x Blackfin
processor has an on-chip ROM that contains firmware with the Elliptic
Curve Cryptography (ECC) and SHA-1 algorithms. These are called to
verify the digital signatures (ECDSA1).

JTAG emulation and test features are disabled in hardware and certain
memory access restrictions are enabled during verification of the digital
signature. Once the signature is authenticated, the access restrictions are
still in effect and can only be controlled by the authenticated user code.

Secure State Machine
The ADSP-BF54x processor includes a Secure State Machine to handle
the different protection configurations of the processor depending on the
security situation. The machine states are “Open Mode”, “Secure Entry
Mode” and “Secure Mode” (See Figure 15-1). The following sections
describe these machine states.

The state of the Secure State Machine can be identified by reading
SECURE_STATUS[1:0] bits. The bit values in the upper right of the
states shown in Figure 15-1 correspond to the bit values in
SECURE_STATUS[1:0].

For more information on SECURE_STATUS MMR, see the section on
“Security Registers” on page 15-51 of this chapter.

1 ECDSA implementation on ADSP-BF54x Blackfin products only supports the Koblitz curve.

Description of Operation

15-8 ADSP-BF54x Blackfin Processor Hardware Reference

Open Mode

Default operating state of the processor in which no restrictions are
present except restricted access to Private OTP memory area. The proces-
sor will power-up and boot in Open Mode. This is the default state upon
power up and after processor reset. No Lockbox security features or pro-
tection mechanisms are enabled in this state.

State flow illustrated in Figure 15-1 shows that the Secure State Machine
can only transition from Open Mode into Secure Entry Mode and there is
no direct path from Open Mode into Secure Mode.

Figure 15-1. Secure State Machine Modes

POWER UP
OR RESET

OPEN
MODE

(00)

ENTRY
HARDWARE

TRIGGER

SECURE ENTRY
MODE

(01)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 1)

SECURE
MODE

(10)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 0)

AUTHENTICATION
FAILURE

ADSP-BF54x Blackfin Processor Hardware Reference 15-9

Security

Secure Entry Mode

The on-chip ROM firmware performs the authentication process in this
operating state. This mode is entered when NMI is active and the Pro-
gram Counter (PC) is vectored to the first address of the authentication
firmware in the on-chip ROM. The PC is monitored to ensure that it
remains within the address range allocated to the Authentication firmware
code. If the PC vectors outside of the address range of the authorization
code, authentication will fail and the state returns to Open Mode. Any
errors caught by firmware or hardware monitor will result in authentica-
tion failure and an abortion of the authentication process with the
firmware exiting Secure Entry Mode and transitioning back to Open
Mode. If authentication is successful, the firmware will initiate the transi-
tion from Secure Entry Mode to Secure Mode.

In Secure Entry Mode, no DMA access is allowed to certain regions of
internal SRAM, and JTAG emulation is disabled. It is recommended that
the user disable cache prior to initiating authentication. Interrupts are dis-
abled by firmware prior to entry into Secure Mode. Interrupts are either
re-enabled by dropping the interrupt level from NMI via the SESR argu-
ments or by waiting until the authentication is successful and re-enabling
them in the authenticated code after entry into Secure Mode. In addition,
only the public area of OTP memory is accessible in this mode. (for more
information on memory access restrictions within Secure Entry Mode, see
“Secure Entry Service Routine (SESR) API” on page 15-27.

State flow illustrated in Figure 15-1 shows that the Secure State Machine
can only transition from Secure Entry Mode into Secure Mode upon suc-
cessful digital signature authentication. A transition from Secure Entry
Mode back into Open Mode can occur if digital signature authentication
fails or if the authentication process is aborted due to an error observed by
the firmware. Such errors include illegal memory boundary conditions or
jumps outside of the firmware range (for example, servicing an interrupt).

Description of Operation

15-10 ADSP-BF54x Blackfin Processor Hardware Reference

Secure Mode

Secure operating state in which trusted, authenticated code is allowed
unrestricted access to the processor resources, execution of authenticated
code occurs, decryption of sensitive information, etc. This is the only
mode that allows access (reads and writes) to the private OTP memory
space where secure data such as secret keys can be stored. Hence, the pri-
vate area of OTP memory can be used to store confidential, secret
information that only authorized authenticated code can only access.
Therefore, this is the only operating state in which users can securely run
their own Blackfin implementation of any cryptographic cipher in which
secret keys are used.

Only the code (or message) digitally signed by a trusted source and suc-
cessfully passes through Lockbox’s authentication process can gain access
to Secure Mode.

State flow illustrated in Figure 15-1 shows that the Secure State Machine
can only transition from Secure Mode back into Open Mode and there is
no direct path from Secure Mode into Secure Entry Mode. Exit from
Secure Mode is implemented through software control by writing a “0”
value to the SECURE0 bit within the SECURE_CONTROL register.

Assertion of reset or power cycling will also return the processor to
the default Open Mode regardless of the state of operation when
the reset or power cycle event occurred. See also special handling of
hardware reset in the Reset Handling in Secure Mode section.

Access to private OTP memory is restricted in Open Mode and
Secure Entry Mode regardless of whether or not other security fea-
tures are enabled or disabled.

SecureMode Control

Figure 15-2 describes the inputs that control the secure state machine
flow.

ADSP-BF54x Blackfin Processor Hardware Reference 15-11

Security

Hardware supports transition from an Open Mode of operation, through
a Secure Entry Mode and finally to a Secured Mode where secrets are
accessible.

Figure 15-2. Secure Mode Control

All secure system switches
(SYSSWT) are deactivated.
The SYSSWT register is not
accessible. OTP secrets are
read/write protected.

POWER UP
OR RESET

OPEN
MODE

(00)

ENTRY
HARDWARE

TRIGGER

SECURE ENTRY
MODE

(01)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 1)

SECURE
MODE

(10)

SOFTWARE
TRIGGER

(SECURE MODE BIT = 0)

AUTHENTICATION
FAILURE

Hardware monitor has
detected the proper entry
of Authentication firmware.
NMI must be active.

Exit of firmware will reset
the securitySM. Used if
authentication
fails.

All SYSSWT are activated.
Most SYSSWT are not
accessible including the
OTP secrets enable bit
(OTPSEN).

Firmware has written
the SECURE0 bit.

The SYSSWT register
is fully accessible.
Initially the SYSSWT
values (secured system
switches) are activated.

Writing 0 to the
SECURE0 bit will
reset the securitySM.
Used to exit Secure
mode.

Description of Operation

15-12 ADSP-BF54x Blackfin Processor Hardware Reference

Open Mode is characterized by being the default mode of processor upon
power up/reset/boot, holding all secured system switches deactivated and
protecting the private OTP memory area from access. The processor is
open with all features being available with no restrictions (except for the
private area of OTP memory).

Secure Entry Mode is characterized by executing firmware out of internal
ROM memory to authenticate information loaded into on-chip memory.
All secured system switches are activated. However, private OTP Memory
is not accessible yet.

Secure Mode is entered only after a successful digital signature authentica-
tion process from Secure Entry Mode. It provides access to the private
OTP memory area and makes secured system switches accessible to user
(authenticated) code. This is the mode of operation in which to perform
sensitive decryption or execution of trusted, authenticated code.

Authentication can only be requested and initiated while the processor is
operating in Open Mode. If authentication is requested while the proces-
sor is operating in Secure Mode, the Secure State Machine will not
transition into Secure Entry Mode. Instead, the Secure State Machine will
remain in Secure Mode.

Please note that Open Mode, Secure Entry Mode and Secure Mode
are states which pertain to the Secure State Machine. User Mode
and Supervisor Mode are modes of operation which pertain to the
core. The use of the term “mode” should not be confused and are
not necessarily mutually exclusive. In Open Mode, the processor
can operate in either User or Supervisor Mode. Since the firmware
is entered when the NMI is being handled, Secure Entry Mode
must start in Supervisor Mode. Finally, authenticated code execut-
ing in Secure Mode must be either operating at NMI interrupt
level or the interrupt level that triggered the NMI.

ADSP-BF54x Blackfin Processor Hardware Reference 15-13

Security

Functional Description
The following sections provide a functional description of the Security
features.

Protection relies on the on-chip ROM code that includes Elliptic Curve
Cryptography (ECC) and SHA-1 algorithms, applied towards verification
of code authenticity using a digital signature. A processor has emulation
and test features disabled in hardware as well as certain memory access
restrictions upon entry into Secure Entry Mode (where authentication is
performed) and maintained into Secure Mode. These functions can only
be controlled by authenticated user application software executing in
Secure Mode.

User code must request authentication by complying with two criteria; (1)
asserting a Non-Maskable Interrupt (NMI) and (2) vector the Program
Counter (PC) to the first executable address in the Secure Entry Service
Routine (SESR) in firmware which resides in L1 Instruction ROM.

During the authentication process JTAG emulation will be disabled,
memory protection restrictions will be enabled and interrupts will be
masked. The user has the option to pass arguments to the security firm-
ware to control certain functionality during the authentication process.
Please refer to the Secure Entry Service Routine API section for more
information.

Digital Signature Authentication

Digital signatures are created off-chip (typically on a host computer) using
the ECC algorithm and SHA-1, both of which are available in the public
domain. In digital signature authentication, the private key generates the
signature (off-chip) and the corresponding public key validates it
(on-chip). The private key is known only to its owner and is not stored
on-chip, while the public key can be available to anyone and is stored
on-chip in OTP memory.

Description of Operation

15-14 ADSP-BF54x Blackfin Processor Hardware Reference

Lockbox uses standards-based cryptographic algorithms for digital signa-
ture authentication. ECDSA1 is implemented in the Blackfin BF54x
processors. Digital signature validation on ADSP-BF54x utilizes Elliptic
Curve Cryptography2 (ECC) based on a binary field size of 163 bits and
SHA-13 secure one-way hash (which produces a 160-bit message digest).

In order to generate public/private key pairs or prepare digital signatures
and apply them to application code, developers can use any method that
complies with the Elliptic Curve Digital Signature Algorithm (ECDSA)
specified in FIPS 186-2 with Change Notice 1 dated October 5, 2001,
Digital Signature Standard (DSS). ECDSA is described in ANSI
X9.62-1998. The Lockbox implementation in BF54x processors supports
the following Koblitz curve, which is recommended in FIPS 186-2 for US
Federal Government use:

1. m: 163 (degree of binary field)

2. a: 1

3. b: 1 (a and b are the constants in the elliptic curve equation: y2 + xy
= x3 + ax + b)

4. Xg: 2FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8

5. Yg: 289070FB05D38FF58321F2E800536D538CCDAA3D9 (Xg
and Yg define the base point G)

6. r: 4000000000000000000020108A2E0CC0D99F8A5EF (r is the
order of the base point G)

1 ECDSA implementation on these Blackfin products only supports the Koblitz curve.
2 These implementations are based on the Elliptic Curve Digital Signature Algorithm (ECDSA) speci-

fied in FIPS 186-2 with Change Notice 1 dated October 5, 2001, Digital Signature Standard (DSS)
(http://csrc.nist.gov/cryptval/dss.htm), and specified in ANSI X9.62-1998.

3 SHA-1 is based on the publicly available standard for FIPS 180-2 (Secure Hash Signature Standard
[SHS]) (FIPS PUB 180-2), http://csrc.nist.gov/CryptoToolkit/tkhash.html).

http://csrc.nist.gov/cryptval/dss.htm" \t "_parent
http://csrc.nist.gov/cryptval/dss.htm" \t "_parent
http://csrc.nist.gov/CryptoToolkit/tkhash.html" \t "_parent

ADSP-BF54x Blackfin Processor Hardware Reference 15-15

Security

7. T: 4 (T is the normal basis type)

8. p(t): t163 + t7 + t6 + t3 + 1 (pt(t) is the field polynomial)

The following steps summarize the Digital Signature Authentication pro-
cess. Steps 1 to 3 correspond to the off-chip creation of a digital signature
of a file or message. Steps 4 to 6 correspond to the on-chip digital signa-
ture authentication. These steps are preceded by generation of a key pair
(Private Key and Public Key) and the programming of the Public Key in
the Public OTP Memory.

1. A one-way hash of the file (message to be authenticated) is pro-
duced using SHA-1 off-chip (for example, using a host PC).

2. The hash is encrypted through ECC off-chip with the private key,
thereby signing the file and completing the generation of the digi-
tal signature.

3. The file and the signed hash are stored on an external device such
as Flash memory or a host device.

4. Upon transfer to the Blackfin's internal memory, a one-way hash of
the file is calculated on-chip through SHA-1 (residing in Blackfin
on-chip ROM)

5. Using the ECC algorithm (residing in Blackfin on-chip ROM), the
Blackfin decrypts the signed hash with the user's public key stored
in the Blackfin's OTP memory.

6. The two hash results are then compared. If the signed hash matches
the calculated hash, the signature is valid and the file is intact.

If the digital signature authentication process is successful, the Blackfin
will transition from Secure Entry Mode to Secure Mode. At this time, all
of the access restrictions mentioned will be in place. JTAG will be disabled
and certain portions of on-chip SRAM memory are restricted from DMA

Description of Operation

15-16 ADSP-BF54x Blackfin Processor Hardware Reference

access. The restrictions can be controlled once in Secure Mode by having
the authenticated code modify the Secure System Switches
(SECURE_SYSSWT) appropriate for use by the developer’s application.

Encryption/decryption is only necessary when an application
requires confidentiality. It is not always necessary to work with
encrypted code to ensure code security. Authentication alone can
be used when confidentiality is not required when ensuring
tamper-proof code image and/or non-repudiation in a system.
Authentication thus safeguards code integrity.

Since the digital signature uniquely describes its corresponding
code/message, the code/message itself does not have to be
encrypted if confidentiality is not required. If the code/message is
modified, either intentionally or inadvertently, authentication will
fail since the integrity of the code message has been compromised.

Digital Signature Authentication Performance Measurement

Authentication can be performed at any point during processor operation
in Open Mode. It can be performed immediately upon boot or it can be
performed any time after boot.

The algorithms used in the Lockbox firmware are highly optimized Black-
fin code running from L1 instruction ROM in the core clock domain.
Firmware execution time for the digital signature authentication process is
on the order of 5 million core clock cycles depending upon the size of the
digitally signed application code. This must be considered when architect-
ing an application in order to allow a sufficient window of time in which
authentication can proceed without requiring servicing of interrupts in the
system.

ADSP-BF54x Blackfin Processor Hardware Reference 15-17

Security

The time it takes for authentication is dependent on several factors. These
include the size of the message to be authenticated. This affects the
amount of calculations done in the secure hash function (SHA-1). It also
affects the DMA time required to move the message out of L1 data mem-
ory and place it into L1 code memory.

Protection Features
In order to establish a secure processing environment and protect the secu-
rity of applications that establish trust and reach the privileged mode of
operation, Lockbox implements access restrictions. These restrictions
include disabling JTAG emulation and disabling DMA access to portions
of on-chip SRAM memory. The memory access restrictions implemented
in hardware on the Blackfin are not applied to off-chip memory. There-
fore, external memory is always considered insecure and caching external
memory while operating in Secure Mode represents a security risk.

Description of Operation

15-18 ADSP-BF54x Blackfin Processor Hardware Reference

Protection features include the following:

• Secure State Machine for implementing privileged states of opera-
tion in which access restrictions may be imposed to protect code
and data.

• Protection of L1 and on-chip L2 regions of memory with DMA
access controlled when in Secure Mode.

Disable DMA access to L1 and on-chip L2 memory

These restrictions to memory areas are configurable (See
SECURE_SYSSWT)

• Disable ADI JTAG emulation from ICE port

• Divert hardware reset to NMI during Secure Mode operation to
prevent “reset attack”.

• Provide software control over hardware protection features accessi-
ble to trusted code operating in Secure Mode.

• OTP memory for storage of customer programmable cipher keys,
unique chip ID or a customer ID

• OTP write protection to protect programmed OTP memory loca-
tions from future tampering

• Private/Secret OTP memory region accessible only in Secure Mode

Store private key(s) for decryption of data or other validation

• A privileged mode (including firmware execution out of on-chip
ROM) to perform code authentication

ADSP-BF54x Blackfin Processor Hardware Reference 15-19

Security

Protection mechanisms enabled within each of the States of the Secure
State Machine along with the Secure System Switch register
(SECURE_SYSSWT) providing control over the protection feature are
summarized Table 15-1.

Table 15-1. Secure State Machine

Secure State
Machine

SECURE_SYSSWT Description Protected
Memory Range

Open Mode
(0x00000000)

The switches are
involuntarily set with all
controls OFF
(unrestricted access).

No protection
mechanisms or
restrictions enabled.

No restrictions1

Secure Entry
(0x000704D9)

EMUDABL Emulation Disable Emulation
disabled

L1IDABLE L1 Instruction Memory
Disable 0xFFA00000 -
0xFFA07FFF SRAM

32 KB

L1DADABL L1 Data Bank A Memory
Disable 0xFF800000 -
0xFF807FFF SRAM and
SRAM/Cache

32 KB

L1DBDABL L1 Data Bank B Memory
Disable 0xFF900000 -
0xFF901FFF SRAM

8 KB

L2DABL l2 Memory Disable 64 KB

Description of Operation

15-20 ADSP-BF54x Blackfin Processor Hardware Reference

On-chip SRAM memory protection takes the form of DMA access restric-
tions only. There is no need to protect the on-chip SRAM from processor
core access due to the fact that while operating in Secure Mode, the devel-
oper’s authenticated code has full control over the processor core and
execution of all software instructions so there is no need to protect against
core instructions. It is the responsibility of the developer to take steps to
avoid surrendering control of the Program Sequencer and the core to
untrusted code execution.

Secure Mode
(0x000704D9)

EMUDABL Emulation Disable User Config-
urable

RSTDABL RESET Disable User Config-
urable

L1IDABLE L1 Instruction Memory
Disable 0xFFA00000 -
0xFFA07FFF SRAM

0-32 KB

L1DADABL L1 Data Bank A Memory
Disable 0xFF800000 -
0xFF807FFF SRAM and
SRAM/Cache

0-32 KB

L1DBDABL L1 Data Bank B Memory
Disable 0xFF900000 -
0xFF901FFF SRAM

0-32 KB

L2DABL l2 Memory Disable 0-64 KB

1 Private OTP is only accessible when operating in Secure Mode with OTPSEN bit set in
SECURE_SYSSWT register

Table 15-1. Secure State Machine (Cont’d)

Secure State
Machine

SECURE_SYSSWT Description Protected
Memory Range

ADSP-BF54x Blackfin Processor Hardware Reference 15-21

Security

Operating in Secure Mode

Entering Secure Mode

Upon successful digital signature authentication, the Secure State
Machine transitions into Secure Mode.The same default protection fea-
tures enabled in Secure Entry Mode are carried forward into Secure Mode.
This includes JTAG emulation being disabled, DMA access restrictions to
memory and interrupts being masked. It is the responsibility of the
authenticated code to manipulate or remove these restrictions if so
desired.

Exiting Secure Mode

Secure Mode provides a secure operating environment to execute sensitive
code, run cryptographic ciphers and process sensitive data. Upon exiting
Secure Mode, the authenticated code should remove any sensitive code
and data from memory because this sensitive information will still be
accessible in Open Mode if it is not removed prior to exiting Secure
Mode. Exit from Secure Mode is implemented through software control
by writing a “0” value to the SECURE0 bit within the
SECURE_CONTROL register. Please refer to the Security Registers sec-
tion and Clearing Private Data section of this chapter for more
information.

Reset Handling in Secure Mode

Hardware Reset

Hardware reset is diverted to NMI when operating in Secure Mode only.
When operating outside of Secure Mode, hardware reset behaves nor-
mally. This protection feature is configurable via the RSTDABL bit
within the SECURE_SYSSWT register when operating within Secure
Mode.

Description of Operation

15-22 ADSP-BF54x Blackfin Processor Hardware Reference

This is a protection feature to prevent malicious entities from attempting
to assert hardware reset while sensitive code or data is present in the pro-
cessor’s on-chip SRAM or in the processor’s registers. A “reset attack”
could take the following form: If hardware reset were left unprotected and
reset was asserted while sensitive information were present on-chip, the
processor would return to the default state of Open Mode with no protec-
tion features enabled and a malicious entity could gain access to the
on-chip memory and registers, for example via JTAG emulation. In such a
scenario assets intended to be protected could be compromised.

By diverting hardware reset to NMI while the processor operates in Secure
Mode, servicing of hardware reset can be controlled and delayed in order
to first implement a memory clean-up routine in software to purge sensi-
tive information from internal memory and registers prior to servicing
reset. At the completion of the memory clean-up, the processor can then
be reset via software command and safely returned to Open Mode with no
sensitive information available to be compromised.

By default, the SESR loads the address of a memory clean-up routine
stored in the on-chip L1 instruction ROM into the NMI EVT2 prior to
transitioning from Secure Entry Mode into Secure Mode. See Clearing
Private Data section of this chapter for more information.

Clearing Private Data

As part of the SESR firmware, there is a small routine stored in the
on-chip L1 instruction ROM that clears the internal memory, generates a
RESET event and puts the processor into idle. It is recommended that the
user sets this routine as the new EVT2 NMI vector once the user’s authen-
ticated application code is executing. This will prevent a malicious user
from trying to reset the processor while it is operating in Secure Mode and

ADSP-BF54x Blackfin Processor Hardware Reference 15-23

Security

then view the contents of internal memory when the processor returns to
Open Mode after servicing RESET. The “Clear Private Data” routine is
located at address 0xffa147e8.

It is recommended that user software running in Secure Mode
should also perform RAM clean-up prior to clearing the SECURE0
Secure Mode bit and exiting Secure Mode via normal code execu-
tion within user’s secure function. If sensitive code/data remains in
on-chip RAM after exiting Secure Mode without wiping memory
and register contents or cycling power to the processor, it will be
visible and accessible in Open Mode.

This memory wipe routine in the ROM executes a watchdog RESET to
reset the processor at the completion of the memory wipe. The code also
performs a wipe of the OTP_DATA0-3 registers which are used to hold
data from OTP access reads (i.e. which could contain secret key or other
sensitive data left by user code execution).

If a custom memory cleanup routine is part of an authenticated message,
the user can use that routine instead of the one provided with the Lockbox
firmware. The user just has to update EVT2 in the event vector table to
point to the start of the custom memory cleanup routine.

Due to the fact that hardware reset is configured by default to be redi-
rected to NMI when the processor is operating in Secure Mode, it is
recommended that the user implements a watchdog reset within the
EVT2 NMI ISR in order to reset the processor. A Watchdog reset is
implemented by writing a value 2'b00 in WDOG_CTL[2:1] and this will
cause a complete core reset. The watchdog reset will not be redirected to
the NMI pin as in the case of the external hardware reset and it will prop-
erly reset the processor. For more details of watchdog reset, please refer to
Software Resets section of the System Reset and Booting chapter.

This “reset attack” protection scheme need only protect against hardware
RESET which can be applied externally as the system developer typically
has no control over this in an embedded system. While operating in

Description of Operation

15-24 ADSP-BF54x Blackfin Processor Hardware Reference

Secure Mode, the developer’s authenticated code has full control over the
processor core and execution of all software instructions so there is no
need to protect against soft reset instructions. It is not recommended that
the user’s secure application code implement a soft reset without first
deleting sensitive information from memory and registers.

Public Key Requirements
A valid ECC public key must be a non-zero value and meet the following
criteria:

Given the public key value shown here:

369368AF243193D001E39CE76BB1D5DA08A9BC0A6

15F7A90C841D4F1E1B005E70F167F6EF7CD2E251B

format in 32-bit little endian as follows:

8A9BC0A6

BB1D5DA0

1E39CE76

43193D00

69368AF2

00000003

CD2E251B

167F6EF7

B005E70F

41D4F1E1

5F7A90C8

00000001

ADSP-BF54x Blackfin Processor Hardware Reference 15-25

Security

The values should be stored in OTP pages 0x10, 0x11, 0x12 as
follows (where 'L' denotes lower half of page, 'H' denotes
upper or high half of page):

page: 0x010L: 0xbb1d5da08a9bc0a6,

page: 0x010H: 0x43193d001e39ce76,

page: 0x011L: 0x0000000369368af2,

page: 0x011H: 0x167f6ef7cd2e251b,

page: 0x012L: 0x41d4f1e1b005e70f,

page: 0x012H: 0x000000015f7a90c8,

The general format takes the form of twelve (12) 32-bit words:

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8

Word 9

Word 10

Word 11

Word 12

Stored into OTP pages in the following order (where 'L' denotes
lower half of page, 'H' denotes upper or high half of page):

page: 0x010L:Word 2Word 1

page: 0x010H:Word 4Word 3

page: 0x011L:Word 6Word 5

Description of Operation

15-26 ADSP-BF54x Blackfin Processor Hardware Reference

page: 0x011H:Word 8Word 7

page: 0x012L:Word 10Word 9

page: 0x012H:Word 12Word 11

Storing public cipher key in public OTP

In order to make use of security features, the user must first store an ECC
public key in the Blackfin’s public region of OTP memory pages 0x10,
0x11 and 0x12 as specified in the Firmware's Secure Entry Service Rou-
tine (SESR) API and the OTP memory map (see “Secure Entry Service
Routine (SESR) API” on page 15-27). If no ECC public key is stored in
this area of OTP, digital signature authentication cannot be successfully
completed and no Lockbox security features can be enabled. For more
information on programming the OTP memory, please refer to the OTP
memory chapter.

If security features which rely upon the ECC public key are not
going to be used, it is recommended that customers write-protect
the ECC public key OTP memory space in order to prevent mali-
cious entities from writing a value into this memory and
potentially exploiting this feature without the developer’s consent.

Cryptographic Ciphers
Lockbox uses SHA-1 and ECC to implement ECDSA as part of the
authentication process to enter into Secure Mode. These ciphers reside in
the firmware in the on-chip L1 instruction ROM. In addition to these
ciphers, the Advanced Encryption Standard (AES) and ARC4 are also
available in the ROM. The SHA-1, AES and ARC4 ciphers are user-call-
able in Open Mode or in Secure Mode. The APIs are documented in the

ADSP-BF54x Blackfin Processor Hardware Reference 15-27

Security

Programming Model section of this chapter. Note that ECC is not
user-callable and is only executed as part of firmware during the authenti-
cation process.

Since AES uses symmetric keys that need to be private, and these
private keys typically require confidentiality, it is recommended
that this cipher be executed in Secure Mode to access the keys from
the private area of OTP memory.

Keys
Although Lockbox uses an ECC public key for digital signature authenti-
cation, and has private OTP memory to store private keys for other
cryptographic algorithms, Lockbox does not implement key management.
Lockbox does not implement key generation nor does it implement key
exchanges natively in the Blackfin hardware.

In order to use Lockbox, an ECDSA key pair must be generated. The pri-
vate key is used off-chip (typically on a host PC) to sign the message and
the public key is placed in the public OTP memory where it is used to
authenticate the signed message. Lockbox is only part of a full cryptosys-
tem. It is the responsibility of the user to develop the other parts of the
cryptosystem necessary for the intended application.

Programming Model

Secure Entry Service Routine (SESR) API
This section describes the procedure to use Lockbox to authenticate a
message. Memory configuration, input arguments and return codes are
also described here.

Programming Model

15-28 ADSP-BF54x Blackfin Processor Hardware Reference

In this chapter, the term “message” was widely used to describe the entity
being digitally signed off-chip, and later authenticated on-chip by the
SESR security firmware. “Message”, “secure function” (SF), and “secure
application” are used interchangeably in this section and mean the same
thing.

Starting Authentication
For an application to establish trust and reach the privileged mode of
operation (for example, enter Secure Mode), the Secure State Machine has
to transition from Open Mode, through Secure Entry Mode, to Secure
Mode. In order to transition from Open Mode to Secure Entry Mode,
NMI must be asserted and the program counter (PC) must vector to the
beginning address of the firmware (SESR) at location 0xffa14000.

This can be achieved by loading the beginning address of the SESR
(0xffa14000) as the NMI handler in the event vector table (EVT2). Then
in supervisor mode, issue a “raise 2;” instruction. Similarly, NMI hard-
ware pin may be asserted instead of issuing a software raise instruction.
Once the PC vectors to the SESR, while NMI assertion is sensed by the
hardware, the Secure State Machine will transition into Secure Entry
Mode.

Before actually going into Secure Entry Mode, the user will have to set up
the memory environment. This includes specifying the arguments
(described in this section) and moving the message to be authenticated
into L1 data memory.

ADSP-BF54x Blackfin Processor Hardware Reference 15-29

Security

Memory Configuration
Figure 15-3 illustrates the Secure Entry Mode default memory configura-
tion upon initiating authentication and entering the SESR.

Figure 15-3. Memory Configuration for Authentication

Data Content for SF
(Optional)

Data Content for SF
(Optional)

SESR
Authentication code

ROM

Digital Signature

Message
(Code and optional
data content to be

authenticated,
a.k.a. SF)

Unused/Protected

Unprotected User
Data

Data variables and
buffers used by

authentication code

L1 Data Bank A L1 Data Bank B

SHA-1

Elliptical Curve
Cipher

Unprotected User
Area

L2

0xFF800000

0xFF808000

0xFF804000

0xFF900000

0xFF904000

0xFF908000

Argument buffers fo
SF and SESR

ECC Data buffers
and variables.

(Reserved)

OTP Access Library

Message
(Code and optional
data content to be

authenticated,
a.k.a. SF)

Data Content for SF
(Optional)

Digital Signature

Data Content for SF
(Optional)

L1 Instr.
ROM or
Boot
ROM

Programming Model

15-30 ADSP-BF54x Blackfin Processor Hardware Reference

Message Placement

The message can be placed in either L1A or in L2 for authentication. If
the message (for example, code) is put into L1A for authentication, it
must be DMA’d to either L1 code space or L2, where it can execute. If the
message is placed into L2 for processing, it has the option of staying where
it is and can be executed directly from L2. It is the user’s responsibility to
provide the message in L1A or L2 memory for the SESR. If authentication
is successful, the SESR will then move the message via DMA to the final
destination according to the SESR arguments. No further action is
required by the developer to perform this DMA as it is executed by the
firmware.

Digital Signature

The digital signature is a pair of 163 bit integers. Each integer is padded to
the nearest 32-bit word, resulting in 192 bits for each integer resulting in a
total size of 384 bits. The authentication firmware always expects the dig-
ital signature to be followed by the message. For example, if the message is
placed in L1A data memory, and the digital signature starts at address
0xff800000, the message must immediately follow the digital signature
and be located at address 0xff800030. The same holds true if the message
and digital signature are placed in L2 memory as they must be stored
together contiguously in memory with the message always immediately
following the digital signature.

Message Size Constraints

The maximum size of any message to be authenticated is limited by the
size of on-chip memory in the Blackfin. When the Secure State Machine
enters into Secure Entry Mode (authentication), certain portions of
on-chip SRAM memory are protected from DMA accesses. These pro-
tected memory regions include L1A (32KB) and L1B data memory (8KB
each), L1 code memory (32KB) and half of L2 memory (64KB). This

ADSP-BF54x Blackfin Processor Hardware Reference 15-31

Security

means that the maximum allowable message/code size that can be authen-
ticated is 32KB less 48 bytes for the digital signature, if placed in L1A data
memory and 64KB less 48 bytes if placed in L2 memory.

Memory Usage

In data bank B of the L1 memory, the arguments for both the SESR and
the secure function are stored beginning at address 0xff900000. In addi-
tion, a portion of the L1B data memory is reserved for the firmware for
scratch space. All memory above address 0xff901f00 is reserved for
authentication. The user can either allocate this area of memory solely for
Lockbox or save any data elsewhere in memory prior to starting
authentication.

Any user information residing in the scratch space reserved area of
L1 Data Bank B will be overwritten during the authentication
process.

Memory Protection

This Secure Entry Mode default memory configuration with both pro-
tected and unprotected regions of on-chip SRAM is implemented in order
to allow developers to initiate digital signature authentication at any time
during Open Mode processor operation. If an application is already run-
ning on the processor, the unprotected memory regions can be used for
placement of data buffers. When authentication occurs, access to these
data buffers will not be restricted and the application can thus be given
higher precedence over the authentication process if necessary.

The Secure Entry Mode default memory protection configuration put into
place upon initiating authentication cannot be modified by the developer.
This is to ensure integrity of the secure processing environment during the
authentication process and help prevent malicious tampering.

Programming Model

15-32 ADSP-BF54x Blackfin Processor Hardware Reference

Secure Function and Secure Entry Service Routine
Arguments

Prior to initiating the authentication, the arguments for both the SESR
and the message (also known as Secure Function) must be set up. The
arguments are stored in argument buffers stored in L1B data memory.
Specifically, the arguments for the Secure Function are stored at the top of
L1B data memory, at address 0xff900000. There are 24 bytes allocated for
the arguments for the secure function. Following the argument buffer for
the Secure Function is the argument buffer for the SESR, at address
0xff900018. For security reasons this authentication protocol accesses
fixed locations for arguments. When the user starts executing the SF, it
receives 2 arguments. The first argument (R0) contains the address of the
SF argument buffer. The second argument (R1) holds the IMASK value
before shut off interrupts

Secure Function Arguments

When the message is successfully authenticated, the Program Counter will
vector to the Secure Function with the 1st argument (R0) containing a
pointer to top of L1B data memory. The 2nd argument that the secure
function will have (R1), is the IMASK value. This value is obtained when
the SESR successfully authenticates the message. Before the message is
transferred via DMA to its final target run location, interrupts are shut off
so tampering cannot occur between the time of successful authentication
and execution of the secure function. The prototype for the secure func-
tion will be

void secure_function(tSecureFunctionArgs *, unsigned short

imask);

The 24-byte Secure Function argument buffer is for the convenience of
user to be able to pass arguments to the Secure Function prior to starting
authentication.

ADSP-BF54x Blackfin Processor Hardware Reference 15-33

Security

It will be the Secure Function’s responsibility to re-enable interrupts by
using the saved IMASK value or by using a new IMASK value.

The 24-byte Secure Function argument buffer can be used in any aligned
fashion. For example, it can be used to store six 32-bit words or twelve
16-bit words, or any combination of data types such as integers, shorts
and characters, as long as the accesses are aligned.

Secure Entry Service Routine Arguments

The argument buffer for the SESR is shown in Listing 15-1

Listing 15-1. Argument Buffer for SESR

/* SESR argument structure. Expected to reside at address

0xFF900018*/

typedef struct SESR_args {

 unsigned short usFlags;/* security firmware flags*/

 unsigned short usIRQMask;/* interrupt mask*/

 unsigned long ulMessageSize;/* message length in bytes*/

 unsigned long ulSFEntryPoint;/* entry point of secure function*/

 unsigned long ulMessagePtr;/* pointer to the buffer containing

the digital signature and message */

 unsigned long ulReserved1;/* reserved*/

 unsigned long ulReserved2;/* reserved*/

} tSESR_args;

usFlags

The first argument, usFlags, is a 16bit bit flag that signals authentication
what to do. Figure Figure 15-4shows the meaning of the bits.

Programming Model

15-34 ADSP-BF54x Blackfin Processor Hardware Reference

Bit 0 tells the authentication firmware whether or not to drop the inter-
rupt level. To execute “raise 2;”, the Blackfin processor must be operating
in supervisor mode, in other words, operating at one of the interrupt lev-
els. NMI must be asserted when authentication is initiated. The
caller/user has the option to deassert NMI and drop back down to a lower
interrupt level (the interrupt level in effect when NMI was asserted to ini-
tiate authentication) or continue authentication at NMI level.

By lowering the interrupt level at which the authentication firmware exe-
cutes, other interrupts can be serviced. Please be aware that if another
interrupt is serviced and the PC vectors out of the authentication firmware
during authentication, the authentication process will fail and return with
an error code.

Figure 15-4. Bit Fields for Flags Argument

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x

Reduce Execution Level
(REL)
0 - Continue execution at
NMI level
1 - Drop execution level

Reserved

x x x x x x x x x x x x x x

Reserved

Reserved

Public Key

Index
 0 - ADI key
 1 - Customer Key

DMA SF to final destina-
tion (DMASF)
0 - SF is already in L2 and
will run from its current
location
1 - DMA SF to L1 code
space specified in ulCode-
Vector argument

x

ADSP-BF54x Blackfin Processor Hardware Reference 15-35

Security

Bit 1 in the flags argument tells the authentication firmware whether or
not to move the message/code to a final code space where it will be exe-
cuted. This is only valid on certain ADSP-BF54x processors with L2
memory. Processors that have no L2 memory must move the mes-
sage/code from L1A data memory to L1 code memory. The moves are
done via memory DMA and are executed by the firmware.

Bit 8 tells the firmware which public key is used for authentication. The
OTP memory holds two public keys. One is programmed by Analog
Devices for failure analysis purposes only and the other is programmed by
the developer.

uslRQMask

The usIRQMask argument is a 16-bit user-defined bitmask to be loaded
into the lower 16 bits of the IMASK MMR if the execution level is to be
lowered from NMI level. This argument allows the user to specify which,
if any, interrupts will be allowed to be serviced should they occur during
the time authentication occurs. Note that if any interrupt is serviced, the
authentication process will fail and return with an error code as men-
tioned above. For more information regarding IMASK, please refer to the
Blackfin Programming Reference manual.

ulMessageSize

The ulMessageSize argument is a 32-bit non-negative integer that tells the
SESR how big the message is, in bytes. The ulMessageSize must be a mul-
tiple of 2, otherwise the SESR will return with an error.

ulSFEntryPoint

The ulSFEntryPoint argument is the final address that the message will be
moved to and executed from. Again, since the authentication firmware
expects code as the first portion of the message, the address must be a mul-
tiple of 4 since instructions can be either 16 bit or 32 bit lengths. If the

Programming Model

15-36 ADSP-BF54x Blackfin Processor Hardware Reference

message consists of both code and data, it is the user’s responsibility to
move the data to the proper area of data memory for subsequent use
within their application.

ulMessagePtr

The ulMessagePtr argument holds the address of where the digital signa-
ture and message is found.

Secure Message Execution

If the authentication of the digital signature is successful, the authentica-
tion firmware will directly vector the Program Counter to the Secure
Function at its final target location, plus an offset of 4 bytes. The offset
provides a location for the overlay ID if overlays are used with Lockbox.
To return to the calling function, the authenticated message must execute
“rtn;” if execution level was not signaled to be lowered in the authentica-
tion firmware. Otherwise, if the execution level was lowered, the Secure
Function can return via “rts;”.

To prevent tampering, interrupts and the watchdog timer are shut off near
the end of successful authentication. It is the user’s responsibility to
re-enable the interrupts and the watchdog timer in the secure function if
they are required in the user’s application.

Return Codes

If for any reason, an error occurs, the SESR will return with an error code
and bit 7 in the SECURE_STAT MMR will be set to indicate that register
R0 will contain a valid error code. Table 15-2 lists a portion of the valid
return codes.

In addition to the return codes listed in Table 15-2, a return value
between -62 to -252 is also a valid error return code. These errors are from
OTP accesses.

ADSP-BF54x Blackfin Processor Hardware Reference 15-37

Security

Table 15-2. List of Return Codes from SESR

Return Codes Value Description

SECFW_SUCCESS 0 Success

SECFW_ERROR_INV_FLAGS -1 “Flags” argument to firmware is
invalid.

SECFW_ERROR_INV_INTMASK -2 IRQ mask specified is invalid.

SECFW_ERROR_INV_CODESZ -3 Code size specified is either non-pos-
itive or odd.

SECFW_ERROR_OOB_CODE -6 The message (Secure function) is too
big and surpasses the protected
region in L1A.

SECFW_ERROR_BAD_EVT -10 One of the ISR specified in the Event
Vector table points inside the authen-
tication firmware.

SECFW_ERROR_PUBKEY_ZERO -11 Invalid public key of (0,0).

SECFW_ERROR_AUTH_FAILED -12 Invalid message/signature pair.

SECFW_ERROR_DMA -15 MDMA error occurred during DMA
transfer or the message to the final
target vector.

SECFW_ERROR_DROPPING_INT_FAILED -17 Could not drop interrupt level from
NMI.

SECFW_ERROR_FUSE_READ_FAILED -18 Error occurred while reading OTP
memory.

SECFW_ERROR_TGTVECT_NONALIGNED -19 Target vector is not 4 Byte aligned.

SECFW_ERROR_SECURE0_WRITE_FAILED -20 Write to Secure0 bit failed. Secure
State Machine might be blocking the
write because ISR was taken.

SECFW_ERROR_SM_NOT_ENTERED -21 Secure0 bit was written three times
but secure mode was still not entered.

Programming Model

15-38 ADSP-BF54x Blackfin Processor Hardware Reference

To decipher the error from an OTP access, there is an offset that must be
added to the error code. The macro OTP_READ_ERROR_OFFSET
(defined in VDSP++ header files with a value of -285) is first added to the
return value. The result is a bit mask. Figure 15-5shows the definition of
the bit fields.

SECFW_ERROR_BAD_TGT_ADDR -22 Target vector must be in L1 code
space or L2 (for BF54x).

SECFW_ERROR_SF_TOO_BIG -23 Message (Secure function) too big to
fit at target location.

Figure 15-5. Bit Field Definition Return Value if OTP Error Occurred

Table 15-2. List of Return Codes from SESR (Cont’d)

Return Codes Value Description

0 0

OTP Read Error

Attempt to access invalid
OTP space

Double bit error detected

Hamming Code Syn-
drome error

ECC firmware error

7 6 5 3 2 1

Where OTP error occurred
1 - Page 1 - low half
2 - Page 1 - high half
3 - Page 2 - how half
4 - Page 2 - high half
5 - Page 3 - low half
6 - Page 3 - high half

4

ADSP-BF54x Blackfin Processor Hardware Reference 15-39

Security

Advanced Encryption Standard (AES) API

The ADSP-BF54x family of processors include a software implementation
of the Advanced Encryption Standard (AES) in L1 ROM. This implemen-
tation of the AES symmetric-cipher is C-callable.

The following describes the application programming interface (API) for
using AES including both data types and ROM routines.

ADI_AES_DATA Data Type

typedef struct ADI_AES_DATA

{

u32 *pKeyExpTmp;

u32 *pKR;

u32 *pState;

u32 *pIV;

u32 *pRcon;

u16 *pStateShiftExtract;

u16 *pInvStateShiftExtract;

u8 *pSBox;

u8 *pSBoxMixC;

u8 *pGFMpyTbl;

u8 *pInvSBox;

u8 *pInvSBoxMixC;

u32 *pStatePointers;

} ADI_AES_DATA;

The AES initialization routine, bfrom_AesInit(), when provided with a
reference to an object of type ADI_AES_DATA, will initialize some of the
buffers specified in the object. The caller of bfrom_AesInit() has to allo-
cate storage both for the object of type ADI_AES_DATA and for the
buffers specified in that object.

Programming Model

15-40 ADSP-BF54x Blackfin Processor Hardware Reference

Some of the buffers specified in ADI_AES_DATA are necessary only for
encryption or only for decryption. Therefore, if only one of encryption or
decryption is used, fewer buffers from ADI_AES_DATA need to be
allocated.

Table 15-3 shows the buffers specified by ADI_AES_DATA, their sizes,
and whether or not they are used in encryption and in decryption.

Table 15-3. Buffers Specified in ADI_AES_DATA

Buffer Encryption Decryption Size (in bytes)

pKeyExpTmp X X 32

pKR X X 16

pState X X 16

pIV X X 16

pRcon X X 64

pStateShiftExtract X X 32

pInvStateShiftExtract X X 32

pSBox X X 256

pSBoxMixC X 1024

pGFMpyTbl X 1024

pInvSBox X 256

pInvSBoxMixC X 1024

pStatePointers X X 64

ADSP-BF54x Blackfin Processor Hardware Reference 15-41

Security

ADI_AES_KEYEXPANSION Data Type

typedef struct ADI_AES_KEYEXPANSION

{

u8 *pCipherKey;

u8 *pRoundKeys;

u32 udKeySize;

ADI_AES_DATA *pAesData;

} ADI_AES_KEYEXPANSION;

The AES key expansion routines, bfrom_AesKeyexp() and
bfrom_AesInvKeyexp(), when provided with a reference to an object of
type ADI_AES_KEYEXPANSION, will perform an AES key expansion on the
udKeySize-long key stored in pCipherKey, and will store the resulting AES
rounds keys in pRoundKeys. See Table 15-4 for elements in an object of
type.

ADI_AES_CIPHER Data Type

typedef struct ADI_AES_CIPHER {

u8 *pInputData;

u8 *pOutputData;

Table 15-4. Elements in an Object of Type ADI_AES_KEYEXPANISION

pCipherKey Pointer to the cipher key buffer, which is expected to hold the 128, 192, or
256-bit AES key.

pRoundKeys Pointer to a buffer allocated by the caller of the key expansion routines. This
buffer will hold the rounds keys generated by the key expansion routines.

udKeySize The AES key size used (in multiple of 32-bit words). May take on the values
4, 6, and 8 to specify keys of size 128, 192, and 256-bits respectively.

pAesData Pointer to an object of type ADI_AES_DATA, which is initialized through a
call to bfrom_AesInit()

Programming Model

15-42 ADSP-BF54x Blackfin Processor Hardware Reference

u8 *pRoundKeys;

u32 udDataLength;

u8 *pInitVector;

u32 udKeySize;

u32 udMode;

ADI_AES_DATA *pAesData;

} ADI_AES_CIPHER;

The AES cipher routines, bfrom_AesCipher() and bfrom_AesInvCipher(),
when provided with a reference to an object of type ADI_AES_CIPHER, will
encrypt/decrypt the data in pInputData and will store the output in pOut-
putData. See Table 15-5 for elements in an object of type.

Table 15-5. Elements in an Object of Type ADI_AES_CIPHER

pInputData Pointer to the input data buffer. In the case of encryption, this buffer should
contain plaintext. In the case of decryption, this buffer should contain
ciphertext.

pOutputData Pinter to the output data buffer. After encryption, this buffer will contain
ciphertext. After decryption, this buffer will contain plaintext.

pRoundKeys Pointer to a buffer containing the AES round keys, which are generated by
the key expansion routines bfrom_AesKeyexp() and bfrom_AesInvKeyexp().

udDataLength The length of the input data in multiples of blocks of size 128-bits
(16-bytes) each.

pInitVector Certain block cipher modes of operation require an initialization vector.
When an initialization vector is necessary, pInitVector points to the buffer
containing the initialization vector.

udKeySize The AES key size used (in multiples of 32-bit words). May take on the val-
ues 4, 6, and 8 to specify keys of size 128, 192, and 256-bits respectively.

ADSP-BF54x Blackfin Processor Hardware Reference 15-43

Security

bfrom_AesInit() ROM Routine

Entry address: 0xFFA14028

Arguments:

R0: Flags,

 AES_ENCRYPTION
 AES_DECRYPTION
 AES_BOTH

R1: Pointer to an object of type ADI_AES_DATA

C prototype:

 void bfrom_AesInit (u32 udFlags, ADI_AES_DATA *pAesData);

This function initializes the data buffers, which are referenced in
ADI_AES_DATA and allocated by the caller, for use by the AES module.

This function is called first before other calls to the AES module.

Certain buffers are only necessary for encryption or decryption. Therefore,
storage space may be saved by only allocating required buffers. The first
argument specifies whether the user wishes to only encrypt, to only
decrypt, or to both encrypt and decrypt. Table 15-3 lists the buffers refer-
enced by ADI_AES_DATA, their sizes, and whether or not they are necessary

udMode udMode specifies the block cipher mode of operation. The supported
modes are:
BLOCK_CIPHER_MODE_ECB for electronic codebook mode
BLOCK_CIPHER_MODE_CBC for cipher block chaining mode
BLOCK_CIPHER_MODE_OFB for output feedback mode
BLOCK_CIPHER_MODE_CTR for counter mode

pAesData Pointer to an object of type ADI_AES_DATA, which is initialized through a
call to bfrom_AesInit()

Table 15-5. Elements in an Object of Type ADI_AES_CIPHER (Cont’d)

Programming Model

15-44 ADSP-BF54x Blackfin Processor Hardware Reference

for encryption and/or for decryption. If, for example, the user only needs
to encrypt data (no decryption necessary), then the user can specify
AES_ENCRYPTION as the first argument to bfrom_AesInit(), thus eliminat-
ing the need to allocate the buffers pGFMpyTbl, pInvSBox, and
pInvSBoxMixC.

bfrom_AesKeyexp() ROM Routine

Entry address: 0xFFA1402C

Arguments:

R0: Pointer to an object of type ADI_AES_KEYEXPANSION

C prototype:

 s32 bfrom_AesKeyexp (ADI_AES_KEYEXPANSION *pAesKeyexpData);

Return Values:

 AES_SUCCESS
 AES_INVALID_KEY_SIZE

This function produces the rounds keys for the forward cipher from the
cipher key. It should be called before executing bfrom_AesCipher().

bfrom_AesKeyexp() should be called everytime a new cipher key is used.
If, for example, several data buffers need to be encrypted and all of them
need to be encrypted using the same key then only one call to
bfrom_AesKeyexp() is necessary. However, if each data buffer needs to be
encrypted using a different key, then bfrom_AesKeyexp() should be called
prior to calling bfrom_AesCipher() for each buffer encryption.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB
and BLOCK_CIPHER_MODE_CTR, encryption and decryption are
identical. Therefore, in these modes bfrom_AesKeyexp() should be used
instead of bfrom_AesInvKeyexp() to produce the round keys for the
inverse cipher.

ADSP-BF54x Blackfin Processor Hardware Reference 15-45

Security

bfrom_AesInvKeyexp() ROM Routine

Entry address: 0xFFA14030

Arguments:

R0: Pointer to an object of type ADI_AES_KEYEXPANSION

C prototype:

 s32 bfrom_AesInvKeyexp (ADI_AES_KEYEXPANSION *pAesKeyexpData);

Return Values:

 AES_SUCCESS
 AES_INVALID_KEY_SIZE

This function produces the rounds keys for the inverse cipher from the
cipher key. It should be called before executing bfrom_AesInvCipher().

bfrom_AesInvKeyexp() should be called everytime a new cipher key is
used. If, for example, several data buffers need to be decrypted and all of
them need to be decrypted using the same key then only one call to
bfrom_AesInvKeyexp() is necessary. However, if each data buffer needs to
be decrypted using a different key, then bfrom_AesInvKeyexp() should be
called prior to calling bfrom_AesInvCipher() for each buffer decryption.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB
and BLOCK_CIPHER_MODE_CTR, encryption and decryption are
identical. Therefore, in these modes bfrom_AesKeyexp() should be used
instead of bfrom_AesInvKeyexp() to produce the round keys for the
inverse cipher.

bfrom_AesCipher() ROM Routine

Entry address: 0xFFA14020

Arguments:

Programming Model

15-46 ADSP-BF54x Blackfin Processor Hardware Reference

R0: Pointer to an object of type ADI_AES_CIPHER

C prototype:

 s32 bfrom_AesCipher (ADI_AES_CIPHER *pAesCipherData);

Return Values:

 AES_SUCCESS
 AES_INVALID_MODE

This function performs the AES forward cipher operation.

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB
and BLOCK_CIPHER_MODE_CTR, encryption and decryption are
identical. Therefore, in these modes bfrom_AesCipher() should be used
instead of bfrom_AesInvCipher() to perform the AES inverse cipher
operation.

bfrom_AesInvCipher() ROM Routine

Entry address: 0xFFA14024

Arguments:

R0: Pointer to an object of type ADI_AES_CIPHER

C prototype:

 s32 bfrom_AesInvCipher (ADI_AES_CIPHER *pAesCipherData);

Return Values:

 AES_SUCCESS

 AES_INVALID_MODE

This function performs the AES inverse cipher operation.

ADSP-BF54x Blackfin Processor Hardware Reference 15-47

Security

Notice that for the modes of operation BLOCK_CIPHER_MODE_OFB
and BLOCK_CIPHER_MODE_CTR, encryption and decryption are
identical. Therefore, in these modes bfrom_AesCipher() should be used
instead of bfrom_AesInvCipher() to perform the AES inverse cipher
operation.

SECURE HASH ALGORITHM (SHA-1) API

The ADSP-BF54x processor includes a software implmementation of the
Secure Hash Algorithm (SHA-1) in L1 ROM. This implementation of the
SHA-1 hash algorithm is C-callable.

The following describes the application programming interface (API) for
using SHA-1 including both data types and ROM routines.

ADI_SHA1 Data Type

typedef struct ADI_SHA1 {

u8 *pInputMessage;

u32 udMessageSize;

u8 *pOutputDigest;

u8 *pScratchBuffer;

} ADI_SHA1;

The SHA1 hash routine, bfrom_Sha1Hash, when provided with a refer-
ence to an object of type ADI_SHA1, will hash the udMessageSize-long
message referenced by pInputMessage, and will store the hash value (also
referred to as message digest) in the buffer referenced by pOutputDigest.
See Table 15-6 for elements in an object of type.

Table 15-6. Elements in an Object of Type ADI_SHA1

pInputMessage Pointer to the input buffer.

udMessageSize The size, in bytes, of the valid input data in pInputMessage.

Programming Model

15-48 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_Sha1Init ROM Routine

Entry address: 0xFFA14024

Arguments:

R0: Pointer to a buffer of size SHA1_SCRATCH_BUFFER_SIZE

C prototype:

 void bfrom_Sha1Init (u8 *pScratchBuffer);

This function initializes some data elements in pScratchBuffer. It is called
first before making any calls to bfrom_Sha1Hash.

bfrom_Sha1Hash ROM Routine

Entry address: 0xFFA14024

Arguments:

R0: Pointer to an object of type ADI_SHA1

C prototype:

 void bfrom_Sha1Hash (ADI_SHA1 *pSha1);

This function performs the hash operation.

pOutputDigest Pinter to the output data buffer. After hashing, this buffer will contain the
digest of the input message. The digest is 160-bits
(SHA1_HASH_SIZE-bytes) long

pScratchBuffer Pointer to a data buffer of size, SHA1_SCRATCH_BUFFER_SIZE-bytes,
used by the SHA-1 module.

Table 15-6. Elements in an Object of Type ADI_SHA1 (Cont’d)

ADSP-BF54x Blackfin Processor Hardware Reference 15-49

Security

ARC4 API

The ADSP-BF54x processor includes a software implmementation of the
ARC4 algorithm in L1 ROM. This implementation of ARC4 is
C-callable.

The following describes the application programming interface (API) for
using ARC4 including both data types and ROM routines.

ADI_ARC4_KEY Data Type

typedef struct ADI_ARC4_KEY {

 u32 *pSBox;

 u32 *pKey;

 u32 udKeyLength;

} ADI_ARC4_KEY;

See Table 15-7 for elements in an object of type.

ADI_ARC4_DATA Data Type

typedef struct ADI_ARC4_DATA {

 u32 *pSBox;

 u32 *pData;

 u32 udDataLength;

} ADI_ARC4_DATA;

Table 15-7. Elements in an Object of Type ADI_ARC4_KEY

pSBox Pointer to an ARC4 substitution box.

pKey A pointer to a buffer containing the ARC4 key.

udKeyLength The size of the ARC4 key specified in pKey.

Programming Model

15-50 ADSP-BF54x Blackfin Processor Hardware Reference

See Table 15-8 for elements in an object of type.

bfrom_Arc4Init ROM Routine

Entry address: 0xFFA14018

Arguments:

R0: Pointer to an object of type ADI_ARC4_KEY

C prototype:

 void bfrom_Arc4Init (ADI_ARC4_KEY *pArc4Key)

The ARC4 initialization routine, bfrom_Arc4Init() initializes the buffer
pointed to by pSBox based on the key specified in pKey and udKeyLength.

bfrom_Arc4Init() should be called first before executing
bfrom_Arc4Cipher().

bfrom_Arc4Cipher ROM Routine

Entry address: 0xFFA1401C

Arguments:

R0: Pointer to an object of type ADI_ARC4_DATA

Table 15-8. Elements in an Object of Type ADI_ARC4_DATA

pSBox Pointer to an ARC4 substitution box, which has already been initialized
through a call to bfrom_Arc4Init().

pData A pointer to a buffer containing the data to be encrypted or decrypted.
Notice that the ARC4 module performs encryption and decryption
in-place. Therefore, after calling the ARC4 cipher function,
bfrom_Arc4Cipher(), this buffer will contain the encrypted or decrypted
output.

udDataLength The size of the data pointed to by pData.

ADSP-BF54x Blackfin Processor Hardware Reference 15-51

Security

C prototype:

 void bfrom_Arc4Cipher (ADI_ARC4_DATA *pArc4Data)

The ARC4 encryption/decryption routine, bfrom_Arc4Cipher(),
encrypts/decrypts the data specified in pData and udDataLength using the
substitution box specified in pSBox.

bfrom_Arc4Cipher() should be called after the substitution box has been
initialized through a call to bfrom_Arc4Init().

Security Registers
There are three registers which provide information that can be used dur-
ing security mode control and to return status of the Secure State Machine
states. These registers require privileged access depending on the operating
state of the processor.

Table 15-9. Security Registers

Register Description Size (Bits) Memory-Mapped Address

SECURE_SYSSWT Secure System
Switches

32 0xFFC04320

SECURE_CONTROL Secure Control 16 0xFFC04324

SECURE_STATUS Secure Status 16 0xFFC04328

Security Registers

15-52 ADSP-BF54x Blackfin Processor Hardware Reference

Secured System Switches
Secured system switches control hardware that would otherwise allow a
threat of attack to a secured system. Hardware is controlled voluntarily
and involuntarily as follows:

• During Open Mode the switches are involuntarily set with all con-
trols off (unrestricted access) with exception of access to OTP
protected “secrets” area. OTP secrets are always protected and can
only be accessible upon entry into Secure Mode.

• During Secure Entry Mode all switches are initially set with all
controls on (restricted access). Two exceptions are the OTP secrets
control (OTPSEN bit) which is not accessible and access to the
secrets OTP area remains restricted and the RSTDABL bit remains
deactivated (External Reset is allowed).

• During Secured Mode operation all switches are voluntary (ini-
tially set) and under the control of authenticated code. Restricted
access controls can therefore be reconfigured by authenticated user
code. This includes the activation of Reset Disable (RSTDABL
bit).

SECURE_SYSSWT (0xFFC04320)

The following MMR is the Secure System Switches. Limited write access
to a few bits is allowed in Secure Entry Mode and full write access to all
bits is allowed in Secured mode. No write access is allowed in Open
Mode.

32-bit wide register. Requires 32-bit access.

ADSP-BF54x Blackfin Processor Hardware Reference 15-53

Security

SECURE_SYSSWT (0xFFC04320)
Secure System Switches. Limited write access to a few bits is allowed in
Secure Entry and full write access to all bits is allowed in Secured mode.
No write access is allowed in Open Mode.

32-bit wide register. Requires 32-bit access.

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

Reset = 0x0000
Secured Entry = 0x000704d9
Secured Mode = 0x000704db

0 EMUDABL Emulation Disable.
Upon Secured Entry EMUDABL's setting is based on the
previous state of EMUOVR. Upon re-entering Open
Mode, EMUDABL is cleared. This bit is always read
accessible. This bit is write accessible only in Secured
Mode.
0 - Analog Devices JTAG emulation instructions is rec-
ognized and executed. Once this bit is cleared while in
Secured Mode it will not be set upon Secured Entry. This
condition will remain until reset at which time it is
cleared. This feature is used in security debug.
1 - Analog Devices JTAG emulation instructions are
ignored. Standard emulation commands such as bypass is
allowed.

Security Registers

15-54 ADSP-BF54x Blackfin Processor Hardware Reference

1 RSTDABL Reset Disable.
This bit is not effected upon Secured Entry. This bit is
set upon entering Secured Mode. Upon re-entering Open
Mode, RSTDABL is cleared. This bit is always read
accessible. This bit is write accessible only in Secured
Mode.
0 - External Resets are generated and serviced normally.
1 - External Resets are redirected to the NMI pin. This
avoids circumventing memory clean operations.

4:2 L1IDABL L1 Instruction Memory Disable.
Upon Secured Entry L1IDABL is set to 0x6. Upon
re-entering Unsecured Mode, L1IDABL is cleared. These
bits are always read accessible. These bits are write acces-
sible only in Secured Mode. In the event a DMA access is
performed to a restricted memory area a DMA memory
access error will occur resulting in a DMA_ERR inter-
rupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 Instruction
areas.
001 - 1 Kbyte of memory (0xFFA00000 - 0xFFA003FF)
has restricted non core access
010 - 2 Kbyte of memory (0xFFA00000 - 0xFFA007FF)
has restricted non core access
011 - 4 Kbyte of memory (0xFFA00000 - 0xFFA00FFF)
has restricted non core access
100 - 8 Kbyte of memory (0xFFA00000 - 0xFFA01FFF)
has restricted non core access
101 - 16 Kbyte of memory (0xFFA00000 -
0xFFA03FFF) has restricted non core access
110 - 32 Kbyte of memory (0xFFA00000 -
0xFFA07FFF) has restricted DMA access. This is the ini-
tial setting upon entering Secured Entry.
111 - Reserved

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 15-55

Security

7:5 L1DADABL L1 Data Bank A Memory Disable.
Upon Secured Entry L1DADABL is set to 0x6. Upon
re-entering Open Mode, L1DADABL is cleared. These
bits are always read accessible. These bits are write acces-
sible only in Secured Mode. In the event a DMA access is
performed to a restricted memory area a DMA memory
access error will occur resulting in a DMA_ERR inter-
rupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 data bank A
areas.
001 - 1 Kbyte of memory (0xFF800000 - 0xFF8003FF)
has restricted non core access
010 - 2 Kbyte of memory (0xFF800000 - 0xFF8007FF)
has restricted non core access
011 - 4 Kbyte of memory (0xFF800000 - 0xFF800FFF)
has restricted non core access
100 - 8 Kbyte of memory (0xFF800000 - 0xFF801FFF)
has restricted non core access
101 - 16 Kbyte of memory (0xFF800000 - 0xFF803FFF)
has restricted non core access
110 - 32 Kbyte of memory (0xFF800000 - 0xFF807FFF)
has restricted DMA access. This is the initial setting
upon entering Secured Entry.
111 - Reserved

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

Security Registers

15-56 ADSP-BF54x Blackfin Processor Hardware Reference

10:8 L1DBDABL L1 Data Bank B Memory Disable.
Upon Secured Entry L1DBDABL is set to 0x4 giving L1
Data Bank B 8 Kbyte of non core restricted access. Upon
re-entering Open Mode, L1DBDABL is cleared. These
bits are always read accessible. These bits are write acces-
sible only in Secured Mode. In the event a DMA access is
performed to a restricted memory area a DMA memory
access error will occur resulting in a DMA_ERR inter-
rupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L1 data bank B
areas. This is the initial setting upon entering Secured
Entry.
001 - 1 Kbyte of memory (0xFF900000 - 0xFF9003FF)
has restricted non core access
010 - 2 Kbyte of memory (0xFF900000 - 0xFF9007FF)
has restricted non core access
011 - 4 Kbyte of memory (0xFF900000 - 0xFF900FFF)
has restricted non core access
100 - 8 Kbyte of memory (0xFF900000 - 0xFF901FFF)
has restricted non core access. This is the initial setting
upon entering Secured Entry.
101 - 16 Kbyte of memory (0xFF900000 - 0xFF903FFF)
has restricted non core access
110 - 32 Kbyte of memory (0xFF900000 - 0xFF907FFF)
has restricted DMA access.
111 - Reserved

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 15-57

Security

11 DMA0OVR DMA0 Memory Access Override
Entering Secured Entry or Secured Mode does not effect
this bit. Upon re-entering Open Mode, DMA0OVR is
cleared. This bit is always read accessible. This bit is
write accessible in both Secured Entry and Secured
Mode.
Controls DMA0 access to L1 Instruction, L1 Data and
memory other than L1 regions. When clear access restric-
tions are based on Memory Disable settings within this
register.
0 - DMA0 accesses are restricted based on Memory Dis-
able settings.
1 - Unrestricted DMA0 accesses are allowed to all mem-
ory areas.

12 DMA1OVR DMA1 Memory Access Override
Entering Secured Entry or Secured Mode does not effect
this bit. Upon re-entering Open Mode, DMA1OVR is
cleared. This bit is always read accessible. This bit is
write accessible in both Secured Entry and Secured
Mode.
Controls DMA1 access to L1 Instruction, L1 Data and
memory other than L1 regions. When clear access restric-
tions are based on Memory Disable settings within this
register.
0 - DMA1 accesses are restricted based on Memory Dis-
able settings.
1 - Unrestricted DMA1 accesses are allowed to all mem-
ory areas.

13 RESERVED Reserved bit. This reserved bit always returns a “0” value
on a read access. Writing this bit with any value has no
effect.

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

Security Registers

15-58 ADSP-BF54x Blackfin Processor Hardware Reference

14 EMUOVR Emulation Override
This bit is always read accessible. This bit may be written
with a 1 in secured mode only.
This bit can be cleared in any mode (Unsecured
mode, Secured Entry and Secured mode). Controls the
value of EMUDABL upon Secured Entry.
0 - Upon Secured Entry the EMUDABL bit is set.
1 - Upon Secured Entry the EMUBABL bit is cleared.
This bit can only be set when EMUDABL (bit-0) is writ-
ten with a “0” while this bit (bit-14) is simultaneously
written with a 1.

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 15-59

Security

15 OTPSEN OTP Secrets Enable.
This bit can be read in all modes but is write accessible in
Secured Mode only.
0 - Read and Programming access of the “secured” OTP
Fuse area is restricted. Accesses will result in an access
error (FERROR)
1 - Read and Programming access of the “secured” OTP
Fuse area is allowed. If the corresponding program pro-
tection bit for an access is set, a program access is pro-
tected regardless of this bit's setting.

18:16 L2DABL L2 Disable.
Upon Secured Entry L2DABL is set to 0x7. Upon
re-entering Open Mode, L2DABL is cleared. These bits
are always read accessible. These bits are write accessible
only in Secured Mode. In the event a DMA access is per-
formed to a restricted memory area a DMA memory
access error will occur resulting in a DMA_ERR inter-
rupt and a clearing of DMA_RUN.
000 - All DMA accesses are allowed to L2.
001 - 1 Kbyte of memory (0xFEB00000 - 0xFEB003FF)
has restricted non core access
010 - 2 Kbyte of memory (0xFEB00000 - 0xFEB007FF)
has restricted non core access
011 - 4 Kbyte of memory (0xFEB00000 - 0xFEB00FFF)
has restricted non core access
100 - 8 Kbyte of memory (0xFEB00000 - 0xFEB01FFF)
has restricted non core access
101 - 16 Kbyte of memory (0xFEB00000 -
0xFEB03FFF) has restricted non core access
110 - 32 Kbyte of memory (0xFEB00000 -
0xFEB07FFF) has restricted non core access
111 - 64 Kbyte of memory (0xFEB00000 -
0xFEB0FFFF) has restricted DMA access. This is the ini-
tial setting upon entering Secured Entry.

Table 15-10. SECURE_SYSSWT

Bit Position Bit Name Bit Description

Security Registers

15-60 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 15-6. SECURE_SYSSWT, Bits 15:0

00000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EMUDABL [0]

0 - JTAG instructions executed

1 - JTAG instructions ignored

RSTDABL [1]

0 - External Resets generated

1 - External Resets redirected to NMI
pin

L1IDABL [4:2]
000 - All DMA accesses allowed
001 - 1 Kbyte of memory restricted
non-core access
010 - 2 Kbyte of memory restricted
non-core access
011 - 4 Kbyte of memory restricted
non-core access
100 - 8 Kbyte of memory restricted
non-core access
101 - 16 Kbyte of memory restricted
non-core access
110 - 32 Kbyte of memory restricted
DMA access
111 - Invalid (32k restricted access)

L1DADABL [7:5]

000 - All DMA accesses allowed

001 - 1 Kbyte of memory has
restricted non-core access

010 - 2 Kbyte of memory has
restricted non-core access

011 - 4 Kbyte of memory has
restricted non-core access

100 - 8 Kbyte of memory has
restricted non-core access

101 - 16 Kbyte of memory has
restricted non-core access

110 - 32 Kbyte of memory has
restricted DMA access

111 - Reserved

0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SECURE_SYSSWT (0xFFC04320)

0xFFC0 0104

OTPSEN [15]
0 - Disable
1 - Enable

EMUOVR [14]
0 - EMUOVR bit is
set
1 - EMUOVR bit is
cleared

RESERVED [13]

DMA1OVR [12]
0 - DMA1 accesses restricted
by Memory Disable settings
1 - Unrestricted DMA1
accesses in all memory area

DMA0OVR [11]
0 - DMA0 accesses restricted
by Memory Disable settings
1 - Unrestricted DMA0
accesses in all memory areas

L1DBDABL [10:8]

000 - All DMA accesses
allowed

001 - 1 Kbyte of memory has
restricted non-core access

010 - 2 Kbyte of memory has
restricted non-core access

011 - 4 Kbyte of memory has
restricted non-core access

100 - 8 Kbyte of memory has
restricted non-core access

101 - 16 Kbyte of memory has
restricted non-core access

110 - 32 Kbyte of memory has
restricted DMA access
111 - Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 15-61

Security

Figure 15-7. SECURE_SYSSWT, Bits 31:16

0000 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

L2DABL [18:16]

000 - All DMA accesses allowed

001 - 1 Kbyte of memory has
restricted non-core access

010 - 2 Kbyte of memory has
restricted non-core access

011 - 4 Kbyte of memory has
restricted non-core access

100 - 8 Kbyte of memory has
restricted non-core access

101 - 16 Kbyte of memory has
restricted non-core access

110 - 32 Kbyte of memory has
restricted DMA access

111 - 64 Kbyte of memory has
restricted DMA access

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0104

SECURE_SYSSWT (0xFFC04320)

0

Security Registers

15-62 ADSP-BF54x Blackfin Processor Hardware Reference

SECURE_CONTROL (0xFFC04324)
Secure Control (SECURE_CONTROL) is used during Secure Entry
Mode authentication. This register is used to establish Secure Mode tran-
sition and can be used at any time to exit from Secure Mode. The reset
value of the register is 0x0000.

16-bit wide register. Requires 16-bit access.

Table 15-11. SECURE_CONTROL

Bit Position Bit Name Bit Description

Reset = 0x0000

0 SECURE0 SECURE 0
This is a write only bit. A read always returns “0”. A 1
value can only be written to SECURE0 when in Secured
Entry. The purpose of this control bit is to require 3 suc-
cessive writes with a value of 1 to SECURE0 in order to
enter Secured Mode.
0 - When written with a “0” value, all SECURE bits
within this register are cleared and Open Mode is
entered. All SYSSWT bits are cleared with the exception
of EMUOVR. If EMUOVR had been set by the user, it
will remain set (until RESET is asserted or until it is
written with a “0”).
1 - Initially when written with a 1 value SECURE1 is set.
With a subsequent 1 written SECURE2 is set. A subse-
quent 1 written will set SECURE3. Upon a set of
SECURE3 Secured Mode is entered.

1 SECURE1 SECURE 1
This is a read-only bit and indicates a successful write of
SECURE0 with a data value of 1
0 - SECURE0 has not been written with a 1 value
1 - SECURE0 is written with a 1 value

ADSP-BF54x Blackfin Processor Hardware Reference 15-63

Security

SECURE0 bit is user accessible and is used to exit from Secure Mode. Bits
SECURE1, SECURE2, and SECURE3 are not user accessible and are
accessed only by the firmware during the digital signature validation
process.

2 SECURE2 SECURE 2
This is a read-only bit and indicates two successful writes
of SECURE0 with a data value of 1 has occurred
0 - SECURE0 has not been written with a 1 value while
SECURE1 was set.
1 - SECURE0 is written with a 1 value for a second time.

3 SECURE3 SECURE 3
This is a read-only bit and indicates three successful
writes of SECURE0 with a data value of 1 has occurred.
0 - SECURE0 has not been written with a 1 value while
SECURE2 was set
1 - SECURE0 is written with a 1 value for a third time.
The part is currently in Secured Mode and the SYSSWT
register is writable by Authenticated code.

Table 15-11. SECURE_CONTROL

Bit Position Bit Name Bit Description

Security Registers

15-64 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 15-8. SECURE_SYSSWT, Bits 31:16

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECURE0 [0]

This is a write only bit.

0 - All SECURE bits are cleared.

1 - Initial 1 sets SECURE1 bit.
Next 1 sets SECURE2 bit. Next 1
sets SECUE2 bit.

SECURE1 [1]

This is a read-only bit.

0 - SECURE0 has not been writ-
ten with a 1

1 - SECURE0 is written with a 1

SECURE2 [2]

This is a read-only bit.

0 - SECURE0 has not been writ-
ten with a 1 while SECURE1 is
set.

1 - SECURE0 is written with a 1
for a second time

SECURE3 [3]

This is a read-only bit.

0 - SECURE0 has not been writ-
ten with a 1 while SECURE2 is
set.

1 - SECURE0 is written with a 1
for a third time

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0104

SECURE_CONTROL (0xFFC04324)

0

ADSP-BF54x Blackfin Processor Hardware Reference 15-65

Security

SECURE_STATUS (0xFFC04328)
Secure Status (SECURE_STATUS) provides information about the cur-
rent secure state. This information can be used during security mode
control as well as understanding why an authentication attempt has failed.

16-bit wide register. Requires 16-bit access.

Table 15-12. SECURE_STATUS

Bit Position Bit Name Bit Description

Reset = 0x0000

1:0 SECMODE Secured Mode Control State
This are read-only bits that reflects the current Secure
Mode Control's state.
00 - Open Mode
01 - Secured Entry
10 - Secured Mode
11 - Illegal

2 NMI This is a read-only bit that reflects the detection of NMI.
0 - Currently NMI is not detected.
1 - Currently NMI is detected.

3 AFVALID Authentication Firmware Valid
This is a read-only bit that reflects the state of the Real
Time Trace logic. If execution of authentication has
begun properly and has had un interrupted operation the
authentication is considered valid. A valid authentication
is required for Secured Entry and Secured Mode opera-
tion.
0 - Authentication has not begun properly or is inter-
rupted.
1 - Authentication is valid and is progressing properly
and uninterrupted.

Security Registers

15-66 ADSP-BF54x Blackfin Processor Hardware Reference

NOTE: RTT (AFVALID) is an input to the Secure State Machine and
not an output control/status. RTT goes active based on hitting the correct
Program Counter address.

4 AFEXIT Authentication Firmware Exit
This is a write one to clear status bit. In the event
authentication has begun properly but has had an
improper exit before completion, this bit is set. This can
only occur on an exit from Secured Entry back to Open
Mode.
0 - No improper exit is made while executing authentica-
tion firmware.
1 - An improper exit from authentication firmware is
made.

7:5 SECSTAT Secure Status
These are some read write bits which is defined later.
These are intended to pass a status back to the handler in
the event an authentication has failed.
000 - Reset value
001 - Reserved
010 - Reserved
011 - Reserved
100 - Reserved
101 - Reserved
110 - Reserved
111 - Reserved

Table 15-12. SECURE_STATUS

Bit Position Bit Name Bit Description

ADSP-BF54x Blackfin Processor Hardware Reference 15-67

Security

Figure 15-9. SECURE_SYSSWT, Bits 31:16

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SECMODE [1:0]

00 - Open Mode

01 - Secured Entry

10 - Secured Mode

11 - Illegal

NMI [2]

0 - Currently NMI is not detected

1 - Currently NMI is detected

AFVALID [3]

0 - Authentication has not begun
properly or is interrupted

1 - Authentication is valid

AFEXIT [4]

0 - No proper exit is made

1 - An improper exit is made

SECSTAT [7:5]

000 - Reset value

001 - Reserved

010 - Reserved

011 - Reserved

100 - Reserved

101 - Reserved

110 - Reserved

111 - Reserved

0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 0104

SECURE_STATUS (0xFFC04328)

0

Security Registers

15-68 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 16-1

16 ONE-TIME PROGRAMMABLE
MEMORY

This chapter describes One-Time-Programmable (OTP) memory features
of the ADSP-BF54x Blackfin processor.

This chapter includes the following sections:

• “OTP Memory Map” on page 16-2

• “Error Correction” on page 16-5

• “OTP Access” on page 16-9

• “OTP Timing Parameters” on page 16-11

• “Callable ROM Functions for OTP ACCESS” on page 16-14

• “Programming and Reading OTP” on page 16-17

• “Write-protecting OTP Memory” on page 16-25

• “Accessing Private OTP Memory” on page 16-27

• “OTP Programming Examples” on page 16-28

OTP Memory Overview
The ADSP-BF54x processors include an on-chip, one-time-programmable
(OTP) memory array which provides 64k-bits of non-volatile memory.
This includes the array and logic to support read access and programming.
A mechanism for error correction is also provided. Additionally, pages can
be write protected.

OTP Memory Map

16-2 ADSP-BF54x Blackfin Processor Hardware Reference

OTP memory can be programmed through various methods including
software running on the Blackfin processor. The ADSP-BF54x processors
provide C and assembly callable functions in the on-chip ROM to help
the developer access the OTP memory.

The One Time Programmable Memory (OTP) is divided into two main
regions. A 32k bit “public” unsecured region which has no access restric-
tions and a 32k bit “private” secured region with access restricted to
authenticated code when operating in Secure Mode (For information
about these modes, see the section “Secure State Machine” in Chapter 15,
Security in this volume of the ADSP-BF54x Blackfin Processor Hardware
Reference.)

OTP enables developers to store both public and private data on-chip. A
64Kx1bit array is available as shown by Figure 16-2. In addition to storing
public and private data, it allows developers to store completely
user-definable data such as customer ID, product ID, MAC address, etc.

The public portion of OTP memory contains many “factory set
only” values. Users are urged to exercise caution when writing to
OTP memory and to consult the OTP memory map for details of
Customer Programmable Settings (CPS) and factory reserved areas
of this memory. See also Factory Page Settings (FPS) and Preboot
Page Settings (PBS) in Chapter 17, “System Reset and Booting” in
this volume of the ADSP-BF54x Blackfin Processor Hardware
Reference.

OTP Memory Map
The OTP is not part of the Blackfin linear memory map. It has a separate
memory map that is shown in Figure 16-2. OTP memory is not accessed
directly using the Blackfin memory map, rather, it is accessed via four
32-bit wide registers (OTP_DATA3-0) which act as the OTP memory
read/write buffer.

ADSP-BF54x Blackfin Processor Hardware Reference 16-3

One-Time Programmable Memory

In the case of an OTP memory read, the OTP_DATAx registers will contain
the 16 byte result of the OTP memory access. In the case of an OTP
memory write, the OTP_DATAx registers will contain 16 bytes of data to be
written to the OTP memory.

OTP_DATA3-0 registers are organized into a 128 bit page as shown in
Figure 16-1.

Figure 16-1. OTP_DATAx Registers

127 96 95 64 63 32 31 0

BIT 31 BIT 0 BIT 31 BIT 0 BIT 31 BIT 0 BIT 31 BIT 0

OTP_DATA3 OTP_DATA2 OTP_DATA1 OTP_DATA0

OTP Memory Map

16-4 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 16-2. One-Time-Programmable (OTP) Memory Map

PROTECTION BITS FOR PAGES 0x000 (LSB) THROUGH 0x07F (MSB)

P
U

B
L

IC
 O

T
P

 (
25

6
PA

G
E

S
)

P
R

IV
A

T
E

 O
T

P
 (

25
6

PA
G

E
S

)

FACTORY RESERVED

PROTECTION BITS FOR PAGES 0x100 (LSB) THROUGH 0x17F (MSB)

PROTECTION BITS FOR PAGES 0x180 (LSB) THROUGH 0x1FF (MSB)

UNIQUE CHIP ID [127:0]

FACTORY RESERVED

Bytes 15:14, Part Number Integer Bytes 12:0, Part Number String

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

FACTORY RESERVED

CUSTOMER KEY [127:0]

CUSTOMER KEY [255:128]

CUSTOMER KEY [383:256]

RESERVED

RESERVED

UNSECURED GENERAL PURPOSE SPACE

RESERVED

RESERVED

Bytes 15:8, PBS00H Bytes 7:0, PBS00L

Bytes 15:8, PBS01H Bytes 7:0, RESERVED PBS001U

Bytes 15:8, RESERVED PBS003H Bytes 7:0, RESERVED PBS003L

RESERVED

UNSECURED ERROR CORRECTION CODE (ECC) SPACE

SECURED FACTORY RESERVED SPACE

SECURED GENERAL PURPOSE SPACE

SECURED ERROR CORRECTION CODE (ECC) SPACE

BLACKFIN ONE-TIME-PROGRAMMABLE (OTP) MEMORY MAP

NAME
PAGE
ADDR

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

| <-- BIT 127

| <-------------------------------------128 BIT PAGE ---------------------------------------> |

| <---64 BIT UPPER HALF PAGE -------> | <--64 BIT LOWER HALF PAGE-> |

BIT 0 ---> |

PROTECTION BITS FOR PAGES 0x080 (LSB) THROUGH 0x0FF (MSB)

BYTE

0x000

0x001

0x002

0x003

0x004 FPS00

0x005 FPS01

0x006 FPS02

0x007 FPS03

0x008 FPS04

0x009 FPS05

0x00A FPS06

0x00B FPS07

0x00C FPS08

0x00D FPS09

0x00E FPS10

0x00F FPS11

0x10 CPS00

0x11 CPS01

0x12 CPS02

0x13 CPS03

0x14 CPS04

0x15 CPS05

0x16 CPS06

0x17 CPS07

0x18 PBS00

0x19 PSS01

0x1A PBS02

0x1B PBS03

0x1C to 0x0DF

0xE0 to 0x00F

0x100 to 0x10F

0x110 to 0x1DF

0x1E0 to 0x1FF

Bytes 15:8, PBS002H Bytes 7:0, PBS002L

1

1

3, 4, 5

NOTES
1. Factory Programmable Settings (FPS)
are programmed at Factory. Customer
Progammable Settings (CPS) are
programmed by Customer.

2. This space should NOT be written
by customer. 8-bit error correction codes
will be automatically generated by
firmware and stored in this region.

3. Part Number Field Definition. A string
indicating the chip's model number
will be programmed into this location.
Each character will be represented by
standard 8-bit ASCII code.
A termination character of 8'b00000000
will terminate the string. The field will
support up to 12 alpha/numeric
characters plus 1 termination character.
The first string char will reside in
bits[7:0] and the string will grow to the
left with the left most character being
the termination character.

4. Integer representation of the part
number
Part # Code

542 0x021E
544 0x0220
547 0x0223
548 0x0224
549 0x0225

5. Byte 13 in FPS03 is reserved.

2

2

ADSP-BF54x Blackfin Processor Hardware Reference 16-5

One-Time Programmable Memory

OTP memory ranges marked as Factory Reserved, Reserved and Error
Correction Code Space, in Figure 16-2, must not be programmed by the
user. Customer Programmable Settings are optionally programmed by the
developer.

Page-Protection bits provide protection for each 128-bit page within the
OTP. By default, the OTP array bits are not set and will read back as zero
values if left unprogrammed. Programmed data values consist of zeroes
and ones, therefore, after programming OTP memory, some bits will
intentionally remain as zero values. The write-protect bits provide protec-
tion for the zero value bits to remain as zeroes and prevent future
programming (inadvertent or malicious) from changing bit values from
zero to one.

Pages 0x10, 0x11 and 0x12 hold the customer public key which is used for
Lockbox digital signature authentication. Please refer to Chapter 15,
“Security” for more information on Lockbox and how the public key is
used.

OTP memory is logically arranged in a sequential set of 128-bit pages.
Each OTP memory address refers to a 128-bit page. The ADSP-BF54x
thus provides 512 pages of OTP memory.

In order to read or program the OTP memory, a set of functions are pro-
vided in the on-chip ROM. These functions include bfrom_OtpRead(),
bfrom_OtpWrite() and bfrom_OtpCommand().

Error Correction
To meet strict quality goals, error correction is used to ensure data integ-
rity. bfrom_OtpRead() and bfrom_OtpWrite(), provided in the on-chip
ROM, support error correction.

Error Correction

16-6 ADSP-BF54x Blackfin Processor Hardware Reference

Error correction works by calculating an 8-bit Error Correction Code
(ECC) for each 64-bit data word (half page) when it is programmed into
the OTP. When this word is later read from OTP, its corresponding ECC
is also read and a data integrity check is performed. If the check fails, error
correction on the data word can be attempted using the ECC. Depending
on the type of error, the error correction algorithm will perform as shown
in Table 16-1.

Error Correction Policy
1. Error correction requires that OTP space is written and read in

64-bit widths. Firmware will only support writing or reading half
of an OTP page.

2. Error Correction is used to correct data in all pages of OTP space
except the protection pages (0x0 to 0x3) and ECC pages them-
selves. See exceptions detailed in the OTP Access section following.

3. Firmware will generate and program the 8-bit ECC fields as
mapped in Table 16-2 and Table 16-3.

Table 16-1. Hamming Code Single Error Corrections, Double Error
Detection

No. of bad bits
in data word

Error(s)
Detected?

Error(s)
Corrected?

0 N/A N/A

1 Yes Yes

2 Yes No

3 or more No No

ADSP-BF54x Blackfin Processor Hardware Reference 16-7

One-Time Programmable Memory

4. The developer is responsible for locking both the data page(s)
AND the ECC page(s) after all programming is complete.

5. Pages 0x04 to 0x0F are reserved for ADI factory use. Therefore,
pages 0x004 to 0x00F, 0x0E0, and 0x0E1 will be locked coming
out of the Analog Devices factory.

Table 16-2. Mapping for Storage of Error Correction Codes for Unsecured
OTP Space

Page
Byte

15 14 13 12 11 10 9 8

0x0E0 0x007U 0x007L 0x006U 0x006L 0x005U 0x005L 0x004U 0x004L

0x0E1 0x00FU 0x00FL 0x00EU 0x00EL 0x00DU 0x00DL 0x00CU 0x00CL

0x0E2 0x017U 0x017L 0x016U 0x016L 0x015U 0x015L 0x014U 0x014L

....

0x0FB 0x0DFU 0x0DFL 0x0DEU 0x0DEL 0x0DDU 0x0DDL 0x0DCU 0x0DCL

Page 7 6 5 4 3 2 1 0

0x0E0 Unused Unused Unused Unused Unused Unused Unused Unused

0x0E1 0x00BU 0x00BL 0x00AU 0x00AL 0x009U 0x009L 0x008U 0x008L

0x0E2 0x013U 0x013L 0x012U 0x012L 0x011U 0x011L 0x010U 0x010L

....

0x0FB 0x0DBU 0x0DBL 0x0DAU 0x0DAL 0x0D9U 0x0D9L 0x0D8U 0x0D8L

Error Correction

16-8 ADSP-BF54x Blackfin Processor Hardware Reference

Table 16-3. Mapping for Storage of Error Correction Codes for Secured
OTP Space

Page
Byte

15 14 13 12 11 10 9 8

0x1E0 0x107U 0x107L 0x106U 0x106L 0x105U 0x105L 0x104U 0x104L

0x1E1 0x10FU 0x10FL 0x10EU 0x10EL 0x10DU 0x10DL 0x10CU 0x10CL

0x1E2 0x117U 0x117L 0x116U 0x116L 0x115U 0x115L 0x114U 0x114L

....

0x1FB 0x1DFU 0x1DFL 0x1DEU 0x1DEL 0x1DDU 0x1DDL 0x1DCU 0x1DCL

Page 7 6 5 4 3 2 1 0

0x1E0 0x103U 0x103L 0x102U 0x102L 0x101U 0x101L 0x100U 0x100L

0x1E1 0x10BU 0x10BL 0x10AU 0x10AL 0x109U 0x109L 0x108U 0x108L

0x1E2 0x113U 0x113L 0x112U 0x112L 0x111U 0x111L 0x110U 0x110L

....

0x1FB 0x1DBU 0x1DBL 0x1DAU 0x1DAL 0x1D9U 0x1D9L 0x1D8U 0x1D8L

ADSP-BF54x Blackfin Processor Hardware Reference 16-9

One-Time Programmable Memory

OTP Access
The ADSP-BF54x on-chip ROM contains functions for initializing OTP
timing parameters, reading and programming the OTP memory. These
functions include bfrom_OtpRead(), bfrom_OtpWrite() and
bfrom_OtpCommand().

These functions are callable from C or assembly application code.
Use only these functions for accessing OTP memory. Directly
accessing memory locations within OTP memory by other means is
not supported.

The existing ECC in ROM is known as “Hamming [72,64]” - This
is specifically a 64-bit Data, +8-bit ECC Field, for 1-bit correction
and 2-bit error detection scheme.

The ROM-based OTP read/write API MUST be used for all OTP
data accesses (see limited exceptions below). The ROM code incor-
porates the ONLY ECC method supported by Analog Devices.
Analog Devices does not support direct access of OTP data without
using error correction.

Exceptions: The only bits that do not use ECC are page lock bits
 (1st 4 pages) and the preboot invalidate bits. See the Preboot section
 in Chapter 17, “System Reset and Booting”.

ADI does not support any ECC other than the ECC provided by ADI
 within the ROM API. All attempts to implement other schemes are not
 guaranteed or supported by Analog Devices.

OTP memory programming is done serially under software control. Since
the unprogrammed OTP memory value defaults to zero, only bits whose
value is intended to be “1” have to be programmed. In order to protect
areas of OTP memory that have been programmed or areas which have
intentionally been left unprogrammed which end users wish to remain
unchanged, write-protect bits can be set for each 128-bit page within

OTP Access

16-10 ADSP-BF54x Blackfin Processor Hardware Reference

OTP memory. Each write-protect bit, when set, will prevent further pro-
gramming attempts to OTP memory on a per page basis. Please refer to
the OTP memory map for more details.

The ADSP-BF54x Blackfin processor can program OTP through software
code executing directly on the Blackfin processor. A charge pump residing
on-chip is used to apply the voltage levels appropriate for programming
OTP memory. OTP programming code can be loaded into the processor
via JTAG emulation, DMA, and all supported boot methods.

OTP memory can only be written once (changing a bit from 0 to 1). Once
a bit has been changed from a 0 to a 1, it cannot be changed back to 0.
The write-protect bits prevent OTP memory that has already been pro-
grammed from having any bits that are meant to remain as 0 value later
programmed to a value of 1.

Prior to accessing OTP memory, refer to the product data sheet for speci-
fications on VDDINT, VDDEXT voltage levels to ensure reliable OTP
programming. OTP timing parameter settings must be set prior to
attempting any write accesses to OTP.

ADSP-BF54x Blackfin Processor Hardware Reference 16-11

One-Time Programmable Memory

OTP Timing Parameters
In order to read and program the OTP memory reliably, the OTP timing
parameters are required to be set correctly prior to accessing OTP mem-
ory. All the timing parameters are bitfields within the OTP_TIMING register
shown below. The function, bfrom_OtpCommand(), provided in the
on-chip ROM, is used to program the timing parameters.

OTP timing parameters must be set using the bfrom_OtpCommand()
detailed below. OTP read accesses may use the OTP timing default
reset value (Reset: OTP_TIMING = 0x00001485). Use of the OTP
timing default reset value for writes will result in write errors as this
timing value is not appropriate for performing write accesses.

Insufficient voltage/current provided to OTP during write access
or incorrect OTP timing parameters may result in the following
error returned during OTP writes: 0x11: error code returned (mul-
tiple bad bits in 64 bit data), and subsequent reads from this page
return 0.

The OTP timing parameters consist of several fields which are combined
together to form one value which is then passed as an argument to the
bfrom_OtpCommand() function. There are two fields for which the devel-
oper must calculate a value based upon the desired SCLK frequency of
operation at which the OTP access will be performed. These calculated
values are then combined with a third field whose value is provided by
Analog Devices to arrive at the setting appropriate for the access.

The OTP timing parameters are comprised of three values as follows:

OTP_TIMING[7:0] = OTP_TP1 = 1000 / sclk_period

OTP_TIMING[14:8] = OTP_TP2 = 400 / (2 * sclk_period)

OTP_TIMING[31:15] = OTP_TP3 = 0x0A008

OTP Access

16-12 ADSP-BF54x Blackfin Processor Hardware Reference

The OTP_TP3 field is specified by Analog Devices and must be used to
ensure reliable OTP write accesses. The user calculated fields must be
combined with the OTP_TP3 value as shown in the examples below.

Example calculations are shown Listing 16-1 through Listing 16-3 based
upon voltages specified in the ADSP-BF54x Blackfin Embedded Processor
and OTP timing parameter calculations dependent upon user-defined
SCLK frequency of operation. (Please refer to ADSP-BF54x Blackfin
Embedded Processor data sheet for actual specifications and do not rely on
the specifications quoted in these examples.)

Listing 16-1. OTP Timing Calculations for SCLK = 100 MHz

For SCLK = 10ns (100 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

The code for API call (in C) is:

 // Initialize OTP access settings

 // Proper access settings for VDDINT = 1V, SCLK = 100 MHz

 const u32 OTP_init_value = 0x0A009464;

 return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

Listing 16-2. OTP Timing Calculations for SCLK = 50 MHz

For SCLK = 20.0ns (50 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

The code for API call (in C) is:

OTP_TP1 = 1000 / sclk_period = 1000 / 10 = 0x64 0x00000064

OTP_TP2 = 400/(2 * sclk_period) = 400 / (2 * 10) = 0x14 0x00001400

OTP_TP3 = (constant) 0x0A008xxx

Calculated OTP timing parameter value: 0x0A009464

ADSP-BF54x Blackfin Processor Hardware Reference 16-13

One-Time Programmable Memory

 // Initialize OTP access settings

 // Proper access settings for VDDINT = 1V, SCLK = 50 MHz

 const u32 OTP_init value = 0x0A008A32;

 return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

Listing 16-3. OTP Timing Calculations for SCLK = 40 MHz

For SCLK = 25.0ns (40 MHz), the following field calculations are needed
to determine the OTP timing argument for the bfrom_OtpCommand() call.

The code for API call (in C) is:

 // Initialize OTP access settings

 // Proper access settings for VDDINT = 1V, SCLK = 40 MHz

 const u32 OTP_init_value = 0x0A008828

 return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

OTP_TP1 = 1000 / sclk_period = 1000 / 20.0 = 0x32 0x00000032

OTP_TP2 = 400/(2 * sclk_period) = 400 / (2 * 20.0) = 0xA 0x00000A00

OTP_TP3 = (constant) 0x0A008xxx

Calculated OTP timing parameter value: 0x0A008A32

OTP_TP1 = 1000 / sclk_period = 1000 / 25.0 = 0x28 0x00000028

OTP_TP2 = 400/(2 * sclk_period) = 400 / (2 * 25.0) = 0x8 0x00000800

OTP_TP3 = (constant) 0x0A008xxx

Calculated OTP timing parameter value: 0x0A008828

OTP Access

16-14 ADSP-BF54x Blackfin Processor Hardware Reference

OTP_TIMING Register

Callable ROM Functions for OTP ACCESS
The following functions support OTP access.

Initializing OTP

This section describes the usage of bfrom_OtpCommand() function for OTP
memory controller setup provided in the ADSO-54x processor on-chip
ROM. The prototype and macros to help decode the function's return

Figure 16-3. OTP_TIMING Register

OTP_TIMING Register

Reset = 0x0000 1485

OTP_TP3 [31:15]

OTP_TP3 = 0x0A008 for write accesses

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 1 0 0 1 0 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OTP_TP1 [7:0]

OTP_TP1 = 1000/SCLK Period

OTP_TP2 [14:8]

OTP_TP2 = 400/(2* SCLK Period)

Valid for OTP Read
Access

ADSP-BF54x Blackfin Processor Hardware Reference 16-15

One-Time Programmable Memory

codes are supplied in the bfrom.h header file which is located in the Visu-
alDSP++ installation directory. The meaning of the error code is described
in section “Error Codes” on page 16-23.

bfrom_OtpCommand

This function is used to implement various “commands” to setup the
OTP controller. The first input parameter is a mnemonic label specifying
the command. The second parameter is a generic value that is passed as
argument for the requested command. The second parameter is optional
and it may be an integer value or (via opportune casting) a pointer or a
pointer to an extension structure. There are two commands:

• OTP_INIT: sets the required timing value (register OTP_TIMING) to
“value”.

• OTP_CLOSE: reinitializes the OTP controller. This can be called
by the user before exiting Secure Mode if desired. The Value
parameter may be specified as “0” or “NULL” with OTP_CLOSE.

Entry address: 0xEF00 0018

Arguments:

R0: command (dCommand)

 OTP_INIT

 OTP_CLOSE

R1: timing value to be programmed (dValue), not used for OTP_CLOSE

C Prototype: u32 bfrom_OtpCommand(u32 dCommand, u32 dValue);

Return code:

 bfrom_OtpCommand() currently always returns with “0”.

OTP Access

16-16 ADSP-BF54x Blackfin Processor Hardware Reference

From the examples above, the OTP timing parameter was calculated to be
0x0A009464. Below shows a sample of C code that uses
bfrom_OtpCommand() function to program this timing parameter.

include <bfrom.h>

define OTP_TIMING_PARAM (0x0A009464)

u32 Otp_Timing_Param_Init()

{

 u32 otp_timing_parameter;
 u32 = RetVal;
 otp_timing_parameter = OTP_TIMING_PARAM;
 RetVal = bfrom_OtpCommand(OTP_INIT, otp_timing_parameter);
 // (equivalently, with a variable):
 RetVal = bfrom_OtpCommand(OTP_INIT, OTP_TIMING_PARAM);
 return RetVal;
}

More examples:
 // timing parameter
 const u32 init_value = 0x0A009464;

 // call sets OTP_TIMING register
 RetVal = bfrom_OtpCommand(OTP_INIT, init_value);

 // call sets OTP_TIMING register

 RetVal = bfrom_OtpCommand(OTP_INIT, 0x0A009464);

 // call clears OTP controller and data registers

 RetVal = bfrom_OtpCommand(OTP_CLOSE, NULL);

The prototype of bfrom_OtpCommand() is also included in the bfrom.h
header file installed with VisualDSP++ 5.0 and later releases. Also, the
macro OTP_INIT is defined in bfrom.h as well.

ADSP-BF54x Blackfin Processor Hardware Reference 16-17

One-Time Programmable Memory

Programming and Reading OTP
This section describes the usage of bfrom_OtpRead() and
bfrom_OtpWrite() read and write functions for OTP memory provided in
the ADSP-54x on-chip ROM. The prototypes and macros to help decode
their return codes are supplied in the bfrom.h header file which is located
in the VisualDSP++ installation directory. The meaning of the error code
is described in section “Error Codes” on page 16-23.

bfrom_OtpRead

This function is used to read 64-bit OTP half-pages using error
correction.

Entry address: 0xEF00 001A

Arguments:

R0: OTP page address (dPage)

R1: Flags (dFlags)

 OTP_LOWER_HALF

 OTP_UPPER_HALF

 OTP_NO_ECC

R2: Pointer to 64-bit memory struct (long long), to put read data
(*pPageContent)

C prototype: u32 bfrom_OtpRead (u32 dPage, u32 dFlags, u64
*pPageContent);

Return code:

R0: error or warning code, see Table 16-4.

OTP Access

16-18 ADSP-BF54x Blackfin Processor Hardware Reference

This function reads a half-page and stores the content in the 64-bit vari-
able pointed to by its last parameter. The page parameter defines the
address. The flags parameter defines whether the upper or the lower half
page is to be read. The default reset OTP_TIMING value may be used for all
read accesses without requiring any new setting value to be programmed
prior to performing read accesses. Programming a valid value suitable for
write accesses will also allow read accesses.

The use of flag parameter OTP_NO_ECC is not recommended for use with
any OTP read access as it will bypass error correction code support. It is
available only for diagnostic purposes.

ADSP-BF54x Blackfin Processor Hardware Reference 16-19

One-Time Programmable Memory

bfrom_OtpWrite

This function attempts to write to (program) a half-page with the content
in the 64-bit variable pointed to by its last parameter. The page parameter
defines the address.

Entry address: 0xEF00 001C

Arguments:

R0: OTP page address (dFlag)

R1: Flags (dFlags)

 OTP_LOWER_HALF

 OTP_UPPER_HALF

 OTP_NO_ECC

 OTP_LOCK

 OTP_CHECK_FOR_PREV_WRITE

R2: Pointer to 64-bit memory struct (long long) that contains the
data to be written to OTP memory (*pPageContent)

C Prototype: u32 bfrom_OtpWrite (u32 dPage, u32 dFlags, u64
*pPageContent);

Return code:

R0: error or warning code, see Table 16-4.

OTP Access

16-20 ADSP-BF54x Blackfin Processor Hardware Reference

The dFlags parameter defines whether the upper or the lower half page is
to be written to and also if the target half page should be checked for a
previously written value before any write attempt is made. Additionally, a
page can optionally be locked (permanently protected against further
writes).

When performing pure lock operations, the half-page parameter is not
required and it makes no difference which half-page is specified if this
parameter is included in the function call.

In order to reduce the probability of inadvertent writes to OTP pages, this
function checks for a valid OTP write timing setting in the OTP_TIMING
register. More specifically, bits [31:15] must not be equal to zero. Calls to
the write routine when this field is equal to zero cause an access violation
error and the requested action is not performed. The user can use this
mechanism to protect against inadvertent writes by calling the
bfrom_OtpCommand (OTP_init, …) function with appropriate values for
reads only and for read/write accesses. He is also free to ignore this mech-
anism by calling bfrom_OtpCommand (OTP_init, …) only once for
read/write access.

When the flag OTP_CHECK_FOR_PREV_WRITE is NOT specified, a previously
written value will be overwritten, both in the ECC and data fields for any
unlocked page where a write access is performed. Of course, once a bit was
set to “1” it cannot be reset to “0” by the new write operation. This means

ADSP-BF54x Blackfin Processor Hardware Reference 16-21

One-Time Programmable Memory

that, in all likelihood, if the new value is different from the previous one,
the result will have multiple bit errors, in either or both the ECC and data
fields.

Since the ECC field is written first by the ROM function, a multi-
ple bit error will abort the operation without writing the new data
value to the OTP data page.

Note also that multiple bit errors have a statistical chance of not
being detected as such. So this default mode of operation is not
recommended to be used, or used with appropriate caution.

The flag, OTP_CHECK_FOR_PREV_WRITE, should always be used by
default when performing write accesses to OTP with the
bfrom_OtpWrite() function.

If the flag OTP_CHECK_FOR_PREV_WRITE is specified in the call, a write to a
previously programmed page causes dedicated error messages and will not
be undertaken. More specifically, the criterion for generating errors is as
follows: the 64-bit data and the 8-bit ECC field are read and the total
number of “1”s is counted. If this number is equal to or greater than 2, the
error flag OTP_PREV_WR_ERRO” is returned and the write operation is not
performed. If the number is 0, the page is certainly blank and the write is
performed. If the number is one, a more thorough check is performed. If
the “1” is in the ECC field, an error flag OTP_SB_DEFECT_ERROR is returned
and the write is not performed. If the “1” is in the data field, it is deter-
mined whether the value to be written contains a “1” in the same position.
If so, the write is performed. If not, the error flag OTP_SB_DEFECT_ERROR is
returned and the write is not performed. This error code warns the user
that it could be a single-bit defect in the page. The user can then decide
whether to use this page regardless (by repeating the call without the
OTP_CHECK_FOR_PREV_WRITE flag) or skip this page.

The OTP_CHECK_FOR_PREV_WRITE flag is ignored when a pure lock opera-
tion is requested (for example, a OTP_LOCK flag is set and &DATA =
NULL). It is therefore unnecessary and harmless to specify this flag. The

OTP Access

16-22 ADSP-BF54x Blackfin Processor Hardware Reference

OTP_CHECK_FOR_PREV_WRITE flag is not ignored when doing a lock opera-
tion after a write (for example, OTP_LOCK + write in the same call and
&DATA = NULL).

If the flag parameter for the write operation is augmented by the OR with
OTP_LOCK flag, the write operation, if successful, will be immediately fol-
lowed by setting the protection bit for the requested full 128-bit page.

A special case is the following (OTP_LOCK): if the third parameter is NULL,
this call will lock a page without writing any data value to it (pure lock
function). Note that in this case, “page” can span all pages from 0x000 to
0x1FF. This is the only way to lock the ECC pages themselves.

The use of flag parameter OTP_NO_ECC is only supported in write
operations when used to implement write-protection/ page-locking
(use of OTP_LOCK parameter in bfrom_Otp_Write function is pre-
ferred method of locking pages, see Write Protecting OTP
Memory section below) or to set the preboot invalidate bits (see the
Preboot section in Chapter 17, “System Reset and Booting”).
Bypassing error correction in OTP writes may result in loss of OTP
data integrity and is not supported for any other OTP access.

The use of ECC in all OTP accesses other than the limited excep-
tions described previously is mandatory.

ADSP-BF54x Blackfin Processor Hardware Reference 16-23

One-Time Programmable Memory

Error Codes

This section describes the returned error codes from the API functions.
Figure 16-4 and Table 16-4 demonstrate and list the returned error codes
from API functions.

bfrom_OtpCommand() currently always returns with “0”.

Figure 16-4. Returned Error Codes from API Functions

Returned Error Codes from API Functions

OTP_SUCCESS = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OTP_MASTER_ERROR

Master Error Bit = OP[OR(bits
1,2,3,4,5,6,7), AND(bits 8,9)]

OTP_WRITE_ERROR

(E) OTP Write Error

OTP_READ_ERROR

E OTP Read Error

OTP_ACC_VIO_ERROR

(E) Attempt to access invalid
OTP space

OTP_DATA_MULT_ERROR

(E) Multiple bad bits on write of
64-bit data

OTP_ECC_SB_WARN

(W) Single bad bit on write of
ECC

OTP_DATA_SB_WARN

(W) Single bad bit on write of
64-bit data

OTP_SB_DEFECT_ERROR

(E) Single bit defect in the page

OTP_PREV_WR_ERROR

(E) Attept to write previously
written space

OTP_ECC_MULT_ERROR

(E) Multple bad bits on write of
ECC

OTP Access

16-24 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_OtpRead() returns with an error when any of the bits [6:2] are set
or both bits[9:8] are set. In this case, the OTP_MASTER_ERROR bit is also set.
It returns with a warning, if only one of the bits [9:8] is set.

bfrom_OtpWrite() returns with an error when any of the bits [7:1] are set
or both bits[9:8] are set. In this case, the OTP_MASTER_ERROR bit is also set.
It returns with a warning, if only one of the bits [9:8] is set.

Table 16-4. Returned Error Codes from API Functions

Bit
Position

Name Example
Return
Value

Definition

N/A OTP_SUCCESS 0x0 No Error

0 OTP_MASTER_ERROR 0x1 Master Error Bit = OR[OR(bits
1,2,3,4,5,6,7), AND(bits 8,9)]

1 OTP_WRITE_ERROR 0x3 (E) OTP Write Error

2 OTP_READ_ERROR 0x5 (E) OTP Read Error

3 OTP_ACC_VIO_ERROR 0x9 (E) Attempt to access invalid OTP
space

4 OTP_DATA_MULT_ERROR 0x11 (E) Multiple bad bits on write of 64
bit data

5 OTP_ECC_MULT_ERROR 0x21 (E) Multiple bad bits on write of
ECC

6 OTP_PREV_WR_ERROR 0x41 (E) Attempt to write previously writ-
ten space

7 OTP_SB_DEFECT_ERROR 0x81 (E) Single-bit defect in the page

8 OTP_DATA_SB_WARN 0x100 (W) Single bad bit on write of 64 bit
data

9 OTP_ECC_SB_WARN 0x200 (W) Single bad bit on write of ECC

ADSP-BF54x Blackfin Processor Hardware Reference 16-25

One-Time Programmable Memory

Write-protecting OTP Memory
As shown in Figure 16-2, a small portion of OTP memory is reserved for
write-protect bits (“write-protect” is synonymous with “page-protect” in
the context of this discussion). After programming OTP memory, the pro-
grammer can use these protection bits to “lock” the page that was just
programmed by setting the write-protect bit corresponding to the OTP
data page. Once the write-protect bit is set and the lock is in place, further
attempts to write to that page will not be allowed, resulting in an error.
Page protect bits can also be set in order to prevent programming of
unwritten OTP pages as well. Once an OTP page is page-protected, the
write protection can not be reversed and no further write accesses can be
made to the protected page(s).

There are four pages reserved for the write-protection bits. Pages 0x0
through 0x3 contain the 512 write-protect bits, one bit for each of the 512
data pages within OTP memory. The first two write-protect bit pages
(pages 0x0 and 0x1) correspond to the public (non-secure) regions of the
OTP map. The other two write-protect bit pages (0x2 and 0x3) corre-
spond to the protection of private (secure) regions of the OTP map. The
processor does not need to be operating in Secure Mode in order to be
able to program protection pages associated with secure OTP regions. All
protection bits can be written in any security state including Open Mode.

Note that while reads and writes access a half-page at a time, set-
ting a protection bit for a page will effectively lock an entire page
for future write accesses (lower and upper half page). The program-
mer must ensure that all required programming is completed on a
full 128-bit OTP data page prior to setting the write-protect bit for
that page. In other words, the programmer must make sure that a
full 128-bit OTP page is programmed, or that no future program-
ming is required to be performed to the unprogrammed portion of
the page before locking the page.

OTP Access

16-26 ADSP-BF54x Blackfin Processor Hardware Reference

If P is the OTP page that is needed to be write-protected, the write-protect
bit and its page can be calculated as follows:

Let WPP be the write-protect page where the write-protect bit resides and
let WPB be the write-protect bit that needs to be set in order to lock page P.

The write-protect page can be calculated by:

 WPP = P >> 7

and the write-protect bit can be calculated by:

 WPB = P & 0x7f.

Manual calculation is largely unnecessary due to the fact that the
bfrom_OtpWrite() function can be used to lock pages (see Programming
Examples section below for more details).

// lock page (note third parameter equals NULL)

return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

Locking a single ECC (error correction code) page results in locking the
correction codes which correspond to eight OTP data pages (16 half
pages). This is due to the fact that a 64-bit half-page access must be per-
formed when write protecting the ECC page and every 8-bits within an
ECC page is a parity correction code which corresponds to a 64-bit
half-page of data in OTP. Therefore, a full 128-bit ECC page holds the
correction codes for eight full 128-bit pages of data in OTP, or 16
half-pages. Pages can only be locked as full 128-bit pages even though
read/write accesses may occur at 64-bit half-page granularity. Locking a
single ECC page will prevent further write access to the corresponding
eight OTP data pages.

ECC (error correction code) space is not permitted to be written to
directly.

ADSP-BF54x Blackfin Processor Hardware Reference 16-27

One-Time Programmable Memory

For example, locking ECC page 0xFB will result in locking the error cor-
rection parity data associated with the 16 data pages in the range of
0x0D8 – 0x0DF.

// Only Lock ECC code page

return_code = bfrom_OtpWrite(0xFB, OTP_LOCK, NULL);

No further write accesses to the ECC page 0xFB or corresponding data
pages 0x0D8 – 0x0DF will be allowed following write protection of the
ECC page in this example.

Bits [3:0] of OTP page 0 are the write-protect bits for the first four
OTP pages, which contain the write-protect bits. If these bits are
set, it will prevent the other write-protect bits from being set, thus
disabling the write protection mechanism. But, this does not pre-
vent the user from programming the other user-programmable
OTP pages.

Accessing Private OTP Memory
In order to read or write to the private area of OTP memory, the processor
must be operating in Secure Mode and the OTPSEN bit within the
SECURE_SYSSWT register must be set to a value of 1 to enable secured OTP
access. (For information about Security, Secure Mode and the Secure
State Machine, see the Secure State Machine section of Chapter 15,
Security).

OTP Programming Examples

16-28 ADSP-BF54x Blackfin Processor Hardware Reference

OTP Programming Examples
To enable access to private OTP memory space while operating in Secure
Mode, use the code shown in Listing 16-4.

Listing 16-4. Enable access to private OTP

 // Enable private OTP access

 *pSECURE_SYSSWT = *pSECURE_SYSSWT | OTPSEN;

 ssync();
 ...

To enable access to private OTP memory space via OTPSEN while operating
in Secure Mode, use the code shown in Listing 16-5.

Listing 16-5. Enable access to private OTP and enable JTAG emulation in
Secure Mode

 // Enable JTAG and private OTP access

 *pSECURE_SYSSWT = *pSECURE_SYSSWT & (~EMUABL)) | OTPSEN;

 SSYNC(0);

 ...

ADSP-BF54x Blackfin Processor Hardware Reference 16-29

One-Time Programmable Memory

To read pages 0x4 through 0xDF in public OTP memory space and print
results to VisualDSP++ console, use the code shown in Listing 16-6.

Listing 16-6. Read pages 0x4 through 0xDF in public OTP memory space
and print results to VisualDSP++ console

 # include <blackfin.h>

 # include <bfrom.h>

 u32 return_code, i;
 u64 value;

 // initialize OTP timing parameter

 // Proper timing for VDDINT = 1v, CCLK, SCLK = 100MHz

 const u32 OTP_init_value = 0x0A009464;

 return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

 ...

 for (i= 0x004; i,0x0xE0; i++)
 {

 return_code = bfrom_OtpRead(i, OTP_LOWER_HALF, &value);
 printf(“page: 0x%03xL, Content ECC: 0x%01611x, returncode:
 0x%03x \n”, i, value, return_code);

 return_code = bfrom_OtpRead(i, OTP_UPPER_HALF, &value);

 printf(“page: 0x%03xH, Content ECC: 0x%01611x, returncode:
 0x%03x \n”, i, value, return_code);

 }

OTP Programming Examples

16-30 ADSP-BF54x Blackfin Processor Hardware Reference

To write and lock a single OTP page and return the results to the Visu-
alDSP++ console via printf, use the code shown in Listing 16-7.

Listing 16-7. Perform OTP write to a single page via two 64-bit
(half-page) accesses

 # include <blackfin.h>

 # include <bfrom.h>

 u64 value;
 u32 return_code;

 return_code = bfrom_OtpWrite(0x01C, OTP_LOWER_HALF |
 OTP_CHECK_FOR_PREV_WRITE, &testdata);

 printf(“WRITE page: 0x%03xL, Content ECC: 0x%01611x,
 returncode: 0x%03x \n”, 0x1C, testdata, return_code);

 return_code = bfrom_OtpWrite(0x01C, OTP_UPPER_HALF |

 OTP_CHECK_FOR_PREV_WRITE | OTP_LOCK, &testdata);

 printf(“WRITE page: 0x%03xH, Content ECC: 0x%01611x,
 returncode: 0x%03x \n”, 0x1C, testdata, return_code);

 }

Note that locking a page will lock the full 128-bit page whereas the exam-
ples shown above perform OTP access on a 64-bit half-page granularity.
This is the finest level of granularity that is allowed due to the OTP error
correction implementation. The page lock should occur only after both
the lower and upper portion of the page have been written. Note that the
page lock operation is performed on the second and final access to the
page in the code in Listing 16-7.

It may be desired to lock some specific OTP pages in a separate access
after writing of data values is already complete.

ADSP-BF54x Blackfin Processor Hardware Reference 16-31

One-Time Programmable Memory

OTP pages are typically locked in order to protect them from being over-
written or to prevent inadvertent or malicious tampering. This can be
performed by the following instructions in Listing 16-8:

Listing 16-8. Perform pure page lock operation without writing any data
values:

#include <blackfin.h>

#include <bfrom.h>

u64 value;

u32 return_code;

// initialize OTP timing parameter

// Proper timing for VDDINT = 1V, CCLK, SCLK = 100MHz

const u32 OTP_init_value = 0x0A009464;

return_code = bfrom_OtpCommand(OTP_INIT, OTP_init_value);

return_code = bfrom_OtpWrite(0x01C, OTP_LOCK, NULL);

OTP Programming Examples

16-32 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 17-1

17 SYSTEM RESET AND
BOOTING

This document contains material that is subject to change without notice.
The content of the boot ROM as well as hardware behavior may change
across silicon revisions. See the anomaly list for differences between silicon
revisions. This document describes functionality of silicon revision 0.2 of
the ADSP-BF542/ ADSP-BF544/ ADSP-BF547/ ADSP-BF548/
ADSP-BF549 (ADSP-BF54x) processors.

Overview
When the RESET input signal releases, the processor starts fetching and
executing instructions from the on-chip boot ROM at address
0xEF00 0000.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format called the boot stream. A
boot stream consists of multiple blocks of data and special commands that
instruct the boot kernel how to initialize on-chip L1 and L2 SRAM mem-
ories as well as off-chip volatile memories.

The boot kernel processes the boot stream block-by-block until it is
instructed by a special command to terminate the procedure and jump to
the application’s programmable start address, which traditionally is at
0xFFA0 0000 in on-chip L1 memory. This process is called “booting.”

Overview

17-2 ADSP-BF54x Blackfin Processor Hardware Reference

The processor features four dedicated input pins BMODE[3:0] that select
the booting mode. The boot kernel evaluates the BMODE pins and performs
booting from respective sources. Table 17-1 describes the modes of the
BMODE pins.

Table 17-1. Booting Modes

BMODE[3:0] Boot Source Description

0000 No boot - idle The processor does not boot. Rather, the boot
kernel executes an IDLE instruction.

0001 Boot from 8-bit or 16-bit
external flash memory

The kernel boots from address 0x2000 0000 in
asynchronous memory bank 0. The first byte of the
boot stream contains further instructions whether
the memory is eight or 16 bits wide.

0010 Boot from 16-bit
asynchronous FIFO

By using the handshaked memory DMA
(HMDMA1) feature through the DMAR1 input,
the kernel boots from address 0x2030 0000 in
asynchronous memory bank 3.

0011 Boot from serial SPI
memory

After an initial device detection routine, the kernel
boots from either 8-bit, 16-bit, 24-bit or 32-bit
addressable SPI flash or EEPROM memory that
connects to SPI0_SSEL1.

0100 Boot from SPI host In this slave mode, the kernel expects the boot
stream to be applied to SPI0 by an external host
device.

0101 Boot from serial TWI
memory

The kernel boots from TWI memory connected to
TWI0. Memory is expected to respond to the
unique slave identifier of 0xA0.

0110 Boot from TWI host In this slave mode, the kernel expects the boot
stream to be applied to TWI0 by an external host
device. The Blackfin processor uses the slave identi-
fier 0x5F.

0111 Boot from UART host In this slave mode, the kernel expects the boot
stream to be applied to UART1 by an external host
device. The UART1RTS output is active and con-
trolled by hardware. Prior to providing the boot
stream, the host device is expected to send a 0x40
(ASCII '@') character that is examined by the ker-
nel to adjust the bit rate.

ADSP-BF54x Blackfin Processor Hardware Reference 17-3

System Reset and Booting

1000 Reserved

1001 Reserved

1010 Boot from SDRAM memory1 This mode provides a quick warm boot option. It
requires the SDRAM controller to be programmed
by the preboot routine based on OTP settings. The
kernel starts booting from address 0x0000 0010.

1011 Boot from on-chip OTP memory This is the only stand-alone booting mode. It boots
from the on-chip serial OTP memory. By default,
the boot stream is expected to reside from OTP
page 0x40 on. The start page can be altered by pro-
gramming the OTP_START_PAGE field in OTP
page PBS01H.

1100 Reserved

1101 Boot from 8- and 16-bit NAND
flash

The boot kernel automatically detects whether an
8-bit small page device or an 8-/16-bit large page
device is connected to the NFC. The NAND flash
may optionally contain further initialization code
that enables some more advanced boot options.

1110 Boot from 16-bit Host DMA The kernel initializes the Host DMA unit to 16-bit
ACK mode. Boot stream parsing is up to the host
device. An HIRQ command causes the kernel to
issue a CALL to the address 0xFFA0 0000.

1111 Boot from 8-bit Host DMA The kernel initializes the Host DMA unit 8-bit
INT mode. Boot stream parsing is up to the host
device. An HIRQ command causes the kernel to
issue a CALL to the address 0xFFA0 0000.

1 This chapter uses the term SDRAM as a synonym for off-chip synchronous dynamic memory. For
the ADSP-BF54x products, SDRAM memory complies with either the DDR1 SDRAM or the Mo-
bile DDR1 SDRAM standard.

Table 17-1. Booting Modes (Cont’d)

BMODE[3:0] Boot Source Description

Reset and Power-up

17-4 ADSP-BF54x Blackfin Processor Hardware Reference

Reset and Power-up
There is a subroutine in the boot kernel known as "preboot", which is exe-
cuted prior to the boot mode being processed. This preboot routine can
customize default values of MMR registers, such as the PLL and SDRAM
controller registers. Furthermore, SPI and TWI master modes can be cus-
tomized. The preboot behavior is controlled through OTP programming.

To enable booting into volatile memories such as SDRAM, the SDRAM
controller must be programmed before data can be loaded into the mem-
ory. Either the preboot or the initialization code mechanism can be used
for this purpose.

Table 17-2 describes the six types of resets.

All resets described reset the core except for the System Software
reset.

Table 17-2. Resets

Reset Source Result

Hardware
reset

The RESET pin causes a
hardware reset.

Resets both the core and the peripherals, includ-
ing the dynamic power management controller
(DPMC).
Resets bits [15:4] of the SYSCR register. For
more information, see “System Reset Configura-
tion (SYSCR) Register” on page 17-109.

Wake up from
hibernate state

Wake-up event as enabled in
the VR_CTL register and
reported by the PLL_STAT
register.

Behaves as hardware reset except the WURESET
bit in the SYSCR register is set. Booting can be
performed conditionally on this event.

System software
reset

Calling the
bfrom_SysControl() routine
with the
SYSCTRL_SYSRESET
option triggers a system reset.

Resets only the peripherals, excluding the RTC
(real time clock) block and most of the DPMC.
The system software reset clears bits [15:13] and
bits [11:4] of the SYSCR register, but not the
WURESET bit. The core is not reset and a boot
sequence is not triggered. Sequencing continues
at the instruction after bfrom_SysControl()
returns.

ADSP-BF54x Blackfin Processor Hardware Reference 17-5

System Reset and Booting

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted after a specified asserted hold time to perform a
hardware reset. For more information, see the product data sheet.

Watchdog timer
reset

Programming the watchdog
timer causes a watchdog timer
reset.

Resets both the core and the peripherals, exclud-
ing the RTC block and most of the DPMC
(Because of the partial reset to the DPMC, the
watchdog timer reset is not functional when the
processor is in Sleep or Deep Sleep modes.).
The SWRST or the SYSCR register can be read
to determine whether the reset source was the
watchdog timer.

Core double-fault
reset

A core double fault occurs
when an exception happens
while the exception handler is
executing. If the core enters a
double-fault state, a reset can
be caused by unmasking the
DOUBLE_FAULT bit in the
SWRST register.

Resets both the core and the peripherals, exclud-
ing the RTC block and most of the DPMC. The
SWRST or SYSCR registers can be read to deter-
mine whether the reset source was a core dou-
ble-fault.

Software reset This reset is caused by execut-
ing a RAISE 1 instruction or
by setting the software reset
(SYSRST) bit in the core
debug control register
(DBGCTL) through emula-
tion software through the
JTAG port. The DBGCTL
register is not visible to the
memory map.

Program executions vector to the 0xEF00 0000
address. The boot code immediately a system
reset to ensure system for consistency.

Table 17-2. Resets (Cont’d)

Reset Source Result

Reset and Power-up

17-6 ADSP-BF54x Blackfin Processor Hardware Reference

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the state of the BMODE pins.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either VDDEXT or GND. The pins and the corresponding
bits in the SYSCR register configure the boot mode that is employed after
hardware reset or system software reset. See the Blackfin Processor Program-
ming Reference for further information.

Software Resets
A software reset may be initiated in three ways.

• By the watchdog timer, if appropriately configured

• Calling the bfrom_SysControl() API function residing in the
on-chip ROM. For further information, see Chapter 18, “Dynamic
Power Management”.

• By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals, as long as the
processor is in Active or Full-On mode. A system software reset results in a
reset of the peripherals without resetting the core and without initiating a
booting sequence.

In order to perform a system reset, the bfrom_SysControl() rou-
tine must be called while executing from L1 memory (either as
cache or as SRAM). When L1 instruction memory is configured as
cache, make sure the system reset sequence is read into the cache.

ADSP-BF54x Blackfin Processor Hardware Reference 17-7

System Reset and Booting

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by formatting the watchdog timer, the processor
transitions into the boot mode sequence. The boot mode is configured by
the state of the BMODE bit field in the SYSCR register.

A software reset is initiated by executing the RAISE 1 instruction or setting
the software reset (SYSRST) bit in the core debug control register (DBGCTL)
through emulation software through the JTAG port (DBGCTL is not visible
to the memory map).

A software reset only affects the state of the core. The boot kernel immedi-
ately issues a system reset to keep consistency with the system domain.

Reset Vector
When reset releases, the processor starts fetching and executing instruc-
tions from address 0xEF00 0000. This is the address where the on-chip
boot ROM resides.

On a hardware reset, the boot kernel initializes the EVT1 register to
0xFFA0 0000. When the booting process completes, the boot kernel
jumps to the location provided by the EVT1 vector register. With the
exception of the HOSTDP boot modes, the content of the EVT1 register is
overwritten by the target address field of the first block of the applied boot
stream. If the BCODE field of the SYSCR register is set to 3 (no boot option),
the EVT1 register is not modified by the boot kernel on software resets.
Therefore, programs can control the reset vector for software resets
through the EVT1 register. This process is illustrated by the flow chart in
Figure 17-1.

Reset and Power-up

17-8 ADSP-BF54x Blackfin Processor Hardware Reference

The content of the EVT1 register may be undefined in emulator sessions.

Figure 17-1. Global Boot Flow

START at
0xEF00 0000

Issue System Reset
(SWRST := 0x0007)

RESET

ELSE

HARDWARE

PREBOOT

BCODE

JUMP TO EVT1 VECTOR

BCODE_NOBOOT

PREPARE
ALLBOOT

(BFLAG_WAKEUP := 0)

PREPARE
QUICKBOOT

(BFLAG_WAKEUP := 1)

WAKEUP

BCODE
BCODE_QUICKBOOTELSE

ELSE
BOOT KERNEL

ADSP-BF54x Blackfin Processor Hardware Reference 17-9

System Reset and Booting

Servicing Reset Interrupts
The processor services a reset event like other interrupts. The reset inter-
rupt has top priority. Only emulation events have higher priority. When
coming out of reset, the processor is in supervisor mode and has full access
to all system resources. The boot kernel can be seen as part of the reset ser-
vice routine. It runs at the top interrupt priority level.

Even when the boot process has finished and the boot kernel passes con-
trol to the user application, the processor is still in the reset interrupt. To
enter user mode, the reset service routine must initialize the RETI register
and terminate with an RTI instruction.

For an example, see “System Reset” in the “Programming Examples” on
page 17-154.

The code examples in Listing 17-4 and Listing 17-3 on page 17-155 show
the instructions required to handle the reset event. See the Blackfin Proces-
sor Programming Reference for details on user and supervisor modes.

Systems that do not work in an OS environment may not enter user
mode. Typically, the interrupt level needs to be degraded down to IVG15.
Listing 17-4 and Listing 17-3 show how this is accomplished.

As the boot kernel is running at reset interrupt priority, NMI
events, hardware errors and exceptions are not served at boot time.
As soon as the reset service routine returns, the processor may ser-
vice the events that occurred during the boot sequence. It is
recommended that programs install NMI, hardware error, and
exception handlers before leaving the reset service routine. This
includes proper initialization of the respective event vector regis-
ters, EVTx.

Preboot

17-10 ADSP-BF54x Blackfin Processor Hardware Reference

Preboot
After reset, the boot kernel residing in the on-chip boot ROM does not
immediately start processing the boot stream. Rather, it first calls a sub-
routine called preboot, as shown in Figure 17-2 on page 17-16 and
Figure 17-3 on page 17-17. The preboot routine customizes the default
values of several system MMR registers based on user-configurable OTP
(one-time programmable) memory. The following modules can be cus-
tomized in this way.

• PLL and voltage regulator settings

• SDRAM controller settings

• Asynchronous EBIU settings

Some OTP bits customize the boot process:

• Bit rate of SPI and TWI master boot modes

• TWI master boot addressing scheme

• Activation of SPI fast read mode

• Boot host wait (HWAIT) signal

Further OTP bits let the user disable certain features of the processor:

• Individual boot modes (for security reasons)

Finally, certain bits are already preset in the factory:

• USB voltage trim

• Individual boot modes

ADSP-BF54x Blackfin Processor Hardware Reference 17-11

System Reset and Booting

Factory Page Settings (FPS)
The content of the boot ROM is identical across all ADSP-BF54x Black-
fin processors. The factory settings prevent the boot ROM from
accidentally accessing resources that are not present on a given processor,
which would result in unpredictable behavior and/or hardware errors. The
boot kernel goes to a safe idle state when the user configures the BMODE
pins to a boot mode that is not available on a specific part.

For this purpose, the preboot routine always reads the FPS01L and FPS01H
half pages from OTP memory. In addition, these half pages contain fac-
tory trim values for the USB PHY controller that are managed at preboot
time, as required.

In addition, the bfrom_SysControl() routine reads the half page FPS04H
and FPS04L to apply factory trim values to the voltage regulator and
SDRAM controller.

Preboot

17-12 ADSP-BF54x Blackfin Processor Hardware Reference

Preboot Page Settings (PBS)
Four OTP pages optionally enable the user to customize the behavior of
the processor immediately after reset. These four pages (eight half pages)
can be seen as one contiguous pre-boot settings (PBS) block. By default,
the block spans OTP pages 0x18 to 0x1B. The OTP pages serve the fol-
lowing purposes:

• PBS00L (by default, on half page 0x18L, see “Lower PBS00 Half
Page” on page 17-115 for details)

PLL and voltage regulator settings

Boot customization

Instruction whether to load further half pages

• PBS00H (by default, on half page 0x18H, see “Upper PBS00 Half
Page” on page 17-119 for details)

Asynchronous EBIU register settings

• PBS01L (by default on half page 0x19L)

Reserved

• PBS01H (by default, on half page 0x19H, see “Upper PBS01 Half
Page” on page 17-120 for details)

Disabling of boot modes

NFC controller register settings

OTP boot start page

• PBS02L (by default, on half page 0x1AL, see “Lower PBS02 Half
Page” on page 17-122 for details)

Synchronous EBIU register settings

ADSP-BF54x Blackfin Processor Hardware Reference 17-13

System Reset and Booting

• PBS02H (by default, on half page 0x1AH, see “Upper PBS02 Half
Page” on page 17-124 for details)

Synchronous EBIU register settings

• PBS03L (by default, on half page 0x1BL, see “Reserved Half
Pages” on page 17-126 for details)

Reserved in current silicon revision. Do not use.

• PBS03H (by default, on half page 0x1BH, see “Reserved Half
Pages” on page 17-126 for details)

Reserved in current silicon revision. Do not use.

The preboot routine reads the main page PBS00L first. Since this page may
instruct the preboot routine to alter the PLL settings, further pages may
read more quickly. This page also instructs the preboot whether further
OTP half pages have to be loaded and processed. By default, the PBS00L
page reads all zeroes, and the preboot does not load further PBS pages.

Alternative PBS Pages

Especially during the development cycle, the user may fail to write the
proper value to OTP memory and may make multiple attempts to get
things right. Therefore, the PBS00L page provides a mechanism to invali-
date the entire PBS block (consisting of pages (0x18, 0x19, 0x1A and
0x1B) and to use pages 0x1C to 0x1F instead. To do so, set the two
OTP_INVALID bits (bits 62 and 63 on the PBS00L page). If both bits are set,
the preboot routine disregards potential error codes returned by the
bfrom_OtpRead() routine and continues processing from page 0x1C on.
The active PBS block now spans the pages 0x1C to 0x1F. If the user wants
to invalidate the second set of OTP pages as well, setting bits 62 and 63
on page 0x1C (which is the new PBS00L half page) instructs the preboot
routine to continue at page 0x20, and so on.

Preboot

17-14 ADSP-BF54x Blackfin Processor Hardware Reference

Theoretically, this can be repeated up to page 0xD8L, if the pages are not
required for other purposes. There are 49 chances to get things right,
before a device may become useless. Note that every page that needs to be
read by the preboot routine causes additional delay to the boot process.

Programming PBS Pages

Due to the need for ECC error correction, a 64-bit OTP half page must
be written all at once . It is recommended that PBS pages be programmed
only through the API function bfrom_OtpWrite().

If it is anticipated that the user is customizing the boot-related
OTP pages for safety or security reasons, it is recommended that all
PBS blocks be locked at production time to protect these pages
from being tampered with in the field.

Reading OTP memory is subject to a potential failure rate. Since
the preboot only accesses OTP memory through the
bfrom_OtpRead() function, the ECC error correction is applied and
the statistical failure rate is very low. However, the way the PBS00L
page is tested for being invalid may at some point reduce the ECC
reliability. To keep failure rates at a minimum, it is a good idea to
duplicate the content of pages 0x18–0x1B on pages 0x1C–0x1F.
For production parts, the final block should be followed by its
exact copy to maintain the lowest failure rates. Then, even the
unlikely case where one of the OTP_INVALID bits is read incorrectly
would not cause the boot to fail.

Recovering From Misprogrammed PBS Pages

The preboot mechanism provides a powerful method to customize the
chip to the needs of the user. However, as a downside, there are chances
that invalid values programmed to the PBS pages prevent the processor
from operating within required operating conditions. There is specific risk
when the PLL and the voltage regulator are programmed with meaningless
values during the development cycle.

ADSP-BF54x Blackfin Processor Hardware Reference 17-15

System Reset and Booting

In such cases, the boot mode BMODE = b#0000 helps. In this mode, the pre-
boot routine does not attempt to read any of the user-programmable PBS
pages, and the boot kernel does not try to boot any data. Rather, the pro-
cessor is idled immediately after the FPS pages have been processed. Using
the in-circuit emulator, the user then has the option to invalidate the
actual PBS settings by overwriting both OTP_INVALID bits in the actual
PBS00L with 1s.

For safety reasons, none of the boot modes, except the emulator, can get
control over the processor when in this state.

Customizing Power Management

When the processor awakes with default PLL and voltage regulator set-
tings, the preboot mechanism can be used to alter these settings to custom
values before the boot process takes place. This is done by programming
the OTP half page PBS00L.

If the OTP_SET_PLL bit is programmed to a 1, the value in the OTP_PLL_DIV
bit field is copied into the PLL_DIV register, and the OTP_PLL_CTL bit field
is copied into the PLL_CTL register, followed by the required IDLE instruc-
tion (if the contents of PLL_CTL are being altered).

If the OTP_SET_VR bit is programmed to a 1, the value in the OTP_VR_CTL
bit field is copied into the VR_CTL register, followed by the required IDLE
instruction (if the contents of VR_CTL are being altered).

The preboot mechanism invokes the bfrom_SysControl() routine to alter
the PLL and the voltage regulator. The bfrom_SysControl() routine not
only performs custom instructions, it also applies correction values from
factory OTP pages FPS01 and FPS04. See Chapter 18, “Dynamic Power
Management” for details on the bfrom_SysControl() routine.

Preboot

17-16 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-2. Preboot Flow 1 of 2

RESET

OTP_SET_VR

SYSCTRL_WRITE := 1
CALL SysControl ()

BCODE

Load Page N
PBS00L

NO
VALID

N = 0x18

N = N + 4

N
>= 0xDC< 0xDC

YES

BMODE

HARDWARE

WAKEUP

SYSCTRL_PLLCTL := 0
SYSCTRL_PLLDIV := 0

0

> 0

0

1

ELSE

IDLE

TO PREBOOT PAGE 2

PREBOOT

SYSCTRL_PLLCTL := OTP_SET_PLL
SYSCTRL_PLLDIV := OTP_SET_PLL

 pPS->uwPllCtl := OTP_PLL_CTL
pPS->uwPllDiv := OTP_PLL_DIV

SYSCTRL_VR_CTL := OTP_SET_VR
 pPS->uwVrCtl := OTP_VRCTL

BCODE_NORMAL or
BCODE_FULLBOOT

SYSCTRL_OTPVOLTAGE := 1
SYSCTRL_VRCTL := 1

pPS->uwVrCtl := VRCTL

ADSP-BF54x Blackfin Processor Hardware Reference 17-17

System Reset and Booting

Figure 17-3. Preboot Flow 2 of 2

FROM PREBOOT PAGE 1

HWAIT Initialization

FPS01 Processing

Save SPI and TWI
Boot Instructions

LOAD_
PBS01H

BMODE

Manage NFC and
OTP boot start page

0 OR DISABLED

IDLE

VALID

LOAD_
PBS02L

Initialize SDRAM
Controller

LOAD_
PBS00H

Initialize Async
Controller

RETURN TO MAIN

0

0

0

1

1

1

Preboot

17-18 ADSP-BF54x Blackfin Processor Hardware Reference

Customizing Booting Options

The OTP pages accessible by the preboot mechanism can also be used to
customize some of the booting options. For example:

• TWI master boot mode operating frequency

• SPI master boot mode operating frequency

• SPI master boot mode read operation mode

• Start page for OTP boot mode

• HWAIT signal behavior

• Disabling of unwanted boot modes

In TWI master boot mode, the OTP_TWI_PRESCALE and OTP_TWI_CLKDIV
values in the preboot half page PBS00L control the respective prescale and
clock divider values written to the TWIx_CONTROL and TWIx_CLKDIV regis-
ters. The table of values can be found in “TWI Master Boot Mode” on
page 17-79. The bit field OTP_TWI_TYPE controls whether one, two, three
or four address bytes are used to address the I2C memory device. By
default, two address bytes are used. The address bits embedded in the read
command are not counted.

In SPI master boot mode, the OTP_SPI_BAUD register in the preboot half
page PBS00L controls the value written to the SPIx_BAUD registers. By
default, the clock divider value of 133 can be reduced in power-of-two
steps. The table of values can be found in “SPI Master Boot Mode” on
page 17-70. The OTP_SPI_BAUD bit instructs the boot kernel to use the
0x0B SPI read command instead of the normal 0x03 read command when
accessing the SPI memory device.

In OTP boot mode, the boot kernel normally assumes that the boot
stream starts at OTP page 0x40L. The user can change this start page by
programming the OTP_START_PAGE bit field in the preboot half page
PBS01H.

ADSP-BF54x Blackfin Processor Hardware Reference 17-19

System Reset and Booting

The boot host wait (HWAIT) signal is available in all boot modes. If the
OTP_RESETOUT_HWAIT bit in the preboot half page PBS00L is set, the boot
kernel does not toggle HWAIT. Rather, it simply drives it to simulate a reset
output signal.

If the OTP_ALTERNATE_HWAIT bit in the same half page is set, the alternate
GPIO pin (HWAITA) is used instead of HWAIT.

If safety or security of an application is impacted by the existence of cer-
tain boot modes, the boot mode disable bits in preboot half page PBS01H
can be used to disable unwanted boot modes. For example, setting the
BMODE15_DIS and BMODE14_DIS bits disables the two Host DMA boot
modes. If a disabled boot mode is chosen by the BMODE pins, the boot ker-
nel goes into a safe idle state and stops processing. The half page PBS01H is
only loaded when the OTP_LOAD_PBS01H bit in the PBS00L page is set.

Customizing the Asynchronous Port

The preboot half page PBS00H contains instructions to customize the asyn-
chronous portion of the EBIU controller. This half page is only loaded
and processed when the OTP_LOAD_PBS00H bit in the PBS00L half page is
programmed to a 1.

The OTP_EBIU_AMG field is copied into the EBIU_AMGCTL register. While the
lower bit controls the CLKOUT signal, the upper three AMBEN bits control
which of the four asynchronous banks are enabled. For the FIFO boot
mode, the three AMBEN bits are overruled and are all always set.

The preboot routine analyzes the three AMBEN bits and initializes the 16-bit
portions (this routine is similar to the enabled banks in the EBIU_AMBCTL0
and EBIU_AMBCTL1 registers) with the value provided in the 16-bit
OTP_EBIU_AMBCTL field. In this way, the bus timing of the synchronous
port can be customized prior to the boot process.

Preboot

17-20 ADSP-BF54x Blackfin Processor Hardware Reference

Half page PBS00H also contains the 16-bit OTP_EBIU_FCTL field which is
copied directly to the EBIU_FCTL register.

Make sure that all bits in the OTP_EBIU_FCTL field that corre-
spond with reserved bits in the EBIU_FCTL register are written
with 0s.

The preboot routine ensures that a zero value is never written to the BCLK
bit field.

The 8-bit value OTP_EBIU_MODE field is copied to the lower eight bits of the
EBIU_MODE register. If any of the four memory banks has its BxMODE field
set to a value of three, a device initialization sequence can be performed.
All four banks are temporarily put into the asynchronous flash mode, and
the four-bit OTP_EBIU_DEVSEQ field controls which sequence is performed.
The 16-bit OTP_EBIU_DEVCFG word is part of the initialization sequence.
Such a sequence is usually required to activate the bursting mode on
multi-mode memories. Currently, the vendor-specific sequences shown in
Table 17-3 are supported.

Table 17-3. Burst NOR Flash Initialization Sequences

OTP_EBIU_DEVSEQ=2 OTP_EBIU_DEVSEQ=4 OTP_EBIU_DEVSEQ=6

Atmel, Intel, ST (16-bit) Spansion (16-bit) Samsung (16-bit)

w[OTP_EBIU_DEVCFG<<1] = 0x60 w[0x555<<1] = 0xAA w[0x555<<1] = 0xAA

w[OTP_EBIU_DEVCFG<<1] = 0x03 w[0x2AA<<1] = 0x55 w[0x2AA<<1] = 0x55

w[0] = 0xFF w[0x555<<1] = 0xD0 w[(OTP_EBIU_DEVCFG[6:0]
<<12 | 0x555)<<1] = 0xC0

w[0x000] =
OTP_EBIU_DEVCFG

w[0x000] = 0xF0

w[0x000] = 0xF0

ADSP-BF54x Blackfin Processor Hardware Reference 17-21

System Reset and Booting

Whenever the PBS00H half page is processed, all EBIU signals that belong
to the interface are enabled at the port muxing level. This includes the
address pins on port H and port J, as well as the ARDY and bus request sig-
nals on port J. In flash boot mode, these signals are activated regardless of
the OTP programming.

Finally, the 8-bit OTP_NFC_CTL field in the PBS01H half page initializes the
eight least significant bits of the NFC_CTL register.

Customizing the Synchronous Port

Since many Blackfin applications require data and/or instruction code to
be loaded into the SDRAM memory at boot time, the SDRAM controller
must be initialized beforehand. This can be done by using either the “Ini-
tialization Code” on page 17-39 or the preboot mechanism described
here. For the SDRAM boot mode, only the preboot mechanism is valid.

If the OTP_LOAD_PBS02L and OTP_LOAD_PBS02H bits in the PBS00L half page
have been programmed to a 1, then the two preboot half pages PBS02L and
PBS02H are also loaded and processed. These half pages initialize the
SDRAM controller.

Half page PBS02L contains the two 32-bit values OTP_EBIU_DDRCTL0 and
OTP_EBIU_DDRCTL1 that are directly copied into the EBIU_DDRCTL0 and
EBIU_DDRCTL1 SDRAM control registers, respectively.

Half page PBS02H contains the three 16-bit values OTP_EBIU_DDRCTL2L,
OTP_EBIU_DDRCTL3L and OTP_EBIU_DDRQUEL that are copied into the lower
16 bits of the respective EBIU_DDRCTL2, EBIU_DDRCTL3 and EBIU_DDRQUE
registers.

Basic Booting Process

17-22 ADSP-BF54x Blackfin Processor Hardware Reference

Basic Booting Process
Once the preboot routine returns, the boot kernel residing in the on-chip
boot ROM starts processing the boot stream. The boot stream is either
read from memory or received from a host processor. A boot stream repre-
sents the application data and is formatted in a special manner. The
application data is segmented into multiple blocks of data. Each block
begins with a block header. The header contains control words such as the
destination address and data length information.

As Figure 17-4 illustrates, the VisualDSP++ tools suite features a loader
utility (elfloader.exe). The loader utility parses the input executable file
(.DXE), segments the application data into multiple blocks, and creates the
header information for each block. The output is stored in a loader file
(.LDR). The loader file contains the boot stream and is made available to

ADSP-BF54x Blackfin Processor Hardware Reference 17-23

System Reset and Booting

hardware by programming or burning it into non-volatile external mem-
ory. Refer to the VisualDSP++ Loader Manual for information on switches
for loader files.

Figure 17-5 shows the parallel or serial boot stream contained in a flash
memory device. In host boot scenarios, the non-volatile memory more
likely connects to the host processor rather than directly to the Blackfin
processor. After reset, the headers are read and parsed by the on-chip boot

Figure 17-4. Project Flow for a Standalone System

PROCESSOR

BOOTING
UPON RESET

EXTERNAL
MEMORY

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER
LINKER LOADER

.ASM/.C/.CPP .DOJ(s) .DXE(s)

TARGET SYSTEM

.LDR

B

Basic Booting Process

17-24 ADSP-BF54x Blackfin Processor Hardware Reference

ROM, and processed block-by-block. Payload data is copied to destina-
tion addresses, either in on-chip L1 and L2 memory or off-chip
SRAM/SDRAM.

Booting into scratchpad memory (0xFFB0 0000–0xFFB0 0FFF) is
not supported. If booting to scratchpad memory is attempted, the
processor hangs within the on-chip boot ROM. Similarly, booting
into the upper 16 bytes of L1 data bank A (0xFF80 7FF0–
0xFF80 7FFF by default) is not supported. These memory loca-
tions are used by the boot kernel for intermediate storage of block
header information. These memory regions cannot be initialized at
boot time. After booting, they can be used by the application dur-
ing run time.

When the BFLAG_INDIRECT flag for any block is set, as in TWI boot modes,
the boot kernel uses another memory block in L1 data bank B (by default,
0xFF90 7E00–0xFF90 7FFF) for intermediate data storage. To avoid con-
flicts, the VisualDSP++ elfloader utility ensures this region is booted
last.

Figure 17-5. Booting Process

16-BYTE HEADER FOR BLOCK 1

BLOCK 1

16-BYTE HEADER FOR BLOCK 2

BLOCK 2

16-BYTE HEADER FOR BLOCK 3

BLOCK n

. . .

16-BYTE HEADER FOR BLOCK n

BLOCK 3

FLASH/PROM

APPLICATION
CODE/DATA

BLOCK 2

SDRAM

PROCESSOR

ON-CHIP
BOOT ROM

BLOCK 1
BLOCK 3

LI MEMORY

0xEF00 0000

.LDR FILE

B

ADSP-BF54x Blackfin Processor Hardware Reference 17-25

System Reset and Booting

The entire source code of the boot ROM is shipped with the
VisualDSP++ tools installation. Refer to the source code for any addi-
tional questions not covered in this manual. Note that minor maintenance
work may be done to the content of the boot ROM when silicon is
updated.

Block Headers
A boot stream consists of multiple boot blocks, see Figure 17-6. Every
block is headed by a 16-byte block header. However every block does not
necessarily have a payload, as shown in Figure 17-32 on page 17-93.

The 16 bytes are functionally grouped into four 32-bit words, the block
code, the target address, the byte count, and the argument fields.

Basic Booting Process

17-26 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-6. Boot Stream Headers

BLOCK 0 HEADER

BLOCK 0 PAYLOAD

BLOCK 1 HEADER

BLOCK 2 HEADER

BLOCK 2 PAYLOAD

BLOCK CODE

TARGET ADDRESS

BYTE COUNT

ARGUMENT

OFFSET 0X0000

OFFSET 0X0004

OFFSET 0X0008

OFFSET 0X000C

0123

4567

891011

12131415

ADSP-BF54x Blackfin Processor Hardware Reference 17-27

System Reset and Booting

Block Code

The first 32-bit word is the block code field. See Figure 17-7.

The DMA code (DMACODE) field instructs the boot kernel whether to use
8-bit, 16-bit or 32-bit DMA and how to program the source modifier of a
memory DMA. Particularly in case of memory boot modes, this field is
interrogated by the boot kernel to differentiate the 8-bit, 16-bit, and
32-bit cases.

Figure 17-7. Block Code, 31-0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 0 1 1 0 1 0 0 0 0 0 0 01 0

HDRCHK - Header XOR Checksum

Block Code, 31-16

 HDRSIGN - Header Sign

Block Code, 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICKBOOT

BFLAG_FILL

DMACODE - DMA Coding

BFLAG_SAVE

BFLAG_AUX

Basic Booting Process

17-28 ADSP-BF54x Blackfin Processor Hardware Reference

The boot kernel tests this field only on the first block and ignores the field
in further blocks (See Table 17-4).

Table 17-4. Bus and DMA Width Coding

DMA Code DMA Width Source DMA
Modify

Application

0 reserved1

1 Reserved to differentiate from ADSP-BF53x boot streams.

1 8-bit 1 Default 8-bit boot from 8-bit source2

2 Used by all byte-wise serial boot modes.

2 8-bit 2 Zero-padded 8-bit boot from 16-bit EBIU

3 8-bit 4 Zero-padded 8-bit boot from 32-bit EBIU3

3 Applicable only for boot from SDRAM and boot from internal ROM.

4 8-bit 8 Zero-padded 8-bit boot from 64-bit EBIU4

4 Not supported by ADSP-BF54x Blackfin products.

5 8-bit 16 Zero-padded 8-bit boot from 128-bit EBIU4

6 16-bit 2 Default 16-bit boot from 16-bit source5

5 This is the only code supported by NAND flash boot.

7 16-bit 4 Zero-padded 16-bit boot from 32-bit EBIU3

8 16-bit 8 Zero-padded 16-bit boot from 64-bit EBIU4

9 16-bit 16 Zero-padded 16-bit boot from 128-bit EBIU4

10 32-bit 4 Default 32-bit boot from 32-bit source3,5

11 32-bit 8 Zero-padded 32-bit boot from 64-bit EBIU4

12 32-bit 16 Zero-padded 32-bit boot from 128-bit EBIU4

13 64-bit 8 Default 64-bit boot from 64-bit source4

14 64-bit 16 Zero-padded 64-bit boot from 128-bit EBIU4

15 128-bit 16 Default 128-bit boot from 128-bit source4

ADSP-BF54x Blackfin Processor Hardware Reference 17-29

System Reset and Booting

Table 17-5. Block Flags

Bit Name Description

4 BFLAG_SAVE Saves the memory of this block to off-chip memory in case of
power failure or a hibernate request. This flag is not used by the
on-chip boot kernel.

5 BFLAG_AUX Nests special block types as required by special-purpose sec-
ond-stage loaders. This flag is not used by the on-chip boot kernel.

6 Reserved

7 Reserved

8 BFLAG_FILL Tells the boot kernel to not process any payload data. Instead the
target memory (specified by the TARGET ADDRESS and BYTE
COUNT fields) is filled with the 32-bit value provided by the
ARGUMENT word. The fill operation is always performed by
32-bit DMA. Therefore target address and byte count must be
divisible by four.

9 BFLAG_QUICKBOOT Processes the block for full boot only. Does not process this block
for a quick boot (warm boot).

10 BFLAG_CALLBACK Calls a subfunction that may reside in on-chip or off-chip ROM or
is loaded by an initcode in advance. Often used with the
BFLAG_INDIRECT switch. If BFLAG_CALLBACK is set for any
block, an initcode must register the callback function first. The
function is called when either the entire block is loaded or the
intermediate storage memory is full. The callback function can do
advanced processing such as CRC checksum.

Basic Booting Process

17-30 ADSP-BF54x Blackfin Processor Hardware Reference

The BFLAG_FIRST flag must not be combined with the BFLAG_FILL flag.
The BFLAG_FIRST flag may be combined with the BFLAG_IGNORE flag to
deposit special user data at the top of the boot stream. Note the special
importance of the VisualDSP++ elfloader –readall switch.

11 BFLAG_INIT This flag causes the boot kernel to issue a CALL instruction to the
target address of the boot block after the entire block is loaded.
The initcode should return by an RTS instruction. It may or may
not be overwritten by application data later in the boot process. If
the code is loaded earlier or resides in ROM, the init block can be
zero sized (no payload).

12 BFLAG_IGNORE Indicates a block that is not booted into memory. It instructs the
boot kernel to skip the number of bytes of the boot stream as spec-
ified by BYTE COUNT. In master boot modes, the boot kernel
simply modifies its source address pointer. In this case the BYTE
COUNT value can be seen as a 32-bit two’s-complement offset
value to be added to the source address pointer. In slave boot
modes, the boot kernel actively loads and changes the payload of
the block. In slave modes the BYTE COUNT must be a positive
value.

13 BFLAG_INDIRECT Boots to an intermediate storage place, allowing for calling an
optional callback function, before booting to the destination. This
flag is used when the boot source does not have DMA support
(TWI for example) and either the destination cannot be accessed
by the core (L1 instruction SRAM) or cannot be efficiently
accessed by the core (SDRAM or RAM). This flag is also used
when CALLBACK requires access to data to calculate a checksum,
or when performing tasks such as decryption or decompression.

14 BFLAG_FIRST This flag, which is only set on the first block of a DXE, tells the
boot kernel about the special nature of the TARGET ADDRESS
and the ARGUMENT fields. The TARGET ADDRESS field holds
the start address of the application. The ARGUMENT field holds
the offset to the next DXE.

15 BFLAG_FINAL This flag causes the boot kernel to pass control over to the applica-
tion after the final block is processed. This flag is usually set on the
last block of a DXE unless multiple DXEs are merged.

Table 17-5. Block Flags (Cont’d)

Bit Name Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-31

System Reset and Booting

The header checksum (HDRCHK) field holds a simple XOR checksum of the
other 31 bytes in the boot block header. The header signature (HDRSGN)
byte always reads as 0xAD and is used to verify whether the block pointer
actually points to a valid block. The boot kernel jumps to the error routine
if the result of an XOR operation across all 32 header bytes (including the
HDRCHK value) differs from zero. The default error routine is a simple IDLE;
instruction. The user can overwrite the default error handler using the
initcode mechanism.

The HDRSGN byte can also be used as a boot stream version control. For the
ADSP-BF54x and ADSP-BF52x Blackfin processors, the byte always reads
0xAD. The ADSP-BF53x boot streams always read 0xFF. The
ADSP-BF561 boot streams always read 0xA0.

Target Address

This 32-bit field holds the target address where the boot kernel loads the
block payload data. When the BFLAG_FILL flag is set, the boot kernel fills
the memory with the value stored in the argument field starting at this
address. If the BFLAG_INIT flag is set the kernel issues a CALL(TARGET
ADDRESS) instruction after the optional payload is loaded.

If the BFLAG_FIRST flag is set, the target address field contains the start
address of the application to which the boot kernel jumps at the end of the
boot process. This address will also be stored in the EVT1 register. By
default the VisualDSP++ elfloader utility sets this value to 0xFFA0 0000
for compatibility with other Blackfin products.

The target address should be divisible by four, because the boot kernel
uses 32-bit DMA for certain operations. The target address must point to
valid on-chip or off-chip memory locations. When booting to external
memories, the memory controller must first be set up by either the pre-
boot or the initcode mechanism. When booting through peripherals that
do not support DMA transfers, such as TWI boot modes, the

Basic Booting Process

17-32 ADSP-BF54x Blackfin Processor Hardware Reference

BFLAG_INDIRECT flag must be set if the target address points to L1 instruc-
tion memory. For performance reasons this is also recommended when
booting to off-chip memories.

For a TWI boot the VisualDSP++ elfloader utility manages the
BFLAG_INDIRECT flag automatically. Refer to the VisualDSP++ Loader and
Utilities reference guide for manual control of the flag.

Booting to scratchpad memory is not supported. The scratchpad
memory functions as a stack for the boot kernel. The L1 data mem-
ory locations 0xFF80 7FF0 to 0xFF80 7FFF are used by the boot
kernel and should not be overwritten by the application. The mem-
ory range used for intermediate storage as controlled by the
BFLAG_INDIRECT switch should only be booted after the last
BFLAG_INDIRECT bit is processed. By default the address range
0xFF90 7E00–0xFF90 7FFF is used for intermediate storage.

For normal boot operation, the target address points to RAM memory.
There are however a few exceptions where the target address can point to
on-chip or off-chip ROM. For example a zero-sized BFLAG_INIT block
would instruct the boot kernel to CALL a subroutine residing in ROM or
flash memory. This method is used to activate the CRC32 feature.

Byte Count

This 32-bit field tells the boot kernel how many bytes to process. Nor-
mally, this is the size of the payload data of a boot block. If the
BFLAG_FILL flag is set there is no payload. In this case the byte count field
uses the value in its argument field to tell the boot kernel how many bytes
to process.

The byte count is a 32-bit value that should be divisible by four. Zero val-
ues are allowed in all block types. Most boot modes are based upon DMA
operation which are only 16-bit words for Blackfin processors. The boot
kernel may therefore start multiple DMA work units for large boot blocks.

ADSP-BF54x Blackfin Processor Hardware Reference 17-33

System Reset and Booting

This enables a single block to fill to zero the entire SDRAM memory, for
example, resulting in compact boot streams. The HWAIT signal may toggle
for each work unit.

If the BFLAG_IGNORE flag is set, the byte count is used to redirect the boot
source pointer to another memory location. In master boot modes, the
byte count is a two’s-complement (signed long integer) value. In slave
boot modes, the value must be positive.

Argument

This 32-bit field is a user variable for most block types. The value is acces-
sible by the initcode or the callback routine and can therefore be used for
optional instructions to these routines. When the CRC32 feature is acti-
vated, the argument field holds the checksum over the payload of the
block.

When the BFLAG_FILL flag is set there is no payload. The argument con-
tains the 32-bit fill value, which is most likely a zero.

If the BFLAG_FIRST flag is set, the argument contains the relative
next-DXE pointer for multi-DXE applications. For single-DXE applica-
tions the field points to the next free boot source address after the current
DXE’s boot stream.

Boot Host Wait (HWAIT) Feedback Strobe
The HWAIT feedback strobe is a handshake signal that is used to hold off
the host device from sending further data while the boot kernel is busy.

On ADSP-BF54x processors this feature is implemented by a GPIO that
is toggled by the boot kernel as required. By default the PB11 GPIO is used
for this purpose. If the OTP_ALTERNATE_HWAIT fuse in OTP memory page
PBS00L is programmed, the boot kernel uses the PH7 GPIO instead.

Basic Booting Process

17-34 ADSP-BF54x Blackfin Processor Hardware Reference

The signal polarity of the HWAIT strobe is programmable by an external
resistor in the 10 kΩ range.

A pull-up resistor instructs the HWAIT signal to be active high. In this case
the host is permitted to send header and footer data when HWAIT is low,
but should pause while HWAIT is high. This is the mode used in SPI slave
boot on other Blackfin products.

Similarly, a pull-down resistor programs active-low behavior.

Note that the HWAIT signal is implemented slightly differently than
on ADSP-BF53x Blackfin processors. In the ADSP-BF54x proces-
sors, the meaning of the pulling resistor is inverted and HWAIT is
asserted by default during reset and preboot.

After preboot, the boot kernel first senses the polarity on the respective
HWAIT pin. Then it enables the output driver but keeps the signal in its
asserted state. The signal is not released until the boot kernel is ready for
data, or when a receive DMA is started. As soon as the DMA completes,
HWAIT becomes active again.

The boot host wait signal holds the host from booting in any slave boot
mode and prevents it from being overrun with data. The HWAIT signal is,
however, available in all boot modes with the exception of the NAND
boot mode. In some cases it is redundant to other handshake mechanisms,
such as the UART RTS signal.

In general the host device must interrogate the HWAIT signal before every
word that is sent. This requirement can be relaxed for boot modes using
on-chip peripherals that feature larger receive FIFOs. However, the host
must not rely on the DMA FIFO since its content is cleared at the end of
a DMA work unit.

ADSP-BF54x Blackfin Processor Hardware Reference 17-35

System Reset and Booting

While the HWAIT signal is only used for boot purposes, it may also play a
significant role after booting. In slave boot modes, for example, the host
device does not necessarily know whether the Blackfin processor is in an
active mode or a power-down mode. For example, the HWAIT signal can be
used to signal when the processor is in hibernate mode.

Using HWAIT as RESETOUT Indicator

While the HWAIT signal is mandatory in some boot modes, it is optional in
others. When not required for booting, the behavior of the HWAIT signal
(or alternate HWAIT signal) can be changed by programming the
OTP_RESETOUT_HWAIT bit in OTP page PBS00L.

If this bit is set, HWAIT does not toggle during the boot process. Rather,
after page PBS00L is processed (and therefore the PLL has settled) the pre-
boot routine first enables the HWAIT GPIO as an input and senses its state.
Then HWAIT becomes an output and is driven to the invert of the state that
is sensed. An external pulling resistor is required. If using a pull-up resis-
tor, the HWAIT signal is driven low for the rest of the boot process (and
beyond). If using a pull-down resistor, HWAIT is driven high.

With a pull-down resistor, this feature can be used to simulate a active-low
reset output. When the processor is reset, or in hibernate, the GPIO is in a
high impedance state and HWAIT is pulled low by the resistor. As soon as
the processor recovers and has settled the PLL again, the HWAIT is driven
high and can alert external circuits.

Boot Termination
After the successful download of the application into the bootable mem-
ory, the boot kernel passes control to the user application. By default this
is performed by jumping to the vector stored in the EVT1 register. The
boot kernel provides options to execute an RTS instruction or a RAISE 1
instruction instead. The default behavior can be changed by an initcode

Basic Booting Process

17-36 ADSP-BF54x Blackfin Processor Hardware Reference

routine. The EVT1 register is updated by the boot kernel when processing
the BFLAG_FIRST block. See “Servicing Reset Interrupts” on page 17-9 to
learn how the application can take control.

Before the boot kernel passes program control to the application it does
some housekeeping. Most of the registers that were used are changed back
to their default state but some register values may differ for individual
boot modes. DMA configuration registers and primary register control
registers (UARTx_LCR, SPIx_CTL, HOST_CONTROL, etc.) are restored, while
others are purposely not restored. For example SPIx_BAUD, UARTx_DLH and
UARTx_DLL remain unchanged so that settings obtained during the booting
process are not lost.

Single Block Boot Streams
The simplest boot stream consists of a single block header and one contig-
uous block of instructions. With appropriate flag instructions the boot
kernel loads the block to the target address and immediately terminates by
executing the loaded block.

Table 17-6 shows an example of an single block boot stream header that
could be loaded from any serial boot mode. It places a 256-byte block of
instructions at L1 instruction SRAM address 0xFFA1 0000. The flags
BFLAG_FIRST and BFLAG_FINAL are both set at the same time. Advanced
flags, such as BFLAG_IGNORE, BFLAG_INIT, BFLAG_CALLBACK and
BFLAG_FILL, do not make sense in this context and should not be used.

Table 17-6. Header for a Single Block Boot Stream

Field Value Comments

BLOCK CODE
(DMACODE & 0x1)

0xAD32 0001 0xAD00 0000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST |

TARGET ADDRESS 0xFFA0 0000 Start address of block and application code

BYTE COUNT 0x0000 0100 256 bytes of code

ARGUMENT 0x0000 0100 Functions as next-DXE pointer in multi-DXE boot streams

ADSP-BF54x Blackfin Processor Hardware Reference 17-37

System Reset and Booting

With the BFLAG_FIRST flag set, the ARGUMENT field functions as the
next-DXE pointer. This is a relative pointer to the next free source address
or to the next DXE start address in a multi-DXE stream.

Direct Code Execution

Applications may want to avoid long booting times and start code execu-
tion directly from 16-bit flash or SDRAM memory. This feature is called
direct code execution. This is a special case of boot termination that
replaces the no-boot/bypass mode in the ADSP-BF53x Blackfin
processors.

An initial boot block header is needed for the processor to fetch and exe-
cute program code from the boot device as early as possible. The safety
mechanisms of the block, such as the header signature and the XOR
checksum, avoid unpredictable processor behavior due to the boot mem-
ory not being programmed with valid data yet. Rather than blindly
executing code, the boot kernel first executes the preboot routine for sys-
tem customization, then loads the first block header and checks it for
consistency. If the block header is corrupted, the boot kernel goes into a
safe idle state and does not start code execution.

If the initial block header checks good, the boot kernel interrogates the
block flags. If the block has the BFLAG_FINAL flag set, the boot kernel
immediately terminates and jumps directly to the address stored in the
EVT1 register. To cause the boot kernel to customize the EVT1 register in
advance, the initial blocks must also have the BFLAG_FIRST flag set. The
target address field is then copied to the EVT1 register. In this way, the tar-
get address field of the initial block defines the start address of the
application.

For example in BMODE = 1, when the block header described in Table 17-7
on page 17-38 is placed at address 0x2000 0000, the boot kernel is
instructed to issue a JUMP command to address 0x2000 0020.

Basic Booting Process

17-38 ADSP-BF54x Blackfin Processor Hardware Reference

The development tools must be instructed to link the above block to
address 0x2000 0000 and the application code to address 0x2000 0020.
An example shown in “Direct Code Execution” on page 17-164 illustrates
how this is accomplished using the VisualDSP++ tools suite.

Similarly for direct code execution in the SDRAM boot mode
(BMODE = 10), an initial block as shown in Table 17-8 has to be linked to
address 0x0000 0010.

For multi-DXE boot streams, Figure 17-11 on page 17-60 shows a linked
list of initial blocks that represent different applications.

Table 17-7. Initial Header for Direct Code Execution in BMODE = 1

Field Value Comments

BLOCK CODE 0xAD7B D006 0xAD00 0000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | BFLAG_IGNORE |
(DMACODE & 0x6)

TARGET ADDRESS 0x2000 0020 Start address of application code

BYTE COUNT 0x0000 0010 Ignores 16 bytes to provide space for control data such as
version code and build data. This is optional and can be
zero.

ARGUMENT 0x0000 0010 Functions as next-DXE pointer in multi-DXE boot
streams

Table 17-8. Initial Header for Direct Code Execution in BMODE = 10

Field Value Comments

BLOCK CODE 0xAD5B D006 0xAD000000 | XORSUM |
BFLAG_FINAL | BFLAG_FIRST | BFLAG_IGNORE |
(DMACODE & 0x6)

TARGET ADDRESS 0x0000 0020 Start address of application code

BYTE COUNT 0x0000 0000 No bubble for control data

ARGUMENT 0x0000 0000 Functions as next-DXE pointer in multi-DXE boot streams

ADSP-BF54x Blackfin Processor Hardware Reference 17-39

System Reset and Booting

Advanced Boot Techniques

Initialization Code
Initcode routines are subroutines that the boot kernel calls during the
booting process. The user can customize and speed up the booting mecha-
nisms using this feature. Traditionally, an initcode is used to set up system
PLL, bit rates, wait states and the SDRAM controller. If executed early in
the boot process, the boot time can be significantly reduced.

After the payload data is loaded for a specific boot block, if the
BFLAG_INIT flag is set, the boot kernel issues a CALL instruction to the TAR-
GET ADDRESS of the block.

On ADSP-BF54x Blackfin processors, initcode routines follow the
C language calling convention so they can be coded in C language or
assembly.

The expected prototype is
void initcode(ADI_BOOT_DATA* pBootStruct);

The VisualDSP++ header files define the ADI_BOOT_INITCODE_FUNC type:
typedef void ADI_BOOT_INITCODE_FUNC (ADI_BOOT_DATA*) ;

Optionally, the initcode routine can interrogate the formatting structure
and customize its own behavior or even manipulate the regular boot pro-
cess. A pointer to the structure is passed in the R0 register. Assembly
coders must ensure that the routine returns to the boot kernel by a termi-
nating RTS instruction.

Initcodes can rely on the validity of the stack, which resides in scratchpad
memory. The ADI_BOOT_DATA structure resides on the stack. Rules for reg-
ister usage conform to the compiler conventions. See the VisualDSP++
C/C++ Compiler and Library Manual for more information.

Advanced Boot Techniques

17-40 ADSP-BF54x Blackfin Processor Hardware Reference

In the simple case, initcodes consist of a single instruction section and are
represented by a single block within the boot stream. This block has the
BFLAG_INIT bit set.

An init block can consist of multiple sections where multiple boot blocks
represent the initcode within the boot stream. Only the last block has the
BFLAG_INIT bit set.

The VisualDSP++ elfloader utility ensures that the last of these blocks vec-
tor to the initcode entry address. The utility instructs the on-chip boot
ROM to execute a CALL instruction to the given TARGET ADDRESS.

When the on-chip boot ROM detects a block with the INIT bit set, it
boots the block into Blackfin memory and then executes it by issuing a
CALL to its target address. For this reason, every initcode must be termi-
nated by an RTS instruction to ensure that the processor vectors back to
the on-chip boot ROM for the rest of the boot process.

Sometimes initcode boot blocks have no payload and the BYTE COUNT field
is set to zero. Then the only purpose of the block may be to instruct the
boot kernel to issue the CALL instruction.

Initcode routines can be very different in nature. They might reside in
ROM or SRAM. They might be called once during the booting process or
multiple times. They might be volatile and be overwritten by other boot
blocks after executing, or they might be permanently available after boot
time. The boot kernel has no knowledge of the nature of initcodes and has
no restrictions in this regard. Refer to the VisualDSP++ Loader and Utili-
ties Manual for how this feature is supported by the tools chain.

It is the user’s responsibility to ensure that all code and data sections that
are required by the initcode are present in memory by the time the init-
code executes. Special attention is required if initcodes are written in C or
C++ language. Ensure that the initcode does not contain calls to the run
time libraries. Do not assume that parts of the run time environment, such
as the heap are fully functional. Ensure that all run time components are
loaded and initialized before the initcode executes.

ADSP-BF54x Blackfin Processor Hardware Reference 17-41

System Reset and Booting

The VisualDSP++ elfloader utility provides two different mechanisms to
support the initcode feature.

• The -init initcode.dxe command line switch

• The -initcall address/symbol command line switch

If enabled by the VisualDSP++ elfloader -init initcode.DXE command
line switch, the initcode is added to the beginning of the boot stream.
Here, initcode.DXE refers to the user-provided custom initialization exe-
cutable— a separate VisualDSP++ project. Figure 17-8 shows a boot
stream example that performs the following steps.

1. Boot initcode into L1 memory.

2. Execute initcode.

3. Initcode initializes the SDRAM controller and returns.

4. Overwrite initcode with final application code.

5. Boot data/code into SDRAM.

6. Continue program execution with block n.

Advanced Boot Techniques

17-42 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-8. Initialization Code Execution/Boot

Blackfin Processor

Header for Init Block

App.
Code/
Data

Init Block

Flash/PROM or SPI Device

A

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Chip Boot
ROM

........

Header for L1 Block

L1 Block

SDRAM Block

Header for SDRAM Block

Header for Block n

Block n

Flash/PROM or SPI Device

A

Init Block

........

 L1 Block

Blackfin Processor

Header for Init Block

Init Block

Header for L1 Block

L1 Block
Header for SDRAM Block

SDRAM Block

Header for Block n

Block n

SDRAM

SDRAM Block

App.
Code/
Data

On-Chip Boot
ROM

0xEF00 0000

After
Init Code
Execution

Before InitCode
Execution

L1 Memory

ADSP-BF54x Blackfin Processor Hardware Reference 17-43

System Reset and Booting

Although initcode.DXE files are built as VisualDSP++ projects, they differ
from standard projects. Initcodes provide only a callable sub-function, so
they look more like a library than an application. Nevertheless, unlike
library files (.DLB file extension), the symbol addresses have already been
resolved by the linker.

An initcode is always a heading for the regular application code. Conse-
quently whether the initcode consists of one or multiple blocks, it is not
terminated by a BFLAG_FINAL bit indicator—this would cause the boot
ROM to terminate the boot process.

It is advantageous to have a clear separation between the initcode and the
application by using the -init switch. If this separation is not needed, the
elfloader -initcall command-line switch might be preferred. It enables
fractions of the application code to be traded as initcode during the boot
process. See the VisualDSP++ Loader and Utilities Manual for further
details.

Initcode examples are shown in “Programming Examples” on
page 17-154.

Quick Boot
In some booting scenarios, not all memories need to be re-initialized. For
example in a wake-up from hibernate state, off-chip SRAM might not be
impacted if it was powered while the processor was in hibernate state.
Dynamic RAM might also not be impacted if it was put into self-refresh
mode before the processor powered down.

Advanced Boot Techniques

17-44 ADSP-BF54x Blackfin Processor Hardware Reference

The ADSP-BF54x processor’s boot kernel can conditionally process boot
blocks. The normal scenario is all boot, the shortened version is quick
boot. It relies on the following primitives.

• The SYSCR register is read to determine what kind of boot is
expected from the boot kernel. The WURESET bit is compared
against other reset bits to distinguish between cold boot and warm
boot situations and to identify wake-up from hibernate situations.
See Figure 17-40 on page 17-110 for examples.

• The BCODE bit field in the SYSCR register can overrule the native
decision of the boot kernel for a software boot. See the flowchart in
Figure 17-1 on page 17-8.

• The BFLAG_WAKEUP bit in the dFlag word of the ADI_BOOT_DATA
structure indicates that the final decision was to perform a quick
boot. If the boot kernel is called from the application, then the
application can control the boot kernel behavior by setting the
BFLAG_WAKEUP flag accordingly. See the dFlags variable on
Figure 17-55 on page 17-132.

• The BFLAG_QUICKBOOT flag in the block code word of the block
header controls whether the current block is ignored for quick
boot.

If both the global BFLAG_WAKEUP and the block-specific BFLAG_QUICBOOT
flags are set, the boot kernel ignores those blocks. But since the
BFLAG_INIT, BFLAG_CALLBACK, BFLAG_FINAL, and BFLAG_AUX flags are inter-
nally cleared and the BFLAG_IGNORE flag is toggled, through double
negation, the “ignore the ignore block” command instructs the boot ker-
nel to process the block.

Although the BFLAG_INIT flag is suppressed in quick boot, the user may
not want to combine the BFLAG_INIT flag with the BFLAG_QUICKBOOT flag.
The initialization code can interrogate the BFLAG_WAKEUP flag and execute
conditional instructions. For more information, see “Quickboot With
Restore From SDRAM” on page 17-162.

ADSP-BF54x Blackfin Processor Hardware Reference 17-45

System Reset and Booting

Indirect Booting
The ADSP-BF54x processor’s boot kernel provides a control mechanism
to let blocks either boot directly to their final destination or load to an
intermediate storage place, then copy the data to the final destination in a
second step. This feature is motivated by the following requirements.

• Some boot modes such as TWI modes do not use DMA. They load
data by core instruction. The core cannot access some memories
directly (for example L1 instruction SRAM), or is less efficient
than the DMA in accessing some memories (for example, external
SDRAM).

• In some advanced booting scenarios, the core needs to access the
boot data during the booting process, for example in processing
de-compression, decryption and checksum algorithms at boot time.
The indirect booting option helps speed-up and simplify such sce-
narios. Software accesses off-chip memory less efficiently and
cannot access data directly if it resides in L1 instruction SRAM.

Indirect booting is not a global setting. Every boot block can control its
own processing by the BFLAG_INDIRECT flag in the block header.

In general a boot block may not fit into the temporary storage memory so
the boot kernel processes the block in multiple steps. The larger the tem-
porary buffer, the faster the boot process. By default the L1 data memory
region between 0xFF90 7E00 and 0xFF90 7FFF is used for intermediate
storage. Initialization code can alter this region by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA struc-
ture. The default region is at the upper end of a physical memory block.
When increasing the dTempByteCount value, pTempBuffer also has to
change.

Advanced Boot Techniques

17-46 ADSP-BF54x Blackfin Processor Hardware Reference

Callback Routines
Callback routines, like initialization codes, are user-defined subroutines
called by the boot kernel at boot time. The BFLAG_CALLBACK flag in the
block header controls whether the callback routine is called for a specific
block.

There are several differences between initcodes and callback routines.
While the BFLAG_INIT flag causes the boot kernel to issue a CALL instruc-
tion to the TARGET ADDRESS of the specific boot block, the BFLAG_CALLBACK
flag causes the boot kernel to issue a CALL instruction to the address held
by the pCallBackFunction pointer in the ADI_BOOT_DATA structure. While
a boot stream can have multiple individual initcodes, it can have just one
callback routine. In the standard boot scenario, the callback routine has to
be registered by an initcode prior to the first block that has the
BFLAG_CALLBACK flag set.

The purpose of the callback routine is to apply standard processing to the
block data. Typically, callback routines contain checksum, decryption,
decompression, or hash algorithms. Checksum or hash words can be
passed through the block header ARGUMENT field.

Since callback routines require access to the payload data of the boot
blocks, the block data must be loaded before it can be processed. Unlike
initcodes, a callback usually resides permanently in memory. If the block
is loaded to L1 instruction memory or off-chip memory, the
BFLAG_CALLBACK flag is likely combined with the BFLAG_INDIRECT bit. The
boot kernel performs these steps in the following order.

1. Data is loaded into the temporary buffer defined by the
pTempBuffer variable.

2. The CALL to the pCallBackFunction is issued.

3. After the callback routine returns, the memory DMA copies data to
the destination.

ADSP-BF54x Blackfin Processor Hardware Reference 17-47

System Reset and Booting

If a block does not fit into the temporary buffer, for example when the
BLOCK COUNT is greater than the dTempByteCount variable, the three steps
are executed multiple times until all payload data is loaded and processed.
The boot kernel passes the parameter dCbFlags to the callback routine to
tell it that it is being invoked the first or the last time for a specific block.
To store intermediate results across multiple calls the callback routine can
use the uwUserShort and dUserLong variables in the ADI_BOOT_DATA
structure.

Callback routines meet C language calling conventions for subroutines.
The prototype is as follows.

s32 CallBackFunction (ADI_BOOT_DATA* pBootStruct,

ADI_BOOT_BUFFER* pCallbackStruct, s32 dCbFlags);

The VisualDSP++ header file defines the ADI_BOOT_CALLBACK_FUNC type
the following way: typedef s32 ADI_BOOT_CALLBACK_FUNC
(ADI_BOOT_DATA*, ADI_BOOT_BUFFER*, s32) ;

The pBootStruct argument is passed in R0 and points to the
ADI_BOOT_DATA structure used by the boot kernel. These are handled by
the pTempBuffer and dTempByteCount variables as well as the pHeader
pointer to the ARGUMENT field. The callback routine may process the block
further by modifying the pTempBuffer and dTempByteCount variables.

The pCallbackStruct structure passed in R1 provides the address and
length of the data buffer. When the BFLAG_INDIRECT flag is not set, the
pCallbackStruct contains the target address and byte count of the boot
block. If the BFLAG_INDIRECT flag is set, the pCallbackStruct contains a
copy of the pTempBuffer. Depending on the size of the boot block and
processing progress, the byte count provided by pCallbackStruct equals
either dTempByteCount or the remainder of the byte count.

When the BFLAG_INDIRECT flag is set along with the BFLAG_CALLBACK flag,
memory DMA is invoked by the boot kernel after the callback routine
returns. This memory DMA relies on the pCallbackStruct structure not
the global pTempBuffer and dTempByteCount variables.

Advanced Boot Techniques

17-48 ADSP-BF54x Blackfin Processor Hardware Reference

The callback routine can control the source of the memory DMA by alter-
ing the content of the pCallbackStruct structure, as may be required if
the callback routine performs data manipulation such as decompression.

The dCbFlags parameter passed in R2 tells the callback routine whether it
is invoked the first time (CBFLAG_FIRST) or whether it is called the last
time (CBFLAG_FINAL) for a specific block. The CBFLAG_DIRECT flag indi-
cates that the BFLAG_INDIRECT bit is not active and so that the callback
routine will only be called once per block. When the CBFLAG_DIRECT flag is
set, the CBFLAG_FIRST and CBFLAG_FINAL flags are also set.

#define CBFLAG_FINAL 0x0008

#define CBFLAG_FIRST 0x0004

#define CBFLAG_DIRECT 0x0001

A callback routine also has a boolean return parameter in register R0. If the
return value is non-zero, the subsequent memory DMA does not execute.
When the CBFLAG_DIRECT flag is set, the return value has no effect.

Error Handler
While the default handler simply puts the processor into idle mode, an
initcode routine can overwrite this pointer to create a customized error
handler. The expected prototype is

void ErrorFunction (ADI_BOOT_DATA* pBootStruct, void

*pFailingAddress);

Use an initcode to write the entry address of the error routine to the
pErrorFunction pointer in the ADI_BOOT_DATA structure. The error han-
dler has access to the boot structure and receives the instruction address
that triggered the error.

ADSP-BF54x Blackfin Processor Hardware Reference 17-49

System Reset and Booting

CRC Checksum Calculation
The ADSP-BF54x Blackfin processors provide an initcode and a callback
routine in ROM that can be used for CRC32 checksum generation during
boot time. The checksum routine only verifies the payload data of the
blocks. The block headers are already protected by the native XOR check-
sum mechanism.

Before boot blocks can be tagged with the BFLAG_CALLBACK flag to enable
checksum calculation on the blocks, the boot stream must contain an init-
code block with no payload data and with the CRC32 polynomial in the
block header ARGUMENT word.

The initcode registers a proper CRC32 wrapper to the pCallBackFunction
pointer. The registration principle is similar to the XOR checksum exam-
ple shown in “Programming Examples” on page 17-154.

Load Functions
With the exception of the Host DMA boot modes, all boot modes are pro-
cessed by a common boot kernel algorithm. The major customization is
done by a subroutine that must be registered to the pLoadFunction pointer
in the ADI_BOOT_DATA structure. Its simple prototype is as follows.

void LoadFunction (ADI_BOOT_DATA* pBootStruct);

The VisualDSP++ header files define the following type:
typedef void ADI_BOOT_LOAD_FUNC (ADI_BOOT_DATA*) ;

For a few scenarios some of the flags in the dFlags word of the
ADI_BOOT_DATA structure, such as BFLAG_PERIPHERAL and BFLAG_SLAVE,
slightly modify the boot kernel algorithm.

Advanced Boot Techniques

17-50 ADSP-BF54x Blackfin Processor Hardware Reference

The boot ROM contains several load functions. One performs a memory
DMA for flash boot, another performs a peripheral DMA, and another
loads data from the TWI port through a polling operation. The first is
reused for fill operation and indirect booting as well.

In second-stage boot schemes, the user can create customized load func-
tions or reuse the originals and modify the pDmaControlRegister,
pControlRegister and dControlValue values in the ADI_BOOT_DATA struc-
ture. The pDmaControlRegister points to the DMAx_CONFIG or
MDMA_Dx_CONFIG register. When the BFLAG_SLAVE flag is not set, the
pControlRegister and dControlValue variables instruct the peripheral
DMA routine to write the control value to the control register every time
the DMA is started.

Load functions written by users must meet the following requirements.

• Protect against dByteCount values of zero.

• Multiple DMA work units are required if the dByteCount value is
greater than 65536.

• The pSource and pDestination pointers must be properly updated.

In slave boot modes, the boot kernel uses the address of the dArgument
field in the pHeader block as the destination for the required dummy
DMAs when payload data is consumed from BFLAG_IGNORE blocks. If the
load function requires access to the block's ARGUMENT word, it should be
read early in the function.

Calling the Boot Kernel at Run Time
The boot kernel’s primary purpose is to boot data to memory after
power-up and reset cycles. However some of the routines used by the boot
kernel might be of general value to the application. The boot ROM sup-
ports reuse of these routines as C-callable subroutines. Programs such as
second-stage boot kernels, boot managers, and firmware update tools may

ADSP-BF54x Blackfin Processor Hardware Reference 17-51

System Reset and Booting

call the function in the ROM at run time. This could load entirely differ-
ent applications or a fraction of an application, such as a code overlay or a
coefficient array.

To call these boot kernel subroutines, the boot ROM provides an API at
address 0xEF00 0000 in the form of a jump table.

When calling functions in the boot ROM, the user must ensure the pres-
ence of a valid stack following C language conventions. See the
VisualDSP++ Compiler documentation for details.

Debugging the Boot Process
If the boot process fails, very little information can be gained by watching
the chip from outside. In master boot modes, the interface signals can be
observed. In slave boot modes only the HWAIT or the RTS signals tell about
the progress of the boot process.

However, by using the emulator, there are many possibilities in debugging
the boot process. The entire source code of the boot kernel is provided
with the VisualDSP++ installation. This includes the project executable
(DXE) file. The LOAD SYMBOLS feature of the VisualDSP++ IDDE helps to
navigate the program. Note that the content of the ROM might differ
between silicon revisions. Hardware breakpoints and single-stepping capa-
bilities are also available. Since the content of the L1 instruction ROM
cannot be read out by the emulator (as this ROM is not supported by the
ITEST feature), these instructions are not displayed in the disassembly
window.

Advanced Boot Techniques

17-52 ADSP-BF54x Blackfin Processor Hardware Reference

Table 17-9 shows a couple of program symbols that are of interest.

The boot kernel also generates a circular log file in scratch pad memory.
While the pLogBuffer and the dLogByteCount variables describe the loca-
tion and dimension of the log buffer, the pLogCurrent points to the next
free location in the buffer. The log file is updated whenever the kernel
passes the _bootrom.bootkernel.breakpoint label.

Table 17-9. Boot Kernel Symbols for Debug

Symbol Comment

_bootrom.assert.default If the program counter halts at the IDLE instruction at the
_bootrom.assert.default address, either the boot kernel or the pre-
boot has detected an error condition and will not continue the
boot process. A misformatted boot stream, checksum errors, or
invalid PBS settings are the most likely causes of such an error. The
RETS register points to the failing routine. When stepping a cou-
ple of instructions further, there is a way to ignore the error and to
continue the boot process by clearing the >ASTAT register while
the emulator steps over the subsequent IF CC JUMP 0 instruction.

_bootrom.bootmenu If the emulator hits a hardware breakpoint at the _bootrom.boot-
menu address, this indicates that the preboot returned properly.
Otherwise the program may hang during preboot due to improper
PBS settings or invalid boot modes.

_bootrom.bootkernel.entry If the emulator hits a hardware breakpoint at the _bootrom.bootk-
ernel.entry label, this indicates that device detection or autobaud
returned properly.

_bootrom.bootkernal.breakpoint This is a good address to place a hardware breakpoint. When hit
the boot kernel has a new block header loaded in. The block
header can be watched at address 0xFF80 7FF0 or wherever the
pHeader points to.

_bootrom.bootkernel.initcode All payload data of the current block is loaded by the time the pro-
gram passes the _bootrom.bootkernel.initcode label. The boot ker-
nel is about to interrogate the BFLAG_INIT flag. If set, the init
code can be debugged.

_bootrom.bootkernal.exit Once the boot kernel arrives at the _bootrom.bootkernel.address
label, it detects a BFLAG_FINAL flag. After some housekeeping, it
jumps to the EVT1 vector.

ADSP-BF54x Blackfin Processor Hardware Reference 17-53

System Reset and Booting

At each pass, nine 32-bit words are written to the log file, as follows.

• The block code word (dBlockCode) of the block header

• The target address (pTargetAddress) of the block header

• The byte count (dByteCount) of the block header

• The argument word (dArgument) of the block header

• The source pointer (pSource) of the boot stream

• The block count (dBlockCount)

• An internal copy of the dBlockCode word OR’ed with dFlags

• The content of the SEQSTAT register

• A 0xFFFF FFFA (-6) constant

The ninth word is overwritten by the next entry set, so that 0xFFFF FFFA
always marks the last entry in the log file.

Most of the data structures used by the boot kernel reside on the stack in
scratchpad memory. While executing the boot kernel routine (excluding
subroutines), the P5 points to the ADI_BOOT_DATA structure. Type
“(ADI_BOOT_DATA*) $P5” in the VisualDSP++ expression window to see
the structure content.

Boot Management

17-54 ADSP-BF54x Blackfin Processor Hardware Reference

Boot Management
Blackfin processor hardware platforms may be required to run different
software at different times. An example might be a system with at least one
application and one in-the-field firmware upgrade utility. Other systems
may have multiple applications, one starting then terminating, to be
replaced by another application. Conditional booting is called boot man-
agement. Some applications may self-manage their booting rules, while
others may have a separate application that controls the process, namely a
boot manager.

In a master boot mode where the on-chip boot kernel loads the boot
stream from memory, the boot manager is a piece of Blackfin software
which decides at run time what application is booted next. This may sim-
ply be based on the state of a GPIO input pin interrogated by the boot
manager, or it may be the conclusion of complex system behavior.

Slave boot scenarios are different from master boot scenarios. In slave boot
modes, the host masters boot management by setting the Blackfin proces-
sor to reset and then applying alternate boot data. Optionally, the host
could alter the BMODE configuration pins, resulting in little impact to the
Blackfin processor since the intelligence is provided by the host device.

Booting a Different Application
The boot ROM provides a set of user-callable functions that help to boot
a new application (or a fraction of an application). Usually there is no
need for the boot manager to deal with the format details of the boot
stream.

ADSP-BF54x Blackfin Processor Hardware Reference 17-55

System Reset and Booting

These functions are:

• BFROM_MEMBOOT discussed in “Flash Boot Modes” on page 17-64
and “SDRAM Boot Mode” on page 17-69

• BFROM_TWIBOOT discussed in “TWI Master Boot Mode” on
page 17-79

• BFROM_SPIBOOT discussed in “SPI Master Boot Mode” on
page 17-70

The user application, the boot manager application, or an initcode can call
these functions to load the requested boot data. Using the BFLAG_RETURN
flag the user can control whether the routine simply returns to the calling
function or executes the loaded application immediately.

These ROM functions expect the start address of the requested boot
stream as an argument. For BFROM_MEMBOOT, this is a Blackfin memory
address, for BFROM_TWIBOOT and BFROM_SPIBOOT it is a serial address. The
SPI function can also accept the code for the GPIO pin that controls the
device select strobe of the SPI memory.

Multi-DXE Boot Streams

If the start addresses of all the boot streams are predefined, the boot man-
ager needs only to call the ROM functions directly. However since the
addresses tend to vary from build to build they may have to be calculated
at run time.

In the world of the VisualDSP++ elfloader, a boot stream is always gener-
ated from a DXE file. It is therefore common to talk about multi-DXE or
multi-application booting. When the elfloader utility accepts multiple
DXE files on its command line, it generates a contiguous boot image by
default. The second boot stream is appended immediately to the first one.
Since the utility updates the ARGUMENT field of all BFLAG_FIRST blocks, the
ARGUMENT field of a BFLAG_FIRST block is called next-DXE pointer (NDP).

Boot Management

17-56 ADSP-BF54x Blackfin Processor Hardware Reference

The next-DXE pointer of the first DXE boot stream points relatively to
the start address of the second DXE boot stream. A multi-DXE boot
image can be seen as a linked list of boot streams. The next-DXE pointer
of the last DXE boot stream points relatively to the next free address. This
is illustrated by an example shown in the next two figures. Figure 17-9 on
page 17-57 shows a commented sketch as an example. Figure 17-10 on
page 17-58 shows a screenshot of the Blackfin loader file viewer utility for
the same example. The LdrViewer utility is not part of the VisualDSP++
tools suite. It is a third-party freeware product available on
www.dolomitics.com.

ADSP-BF54x Blackfin Processor Hardware Reference 17-57

System Reset and Booting

Figure 17-9. Multi-DXE Boot Stream Example for Flash Boot

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0120

BLOCK CODE = 0xAD95 5006

Optional 16-byte bubble

TARGET ADDRESS = 0xFFA1 0000

BYTE COUNT = 0x0000 0100

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADFC 0806

Payload of initcode
0x100 bytes

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0220

BLOCK CODE = 0xAD86 5006

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0200

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xADF6 0006

Payload of data/code block
0x200 bytes

TARGET ADDRESS = 0xFF80 0000

BYTE COUNT = 0x0000 8000

ARGUMENT = 0xA5A5 A5A5

BLOCK CODE = 0xADD5 8106

TARGET ADDRESS = 0xFFA0 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 1000

BLOCK CODE = 0xAD?? 5006

First block of initcode DXE
BFLAG_FIRST | BFLAG_IGNORE

Start address of application

Size of optional bubble

Next DXE pointer

Bubble to be ignored by kernel

BFLAG_INIT (BFLAG_FINAL not
set to continue boot processing)

Target address of initcode

Size of initcode

Not used

Initcode

First block of first application DXE
BFLAG_FIRST | BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

Normal data block

Target address of block data

Size of payload

Not used

Loads L1 instruction SRAM

Last block of first application DXE
BFLAG_FINAL | BFLAG_FILL

Fills L1 data bank 0

32-bit fill value

First block of second application DXE
BFLAG_FIRST | BFLAG_IGNORE

Start address of application

No bubble

Next DXE pointer

0x2000 0000

0x2000 0010

0x2000 0020

0x2000 0030

0x2000 0130

0x2000 0140

0x2000 0150

0x2000 0350

0x2000 0360

0x2000 1370

Further boot stream of second
application DXE (0x1000 bytes total)

Boot Management

17-58 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-10. LdrViewer Screen Shot

ADSP-BF54x Blackfin Processor Hardware Reference 17-59

System Reset and Booting

Boot management principles are not only applicable to multi-DXE boot
streams. The same scheme, as shown in Figure 17-11 on page 17-60, can
be applied to direct code executions of multiple applications. See “Direct
Code Execution” on page 17-37 for more information. The example
shows a linked list of initial block headers that instruct the boot kernel to
terminate immediately and to start code execution at the address provided
by the target address field of the individual blocks. There is nothing in the
boot ROM that prevents multi-DXE applications from mixing regular
boot streams and direct code execution blocks.

Boot Management

17-60 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-11. Multi-DXE Direct Code Execution Arrangement Example

TARGET ADDRESS = 0x2000 0100

BYTE COUNT = 0x0000 0010

ARGUMENT = 0x0000 0010

BLOCK CODE = 0xAD5A D006

Optional 16-byte bubble

TARGET ADDRESS = 0x2001 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD5A D006

TARGET ADDRESS = 0x2002 0000

BYTE COUNT = 0x0000 0000

ARGUMENT = 0x0000 0000

BLOCK CODE = 0xAD59 D006

Application 0 at 0x2000 0100

Application 1 at 0x2001 0000

Application 2 at 0x2002 0000

ADSP-BF54x Blackfin Processor Hardware Reference 17-61

System Reset and Booting

Determining Boot Stream Start Addresses

The ROM functions BFROM_MEMBOOT, BFROM_TWIBOOT, and BFROM_SPIBOOT
not only allow the application to boot a subroutine residing at a given
start address, they also assist in walking through linked multi-DXE
streams.

When the BFLAG_NEXTDXE bit in dFlags is set and these functions are
called, the system does not boot but instead walks though the boot stream
following the next-DXE pointers. The dBlockCount parameter can be used
to specify the DXE of interest. The routines then return the start address
of the requested DXE’s boot stream.

Initialization Hook Routine

When the ROM functions BFROM_MEMBOOT, BFROM_TWIBOOT and
BFROM_SPIBOOT are called, they create an instance of the ADI_BOOT_DATA
structure on the stack and fill the items with default values. If the
BFLAG_HOOK is set, the boot kernel invokes a callback routine which was
passed as fourth argument of the ROM routines, after the default values
have been filled. The hook routine can be used to overwrite the default
values. Every hook routine should meet the prototype:

void hook (ADI_BOOT_DATA* pBS);

The VisualDSP++ header files define the ADI_BOOT_HOOK_FUNC type the
following way:
typedef void ADI_BOOT_HOOK_FUNC (ADI_BOOT_DATA*) ;

Specific Boot Modes

17-62 ADSP-BF54x Blackfin Processor Hardware Reference

Specific Boot Modes
This section discusses individual boot modes and the required hardware
connections.

The boot modes differ in terms of the booting source— for example
whether data is loaded through the SPI or the TWI interface. Boot modes
can be grouped into slave boot modes and master boot modes.

In slave boot modes, the Blackfin processor functions as a slave to any host
device, which is typically another embedded processor, an FPGA device or
even a desktop computer. Likely, the Blackfin processor RESET input is
controlled by the host device. So, usually the host sets RESET first, then
waits until the preboot routine terminates by sensing the HWAIT output,
and finally provides the boot data.

If a Blackfin processor, configured to operate in any of the slave boot
modes, awakens from hibernate, it cannot boot by its own control. A feed-
back mechanism has to be implemented at the system level to inform the
host device whether the processor is in hibernate state or not. The HWAIT
strobe is an important primitive in such systems.

In the master boot modes, the Blackfin processor usually does not need to
be synchronized and can load the boot data by itself. Master modes typi-
cally read from memory. This can be parallel memory such as flash
devices, or serial memory that is read through SPI or TWI interfaces.

Memory boot modes should also be differentiated from peripheral boot
modes. Boot modes that load boot streams through memory DMA are
referred to as memory boot mode, reading data from regular memory.
Peripheral modes load boot data through peripherals such as UART, TWI
or SPI. With the exception of the FIFO boot, which is a hybrid, all mem-
ory boot modes are master modes. The boot source is typically
non-volatile memory, such as a flash or EPROM device or even on-chip
ROM. When supported by the system in warm boot scenarios, the boot
source can also be SRAM or SDRAM.

ADSP-BF54x Blackfin Processor Hardware Reference 17-63

System Reset and Booting

Whether from the host (slave booting mode) or from memory (master
booting mode), the boot source does not need to know about the structure
of the boot stream. However in the case of Host DMA boot, the size (byte
count) of the boot stream should be known. This is because, having much
more control over the Blackfin processor, the host must know what data is
to be loaded to specific addresses.

No Boot Mode
When the BMODE pins are all tied low (BMODE = 0000), the Blackfin proces-
sor does not boot. Instead it processes factory-programmed OTP pages,
then executes an IDLE instruction, preventing it from executing any
instructions provided by the regular boot source. The purpose of this
mode is to bring the processor up to a clean state after reset.

This mode helps to recover from malicious OTP configuration since it
prevents execution of the user-controllable portion of the preboot routine.

When connecting an emulator and starting a debug session, the processor
awakens from an idle due to the emulation interrupt and can be debugged
in the normal manner.

The no boot mode is not the same as the bypass mode featured by
the ADSP-BF53x Blackfin processor. To simulate that bypass
mode feature using BMODE = 0000, see “Direct Code Execution” on
page 17-37 and “Direct Code Execution” on page 17-164.

Specific Boot Modes

17-64 ADSP-BF54x Blackfin Processor Hardware Reference

Flash Boot Modes
These booting modes are intended to boot from flash or EEPROM mem-
ories or even from battery-buffered SRAMs. The flash boot modes are
activated by BMODE = 0000. Although this is a single BMODE setting, the
ADSP-BF54x Blackfin products support various configurations.

• Boot from 8-bit asynchronous flash memory

• Boot from 16-bit asynchronous flash memory

• Boot from 16-bit asynchronous page-mode NOR flash memory

• Boot from 16-bit asynchronous burst-mode NOR flash memory

By default, the boot kernel does not alter any EBIU registers. Therefore,
traditional asynchronous flash is assumed and maximum wait states are
applied. By programming OTP half pages PBS00L and PBS00H, the user has
the option to instruct the preboot routine to alter the EBIU registers as
desired. In this way, the EBIU can be preset to access the flash device in
either page mode or burst mode. There are also options to customize bus
settings, such as wait states and ARDY behavior.

ADSP-BF54x Blackfin Processor Hardware Reference 17-65

System Reset and Booting

After the preboot routine returns and HWAIT is deasserted the first time, the
boot kernel loads an initial burst of four 16-bit words. Then it interrogates
the DMACODE field in the byte loaded from the 0x2000 0000 address. For
flash mode, the following DMA options, as shown in Table 17-10 are
supported.

The DMACODE field is filled by the elfloader utility based on boot mode,
-width and -dmawidth settings. See the VisualDSP++ Loader and Utility
Manual for details.

After the boot kernel has loaded and interpreted the first four 16-bit
words, it continues loading the rest of the first block header and processes
the boot stream.

Most of the popular page-mode and burst-mode NOR flash devices
default to traditional flash mode and are perfectly designed for altering the
operating mode along the way. Theoretically, if the user hesitated to cus-
tomize boot settings through OTP programming, there was still the
option to start booting in traditional asynchronous mode and to alter
EBIU settings through an initcode which is loaded and executed early in
the boot process.

If the preboot features are not used and the NOR flash device is
put into burst or page mode, it must be programmed back to the
standard mode before the processor is reset. If the processor can

Table 17-10. DMA Options

DMACODE DMA
Width

Source
Modify

Comment

1 8 1 Not recommended
Provides ADSP-BF533 style 8-bit boot from 16-bit flash memory

2 8 2 8-bit MDMA boots from 8-bit flash mapped to lower byte of
address bus.

6 16 2 16-bit MDMA boots from 16-bit flash

10 32 4 32-bit MDMA boots from 16-bit flash

Specific Boot Modes

17-66 ADSP-BF54x Blackfin Processor Hardware Reference

reset itself without software control (through watchdog or dou-
ble-fault error), a mechanism must be installed that also resets the
flash device back to default mode along with the processor. One
method to address this is to set the OTP_RESETOUT_HWAIT bit in
OTP half page PBS00L and to connect the HWAIT signal to the reset
input pin of the NOR flash device.

Hardware configurations for the individual modes are shown in
Figure 17-12 to Figure 17-13. The chip select is always controlled by the
AMS0 strobe. This maps the boot stream to the Blackfin processor’s address
0x2000 0000.

Figure 17-12. 8-Bit Flash Interconnection

AMS0

BLACKFIN

AOE

AWE

A[N+1:1]

D[7:0]

8-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[7:0]

ADSP-BF54x Blackfin Processor Hardware Reference 17-67

System Reset and Booting

See the chapter on System Design for connection of page-mode and
burst-mode flash devices.

Some flash devices provide write protection mechanisms, which can be
activated during the power-up and reset cycles of the Blackfin processor.
In the absence of such mechanisms, a pull-up resistor on the AMS0 strobe
prevents the chip select from floating when the state of the processor is
unknown.

In flash mode all the muxed address lines (A4 to A9 on port H and
A10 to A25 on port I) are activated by the boot kernel. When BMODE
= 0001, none of these pins can function as an input without exter-
nal hardware protection. Upper address pins are unlikely to toggle
and can still be used for GPIO output purposes, with the limita-
tion that the pins are driven low during boot time.

When the EBIU registers are configured to burst-flash mode by the pre-
boot due to OTP programming, the boot kernel activates the NOR clock
on the PI15 pin rather than the A25 line.

Figure 17-13. 16-Bit Flash Interconnection

AMS0

BLACKFIN

AOE

AWE

A[N+1:1]

D[15:0]

16-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[15:0]

Specific Boot Modes

17-68 ADSP-BF54x Blackfin Processor Hardware Reference

After RESET has released, the preboot processes a number of OTP pages.
Then, the boot kernel starts reading data from the external flash memory.
The initial cycles of the flash boot are shown in Figure 17-14 through
Figure 17-23. The first 4-word burst loads half of the first boot block
header in. After the DMACODE is evaluated the rest of the first block is
loaded by the second 4-word burst. As settings are now known the next
header is then loaded as an 8-word (16-byte) entity.

The boot mode BMODE = 0001 can also be used to instruct the boot kernel
to terminate immediately and directly execute code from the 16-bit flash
memory instead. Code execution from 8-bit flash memory is not sup-
ported. See “Direct Code Execution” on page 17-37 for details.

Figure 17-14. 16-bit Flash Mode Waveform (ADSP-BF54x)

RESET

000 0000 00040002 0008 000A 000C000 0006 000 000E 000 001E

0000 5006 ADB4 0000 0000 0000 00100010 D801FFA0

1 1 1

1

10 0 0

0000

0 0 0

0 0 0

1

1

1

1

1

1

1 1

1 1

1 10

1 1 1

0 0 0 0

1 1 1

0 0 0 0

1 1 1

0 0 0

1

0

1

0

1

0

1

0

0010 0012 0014 0016 0018 001A 001C

AMS0

AOE

ARE

AWE

ADDRESS

DATA

HWAIT

ADSP-BF54x Blackfin Processor Hardware Reference 17-69

System Reset and Booting

SDRAM Boot Mode
From the boot kernel perspective, the SDRAM boot mode is just another
memory boot mode like flash boot. The only differences are that the boot
stream is expected at address 0x0000 0010 and the initial eight bytes are
loaded by two 32-bit loads.

From the application point of view, SDRAM boot is a completely differ-
ent scheme. Since SDRAM is volatile memory, BMODE = 1010 is not a valid
setting when the processor and the memories have just been powered up.
This mode can only be used as a dynamically applied BMODE setting to
install warm boot scenarios.

OTP programming is required to boot from SDRAM. Other boot modes
can configure the SDRAM controller by execution of an initcode. But in
the case of SDRAM boot, the initcode cannot be loaded without having
the SDRAM controller already configured.

SDRAM boot is meaningful when the Blackfin processor is in hibernate
state or is completely shut off for power savings while the SDRAM is kept
alive in self-refresh mode.

Users who prefer to execute code out of SDRAM, rather than performing
a boot from it, may refer to “Direct Code Execution” on page 17-37 for
details.

FIFO Boot Mode
The FIFO boot mode (BMODE = 0010) boots the Blackfin processor from
another processor or FPGA system, referred to as the host device. The host
is decoupled from the Blackfin bus by an asynchronous FIFO memory.
When compared to the glue-less Host DMA boot modes, the FIFO mode
requires less intelligence from the host. The host device is only expected to
handshake with the FIFO and to load the entire boot stream in 16-bit
portions. There is no need for the host to know about the content and for-
mat of the boot stream.

Specific Boot Modes

17-70 ADSP-BF54x Blackfin Processor Hardware Reference

The hardware configuration for the FIFO boot mode is shown in
Figure 5-6 on page 5-50. The FIFO chip select connects to the AMS3
strobe. Data read requests go to the DMAR1 input on pin PH6. The host
device controls the Blackfin processor's RESET input. As in all slave modes,
the host device should not send requests to DMAR1 unless the HWAIT signal
goes inactive. The host device may optionally rely on HWAIT edges to con-
tinue or discontinue transmission of boot data in an interrupt controlled
manner.

From the boot kernel perspective the FIFO boot mode (BMODE = 0010) is
just another memory boot mode, the only exception being that the HMDMA1
block is enabled in advance. Activating this functionality makes the FIFO
boot mode become a slave mode.

The bits set in the HMDMA1_CONTROL register are SND, REP and HMDMAEN. The
SND bit is new to ADSP-BF54x Blackfin products. The ADSP-BF54x pro-
cessor’s FIFO boot mode differs slightly from the FIFO boot mode
provided by the ADSP-BF52x and ADSP-BF53x Blackfin processors.

In the FIFO boot mode, the DMACODE field in the boot block headers must
always be 0x06, which instructs the boot kernel to perform 16-bit DMA.
The boot kernel increments the applied addresses as if reading from flash
memory.

SPI Master Boot Mode
This mode (BMODE = b#0011) boots from SPI memories connected to the
SPI0 interface. 8-, 16-, 24-, and 32-bit address words are supported. Stan-
dard SPI memories are read using either the standard 0x03 SPI read
command or the 0x0B SPI fast read command.

Unlike other Blackfin processors, the ADSP-BF54x Blackfin pro-
cessors have no special support for DataFlash devices from Atmel.
Nevertheless, DataFlash devices can be used for booting and are

ADSP-BF54x Blackfin Processor Hardware Reference 17-71

System Reset and Booting

sold as standard 24-bit addressable SPI memories. They also sup-
port the fast read mode. If used for booting, DataFlash memory
must be programmed in the power-of-2 page mode.

For booting, the SPI memory is connected as shown in Figure 17-15.

The pull-up resistor on the MISO line is required for automatic device
detection. The pull-up resistor on the SPI0SEL1 line ensures that the mem-
ory is in a known state when the Blackfin GPIO is in a high-impedance
state (for example, during reset). A pull-down resistor on the SPI0SCK line
displays cleaner oscilloscope plots during debugging.

For SPI master boot, the SPE, MSTR and SZ bits are set in the SPI0_CTL reg-
ister (See Table 17-11). With TIMOD=2, the receive DMA mode is selected.
Clearing both the CPOL and CPHA bits results in SPI mode 0. The boot ker-
nel does not allow SPI0 hardware to control the SPI0SEL1 pin. Instead,
this pin is toggled in GPIO mode by software. Initialization code is
allowed to manipulate the uwSsel variable in the ADI_BOOT_DATA structure
to extend the boot mechanism to a second SPI memory connected to
another GPIO pin.

Figure 17-15. Blackfin to SPI Memory Connections

(MASTER SPI DEVICE)
SPI MEMORY

SPI0SCK (PE0) SCK

SSPI0SEL1 (PE4) CS

SPI0MOSI (PE2) MOSI

BLACKFIN
(SLAVE SPI DEVICE)

SPI0MISO (PE1) MISO

VDDEXT

10K10K

Specific Boot Modes

17-72 ADSP-BF54x Blackfin Processor Hardware Reference

By default, the boot kernel sets the SPI0_BAUD register to a value of 133,
resulting in a bit rate of SCLK/266. This default value can be altered by
programming the 4-bit OTP_SPI_BAUD field in OTP page PBS00L.

Similarly, the boot kernel uses the standard 0x03 SPI read command, by
default. Programming the OTP_SPI_FASTREAD bit in OTP page PBS00L
enables the fast read mode where the boot kernel uses the 0x0B read com-
mand instead and transmits a dummy zero byte after the address bytes.

SPI Device Detection Routine

Since BMODE = 011 supports booting from various SPI memories, the boot
kernel automatically detects what type of memory is connected. To deter-
mine whether the SPI memory device requires an 8-, 16-, 24- or 32-bit
addressing scheme, the boot kernel performs a device detection sequence
prior to booting. The MISO signal requires a pull-up resistor, since the rou-
tine relies on the fact that memories do not drive their data outputs unless
the right number of address bytes are received.

Table 17-11. Bit Rate

OTP_SPI_BAUD SPI_BAUD Bit Rate

b#0000 133 SCLK/ (2x133)

b#0001 Reserved

b#0010 2 SCLK/ (2x2)

b#0011 4 SCLK/(2x4)

b#0100 8 SCLK/ (2x8)

b#0101 16 SCLK/ (2x16)

b#0110 32 SCLK/ (2x32)

b#0111 64 SCLK/ (2x64)

ADSP-BF54x Blackfin Processor Hardware Reference 17-73

System Reset and Booting

Initially, the boot kernel transmits a read command (either 0x03 or 0x0B)
on the MOSI line, which is immediately followed by two zero bytes. Once
the transmission is finished, the boot kernel interrogates the data received
on the MISO line. If it does not equal 0xFF (usually a DMACODE value of
0x01 is expected), then an 8-bit addressable device is assumed.

If the received value equals 0xFF, it is assumed that the memory device has
not driven its data output yet and that the 0xFF value is due to the pull-up
resistor. Thus, another zero byte is transmitted and the received data is
tested again. If it differs from 0xFF, either a 16-bit addressable device
(standard mode) or an 8-bit addressable device (fast read mode) is
assumed.

If the value still equals 0xFF, device detection continues. Device detection
aborts immediately if a byte different than 0xFF is received. The boot ker-
nel continues with normal boot operation and it re-issues a read command
to read from address 0 again. The first block header is loaded by two read
sequences, further block headers and block payload fields are loaded by
separate read sequences.

Specific Boot Modes

17-74 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-16 illustrates how individual devices would behave.

Figure 17-16. SPI Device Detection Principle

Figure 17-17. SPI Master Boot

0x000x000x03 |0x0B 0x00 0x00 0x00 0x00

0x010xFF0xFF

0xFF0xFF0xFF 0x01

0xFF0xFF0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0x01

0xFF0xFF0xFF 0xFF 0xFF 0xFF 0x01

. . .

. . .

. . .

. . .

MOSI

MISO

MISO

MISO

MISO

MISO

STANDARD 8-BIT

STANDARD 16-BIT,
FAST READ 8-BIT

STANDARD 24-BIT,
FAST READ 16-BIT

STANDARD 32-BIT,
FAST READ 24-BIT

FAST READ
32-BIT

HWAIT

SPICLK

SSEL

MOSI

MISO

RESET

00

1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1

0

0

0

0 0 0 0 0 0 0 0 0 0 0

0

1

0 0

ADSP-BF54x Blackfin Processor Hardware Reference 17-75

System Reset and Booting

Figure 17-17 on page 17-74 shows the initial signaling when a 24-bit
addressable SPI memory is connected in SPI master boot mode. After
RESET releases and preboot has processed relevant OTP pages, a 0x03 com-
mand is transmitted to the MOSI output, followed by a number of 0x00
bytes. The 24-bit addressable memory device returns a first data byte at
the fourth zero byte. Then, the device detection has completed and the
boot kernel re-issues a 0x00 address to load the boot stream.

Specific Boot Modes

17-76 ADSP-BF54x Blackfin Processor Hardware Reference

SPI Slave Boot Mode
For SPI slave mode boot (BMODE = 100), the Blackfin processor is consum-
ing boot data from an external SPI host device. SPI0 is configured as an
SPI slave device. The hardware configuration is shown in Figure 17-18. As
in all slave boot modes, the host device controls the Blackfin processor's
RESET input.

The host drives the SPI clock and is responsible for the timing. The host
must provide an active-low chip select signal that connects to the SPI0 SS
input of the Blackfin processor. It can toggle with each byte transferred or
remain low during the entire procedure. 8-bit data is expected. The 16-bit
mode is not supported.

In SPI slave boot mode, the boot kernel sets the CPHA bit and clears the
CPOL bit in the SPI0_CTL register. Therefore the MISO pin is latched on the
falling edge of the MOSI pin. For details see the chapter on SPI-Compati-
ble Port Controllers in the ADSP-BF54x Blackfin Processor Hardware
Reference (Volume 2 of 2).

Figure 17-18. Connections Between Host (SPI Master) and Blackfin Pro-
cessor (SPI Slave)

(MASTER SPI DEVICE)
BLACKFIN

SPICLK SPI0 SCK (PE0)

S_SEL SPI0 SS (PE3)

MOSI SPI0 MOSI (PE2)

HOST
(SLAVE SPI DEVICE)

MISO SPI0 MISO (PE1)

HWAIT (PB11 / PH7)FLAG/INTERRUPT

VDDEXT

ADSP-BF54x Blackfin Processor Hardware Reference 17-77

System Reset and Booting

In SPI slave boot mode, HWAIT functionality is critical. The HWAIT hand-
shake signal can operate on either the GPIO pin PB11 or on PH7 when the
OTP_ALTERNATE_HWAIT in OTP page PBS00L is programmed. When high,
the resistor shown in Figure 17-18 on page 17-76 programs HWAIT to hold
off the host. HWAIT holds the host off while the Blackfin processor is in
reset or executing the preboot. Once HWAIT turns inactive, the host can
send boot data. The SPI module does not provide very large receive
FIFOs, so the host must test the HWAIT signal for every byte. Figure 17-19
on page 17-78 illustrates the required program flow on the host side.

Figure 17-20 on page 17-79 shows the initial waveform for an SPI slave
boot case. As soon as the Blackfin processor releases HWAIT after reset, the
host device pulls the SPISS pin low and starts transmitting data. After the
eight data word has been received, the boot kernel asserts HWAIT again as it
has to process the DMACODE field of the first block header. When the host
detects the asserted HWAIT it still finishes gracefully the transmission of the
on-going word. Then, it pauses transmission until HWAIT releases again.

Specific Boot Modes

17-78 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-19. Program Flow on Host Device

HWAIT

Start

Pulse /RESET low

Asserted

Assert SPI /SS

Deasserted

HWAIT
Asserted

Send Next Byte

Deasserted

More BytesYes

Release SPI /SS

No

EXIT

ADSP-BF54x Blackfin Processor Hardware Reference 17-79

System Reset and Booting

TWI Master Boot Mode
In TWI master boot mode (BMODE = 0101) the boot kernel reads boot data
from I2C memory connected to the TWI0 interface. The Blackfin proces-
sor selects the slave EEPROM with the unique ID 0xA0, submits
successive read commands to the device starting at internal address
0x0000, and begins clocking data to the processor. The EEPROM’s device
select bits A2–A0 must be 0s (tied low) when present. The I2C EPROM
device should comply with Philips I2C Bus Specification version 2.1 and
should have the capability to auto increment its internal address counter
such that the contents of the memory device can be read sequentially. See
Figure 17-21.

On the Blackfin processor, in both TWI master and slave boot
modes, the upper 512 bytes starting at address 0xFF90 3E00 either
must not be used or must be booted last. The boot ROM code uses
this space for the TWI boot modes to temporarily hold the serial
data which is then transferred to L1 instruction memory using
DMA. All boot blocks that target the L1 instruction memory or
external memories must have the BFLAG_INDIRECT bit set. Initcodes

Figure 17-20. SPI Slave Boot

HWAIT

SPICLK

SPISS

MOSI

MISO

RESET

0

1

0 0 0 0 0 0 0

0

0 0 0 0 0 0

0 0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1 1

1

0 0

1

0 0

1 1

1

Specific Boot Modes

17-80 ADSP-BF54x Blackfin Processor Hardware Reference

can alter the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

Figure 17-21. TWI Master Boot Mode

BLACKFIN (MASTER)

SDA SDA

SCL

I2C-COMPATIBLE
MEMORY DEVICE

SCL

A0

A1

A2

GND

VDDEXT

ADSP-BF54x Blackfin Processor Hardware Reference 17-81

System Reset and Booting

In Figure 17-22, the Blackfin processor ‘s TWI controller outputs the
address of the I2C device to boot from, in this case 0xA0, where the least
significant bit indicates the direction of the transfer. In this example, it is
a write (0) to write the first two bytes of the internal address from which
to start booting (0x00). Figure 17-22 shows the TWI init and zero fill
blocks.

Figure 17-23 shows the initial waveforms in case of TWI master boot.
After reset, the kernel generates nine slow pulses on the SCL output to
ensure the TWI memory's state machine exits any pending state. Then a

Figure 17-22. TWI Init and Fill Blocks

Figure 17-23. TWI Master Boot

TWI SDA all

TWI SCL all

RESET all

1 1

1

1 1

BUS IDLE
DURING

PROCESSING
OF AN

INIT BLOCK

BUS IDLE
DURING

PROCESSING
OF A

FILL BLOCK

HWAIT

SCL

SDA

RESET

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1111

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0

0

00 0 0 0 0 0 0000

0 0

Specific Boot Modes

17-82 ADSP-BF54x Blackfin Processor Hardware Reference

start condition is issued and 0xA0 address command is issued, where the
least significant bit indicates the direction of the write In this case it is a
write (0) in order to write two more 0x00 address bytes.

By default, it is assumed that the I2C memory device is two-byte address-
able. This can be changed by programming the OTP_TWI_TYPE bit field in
OTP page PBS00L as shown in Table 17-12.

The TWI0 controller is programmed to generate a 30% duty cycle clock
in accordance with the I2C clock specification for fast-mode operation
(PRESCALE = 0xA, CLKDIV = 0x811) as shown in Table 17-13. The default
values can be altered by OTP programming. Setting the OTP_TWI_CLKDIV
bit in OTP page PBS00L changes the TWI0_CLKDIV register value to 0x3232
as recommended for 100 kHz TWI operation. The OTP_TWI_PRESCALE
field controls the prescale value written to the TWI0_CONTROL register.

Table 17-12. Addressable Bytes

OTP_TWI_TYPE Address Bytes

00 2

01 3

10 4

11 1

Table 17-13. Prescale Value

OTP_TWI_PRESCALE PRESCALE Recommended

000 0x0A SCLK = 100 MHz

001 0x0E SCLK = 140 MHz (theoretical)

010 0x0C SCLK = 120 MHz

011 0x0A SCLK = 100 MHz

100 0x08 SCLK = 80 MHz

101 0x06 SCLK = 60 MHz

110 0x04 SCLK = 40 MHz

111 0x02 SCLK = 20 MHz

ADSP-BF54x Blackfin Processor Hardware Reference 17-83

System Reset and Booting

TWI Slave Boot Mode
In TWI slave boot mode (BMODE = 0110) the Blackfin processor consumes
data from a I2C host device that connects to the TWI0 interface. The I2C
host selects the slave (Blackfin processor) with the 7-bit slave address
0x5F. When the Blackfin processor acknowledges, the host can download
the boot stream. The I2C host should comply with Philips I2C Bus Speci-
fication version 2.1. The host supplies the serial clock.

Connections are shown in Figure 17-24, Figure 17-25 and Figure 17-26.

Figure 17-24. TWI Slave Boot Mode

Figure 17-25. TWI Slave Boot

BLACKFIN
(SLAVE DEVICE)

I2C-COMPATIBLE HOST

SDA SDA

SCL

(MASTER DEVICE)

SCL

VDDEXT

HWAIT

SCL

SDA

RESET

0 0 0 0 0

1 1 1 1

0

1

0 0 0 0

1 1 1 1

0 0 0

1 1 1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

Specific Boot Modes

17-84 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-25 on page 17-83 shows initial waveforms in case of TWI slave
boot. As soon as HWAIT releases after reset the host starts transmitting the
boot stream data. It starts by with a start conditions and a 0xBE com-
mand, which is composite by the 0x5F address and a trailing zero bit to
indicate write direction.

On the Blackfin processor, in both TWI master and slave boot
modes, the upper 512 bytes starting at address 0xFF90 3E00 either
must not be used or must be booted last. The boot ROM code uses
this space for the TWI boot modes to temporarily hold the serial
data which is then transferred to L1 instruction memory using
DMA. All boot blocks that target the L1 instruction memory or
external memories must have the BFLAG_INDIRECT bit set. Initcodes
can alter the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

UART Slave Mode Boot
In the UART slave mode boot, the Blackfin processor consumes boot data
from a UART host device connected to a UART interface.

Figure 17-26. TWI Bit Stretching

TWI SDA all

TWI SCL all

RESET all

1 1

1

0 0

* *

* DURING THE PROCESSING OF INIT AND/OR ZERO FILL BLOCKS, THE BLACKFIN TWI
CONTROLLER STRETCHES THE SCL LINE TO INDICATE TO THE HOST THAT IT CANNOT
ACCEPT ANY BYTES AT THIS TIME.

0

1

ADSP-BF54x Blackfin Processor Hardware Reference 17-85

System Reset and Booting

For BMODE = 0111, the ADSP-BF54x processor consumes boot data from a
UART host device connected to the UART1 interface. Automatic control
of the RTS output provides flow control.

The host downloads programs formatted as boot streams using an auto-
baud detection sequence. The host selects a bit rate within the UART
clocking capabilities. To determine the bit rate when performing the auto-
baud, the boot kernel expects an “@” character (0x40, eight data bits, one
start bit, one stop bit, no parity bit) on the UART RXD input. The boot
kernel acknowledges, and the host then downloads the boot stream. The
acknowledgement consists of four bytes: 0xBF, UARTx_DLL, UARTx_DLH,
0x00. The host is requested to not send further bytes until it has received
the complete acknowledge string. Once the 0x00 byte is received, the host
can send the entire boot stream. The host should know the total byte
count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream. Further information regarding auto-
baud detection is given in “Autobaud Detection” on page 31-21.

When the boot kernel is processing fill or initcode blocks it might require
extra processing time and needs to hold the host off from sending more
data. This is signalled with the HWAIT output as well as by the RTS output.
The host is not allowed to send data until HWAIT turns inactive after a reset
cycle. Therefore a pulling resistor on the HWAIT signal is required.

Specific Boot Modes

17-86 ADSP-BF54x Blackfin Processor Hardware Reference

If the resistor pulls to ground, the host must pause transmission when
HWAIT is low and is permitted to send when HWAIT is high. A pull-up resis-
tor inverts the signal polarity of HWAIT. The host should test HWAIT at every
transmitted byte.

During ADSP-BF54x boot operation, the host device more likely relies on
the RTS output of UART1. Then, the use of HWAIT becomes optional. At
boot time the Blackfin does not evaluate RTS signals driven by the host
and the UART1 CTS input is inactive. Since the RTS is in a high impedance
state when the Blackfin processor is in reset or while executing preboot, an
external pull-up resistor to VDDEXT is recommended.

Figure 17-27 shows the interconnection required for booting. The figure
does not show physical line drivers and level shifters that are typically
required to meet the individual UART-compatible standards.

Figure 17-27. UART Slave Boot Mode

(MASTER UART DEVICE)
BLACKFIN

TX UART1 RXD

HOST
(SLAVE UART DEVICE)

RX UART1 TXD

INTERRUPT HWAIT

UART1 RTSCTS

VDDEXT

ADSP-BF54x Blackfin Processor Hardware Reference 17-87

System Reset and Booting

Figure 17-28, Figure 17-29, and Figure 17-30 provide timing information
for UART booting.

Figure 17-28. UART Autobaud Waveform

Figure 17-29. UART Boot - Host is relying on HWAIT

UART1_TX

UART1_RX

UART1_RTS 0 0 0

1 1 1

0

0 0

1

1 1

RESET

HWAIT

1

0

0

1

0

0 0 00 0

1

11

UART1_TX

UART1_RX

UART1_RTS

0

0

0

1

1

RESET

HWAIT

0 0 0 0 0

1 1 11

Specific Boot Modes

17-88 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-28 on page 17-87 shows the initial case of the UART boot
mode. As soon as HWAIT releases after reset, the boot kernel expects to
receive a 0x40 byte for bit rate detection. After the bit rate is known, the
UART is enabled and the kernel transmits for bytes.

When the UART is enabled, the RTS goes immediately low,
encouraging the host to send first boot stream data as shown in the
figure. In case of a half-duplex UART connection this must be
avoided. The host should either rely on the HWAIT signal or wait
until it has received the four bytes from the Blackfin processor,
before sending any data.

Figure 17-29 and Figure 17-30 compare RTS and HWAIT timing in case an
extended initcode executes. Since code execution is distracting from the
data loading, the host devices has to be prevented to send more data. The
HWAIT timing is much more conservative than the RTS. If the host relies on
HWAIT, the UART receive buffer may not be filled over watermark level
and RTS might not be de-asserted at all. If, however, the host relies on
RTS it will be stalled a couple of bytes later. Both methods are valid.

In case of UART boot, it is not obvious on how to change the PLL
by an initcode routine. This is because the UARTx_DLL and
UARTx_DLH routines have to be updated to keep the required bit
rate constant after the SCLK frequency has changed. It must be

Figure 17-30. UART Boot - Host is relying on RTS

UART1_TX

UART1_RX

UART1_RTS

0

0 0

0

1

1

1

RESET

HWAIT

ADSP-BF54x Blackfin Processor Hardware Reference 17-89

System Reset and Booting

ensured that the host does not send data while the PLL is changing.
The initcode examples provided along with the VisualDSP++ tools
installation demonstrate how this can be accomplished.

OTP Boot Mode
In the OTP boot mode (BMODE = 1011), the boot kernel loads the boot
stream from the on-chip OTP memory. OTP booting is a self-sufficient
booting mechanism that does not require external boot memory or a host
device.

By default the boot kernel starts loading the boot stream starting from
OTP page 0x40. This is in the public OTP region. The boot stream can
occupy all pages up to OTP page 0xDF, resulting in a boot stream length
of up to 2560 bytes. The start address of the boot stream can be altered by
programming the OTP_START_PAGE field in the PBS01H page. If there is no
conflict with the alternate preboot pages feature, the OTP_START_PAGE field
can be set to 0x20, resulting in a boot stream length of up to 3072 bytes.

In the current implementation, the OTP engine has no DMA support.
Data is loaded and copied by core instructions. Nevertheless the DMACODE
field should be set to 0xA, indicating 32-bit operation. The boot kernel
ensures proper operation at 32-bit granularity, but 64-bit alignment may
help to reduce the number of OTP pages that have to be read during boot
processing. Byte 0 of the boot stream is expected to be byte 0 of the lower
32-bit word of the lower 0x40 half page.

In the OTP boot mode, the upper 512 bytes starting at address
0xFF90 3E00 either must not be used or must be booted last. The
boot ROM code uses this space to temporarily hold the serial data
which is then transferred to L1 instruction memory using DMA.
All boot blocks that target the L1 instruction memory or external
memories must have the BFLAG_INDIRECT bit set. Initcodes can alter

Specific Boot Modes

17-90 ADSP-BF54x Blackfin Processor Hardware Reference

the placement of the temporary buffer by modifying the
pTempBuffer and dTempByteCount variables in the ADI_BOOT_DATA
structure.

Host DMA Boot Modes
The Host DMA boot modes differ completely from other boot modes
because the boot kernel has no control over the DMA channels. The host
device masters the DMA, so the host device must be able to parse the boot
stream by itself.

The two host DMA boot modes (BMODE = 1110 for 16-bit and BMODE =
1111 for 8-bit) are almost identical. The differences are the port muxing
control and the initial programming of the HOST_CONTROL register. The
16-bit boot mode uses the HOSTDP's acknowledge mode while the 8-bit
boot mode sets the INT_MODE bit in HOST_CONTROL to activate the interrupt
mode.

Connection of a host device to the Blackfin processor is discussed in
Chapter 8, “Host DMA Port”. For booting the host device should control
the RESET of the Blackfin processor. The host processor must poll
HOST_STATUS register using a configuration read of the HOSTDP until the
ALLOW_CNFG bit is set indicating that the host may begin sending the 7 con-
figuration words. This is necessary before each configuration of the
HOSTDP. The host processor may optionally sense the HWAIT signal to
determine when it should begin polling the ALLOW_CNFG bit.

The HOSTDP interface does not support the advanced boot kernel oper-
ations such as fill, CRC or callback. There is simple support to simulate
the initcode functionality. Typically, this feature is not so important when
the preboot's OTP memory pages can be programmed to configure the
PLL and SDRAM controllers. However, if the user does not have the
option to program OTP memory, the simulated initcode is the only

ADSP-BF54x Blackfin Processor Hardware Reference 17-91

System Reset and Booting

option to speed up the processor clocks and to enable the SDRAM con-
troller for booting. One of these options must be used for the host device
to boot into SDRAM memory.

In order to simulate initcodes the host device must send a valid initcode
routine to the L1 instruction address 0xFFA0 0000. Additionally, the host
is required to issue an HIRQ command after sending the 7 configuration
words (but before sending any data) for the initcode block to the
HOSTDP. Once the boot kernel detects an HIRQ command from the host
and the DMA work unit is complete, the boot kernel will issue a CALL
instruction to the address held in the EVT1 register, and the C language
initcode routine is called. EVT1 defaults to 0xFFA0 0000, but it can be
modified by user instructions during the boot process. When the initcode
returns, the regular boot process continues. This can be repeated multiple
times if necessary.

If the initcode routine has properly configured the SDRAM controller,
subsequent Host DMA work units can write to SDRAM memory. Simi-
larly, if the initcode has programmed the PLL, the Host DMA port can
run at higher speed since it is SCLK dependent.

The same scheme is used to terminate the boot process. When the host is
ready to send the final boot block of the application it needs to send the 7
configuration words required by the HOSTDP. The host device should
then send an HIRQ command followed by the remaining data. Once all
data has written, the boot kernel executes another CALL instruction and
the application takes control of the system rather than returning to the
boot kernel.

Figure 17-31 on page 17-92 illustrates boot kernel processing in the Host
DMA boot mode. Figure 17-32 on page 17-93 illustrates host device flow.

Specific Boot Modes

17-92 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-31. Boot Kernel Processing in Host DMA Boot Mode

BMODE=1110 BMODE=1111

ENABLE LOWER 8 BITS
IN PORT MUXING
PREPARE INT MODE

ENABLE 16 BITS
IN PORT MUXING
PREPARE ACK MODE

STACK AND HWAIT
INITIALIZATION
ENABLE HOSTDP

SET HSHK

DEASSERT HWAIT
IDLE
ASSERT HWAIT

HIRQ

ERROR

W1C DMA_DONE
W1S COMPLETE
CLEAR HSHK

DISABLE DMA
DISABLE HOSTDP

CALL EVT1 VECTOR

DMA_DONE

HIRQ

IF EVT1 VECTOR RETURNS BY RTS

1

DMA_ERR

0

1

0

0

0

1

1

ADSP-BF54x Blackfin Processor Hardware Reference 17-93

System Reset and Booting

NAND Flash Boot Mode
NAND boot mode (BMODE = 1101)is intended to boot from SLC NAND
flash memory devices connected directly to the NAND Flash Controller
(NFC) of the ADSP-BF54x processors.

Figure 17-32. Host Device Flow

POLL ALLOW_CNFG
IN HOST_STATUS

WRITE SEVEN CONFIGURATION
WORDS ACCORDING TO

TARGET ADDRESS & BYTE COUNT*

POLL DMA_RDY
IN HOST_STATUS

READ OR WRITE THE AMOUNT OF
DATA SPECIFIED IN CONFIG VALUES*

END

START
(HWAIT HAS

BEEN
DE-ASSERTED)

ALLOW_CNFG = 0

DMA_RDY = 0

ALLOW_CNFG = 1

FINAL

FINAL OR INIT

DMA_RDY = 1

NORMAL

WAIT FOR HWAIT TO
DE-ASSERT AGAIN

READ OR WRITE THE AMOUNT OF
DATA SPECIFIED IN CONFIG VALUES*

WRITE HIRQ CONTROL COMMANDFINAL, INIT, OR
NORMAL BLOCK?

FINAL OR INIT
BLOCK?

INIT

* Must be a multiple of the HOSTDP’s FIFO depth

Specific Boot Modes

17-94 ADSP-BF54x Blackfin Processor Hardware Reference

Although this is a single BMODE setting, the ADSP-BF54x family of proces-
sors supports booting from a number of various NAND flash device
configurations:

• 8-bit Small Page SLC NAND flash

• 8-bit Large Page SLC NAND flash

• 16-bit Large Page SLC NAND flash

By default the NAND flash boot mode configures the read and write delay
strobe timing parameters within the NFC_CTL register with RD_DLY = 0x3
and WR_DLY = 0x3. This provides tRP and tWP timings of 4 SCLK cycles
(30ns at 133 MHz) in order to provide maximum compatibility. By pro-
gramming OTP half page PBS01H, the user has the option to instruct the
preboot routine to provide alternate settings prior to accessing the NAND
flash for the first access. In NAND boot mode, the HWAIT signal does
not toggle. The respective GPIO pins remains in high-impedance mode.

Providing OTP configurations of RD_DLY = 0x0 and WR_DLY = 0x0
will result in the boot kernel using the default configuration of
RD_DLY = 0x3 and WR_DLY = 0x3. The highest performance settings
that can be enabled for NAND boot are with WR_DLY = 0x1 and
RD_DLY = 0x0.

Supported Devices

NAND flash boot provides support for booting from a large number of
NAND flash devices from a number of different manufacturers. There are
two main classifications of single SLC NAND flash memories:

• Small Page NAND flash

• Large Page NAND flash

ADSP-BF54x Blackfin Processor Hardware Reference 17-95

System Reset and Booting

The small page NAND flash devices use a different addressing scheme for
accessing the NAND flash array than that required by large page NAND
flash devices. Additionally small page devices require a different command
set for reading from different parts of the page.

Compatible small page devices supported for booting must comply with
the array configuration as provided in Table 17-14 and support the com-
mands provided in Table 17-15.

The NAND flash boot kernel, by default, issues 4 address cycles
after issuing the read command. This redundancy can be removed
by modifying the uwNumCommands parameter of the
ADI_BOOT_NAND_ADDRESS structure from within an initialization
routine that is executed before the main application boot stream is

Table 17-14. Supported Small Page Device Array Configuration

Parameter Size

Page Size 512 Bytes

Block Size (excluding spare area) 16384 Bytes (32 pages)

Spare Area 16 Bytes

1st half of page 256 Bytes

2nd half of page 256 Bytes

Maximum number of addressable
blocks

524288

Table 17-15. Supported Small Page Commands

Operation Command

Reset 0xFF

Read from 1st half of array 0x00

Read from 2nd half of array 0x01

Read from spare area 0x50

Specific Boot Modes

17-96 ADSP-BF54x Blackfin Processor Hardware Reference

processed. In order to load the initialization function however, 4
address cycles are always issued. The NAND flash device must be
capable of ignoring the additional address cycles.

NAND flash boot provides support for a number of large page array con-
figurations. The 4th byte of the NAND flash Electronic Signature is used
to configure the boot kernel to allow correct access to the memory array.
The boot kernel supports any large page NAND flash device configuration
that is compliant with the format detailed in Figure 17-33.

Figure 17-33. Supported 4th byte of NAND Flash Electronic Signature

7 6 5 4 3 2 1 0

00 0 0 0 0 0 0

Page Size
(excluding spare area)
00 - 1024 Bytes
01 - 2048 Bytes
10 - 4096 Bytes
11 - 8192 Bytes

Spare Area Size
(per 512 Bytes)
0-8 Bytes
1-16 Bytes

Ignored

Ignored

Bus Width
0-8 Bits
1-16 Bits

Block Size
(excluding spare area)
00-64 Kbytes
01-128 Kbytes
10-256 Kbytes
11-512 Kbytes

ADSP-BF54x Blackfin Processor Hardware Reference 17-97

System Reset and Booting

The command set that must be supported is provided in Table 17-16.

Due to the auto detection method used. Large page NAND flash
devices must not react to the issuing of command 0x50 followed by
4 address cycles by driving the R B signal low and then high again.

The NAND flash boot kernel, by default, issues 5 address cycles
after issuing the read command. This redundancy can be removed
by modifying the uwNumCommands parameter of the
ADI_BOOT_NAND_ADDRESS structure from within an initialization
routine that is executed before the main application boot stream is
processed. In order to load the initialization function however, 5
address cycles are always issued. The NAND flash device must be
capable of ignoring the additional address cycles.

Supported 16-Bit NAND flash memories must only use the lower
8 bits of the bus for the command and address cycles. 16-bit com-
mand and address cycles are not supported.

Table 17-16. Supported Large Page Commands

Operation 1st Command 2nd Command

Reset 0xFF -

Read Electronic Signature 0x90 -

Read 0x00 0x30

Specific Boot Modes

17-98 ADSP-BF54x Blackfin Processor Hardware Reference

Hardware configuration for the NAND boot mode is shown in
Figure 17-34.

As the GPIO pins are originally configured as inputs, a pull-up resistor is
required on PJ1\ND_CE. This ensures that the device is not selected after a
reset until the required GPIO pins have been configured correctly.

Auto Detection

Once the boot kernel has detected the NAND boot option, the first oper-
ation to be performed is the auto detection procedure of the NAND flash
device.

The boot kernel first of all issues a reset signal to the NAND flash device.
The reset command brings the NAND flash out of the default read mode
ready to accept a command. The NAND flash reacts by driving the R B
signal low and then high again.

Figure 17-34. 8-Bit/16-Bit NAND Flash Interconnection

BLACKFIN

PJ2/ ND_RB R B

NAND FLASH

PJ1/ ND_CE E

ND_ALE

W

AL

CL

R
ARE

VDDEXT

AWE

ND_CLE

D[7:0] or D[15:0]
I/O [7:0] or I/O [15:0]

4.7K4.7K

ADSP-BF54x Blackfin Processor Hardware Reference 17-99

System Reset and Booting

The processor, after issuing the reset command, enters a nested loop that
checks the status of the R B signal every 100 CLK cycles. A maximum of
100 checks are performed. If the ready busy signal is not driven low and
then high again after 100 attempts, then the boot kernel enters the safe
idle mode as it assumed that no NAND flash device is present.

The routine terminates the first time the assertion of the signal is detected
after which, the processor then proceeds to determine if the attached
device is a small page NAND flash device.

The small page device detection consists of issuing the command to read
from the spare area of the device, command 0x50, followed by 4 address
cycles. Once again the processor then enters the nested loop routine wait-
ing for detection of a rising edge of the R B/ ND_RB signal. If the rising edge
is detected then the boot kernel is configured to boot from the supported
small page device. If no rising edge is detected by the time the loop termi-
nates then the device is assumed to be a large page device. The processor
issues a further reset command to reset the large page device then proceeds
to read the electronic signature in order to configure the boot kernel
appropriately.

Boot Stream Processing

In order to successfully boot from NAND flash, blocks of data must be
first transferred to the processors internal memory in order to be processed
by the boot kernel. This is achieved through the use of a 512 byte tempo-
rary storage space located at 0xFF907E00 - 0xFF907FFF.

This storage space is effectively split into two buffers each consisting of
256 bytes.

The 256 byte buffer at location 0xFF907E00 - 0xFF907EFF is what is
referred to as the “MainBuffer”. The remaining 256 bytes from
0xFF907F00 - 0xFF907FFF is referred to as the “PrefetchBuffer”.

Specific Boot Modes

17-100 ADSP-BF54x Blackfin Processor Hardware Reference

The NAND flash controller is configured for a 256 byte page size. During
the boot phase, a single block transfer consists of 256 bytes. All block
transfers from the NAND flash device go the PrefetchBuffer. The boot
kernel determines if the MainBuffer is empty, is partially processed or is
fully processed. If the MainBuffer is empty or all data currently residing in
the MainBuffer is processed, the boot kernel copies the contents of the
PrefetchBuffer into the MainBuffer then requests another 256 block of
data from the NAND flash. This process continues until the entire boot
stream is processed.

An important requirement of NAND flash devices is the need for error
checking and correction (ECC) to be performed on the received data. The
NAND flash controller of the ADSP-BF54x devices employs a Hamming
code algorithm to automatically generate 2 sets of parity data per 256 byte
block transfer. The two sets of parity data each consist of 11 bits providing
a total of 22 bits of parity data. This allows for the detection and correc-
tion of a single bit error within a 256 byte block, detection of a double
error and detection of an error within the parity data itself. The boot ker-
nel makes use of the embedded NFC ECC parity generation hardware and
performs the error correction algorithm after every block transfer to the
PrefetchBuffer providing greater reliability. The kernel is capable of
detecting when the requested data resides in a new page. Before requesting
the actual data, the kernel reads the data from the spare area section of the
page, where the ECC parity data resides, to the PrefetchBuffer before stor-
ing internally on the stack to the EccParity structure. The parity data for
the entire NAND flash page is stored allowing for ECC to be performed
on all further data transfers from that page without requiring further
access to the spare area. This allows for the kernel to adopt a more effi-
cient access method by only issuing a single read command for sequential
256 byte block accesses to a page when requesting the actual data.

Due to the fact that the NAND boot procedure uses a prefetch
mechanism, the 256 byte block following the end of the boot
stream must have a correct ECC parity field programmed. Failure

ADSP-BF54x Blackfin Processor Hardware Reference 17-101

System Reset and Booting

to adhere to this will result in the boot kernel generating an uncor-
rectable error when fetching the block of data resulting in the boot
process terminating.

Software Configurable NAND Boot Modes

The NAND boot mode provides support for three different boot methods
with regards to handling errors and bad blocks that may be encountered:

• Sequential Block Mode (default)

• Block Skip Mode

• Multiple Image Mode

The three booting options provide users with great flexibility in how they
wish to use a NAND flash for booting purposes.

The three boot modes are configured through the uwBlockSkipFeature
variable of the EccParity structure. By default uwBlockSkipFeature = 0,
configuring the device for Sequential Block Mode. The user can modify
the boot mode by modifying the uwBlockSkipFeature variable from
within an initialization routine that is loaded and executed before the
main application boot stream is processed.

Access to the ADI_BOOT_NAND structure is provided by a pointer stored in
the dUserLong parameter of the ADI_BOOT_DATA structure.

Sequential Block Mode

The default boot method is the Sequential Block Mode. In this mode no
bad block detection is performed. The processor simply boots the boot
stream starting from page 0 of block 0 until the end of the boot stream is
reached. Error correction is always performed for greater reliability, how-
ever, if an uncorrectable error or error in the parity data is detected, the
booting process terminates and the error handler is called.

Specific Boot Modes

17-102 ADSP-BF54x Blackfin Processor Hardware Reference

This boot mode is ideally suited to applications that wish to adopt a sec-
ond stage boot loader approach, where the second stage loader starts from
the first byte in the NAND flash.

If the boot stream to be loaded expands a number of blocks then all blocks
that the boot stream occupies must be good blocks. If a block in which the
boot stream would occupy is known to be bad then this boot method
should not be adopted for that particular device.

Figure 17-35 highlights some typical usage scenarios for this mode.

Block Skip Mode

This mode is enabled with uwBlockSkipFeature = 1. When enabling this
mode the user must also set uwBlockModifier = 1. Failure to do so can
result in the boot procedure failing.

This boot mode is ideally suited for larger applications not adopting the
second stage loader approach. During the loading of the application to the
NAND flash, upon detection of factory set bad block, the last byte of the
spare area of the first and second page of the bad block is set to a non
0xFF value. The boot procedure works in a similar manner to the Sequen-

Figure 17-35. Sequential Block Mode Usage Scenarios

ADSP-BF54x Blackfin Processor Hardware Reference 17-103

System Reset and Booting

tial Block Mode except on detection of an access to a new block the spare
area sections of the of the first two pages are loaded. The boot kernel
checks the last byte of each. If either is not equal to 0xFF then the page is
detected as bad. A byte offset of 1 block is then applied to all subsequent
data requests thus skipping any bad blocks allowing for the booting of a
single larger boot stream that is impeded by bad blocks in the area that the
boot stream occupies. Each time a bad block is encountered the byte offset
applied to the address of the requested data is incremented by 1 block.
Figure 17-36 highlights a typical usage scenario for this boot method.

Multiple Image Mode

This mode is enabled with uwBlockSkipFeature = 2. Multiple Image
Mode allows for multiple copies of the boot stream to be loaded to the
NAND flash providing maximum reliability. The number of blocks
between each copy of the boot stream is defined by uwBlockModifier.
Upon detection of an access to a new block, as in Block Skip Mode, the
last byte of the spare area of the first and second page of the block are

Figure 17-36. Block Skip Mode Typical Usage Scenario

Last byte of pages 0 and 1 of block set to a non

0xFF value, marking the block as bad. The block

is not programmed with data.

Specific Boot Modes

17-104 ADSP-BF54x Blackfin Processor Hardware Reference

checked to see if either indicate that the block is bad. If the block is bad,
the block offset is applied to the requested data address to fetch from the
next copy of the application. In addition, this mode is the only mode
capable of handling uncorrectable errors as a result of error detection and
correction. If an uncorrectable error is received in any block (including
block 0) or an error is detected in the parity data the kernel will fetch the
same block of data from the next copy of the application. The parameter
uwMaxCopies specifies how many copies of the application are located in
the NAND flash. If an uncorrectable error, error in the ECC parity data
or a bad block is detected and the processor is booting from the final copy
of the boot stream, processor then enters a safe idle state and the booting
process is terminated. This boot method provides greater reliability that
users may wish to adopt if regular boot stream updates are expected
throughout the lifetime of a product.

ADSP-BF54x Blackfin Processor Hardware Reference 17-105

System Reset and Booting

Figure 17-37 shows a typical usage scenario.

NAND Flash Page Structure

The NAND boot option transfers data contents from the main area of the
NAND flash using a 256 byte DMA transfer on DMA channel 22. The
spare area section at the end of the page contains the ECC parity data for
each 256 sub block of the main data area. The spare area section is divided

Figure 17-37. Mirror Image Mode Typical Usage Scenario

During programming block 14 is detected
as bad as marked in the factory.
The NAND Flash programmer may choose
to write data to this block or mark the block
as bad by setting the last byte of the
spare area of pages 0 and/or 1 to a
non 0xFF value while still preserving
the factory marked bad block information.
If data is not written to the block the flash
programmer must skip an entire blocks
worth of data in the loader stream before
completing the write of the loader stream
to block 15.

Specific Boot Modes

17-106 ADSP-BF54x Blackfin Processor Hardware Reference

into equal sizes corresponding to the number of 256 byte blocks contained
within a page, so for a 512 Mbyte small page device the spare area is
divided into two sections.

The first three bytes of each sub section of the spare area contains the
22-bit ECC parity data for the corresponding data block. The very last
byte of the spare area is reserved in the first and second pages of each block
for the bad block marker. Figure 17-38 shows the page structure for a
NAND flash device with a page size of 2048-Bytes. The 64-byte area is
divided into eight 8-byte sections. The first three bytes of each section
contains the parity data for the corresponding 256-byte block.

The last byte in the page is used as the bad-block marker in the event that
the device only contains 8-bytes of spare area per 512-byte block instead
of the more common 16-bytes per 512-byte block.

Figure 17-26 on page 17-84 shows an example of bit stretching.

Figure 17-38. Page Layout of NAND Flash Device, 2048-Byte Page Size

Spare Area (64 Bytes)
Main Area of NAND Flash Page (2048 Bytes)
divided into NAND Flash Controller Pages

ADSP-BF54x Blackfin Processor Hardware Reference 17-107

System Reset and Booting

Reset and Booting Registers
Two registers are used for reset and booting—the software reset register
(SWRST) and the system reset configuration register (SYSCR).

Software Reset (SWRST) Register
A software reset can be initiated by setting bits [3:0] in the system soft-
ware reset field in the software reset register (SWRST) shown in
Figure 17-39 on page 17-108. Bit 3 can be read to determine whether the
reset source was core-double-fault. A core-double-fault resets both the
core and the peripherals, but not the RTC block and most of the DPMC.
Bit 15 indicates whether a software reset has occurred since the last time
SWRST was read. Bit 14 indicates the software watchdog timer has gener-
ated the software reset. Bit 13 indicates the core-double-fault has
generated the software reset. Bits [15:13] are read-only and cleared when
the register is read. Reading the SWRST also clears bits [15:13] in the SYSCR
register. Bits [3:0] are read/write.

Only writing to bits[2:0], resets only the modules in the SCLK domain. It
does not clear the core. The program executes normally at the instruction
after the MMR write to SWRST. The system is kept in the reset state as long
as the bits[2:0] are set to b#111. To release reset, write a zero again. An
example is shown in Listing 17-2 on page 17-154. It is not recommended
to use this functionality directly. Rather, call the ROM function
bfrom_SysControl() to perform a system reset.

Reset and Booting Registers

17-108 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-39. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

SYSTEM_RESET (System
Software Reset)
0x0 – 0x6 - No SW reset
0x7 - Reset system

RESET_SOFTWARE

(Software Reset Status)-RO

0 0 0 0 0 0 0 0 0 0 0 0 0 0

RESET_DOUBLE (Core-
Double-Fault Reset)-RO
 0 - SW reset not generated by
core-double-fault
 1 - SW reset generated by
core-double-fault

DOUBLE_FAULT
(Core-Double-Fault Reset
Enable)

0xFFC0 0100

 0 - No SW reset since last
SWRST read
 1 - SW reset occurred since last
SWRST read

0 - Do not generate reset on
 core-double-fault

1 - Generate reset upon
 core-double-fault

RESET_WDOG

Software Watchdog Timer
Source)- RO
 0 - SW reset not generated by
watchdog
 1 - SW reset generated by
watchdog

Reset = 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 17-109

System Reset and Booting

System Reset Configuration (SYSCR) Register
The values sensed from the BMODE[3:0] pins of the SWRST register are mir-
rored into the system reset configuration register (SYSCR). The values are
available for software access and modification after the hardware reset
sequence. Software can modify only bits[7:4] in this register to customize
boot processing upon a software reset.

Table 17-2 on page 17-4, and Figure 17-1 on page 17-8 illustrate these
booting sequences.

The bits [15:13] are exact copies of the same bits in the SWRST register.
Unlike the SWRST register, SYSCR can be read without clearing these bits.
Reading SWRST also causes SYSCR[15:13] to clear.

The WURESET indicates whether there was a wake up from hibernate since
the last hardware reset. The bit cannot be cleared by software.

Bits [11:8] have no booting or reset purpose. These bits control the DMA
arbitration.

The software reset configuration register (SYSCR) is shown in Figure 17-40
on page 17-110.

Reset and Booting Registers

17-110 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-40. System Reset Configuration Register

X0000 X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE [3:0] (Boot Mode) - RO

0000 - No boot, Idle

0001 - Boot from 8-bit or 16-bit flash

0010 - Boot from 16-bit FIFO

0011 - Boot from SPI memory

0100 - Boot from SPI host

0101 - Boot from TWI memory

0110 - Boot from TWI host

0111 - Boot from UART host

1000 - Reserved

1001 - Reserved

1010 - Boot from SDRAM memory,
(warm boot)

1011 - Boot from OTP memory

1100 - Reserved

1101 - Boot from 8- and 16-bit
NAND flash

1110 - Boot from 16-bit Host DMA
(ACK mode)

1111 - Boot from 8-bit Host DMA
(INT mode)

0 0 0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X - state is initialized from BMODE pins during hardware reset

0xFFC0 0104

SWRESET
Software Reset - RO
A software reset
0 - last reset was not
1 - last reset was

WDRESET
Watchdog Reset - RO
A watchdog reset
0 - last reset was not
1 - last rest was

DFRESET
Double-fault Reset - RO
A double-fault reset
0 - last reset was not
1 - last reset was

WURESET
Wake-up Reset - RO
Since last hardware reset
0 - no wake-up event
1 - there was a wake-up

L2DMAPRIO - RW
0 - DMA0 has higher priority than DMA1 to
L2
1 - DMA1 has higher priority than DMA0 to
L2

CDMAPRIO - RW
0 - DMA0 has higher priority than DMA1 to L1 memory
1 - DMA1 has higher priority than DMA0 to L1 memory

BCODE[3:0]
Boot Code - RW
0000 - BCODE_NORMAL. Perform quick boot as by
WURESET, update power management
0001 - BCODE_NOBOOT. Do not boot, directly jump to
EVT1 vector
0010 - BCODE_QUICKBOOT. Ignore WURESET, always
perform quick boot
0100 - BCODE_ALLBOOT. Ignore WURESET, do not
perform quick boot
0110 - BCODE_FULLBOOT. Ignore WURESET, do not
perform quick boot, update power management
1xxx - reserved

ADSP-BF54x Blackfin Processor Hardware Reference 17-111

System Reset and Booting

Boot Code Revision Control (BK_REVISION)
The boot ROM reserves the 32-bit memory location at address
0xEF00 0040 for a version code consisting of four bytes as shown in
Figure 17-41 on page 17-111.

Figure 17-41. Boot Code Revision Code (BK_REVISION)

Bit 23:16— BK_PROJECT (Boot
Kernel Project)
Reads as 0x01 on ADSP-BF54x
processors

Default, See Anomaly Sheet0xEF00 0040

Boot Code Revision BK_REVISION Word, 31-16

Bit 31:24— BK_ID (Boot Kernel
Identifier)
Reads as 0xAD

Boot Code Revision BK_REVISION Word, 15-0

Default, See Anomaly Sheet0xEF00 0040

BK_VERSION (Boot Kernel
Version)
Global boot kernel version
number

BK_UPDATE (Boot Kernel Update
Enhancements/Bug fix version spe-
cifically made for the specific project
Refer to the specific processor
anomaly sheet for the version con-
trol of a specific silicon revision.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset and Booting Registers

17-112 ADSP-BF54x Blackfin Processor Hardware Reference

Boot Code Date Code (BK_DATECODE)
The boot ROM reserves the 32-bit memory location at address
0xEF00 0050 to report the code of the build date as shown in
Figure 17-42 on page 17-112.

Figure 17-42. Boot Code Date Code (BK_DATECODE)

Default, See Anomaly Sheet0xEF00 0050

Boot Code Date Code BK_DATECODE Word, 31-16

Bit 31:16 - BK_YEAR

Boot Code Date Code BK_DATECODE Word, 15-0

Default, See Anomaly Sheet0xEF00 0050

BK_MONTH BK_DAY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF54x Blackfin Processor Hardware Reference 17-113

System Reset and Booting

Zero Word (BK_ZEROS)
The boot ROM reserves the 32-bit memory location at address
0xEF00 0048 which always reads as 0x0000 000 as shown in Figure 17-43
on page 17-113.

Figure 17-43. Zero Word (BK_ZEROS)

Default, See Anomaly Sheet0xEF00 0048

Zero Word BK_ZEROS, 31-16

Read only

Zero Word BK_ZEROS, 15-0

Default, See Anomaly Sheet0xEF00 0048

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset and Booting Registers

17-114 ADSP-BF54x Blackfin Processor Hardware Reference

Ones Word (BK_ONES)
The boot ROM reserves the 32-bit memory location at address
0xEF00 004C which always reads 0xFFFF FFFF as shown in Figure 17-44
on page 17-114.

Figure 17-44. Ones Word (BK_ONES)

Default, See Anomaly Sheet0xEF00 004C

Ones Word BK_ONES, 31-16

Read only

Ones Word BK_ONES, 15-0

Default, See Anomaly Sheet0xEF00 004C

Read only

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 11 1

11 1 1 1 1 1 1 1 1 1 1 1 11 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADSP-BF54x Blackfin Processor Hardware Reference 17-115

System Reset and Booting

OTP Memory Pages for Booting

Lower PBS00 Half Page
The 64-bit lower half of page 0x18 is always read by the preboot routine.
These control bits customize the boot process and instruct the preboot
routine whether to process further pages and whether the PLL settings
have to be changed. Other bits customize the SPI and TWI master boot
speed.

OTP Memory Pages for Booting

17-116 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-45. Lower PBS00 Half Page (PBS00L, Bits 63–48)

Lower PBS00 Half Page (PBS00L, Upper 63-48)
One-Time Programmable

OTP 0x018L + (4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_TWI_TYPE
00 = Two address bytes required
01 = Three address bytes required
10 = Four address bytes required
11 = One address byte required

OTP_SET_PLL
0 = Do not set PLL_CTL and
PLL_DIV registers
1 = Set PLL_CTL and PLL_DIV reg-
isters with OTP_PLL_CTL and
OTP_PLL_DIV values

OTP_SET_VR
0 = Do not set VR_CTL register
1 = Set VR_CTL register with
OTP_VR_CTL value

OTP_RESETOUT_HWAIT
0 = Normal HWAIT operation
1 = HWAIT simulates reset output

OTP_ALTERNATE_HWAIT
0 = HWAIT on P11 GPIO pin
1 = HWAIT on P7 GPIO pin

OTP_INVALID
00 = Pages 0x18 to 0x1B, Valid
11 = Pages 0x18 to 0x1B, Invalid,
use pages 0x1C to 0x1F instead.

OTP_LOAD_PBS03H
Not implemented in current rev.
0 = do not load and process PBS03H
page
1 = load and process PBS03H page

OTP_LOAD_PBS03L
Not implemented in current rev.
0 = do not load and process PBS03L
page
1 = load and process PBS03L page

OTP_LOAD_PBS02H
0 = do not load and process PBS02H
page
1 = load and process PBS02H page

OTP_LOAD_PBS02L
0 = do not load and process PBS02L
page
1 = load and process PBS02L page

OTP_LOAD_PBS01H
0 = do not load and process PBS01H
page
1 = load and process PBS01H page

OTP_LOAD_PBS01L
Not implemented in current rev.
0 = do not load and process PBS01L
page
1 = load and process PBS01L page

Default 0x0000

OTP_LOAD_PBS00H
0 = Do not load and process
PBS00H page
1 = Load PBS00H page

ADSP-BF54x Blackfin Processor Hardware Reference 17-117

System Reset and Booting

Figure 17-46. Lower PBS00 Half Page (PBS00L, Bits 47–32)

Lower PBS00 Half Page (PBS00L, Upper 47-32)
One-Time Programmable

OTP 0x018L + (4 x i)
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_PLL_DIV Value to be
written to PLL_DIV register if
OTP_SET_PLL=1

OTP_TWI_PRESCALE
for TWI master boot
000 = Prescale = 0xA(for 100MHz SCLK)
001 = Prescale = 0xE (for 140MHz SCLK)
010 = Prescale = 0xC (for 120MHz SCLK)
011 = Prescale = 0xA (for 100MHz SCLK)
100 = Prescale = 0x8 (for 80MHz SCLK)
101 = Prescale = 0x6 (for 60MHz SCLK)
110 = Prescale = 0x4 (for 40MHz SCLK)
111 = Prescale = 0x2 (for 20MHz SCLK)

OTP_TWI_CLKDIV
for TWI master boot
0 = CLKDIV = 0x0811 (400kHz TWI opera-
tion, 30% duty cycle)
1 = CLKDIV = 0x3232 (100kHz TWI opera-
tion, 50% duty cycle)

OTP_SPI_FASTREAD
0 = Standard 0x03 read command
1 = 0x0B fast read command

OTP_SPI_BAUD
for SPI master boot
00 = SPI0_BAUD = 133
01 = reserved
else— SPI0_BAUD =
2^(OTP_SPI_BAUD-1)

Default 0x0000

OTP Memory Pages for Booting

17-118 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-47. Lower PBS00 Half Page (PBS00L, Bits 31–0)

Lower PBS00 Half Page (PBS00L, Lower 31-16)
One-Time Programmable

OTP 0x18L + (4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OTP_PLL_CTL
Value to be written to PLL_CTL register if
OTP_SET_PLL=1

Lower PBS00 Half Page (PBS00L, Lower 15-0)
One-Time Programmable

OTP 0x18L + (4 x i)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_VR_CTL
Value to be written to VR_CTL register if
OTP_SET_VR=1

Default 0x0000

Default 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 17-119

System Reset and Booting

Upper PBS00 Half Page
The preboot routine loads the upper 64-bit half of page PBS00 only if the
OTP_LOAD_PBS00H bit in the PBS00L page is set. Page PBS00H customizes the
default setting of the asynchronous portion of the EBIU controller.

Figure 17-48. Upper PBS00 Half Page (PBS00H, Bits 63-32)

00

0

Upper PBS00 Half Page (PBS00H, Upper 63-48)
One-Time Programmable

OTP 0x18H +(4 x i) 00 0 0 0 0 0 0 0 0 0 0 0 00

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_EBIU_DEVCFG
Device Configuration word to be used
by device sequence.

Upper PBS00 Half Page (PBS00H, Upper 47-32)
One-Time Programmable

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 00

OTP_EBIU_MODE. Value to be written
to the EBIU_MODE registerOTP_EBIU_DEVSEQ

0010 = perform 16-bit Atmel,
Intel, ST sequence
0100 = perform 16-bit Spansion
sequence
0110 = perform 16-bit Samsung
sequence
else: do not perform any device
sequence

Default 0x0000

Default 0x0000OTP 0x18H +(4 x i)

OTP_EBIU_AMG
Value to be written to
EBIU_AMGCTL register

OTP Memory Pages for Booting

17-120 ADSP-BF54x Blackfin Processor Hardware Reference

Upper PBS01 Half Page
The preboot routine loads the upper 64-bit half of page 0x19 only if either
the OTP_LOAD_PBS01H bit in the PBS00L page is set. This page allows the
user to disable boot modes. If a disabled boot mode configuration is cho-
sen by the BMODE[3:0] pins, the boot kernel goes into idle state. This half
pages also provides customization of the NAND flash controller. In OTP
boot mode, this pages determines where in OTP memory the boot stream
resides.

Figure 17-49. Upper PBS00 Half Page (PBS00H, Bits 31–0)

Upper PBS00 Half Page (PBS00H, Lower 31-16)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OTP_EBIU_FCTL
Value to be written to the EBIU_FCTL register if
OTP_SET_FCTL=1

Upper PBS00 Half Page (PBS00H, Lower 15-0)
One-Time Programmable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_EBIU_A CTL
Value to be written to the EBIU_A CTL0 and
EBIU_A CTL1 registers. Applies only to banks
as enabled in the OTP_EBIU_AMG value.

Default 0x0000

Default 0x0000OTP 0x18H +(4 x i)

OTP 0x18H +(4 x i)

ADSP-BF54x Blackfin Processor Hardware Reference 17-121

System Reset and Booting

Figure 17-50. OTP Half Page (PBS01H, Bits 63–16)

Upper PBS01 Half Page (PBS01H, Upper 63-48)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

Bits 63-48— Reserved

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x19H + (4xi)

Upper PBS01 Half Page (PBS01H, Upper 47-32)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x19H + (4xi)

Upper PBS01 Half Page (PBS01H, Lower 31-16)
One-Time Programmable

OTP_START_PAGE
OTP start page for OTP boot mode. If 0x00, OTP
boot starts at OTP page 0x40.

OTP 0x19H + (4xi)

Bits 47-32— Reserved

Default 0x0000

Default 0x0000

Default 0x0000

OTP_NFC_CTL
If non-zero value is written to lower
eight bits of NFC_CTL register.

OTP Memory Pages for Booting

17-122 ADSP-BF54x Blackfin Processor Hardware Reference

Lower PBS02 Half Page
The preboot routine loads the lower 64-bit half of page 0x1A only if the
OTP_LOAD_PBS02L bit in half page PBS00L is set. Half pages PBS02L and
PBS02H customize the SDRAM controller settings.

Figure 17-51. OTP Half Page PBS01H (PBS01H, Bits 15-0)

Upper PBS01 Half Page (PBS01H, Lower 15-0)
One-Time Programmable

OTP 0x19H + (4xi)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_BMODE00_DIS
0 = Do not disable Boot Mode 0
1 = Disable Boot Mode 0

OTP_BMODE01_DIS
0 = Do not disable Boot Mode
1 = Disable Boot Mode 1

OTP_BMODE02_DIS
0 = Do not disable Boot Mode 2
1 = Disable Boot Mode 2

OTP_BMODE03_DIS
0 = Do not disable Boot Mode 3
1 = Disable Boot Mode 3

OTP_BMODE04_DIS
0 = Do not disable Boot Mode 4
1 = Disable Boot Mode 4

OTP_BMODE05_DIS
0 = Do not disable Boot Mode 5
1 = Disable Boot Mode 5

OTP_BMODE06_DIS
0 = Do not disable Boot Mode 6
1 = Disable Boot Mode 6

OTP_BMODE07_DIS
0 = Do not disable Boot Mode 7
1 = Disable Boot Mode 7

BMODE15_DIS
0 = Do not disable
1 = Disable Boot Mode 15

BMODE14_DIS
0 = Do not disable
1 = Disable Boot Mode 14

BMODE13_DIS
0 = Do not disable
1 = Disable Boot Mode 13

BMODE12_DIS
0 = Do not disablE
1 = Disable Boot Mode 12

BMODE11_DIS
0 = Do not disable
1 = Disable Boot Mode 11

BMODE10_DIS
0 = Do not disable
1 = Disable Boot Mode 10

BMODE09_DIS
0 = Do not disable
1 = Disable Boot Mode 9

BMODE08_DIS
0 = Do not disable
1 = Disable Boot Mode 8

Default 0x0000

ADSP-BF54x Blackfin Processor Hardware Reference 17-123

System Reset and Booting

Figure 17-52. ADSP-BF54x Lower PBS02 Half Page (PBS02L, Bits 63–
16)

Lower PBS02 Half Page (PBS02L, Lower 31:16)
One-Time Programmable

 OTP_EBIU_DDRCTL1[31:16]
Values to be written to the EBIU_DDRCTL1
register

OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Lower 15:0)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Lower 31-16)
One-Time Programmable

OTP 0x1AL + (4xi)

Lower PBS02 Half Page (PBS02L, Lower 15-0)
One-Time Programmable

OTP 0x1AL + (4xi)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

Default 0x0000

Default 0x0000

Default 0x0000

Default 0x0000

 OTP_EBIU_DDRCTL0[31:16]
Values to be written to the EBIU_DDRCTL0
register

OTP_EBIU_DDRCTL0[15:0]

OTP_EBIU_DDRCTL1[15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP Memory Pages for Booting

17-124 ADSP-BF54x Blackfin Processor Hardware Reference

Upper PBS02 Half Page
The preboot routine loads the upper 64-bit half of page 0x16 only if the
OTP_LOAD_PBS02H bit in the PBS00L page is set. Half pages PBS02L and
PBS02H customize the SDRAM controller settings.

ADSP-BF54x Blackfin Processor Hardware Reference 17-125

System Reset and Booting

Figure 17-53. Upper PBS02 Half Page (PBS02H, Bits 63–0)

Upper PBS02 Half Page (PBS02H, Upper 63-48)
One-Time Programmable

00 0 0 0 0 0 0 0 0 0 0 0 00 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

OTP_EBIU_MOBILE_DDR
0— Normal SDRAM mode
1— Mobile SDRAM mode

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

00 0 0 0 0 0 0 0 0 0 0 0 00 0OTP 0x1AH + (4xi)

Upper PBS02 Half Page (PBS02H, Upper 47-32)
One-Time Programmable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_EBIU_DDRQUEL

OTP 0x1AH + (4xi)

Upper PBS02 Half Page (PBS02H, Lower 31-16)
One-Time Programmable

OTP_EBIU_DDRCTL3L Value to
be written to lower half of
EBIU_DDRQUE register

OTP 0x1AH + (4xi)

Upper PBS02 Half Page (PBS02H, Lower 15-0)
One-Time Programmable

OTP 0x1AH + (4xi)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

OTP_EBIU_DDRCTL2L Value to
be written to lower half of
EBIU_DDRQUE register

Default 0x0000

Default 0x0000

Default 0x0000

Default 0x0000

Data Structures

17-126 ADSP-BF54x Blackfin Processor Hardware Reference

Reserved Half Pages
The half pages PBS01L, PBS03L and PBS03H are reserved and not used in the
current silicon.

Do not use these pages as they may be populated in future silicon
revisions.

Data Structures
The boot kernel uses specific data structures for internal processing.
Advanced users can customize the booting process by changing the con-
tent of the structure within the initcode routines. This section uses C
language definitions for documentation purposes. VisualDSP++ users can
use these structures directly in assembly programs by using the .IMPORT
directive. The structures are supplied by the bfrom.h header file in your
VisualDSP++ installation directory.

ADI_BOOT_HEADER
The structure ADI_BOOT_HEADER is used by the boot kernel to load and pro-
cess a block header.

typedef struct {

 s32 dBlockCode;

 void* pTargetAddress;

 s32 dByteCount;

 s32 dArgument;

} ADI_BOOT_HEADER;

Every block header is loaded to L1 data memory location 0xFF80 7FF0–
0xFF80 7FFF first or where pHeader points to. There it is analyzed by the
boot kernel.

ADSP-BF54x Blackfin Processor Hardware Reference 17-127

System Reset and Booting

ADI_BOOT_BUFFER
The structure ADI_BOOT_BUFFER is used for any kind of buffer. For the
user, this structure is important when implementing advanced callback
mechanisms.

typedef struct {

 void* pSource;

 s32 dByteCount;

} ADI_BOOT_BUFFER;

ADI_BOOT_DATA
The structure ADI_BOOT_DATA is the main data structure. A pointer to a
ADI_BOOT_DATA structure is passed to most complex subroutines, including
load functions, initcode, and callback routines. The structure has two
parts. While the first is closely related to internal memory load routines,
the second provides access to global boot settings.

typedef struct {

 void* pSource;

 void* pDestination;

 s16* pControlRegister;

 s16* pDmaControlRegister;

 s32 dControlValue;

 s32 dByteCount;

 s32 dFlags;

 s16 uwDataWidth;

 s16 uwSrcModifyMult;

 s16 uwDstModifyMult;

 s16 uwHwait;

 s16 uwSsel;

 s16 uwUserShort;

 s32 dUserLong;

 s32 dReserved2;

Data Structures

17-128 ADSP-BF54x Blackfin Processor Hardware Reference

 ADI_BOOT_ERROR_FUNC* pErrorFunction;

 ADI_BOOT_LOAD_FUNC* pLoadFunction;

 ADI_BOOT_CALLBACK_FUNC* pCallBackFunction;

 ADI_BOOT_HEADER* pHeader;

 void* pTempBuffer;

 void* pTempCurrent;

 s32 dTempByteCount;

 s32 dBlockCount;

 s32 dClock;
 void* pLogBuffer;

 void* pLogCurrent;

 s32 dLogByteCount;

} ADI_BOOT_DATA;

Table 17-17 on page 17-128 describes the data structures.

Table 17-17. Structure Variables, ADI_BOOT_DATA

Variable Description

pSource In the context of the boot kernel, the pSource pointer points either to
the start address of the entire boot stream or to the header of the next
boot block. In the context of memory load routines pSource points to
the source address of the DMA work unit.

pDestination The pDestination pointer is only used in memory load routines. It
points to the destination address of the DMA work unit. It points to
either 0xFF80 7FF0 when a header is loaded, or the target address when
the payload data is loaded.

pControlRegister This pointer holds the MMR address of the peripheral’s main control reg-
ister (for example UARTx_LCR or SPIx_CTL)

pDmaControlRegister This pointer holds the MMR address of the DMAx_CONFIG register for
the DMA channel in use.

dControlValue The lower 16 bits of this value are written to the pControlRegister
location each time a DMA work unit is started.

dByteCount Number of bytes to be transferred.

ADSP-BF54x Blackfin Processor Hardware Reference 17-129

System Reset and Booting

dFlags The lower 16 bits of this variable hold the lower 16 bits of the current
block code. The upper 16 bits hold global flags. See “dFlags Word” on
page 17-131.

uwDataWidth This instructs the memory load routine to use:
0 = 8-bit DMA
1 = 16-bit DMA
2 = 32-bit DMA

uwSrcModifyMult This is the multiplication factor used by the DMA source. A value of 1
sets the source modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or 4 for
32-bit DMA.

uwDstModifyMult This is the multiplication factor used by the DMA destination. A value of
1 sets the destination modifier to 1 for 8-bit DMA, 2 for 16-bit DMA, or
4 for 32-bit DMA.

uwHwait This 16-bit value holds the GPIO used for HWAIT signaling. The value
can change on the fly. The upper eight bits designate the port number
(for example 01 for Port A, 02 for Port B). The lower four bits designate
the GPIO in the port. For example, GPIO PH11 has a value of 0x020B,
PB7 has a value of 0x0807, PG0 has a value of 0x0700.

uwSsel This 16-bit value holds the GPIO used for SPI slave select. The value can
change on the fly. The upper eight bits designate the port number (for
example 01 for Port A, 02 for Port B). The lower four bits designate the
GPIO in the port.

uwUserShort The programmer can use this 16-bit value for passing parameters between
modules of a customized booting scheme.

dUserLong The programmer can use this 32-bit value for passing parameters between
modules of a customized booting scheme.

dReserved This 32-bit value is reserved for future development.

pErrorFunction This is the pointer to the error handler. See “Error Handler” on
page 17-48.

pLoadFunction This is the pointer to the function responsible for loading data. See “Load
Functions” on page 17-49

pCallBackFunction; This is the pointer to the callback function. See “Callback Routines” on
page 17-46

pHeader The pHeader pointer holds the address for intermediate storage of the
block header. By default this value is set to 0xFF80 7FF0.

Table 17-17. Structure Variables, ADI_BOOT_DATA (Cont’d)

Variable Description

Data Structures

17-130 ADSP-BF54x Blackfin Processor Hardware Reference

pTempBuffer This pointer tells the boot kernel what memory to use for intermediate
storage when the BFLAG_INDIRECT flag is set for a given block. The
pointer defaults to 0xFF90 7E00. The value can be modified by the init-
code routine, but there would be some impact to the VisualDSP++ tools.

pTempCurrent Defaults to the pTempBuffer value. A load function can modify this
value to manipulate subsequent callback and memory DMA routines.

dTempByteCount This is the size of the intermediate storage buffer used when the
BFLAG_INDIRECT flag is set for a given block. This value defaults to
256 and can be modified by an initcode routine. When increasing this
value, the pTempBuffer must also be changed since by default the block
is at the end of a physical data memory block.

dBlockCount This 32-bit variable counts the boot blocks that are processed by the boot
kernel. If the user sets this value to a negative value, the boot kernel exits
when the variable increments to zero.

dClock The dClock variable holds information about the clock divider used by
individual (serial) boot modes.

pLogBuffer Pointer to the circular log buffer. By default the log buffer resides in L1
scratch pad memory at address 0xFFB0 0400.

pLogCurrent Pointer to the next free entry of the circular log buffer.

dLogByteCount Size of the circular log buffer, default is 0x400 bytes.

Table 17-17. Structure Variables, ADI_BOOT_DATA (Cont’d)

Variable Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-131

System Reset and Booting

dFlags Word

Figure 17-54 and Figure 17-55 on page 17-132 describe the dFlags word.
dFlags [15-0] is a copy of Block Code[15-0] of the block currently being
processed.

Figure 17-54. dFlags Word (Bits 15–0)

dFlags Word, 15-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_FINAL

BFLAG_FIRST

BFLAG_INDIRECT

BFLAG_IGNORE

BFLAG_INIT

BFLAG_CALLBACK

BFLAG_QUICLKBOOT

BFLAG_FILL

DMACODE - DMA Coding

BFLAG_SAVE

BFLAG_AUX

Data Structures

17-132 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 17-55. dFlags Word (Bits 31–16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 00 0

BFLAG_HOOK
0— Do not callback initialization
hook routine
1— Do callback initialization hook
routine

BFLAG_HDRINDIRECT
0— Headers are loaded directly
1— Headers are loaded indirectly

BFLAG_TYPE
00— 1 SPI/TWI address bytes
01— 2 SPI/TWI address bytes
10— 3 SPI/TWI address bytes
11— 4 SPI/TWI address bytes

BFLAG_FASTREAD
0— normal SPI mode
1— SPI fast read operation

dFlags Word, 31-16

BFLAG_NONRESTORE
0— restore control registers on
exit
1— do not restore control regis-
ters on exit

BFLAG_RESET
0— do not issue system reset on
exit
1— issue system reset on exit

BFLAG_RETURN
0— jump to EVT1 address on
exit
1— issue RTS instruction on exit

BFLAG_NEXTDXE
0— perform exit
1— look for DXE start address

BFLAG_WAKEUP
0— no wakeup case, perform
boot
1— wakeup case, perform quick
boot

BFLAG_SLAVE
0— master boot mode
1— peripheral boot mode

BFLAG_PERIPHERAL
0— memory boot mode
1— peripheral boot mode

BFLAG_NOAUTO
0— perform automatic device
detection
1— suppress automatic device
detection

ADSP-BF54x Blackfin Processor Hardware Reference 17-133

System Reset and Booting

ADI_BOOT_NAND
The boot kernel makes use of a number of data structures for internal pro-
cessing. Advanced users may manipulate some of contents of the
structures from within initcode routines to customize the boot process
further.

ADI_BOOT_NAND is the central structure used solely by the NAND boot ker-
nel. The pointer to ADI_BOOT_NAND is stored in the dUserLong parameter of
ADI_BOOT_DATA when NAND flash boot mode is enabled. This pointer
provides access to the ADI_BOOT_NAND structure through initialization rou-
tines in order to further customize the booting process.

typedef struct{

 ADI_BOOT_NAND_DEVICE DeviceInfo;

 ADI_BOOT_NAND_BUFFER MainBuffer;

 ADI_BOOT_NAND_BUFFER PrefetchBuffer;

 ADI_BOOT_NAND_ACCESS AddressRequested;

 ADI_BOOT_NAND_ADDRESS AddressCycles;

 ADI_BOOT_NAND_ECC EccParity;
 ADI_BOOT_DATA *pBootData;

 void *pReserved;
} ADI_BOOT_NAND;

Table 17-18. Structure Variables, ADI_BOOT_NAND

Variable Description

DeviceInfo Properties relating to the NAND flash device

MainBuffer Information relating to the current contents of the Main-
Buffer.

PrefetchBuffer Information relating to the current contents of Prefetch-
Buffer.

Data Structures

17-134 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_DEVICE
This structure provides a number of details about the NAND flash device
connected to the NFC. For booting from supported small page NAND
flash devices not all parameters are used and thus initialized. For sup-
ported large page NAND flash memories, the structure is initialized after
reading the electronic signature of the device. The 4th byte of the 4 byte
electronic signature contains information that allows for the initialization
of the entire structure.

typedef struct{

 u32 udIdCode;

 u32 udIdType;

 u16 uwBusWidth;

 u16 uwColumnMaskCount;

 u32 udColumnMask;

 u16 uwPageMaskCount;

 u32 udPageMask;

 u16 uwSpareMaskCount;

 u16 uwSpareAreaBit;

 u32 udBlockSize;

 u16 uwPageSize;

AddressRequested Contains details of the requested address when the address
is converted to an address suitable for accessing the NAND
flash.

AddressCycles Contains information required to correctly read from the
NAND flash device.

EccParity Provides storage for the error correction parity data for a
NAND flash page and controls the operation mode of the
NAND boot kernel.

pBootData Pointer to the global ADI_BOOT_DATA structure.

pReserved Reserved for future enhancements. Do not use.

Table 17-18. Structure Variables, ADI_BOOT_NAND

Variable Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-135

System Reset and Booting

 u16 uwPagesPerBlock;

 u16 uwSpareAreaSize;

 u16 uwSpareAreaModifier;

 u16 uwNFCPages;

} ADI_BOOT_NAND_DEVICE;

Table 17-19. Structure Variables, ADI_BOOT_NAND_DEVICE

Variable Description

udIdCode The electronic signature of the device as received after issu-
ing the 'Read Electronic Signature' Command. This is not
populated if a small page device is detected as we only sup-
port a single small page type. Only used for large page
NAND flash devices.

udType Indicates a small page device '0' or a large page device '1'.

uwBusWidth Bus width of the device '0' for 8-bit '1' for 16-bit.

uwColumnMaskCount Number of bits required to address all columns within a
NAND flash page (excluding the spare area). This is used
to translate the address pSource provided in
ADI_BOOT_DATA to a format required to address the
NAND flash device.

udColumnMask Used to extract the column within a page being addressed
from the requested source address.

uwPageMaskCount Number of bits required to address all pages within a single
NAND flash block.

udPageMask Used to extract the page number within a block being
addressed from the source address.

uwSpareMaskCount Number of bits required to address all columns within the
spare area section at the end of a NAND flash page.

uwSpareAreaBit This contains the bit position that needs to be set in order
to address the spare area section of the NAND flash page.

udBlockSize The block size of the device in bytes (excluding spare area).

uwPageSize The page size of the device in bytes (excluding the spare
area).

uwPagesPerBlock The number of pages within a block.

Data Structures

17-136 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_BUFFER
The ADI_BOOT_NAND_BUFFER structure provides details of the current con-
tents of a 256 byte buffer. There are two of these buffers required for
NAND boot. The buffer provides details on the location of the buffer as
well as its current contents. As 256 byte blocks of data are read from the
NAND flash memory at a time, the kernel can determine if a new data
fetch is required from the NAND flash or whether the data resides in one
of the two buffers located in internal memory.

typedef struct{

 void * pBegin;

 u16 uwLoadedNFCPage;

 u16 uwLoadedNANDPage;

 u16 uwLoadedNANDBlock;

} ADI_BOOT_NAND_BUFFER;

uwSpareAreaSize The number of bytes contained within the spare area sec-
tion of a page.

uwSpareAreaModifier The number of bytes in the spare area section dedicated for
each 256 byte NAND flash controller page.

uwNFCPages The number of 256 byte NAND Flash controller pages
within a full NAND flash page.

Table 17-20. Structure Variables, ADI_BOOT_NAND_BUFFER

Variable Description

pBegin Pointer to the first address of a 256 byte buffer.

uwnLoadedNFCPage The currently loaded 256 byte NAND flash controller
sub-page.

Table 17-19. Structure Variables, ADI_BOOT_NAND_DEVICE

Variable Description

ADSP-BF54x Blackfin Processor Hardware Reference 17-137

System Reset and Booting

uwLoadedNANDPage The currently loaded NAND flash page.

uwLoadedNANDBlock The currently loaded NAND flash block.

Table 17-20. Structure Variables, ADI_BOOT_NAND_BUFFER

Variable Description

Data Structures

17-138 ADSP-BF54x Blackfin Processor Hardware Reference

ADI_BOOT_NAND_ACCESS
The source address provided by the main kernel is analyzed and based on
the contents of ADI_BOOT_NAND_DEVICE the 256 byte block within a page,
the actual page and block in which the data resides can be calculated. This
structure contains these access details and in conjunction with the
ADI_BOOT_NAND_BUFFER structures is used to determine if the data needs to
be fetched from the NAND flash memory or whether it already resides in
internal memory.

typedef struct{

 u16 uwAccessNFCPage;

 u16 uwAccessNANDPage;

 u16 uwAccessNANDBlock;

} ADI_BOOT_NAND_ACCESS;

Table 17-21. Structure Variables, ADI_BOOT_NAND_BUFFER

Variable Description

uwAccessNFCPage The requested 256 byte NAND flash controller sub-page
to be accessed

uwAccessNANDPage The requested NAND flash page to be accessed.

uwAccessNANDBlock The requested NAND flash block to be accessed.

ADSP-BF54x Blackfin Processor Hardware Reference 17-139

System Reset and Booting

ADI_BOOT_NAND_ADDRESS
ADI_BOOT_NAND_ADDRESS is modified when the NAND boot kernel decodes
the source address provided by the main kernel. Any offsets are applied
that enable addressing of alternative blocks in the event that one of the
booting features is used that requires the detection of bad blocks or uncor-
rectable errors when performing the error correction. When the address is
decode the structure is filled with the required NAND flash controller
commands and address cycles to be issued in order retrieve the required
data.

For supported small page NAND flash devices, the number of address
cycles is always 4 and the number of command cycles is 1. For large page
NAND flash devices, the number of address cycles default value is 5. This
is due to the fact that the upper addressing boundaries of the NAND flash
device cannot be determined from the electronic signature, in turn the
kernel is unable to calculate the exact amount of address cycles required to
be issued in order to perform a read from the NAND flash. A majority of
large page NAND flash devices simply ignore any additional address cycles
on a page read command that are not required. If a NAND flash device is
not capable of ignoring the additional address cycles and it requires less
than the default 5 address cycles for a page read operation then the device
cannot be supported for NAND boot functionality. The number of
address cycles required can be re-configured within an initialization file
executed before the loading of the main application takes place in order to
remove the redundant address cycles.

typedef struct{

void *pSource;

u32 udMainOffset;

u32 udPrefetchOffset;

u16 uwNumAddressCycles;

Data Structures

17-140 ADSP-BF54x Blackfin Processor Hardware Reference

u16 uwNumCommands;

u16 uwSerialAccess;

ADI_BOOT_NAND *pNandInfo

#pragma align 4

u8 ubCommand0;

u8 ubAddress0;

u8 ubAddress1;

u8 ubAddress2;

u8 ubAddress3;

u8 ubAddress4;

u8 ubCommand1;

} ADI_BOOT_NAND_ADDRESS;

Table 17-22. Structure Variables, ADI_BOOT_NAND_ADDRESS

Variable Description

pSource The source address to be accessed.

udMainOffset The current block offset applied to data loaded into the
main buffer.

udPrefetchOffset The current block offset applied to data loaded into the
prefetch buffer.

uwNumAddressCycles The number of address cycles required to access the
NAND flash device. This is set to 4 for small page device
booting and 5 for large page devices.

uwNumCommands The number of command cycles required to perform a read
access from the NAND flash device. This parameter is set
to 1 for small page devices and 2 for large page devices.

uwSerialAccess Indicates that the next read access is from the next sequen-
tial 256 byte page to the previous access. This allows for
the removal of the issuing of a read transaction thus opti-
mizing throughput without waiting on unnecessary
ready/#busy assertions.

pNandInfo Pointer to ADI_BOOT_NAND structure

ubCommand0 The first command to be issued to perform a page read
from the NAND flash device.

ADSP-BF54x Blackfin Processor Hardware Reference 17-141

System Reset and Booting

ADI_BOOT_NAND_ECC
This structure provides stack storage for the error correction parity data
read from the spare area of a page when an access to a new NAND flash
page is detected. The spare area contains parity data for each 256 byte
block in a page. This allows for error correction and detection to be per-
formed on every 256 byte load from the NAND flash. Enough storage
space is provided to support devices up to an including a page size of
8Kbytes. In addition to the parity data, ADI_BOOT_NAND_ECC also contains
the fields that need to be modified in order to enable the more advance

ubAddress0 The first address cycle issued when performing a page read
command.

ubAddress1 The second address cycle issued when performing a page
read command.

ubAddress2 The third address cycle issued when performing a page
read command.

ubAddress3 The fourth address cycle issued when performing a page
read command.

ubAddress4 The fifth address cycle issued when performing a page read
command.

ubCommand1 The second command to be issued to perform a page read
from the NAND flash device. Only used for large page
devices.

Table 17-22. Structure Variables, ADI_BOOT_NAND_ADDRESS

Variable Description

Data Structures

17-142 ADSP-BF54x Blackfin Processor Hardware Reference

NAND boot options that allow for the skipping of bad blocks and booting
from mirror images of the original boot stream that may be located in
other memory blocks.

typedef struct{

#pragma align 4

u16 uwIndex;

u32 udNFCParity[32];

u16 uwError;

u16 uwBlockSkipFeature;

u16 uwBlockModifier;

u16 uwMaxCopies;

u16 uwCurrentCopy;

ADI_BOOT_NAND_ECC;

Table 17-23. Structure Variables, ADI_BOOT_NAND_ECC

Variable Description

nIndex Index used to access the udNFCParityArray

udNFCParity A 32 deep long word array providing storage for up to 32
256-byte NAND Flash Controller error correction parity
data. The array provides support for page sizes up to and
including 8 Kbytes.

uwError Error that was generated within the error correction rou-
tine. 0 = No Error, 1 = Error found in parity data, 2 =
Uncorrectable error

ADSP-BF54x Blackfin Processor Hardware Reference 17-143

System Reset and Booting

uwBlockSkipFeature Specifies the NAND Boot technique to be implemented.
Defaults to 0 unless otherwise altered through an initializa-
tion sequence. 0 = Sequential booting from a single boot
stream. No bad block checking performed. 1 = Block Skip
Method, allowing for a single boot stream loaded to the
NAND flash to skip bad blocks. 2 = Mirror Image Mode,
allowing for booting from multiple copies of the applica-
tion in the event that an uncorrectable error or error in the
ECC parity data is detected.

uwError Indicates the error returned from the error correction rou-
tine if one occurred. 0 = No error or correctable error. 1 =
Error in ECC parity data. 2 = Uncorrectable error.

uwBlockModifier The number of blocks to skip if a bad block is detected. If
uwBlockSkipFeature is 0 this value is ignored. For an
uwBlockSkipFeature value of 1 this parameter must be 1.
For an uwBlockSkipFeature of 2 this parameter may be any
value indicating the number of blocks between multiple
copies of the application.

uwMaxCopies The number of copies of the application stored in the
NAND flash device. Only applicable if nBlockSkipFeature
is 2.

uwCurrentCopy Indicates the current copy of the application that is being
accessed. Only applicable if nBlockSkipFeature is 2.

Table 17-23. Structure Variables, ADI_BOOT_NAND_ECC

Variable Description

Callable ROM Functions for Booting

17-144 ADSP-BF54x Blackfin Processor Hardware Reference

Callable ROM Functions for Booting
The following functions support boot management.

BFROM_FINALINIT
Entry address: 0xEF00 0002

Arguments: no arguments

C prototype: void bfrom_FinalInit (void);

The final init function never returns. It only executes a JUMP to the address
stored in EVT1.

BFROM_PDMA
Entry address: 0xEF00 0004

Arguments: pointer to ADI_BOOT_DATA in R0

C prototype: void bfrom_PDma (ADI_BOOT_DATA *p);

This is the load function for peripherals such as SPI and UART that sup-
port DMA in their boot modes.

BFROM_MDMA
Entry address: 0xEF00 0006

Arguments: pointer to ADI_BOOT_DATA in R0

C prototype: void bfrom_MDma (ADI_BOOT_DATA *p);

ADSP-BF54x Blackfin Processor Hardware Reference 17-145

System Reset and Booting

This is the load function used for memory boot modes including the
FIFO mode. This routine is also reused when the BFLAG_FILL or the
BFLAG_INDIRECT flags are specified.

BFROM_MEMBOOT
Entry address: 0xEF00 0008

Arguments:

pointer to boot stream in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:
s32 bfrom_MemBoot (void* pBootStream, s32 dFlags, s32 dBlock-

Count, ADI_BOOT_HOOK_FUNC* pCallHook);

This routine processes any boot stream that maps to the Blackfin memory
starting from address pBootStream.

To boot a new application that may overwrite the calling application, the
dFlags word is usually zero. When done, the routine does not return, but
jumps to the EVT1 vector address. If the BFLAG_RETURN flag is set, an RTS is
executed instead and the routine returns to the parent function. In this
way, fractions of an application can be loaded.

If the dBlockCount parameter is zero or a positive value, all boot blocks are
processed until the BFLAG_FINAL flag is detected. If dBlockCount is a nega-
tive value, the negative number represents the number of blocks to be
booted. For example, –1 causes the kernel to return immediately, –2 pro-
cesses only one block.

Callable ROM Functions for Booting

17-146 ADSP-BF54x Blackfin Processor Hardware Reference

The routine returns the updated source address pSource of the boot
stream (for example, the first unused address after the processed boot
stream).

The BFLAG_NEXTDXE flag suppresses boot loading. The boot kernel steps
through the boot stream by analyzing the next-DXE pointers (in the ARGU-
MENT field of a BFLAG_FIRST block) and jumping to the next DXE.
Assuming that the boot image is a chained list of boot streams, the boot
kernel returns the absolute start address of the requested boot stream. In
this example, the start address of the third boot stream (DXE) in a flash
device is returned.

bfrom_MemBoot((void*)0x20000000,BFLAG_RETURN|BFLAG_NEXTDXE,-3,

NULL);

In the above example, the routine would return 0x2000 0000 when
dBlockCount was set to –1. If the parameter dBlockCount is zero or posi-
tive when used with along with the BFLAG_NEXTDXE command, the kernel
returns when the BFLAG_FIRST flag on a header in the next-DXE chain is
not set.

If the BFLAG_HOOK switch is set, the memboot routine call (pCallHook rou-
tine) after the ADI_BOOT _DATA structure is filled with default values. It
then can overrule the default settings of the structure.

BFROM_TWIBOOT
Entry address: 0xEF00 000C

Arguments:

TWI address in R0

dFlags in R1

dBlockCount in R2

ADSP-BF54x Blackfin Processor Hardware Reference 17-147

System Reset and Booting

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:
s32 bfrom_TwiBoot (s32 dTwiAddress, s32 dFlags,

s32 dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This routine processes boot streams residing in TWI memories, using the
TWI0 controller. It differs from the BFROM_MEMOOT routine in that some
functionality is TWI specific.

Additional bits in the dFlags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SAVE bit. The BFLAG_TYPE
tells the boot kernel when addressing mode is required for the TWI mem-
ory. The boot kernel derives the values for the TWI0_CONTROL and
TWI0_CLKDIV registers from the lower four bits of the dFlags word. See
Chapter 29, “Two Wire Interface Controllers”.

BFROM_SPIBOOT
Entry address: 0xEF00 000A

Arguments:

SPI address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype:
s32 bfrom_SpiBoot (s32 DSpiAddress, S32 dFlags, s32 dBlockCount,

ADI_BOOT_HOOK_FUNC* pCallHook);

Callable ROM Functions for Booting

17-148 ADSP-BF54x Blackfin Processor Hardware Reference

This SPI master boot routine processes boot streams residing in SPI mem-
ories, using the SPI0 controller. It differs from the BFROM_TWIBOOT routine
in that some functionality is SPI specific. The fourth argument pCallHook
is passed over the stack. It provides a hook to call a callback routine after
the ADI_BOOT_DATA structure is filled with default values. For example, the
pCallHook routine may overwrite the default value of the uwSsel value in
the ADI_BOOT_DATA structure.The coding follows the rules of
uwHWAIT (see “Boot Host Wait (HWAIT) Feedback Strobe” on
page 17-33). A value of 0x0504 represents GPIO PE4 (SPI0 SEL1), 0x0505
for PE5 (SPI0 SEL2) and so on.

Additional bits in the dFlags word are relevant. The user should always set
the BFLAG_PERIPHERAL flag but never the BFLAG_SAVE bit. The
BFLAG_NOAUTO flag instructs the system to skip the SPI device detection
routine. The BFLAG_TYPE then tells the boot kernel what addressing mode
is required for the SPI memory. (see “SPI Device Detection Routine” on
page 17-72). The BFLAG_FASTREAD flag controls whether standard SPI read
(0x3 command) or fast read (0xB) is performed. The boot kernel writes
the lower bits of the dFlags word to the SPI0_BAUD registers.

ADSP-BF54x Blackfin Processor Hardware Reference 17-149

System Reset and Booting

BFROM_OTPBOOT
Entry address: 0xEF00 000E

Arguments:

OTP byte address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

Updated block count returned in R0

C prototype: s32 bfrom_OtpBoot (s32 dOtpAddress, S32 dFlags, s32
dBlockCount, ADI_BOOT_HOOK_FUNC* pCallHook);

This OTP boot routine processes boot streams residing in the on-chip,
serial OTP memory. Unlike the bfrom_OtpRead() function which uses the
half-page addressing method, this one requires byte addressing. For exam-
ple, set the dOtpAddress argument to 0x400 to process a boot stream
starting from OTP page 0x40. Remember that one OTP page spans 16
bytes.

Callable ROM Functions for Booting

17-150 ADSP-BF54x Blackfin Processor Hardware Reference

BFROM_NANDBOOT
Entry address: 0xEF00 0010

Arguments:

NAND Flash address in R0

dFlags in R1

dBlockCount in R2

pCallHook passed over the stack in [FP+0x14]

updated block count returned in R0

C prototype: s32 bfrom_NandBoot(s32 dNandAddress, s32 dFlags, s32
dBlockCount, ADI_BOOT_HOOK_FUNC *pCallHook)

This NAND flash boot routine processes boot streams residing in NAND
flash memories, using the NAND Flash Controller. Some functionality is
NAND flash specific.

Additional bits in the dFlags word are relevant. When the BFLAG_NOAUTO
flag is set the BFLAG_TYPE field is used to indicate whether the connected
NAND flash is a small page or large page device.

BFLAG_TYPE 0 = Small Page NAND Flash

BLAG_TYPE 1 = Large Page NAND Flash

BFLAG_TYPE values of 2 and 3 are reserved.

Detection of a reserved value results in a call to the error handler.

ADSP-BF54x Blackfin Processor Hardware Reference 17-151

System Reset and Booting

In the event the NFC_CTL register is set to the default reset value of 0x0200
prior to the call to bfrom_NandBoot(), the read and write delay strobes of
the NFC_CTL register will each be set to 3 providing tRP and tWP timings of
4 SCLK cycles.

BFROM_BOOTKERNEL
Entry address: 0xEF00 0020

Arguments:

pointer to ADI_BOOT_DATA in R0

returns updated source address pSource in R0

C prototype: s32 bfrom_BootKernel (ADI_BOOT_DATA *p);

This ROM entry provides access to the raw boot kernel routine. It is the
user's responsibility to initialize the items passed in the ADI_BOOT_DATA
structure. Pay particular attention that the function pointers (pLoadFunc-
tion, and pErrorFunction) point to functional routines.

BFROM_CRC32
Entry address: 0xEF00 0030

Arguments:

pointer to look-up table in R0

pointer to data in R1

dByteCount in R2

initial CRC value in R0

CRC value returned in R0

Callable ROM Functions for Booting

17-152 ADSP-BF54x Blackfin Processor Hardware Reference

C prototype:

s32 bfrom_Crc32 (s32 *pLut, void *pData, s32 dByteCount,

s32 dInitial);

This routine calculates the CRC32 checksum for a given array of bytes.
The look-up table is typically generated by the BFROM_CRC32POLY routine.
During the boot process this routine is called by the BFROM_CRC32CALLBACK
routine. The dInitial value is normally set to zero unless the CRC32 rou-
tine is called in multiple slices. Then, the dInitial parameter expects the
result of the former run.

BFROM_CRC32POLY
Entry address: 0xEF00 0032

Arguments:

pointer to look-up table in R0

polynomial in R1

updated block count returned in R0

C prototype:
s32 bfrom_Crc32Poly (unsigned s32 *pLut, s32 dPolynomial);

This function generates a 1024-byte look-up table from a given CRC
polynomial. During the boot process this routine is hidden by the
BFROM_CRC32INITCODE routine.

BFROM_CRC32CALLBACK
Entry address: 0xEF00 0034

ADSP-BF54x Blackfin Processor Hardware Reference 17-153

System Reset and Booting

Arguments:

pointer to ADI_BOOT_BUFFER in R0

pointer to ADI_BOOT_BUFFER in R1

C prototype: s32 bfrom_Crc32Callback (ADI_BOOT_DATA *pBS,
ADI_BOOT_BUFFER *pCS);

This is a wrapper function that ensures the BFROM_CRC32 subroutine fits
into the boot process.

BFROM_CRC32INITCODE
Entry address: 0xEF00 0036

Arguments: pointer to ADI_BOOT_DATA in R0.

C prototype: void bfrom_Crc32Initcode (ADI_BOOT_DATA *p);

This is an initcode residing in ROM with two jobs. Register
BFROM_CRC32CALLBACK as a callback routine to the pCallback pointer in
ADI_BOOT_DATA. Call BFROM_CRC32POLY to generate the look-up table.

This function is unlikely to be called by user code directly. This function
is called as an initcode during the boot process when the CRC calculation
is desired. See “CRC Checksum Calculation” on page 17-49 for details.

Programming Examples

17-154 ADSP-BF54x Blackfin Processor Hardware Reference

Programming Examples

System Reset
To perform a system and core reset, use the code shown in Listing 17-2 or
Listing 17-3.

Listing 17-1. System Reset in assembly language

#include <blackfin.h>

P0.L = LO(BFROM_SYSCONTROL);

P0.H = HI(BFROM_SYSCONTROL);

R0.L = LO(SYSCTRL_SYSRESET);

R0.H = HI(SYSCTRL_SYSRESET);

R1 = 0;

R2 = 0;

CALL (P0);

Listing 17-2. System Reset in C language

bfrom_SysControl(SYSCTRL_SYSRESET, 0, NULL);

ADSP-BF54x Blackfin Processor Hardware Reference 17-155

System Reset and Booting

Exiting Reset to User Mode
To exit reset while remaining in user mode, use the code shown in
Listing 17-3.

Listing 17-3. Exiting Reset to User Mode

_reset:

 P1.L = LO(_usercode) ; /* Point to start of user code */

 P1.H = HI(_usercode) ;

 RETI = P1 ; /* Load address of _start into RETI */

 RTI ; /* Exit reset priority */

_reset.end:

_usercode: /* Place user code here */

...

The reset handler most likely performs additional tasks not shown in the
examples above. Stack pointers and EVTx registers are initialized here.

Exiting Reset to Supervisor Mode
To exit reset while remaining in supervisor mode, use the code shown in
Listing 17-4.

Listing 17-4. Exiting Reset by Staying in Supervisor Mode

_reset:

 P0.L = LO(EVT15) ; /* Point to IVG15 in Event Vector Table */
 P0.H = HI(EVT15) ;
 P1.L = LO(_isr_IVG15) ; /* Point to start of IVG15 code */
 P1.H = HI(_isr_IVG15) ;
 [P0] = P1 ; /* Initialize interrupt vector EVT15 */

Programming Examples

17-156 ADSP-BF54x Blackfin Processor Hardware Reference

 P0.L = LO(IMASK) ; /* read-modify-write IMASK register */
 R0 = [P0] ; /* to enable IVG15 interrupts */
 R1 = EVT_IVG15 (Z);
 R0 = R0 | R1 ; /* set IVG15 bit */
 [P0] = R0 ; /* write back to IMASK */

 RAISE 15 ; /* generate IVG15 interrupt request */
 /* IVG 15 is not served until reset
 handler returns */

 P0.L = LO(_usercode) ;
 P0.H = HI(_usercode) ;
 RETI = P0 ; /* RETI loaded with return address */
 RTI ; /* Return from Reset Event */
_reset.end:

_usercode: /* Wait in user mode till IVG15 */

 JUMP _usercode; /* interrupt is serviced */

_isr_IVG15: /* IVG15 vectors here due to EVT15 */

 ...

ADSP-BF54x Blackfin Processor Hardware Reference 17-157

System Reset and Booting

Initcode (SDRAM Controller Setup)
Listing 17-1 shows an example of initcode to setup the SDRAM control-
ler. The SDRAM controller must be initialized before data can be booted
into it. Therefore, the SDRAM controller is typically initialized by an init-
code or by the preboot functionality. The following initcode example
assumes that the preboot did not do the job.

Listing 17-5. Example Initcode (SDRAM Controller Setup)

#include <defBF548.h>

.section initcode;

/*******SDRAM Setup************/

Setup_SDRAM:

/* save to stack following C conventions */

void initcode(ADI_BOOT_DATA* pBS)

{

*pEBIU_RSTCTL |= DDRSRESET;
*pEBIU_DDRCTL0 =

SET_tRC(8)|
SET_tRAS(6)|
SET_tRP(2)|
SET_tRFC(10)|
SET_tREF(1041);

*pEBIU_DDRCTL1 =

SET_tWTR(2)|
DDR_DEVSIZE_512|
DDR_DEVWIDTH_16|
CS0|
DDR_DATAWIDTH|
SET_tWR(2)|
SET_tMRD(2)|

Programming Examples

17-158 ADSP-BF54x Blackfin Processor Hardware Reference

SET_tRCD(2);

*pEBIU_DDRCTL2 =

nREGE|
nDLLRESET|
CASLATENCY2|
BURSTLENGTH1|

0;

}

Since this initcode need execute only once, it can be volatile and can be
overwritten by other boot blocks.

Initcode (Power Management Control)
The following example shows how to change PLL and the voltage regula-
tor within an initcode. The example assumes that the preboot did not do
the job already.

ADSP-BF54x Blackfin Processor Hardware Reference 17-159

System Reset and Booting

Listing 17-6. Changing PLL and Voltage Regulator

#include <blackfin.h>

void initcode (ADI_BOOT_DATA* pBS)

{

 ADI_SYSCTRL_VALUES mystruct;

 mystruct.uwVrCtl = 0x ... ;

 mystruct.uwPllCtl = 0x ... ;

 mystruct.uwPllDiv = 0x ... ;

 bfrom_SysControl(SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE |

 SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

 SYSCTRL_WRITE,

 &mystruct, NULL) ;

}

Care must be taken that the reprogramming of the PLL does not break the
communication with the booting host. For example, in the case of UART
boot, the UARTx_DLL and UARTx_DLH registers must be updated to keep the
old bit rate.

Programming Examples

17-160 ADSP-BF54x Blackfin Processor Hardware Reference

Initcode (NAND Boot Mode Configuration)
Listing 17-7 shows an example of initcode to enable some of the more
advanced options available with the NAND boot mode. The initcode is
loaded in while the NAND boot kernel is configured for the default boot
mode. After the initcode sequence is executed the NAND boot kernel in
this example is in Multiple Image Mode. This example also alters the num-
ber of address cycles issued on all further accesses to optimize the boot
kernel further for the attached NAND flash device.

ADSP-BF54x Blackfin Processor Hardware Reference 17-161

System Reset and Booting

Listing 17-7. Initcode options with NAND Boot Mode

#include <bfrom.h>

void initcode(ADI_BOOT_DATA* pBS)

{

 /* Create a pointer to the ADI_BOOT_NAND structure */

 ADI_BOOT_NAND *pNS;

 /* Set the pointer to ADI_BOOT_NAND */

 pNS = pBS->dUserLong;

 /* NAND Boot Kernel Configuration

 Mode: Multiple Image Mode

 Number of blocks between each image: 10

 Number of images: 4

 Number of address cycles: 4

 */

 pNS->EccParity.uwBlockSkipFeature = 2;

 pNS->EccParity.uwBlockModifier = 10;

 pNS->EccParity.uwMaxCopies = 3;

 pNS->AddressCycles.uwNumAddressCycles = 4;

}

Programming Examples

17-162 ADSP-BF54x Blackfin Processor Hardware Reference

Quickboot With Restore From SDRAM
This example could be part of an advanced power saving concept. Assume
the Blackfin is waking up from hibernate and processing any master boot
mode. If the SDRAM has not been shut down, but was put in self-refresh
mode, the content of the SDRAM will still be valid after wake up. The
boot process would only have to initialize on-chip memories. Several boot
blocks might be tagged by the BFLAG_QUICKBOOT flag.

Some applications might use a power-down handler that saves the con-
tents of L1 memory to SDRAM before entering the hibernate state.
Listing 17-8 assumes a suitable power-down handler was present that gen-
erated a partial boot stream in SDRAM at address 0x0001 0000
containing all the instructions required to restore the L1 memory
contents.

Listing 17-8. Quickboot With Restore From SDRAM

void L1_recovery_initcode (ADI_BOOT_DATA *pBS)

{

if (pBS->dFlags & BFLAG_WAKEUP) {

 bfrom_MemBoot((void*)0x00010000, BFLAG_RETURN, NULL);

}

}

The boot stream generated at 0x0001 0000 will only be processed upon a
wake-up condition. The BFLAG_RETURN ensures that the new instance of
the boot kernel returns to the initcode rather than jumps to the EVT1
vector.

ADSP-BF54x Blackfin Processor Hardware Reference 17-163

System Reset and Booting

XOR Checksum
Listing 17-9 illustrates how an initcode can be used to register a callback
routine. The routine is called after each boot block that has the
BFLAG_CALLBACK flag set. The calculated XOR checksum is compared
against the block header argument field. When the checksum fails, this
example goes into idle mode. Otherwise control is returned to the boot
kernel.

Since this callback example accesses the data after it is loaded, it would fail
if the target address were in L1 instruction space. Therefore the
BFLAG_INDIRECT flag should also be set. The xor_callback routine could
then perform the checksum calculation at an intermediate storage place.
The boot kernel transfers the data from the temporary buffer to the final
destination after the callback routine returns.

In general, the block size is bigger than the size of the temporary buffer.
Therefore, the boot kernel may need to divide the processing of a single
block into multiple steps. The callback routine may also need to be
invoked multiple times—every time the temporary buffer is filled up and
once for the remaining bytes. The boot kernel passes the dFlags parame-
ter, so that the callback routines knows whether it is called the first time,
the last time or neither. The dUserLong variable in the ADI_BOOT_DATA
structure is used to store the intermediate results between function calls.

Listing 17-9. XOR Checksum

bool xor_callback(ADI_BOOT_DATA* pBS, ADI_BOOT_BUFFER* pCS, s32

dFlags)

{

s32 i;

if ((pCS != NULL) && (pBS->pHeader != NULL)) {

if (dFlags & CBFLAG_FIRST) {

pBS->dUserLong = 0;

}

Programming Examples

17-164 ADSP-BF54x Blackfin Processor Hardware Reference

for (i=0; i<pCS->dByteCount/sizeof(s32); i++) {

pBS->dUserLong^= ((s32 *)pCS->pSource)[i];

}

if (dFlags & CBFLAG_FINAL) {

if (pBS->dUserLong != pBS->pHeader->dArgument) {

idle ();

}

}

}

return 0;

}

void xor_initcode (ADI_BOOT_DATA *pBS)

{

pBS->pCallBackFunction = xor_callback;

}

Note that the callback routine is not volatile. It should not be overwritten
by subsequent boot blocks. It can, however, be overwritten after process-
ing the last block with BFLAG_CALLBACK flag set.

The checksum algorithm must be booted first and cannot protect itself.
Problems can be avoided by letting initcode and callback execute directly
from off-chip flash memory. The ADSP-BF54x processors provide a
CRC32 checksum algorithm in the on-chip L1 instruction ROM, that can
be used for booting under this scenario. For more information, see “CRC
Checksum Calculation” on page 17-49.

Direct Code Execution
This code example illustrates how to instruct the VisualDSP++ tools to
generate a flash image that causes the boot kernel to start code execution
at flash address 0x2000 0020 rather than performing a regular boot. See
“Direct Code Execution” on page 17-37.

ADSP-BF54x Blackfin Processor Hardware Reference 17-165

System Reset and Booting

First, a 32-byte data block is defined in an assembly file that contains the
initial block.

.section bootblock;

.global _firstblock;

.var _firstblock[4] = 0xAD7BD006, 0x20000020, 0x00000010,

0x00000010;

Then, the linker is instructed to map the initial block to address
0x2000 0000 in the LDF file.

MEMORY

{

 MEM_ASYNC0

 {

 START(0x20000000)

 END(0x23FFFFFF)

 TYPE(ROM)

 WIDTH(8)

 }

}

PROCESSOR p0

{

 RESOLVE(_firstblock,0x20000000)

 RESOLVE(start,0x20000020)

 KEEP(start,_firstblock)

 SECTIONS

 {

 flash

 {

 INPUT_SECTION_ALIGN(4)

 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))

 INPUT_SECTIONS($OBJECTS(bootblock))

 } >MEM_ASYNC0

Programming Examples

17-166 ADSP-BF54x Blackfin Processor Hardware Reference

 }

}

To invoke the elfloader utility, activate the meminit feature and use the
command-line switches –romsplitter and –maskaddr. Refer to the appli-
cation note Running Programs from Flash on ADSP-BF533 Blackfin
Processors (EE-239) for further details.

Managing PBS Pages in OTP Memory
The following code snips illustrate how to read and write OTP memory,
as it is required for the Preboot Settings (PBS). For detailed description of
OTP API functions bfrom_OtpCommand(), bfrom_OtpRead() and
bfrom_OtpWrite() used here, see Chapter 16, “One-Time Programmable
Memory”.

The first example reads PBS settings from OTP and stores them into an
instance of the ADI_PBS_BLOCK structure. This is an union composite of
the ADI_PBS_HALFPAGES or the ADI_PBS_BITFIELDS types. These structure
types are defined in the bfrom.h header file. The dPbsSet variable
describes the set of PBS pages which is of interest. A 0x00 value reads
from OTP pages 0x18 to 0x1B. A 0x01 value reads from OTP pages 0x1C
to 0x1F and so on.

ADSP-BF54x Blackfin Processor Hardware Reference 17-167

System Reset and Booting

Listing 17-10. Reading a set of PBS Pages from OTP Memory

#include <blackfin.h>

#include <bfrom.h>

ADI_PBS_BLOCK PBS;

u32 dPbsSet = 0;

bfrom_OtpRead(PBS00+dPbsSet*4,OTP_LOWER_HALF,&(PBS.Half-

Pages.uqPbs00L));

bfrom_OtpRead(PBS00+dPbsSet*4, OTP_UPPER_HALF,&(PBS.HalfPages.

uqPbs00H));

bfrom_OtpRead(PBS01+dPbsSet*4,OTP_LOWER_HALF,&(PBS.Half-

Pages.uqPbs01L));

bfrom_OtpRead(PBS01+dPbsSet*4,OTP_UPPER_HALF,&(PBS.HalfPages.

uqPbs01H));

bfrom_OtpRead(PBS02+dPbsSet*4,OTP_LOWER_HALF,&(PBS.HalfPages.

uqPbs02L));

The next example shows how PBS pages can be written:

Listing 17-11. Programming a set of PBS Pages from OTP Memory

#include <blackfin.h>

#include <bfrom.h>

ADI_PBS_BLOCK PBS;

u32 dPbsSet = 0;

/* fill PBS with meaningful data */

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs00L));

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs00H));

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs01L));

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs01H));

Programming Examples

17-168 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs02L));

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs02H));

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_LOWER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs03L));

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_UPPER_HALF |

OTP_CHECK_FOR_PREV_WRITE,&(PBS.HalfPages.uqPbs03H));

If a set of PBS pages has been written earlier, but need to be replaced by a
new set, the old PBS pages have to be invalidated. Do not use the
OTP_CHECK_FOR_PREV_WRITE option in this case.

Listing 17-12. Invalidating a set of PBS Pages

#include <blackfin.h>

#include <bfrom_h>

u32 dPbsSet = 0;

u64 dlInvalidate = (u64)0xC000000000000000;

bfrom_OtpWrite(PBS00+dPbsSet*4,

 OTP_LOWER_HALF | OTP_NO_ECC,

 &dlInvalidate);

dPbsSet++;

/* write next set as in Listing x-2 */

ADSP-BF54x Blackfin Processor Hardware Reference 17-169

System Reset and Booting

For production one may want to lock the PBS to protect them from being
any overwritten in the field. This can be performed by the following
instructions:

Listing 17-13. Write protecting a set of PBS Pages

#include <blackfin.h>

#include <bfrom.h>

u32 dPbsSet = 0;

bfrom_OtpCommand(OTP_INIT, OTP_INIT_VALUE);

bfrom_OtpWrite(PBS00+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS01+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS02+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpWrite(PBS03+dPbsSet*4, OTP_LOCK, NULL);

bfrom_OtpCommand(OTP_CLOSE, 0);

When locking PBS pages remember the recommendation to duplicate the
active set of PBS pages to approach best possible reliability. If in above
examples the dPbsSet 4 contains the final configuration, program also the
set 5 with the same data. For completeness, note that the above code
example does not lock the ECC fields corresponding to the PBS pages. See
Chapter 16, “One-Time Programmable Memory” for details.

Programming Examples

17-170 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 18-1

18 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the Blackfin processor and includes the following sections:

• “Phase-Locked Loop and Clock Control” on page 18-1

• “Dynamic Power Management Controller” on page 18-7

• “PLL and VR Registers” on page 18-26

• “System Control ROM Function” on page 18-31

• “Programming Examples” on page 18-37

Phase-Locked Loop and Clock Control
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip, phase-locked loop (PLL) module.
During normal operation, the user programs the PLL with a multiplica-
tion factor for CLKIN. The resulting, multiplied signal is the voltage
controlled oscillator (VCO) clock. A user-programmable value then divides
the VCO clock signal to generate the core clock (CCLK).

Phase-Locked Loop and Clock Control

18-2 ADSP-BF54x Blackfin Processor Hardware Reference

Another user-programmable value divides the VCO signal to generate the
system clock (SCLK). The SCLK signal clocks the peripheral access bus
(PAB), DMA access bus (DAB), external access bus (EAB), and the exter-
nal bus interface unit (EBIU).

These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL divide register
(PLL_DIV), select a divider value that allows these buses to run at or
below the maximum SCLK rate specified in the processor data sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to change dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of fre-
quencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the dynamic power management controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 18-7.

ADSP-BF54x Blackfin Processor Hardware Reference 18-3

Dynamic Power Management

Subject to the maximum VCO frequency, the PLL supports a wide range of
multiplier ratios and achieves multiplication of the input clock, CLKIN. To
achieve this wide multiplication range, the processor uses a combination
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

Figure 18-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an intermediate
clock from which the core clock (CCLK) and system clock (SCLK) are
derived.

PLL Clock Multiplier Ratios
The PLL control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL Control (PLL_CTL) Register”
on page 18-28.

Figure 18-1. PLL Block Diagram

÷1 or ÷2 fVCO

fVCO

÷1,...,÷15

÷1, ÷2,
÷4 or ÷8

LOOP
FILTER VCO

÷1,...,÷64

+
-

Output Clock Generator:
Clock Divide and Mux

CLKOUT

CLKBUF

CLKIN XTAL

SSEL [3:0}

MSEL [5:0]
CSEL [1:0]

EN

EN

DF

SCLK

GATE

GATE SCLK

CCLK

CLKINf

PDWN
(Deep Sleep Mode)
Powerdown
CCLK and SCLK off

STOPCK
(Sleep Mode)
Stop Clock
CCLK off

BYPASS
(Active Mode)
CCLK =
SCLK = CLKIN

Phase Locked Loop

CLKINf

PLL_OFF
disable control
input to PLL.
Can additionally be
used with BYPASS

Phase-Locked Loop and Clock Control

18-4 ADSP-BF54x Blackfin Processor Hardware Reference

The divide frequency (DF) bit and multiplier select (MSEL[5:0]) field con-
figure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

The reset value of MSEL is 0x8. This value can be reprogrammed at startup
in the boot code.

Table 18-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combina-
tion may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See the processor data sheet for maximum and minimum fre-
quencies for CLKIN, CCLK, and VCO.

The PLL control register (PLL_CTL) controls operation of the PLL (see
Figure 18-5 on page 18-28). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-

Table 18-1. MSEL Encodings

Signal Name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x

ADSP-BF54x Blackfin Processor Hardware Reference 18-5

Dynamic Power Management

grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. This is handled by
the System Control ROM Function (SysControl), shown on page 18-31.

Core Clock/System Clock Ratio Control

Table 18-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 18-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in the processor data sheet. The
SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide regis-
ter (PLL_DIV). For information about this register, see “PLL Divide
(PLL_DIV) Register” on page 18-27.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x4. These values can be reprogrammed at startup by the boot code.

By updating PLL_DIV with an appropriate value, you can change the CSEL
and SSEL value dynamically. Note the divider ratio of the core clock can
never be greater than the divider ratio of the system clock. If the PLL_DIV
register is programmed to illegal values, the SCLK divider is automatically
increased to be greater than or equal to the core clock divider.

Unlike writing the PLL_CTL register, the PLL_DIV register can be updated at
any time to change the CCLK and SCLK divide values without the PLL pro-
gramming sequence.

Table 18-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 600 300

Phase-Locked Loop and Clock Control

18-6 ADSP-BF54x Blackfin Processor Hardware Reference

As long as the MSEL and DF control bits in the PLL control register
(PLL_CTL) remain constant, the PLL is locked.

If changing the clock ratio through writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count register
(PLL_LOCKCNT) defines the number of SCLK cycles that occur before the
processor sets the PLL_LOCKED bit in the PLL_STAT register. When execut-
ing the PLL programming sequence, the internal PLL lock counter begins

10 4 600 150

11 8 400 50

Table 18-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N = 7–15 N:1 600 600/N

Table 18-2. Core Clock Ratio (Cont’d)

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

ADSP-BF54x Blackfin Processor Hardware Reference 18-7

Dynamic Power Management

incrementing upon execution of the IDLE instruction. The lock counter
increments by 1 each SCLK cycle. When the lock counter has incremented
to the value defined in the PLL_LOCKCNT register, the PLL_LOCKED bit is set.

See the processor data sheet for more information about PLL stabilization
time and programmed values for this register. For more information about
operating modes, see “Operating Modes” on page 18-8.

Dynamic Power Management Controller
The dynamic power management controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 18-8.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The processor provides an on-chip switching reg-
ulator controller which, with some external components, can
generate internal voltage levels from the external VDD (VDDEXT)
supply.

Depending on the needs of the system, the voltage level can be
reduced to save power. See “Controlling the Voltage Regulator” on
page 18-18.

Dynamic Power Management Controller

18-8 ADSP-BF54x Blackfin Processor Hardware Reference

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 18-4 summarizes the operational
characteristics of each mode.

Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The active and full on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL Status (PLL_STAT) Register” on
page 18-29). In these modes, the core can either execute instructions or be
in the idle core state. If the core is in the Idle state, it can be awakened by
several sources.

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full On Mode

Full on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at

Table 18-4. Operational Characteristics

Operating
Mode

Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed
DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1

1 PLL can also be disabled in this mode.

Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

ADSP-BF54x Blackfin Processor Hardware Reference 18-9

Dynamic Power Management

full speed. The system clock (SCLK) frequency is determined by the
SSEL-specified ratio to VCO. DMA access is available to L1 and external
memories. From full on mode, the processor can transition directly to
active, sleep, or deep sleep modes, as shown in Figure 18-2 on page 18-12.

Active Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full
on or sleep modes.

From active mode, the processor can transition directly to full on, sleep, or
deep sleep modes.

In this mode or in the transition phase to other modes, changes to
MSEL are not latched by the PLL.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run
at the speed configured by MSEL and SSEL bit settings. Since CCLK is dis-
abled, DMA access is available only to external memory in sleep mode.
From sleep mode, a wake-up event causes the processor to transition to
one of these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full on mode if the BYPASS bit is cleared

When sleep mode is exited, the processor resumes execution from the pro-
gram counter value present immediately prior to entering sleep mode.

Dynamic Power Management Controller

18-10 ADSP-BF54x Blackfin Processor Hardware Reference

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the
real-time clock (RTC) are disabled. DMA is not supported in this mode.

Deep sleep mode can be exited only by a hardware reset event or an RTC
interrupt. A hardware reset begins the hardware reset sequence. An RTC
interrupt causes the processor to transition to active mode, and execution
resumes from where the program counter was when deep sleep mode was
entered. If an interrupt is also enabled in SIC_IMASK0, the vector is taken
immediately after exiting deep sleep and the ISR is executed.

Note an RTC interrupt in deep sleep mode automatically resets some
fields of the PLL control register (PLL_CTL). See Table 18-5.

When in deep sleep mode, clocking to the DDR is turned off.
Before entering deep sleep mode, software should ensure that
important information in DDR memory is saved to a non-volatile
memory and/or the DDR is placed into self-refresh mode.

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such in the diagram of

Table 18-5. PLL_CTL Values After RTC Wake-up Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

ADSP-BF54x Blackfin Processor Hardware Reference 18-11

Dynamic Power Management

Figure 18-2. Since this feature is coupled to the on-chip switching regula-
tor controller, it is discussed in detail in “Powering Down the Core
(Hibernate State)” on page 18-22.

Operating Mode Transitions
Figure 18-2 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes and rectangles represent
processor states. Arrows show the allowed transitions into and out of each
mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control register (PLL_CTL) that must be changed for the
transition to occur. For example, the transition from full on mode to sleep
mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (for example, RTC wake-up or hardware
reset) or the fields in the voltage regulator control register (VR_CTL) that
must be changed for the transition to occur.

For information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 18-14.

Dynamic Power Management Controller

18-12 ADSP-BF54x Blackfin Processor Hardware Reference

In addition to the mode transitions shown in Figure 18-2, power to the
PLL can be applied and removed while in the active operating mode.

Figure 18-2. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wakeup &
BYPASS=0

STOPCK=1 &
 PDWN=0

 PDWN=1 PDWN=1

STOPCK=1 &
 PDWN=0

HARDWARE
 RESET

BYPASS=0 & PLL_OFF=0 &
 STOPCK=0 & PDWN=0

BYPASS=1 & STOPCK=0 &
 PDWN=0

Wakeup &
BYPASS=1

Hibernate

 FREQ=00

 FREQ=00

RTC_WAKEUP
 WAKE=1&

USB ACTIVITY
& USBWE = 1

CAN0/1 Activity
& CANWE=1

Keypad Activity &
KPADWE=1

Activity on GPW /MRXON
and GPWE/MXVRWE = 1*

Rotary Activity &
ROTWE = 1

* GPW and GPWE are
available on all processors,
except the ADSP-BF549.
MRXON and MXVRWE
only are available on the
ADSP-BF549.

ADSP-BF54x Blackfin Processor Hardware Reference 18-13

Dynamic Power Management

Changes to the PLL do not take effect immediately. As with operating
mode transitions, the PLL programming sequence must be executed for
these changes to take effect:

• PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• PLL enabled: When the PLL is disabled, it can be re-enabled later
when additional performance is required.

The PLL must be re-enabled before transitioning to full on or sleep
operating modes. To re-enable the PLL, clear the PLL_OFF bit in
the PLL_CTL register, and then execute the PLL programming
sequence.

Dynamic Power Management Controller

18-14 ADSP-BF54x Blackfin Processor Hardware Reference

• New multiplier ratio: The clock-in to VCO clock (CLKIN to VCO)mul-
tiplier ratio can also be changed while in full on mode.

The PLL state automatically transitions to active mode while the
PLL is locking. After locking, the PLL returns to full on mode. To
program a new CLKIN to VCO multiplier, write the new MSEL[5:0]
and/or DF values to the PLL_CTL register; then execute the PLL pro-
gramming sequence.

Table 18-6 summarizes the allowed operating mode transitions.

Attempting to cause mode transitions other than those shown in
Table 18-6 causes unpredictable behavior.

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control register (PLL_CTL). Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or the behavior of the PLL. Changes to the PLL_CTL register are realized
only after executing a specific code sequence. This sequence is managed by
an user-callable routine in the on-chip ROM called bfrom_SysControl().
When calling this function, no further precautions have to be taken.

Table 18-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

ADSP-BF54x Blackfin Processor Hardware Reference 18-15

Dynamic Power Management

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
the changes reapply power to the PLL, the PLL needs to relock. To relock,
the PLL lock counter is first cleared, and then it begins incrementing,
once per SCLK cycle. After the PLL lock counter reaches the value pro-
grammed into the PLL lock count register (PLL_LOCKCNT), the PLL sets the
PLL_LOCKED bit in the PLL status register (PLL_STAT), and the PLL asserts
the PLL wake-up interrupt.

When the bfrom_SysControl() routine reprograms the PLL_CTL register
with a new value, it executes a subsequent IDLE instruction. It prevents all
other system interrupt sources other than the DPMC from waking the
core up from the idle state. If the lock counter expires, the PLL issues an
interrupt and the code execution continues with the instruction after the
IDLE instruction. Therefore, the system is in the new state by the time the
bfrom_SysControl() routine returns.

If the new value written to the PLL_CTL or VR_CTL register is the
same as the previous value, the PLL wake-up occurs immediately
(PLL is already locked), but the core and system clock are bypassed
for the PLL_LOCKCNT duration. For this interval, code executes at
the CLKIN rate instead of at the expected CCLK rate. Software guards
against this condition by comparing the current value to the new
value before writing the new value.

When the wake-up signal is asserted, the processor continues, causing a
transition to:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full on mode if the BYPASS bit is cleared

If the PLL_CTL register is programmed to enter the sleep operating mode,
the processor immediately transitions to the sleep mode and waits for a
wake-up signal before continuing.

Dynamic Power Management Controller

18-16 ADSP-BF54x Blackfin Processor Hardware Reference

If the PLL_CTL register is programmed to enter deep sleep operating mode,
the processor immediately transitions to deep sleep mode and waits for an
RTC interrupt or hardware reset signal:

• An RTC interrupt causes the processor to enter active operationg
mode and to return from the bfrom_SysControl() routine.

• A hardware reset causes the processor to execute the reset sequence.
For more information about hardware reset, see Chapter 17, “Sys-
tem Reset and Booting”

If no operating mode transition is programmed, the PLL generates a
wake-up signal, and bfrom_SysControl() routine returns.

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power
dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses multiple power domains. Each power domain has a
separate VDD supply. Note that the internal logic of the processor and
much of the processor I/O can be run over a range of voltages. See the
product data sheet for details on the allowed voltage ranges for each power
domain and power dissipation data.

Power Supply Management
The processor provides an on-chip switching regulator controller which,
with some external hardware, can generate internal voltage levels from the
external VDDEXT supply with an external power transistor as shown in
Figure 18-3. This voltage level can be reduced to save power, depending
upon the needs of the system.

ADSP-BF54x Blackfin Processor Hardware Reference 18-17

Dynamic Power Management

When increasing the VDDINT voltage, the external FET switches
on for a longer period. The VDDEXT supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current
without drooping the supply voltage.

Dynamic Power Management Controller

18-18 ADSP-BF54x Blackfin Processor Hardware Reference

Controlling the Voltage Regulator

The on-chip core voltage regulator controller manages the internal logic
voltage levels for the VDDINT supply. The voltage regulator control regis-
ter (VR_CTL) controls the regulator (see Figure 18-8 on page 18-30). The
state of the VR_CTL register is maintained during power down modes and
hibernate state. It is only set to its reset value by a powerup reset sequence.
The VR_CTL register should not be written directly. Rather, the
bfrom_SysControl() routine, which resides in the on-chip ROM, should
be used to access it.

The on-chip switching regulator can be modified in terms of its transient
behavior in the GAIN and FREQ fields of the VR_CTL register.

Figure 18-3. Processor Voltage Regulator

VDDVR

VDDINT

VROUT

VROUT

GND

100 µF

10 µH

ZHCS1000FDS9431A

100 nF10 µF100 µF

SHORT AND LOW INDUCTANCE WIRE

VDDEXT (LOW INDUCTANCE)

2.70 V TO 3.6V
INPUT VOLTAGE

RANGE

NOTE: DESIGNER SHOULD MINIMIZE TRACE LENGTH TO FDS9431A.

SET OF
DECOUPLING
CAPACITORS

ADSP-BF54x Blackfin Processor Hardware Reference 18-19

Dynamic Power Management

The two-bit GAIN field controls the internal loop gain of the switching reg-
ulator loop; this field controls how quickly the voltage output settles on its
final value. In general, higher gain allows for quicker settling times but
causes more overshoot in the process.

Table 18-7 lists the gain levels configured by GAIN[1:0].

The two-bit FREQ field controls the switching oscillator frequency for the
voltage regulator. A higher frequency setting allows for smaller switching
capacitor and inductor values, while potentially generating more EMI
(electromagnetic interference).

Table 18-7. GAIN Encodings

GAIN Value

b#00 5

b#01 10

b#10 20

b#11 50

Dynamic Power Management Controller

18-20 ADSP-BF54x Blackfin Processor Hardware Reference

Table 18-8 lists the switching frequency values configured by FREQ[1:0].

To bypass onboard regulation, program a value of b#00 in the FREQ
field and leave the VROUT pins floating. Nevertheless, the VLEV field
in the applied VR_CTL value should still reflect the applied voltage
value.

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See the
processor data sheet for more information about supported voltage levels,
regulator tolerances, and allowed rates of change.

Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance requires significant changes to the operating voltage level.
To ensure predictable behavior when varying the operating voltage,
the processor should be brought to a known and stable state before
the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence
when varying the voltage. The four-bit voltage level (VLEV) field identifies
the nominal internal voltage level. Please refer to the processor data sheet
for the applicable VLEV voltage range and associated voltage tolerances.

Table 18-8. FREQ Encodings

FREQ Value

b#00 Powerdown/bypass onboard regulation

b#01 333 kHz

b#10 667 kHz

b#11 1 MHz

ADSP-BF54x Blackfin Processor Hardware Reference 18-21

Dynamic Power Management

Table 18-9 lists the voltage level values for VLEV[3:0].

After changing the voltage level in the VR_CTL register, the PLL automati-
cally enters the active mode when the processor enters the idle state. At
that point, the voltage level changes and the PLL relocks with the new
voltage. After the PLL_LOCKCNT has expired, the part returns to the full on
state. When changing voltages, a larger PLL_LOCKCNT value may be neces-
sary than when changing just the PLL frequency. See the processor data
sheet for details.

After the voltage is changed to the new level, the processor can safely
return to any operational mode so long as the operating parameters, such
as core clock frequency (CCLK), are within the limits specified in the pro-
cessor data sheet for the new operating voltage level.

Table 18-9. VLEV Encodings

VLEV Voltage

b#0000–b#0101 Reserved

b#0110 Reserved

b#0111 Reserved

b#1000 0.95 volts

b#1001 1.00 volts

b#1010 1.05 volts

b#1011 1.10 volts

b#1100 1.15 volts

b#1101 1.20 volts

b#1110 1.25 volts

b#1111 1.30 volts

Dynamic Power Management Controller

18-22 ADSP-BF54x Blackfin Processor Hardware Reference

Even if the internal voltage regulator is bypassed and the VDDINT voltage is
applied by an external regulator, the bfrom_SysControl() routine must be
called at startup or whenever the voltage changes at run time. Afterwards,
the SYSCTRL_EXTVOLTAGE bit should be set along with a proper VLEV value
in the VR_CTL register.

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing
b#00 to the FREQ bits of the VR_CTL register. This disables both CCLK and
SCLK. Furthermore, it sets the internal power supply voltage (VDDINT) to
0 V, eliminating any leakage currents from the processor. The internal
supply regulator can be woken up by several user-selectable events, all of
which are controlled in the VR_CTL register:

• Assertion of the RESET pin always exits hibernate state and requires
no modification to VR_CTL.

• RTC event. Set the wake-up enable (WAKE) control bit to enable
wake-up upon a RTC interrupt. This can be any of the RTC inter-
rupts (alarm, daily alarm, day, hour, minute, second, or
stopwatch).

• General-purpose event (all processors except ADSP-BF549). Set the
general-purpose wake-up enable (GPWE) control bit to enable
wake-up upon detection of an active low signal on the GPW pin.

• MXVR event (ADSP-BF549 processor only). Set the MXVR
wake-up enable (MXVRWE) control bit to enable wake-up upon detec-
tion of an active low signal on the MRXON pin. For more details, see
the “MXVR Module” chapter in the ADSP-BF54x Blackfin Proces-
sor Hardware Reference (Volume 2 of 2).

ADSP-BF54x Blackfin Processor Hardware Reference 18-23

Dynamic Power Management

• Activity on either CANxRX pin. Set the CAN RX wake-up enable
(CANWE) control bit to enable wake-up upon detection of CAN bus
activity on either of the CANxRX pins. For more details, see the
“CAN Module” chapter in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 2 of 2).

• Activity on the rotary counter pins. Set the rotary counter wake-up
enable (ROTWE) control bit to enable wake-up upon activity on the
rotary counter pins. If any edge is detected on either the CUD or CDG
pins, or if an active low state is detected on the CZM pin, this
wake-up event is generated. For more details, see the “Rotary
Counter Module” chapter in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 2 of 2).

• Activity on the keypad pins. Set the keypad wake-up enable
(KPADWE) control bit to enable wake-up upon activity on the keypad
pins. If an active low state is detected on any of the KEY_ROWx pins,
this wake-up event is generated. For more details, see the “Keypad
Module” chapter in the ADSP-BF54x Blackfin Processor Hardware
Reference (Volume 2 of 2).

• USB activity. Set the USB wake-up enable (USBWE) control bit to
enable wake-up upon USB activity. If any edge is detected on the
USB_DP, USB_DM, or USB_VBUS pins, this wake-up event is generated.
For more details, see the “USB Module” chapter in the
ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of
2).

• The hibernate functions will only work if VDDRTC is supplied.
This is the supply that is needed to maintain the VR_CTL register.

For the peripheral hibernate wake-up sources described above, a
general-purpose wake-up can be implemented if the peripheral isn't
used. For example, if MXVR is not used, an external host can be
connected to the MRXON pin that holds the pin high until the

Dynamic Power Management Controller

18-24 ADSP-BF54x Blackfin Processor Hardware Reference

wake-up is required. If MXVRWE is set, a transition to low on MRXON
will exit hibernate state, and the host could be set up to provide
this signal.

If the on-chip supply controller is bypassed so that VDDINT is sourced
externally, the only way to power down the core is to remove the external
VDDINT voltage source.

When the core is powered down, VDDINT is set to 0 V, and so the
internal state of the processor is not maintained, with the exception
of the VR_CTL register. Therefore, any critical information stored
internally (memory contents, register contents, and so on) must be
written to a non-volatile storage device prior to removing power.
Be sure to set the SCKE-low-during-reset (SCKELOW) control bit in
VR_CTL to protect against the default reset state behavior of setting
the EBIU pins to their inactive state. Failure to set this bit results
in the SCKE pin going high during reset, which takes the DDR out
of self-refresh mode, resulting in data decay in the DDR due to loss
of refresh rate.

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still
applied to the processor, external pins are maintained at a three-state level,
unless otherwise specified.

To power down the internal supply:

1. Write 0 to the appropriate bits in the SIC_IWRx registers to prevent
enabled peripheral resources from interrupting the hibernate
process.

2. Call the bfrom_SysControl() routine, ensuring that the FREQ bits
in the VR_CTL variable are set to b#00 and the appropriate wake-up
bit(s) are set to 1 (USBWE, ROTWE, GPWE/MXVRWE, KPADWE, CANWE,
PHYWE, WAKE). Optionally, set the SCKELOW bit if DDR data should
be maintained.

ADSP-BF54x Blackfin Processor Hardware Reference 18-25

Dynamic Power Management

3. The bfrom_SysControl() routine will execute until VDDINT transi-
tions to 0V. It never returns.

4. When the processor is woken up, the PLL relocks and the boot
sequence defined by the BMODE[3:0] pin settings takes effect.

 The WURESET in the SYSCTRL register is set and stays set until the next
hardware reset. The WURESET bit may control conditional boot process.

Recovery From Hibernate State

When utilizing the hibernate state to maximize power savings, additional
features of the ADSP-BF54x Blackfin processors can be used to coordinate
system response and subsequent system activity when the processor
resumes execution upon a hibernate wake-up event.

For the system outside of the Blackfin processor, the EXT_WAKE output pin
is asserted (driven high) when the Blackfin processor is about to enter the
Hibernate state. This pin can be used in the system to signal an external
component that it is now safe to remove the power supply. The state of
the EXT_WAKE pin is not affected by the reset sequence, and no clock is
required for it to be driven. The EXT_WAKE pin is then driven low when the
on-chip regulator is again stable after resuming operation from the hiber-
nate state.

For the Blackfin processor itself, the PLL_STAT register contains a set of
wake-up status bits, which can be interrogated upon warm-boot to deter-
mine which source caused the wake-up event. This information can be
useful to coordinate with external system components regarding lost traf-
fic due to the previous activity causing a wake-up event rather than a
processed message. For example, if a CAN message took the processor out
of hibernate state, that message would not have been received by the pro-
cessor because the processor would have had to perform a self-reset and
boot and run the application before being able to actually handle a CAN
message.

PLL and VR Registers

18-26 ADSP-BF54x Blackfin Processor Hardware Reference

The SCKELOW bit in the VR_CTL register is maintained during the hibernate
state. Typical use of this bit is to protect data in DDR memory during the
hibernate state and subsequent reset event. Because of this, SCKELOW can be
checked by software to determine whether the processor is being booted
for the first time or if it is restarting after a hibernate event. If the applica-
tion had set the bit prior to hibernate to protect the contents of DDR
memory, the bit will read as 1 after the reset event takes place. This feature
is useful if, for example, the desire is to shorten boot times as much as pos-
sible. For larger applications, anything resolved to external memory and
preserved for the duration of the hibernate state does not need to boot
again after the wake-up event takes place. Adding code to an initialization
block that simply checks the SCKELOW bit provides the application with the
ability to determine whether a full boot or some abridged boot is necessary
to have the full application resolved to the internal and external memory
spaces.

PLL and VR Registers
The user interface to the PLL and VR is through five memory-mapped
registers (MMRs) shown in Table 18-10 and illustrated in Figure 18-4
through Figure 18-8.

Table 18-10. PLL/VR Register Mapping

Register Name Function See More
Information ...

Notes

PLL_CTL PLL control register on page 18-28 Requires reprogramming
sequence when written

PLL_DIV PLL divisor register on page 18-27 Can be written freely

PLL_STAT PLL status register on page 18-29 Monitors active modes of
operation and wake-up events

ADSP-BF54x Blackfin Processor Hardware Reference 18-27

Dynamic Power Management

All four 16-bit MMRs must be accessed with aligned 16-bit reads/writes.

PLL Divide (PLL_DIV) Register

PLL_LOCKCNT PLL lock count
register

on page 18-29 Number of SCLKs allowed for
PLL to relock

VR_CTL Voltage regulator
control register

on page 18-30 Requires PLL reprogramming
sequence when written

Figure 18-4. PLL Divide (PLL_DIV) Register

Table 18-10. PLL/VR Register Mapping (Cont’d)

Register Name Function See More
Information ...

Notes

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 - Reserved
1-15 - SCLK = VCO/X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO/1
01 - CCLK = VCO/2
10 - CCLK = VCO/4
11 - CCLK = VCO/8

SSEL[3:0] (System Select)

Reset = 0x000400xFFC0 0004

PLL and VR Registers

18-28 ADSP-BF54x Blackfin Processor Hardware Reference

PLL Control (PLL_CTL) Register

Figure 18-5. PLL Control (PLL_CTL) Register

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 0 0 0 0 0 0 0 0 0

See Table 18-1 on page 18-4
for CLKIN/VCO multiplication
factors

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable control input to PLL
1 - Disable control input to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x10000xFFC0 0000

Reserved

Reserved

ADSP-BF54x Blackfin Processor Hardware Reference 18-29

Dynamic Power Management

PLL Status (PLL_STAT) Register

PLL Lock Count (PLL_LOCKCNT) Register

Figure 18-6. PLL Status (PLL_STAT) Register

Figure 18-7. PLL Lock Count (PLL_LOCKCNT) Register

000 0 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 18-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 1 0 0 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED

PLL_LOCKED

0xFFC0 000C

RTCWS (RTC Wak-up
Status)

CANWS (CAN Wak-up
Status)

GPWS (General-Purpose
Wake-up Status)

USBWS (USB
Wake-up Status)

KPADWS (Keypad
Wake-up Status)

ROTWS (Rotary
Counter Wak-up
Status)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT[15:0]
Number of CLKIN cycles
before PLL lock count
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010

PLL and VR Registers

18-30 ADSP-BF54x Blackfin Processor Hardware Reference

Voltage Regulator Control (VR_CTL) Register

Bit 10 enables the general-purpose wake-up (GPWE) for all
processors except the ADSP-BF549. On ADSP-BF549 processors
only, bit 10 enables the MXVR wake-up (MXVRWE).

The CLKIN buffer output enable (CLKBUFOE) control bit allows the Blackfin
processor and another device to run from a single crystal oscillator. Clear-
ing this bit prevents the CLKBUF pin from driving a buffered version of the
input clock CLKIN.

Figure 18-8. Voltage Regulator Control (VR_CTL) Register

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 0 0 0 1 1 0 1 0

Voltage Regulator Control Register (VR_CTL)

Reset = 0x40DB

VLEV[3:0] (Internal Voltage Level)
See Table 18-9 for encodings

FREQ[1:0] (Switching Frequency)
Controls the switching oscillator
frequency for the voltage regulator,
see Table 18-7 for encodings

GAIN[1:0] (Voltage Level Gain)
Controls how quickly the voltage
output settles on its final value,
see Table 18-8 for encodings

0 11

WAKE (RTC Wake-up
Enable)
0 - RTC wake-up disabled
1 - RTC wake-up enabled

0xFFC0 0008

SCKELOW
(Drive SCKE Low
During Reset)
0 - Allow SCKE to go

high (=1) during reset
1 - Maintain SCKE low

(=0) during reset

CANWE (CANx Wake-up
Enable)
0 - CAN RX wake-up disabled
1 - CAN RX wake-up enabled

GPWE/MXVRWE
(General-purpose/MXVR
Wake-up Enable)
0 - GP/MXVR wake-up disabled
1 - GP/MXVR wake-up enabledUSBWE (USB

Wake-up Enable)

0 - USB wake-up disabled
1 - USB wake-up enabled

KPADWE (Keypad
Wake-up Enable)

0 - Keypad wake-up disabled
1 - Keypad wake-up enabled

ROTWE (Rotary Counter
Wake-up Enable)

0 - Rotary counter wake-up
disabled
1 - Rotary counter wake-up
enabled

CLKBUFOE (CLKIN
Buffer Output Enable)
0 - CLKIN buffer disabled
1 - CLKIN buffer enabled

ADSP-BF54x Blackfin Processor Hardware Reference 18-31

Dynamic Power Management

System Control ROM Function
The PLL and voltage regulator registers should never be accessed directly.
Rather, always use to the bfrom_SysControl() function to alter or read the
register values. This function resides in the on-chip ROM and can be
called by the user following C language style calling conventions.

Entry address: 0xEF00 0038

Arguments:

• dActionFlags word in R0

• pSysCtrlSettings pointer in R1

• zero value in R2

A potential error message from the internally called bfrom_OtpRead()
function is forwarded and returned in R0.

The System Control ROM Function does not verifying the correct-
ness of the forwarded arguments. Therefore, it is up to the
programmer to choose the correct values.

C prototype: u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved);

The first argument (u32 dActionFlags) holds the instruction flags. The
following flags are supported:

#define SYSCTRL_READ 0x00000000

#define SYSCTRL_WRITE 0x00000001

#define SYSCTRL_SYSRESET 0x00000002

#define SYSCTRL_SOFTRESET 0x00000004

#define SYSCTRL_VRCTL 0x00000010

#define SYSCTRL_EXTVOLTAGE 0x00000020

#define SYSCTRL_INTVOLTAGE 0x00000000

#define SYSCTRL_OTPVOLTAGE 0x00000040

System Control ROM Function

18-32 ADSP-BF54x Blackfin Processor Hardware Reference

#define SYSCTRL_PLLCTL 0x00000100

#define SYSCTRL_PLLDIV 0x00000200

#define SYSCTRL_LOCKCNT 0x00000400

#define SYSCTRL_PLLSTAT 0x00000800

With SYSCTRL_READ and SYSCTRL_WRITE, a read or a write operation is ini-
tialized. SYSCTRL_SYSRESET performs a system reset, and
SYSCTRL_SOFTRESET combines a core and a system reset. The
SYSCTRL_EXTVOLTAGE and SYSCTRL_INTVOLTAGE indicate whether if VDDINT
is supplied externally or generated by the on-chip regulator;
SYSCTRL_OTPVOLTAGE is for factory purposes only. The last five flags
(_VRCTL, _PLLCTL, _PLLDIV, _LOCKCNT, _PLLSTAT) tell the system con-
trol ROM function, which register to write or read. Remember,
SYSCTRL_PLLSTAT is read only.

The second argument (ADI_SYSCTRL_VALUES *pSysCtrlSettings) passes a
pointer to a special structure, which has entries for all PLL and voltage
regulator registers. It is predefined in the bfrom.h header file as

typedef struct {

u16 uwVrCtl;

u16 uwPllCtl;

u16 uwPllDiv;

u16 uwPllLockCnt;

u16 uwPllStat;

} ADI_SYSCTRL_VALUES;

The third argument is reserved and should always be kept zero (NULL
pointer).

ADSP-BF54x Blackfin Processor Hardware Reference 18-33

Dynamic Power Management

For the return value, see the description of the bfrom_OtpRead() ROM
routine, whereby single-bit warnings are suppressed.

The System Control ROM Function automatically performs the
correct programming sequence for the Dynamic Power Manage-
ment System of the Blackfin processor.

Programming Model
The programming model for the Access System Control ROM Function
in C/C++ and Assembly is described in the following sections.

Access System Control ROM Function in C/C++

To read the PLL_DIV and PLL_CTL register values, specify the SYSCTRL_READ
instruction flag along with SYSCTRL_PLLCTL and SYSCTRL_PLLDIV register
flags. The bfrom_OtpRead() function then only updates the uwPllCtl and
uwPllDiv variables.

ADI_SYSCTRL_VALUES read;

bfrom_SysControl (SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_READ, &read, NULL);

The values of the PLL_CTL and PLL_DIV registers can be accessed in the
read.uwPllCtl and read.uwPllDiv, respectively.

To update register values, specify the SYSCTRL_WRITE instruction flag along
with the register flags of those register that should be modified and have
valid data in the respective ADI_SYSCTRL_VALUES variables.

ADI_SYSCTRL_VALUES write;

write.uwPllCtl = 0x1400;

write.uwPllDiv = 0x0005;

bfrom_SysControl (SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_WRITE, &write, NULL);

System Control ROM Function

18-34 ADSP-BF54x Blackfin Processor Hardware Reference

Access System Control ROM Function in Assembly

The assembler supports C structs. Here it is required to import the file
bfrom.h.

#include <bfrom.h>

.IMPORT “bfrom.h”;

.STRUCT ADI_SYSCTRL_VALUES dpm;

You are free to pre-load the struct:

.STRUCT ADI_SYSCTRL_VALUES dpm = { 0x40DB, 0x1400, 0x0005,

0x0200, 0x00A2 };

You can also load the values dynamically inside the code:

P5.H = hi(dpm);

P5.L = lo(dpm->uwVrCtl);

R7 = 0x40DB (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllCtl);

R7 = 0x1400 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllDiv);

R7 = 0x0005 (z);

w[P5] = R7;

P5.L = lo(dpm->uwPllLockCnt);

R7 = 0x0200 (z);

w[P5] = R0;

ADSP-BF54x Blackfin Processor Hardware Reference 18-35

Dynamic Power Management

The function u32 bfrom_SysControl(u32 dActionFlags,
ADI_SYSCTRL_VALUES *pSysCtrlSettings, void *reserved); can be
accessed by bfrom_syscontrol. Following the C/C++ run-time environ-
ment conventions, the parameters passed are held by the data registers R0,
R1 and R2.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Always allocate at least 12 bytes on the stack for outgoing

arguments, even if the function being called requires less than

this. */

SP += -12;

R0 = (SYSCTRL_VRCTL |

 SYSCTRL_INTVOLTAGE |

 SYSCTRL_PLLCTL |

 SYSCTRL_PLLDIV |

 SYSCTRL_WRITE);

R1.H = hi(dpm);

R1.L = lo(dpm);

R2 = 0 (z);

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

System Control ROM Function

18-36 ADSP-BF54x Blackfin Processor Hardware Reference

As an alternative for taking a C-struct, the processor’s internal scratchpad
memory can be used too. Therefore, the stack/frame pointer must be
loaded and passed.

/* 10 = sizeof(ADI_SYSCTRL_VALUES). uimm18m4: 18-bit unsigned

field that must be a multiple of 4, with a range of 8 through

262,152 bytes (0x00000 through 0x3FFFC) */

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

/* Always allocate at least 12 bytes on the stack for outgoing

arguments, even if the function being called requires less than

this. */

SP += -12;

R7 = 0;

R7.L = 0x40DB;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R7;

R7.L = 0x1400;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R7;

R7.L = 0x0005;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R7;

R7.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R7;

R0 = (SYSCTRL_VRCTL |

 SYSCTRL_INTVOLTAGE |

 SYSCTRL_PLLCTL |

 SYSCTRL_PLLDIV |

 SYSCTRL_WRITE);

ADSP-BF54x Blackfin Processor Hardware Reference 18-37

Dynamic Power Management

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0;

P5.H = hi(BFROM_SYSCONTROL);

P5.L = lo(BFROM_SYSCONTROL);

call(P5);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples
The following code examples illustrate how to use the System Control
ROM Function in running various operating mode transitions. Some
setup code has been removed for clarity, and the following assumptions
are made:

• PLL Control (PLL_CTL) Register setting: 0x1400

• PLL Divider (PLL_DIV) Register setting: 0x0005

• PLL Lock Count (PLL_LOCKCNT) Register setting: 0x0200

• Clock in (CLKIN) frequency: 25MHz

VCO frequency is 250MHz, core clock frequency is 250MHz and system
clock frequency is 50MHz.

• Voltage Regulator Control (VR_CTL) Register setting: 0x40DB

• Logical voltage level (VDDINT) is at 1.20V

Programming Examples

18-38 ADSP-BF54x Blackfin Processor Hardware Reference

For operating mode transition and voltage regulator examples:

• C

#include <blackfin.h>

#include <bfrom.h>

• Assembly

#include <blackfin.h>

#include <bfrom.h>

.IMPORT “bfrom.h”;

#define IMM32(reg,val) reg##.H=hi(val); reg##.L=lo(val)

Full On Mode to Active Mode and Back
Listing 18-1 and Listing 18-2 provide code for transitioning from full on
operating mode to active mode, in C and Blackfin assembly code,
respectively.

Listing 18-1. Transitioning from Full On Mode to Active Mode (C)

void active(void)

{

ADI_SYSCTRL_VALUES active;

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &active, NULL);

active.uwPllCtl |= (BYPASS | PLL_OFF); /* PLL_OFF bit optional */

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_WRITE, &active, NULL);

return;

}

ADSP-BF54x Blackfin Processor Hardware Reference 18-39

Dynamic Power Management

Listing 18-2. Transitioning from Full On Mode to Active Mode (ASM)

__active:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_READ);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(BYPASS));

bitset(R0,bitpos(PLL_OFF));

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

Programming Examples

18-40 ADSP-BF54x Blackfin Processor Hardware Reference

__active.end:

To return from active mode (go back to full on mode), the BYPASS bit and
the PLL_OFF bit, respectively, must be cleared again.

Transition to Sleep Mode or Deep Sleep Mode
Listing 18-3 and Listing 18-4 provide code for transitioning from full on
operating mode to sleep or deep sleep mode, in C and Blackfin assembly
code, respectively.

Listing 18-3. Transitioning to Sleep Mode or Deep Sleep Mode,
respectively (C)

void sleep(void)

{

ADI_SYSCTRL_VALUES sleep;

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_READ, &sleep, NULL);

active.uwPllCtl |= STOPCK; /* either: Sleep Mode */

active.uwPllCtl |= PDWN; /* or: Deep Sleep Mode */

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_WRITE, &sleep, NULL);

return;

}

Listing 18-4. Transitioning to Sleep Mode or Deep Sleep Mode,
respectively (ASM)

__sleep:

link sizeof(ADI_SYSCTRL_VALUES)+2;

ADSP-BF54x Blackfin Processor Hardware Reference 18-41

Dynamic Power Management

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_READ);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

R0 = w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)];

bitset(R0,bitpos(STOPCK)); /* either: Sleep Mode */

bitset(R0,bitpos(PDWN)); /* or: Deep Sleep Mode */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__sleep.end:

Programming Examples

18-42 ADSP-BF54x Blackfin Processor Hardware Reference

Setting Wakeups and Entering Hibernate State
Listing 18-5 and Listing 18-6 provide code for configuring the regulator
wakeups (RTC wakeup) and placing the regulator in the hibernate state, in
C and Blackfin assembly code, respectively.

Listing 18-5. Configuring Regulator Wakeups and Entering Hibernate
State (C)

void hibernate(void)

{

ADI_SYSCTRL_VALUES hibernate;

/* SCLKELOW = 1: Enable Drive CKE Low During Reset */

/* Protect DDR contents during reset after wakeup */

hibernate.uwVrCtl = SCKELOW |

 WAKE | /* RTC/Reset Wake-Up Enable */

nCANWE | /* CAN Wake-Up Disable */

nGPWE | /*General-Purpose Wake-Up Disable/*
nUSBWE | /* USB Wake-Up Disable */

nKPADWE | /* Keypad Wake-Up Disable */

nROTWE | /* Rotary Wake-Up Disable */

nCLKBUFOE | /* CLKIN Buffer Output Disable */

 HIBERNATE; /* Powerdown/Bypass On-Board Regulation */

bfrom_SysControl(SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE |

SYSCTRL_WRITE, &hibernate, NULL);

/* Hibernate State: no code executes until wakeup triggers reset

*/

}

ADSP-BF54x Blackfin Processor Hardware Reference 18-43

Dynamic Power Management

Listing 18-6. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

__hibernate:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

cli R6; /* disable interrupts, copy IMASK to R6 */

/* SCLKELOW = 1: Enable Drive CKE Low During Reset */

/* Protect DDR contents during reset after wakeup */

R0.L = SCKELOW |

WAKE | /* RTC/Reset Wake-Up Enable */

 nCANWE | /* CAN Wake-Up Disable */

 nGPWE | /* General-Purpose Wake-Up Disable */

 nUSBWE | /* USB Wake-Up Disable */

 nKPADWE | /* Keypad Wake-Up Disable */

 nROTWE | /* Rotary Wake-Up Disable */

 nCLKBUFOE | /* CLKIN Buffer Output Disable */

HIBERNATE ; /* Powerdown/Bypass On-Board Regulation */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwVrCtl)] = R0;

R0 = (SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

Programming Examples

18-44 ADSP-BF54x Blackfin Processor Hardware Reference

/* Hibernate State: no code executes until wakeup triggers reset

*/

__hibernate.end:

Perform a System Reset or Soft-Reset
Listing 18-7 and Listing 18-8 provide code for executing a system reset or
a soft-reset (= system reset + core reset), in Blackfin assembly and C code,
respectively.

Listing 18-7. Execute a System Reset or a Soft-Reset

void reset(void)

{

bfrom_SysControl(SYSCTRL_SYSRESET, NULL, NULL); /* either */

bfrom_SysControl(SYSCTRL_SOFTRESET, NULL, NULL); /* or */

return;

}

Listing 18-8. Listing 8. Execute a System Reset or a Soft-Reset

__reset:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0 = (SYSCTRL_SYSRESET); /* either */

R0 = (SYSCTRL_SOFTRESET); /* or */

R1 = 0 (z);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

ADSP-BF54x Blackfin Processor Hardware Reference 18-45

Dynamic Power Management

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__reset.end:

Change VCO Frequency, Core Clock Frequency
and System Clock Frequency

Listing 18-9 and Listing 18-10 provide code for changing the CLKIN to VCO
multiplier (from 10x to 21x), keeping CSEL divider at (1) and changing the
SSEL divider (from 5 to 4) in full on operating mode, in C and Blackfin
assembly code, respectively.

Listing 18-9. Transition of Frequencies (C)

void frequency(void)

{

ADI_SYSCTRL_VALUES frequency;

/* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */

frequency.uwPllCtl = SET_MSEL(21) ;

/* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

/* CCLK = VCO / 1 */

frequency.uwPllDiv = SET_SSEL(4) |

CSEL_DIV1 ;

frequency.uwPllLockCnt = 0x0200;

Programming Examples

18-46 ADSP-BF54x Blackfin Processor Hardware Reference

bfrom_SysControl(SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL |

SYSCTRL_PLLDIV | SYSCTRL_LOCKCNT | SYSCTRL_WRITE, &frequency,

NULL);

return;

}

Listing 18-10. Transition of Frequencies (ASM)

__frequency:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

/* write the struct */

R0 = 0;

R0.L = SET_MSEL(21) ; /* Set MSEL = 0-63 --> VCO = CLKIN*MSEL */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllCtl)] = R0;

R0.L = SET_SSEL(4) | /* Set SSEL = 1-15 --> SCLK = VCO/SSEL */

 CSEL_DIV1 ; /* CCLK = VCO / 1 */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllDiv)] = R0;

R0.L = 0x0200;

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof(ADI_SYSCTRL_VALUES,uwPllLockCnt)] = R0;

/* argument 1 in R0 */

R0 = (SYSCTRL_INTVOLTAGE | SYSCTRL_PLLCTL | SYSCTRL_PLLDIV |

SYSCTRL_WRITE);

ADSP-BF54x Blackfin Processor Hardware Reference 18-47

Dynamic Power Management

/* argument 2 in R1: structure lays on local stack */

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

/* argument 3 must always be NULL */

R2 = 0;

/* call of SysControl function */

IMM32(P4,BFROM_SYSCONTROL);

call (P4); /* R0 contains the result from SysControl */

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

__frequency.end:

Changing Voltage Levels
Listing 18-11 and Listing 18-12 provide code for changing the voltage
level dynamically, in C and Blackfin assembly code, respectively. The volt-
age level will be increased to 1.25V. Additional code may be required to
alter the core clock frequency when voltage level is being decreased. Please
refer to the processor data sheet for the applicable VLEV voltage range and
associated supported core clock speeds.

Listing 18-11. Changing Core Voltage via the On-Chip Regulator (C)

void voltage(void)

{

ADI_SYSCTRL_VALUES voltage;

voltage.uwVrCtl = VLEV_125 | /* VLEV = 1.25 V */
CLKBUFOE | /* CLKIN Buffer Output Enable */

Programming Examples

18-48 ADSP-BF54x Blackfin Processor Hardware Reference

GAIN_20 | /* GAIN = 20 */

FREQ_1000 ; /* Switching Frequency Is 1 MHz */

bfrom_SysControl(SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE |

SYSCTRL_WRITE, &voltage, NULL);

return;

}

Listing 18-12. Changing Core Voltage through the On-Chip Regulator
(ASM)

__voltage:

link sizeof(ADI_SYSCTRL_VALUES)+2;

[--SP] = (R7:0,P5:0);

SP += -12;

R0.L = VLEV_125 | /* VLEV = 1.25 V */

 CLKBUFOE | /* CLKIN Buffer Output Enable */

 GAIN_20 | /* GAIN = 20 */

 FREQ_1000 ; /* Switching Frequency Is 1 MHz */

w[FP+-sizeof(ADI_SYSCTRL_VALUES)+

offsetof (ADI_SYSCTRL_VALUES,uwVrCtl)] = R0;

R0 = (SYSCTRL_VRCTL | SYSCTRL_INTVOLTAGE | SYSCTRL_WRITE);

R1 = FP;

R1 += -sizeof(ADI_SYSCTRL_VALUES);

R2 = 0 (z);

IMM32(P4,BFROM_SYSCONTROL);

call(P4);

SP += 12;

(R7:0,P5:0) = [SP++];

unlink;

rts;

ADSP-BF54x Blackfin Processor Hardware Reference 18-49

Dynamic Power Management

__voltage.end:

The previous sequence must also be executed when the VDDINT voltage is
applied externally to ensure internal timings can appropriately be adjusted
for the constant or changing VDDINT voltage. In this case, replace the
SYSCTRL_INTVOLTAGE flag with the SYSCTRL_EXTVOLTAGE flag.

Programming Examples

18-50 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference 19-1

19 SYSTEM DESIGN

This chapter provides hardware, software, and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, the design issues cited
here are discussed in detail in other sections of this manual. In such cases,
a reference is made to the corresponding section of the text, instead of
repeating the discussion in this chapter.

• “Pin Descriptions” on page 19-1

• “Managing Clocks” on page 19-2

• “Configuring and Servicing Interrupts” on page 19-2

• “Semaphores” on page 19-3

• “Data Delays, Latencies, and Throughput” on page 19-4

• “Bus Priorities” on page 19-5

• “System-Level Hardware Design” on page 19-5

• “Recommended Reading” on page 19-19

Pin Descriptions
Refer to the processor data sheet for pin information, including pin num-
bers for the 400-ball MBGA.

Managing Clocks

19-2 ADSP-BF54x Blackfin Processor Hardware Reference

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed through the CSEL bit set-
tings in the PLL_DIV register. The system clock is based on a divider ratio
that is programmed through the SSEL bit settings in the PLL_DIV register.
For detailed information about how to set and change CCLK and SCLK fre-
quencies, see Chapter 18, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped through the
system interrupt assignment registers (SIC_IARx). For more information,
see Chapter 4, “System Interrupts”.

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts.

ADSP-BF54x Blackfin Processor Hardware Reference 19-3

System Design

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished through semaphores.

Semaphore coherency is guaranteed by using the test and set byte (atomic)
instruction (TESTSET). The TESTSET instruction performs these functions.

• Loads the half word at memory location pointed to by a P-register.
The P register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the TESTSET
instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Data Delays, Latencies, and Throughput

19-4 ADSP-BF54x Blackfin Processor Hardware Reference

Example Code for Query Semaphore
Listing 19-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 19-1. Query Semaphore

/* Query semaphore. Denotes “Busy” if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore is granted to current thread, and all

other contending threads are postponed because semaphore value at

[P0] is nonzero. Current thread could write thread_id to sema-

phore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies, and Throughput
For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to Chapter 2, “Chip Bus
Hierarchy”.

ADSP-BF54x Blackfin Processor Hardware Reference 19-5

System Design

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to Chapter 2, “Chip Bus Hierarchy”.

System-Level Hardware Design
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

External Memory Design Issues
This section describes design issues related to external memory.

DDR Memory

The DDR controller has a dedicated set of pins that require special atten-
tion in board design and layout:

• Follow the recommendations of the DDR memory manufacturer.
A good example of DDR layout recommendations is: TN-46-14:
Hardware Tips for Point-to-Point System Design from Micron
Technology.

• Proper board design and trace length matching is a critical part of
reducing the DQS to DQ and DQM skew of any DDR design.
Proper clock and VREF layout are also critical.

System-Level Hardware Design

19-6 ADSP-BF54x Blackfin Processor Hardware Reference

• When matching trace lengths in board layout, be careful of the
shape of the serpentine pattern. Capacitive coupling between seg-
ments of the trace reduces the effectiveness of length matching.
About 20 mils is a good distance between segments of the same
trace.

• Use serial termination on all data, address and control signals
(except the CLKs) for small memory systems of one to four chips.
Four or more devices may require parallel termination to a sepa-
rately-generated VREF instead of the serial termination.

• The maximum trace length of DQS, DQM and DQ signals should
be less than 3.5 inches. This is a maximum total length for each
signal measured by adding the length before, after and through any
serial termination.

• Signal DDR_VSSR on the Blackfin processor is a shield signal to
reduce noise on the DDR_VREF signal. It should be connected to
ground right at the ball.

• DDR_VREF is a standard DDR signal with a voltage value of
VDD_DDR/2. Place a DDR_VREF filtration capacitor to ground
within 0.1 inch of the ball on the Blackfin processor. The signal
should be derived in the standard way using 1% resistors and 0.1uF
capacitor or capacitors even if using mobile DDR devices that do
not also need the DDR_REF signal.

Memory Bus Pin Muxing and Flow Control

DDR memory has a complete set of dedicated functional pins and has no
flow control.

All other parallel peripherals and memory types (such as SRAM, FLASH,
BURST NOR FLASH, NAND FLASH) have dedicated pins and some
pins that can be used for other functions such as GPIO.

ADSP-BF54x Blackfin Processor Hardware Reference 19-7

System Design

Address bits 4 to 25 are muxed with GPIO functions on port I and port H
and should be selected as address pins before using the asynchronous
memory bus. Only the address pins used in the application need to be
allocated as address pins. If high-order address bits are not needed, those
pins may be used as GPIO. Note however that if booting from a parallel
memory source, all 25 address pins and the BG and BGH pins are driven
as outputs during boot time.

When using BURST NOR FLASH, select PI15/A25/NR_CLK for the
NOR_CLK muxed function.

When using NAND, select PJ2/ND_RB and PJ1/ND_CE for the ND_RB
and ND_CE muxed functions.

The bus request flow control pin is also muxed with GPIO functions. To
use the asynchronous memory port, PJ11/AMC_BR should be selected for
the AMC_BR function. This pin must then be held high with logic or a pul-
lup resistor to allow bus transactions to be initiated by the processor.

Example Asynchronous Memory Interfaces

This section shows glueless connections to 16-bit SRAM. Note this inter-
face does not require external assertion of ARDY, since the internal wait
state counter is sufficient for deterministic access times of memories.

System-Level Hardware Design

19-8 ADSP-BF54x Blackfin Processor Hardware Reference

Figure 19-1 shows the interface to 8-bit SRAM or FLASH. Figure 19-2
shows the interface to 16-bit SRAM or FLASH

Figure 19-1. Interface to 8-Bit SRAM or FLASH

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

8-BIT SRAM
OR FLASH

[X]

DATA[7:0]

ARDY

BE[1:0

D[7:0]

ADDR[N+1:1] A[N:0]

ARE

[1:0]ABE

AWE

AOE

AMS [X]AMS

R/W OR

OE

WR

ADSP-BF54x Blackfin Processor Hardware Reference 19-9

System Design

Avoiding Bus Contention

Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices con-
tend. Bus contention can also occur during reset or hibernation. This can
be avoided by external resistors to inactivate chip selects.

There are two cases where contention can occur caused by bus timing.
The first case is a read followed by a write to the same memory space. In
this case, the data bus drivers can potentially contend with those of the
memory device addressed by the read. The second case is back-to-back

Figure 19-2. Interface to 16-Bit SRAM or FLASH

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

DATA[15:0]

ARDY

R/W OR

16-BIT SRAM
OR FLASH

BE[1:0]

D[15:0]

ADDR[N+1:1] A[N:0]

ARE

AWE

AOE OE

[X]AMS [X]AMS

[1:0]ABE

WR

System-Level Hardware Design

19-10 ADSP-BF54x Blackfin Processor Hardware Reference

reads from two different memory spaces. In this case, the two memory
devices addressed by the two reads can potentially contend at the transi-
tion between the two read operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the external bus
interface unit (EBIU) provides one cycle for the transition to occur.

BURST FLASH

The use of BURST FLASH is similar to that of asynchronous memory but
requires special attention.

The burst flash connection requires only three special connections in addi-
tion to standard asynchronous memory signals (See Figure 19-3). The
burst clock signal to the flash is provided on PI15 and is the same pin as
A25. The second signal requiring special attention is ADV provided by the
Blackfin processor AOE pin. The WAIT output of the burst flash that should
be connected directly to ARDY.

NAND FLASH

NAND FLASH shares the Asynchronous data bus. The NAND FLASH
connection has many unique connections (See Figure 19-4). The chip
enable is provided by PJ1/ND_CE while the ready busy signal is PJ2/ND_RB.
PJ1/ND_CE requires a pull-up resistor because the general-purpose pins are
inputs at power-up. Other unique signal functions include ND_CLE pro-
vided by ABE0 and ND_ALE provided by ABE1. I/O 0 to 7 or I/O 0 to 15 are
supplied EBIU data pins D0 to D15.

ADSP-BF54x Blackfin Processor Hardware Reference 19-11

System Design

Figure 19-3. Interface to BURST FLASH

Figure 19-4. Interface to NAND FLASH

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

BURST FLASH

[X]

DATA[15:0]

ARDY

DATA[15:0]

ADDR[N:1] ADDR[N:1]

ARE

[1:0]ABE

AWE

AOE

AMS

WE

PI15/A25/NR_CLK

WAIT

CLK

CE

ADV

OE

NAND FLASH

D[15:0]

ARE

ABE1

AWE

PJ2/ND_RB R/B

CE

WE

ADSP-BF549
ADSP-BF548
ADSP-BF547
ADSP-BF544
ADSP-BF542

PJ1/ND_CE

ABE0

ALE

CLE

RE

VDDEXT

4.7K4.7K

I/O[15:0]

System-Level Hardware Design

19-12 ADSP-BF54x Blackfin Processor Hardware Reference

USB Controller
The UTMI (universal transceiver macro interface) of the USB controller is
unique. It is what some companies call the PHY section of the USB con-
troller. It has many features that allow connection directly to a USB cable
connector. The important system hardware requirements are:

• The UTMI section of the USB does not use the system clock. An
external clock is needed. The frequency must have an exact multi-
ple to 480 MHz. The default value would be a 24 MHz clock to
the USB_XI pin or a 24 MHz crystal circuit used with USB_XI and
USB_XO. If using a crystal, use the same circuit as shown in the
datasheet for CLKIN and XTAL.

• The UTMI section of the USB has our standard level of ESD pro-
tection. External protection diodes should be added at the
connector to DP, DM, ID, and VBUS for proper ESD protection.
There are several sources of ESD protection designed specifically
for USB2.

• When operating in USB OTG host mode, the user must supply an
external 5 V supply at 8 ma or more. The 5 volts can be provided
with a “charge pump” or a normal voltage regulator depending on
the available input voltages available for the application. In either
case it must be enabled and disabled in software using a GPIO with
a resister to set the initial value to disable the external 5 V source.
GPIO pin PE7 is used to enable this regulator in our software
examples.

• DP and DM are intended for direct connection to the D+ and D-
of a USB cable connector. They do not require any pull-up or
pull-down resistors as these are applied internally by the UTMI in
accordance with the programmed application mode. Note also that
like any USB design, DP and DM should be routed as a differential
pair with 90 to 100 Ohms mutual impedance.

ADSP-BF54x Blackfin Processor Hardware Reference 19-13

System Design

• If using the USB in device mode only, you may put a pull-up resis-
tor on USB_ID pin or leave the pin disconnected. Either a pull-up
resistor or leave the pin disconnected will work.

• The USB_RST pin should be connected to an unpopulated resistor as
there may be a future advantage to this configuration.

• The USB_VREF pin should be connected to a 0.1 �F capacitor to
ground.

• As stated in the data sheet, the 5 V tolerance of the UTMI pins is
only true if VDDUSB has some level of power. Some applications
may anticipate VBUS power from a device (perhaps located at the
other end of the cable) when the local power is off. If this condi-
tion is expected to last for long periods measured in years,
precautions should be taken to prevent long term damage to the
product. One method for correcting this situation is to use the
VBUS power from the external device to power the VDDUSB pins of
the processor.

ATAPI Bus
Special care is needed for ATAPI connections that require 5 V logic.
Active voltage level translation buffers are required for any peripheral that
uses 5 V logic levels.

Voltage Regulator
An internal voltage regulator can be used with the recommended external
circuit to provide a flexible system of power management. Many applica-
tions require a fixed internal voltage value and can use a simple external
voltage regulator to generate the VDDINT supply voltage. The EXT_WAKE
signal is provided to turn off the external voltage regulator when using the

System-Level Hardware Design

19-14 ADSP-BF54x Blackfin Processor Hardware Reference

hibernate operating mode. Because it is a high true power-up signal, it
may be connected directly to the low true shutdown input of many com-
mon regulators.

Signal Integrity
In addition to reducing signal length and capacitive loading, critical sig-
nals should be treated like transmission lines.

Use simple signal integrity methods to prevent transmission line reflec-
tions that may cause extraneous extra clock and sync signals. Additionally,
avoid overshoot and undershoot that can cause long term damage to input
pins.

Some signals are especially critical for short trace length and usually
require series termination. The CLKIN pin should have impedance-match-
ing-series resistance at its driver. SPORT interface signals TCLK, RCLK, RFS,
and TFS should use some termination. Although the serial ports may be
operated at a slow rate, the output drivers still have fast edge rates and for
longer distances the drivers often require resistive termination located at
the source. (Note also that TFS and RFS should not be shorted in multi-
channel mode.) On the PPI interface, the PPI_CLK and SYNC signals also
benefit from these standard signal integrity techniques. If these pins have
multiple sources, it is difficult to keep the traces short. Consider termina-
tion of SDRAM clocks, control, address, and data to improve signal
quality and reduce unwanted EMI.

Adding termination to fix a problem on an existing board requires delays
for new artwork and new boards. A transmission line simulator is recom-
mended for critical signals. IBIS models are available from Analog Devices
Inc. that will assist signal simulation software. Some signals can be cor-
rected with a small zero or 22 Ohm resistor located near the driver. The
resistor value can be adjusted after measuring the signal at all endpoints.

For details, see the reference sources in “Recommended Reading” on
page 19-19 for suggestions on transmission line termination.

ADSP-BF54x Blackfin Processor Hardware Reference 19-15

System Design

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the printed circuit board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 19-5. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. A ground plane should be located near the component side of
the board to reduce the distance that ground current must travel through
vias. The ground planes must not be densely perforated with vias or traces
as their effectiveness is reduced.

VDDINT is the highest frequency and requires special attention. Two
things help power filtering above 100 MHz. First, capacitors should be
physically small to reduce the inductance. Surface-mount capacitors of
size 0402 give better results than larger sizes. Secondly, lower values of

System-Level Hardware Design

19-16 ADSP-BF54x Blackfin Processor Hardware Reference

capacitance raises the resonant frequency of the LC circuit. While a cluster
of 0.1�F is acceptable below 50 MHz, a mix of 0.1, 0.01, 0.001�F and
even 100 pF is preferred in the 500 MHz range.

Note that the instantaneous voltage on both internal and external power
pins must at all times be within the recommended operating conditions as
specified in the product data sheet. Local “bulk capacitance” (many micro-
farads) is also necessary. Although all capacitors should be kept close to
the power consuming device, small capacitance values should be the clos-
est. Larger values may be placed further from the chip.

ADSP-BF54x Blackfin Processor Hardware Reference 19-17

System Design

5 Volt Tolerance
Outputs that connect to inputs on 5 V devices can float or be pulled up to
5 V. Only the few pins listed as 5 V tolerant in the data sheet should be
subjected to 5 volts. Current limiting resistors are not sufficient to main-
tain long-term reliability. Level shifters are required on all other Blackfin
pins to keep the pin voltage at or below absolute maximum ratings.

Figure 19-5. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADS P -BF54X

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE

System-Level Hardware Design

19-18 ADSP-BF54x Blackfin Processor Hardware Reference

Resetting the Processor
The reset pin requires a monotonic rise and fall. Therefore the pin should
not be connected directly to an R/C time delay because such a circuit
could be noise-sensitive. In addition to the hardware reset mode provided
through the RESET pin, the processor supports several software reset
modes.

Recommendations for Unused Pins
Most often, there is no need to terminate unused pins, but the handful
that do require termination are listed at the end of the pin list description
section of the product data sheet.

If the real-time clock is not used, RTXI should be pulled low. Also note
that unused peripherals may have separate power connections. These
should be driven to the specified value.

Peripheral specific power pins require power and ground even
when the peripheral is not used.

Programmable Outputs and Pin Multiplexing
During power-up, each GPIO pin is set to an input and any pins used in
the system as an output should be connected to a pullup or pulldown
resistor to maintain the desired state.

This would be particularly important in motor drive applications. It is
also important for UART TX and RTS, CAN TX, SPI and serial TWI,
ATAPI and other communications interfaces.

Boot Modes that use HWAIT require a pullup or pulldown resistor on PB11
on the ADSP-BF54x processors. HWAIT is driven both high and low during
all boot cycles and may cause contention or unwanted values if also used
as a GPIO.

ADSP-BF54x Blackfin Processor Hardware Reference 19-19

System Design

After the boot cycle, GPIO pins may already be set to input or output
depending on ADSP-BF54x family number and the boot cycle chosen.
The I/O/GPIO muxing of all pins may need to be reprogrammed to sup-
port the users application. Care should be taken for compatibility of
function and state, before boot, during boot, and during application pin
usage.

Test Point Access
The debug process is aided by test points on signals such as CLKOUT or
SCLK, bank selects, PPICLK, and RESET. If selection pins such as boot mode
are connected directly to power or ground, they are inaccessible under a
BGA chip. Use pull-up and pull-down resistors instead.

Oscilloscope Probes
When making high speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

Recommended Reading

For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

Recommended Reading

19-20 ADSP-BF54x Blackfin Processor Hardware Reference

This book is a technical reference that covers the problems encountered in
state-of-the-art, high-frequency digital circuit design. It is an excellent
source of information and practical ideas. Topics covered in the book
include:

• High-speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking

• Terminations

• Vias

• Power systems

• Connectors

• Ribbon cables

• Clock distribution

• Clock oscillators

Consult your CAD software tools vendor. Some companies offer demon-
stration versions of signal integrity software. Simply by using their free
software, you can learn:

• Transmission lines are real

• Unterminated printed circuit board traces ring and have overshoot
and undershoot

• Simple termination controls signal integrity problems

ADSP-BF54x Blackfin Processor Hardware Reference G-1

G GLOSSARY

ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller supporting multiple banks of asynchro-
nous memory including SRAM, ROM, and flash, where each bank can be
independently programmed with different timing parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative, and logical
functions.

bank activate command.

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the bank activate command is issued, it opens a new row address in
the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

base address.

The starting address of a circular buffer.

G-2 ADSP-BF54x Blackfin Processor Hardware Reference

base register.

A Data Address Generator (DAG) register that contains the starting
address for a circular buffer.

bit-reversed addressing.

The addressing mode in which the Data Address Generator (DAG) pro-
vides a bit-reversed address during a data move without reversing the
stored address.

Boot memory space.

Internal memory space designated for a program that is executed immedi-
ately after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

Burst Stop command.

The burst stop command is one of several ways to terminate a burst read
or write operation.

burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

ADSP-BF54x Blackfin Processor Hardware Reference G-3

Glossary

cache block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

cache hit.

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as cache block. In this document, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

cache tag.

Upper address bits, stored along with the cached data line, to identify the
specific address source in memory that the cached line represents.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory
map.

CAM (Content Addressable Memory).

Also called associative memory. A memory device that includes compari-
son logic with each bit of storage. A data value is broadcast to all words in
memory; it is compared with the stored values; and values that match are
flagged.

CAS (Column Address Strobe).

A signal sent from the SDC to a DRAM device to indicate that the col-
umn address lines are valid.

G-4 ADSP-BF54x Blackfin Processor Hardware Reference

CAS latency (also tAA, tCAC, CL).

The CAS latency or read latency specifies the time between latching a read
address and driving the data off chip. This spec is normalized to the sys-
tem clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM’s mode register
during the SDRAM powerup sequence.

CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By
activating Column Address Strobe (CAS) before activating Row Address
Strobe (RAS), this counter is selected to supply the row address instead of
the address inputs.

CEC.

See Core Event Controller

circular addressing.

The process by which the Data Address Generator (DAG) “wraps around”
or repeatedly steps through a range of registers.

companding.

(Compressing/expanding). The process of logarithmically encoding and
decoding data to minimize the number of bits that must be sent.

conditional branches.

Jump or call/return instructions whose execution is based on defined
conditions.

core.

The core consists of these functional blocks: CPU, L1 memory, event con-
troller, core timer, and performance monitoring registers.

ADSP-BF54x Blackfin Processor Hardware Reference G-5

Glossary

Core Event Controller (CEC).

The CEC works with the System Interrupt Controller (SIC) to prioritize
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer

DAB.

See DMA Access Bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that is used to transfer data between computation
units and memory while providing local storage for operands.

data registers (Dreg).

Registers located in the data arithmetic unit that hold operands and results
for multiplier, ALU, or shifter operations.

DCB.

See DMA Core Bus

DEB.

See DMA External Bus

G-6 ADSP-BF54x Blackfin Processor Hardware Reference

descriptor block, DMA.

A set of parameters used by the direct memory access (DMA) controller to
describe a set of DMA sequences.

descriptor loading, DMA.

The process in which the direct memory access (DMA) controller down-
loads a DMA descriptor from data memory and autoinitializes the DMA
parameter registers.

DFT (Design For Testability).

A set of techniques that helps designers of digital systems ensure that those
systems are testable.

Digital Signal Processor (DSP).

An integrated circuit designated for high-speed manipulation of analog
information that is converted into digital form.

direct branches.

Jump or call/return instructions that use absolute addresses that do not
change at runtime (such as a program label), or they use a PC-relative
address.

direct-mapped.

Cache architecture where each line has only one place that it can appear in
the cache. Also described as 1-way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the
data is transferred through a DMA port without involving the processor.

ADSP-BF54x Blackfin Processor Hardware Reference G-7

Glossary

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the
data cache line is changed since it was copied from the source memory
and, therefore, needs to be updated in that source memory.

DMA.

See Direct Memory Access

DMA Access Bus (DAB).

A bus that provides a means for DMA channels to be accessed by the
peripherals.

DMA chaining.

The linking or chaining of multiple direct memory access (DMA)
sequences. In chained DMA, the I/O processor loads the next DMA
descriptor into the DMA parameter registers when the current DMA fin-
ishes and autoinitializes the next DMA sequence.

DMA Core Bus (DCB).

A bus that provides a means for DMA channels to gain access to on-chip
memory.

DMA descriptor registers.

Registers that hold the initialization information for a direct memory
access (DMA) process.

DMA External Bus (DEB).

A bus that provides a means for DMA channels to gain access to off-chip
memory.

G-8 ADSP-BF54x Blackfin Processor Hardware Reference

DPMC (Dynamic Power Management Controller).

A processor’s control block that allows the user to dynamically control the
processor’s performance characteristics and power dissipation.

DQM Data I/O Mask Function.

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to
SDRAM.

DRAM (Dynamic Random Access Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in an array of cells, each consisting of a capacitor and a transistor.
The cells are arranged on a chip in a grid of rows and columns. Since the
capacitors discharge gradually—and the cells lose their information—the
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit

edge-sensitive interrupt.

A signal or interrupt the processor detects if the input signal is high (inac-
tive) on one cycle and low (active) on the next cycle when sampled on the
rising edge of CLKIN.

ADSP-BF54x Blackfin Processor Hardware Reference G-9

Glossary

Endian format.

The ordering of bytes in a multibyte number.

EPB.

See External Port Bus

EPROM (Erasable Programmable Read-Only Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in isolated (“floating”) transistor gates that retain their charges
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates—a process that
requires relatively high voltage (usually 12V – 25V). Ultraviolet light,
applied to the chip’s surface through a quartz window in the package, dis-
charges the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in memory that contains sixteen 32-bit entries; each entry
contains a vector address for an interrupt service routine (ISR). When an
event occurs, instruction fetch starts at the address location in the corre-
sponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line indicating the line is valid and the data con-
tained in the line matches that in the source memory. The data in a clean
cache line does not need to be written to source memory before it is
replaced.

External Access Bus (EAB).

A bus mastered by the core memory management unit to access external
memory.

G-10 ADSP-BF54x Blackfin Processor Hardware Reference

External Bus Controller (EBC).

A component that provides arbitration between the External Access Bus
(EAB) and the DMA External Bus (DEB), granting at most one requester
per cycle.

External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core or from a DMA channel.

external port.

A channel or port that extends the processor’s internal address and data
buses off-chip, providing the processor’s interface to off-chip memory and
peripherals.

External Port Bus (EPB).

A bus that connects the output of the EBIU to external devices.

FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data
values. The FFT expresses a finite set of data points, for example a peri-
odic sampling of a real-world signal, in terms of its component
frequencies. Or conversely, the FFT reconstructs a signal from the fre-
quency data. The FFT can also be used to multiply two polynomials.

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in.

flash memory.

A type of single transistor cell, erasable memory in which erasing can only
be done in blocks or for the entire chip.

ADSP-BF54x Blackfin Processor Hardware Reference G-11

Glossary

fully associative.

Cache architecture where each line can be placed anywhere in the cache.

glueless.

No external hardware is required.

Harvard architecture.

A processor memory architecture that uses separate buses for program and
data storage. The two buses let the processor fetch a data word and an
instruction word simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions.

I2C.

A bus standard specified in the Philips I2C Bus Specification version 2.1
dated January 2000.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

index.

Address portion that is used to select an array element (for example, line
index).

Index registers.

A Data Address Generator (DAG) register that holds an address and acts
as a pointer to memory.

G-12 ADSP-BF54x Blackfin Processor Hardware Reference

indirect branches.

Jump or call/return instructions that use a dynamic address from the data
address generator, evaluated at runtime.

input clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication through the phase locked loop (PLL) module.

internal memory bank.

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

interrupt.

An event that suspends normal processing and temporarily diverts the flow
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache
line match cannot occur.

IrDA (Infrared Data Association).

A nonprofit trade association that established standards for ensuring the
quality and interoperability of devices using the infrared spectrum.

isochronous.

Processes where data must be delivered within certain time constraints.

ADSP-BF54x Blackfin Processor Hardware Reference G-13

Glossary

ISR (Interrupt Service Routine).

Software that is executed when a specific interrupt occurs. A table stored
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard
for a test access port for testing electronic devices.

JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard
for system test. This standard defines a method for serially scanning the
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program
memory.

latency.

The overhead time used to find the correct place for memory access and
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have
been unused for the longest time.

Least Significant Bit (LSB).

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones.

G-14 ADSP-BF54x Blackfin Processor Hardware Reference

Length registers.

A Data Address Generator (DAG) register that specifies the range of
addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory
subsystems between it and the core.

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a
larger capacity than L1 memory, but it requires additional latency to
access.

level-sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low
(active) when sampled on the rising edge of CLKIN.

LIFO (Last In, First Out).

A data structure from which the next item taken out is the most recent
item put in.

little endian.

The native data store format of the processor. Words and half words are
stored in memory (and registers) with the least significant byte at the low-
est byte address and the most significant byte at the highest byte address of
the data storage location.

loop.

A sequence of instructions that executes several times.

LRU.

See Least Recently Used algorithm

ADSP-BF54x Blackfin Processor Hardware Reference G-15

Glossary

LSB.

See Least Significant Bit

MAC (Media Access Control).

The Ethernet MAC provides a 10/100Mbit/s Ethernet interface, compli-
ant to IEEE Std. 802.3-2002, between an MII (Media Independent
Interface) and the Blackfin peripheral subsystem.

MAC (Multiply/Accumulate).

A mathematical operation that multiplies two numbers and then adds a
third to get the result (see Multiply Accumulator).

Memory Management Unit (MMU).

A component of the processor that supports protection and selective cach-
ing of memory by using cacheability protection lookaside buffers
(CPLBs).

Mode register.

Internal configuration registers within SDRAM devices which allow speci-
fication of the SDRAM device’s functionality.

modified addressing.

The process whereby the Data Address Generator (DAG) produces an
address that is incremented by a value or the contents of a register.

Modify register.

A Data Address Generator (DAG) register that provides the increment or
step size by which an index register is pre- or post-modified during a regis-
ter move.

G-16 ADSP-BF54x Blackfin Processor Hardware Reference

MMR (Memory-Mapped Register).

A specific location in main memory used by the processor as if it were a
register.

MMU.

See Memory Management Unit

MSB (Most Significant Bit).

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)).

multifunction computations.

The parallel execution of multiple computational instructions. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the computational units and memory accesses. The multiple
operations perform the same as if they were in corresponding single func-
tion computations.

multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

NMI (Nonmaskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt.

NRZ (Non-return-to-Zero).

A binary encoding scheme in which a 1 is represented by a change in the
signal and a 0 by no change—there is no return to a reference (0) voltage
between encoded bits. This method eliminates the need for a clock signal.

ADSP-BF54x Blackfin Processor Hardware Reference G-17

Glossary

NRZI (Non-return-to-Zero Inverted).

A binary encoding scheme in which a 0 is represented by a change in the
signal and a 1 is represented by no change—there is no return to a refer-
ence (0) voltage between encoded bits. This method eliminates the need
for a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus

page size.

The amount of memory which has the same row address and can be
accessed with successive read or write commands without needing to acti-
vate another row.

Parallel Peripheral Interface (PPI).

The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins.

PC (Program Counter).

A register that contains the address of the next instruction to be executed.

peripheral.

Functional blocks not included as part of the core, and typically used to
support system level operations.

Peripheral Access Bus (PAB).

A bus used to provide access to EBIU memory-mapped registers.

G-18 ADSP-BF54x Blackfin Processor Hardware Reference

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase-Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full speed master clock
from a lower frequency input clock signal.

PLL.

See Phase-Locked Loop

PPI.

See Parallel Peripheral Interface

precision.

The number of bits after the binary point in the storage format for the
number.

post-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments after the instruction is
executed.

precharge command.

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

pre-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments before the instruction is
executed.

ADSP-BF54x Blackfin Processor Hardware Reference G-19

Glossary

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), PWM is a pulse modula-
tion technique in which the duration of the pulses is varied by the
modulating voltage.

RAS (Row Address Strobe).

A signal sent from the SDC to a DRAM device to indicate validity of row
address lines.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of
the processor, including time of day, alarm, and stopwatch countdown
features.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

RTC.

See Real-Time Clock

RZ (Return-to-Zero modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 0 is represented by a change from the low voltage level to the high
voltage level; a 1 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

G-20 ADSP-BF54x Blackfin Processor Hardware Reference

RZI (Return-to-Zero-Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 1 is represented by a change from the low voltage level to the high
voltage level; a 0 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SDC (SDRAM Controller).

A configurable memory controller supporting a bank of synchronous
memory consisting of SDRAM.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access
modes that clock out a series of successive bits.

SDRAM bank.

Region of external memory that can be configured to be 16M bytes, 32M
bytes, 64M bytes, or 128M bytes and is selected by the SMS pin.

Serial Peripheral Interface (SPI).

A synchronous serial protocol used to connect integrated circuits.

serial ports (SPORTs).

A high speed synchronous input/output device on the processor. The pro-
cessor uses two synchronous serial ports that provide inexpensive
interfaces to a wide variety of digital and mixed-signal peripheral devices.

ADSP-BF54x Blackfin Processor Hardware Reference G-21

Glossary

set.

A group of N-line storage locations in the ways of an N-way cache,
selected by the index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or
ways).

shifter.

A computational unit that completes logical and arithmetic shifts.

SIC (System Interrupt Controller).

Part of the processor’s two-level event control mechanism. The SIC works
with the Core Event Controller (CEC) to prioritize and control all system
interrupts. The SIC provides mapping between the peripheral interrupt
sources and the prioritized general-purpose interrupt inputs of the core.

SIMD (Single Instruction, Multiple Data).

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction.

SP (Stack Pointer).

A register that points to the top of the stack.

SPI.

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

G-22 ADSP-BF54x Blackfin Processor Hardware Reference

stack.

A data structure for storing items that are to be accessed in Last In, First
Out (LIFO) order. When a data item is added to the stack, it is “pushed”;
when a data item is removed from the stack, it is “popped.”

Static Random Access Memory (SRAM).

Very fast read/write memory that does not require periodic refreshing.

system.

The system includes the peripheral set (timers, real-time clock, program-
mable flags, UART, SPORTs, PPI, and SPIs), the external memory
controller (EBIU), the memory DMA controller, as well as the interfaces
between these peripherals, and the optional, external (off-chip) resources.

System clock (SCLK).

A component that delivers clock pulses at a frequency determined by a
programmable divider ratio within the PLL.

System Interrupt Controller (SIC).

Component that maps and routes events from peripheral interrupt sources
to the prioritized, general-purpose interrupt inputs of the Core Event
Controller (CEC).

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

ADSP-BF54x Blackfin Processor Hardware Reference G-23

Glossary

Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel.
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of the 24
channels.

TWI.

See Two Wire Interface

Two Wire Interface (TWI).

The TWI controller allows a device to interface to an Inter IC bus as spec-
ified by the Philips I2C Bus Specification version 2.1 dated January 2000.
The interface is essentially a shift register that serially transmits and
receives data bits, one bit at a time at the SCL rate, to and from other TWI
devices.

UART.

See Universal Asynchronous Receiver Transmitter

Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits
required for asynchronous serial communication.

Valid.

A state bit (stored along with the tag) that indicates the corresponding tag
and data are current and correct and can be used to satisfy memory access
requests.

victim.

A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

G-24 ADSP-BF54x Blackfin Processor Hardware Reference

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access.

Way.

An array of line storage elements in an N-way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

Write-1-to-Set (W1S) bit.

A control or status bit that is set by writing 1 to it. It cannot be cleared by
writing 0 to it.

write back.

A cache write policy (also known as copyback). The write data is written
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to source memory. The modified cache line
is not written to the source memory when it is replaced.

ADSP-BF54x Blackfin Processor Hardware Reference A-1

A SYSTEM MMR ASSIGNMENTS

This appendix lists MMR addresses and register names for the system
memory-mapped registers (MMRs), the core timer registers, and the pro-
cessor-specific memory registers mentioned in this manual, To find more
information about an MMR, refer to the page shown in the “See Page”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Page” column to jump to additional information about
the MMR.

This chapter includes the following sections:

• “Dynamic Power Management Registers” on page A-3

• “System Reset and Interrupt Control Registers” on page A-4

• “Watchdog Timer Registers” on page A-6

• “Real-Time Clock Registers” on page A-6

• “UART0 Controller Registers” on page A-7

• “SPI0 Controller Registers” on page A-8

• “TWI Controller Registers” on page A-8

• “SPORT0 Controller Registers” on page A-8

• “MXVR Registers” on page A-9

• “Keypad Registers” on page A-9

• “SDH Registers” on page A-10

A-2 ADSP-BF54x Blackfin Processor Hardware Reference

• “ATAPI Registers” on page A-10

• “USB_OTG Registers” on page A-10

• “External Bus Interface Unit Registers” on page A-10

• “DMA/Memory DMA Control Registers” on page A-12

• “EPPI0 Registers” on page A-14

• “Host DMA Registers” on page A-15

• “PIXC Registers” on page A-15

• “Ports Registers” on page A-17

• “Timer Registers” on page A-26

• “CAN Registers” on page A-28

• “Handshake MDMA Control Registers” on page A-29

• “NAND Flash Controller Registers” on page A-30

• “Core Timer Registers” on page A-31

• “Rotary Counter Registers” on page A-31

• “Security Registers” on page A-32

• “Processor-Specific Memory Registers” on page A-33

ADSP-BF54x Blackfin Processor Hardware Reference A-3

System MMR Assignments

These notes provide general information about the system memory-mapped reg-
isters (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are 16
bits wide must be accessed with 16-bit read or write operations. MMRs
that are 32 bits wide must be accessed with 32-bit read or write opera-
tions. Check the description of the MMR to determine whether a 16-bit
or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is reserved for
internal use only.

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF) are listed
in Table A-1.

Table A-1. Dynamic Power Management Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0000 PLL_CTL “PLL Control (PLL_CTL) Register” on page 18-28

0xFFC0 0004 PLL_DIV “PLL Divide (PLL_DIV) Register” on page 18-27

0xFFC0 0008 VR_CTL “Voltage Regulator Control (VR_CTL) Register”
on page 18-30

0xFFC0 000C PLL_STAT “PLL Status (PLL_STAT) Register” on page 18-29

0xFFC0 0010 PLL_LOCKCNT “PLL Lock Count (PLL_LOCKCNT) Register” on
page 18-29

System Reset and Interrupt Control Registers

A-4 ADSP-BF54x Blackfin Processor Hardware Reference

System Reset and Interrupt Control
Registers

System reset and interrupt control registers (0xFFC0 0100 –
0xFFC0 01FF) are listed in Table A-2.

Table A-2. System Reset and Interrupt Control Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0100 SYRST “Software Reset Register” on page 17-108

0xFFC0 0104 SYSCR “System Reset Configuration Register” on
page 17-110

0xFFC0 010C SIC_IMASK0 “System Interrupt Mask Register 0
(SIC_IMASK0)” on page 4-35

0xFFC0 0110 SIC_IMASK1 “System Interrupt Mask Register 1
(SIC_IMASK1)” on page 4-36

0xFFC0 01114 SIC_IMASK2 “System Interrupt Mask Register 2
(SIC_IMASK2)” on page 4-37

0xFFC0 0130 SIC_IAR0 “System Interrupt Assignment Register 0
(SIC_IAR0)” on page 4-28

0xFFC0 0134 SIC_IAR1 “System Interrupt Assignment Register 1
(SIC_IAR1)” on page 4-28

0xFFC0 0138 SIC_IAR2 “System Interrupt Assignment Register 2
(SIC_IAR2)” on page 4-29

0xFFC0 013C SIC_IAR3 “System Interrupt Assignment Register 3
(SIC_IAR3)” on page 4-29

0xFFC0 0140 SIC_IAR4 “System Interrupt Assignment Register 4
(SIC_IAR4)” on page 4-30

0xFFC0 0144 SIC_IAR5 “System Interrupt Assignment Register 5
(SIC_IAR5)” on page 4-30

0xFFC0 0148 SIC_IAR6 “System Interrupt Assignment Register 6
(SIC_IAR6)” on page 4-31

ADSP-BF54x Blackfin Processor Hardware Reference A-5

System MMR Assignments

0xFFC0 014C SIC_IAR7 “System Interrupt Assignment Register 7
(SIC_IAR7)” on page 4-31

0xFFC0 0150 SIC_IAR8 “System Interrupt Assignment Register 8
(SIC_IAR8)” on page 4-32

0xFFC0 0154 SIC_IAR9 “System Interrupt Assignment Register 9
(SIC_IAR9)” on page 4-32

0xFFC0 0158 SIC_IAR10 “System Interrupt Assignment Register 10
(SIC_IAR10)” on page 4-33

0xFFC0 015C SIC_IAR11 “System Interrupt Assignment Register 11
(SIC_IAR11)” on page 4-33

0xFFC0 0118 SIC_ISR0 “System Interrupt Status Register 0
(SIC_ISR0)” on page 4-38

0xFFC0 011C SIC_ISR1 “System Interrupt Status Register 1
(SIC_ISR1)” on page 4-39

0xFFC0 0120 SIC_ISR2 “System Interrupt Status Register 2
(SIC_ISR2)” on page 4-40

0xFFC0 0124 SIC_IWR0 “System Interrupt Wakeup Register 0
(SIC_IWR0)” on page 4-41

0xFFC0 0128 SIC_IWR1 “System Interrupt Wakeup Register 1
(SIC_IWR1)” on page 4-42

0xFFC0 012C SIC_IWR2 “System Interrupt Wakeup Register 2
(SIC_IWR2)” on page 4-43

Table A-2. System Reset and Interrupt Control Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

Watchdog Timer Registers

A-6 ADSP-BF54x Blackfin Processor Hardware Reference

Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF) are listed in
Table A-3.

Real-Time Clock Registers
Real-time clock registers (0xFFC0 0300 – 0xFFC0 03FF) are listed in
Table A-4.

Table A-3. Watchdog Timer Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0200 WDOG_CTL “Watchdog Control (WDOG_CTL) Register”
on page 12-9

0xFFC0 0204 WDOG_CNT “Watchdog Count (WDOG_CNT) Register”
on page 12-7

0xFFC0 0208 WDOG_STAT “Watchdog Status (WDOG_STAT) Register”
on page 12-8

Table A-4. Real-Time Clock Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0300 RTC_STAT “RTC Status (RTC_STAT) Register” on
page 14-21

0xFFC0 0304 RTC_ICTL “RTC Interrupt Control (RTC_ICTL) Register” on
page 14-21

0xFFC0 0308 RTC_ISTAT “RTC Interrupt Status (RTC_ISTAT) Register” on
page 14-22

0xFFC0 030C RTC_SWCNT “RTC Stopwatch Count (RTC_SWCNT) Register”
on page 14-22

ADSP-BF54x Blackfin Processor Hardware Reference A-7

System MMR Assignments

UART0 Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF) are listed in
the “System MMR Assignments” appendix in the ADSP-BF54x Blackfin
Processor Hardware Reference (Volume 2 of 2).

UART1 Controller Registers
UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF) are listed in
the “System MMR Assignments” appendix in the ADSP-BF54x Blackfin
Processor Hardware Reference (Volume 2 of 2).

UART2 Controller Registers
UART2 controller registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 2 of 2).

0xFFC0 0310 RTC_ALARM “RTC Alarm (RTC_ALARM) Register” on
page 14-23

0xFFC0 0314 RTC_PREN “Prescaler Enable (RTC_PREN) Register” on
page 14-23

Table A-4. Real-Time Clock Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

UART3 Controller Registers

A-8 ADSP-BF54x Blackfin Processor Hardware Reference

UART3 Controller Registers
UART1 controller registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 2 of 2).

SPI0 Controller Registers
SPI0 controller registers (0xFFC0 0500 – 0xFFC0 05FF) are listed in the
“System MMR Assignments” appendix in the ADSP-BF54x Blackfin Pro-
cessor Hardware Reference (Volume 2 of 2).

SPI1 Controller Registers
SPI1 controller registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 2 of 2).

TWI Controller Registers
TWIx controller registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 2 of 2).

SPORT0 Controller Registers
SPORT0 controller registers (0xFFC0 0800 – 0xFFC0 08FF) are listed in
the “System MMR Assignments” appendix in the ADSP-BF54x Blackfin
Processor Hardware Reference (Volume 2 of 2).

ADSP-BF54x Blackfin Processor Hardware Reference A-9

System MMR Assignments

SPORT1 Controller Registers
SPORT1 controller registers (0xFFC0 0900 – 0xFFC0 09FF) are listed in
the “System MMR Assignments” appendix in the ADSP-BF54x Blackfin
Processor Hardware Reference (Volume 2 of 2).

SPORT2 Controller Registers
SPORT2 controller registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 2 of 2).

SPORT3 Controller Registers
SPORT3 controller registers are listed in the “System MMR Assignments”
appendix in the ADSP-BF54x Blackfin Processor Hardware Reference (Vol-
ume 2 of 2).

MXVR Registers
MXVR registers are listed in the “System MMR Assignments” appendix in
the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2).

Keypad Registers
Keypad registers are listed in the “System MMR Assignments” appendix
in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2).

SDH Registers

A-10 ADSP-BF54x Blackfin Processor Hardware Reference

SDH Registers
Secure Digital Host (SDH) registers are listed in the “System MMR
Assignments” appendix in the ADSP-BF54x Blackfin Processor Hardware
Reference (Volume 2 of 2).

ATAPI Registers
ATAPI registers are listed in the “System MMR Assignments” appendix in
the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2).

USB_OTG Registers
USB_OTG registers are listed in the “System MMR Assignments” appen-
dix in the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of
2).

External Bus Interface Unit Registers
External bus interface unit (EBIU) registers (0xFFC0 0A00 –
0xFFC0 0AFF) are listed in Table A-5.

Table A-5. EBIU Memory-Mapped Registers

Address Name Description

0xFFC0 0A00 EBIU_AMGCTL Asynchronous memory global control register
(on page 6-57)

0xFFC0 0A04 EBIU_AMBCTL0 Asynchronous memory bank control 0 register
(on page 6-58)

0xFFC0 0A08 EBIU_AMBCTL1 Asynchronous memory bank control 1 register
(on page 6-58)

ADSP-BF54x Blackfin Processor Hardware Reference A-11

System MMR Assignments

0xFFC0 0A0C EBIU_MBSCTL Memory bank select control register
(on page 6-63)

0xFFC0 0A10 EBIU_ARBSTAT Arbiter status register (on page 6-69)

0xFFC0 0A14 EBIU_MODE Memory mode control register (on page 6-63)

0xFFC0 0A18 EBIU_FCTL Flash control register (on page 6-64)

0xFFC0 0A20 EBIU_DDRCTL0 “Memory Control Register 0
(EBIU_DDRCTL0)” on page 6-21)

0xFFC0 0A24 EBIU_DDRCTL1 “Memory Control Register 1
(EBIU_DDRCTL1)” on page 6-22

0xFFC0 0A28 EBIU_DDRCTL2 “Memory Control Register 2
(EBIU_DDRCTL2)” on page 6-23

0xFFC0 0A2C EBIU_DDRCTL3 “Memory Control Register 3
(EBIU_DDRCTL3), Regular DDR Devices” on
page 6-24
“Memory Control Register 3
(EBIU_DDRCTL3) Mobile DDR Devices” on
page 6-25

0xFFC0 0A30 EBIU_DDRQUE “Queue Configuration Register
(EBIU_DDRQUE)” on page 6-26

0xFFC0 0A34 EBIU_ERRADD “Error Address Register (EBIU_ERRADD)” on
page 6-27

0xFFC0 0A38 EBIU_ERRMST “Error Master Register (EBIU_ERRMST)” on
page 6-28

0xFFC0 0A3C EBIU_RSTCTL “Reset Control Register 0 (EBIU_RSTCTL)”
on page 6-29

0xFFC0 0A1C Reserved Reserved

Table A-5. EBIU Memory-Mapped Registers

Address Name Description

DMA/Memory DMA Control Registers

A-12 ADSP-BF54x Blackfin Processor Hardware Reference

DMA/Memory DMA Control Registers
DMA/Memory DMA control registers (0xFFC0 0B00 – 0xFFC0 0FFF)
are listed in Table A-6.

Since each DMA channel has an identical MMR set with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table A-7 and Table A-8.
Table A-7 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table A-8 then lists the register
suffix and provides its offset from the base address.

As an example, the DMA channel 0 Y_MODIFY register is called
DMA0_Y_MODIFY, and its address is 0xFFC0 0C1C. Likewise, the memory
DMA stream 0 source current address register is called
MDMA_S0_CURR_ADDR, and its address is 0xFFC0 0E64.

Table A-6. DMA/Memory DMA Control Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0B0C DMA_TCPER “DMA Traffic Control Counter Period
(DMACx_TCPER) Registers” on page 5-126

0xFFC0 0B10 DMA_TCCNT “DMA Traffic Control Counter
(DMACx_TCCNT) Registers” on page 5-127

Table A-7. DMA Channel Base Addresses

DMA Channel
Identifier

MMR Base Address Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC0 DMA3_

ADSP-BF54x Blackfin Processor Hardware Reference A-13

System MMR Assignments

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC0 DMA7_

8 0xFFC0 0E00 DMA8_

9 0xFFC0 0E40 DMA9_

10 0xFFC0 0E80 DMA10_

11 0xFFC0 0EC0 DMA11_

MemDMA stream
0 destination

0xFFC0 0F00 MDMA_D0_

MemDMA stream
0 source

0xFFC0 0F40 MDMA_S0_

MemDMA stream
1 destination

0xFFC0 0F80 MDMA_D1_

MemDMA stream
1 source

0xFFC0 0FC0 MDMA_S1_

Table A-8. DMA Register Suffix and Offset

Register Suffix Offset From
Base

See Page

NEXT_DESC_PTR 0x00 “Next Descriptor Pointer Registers” on page 5-111

START_ADDR 0x04 “Start Address Registers” on page 5-92

CONFIG 0x08 “DMA Configuration Registers” on page 5-82

X_COUNT 0x10 “Inner Loop Count Registers” on page 5-96

X_MODIFY 0x14 “Inner Loop Address Increment Registers” on
page 5-101

Table A-7. DMA Channel Base Addresses (Cont’d)

DMA Channel
Identifier

MMR Base Address Register Prefix

EPPI0 Registers

A-14 ADSP-BF54x Blackfin Processor Hardware Reference

EPPI0 Registers
PPI0 registers (0xFFC0 1000 – 0xFFC0 10FF) are listed in the “System
MMR Assignments” appendix in the ADSP-BF54x Blackfin Peripherals
Hardware Reference (Volume 2 of 2).

EPPI1 Registers
PPI1 registers are listed in the “System MMR Assignments” appendix in
the ADSP-BF54x Blackfin Peripherals Hardware Reference (Volume 2 of 2).

Y_COUNT 0x18 “Outer Loop Count Registers” on page 5-103

Y_MODIFY 0x1C “Outer Loop Address Increment Registers” on
page 5-108

CURR_DESC_PTR 0x20 “Current Descriptor Pointer Registers” on page 5-114

CURR_ADDR 0x24 “Current Address Registers” on page 5-94

IRQ_STATUS 0x28 “Interrupt Status Registers” on page 5-88

PERIPHERAL_MAP 0x2C “Peripheral Map Registers” on page 5-79

CURR_X_COUNT 0x30 “Current Inner Loop Count Registers” on page 5-99

CURR_Y_COUNT 0x38 “Current Outer Loop Count Registers” on page 5-106

Table A-8. DMA Register Suffix and Offset (Cont’d)

Register Suffix Offset From
Base

See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-15

System MMR Assignments

Host DMA Registers
Host DMA registers are listed in Table A-9.

PIXC Registers
The Pixel Compositor has memory-mapped registers (MMRs) that regu-
late its operation. These registers are listed in Table A-10. Descriptions
and bit diagrams for each of these MMRs are provided in the following
sections.

Table A-9. Host DMA Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 3A00 HOST_CONTROL “HOSTDP Control (HOST_CONTROL)
Register” on page 8-25

0xFFC0 3A04 HOST_STATUS “HOSTDP Status (HOST_STATUS) Regis-
ter” on page 8-27

0xFFC0 3A08 HOST_TIMEOUT “HOSTDP Timeout (HOST_TIMEOUT)
Register” on page 8-29

Table A-10. PIXC Memory-Mapped Registers

Memory-mapped
Address

Register Name Function

0xFFC04400 PIXC_CTL
on page 7-38

Overlay enable, resampling mode selection,
input/output data format selection, transparent
color enable, watermark level selection,
image/overlay FIFO status.

0xFFC04404 PIXC_PPL
on page 7-39

Holds the number of pixels per line of the dis-
play.

0xFFC04408 PIXC_LPF
on page 7-39

Holds the number of lines per frame of the dis-
play.

PIXC Registers

A-16 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC0440C PIXC_AHSTART
on page 7-40

Contains horizontal start pixel information of
the overlay data (set A).

0xFFC04410 PIXC_AHEND
on page 7-40

Contains horizontal end pixel information of
the overlay data (set A).

0xFFC04414 PIXC_AVSTART
on page 7-41

Contains vertical start pixel information of the
overlay data (set A).

0xFFC04418 PIXC_AVEND
on page 7-41

Contains vertical end pixel information of the
overlay data (set A).

0xFFC0441C PIXC_ATRANSP
on page 7-42

Contains the transparency ratio (set A).

0xFFC04420 PIXC_BHSTART
on page 7-40

Contains horizontal start pixel information of
the overlay data (set B).

0xFFC04424 PIXC_BHEND
on page 7-40

Contains horizontal end pixel information of
the overlay data (set B).

0xFFC04428 PIXC_BVSTART
on page 7-41

Contains vertical start pixel information of the
overlay data (set B).

0xFFC0442C PIXC_BVEND
on page 7-41

Contains vertical end pixel information of the
overlay data (set B).

0xFFC04430 PIXC_BTRANSP
on page 7-42

Contains the transparency ratio (set B).

0xFFC0443C PIXC_INTRSTAT
on page 7-42

Overlay interrupt configuration/status.

0xFFC04440 PIXC_RYCON
on page 7-43

Color space conversion matrix register. Contains
the R/Y conversion coefficients.

0xFFC04444 PIXC_GUCON
on page 7-44

Color space conversion matrix register. Contains
the G/U conversion coefficients.

0xFFC04448 PIXC_BVCON
on page 7-45

Color space conversion matrix register. Contains
the B/V conversion coefficients.

Table A-10. PIXC Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Register Name Function

ADSP-BF54x Blackfin Processor Hardware Reference A-17

System MMR Assignments

Ports Registers
Table A-11 lists the registers for port control and Table A-12 lists the reg-
isters for pin interrupt programming.

0xFFC0444C PIXC_CCBIAS
on page 7-46

Bias values for the color space conversion
matrix.

0xFFC04450 PIXC_TC
on page 7-47

Holds the transparent color value.

Table A-11. Port Control Registers (Multiplexing and GPIO)

Memory-mapped
Address

Register Name More Information begins ...

0xFFC014C0 PORTA_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014C4 PORTA “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014C8 PORTA_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014CC PORTA_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014D0 PORTA_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014D4 PORTA_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014D8 PORTA_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014DC PORTA_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

Table A-10. PIXC Memory-Mapped Registers (Cont’d)

Memory-mapped
Address

Register Name Function

Ports Registers

A-18 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC014E0 PORTB_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014E4 PORTB “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014E8 PORTB_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014EC PORTB_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014F0 PORTB_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014F4 PORTB_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014F8 PORTB_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC014FC PORTB_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01500 PORTC_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01504 PORTC “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01508 PORTC_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0150C PORTC_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01510 PORTC_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01514 PORTC_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01518 PORTC_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

Table A-11. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory-mapped
Address

Register Name More Information begins ...

ADSP-BF54x Blackfin Processor Hardware Reference A-19

System MMR Assignments

0xFFC0151C PORTC_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01520 PORTD_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01524 PORTD “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01528 PORTD_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0152C PORTD_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01530 PORTD_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01534 PORTD_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01538 PORTD_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0153C PORTD_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01540 PORTE_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01544 PORTE “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01548 PORTE_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0154C PORTE_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01550 PORTE_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01554 PORTE_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

Table A-11. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory-mapped
Address

Register Name More Information begins ...

Ports Registers

A-20 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC01558 PORTE_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0155C PORTE_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01560 PORTF_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01564 PORTF “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01568 PORTF_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0156C PORTF_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01570 PORTF_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01574 PORTF_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01578 PORTF_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0157C PORTF_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01580 PORTG_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01584 PORTG_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01588 PORTG_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0158C PORTG_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01590 PORTG_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

Table A-11. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory-mapped
Address

Register Name More Information begins ...

ADSP-BF54x Blackfin Processor Hardware Reference A-21

System MMR Assignments

0xFFC01594 PORTG “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC01598 PORTG_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC0159C PORTG_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015A0 PORTH_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015A4 PORTH “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015A8 PORTH_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015AC PORTH_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015B0 PORTH_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015B4 PORTH_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015B8 PORTH_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015BC PORTH_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015C0 PORTI_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015C4 PORTI “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015C8 PORTI_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015CC PORTI_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

Table A-11. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory-mapped
Address

Register Name More Information begins ...

Ports Registers

A-22 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC015D0 PORTI_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015D4 PORTI_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015D8 PORTI_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015DC PORTI_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015E0 PORTJ_FER “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015E4 PORTJ “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015E8 PORTJ_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015EC PORTJ_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015F0 PORTJ_DIR_SET “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015F4 PORTJ_DIR_CLEAR “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015F8 PORTJ_INEN “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

0xFFC015FC PORTJ_MUX “Port Control Registers (Multiplex-
ing and GPIO)” on page 9-30

Table A-11. Port Control Registers (Multiplexing and GPIO) (Cont’d)

Memory-mapped
Address

Register Name More Information begins ...

ADSP-BF54x Blackfin Processor Hardware Reference A-23

System MMR Assignments

Table A-12 lists the registers for pin interrupt programming.

Table A-12. Pin Interrupt Registers

Memory-mapped
Address

Register Name More Information begins...

0xFFC01400 PINT0_MASK_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01404 PINT0_MASK_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01408 PINT0_REQUEST “Pin Interrupt Registers” on
page 9-33

0xFFC0140C PINT0_ASSIGN “Pin Interrupt Registers” on
page 9-33

0xFFC01410 PINT0_EDGE_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01414 PINT0_EDGE_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01418 PINT0_INVERT_SET “Pin Interrupt Registers” on
page 9-33

0xFFC0141C PINT0_INVERT_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01420 PINT0_PINSTATE “Pin Interrupt Registers” on
page 9-33

0xFFC01424 PINT0_LATCH “Pin Interrupt Registers” on
page 9-33

0xFFC01430 PINT1_MASK_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01434 PINT1_MASK_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01438 PINT1_REQUEST “Pin Interrupt Registers” on
page 9-33

0xFFC0143C PINT1_ASSIGN “Pin Interrupt Registers” on
page 9-33

Ports Registers

A-24 ADSP-BF54x Blackfin Processor Hardware Reference

0xFFC01440 PINT1_EDGE_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01444 PINT1_EDGE_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01448 PINT1_INVERT_SET “Pin Interrupt Registers” on
page 9-33

0xFFC0144C PINT1_INVERT_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01450 PINT1_PINSTATE “Pin Interrupt Registers” on
page 9-33

0xFFC01454 PINT1_LATCH “Pin Interrupt Registers” on
page 9-33

0xFFC01460 PINT2_MASK_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01464 PINT2_MASK_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01468 PINT2_REQUEST “Pin Interrupt Registers” on
page 9-33

0xFFC0146C PINT2_ASSIGN “Pin Interrupt Registers” on
page 9-33

0xFFC01470 PINT2_EDGE_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01474 PINT2_EDGE_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01478 PINT2_INVERT_SET “Pin Interrupt Registers” on
page 9-33

0xFFC0147C PINT2_INVERT_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01480 PINT2_PINSTATE “Pin Interrupt Registers” on
page 9-33

Table A-12. Pin Interrupt Registers (Cont’d)

Memory-mapped
Address

Register Name More Information begins...

ADSP-BF54x Blackfin Processor Hardware Reference A-25

System MMR Assignments

0xFFC01484 PINT2_LATCH “Pin Interrupt Registers” on
page 9-33

0xFFC01490 PINT3_MASK_SET “Pin Interrupt Registers” on
page 9-33

0xFFC01494 PINT3_MASK_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC01498 PINT3_REQUEST “Pin Interrupt Registers” on
page 9-33

0xFFC0149C PINT3_ASSIGN “Pin Interrupt Registers” on
page 9-33

0xFFC014A0 PINT3_EDGE_SET “Pin Interrupt Registers” on
page 9-33

0xFFC014A4 PINT3_EDGE_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC014A8 PINT3_INVERT_SET “Pin Interrupt Registers” on
page 9-33

0xFFC014AC PINT3_INVERT_CLEAR “Pin Interrupt Registers” on
page 9-33

0xFFC014B0 PINT3_PINSTATE “Pin Interrupt Registers” on
page 9-33

0xFFC014B4 PINT3_LATCH “Pin Interrupt Registers” on
page 9-33

Table A-12. Pin Interrupt Registers (Cont’d)

Memory-mapped
Address

Register Name More Information begins...

Timer Registers

A-26 ADSP-BF54x Blackfin Processor Hardware Reference

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) are listed in Table A-13.

Table A-13. Timer Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 1600 TIMER0_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1604 TIMER0_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1608 TIMER0_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 160C TIMER0_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1610 TIMER1_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1614 TIMER1_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1618 TIMER1_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 161C TIMER1_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1620 TIMER2_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1624 TIMER2_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1628 TIMER2_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 162C TIMER2_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1630 TIMER3_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

ADSP-BF54x Blackfin Processor Hardware Reference A-27

System MMR Assignments

0xFFC0 1634 TIMER3_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1638 TIMER3_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 163C TIMER3_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1640 TIMER4_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1644 TIMER4_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1648 TIMER4_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 164C TIMER4_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1650 TIMER5_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1654 TIMER5_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1658 TIMER5_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 165C TIMER5_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1660 TIMER6_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1664 TIMER6_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1668 TIMER6_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 166C TIMER6_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

Table A-13. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

CAN Registers

A-28 ADSP-BF54x Blackfin Processor Hardware Reference

CAN Registers
CAN registers (0xFFC0 2A00 – 0xFFC0 2FFF) are listed in the “System
MMR Assignments” appendix in the ADSP-BF54x Blackfin Processor
Hardware Reference (Volume 2 of 2).

0xFFC0 1670 TIMER7_CONFIG “Timer Configuration (TIMERx_CONFIG)
Registers” on page 10-48

0xFFC0 1674 TIMER7_COUNTER “Timer Counter (TIMERx_COUNTER) Regis-
ters” on page 10-51

0xFFC0 1678 TIMER7_PERIOD “Timer Period (TIMERx_PERIOD) Registers”
on page 10-54

0xFFC0 167C TIMER7_WIDTH “Timer Width (TIMERx_WIDTH) Registers”
on page 10-55

0xFFC0 1680 TIMER_ENABLE “Timer Enable 0 (TIMER_ENABLE0) Regis-
ter” on page 10-40

0xFFC0 1684 TIMER_DISABLE “Timer Disable 0 (TIMER_DISABLE0) Regis-
ter” on page 10-42

0xFFC0 1688 TIMER_STATUS “Timer Status 0 (TIMER_STATUS0) Register”
on page 10-45

Table A-13. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-29

System MMR Assignments

Handshake MDMA Control Registers
Handshake MDMA registers (0xFFC0 3300 – 0xFFC0 33FF) are listed in
Table A-14.

Table A-14. HMDMA Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 4500 HMDMA0_CONTROL “Handshake MDMA Control
(HMDMAx_CONTROL) Registers” on
page 5-119

0xFFC0 4504 HMDMA0_ECINIT “Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers” on
page 5-123

0xFFC0 4508 HMDMA0_BCINIT “Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers” on
page 5-120

0xFFC0 450C HMDMA0_
ECURGENT

“Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers” on
page 5-124

0xFFC0 4510 HMDMA0_
ECOVERFLOW

“Handshake MDMA Edge Count Overflow
Interrupt (HMDMAx_ECOVERFLOW)
Registers” on page 5-125

0xFFC0 4514 HMDMA0_ECOUNT “Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers” on
page 5-122

0xFFC0 4518 HMDMA0_BCOUNT “Handshake MDMA Current Block Count
(HMDMAx_BCOUNT) Registers” on
page 5-121

0xFFC0 4540 HMDMA1_CONTROL “Handshake MDMA Control
(HMDMAx_CONTROL) Registers” on
page 5-119

0xFFC0 4544 HMDMA1_ECINIT “Handshake MDMA Initial Edge Count
(HMDMAx_ECINIT) Registers” on
page 5-123

NAND Flash Controller Registers

A-30 ADSP-BF54x Blackfin Processor Hardware Reference

NAND Flash Controller Registers
NRC registers are listed in the “System MMR Assignments” appendix in
the ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2).

0xFFC0 4548 HMDMA1_BCINIT “Handshake MDMA Initial Block Count
(HMDMAx_BCINIT) Registers” on
page 5-120

0xFFC0 454C HMDMA1_
ECURGENT

“Handshake MDMA Edge Count Urgent
(HMDMAx_ECURGENT) Registers” on
page 5-124

0xFFC0 4550 HMDMA1_
ECOVERFLOW

“Handshake MDMA Edge Count Overflow
Interrupt (HMDMAx_ECOVERFLOW)
Registers” on page 5-125

0xFFC0 4554 HMDMA1_ECOUNT “Handshake MDMA Current Edge Count
(HMDMAx_ECOUNT) Registers” on
page 5-122

0xFFC0 4558 HMDMA1_BCOUNT “Handshake MDMA Current Block Count
(HMDMAx_BCOUNT) Registers” on
page 5-121

Table A-14. HMDMA Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF54x Blackfin Processor Hardware Reference A-31

System MMR Assignments

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C) are listed in
Table A-15.

Rotary Counter Registers
The rotary encoder interface has eight memory-mapped registers (MMRs)
that regulate its operation. Refer to Table A-16 for an overview of all
MMRs associated with the rotary encoder interface.

Table A-15. Core Timer Registers

Memory-Mapped
Address

Register Name See Page

0xFFE0 3000 TCNTL “Core Timer Control (TCNTL) Register” on
page 11-5

0xFFE0 3004 TPERIOD “Core Timer Period (TPERIOD) Register” on
page 11-7

0xFFE0 3008 TSCALE “Core Timer Scale (TSCALE) Register” on
page 11-8

0xFFE0 300C TCOUNT “Core Timer Count (TCOUNT) Register” on
page 11-6

Table A-16. Counter Module Registers

Memory-mapped
Address

Register Name

0xFFC04200 CNT_CONFIG (on page 13-24)

0xFFC04204 CNT_IMASK (on page 13-24)

0xFFC04208 CNT_STATUS (on page 13-24)

0xFFC0420C CNT_COMMAND (on page 13-24)

Security Registers

A-32 ADSP-BF54x Blackfin Processor Hardware Reference

Security Registers
There are three registers which provide information that can be used dur-
ing security mode control and to return status of the Secure State Machine
states (See Table A-17). These registers require privileged access depend-
ing on the operating state of the processor.

0xFFC04210 CNT_DEBOUNCE (on page 13-24)

0xFFC04214 CNT_COUNTER (on page 13-24)

0xFFC04218 CNT_MAX (on page 13-24)

0xFFC0421C CNT_MIN (on page 13-33)

Table A-17. Security Registers

Memory-Mapped Address Register Description

0xFFC04320 SECURE_SYSSWT Secure System Switches

0xFFC04324 SECURE_CONTROL Secure Control

0xFFC04328 SECURE_STATUS Secure Status

Table A-16. Counter Module Registers (Cont’d)

Memory-mapped
Address

Register Name

ADSP-BF54x Blackfin Processor Hardware Reference A-33

System MMR Assignments

Processor-Specific Memory Registers
Processor-specific memory registers (0xFFE0 0004 – 0xFFE0 0300) are
listed in Table A-18.

Table A-18. Processor-Specific Memory Registers

Memory-Mapped
Address

Register Name See Page

0xFFE0 0004 DMEM_CONTROL “L1 Data Memory Control Register” on
page 3-29

0xFFE0 0300 DTEST_COMMAND “Data Test Command Register” on page 3-46

Processor-Specific Memory Registers

A-34 ADSP-BF54x Blackfin Processor Hardware Reference

ADSP-BF54x Blackfin Processor Hardware Reference I-1

I INDEX

Numerics
BCODE, 15-60, 15-61, 15-64, 15-67,

17-110
16-bit flash interface, 19-8
16-bit SRAM, interface, 19-7, 19-8
2D DMA, 5-19
BMODE, 15-60, 15-61, 15-64, 15-67,

17-110
8/16 bit mode (DATA_SIZE), 8-25
8-bit flash interface, 19-8
8-bit SRAM interface, 19-8

A
A11 (A11 element/coefficient) bits, 7-43,

17-111 to 17-132
A11 element/coefficients (A11) bits, 7-43
A12 (A12 element/coefficient) bits, 7-43,

17-27, 17-111, 17-112, 17-113,
17-114, 17-116, 17-117, 17-118,
17-119, 17-120, 17-121, 17-122,
17-123, 17-125, 17-131, 17-132

A13 (A13 element/coefficient) bits, 7-43,
17-27, 17-111, 17-112, 17-113,
17-114, 17-116, 17-117, 17-118,
17-119, 17-120, 17-121, 17-122,
17-123, 17-125, 17-131, 17-132

A14 (A14 bias vector) bits, 7-46
A14 bias vector (A14) bits, 7-46
A21 (A21 element/coefficient) bits, 7-44
A21 element/coefficients (A21) bits, 7-44
A22 (A22 element/coefficient) bits, 7-44

A22 element/coefficients (A22) bits, 7-44
A23 (A23 element/coefficient) bits, 7-44
A23 element/coefficients (A23) bits, 7-44
A24 (A24 bias vector) bits, 7-46
A24 bias vector (A24) bits, 7-46
A31 (A31 element/coefficient) bits, 7-45
A31 element/coefficients (A31) bits, 7-45
A32 (A32 element/coefficient) bits, 7-45
A32 element/coefficients (A32) bits, 7-45
A33 (A33 element/coefficient) bits, 7-45
A33 element/coefficients (A33) bits, 7-45
A34 (A34 bias vector) bits, 7-46
A34 bias vector (A34) bits, 7-46
aborts, DMA, 5-38
Access

request priority, See also Arbitration
DMA stalls to L1 or L2 memory, 2-14
latency and throughput for L2 memory,

2-14
priority, L2 port, 2-13

active descriptor queue, and DMA
synchronization, 5-71

active mode, 1-32, 18-9
ACTIVE_PLLDISABLED bit, 18-29
ACTIVE_PLLENABLED bit, 18-29
address-tag compare operation, 3-18
A_HEND (overlay A horizontal end) bits,

7-40
A_HSTART (overlay A horizontal start)

bits, 7-40
alarm clock, RTC, 14-2
alarm interrupt enable bit, 14-21

Index

I-2 ADSP-BF54x Blackfin Processor Hardware Reference

alignment exceptions, 3-81
AMC, 1-14
AMS, 6-53
application data, loading, 17-1
Arbitration

DMA bus, 2-17
priority for Sys L2 port access request,

2-13
Arbitration priority for Sys L2 port access

request, 2-13
asynchronous controller, 1-14
asynchronous FIFO connection, 5-48
asynchronous memory, 6-2
Asynchronous Memory Bank Address

Range (table), 6-53
asynchronous memory bank address range

(table), 6-6, 6-13, 6-15
ASYNC memory banks, 6-4
atomic operations, 3-82
A_TRANSP (overlay A transparency) bits,

7-42
autobaud, and general-purpose timers,

10-35
autobaud detection, 10-35
autobuffer mode, 5-19, 5-37, 5-84
A_VEND (overlay A vertical end) bits,

7-41
A_VSTART (overlay A vertical start) bits,

7-41

B
bank activate command, G-1
BCINIT[15:0] field, 5-120
BCOUNT[15:0] field, 5-121
BDI bit, 5-119
BDIE bit, 5-51, 5-119
BDR (burst DMA requests) bit, 8-25, 8-27

BFLAG_FASTREAD, 17-132
BFLAG_NEXTDXE, 17-132
BFLAG_NOAUTO, 17-132
BFLAG_NONRESTORE, 17-132
BFLAG_PERIPHERAL, 17-132
BFLAG_RESET, 17-132
BFLAG_RETURN, 17-132
BFLAG_SLAVE, 17-132
BFLAG_TYPE, 17-132
BFLAG_WAKEUP, 17-132
B_HEND (overlay B horizontal end) bits,

7-40
B_HSTART (overlay B horizontal start)

bits, 7-40
bit 15 overflow interrupt enable

(COV15IE) bit, 13-28
bit 15 overflow interrupt identifier

(COV15II) bit, 13-29
bit 31 overflow interrupt enable

(COV31IE) bit, 13-28
bit 31 overflow interrupt identifier

(COV31II) bit, 13-29
BK_ID, 17-111, 17-112, 17-113, 17-114
BK_PROJECT, 17-111, 17-112, 17-113,

17-114
BK_UPDATE, 17-111, 17-112, 17-113,

17-114
BK_VERSION, 17-111, 17-112, 17-113,

17-114
Blackfin processor family

I/O memory space, 1-9
memory architecture, 1-5

block, DMA, 5-17
block code field, 17-27
block count, DMA, 5-47
Block diagram, core, 2-6

ADSP-BF54x Blackfin Processor Hardware Reference I-3

Index

block diagrams
core timer, 11-2
DMA controller, 5-6, 5-7
EBIU, 6-5
general-purpose timers, 10-4
interrupt processing, 4-25
PLL, 18-3
processor, 1-4
RTC, 14-4
watchdog timer, 12-3

block done interrupt, DMA, 5-51
Block Flags, 17-29
block transfers, DMA, 5-47
BMODE00_DIS, 17-122
BMODE01_DIS, 17-122
BMODE02_DIS, 17-122
BMODE03_DIS, 17-122
BMODE04_DIS, 17-122
BMODE05_DIS, 17-122
BMODE06_DIS, 17-122
BMODE07_DIS, 17-122
BMODE08_DIS, 17-122
BMODE09_DIS, 17-122
BMODE10_DIS, 17-122
BMODE11_DIS, 17-122
BMODE12_DIS, 17-122
BMODE13_DIS, 17-122
BMODE14_DIS, 17-122
BMODE15_DIS, 17-122
BMODE[2:0] pins, 17-6
BMODE pins, 17-2
BNDMODE (boundary register mode)

bits, 13-27
boot

call boot kernal at run time, 17-50
load function, 17-49
manager, 17-54
quick, 17-44
ROM functions, 17-55
streams

multi-DXE, 17-55
boot host wait

HWAIT, 17-33
booting, 17-1 to ??

BFROM_MEMBOOT, 17-55
BFROM_SPIBOOT, 17-55
BFROM_TWIBOOT, 17-55
boot stream, 17-22
host boot scenarios, 17-23
host DMA boot modes, 17-90
indirect, 17-45
initialization code execution/boot, 17-42
memory locations, 17-24
NAND flash boot mode, 17-93
SPI slave mode, 17-76
TWI master mode, 17-79
TWI slave mode, 17-83

boot kernel, 17-1
Boot Management, 17-54
boot mode

FIFO boot, 17-69
flash boot, 17-64
no-boot, 17-63
SDRAM boot, 17-69
SPI device detection, 17-72
UART slave, 17-84

boot ROM
internal, 17-1

boot stream, 17-1, 17-22
boot termination, 17-35
boundary register mode (BNDMODE)

bits, 13-27
BT_EN (bus timeout enable) bit, 8-25
B_TRANSP (overlay B transparency) bits,

7-42
buffer registers, timers, 10-52
buffers

Cacheability Protection Lookaside
Buffers (CPLBs), 3-54, 3-55

burst DMA requests (BDR) bit, 8-25, 8-27

Index

I-4 ADSP-BF54x Blackfin Processor Hardware Reference

burst length, G-2
burst type, G-2
Bus connection and arbitration, DMA,

2-17
bus contention, avoiding, 19-9
bus error, EBIU, 6-9
buses

bandwidth, 1-3
and DMA, 5-52
and peripherals, 1-3
prioritization and DMA, 5-59

bus standard, I2C, 1-15
bus timeout enable (BT_EN) bit, 8-25
B_VEND (overlay B vertical end) bits,

7-41
BV_MULT4 (multiply row by 4) bit, 7-45
B_VSTART (overlay B vertical start) bits,

7-41
BV_TRANS (transparent color - B/V) bits,

7-47
BxMAP (byte x mapping) bits, 9-56
BYPASS bit, 18-28
bypass capacitor placement, 19-17
byte x mapping (BxMAP) bits, 9-56

C
cache, 3-15

coherency support, 3-81
mapping into data banks, 3-35
validity of cache lines, 3-17

Cacheability Protection Lookaside Buffers
(CPLBs), 3-15, 3-54, 3-55

cache block (definition), 3-84
cache hit, 3-84

address-tag compare, 3-18
data cache access, 3-39
definition, 3-18
processing, 3-18

cache inhibited accesses, 3-82

cache line
components, 3-15
definition, 3-84
states, 3-40

cache miss, 3-84
definition, 3-39
replacement policy, 3-19

callback routines, 17-46
CAN

autobaud detection, 10-35
bit rate detection, 10-6

CANWE bit, 18-30
capacitors, 19-15
capture mode, See WDTH_CAP mode
CCLK (core clock), 18-5

disabling, 18-22
status by operating mode, 18-8

CDGINV (CDG pin polarity invert) bit,
13-27

CDG pin polarity invert (CDGINV) bit,
13-27

circular addressing, 5-68
clean (definition), 3-85
clearing interrupt requests, 4-44
CLKBUFOE bit, 18-30
CLKIN, 1-31, 18-1
CLKIN (input clock), 18-3
CLKIN to VCO, changing the multiplier,

18-15
CLK_SEL bit, 10-14, 10-23, 10-48, 10-57
clock

clock signals, 1-31
EBIU, 6-2
managing, 19-2
RTC, 14-5
source for general-purpose timers, 10-6
types, 19-2

clock input (CLKIN) pin, 19-2
clock rate

core timer, 11-1

ADSP-BF54x Blackfin Processor Hardware Reference I-5

Index

clock ratio, changing, 18-6
clocks

internal, 2-5
CNFG_PEND (config pending) bit, 8-27
CNT_COMMAND (command) register,

13-25, 13-29, A-31
CNT_CONFIG (configuration) register,

13-24, 13-27, A-31
CNT_COUNTER (counter) register,

13-25, 13-32, A-32
CNT_DEBOUNCE (debounce) register,

13-25, 13-31, A-32
CNTE (counter enable) bit, 13-27
CNT_IMASK (interrupt mask) register,

13-24, 13-28, A-31
CNT_MAX (maximal count) register,

13-25, 13-32, A-32
CNT_MIN (minimal count) register,

13-25, 13-32, A-32
CNTMODE (counter operating mode)

bits, 13-27
CNT_STATUS (status) register, 13-24,

13-29, A-31
code examples

CSYNC, 3-84
interrupt enabling and disabling, 3-83
load base of MMRs, 3-83
restoration of the control register, 3-84

column address
strobe latency, G-4

command (CNT_COMMAND) register,
13-25, 13-29, A-31

commands
bank activate, G-1
DMA control, 5-40, 5-41
precharge, G-18

COMPLETE (DMA complete) bit, 8-27

conditional
branches, 3-79

config pending (CNFG_PEND) bit, 8-27
configuration

L1 Instruction Memory, 3-15
L1 SRAM, 3-2
precautions before changing, 3-13

configuration (CNT_CONFIG) register,
13-24, 13-27, A-31

congestion, on DMA channels, 5-56
Connection and arbitration, DMA bus,

2-17
Content-Addressable Memory (CAM),

3-54
continuous transition, DMA, 5-36
control bit summary, general-purpose

timers, 10-56
Controller, DMA, 2-4, 2-18
Control/optimization, DMA traffic, 2-14
control register

data memory, 3-28
instruction memory, 3-9
restoration, 3-84

conventions, -l
core

core clock (CCLK), 18-5, 19-2
core clock/system clock ratio control,

18-5
powering down, 18-22
waking from idle state, 4-13

core and system reset, code example, 8-31,
17-154

Core block diagram, 2-6
core clock, See CCLK
core event controller (CEC), 4-2, 4-6
core-only software reset, 17-5

Index

I-6 ADSP-BF54x Blackfin Processor Hardware Reference

core timer, -xlvi to ??, 11-1 to 11-9
block diagram, 11-2
clock rate, 11-1
features, 11-1
initialization, 11-3
internal interfaces, 11-2
interrupts, 11-3
low power mode, 11-3
operation, 11-3
registers, 11-4
scaling, 11-7

core timer control register (TCNTL), 11-3,
11-5

core timer count register (TCOUNT),
11-6

core timer period register (TPERIOD),
11-7

core timer scale register (TSCALE), 11-7,
11-8

counter, RTC, 14-2
counter (CNT_COUNTER) register,

13-25, 13-32, A-32
counter enable (CNTE) bit, 13-27
counter operating mode (CNTMODE)

bits, 13-27
COUNT_TIMEOUT (host timeout

count) bits, 8-29
count to zero interrupt enable (CZEROIE)

bit, 13-28
count to zero interrupt identifier

(CZEROII) bit, 13-29
count value[15:0] field, 11-6
count value[31:16] field, 11-6
COV15IE (bit 15 overflow interrupt

enable) bit, 13-28
COV15II (bit 15 overflow interrupt

identifier) bit, 13-29
COV31IE (bit 31 overflow interrupt

enable) bit, 13-28

COV31II (bit 31 overflow interrupt
identifier) bit, 13-29

CRC32 checksum generation, 17-49
CrossCore software, 1-36
crosstalk, 19-15
CSEL[1:0] field, 18-5, 18-27
CSYNC, 3-79

code example, 3-84
CTYPE bit, 5-79
CUD and CDZ input disable (INPDIS)

bit, 13-27
CUDINV (CUD pin polarity invert) bit,

13-27
CUD pin polarity invert (CUDINV) bit,

13-27
current address field, 5-94
current address registers

(DMAx_CURR_ADDR), 5-93
(MDMA_yy_CURR_ADDR), 5-93

current descriptor pointer field, 5-114
current descriptor pointer registers

(DMAx_CURR_DESC_PTR), 5-113
(MDMA_yy_CURR_DESC_PTR),

5-113
current inner loop count registers

(DMAx_CURR_X_COUNT), 5-98,
5-99

(MDMA_yy_CURR_X_COUNT),
5-98, 5-99

current outer loop count registers
(DMAx_CURR_Y_COUNT), 5-105
(MDMA_yy_CURR_Y_COUNT),

5-105
CURR_X_COUNT[15:0] field, 5-99
CURR_Y_COUNT[15:0] field, 5-106
customer support, -xlviii
CZEROIE (count to zero interrupt enable)

bit, 13-28
CZEROII (count to zero interrupt

identifier) bit, 13-29

ADSP-BF54x Blackfin Processor Hardware Reference I-7

Index

CZMEIE (CZM error interrupt enable)
bit, 13-28

CZMEII (CZM error interrupt identifier)
bit, 13-29

CZM error interrupt enable (CZMEIE)
bit, 13-28

CZM error interrupt identifier (CZMEII)
bit, 13-29

CZMIE (CZM pin interrupt enable) bit,
13-28

CZMII (CZM pin interrupt identifier) bit,
13-29

CZMINV (CZM pin polarity invert) bit,
13-27

CZM pin interrupt enable (CZMIE) bit,
13-28

CZM pin interrupt identifier (CZMII) bit,
13-29

CZM pin polarity invert (CZMINV) bit,
13-27

CZM zeroes counter enable (ZMZC) bit,
13-27

CZM zeroes counter interrupt enable
(CZMZIE) bit, 13-28

CZM zeroes counter interrupt identifier
(CZMZII) bit, 13-29

CZMZIE (CZM zeroes counter interrupt
enable) bit, 13-28

CZMZII (CZM zeroes counter interrupt
identifier) bit, 13-29

D
DAB, 5-52, 5-127

clocking, 18-2
DAB, DMA Access Bus, 2-5, 2-17
DAB_TRAFFIC_COUNT[2:0] field,

5-127
data cache control instructions, 3-43
data-driven interrupts, 5-90

data interrupt timing select (DI_SEL) bit,
8-6

data memory, L1, 3-28
Data Memory Control register

(DMEM_CONTROL), 3-28, 3-54
data operations, CPLB, 3-55
DATA_SIZE bit, 8-25
Data SRAM

L1, 3-31
data store format, 3-85
data structures, 17-126

boot_struct, 17-127
buffer_struct, 17-127
header_struct, 17-126

Data Test Command register
(DTEST_COMMAND), 3-45

Data Test Data registers
(DTEST_DATAx), 3-47

Data transfer latency
DMA, 2-14

day[14:0] field, 14-23
day alarm interrupt enable bit, 14-21
day counter[14:0] field, 14-21
DCB, 5-52, 5-128

DCB1, 2-11
DCB2, 2-10, 2-11

DCB, DMA Core Bus, 2-5, 2-17
DCB bus arbitration, 2-18
DCBS (L1 Data Cache Bank Select) bit,

3-37
DCB_TRAFFIC_COUNT field, 5-128
DCB_TRAFFIC_PERIOD field, 5-128
DCIE (down count interrupt enable) bit,

13-28
DCII (down count interrupt identifier) bit,

13-29
DCPLB Address registers

(DCPLB_ADDRx), 3-67
DCPLB_ADDRx (DCPLB Address

registers), 3-67

Index

I-8 ADSP-BF54x Blackfin Processor Hardware Reference

DCPLB Data registers (DCPLB_DATAx),
3-65

DCPLB_DATAx (DCPLB Data registers),
3-65

DCPLB_FAULT_ADDR (DCPLB Fault
Address register), 3-72

DCPLB Fault Address register
(DCPLB_FAULT_ADDR), 3-72

DCPLB_STATUS (DCPLB Status
register), 3-71

DCPLB Status register
(DCPLB_STATUS), 3-71

DDR SDRAM controller, 1-13
DEB, 5-52, 5-128
DEB, DMA External Bus, 2-5, 2-17
DEBE (debounce enable) bit, 13-27
debounce (CNT_DEBOUNCE) register,

13-25, 13-31, A-32
debounce enable (DEBE) bit, 13-27
DEB_TRAFFIC_COUNT field, 5-128
DEB_TRAFFIC_PERIOD field, 5-128
debugging, 1-37

test point access, 19-19
deep sleep mode, 1-33, 18-10
default mapping, peripheral to DMA, 5-10
descriptor array mode, DMA, 5-23, 5-85
descriptor-based DMA, 5-21
descriptor chains, DMA, 5-36
descriptor list mode, DMA, 5-22, 5-85
descriptor queue, 5-69

management, 5-68
synchronization, 5-68, 5-69

descriptor structures
DMA, 5-67
MDMA, 5-74

destination channels, memory DMA, 5-13
development tools, 1-36
DF bit, 18-4, 18-28
DFETCH bit, 5-22, 5-30, 5-88

DFRESET, 15-60, 15-61, 15-64, 15-67,
17-110

DI_EN bit, 5-22, 5-82, 5-85
direct code execution, 17-37

initial header, 17-36, 17-38
direct mapped (definition), 3-84
direct memory access, See DMA
dirty (definition), 3-84
Disable Interrupts (CLI) instruction, 3-84
disabling

general-purpose timers, 10-41
PLL, 18-13

DI_SEL bit, 5-82, 5-85
DI_SEL (data interrupt, 8-6
DMA, 5-1 to 5-140

1D interrupt-driven, 5-65
1D unsynchronized FIFO, 5-66
2D, polled, 5-66
2D array, example, 5-130
2D interrupt-driven, 5-65
autobuffer mode, 5-19, 5-37, 5-84
bandwidth, 5-56
block count, 5-47
block diagram, 5-6, 5-7
block done interrupt, 5-51
block transfers, 5-17, 5-47
channel registers, 5-78
channels, 5-52
channels and control schemes, 5-61
channel-specific register names, 5-77
congestion, 5-56
connecting asynchronous FIFO, 5-48
continuous transfers using autobuffering,

5-65
continuous transition, 5-36
control command restrictions, 5-44
control commands, 5-40, 5-41
data transfers, 5-2
default peripheral mapping, 5-10
descriptor array, 5-31

ADSP-BF54x Blackfin Processor Hardware Reference I-9

Index

descriptor array mode, 5-23, 5-85
descriptor-based, 5-21
descriptor-based, initializing, 5-133
descriptor-based vs. register-based

transfers, 5-3
descriptor chains, 5-36
descriptor element offsets, 5-24
descriptor list mode, 5-22, 5-85
descriptor lists, 5-31
descriptor queue, 5-68, 5-69
descriptors, recommended size, 5-24
descriptor structures, 5-67
direction, 5-86
DMA error interrupt, 5-91
double buffer scheme, 5-65
and EBIU, 5-8
errors, 5-38, 5-39
example connection, receive, 5-50
example connection, transmit, 5-49
external interfaces, 5-8
finish control command, 5-42
first data memory access, 5-30
flow chart, 5-27, 5-28
FLOW mode, 5-25
FLOW value, 5-29
functions, summary, 5-4
handshake operation, 5-46
header file to define descriptor structures

example, 5-134
HMDMA1 block enable example, 5-139
initializing, 5-25
internal interfaces, 5-8
large model mode, 5-85
latency, 5-33
mapping to peripherals, 4-14, 4-15
memory conflict, 5-60
memory DMA, 5-13
memory DMA streams, 5-14
memory DMA transfers, 5-9
memory read, 5-34

operation flow, 5-25
orphan access, 5-37
overflow interrupt, 5-51
overview, 1-10
performance considerations, 5-53
peripheral, 5-10
peripheral channels, 5-2
peripheral channels priority, 5-12
peripheral interrupts, 4-13
pipelining requests, 5-48
polling DMA status example, 5-133
polling registers, 5-62
prioritization and traffic control, 5-55 to

5-61
programming examples, 5-129 to 5-140
receive, 5-36
receive restart or finish, 5-45
refresh, 5-31
register-based, 5-17
register-based 2D memory DMA

example, 5-130
register naming conventions, 5-78
remapping peripheral assignment, 5-11
request data control command, 5-43
request data urgent control command,

5-44
restart control command, 5-42
round robin operation, 5-58
single-buffer transfers, 5-64
small model mode, 5-85
software management, 5-61
software-triggered descriptor fetch

example, 5-136
startup, 5-25
stop mode, 5-18, 5-84
stopping transfers, 5-37
support for peripherals, 1-3
switching peripherals from, 5-91
synchronization, 5-61 to 5-72
synchronized transition, 5-36

Index

I-10 ADSP-BF54x Blackfin Processor Hardware Reference

termination without abort, 5-37
throughput, 5-52
traffic control, 5-59
traffic exceeding available bandwidth,

5-56
transfers, urgent, 5-55
transmit, 5-34
transmit restart or finish, 5-45
triggering transfers, 5-72
two descriptors in small list flow mode,

example, 5-134
two-dimensional, 5-19
two-dimensional memory DMA setup

example, 5-131
using descriptor structures example,

5-135
variable descriptor size, 5-23
word size, changing, 5-36, 5-37
work units, 5-22, 5-31, 5-33

DMA, Related Buses, 2-17
DMA2D bit, 5-82, 5-86
DMA2D (DMA mode) bit, 8-6
DMA Access Bus (DAB), 2-5, 2-17
DMA access to L1 or L2 memory, stalls,

2-14
DMA Bus

connection and arbitration, 2-17
DMACFG field, 5-30, 5-73
DMA channel registers, 5-74
DMA Code field

DMACODE, 17-27
DMA complete (COMPLETE) bit, 8-27
DMA configuration registers

(DMAx_CONFIG), 5-82
(MDMA_yy_CONFIG), 5-82

DMA controller, 2-4, 2-18, 5-2
DMA Core Bus (DCB), 2-5, 2-17
DMA data transfer latency, 2-14
DMA_DIR (DMA direction) bit, 8-27
DMA direction (DMA_DIR) bit, 8-27

DMA_DONE bit, 5-88
DMA_DONE interrupt, 5-87
DMAEN bit, 5-26, 5-72, 5-82, 5-86
DMA_ERR bit, 5-88
DMA_ERROR interrupt, 5-38
DMA error interrupts, 5-90
DMA External Bus (DEB), 2-5, 2-17
DMA performance optimization, 5-51
DMA queue completion interrupt, 5-71
DMAR0 pin, 5-8
DMAR1 pin, 5-8
DMA ready (READY) bit, 8-27
DMA registers, 5-74, 5-75
DMA_RUN bit, 5-30, 5-69, 5-73, 5-87,

5-88
DMARx pin, 5-48
DMA start address field, 5-92
DMA_TC_CNT (DMA traffic control

counter register), 5-127
DMA_TC_PER (DMA traffic control

counter period register), 5-58, 5-127
DMA traffic control counter period register

(DMA_TC_PER), 5-127
DMA traffic control counter register

(DMA_TC_CNT), 5-127
DMA traffic control/optimization, 2-14
DMA_TRAFFIC_PERIOD field, 5-127
DMAx_CONFIG (DMA configuration

registers), 5-15, 5-26, 5-34, 5-82
DMAx_CURR_ADDR (current address

registers), 5-93
DMAx_CURR_DESC_PTR (current

descriptor pointer registers), 5-113
DMAx_CURR_X_COUNT (current

inner loop count registers), 5-98, 5-99
DMAx_CURR_Y_COUNT (current

outer loop count registers), 5-105
DMAx_IRQ_STATUS (interrupt status

registers), 5-87, 5-88

ADSP-BF54x Blackfin Processor Hardware Reference I-11

Index

DMAx_NEXT_DESC_PTR (next
descriptor pointer registers), 5-25,
5-26, 5-110

DMAx_PERIPHERAL_MAP (peripheral
map registers), 5-79

DMAx_START_ADDR (start address
registers), 5-25, 5-91

DMAx_X_COUNT (inner loop count
registers), 5-96

DMAx_X_MODIFY (inner loop address
increment registers), 5-26, 5-101

DMAx_Y_COUNT (outer loop count
registers), 5-103

DMAx_Y_MODIFY (outer loop address
increment registers), 5-26, 5-108

DMEM_CONTROL (Data Memory
Control register), 3-28, 3-54

DOUBLE_FAULT bit, 15-34, 17-108
DOUBLE_RESET, 15-34, 17-108
DPMC, 18-2, 18-7 to ??
D Port, 2-4

interface, 2-10
DRQ[1:0] field, 5-56, 5-117, 5-119
DTEST_COMMAND (Data Test

Command register), 3-45
DTEST_DATAx (Data Test Data

registers), 3-47
dynamic power management, 1-32, 18-1 to

??
dynamic power management controller,

18-2

E
EAB

clocking, 18-2
EAB, External Access Bus, 2-4, 2-5, 2-25

EBIU, 1-13, 6-1 to 6-84
as slave, 6-8
block diagram, 6-5
bus errors, 6-9
clock, 6-2
and DMA, 5-8
error detection, 6-8
overview, 6-1
request priority, 6-2

EBIU, External Bus Interface Unit, 2-2
EBIU_AMGCTL (Asynchronous Memory

Global Control register), 6-57
EBIU Pin List (with Multiplexing), 6-6
ECINIT[15:0] field, 5-123
ECOUNT[15:0] field, 5-122
EHR (enable host reads) bit, 8-25
EHW (enable host writes) bit, 8-25
elfloader.exe, 17-22
emulation, and timer counter, 10-49
EMU_RUN bit, 10-48, 10-57
enable host reads (EHR) bit, 8-25
enable host writes (EHW) bit, 8-25
Enable Interrupts (STI) instruction, 3-84
enabling

general-purpose timers, 10-40
interrupts, 4-11

endian format
data and instruction storage, 3-74

error handler routine, 17-48
errors

DMA, 5-38
misalignment of data, 3-81
not detected by DMA hardware, 5-39
startup, and timers, 10-12

ERR_TYP[1:0] field, 10-11, 10-47, 10-48,
10-57

event handling, 4-6

Index

I-12 ADSP-BF54x Blackfin Processor Hardware Reference

events
default mapping, 4-16
definition, 4-6
types of, 4-6

event vector table (EVT), 4-2
EVT1 register, 17-7
exclusive (definition), 3-85
EXT_CLK mode, 10-36 to 10-37, 10-52

control bit and register usage, 10-56
flow diagram, 10-37

External Access Bus (EAB), 2-4, 2-5, 2-25
External Bus (DEB), DMA, 2-5, 2-17
external bus interface unit, See EBIU
External Bus Interface Unit (EBIU), 2-2
External Bus Interface Unit (EBIU)

Diagram, 6-5
external crystal, 1-31
External memory, 2-2
external memory, 3-53

design issues, 19-5
external memory map

figure, 6-4
EZ-KIT Lite, 1-39

F
FIFOEMPTY bit, 8-27
FIFO flush (HOST_FLUSH) bit, 8-25
FIFOFULL bit, 8-27
finish control command, DMA, 5-42
Flash, 2-2
flash interface, 19-8
flex descriptors, 5-3
FLOW[2:0] field, 5-31, 5-33, 5-67, 5-82,

5-84
FLOW bit, 8-6

flow charts
DMA, 5-27, 5-28
general-purpose timers interrupt

structure, 10-10
timer EXT_CLK mode, 10-37
timer PWM_OUT mode, 10-15
timer WDTH_CAP mode, 10-28

FLOW mode, DMA, 5-25
FLOW value, DMA, 5-29
FLUSH instruction, 3-43
FLUSHINV instruction, 3-43
frame interrupt enable (FRM_INT_EN)

bit, 7-42
frame interrupt status (FRM_INT_STAT)

bit, 7-42
FREQ[1:0] field, 18-20, 18-30
FRM_INT_EN (frame interrupt enable)

bit, 7-42
FRM_INT_STAT (frame interrupt status)

bit, 7-42
FULL_ON bit, 18-29
full on mode, 1-32, 18-8

G
GAIN[1:0] field, 18-19, 18-30
gain levels, 18-19
general-purpose interrupts, 4-6, 4-7
general-purpose ports, 1-14, 9-1 to 9-68
general-purpose timers, 10-1 to 10-67

aborting, 10-26
and startup errors, 10-12
autobaud mode, 10-35
block diagram, 10-4
buffer registers, 10-52
capture mode, 10-8
clock source, 10-6
code examples, 10-58
control bit summary, 10-56
counter, 10-7
disable timing, 10-26

ADSP-BF54x Blackfin Processor Hardware Reference I-13

Index

disabling, 10-41
enabling, 10-7, 10-38, 10-40
error detection, 10-11
EXT_CLK mode, 10-52
external interface, 10-5
features, 10-2
flow diagram for EXT_CLK mode,

10-37
generating maximum frequency, 10-19
illegal states, 10-11, 10-12
internal interface, 10-6
internal timer structure, 10-5
interrupts, 10-7, 10-8, 10-18, 10-32
interrupt setup, 10-60
interrupt structure, 10-10
measurement report, 10-29, 10-30,

10-31
non-overlapping clock pulses, 10-64
output pad disable, 10-16
overflow, 10-7
periodic interrupt requests, 10-61
port setup, 10-58
preventing errors in PWM_OUT mode,

10-54
programming model, 10-38
PULSE_HI toggle mode, 10-19
PWM mode, 10-8
PWM_OUT mode, 10-14 to 10-26,

10-52
registers, 10-39
signal generation, 10-59
single pulse generation, 10-16
size of register accesses, 10-39
stopping in PWM_OUT mode, 10-24
three timers with same period, 10-20
two timers with non-overlapping clocks,

10-21
waveform generation, 10-17
WDTH_CAP mode, 10-27, 10-52

WDTH_CAP mode configuration,
10-66

WDTH_CAP mode flow diagram,
10-28

glueless connection, 19-7
GPIO, 9-1 to 9-68

interrupt request, 4-45
pins, 9-2

ground plane, 19-15
GU_MULT4 (multiply row by 4) bit, 7-44
GU_TRANS (transparent color - G/U)

bits, 7-47

H
handshake MDMA, 5-16, 5-46

interrupts, 5-50
handshake MDMA control registers

(HMDMAx_CONTROL), 5-117,
5-119

handshake MDMA current block count
registers (HMDMAx_BCOUNT),
5-120, 5-121

handshake MDMA current edge count
registers (HMDMAx_ECOUNT),
5-121, 5-122

handshake MDMA edge count overflow
interrupt registers

(HMDMAx_ECOVERFLOW), 5-125
handshake MDMA edge count overflow

interrupt registers
(HMDMAx_ECOVERFLOW),
5-125

handshake MDMA edge count urgent
registers

(HMDMAx_ECURGENT), 5-124
handshake MDMA initial block count

registers (HMDMAx_BCINIT),
5-120

Index

I-14 ADSP-BF54x Blackfin Processor Hardware Reference

handshake MDMA initial edge count
registers

(HMDMAx_ECINIT), 5-123
handshake MDMA initial edge count

registers (HMDMAx_ECINIT),
5-123

handshake memory DMA, 5-3
hardware reset, 17-7
Harvard architecture, 3-5
header checksum field

HDRCHK, 17-31
header signature

HDRSGN, 17-31
hibernate state, 1-33, 18-10, 18-22
high frequency design considerations, 19-5
HIRQ (host interrupt request) bit, 8-27
HMDMA, 5-16
HMDMAEN bit, 5-46, 5-48, 5-119
HMDMAx_BCINIT (handshake MDMA

configuration registers), 5-47, 5-120
HMDMAx_BCOUNT (handshake

MDMA current block count
registers), 5-47, 5-120, 5-121

HMDMAx_CONTROL (handshake
MDMA control registers), 5-8, 5-117,
5-119

HMDMAx_ECINIT (handshake MDMA
initial edge count registers), 5-48,
5-123

HMDMAx_ECOUNT (handshake
MDMA current edge count registers),
5-48, 5-121, 5-122

HMDMAx_ECOVERFLOW (handshake
MDMA edge count overflow
interrupt registers), 5-125

HMDMAx_ECURGENT (handshake
MDMA edge count urgent registers),
5-124

HOST acknowledge mode timeout
(HOST_TIMEOUT) register, 8-29

HOST_CONFIG (HOST configuration)
word, 8-6

HOST configuration word
(HOST_CONFIG), 8-6

HOST_CONTROL (HOST control)
register, 8-25

HOST control (HOST_CONTROL)
register, 8-25

host enable (HOST_EN) bit, 8-25
HOST_END (host endianess) bit, 8-25
host endianess (HOST_END) bit, 8-25
HOST_EN (host enable) bit, 8-25
HOST_FLUSH (FIFO flush) bit, 8-25
host handshake (HSHK) bit, 8-27
host interrupt request (HIRQ) bit, 8-27
host ready override (HRDY_OVR) bit,

8-25
HOST_STATUS (HOST status) register,

8-27
HOST status (HOST_STATUS) register,

8-27
host timeout count

(COUNT_TIMEOUT) bits, 8-29
HOST_TIMEOUT (HOST acknowledge

mode timeout) register, 8-29
host timeout (TIMEOUT) bit, 8-27
hours[3:0] field, 14-21, 14-23
hours[4] bit, 14-21, 14-23
hours event flag bit, 14-22
hours interrupt enable bit, 14-21
HRDY_OVR (host ready override) bit,

8-25
HSHK (host handshake) bit, 8-27

I
I2C bus standard, 1-15
I2S, 1-19
ICIE (illegal gray/binary code interrupt

enable) bit, 13-28

ADSP-BF54x Blackfin Processor Hardware Reference I-15

Index

ICII (illegal gray/binary code interrupt
identifier) bit, 13-29

ICPLB Address registers
(ICPLB_ADDRx), 3-69

ICPLB_ADDRx (ICPLB Address
registers), 3-69

ICPLB Data registers (ICPLB_DATAx),
3-63

ICPLB_DATAx (ICPLB Data registers),
3-63

ICPLB Fault Address register
(ICPLB_FAULT_ADDR), 3-72

ICPLB_FAULT_ADDR (ICPLB Fault
Address register), 3-72

ICPLB_STATUS (ICPLB Status register),
3-72

ICPLB Status register (ICPLB_STATUS),
3-72

idle state
waking from, 4-13

image data format (IMG_FORM) bit, 7-38
image FIFO status (IMG_STAT) bits, 7-38
IMEM_CONTROL (Instruction Memory

Control register), 3-9, 3-54
IMG_FORM (image data format) bit, 7-38
IMG_STAT (image FIFO status) bits, 7-38
index (definition), 3-85
INIT bit, 17-40
initcall address/symbol command, 17-41
initcode routines, 17-39
initializing

DMA, 5-25
init initcode.dxe command, 17-41
inner loop address increment registers

(DMAx_X_MODIFY), 5-101
(MDMA_yy_X_MODIFY), 5-101

inner loop count registers
(DMAx_X_COUNT), 5-96
(MDMA_yy_X_COUNT), 5-96

INPDIS (CUD and CDZ input disable)
bit, 13-27

input clock, See CLKIN
input delay bit, 18-28
Inserting Wait States using ARDY (figure),

6-80
instruction cache

coherency, 3-21
instruction fetches, 3-55
Instruction Memory Control register

(IMEM_CONTROL), 3-9, 3-54
instructions, 1-35

interlocked pipeline, 3-76
load ⁄store, 3-75
See also instructions by name
stored in memory, 3-75
synchronizing, 3-78

Instruction Test Command register
(ITEST_COMMAND), 3-25

Instruction Test Data registers
(ITEST_DATAx), 3-26

Instruction Test registers, 3-24 to 3-27
Interface

D Port, 2-10
On-Chip L2 Memory, 2-11

interfaces
internal memory, 6-8
RTC, 14-3

internal bank, G-12
internal boot ROM, 17-1
internal clocks, 2-5
internal interfaces, 2-1
internal memory, 1-6, 3-5

interfaces, 6-8
internal supply regulator, shutting off,

18-22
interrupt

enabling and disabling, 3-83
priority watermark, 3-42

Index

I-16 ADSP-BF54x Blackfin Processor Hardware Reference

interrupt handler and DMA
synchronization, 5-69

interrupt mask (CNT_IMASK) register,
13-24, 13-28, A-31

interrupt mode (INT_MODE) bit, 8-25
Interrupt Priority register (IPRIO), 3-42
interrupt request lines, peripheral, 4-2
interrupts, 4-1 to 4-46

clearing requests, 4-44
configuring and servicing, 19-2
control of system, 4-6
core timer, 11-3
default mapping, 4-7
definition, 4-6
determining source, 4-12
DMA channels, 4-13
DMA_ERROR, 5-38
DMA error, 5-91
DMA overflow, 5-51
DMA queue completion, 5-71
enabling, 4-11
general-purpose, 4-6, 4-7
general-purpose timers, 10-7, 10-8,

10-18, 10-32
generated by peripheral, 4-22
handshake MDMA, 5-50
initialization, 4-22
inputs and outputs, 4-10
mapping, 4-11
mask function, 4-14
multiple sources, 4-24
peripheral, 4-6, 4-10, 4-10 to 4-22
peripheral IDs, 4-16
peripheral interrupt events, 4-16
prioritization, 4-11
processing, 4-22
programming examples, 4-44 to 4-46
reset, 17-9
routing overview, 4-3, 4-4, 4-5
RTC, 14-16

shared, 4-11
software, 4-10
to wake core from idle, 4-13
use in managing a descriptor queue, 5-68

interrupt service routine, determining
source of interrupt, 4-12

interrupt status registers
(DMAx_IRQ_STATUS), 5-87, 5-88
(MDMA_yy_IRQ_STATUS), 5-87,

5-88
INT_MODE (interrupt mode) bit, 8-25
invalid cache line (definition), 3-85
I/O memory space, 1-9
IPRIO (Interrupt Priority register), 3-42
IRQ_ENA bit, 10-48, 10-56, 10-58
ISR and multiple interrupt sources, 4-24
ITEST_COMMAND (Instruction Test

Command register), 3-25
ITEST_DATAx (Instruction Test Data

registers), 3-26
ITEST register

ITEST_COMMAND, 3-24
ITEST_DATA0, 3-24
ITEST_DATA1, 3-24

ITEST registers, 3-25
ITHR[15:0] field, 5-125

J
JTAG, 1-38

L
L1 data memory, 1-6
L1 Data Memory Architecture, 3-33
L1 Data SRAM, 3-31
L1 instruction memory, 1-6

subbanks, 3-13
L1 Instruction Memory Bank Architecture,

3-14

ADSP-BF54x Blackfin Processor Hardware Reference I-17

Index

L1 memory. See Level 1 (L1) memory;
Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory

L1 or L2 memory, DMA access stalls, 2-14
L1 scratchpad RAM, 1-6
L2 bus, 2-5
L2 memory

access bus arbitration, 2-13
access latency and throughput, 2-14
arbitration, 2-12
interface, 2-11
interface control logic clock rate, 2-12

L2 port
access priority, 2-13
access request, arbitration priority, 2-13

large descriptor mode, DMA, 5-22
large model mode, DMA, 5-85
Latency

DMA data transfer, 2-14
L2 memory access, 2-14

latency
DMA, 5-33

least recently used algorithm (LRU),
definition, 3-85

Level 1 (L1) Data Memory, 3-28
configuration, 3-7
sub-banks, 3-32

Level 1 (L1) Instruction Memory, 3-8
architecture, 3-15
configuration, 3-15
DAG reference exception, 3-12
dual-port capability, 3-12
instruction cache, 3-15
sub-bank organization, 3-8

Level 1 (L1) memory
See also Level 1 (L1) Data Memory; Level

1 (L1) Instruction Memory
address alignment, 3-12
architecture, 3-5
definition, 3-85
L1 Data SRAM, 3-7
L1 Instruction SRAM, 3-6
scratchpad data SRAM, 3-7

Level 2 (L2) memory, 3-49
latency, 3-50, 3-51
latency with cache off, 3-51
latency with cache on, 3-50
off-chip, 3-53

lines per frame) bits, 7-39
lines per frame (LPF) bit, 7-39
little endian (definition), 3-85
load, speculative execution, 3-79
loader file, 17-22
loader utility, 17-22
load operation, 3-75
load ordering, 3-77
LOCKCNT[15:0] field, 18-29

M
manual

conventions, -l
mapping

default interrupt, 4-16
peripheral to DMA, 4-14, 4-15

MAXCIE (max Count Interrupt Enable,
13-28

MAXCIE (max count interrupt enable) bit,
13-28

MAXCII (max count interrupt identifier)
bit, 13-29

max count interrupt enable (MAXCIE) bit,
13-28

max count interrupt identifier (MAXCII)
bit, 13-29

Index

I-18 ADSP-BF54x Blackfin Processor Hardware Reference

maximal count (CNT_MAX) register,
13-25, 13-32, A-32

MBDI bit, 5-51, 5-119
MDMA controllers, 5-13
MDMA_ROUND_ROBIN_COUNT[4:

0] field, 5-59, 5-127
MDMA_ROUND_ROBIN_PERIOD

field, 5-58, 5-59, 5-127
MDMA_yy_CONFIG (DMA

configuration registers), 5-82
MDMA_yy_CURR_ADDR (current

address registers), 5-93
MDMA_yy_CURR_DESC_PTR (current

descriptor pointer registers), 5-113
MDMA_yy_CURR_X_COUNT (current

inner loop count registers), 5-98, 5-99
MDMA_yy_CURR_Y_COUNT (current

outer loop count registers), 5-105
MDMA_yy_IRQ_STATUS (interrupt

status registers), 5-87, 5-88
MDMA_yy_NEXT_DESC_PTR (next

descriptor pointer registers), 5-110
MDMA_yy_PERIPHERAL_MAP

(peripheral map registers), 5-79
MDMA_yy_START_ADDR (start

address registers), 5-91
MDMA_yy_X_COUNT (inner loop

count registers), 5-96
MDMA_yy_X_MODIFY (inner loop

address increment registers), 5-101
MDMA_yy_Y_COUNT (outer loop

count registers), 5-103
MDMA_yy_Y_MODIFY (outer loop

address increment registers), 5-108
measurement report, general-purpose

timers, 10-29, 10-30, 10-31
Memory

access, latency and throughput, 2-14
external, 2-2
interface, 2-11

memory
See also cache; Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory; Level 2
(L2) memory

architecture, 1-5
asynchronous interface, 19-7
asynchronous region, 6-2
configurations, 1-5
external, 3-53
how instructions are stored, 3-75
internal, 1-6
internal bank, G-12
I/O space, 1-9
L1 data, 1-6, 3-28
L1 Data SRAM, 3-31
L1 instruction, 1-6
L1 scratchpad, 1-6
Level 2 (L2), 3-49
management, 3-54
on-chip, 1-6
Page Descriptor Table, 3-57
protection and properties, 3-54
structure, 1-5
terminology, 3-84
transaction model, 3-74

Memory Architecture, 3-2
memory architecture, 3-2
memory conflict, DMA, 5-60
memory DMA, 5-13

bandwidth, 5-54
buffers, 5-15
channels, 5-13
descriptor structures, 5-74
handshake operation, 5-16
timing, 5-55
transfer operation, starting, 5-15
transfer performance, 2-24
transfers, 5-3, 5-9
word size, 5-14

ADSP-BF54x Blackfin Processor Hardware Reference I-19

Index

Memory Management Unit (MMU), 3-54
Memory Map, 3-4
memory map, external (figure), 6-4
memory-mapped registers, See MMRs
memory-mapped registers (MMRs), 3-83,

3-84
memory page, 3-55

attributes, 3-56
memory-to-memory transfer, 5-14
MINCIE (min count interrupt enable) bit,

13-28
MINCII (min count interrupt identifier)

bit, 13-29
min count interrupt enable (MINCIE) bit,

13-28
min count interrupt identifier (MINCII)

bit, 13-29
minimal count (CNT_MIN) register,

13-25, 13-32, A-32
minutes[5:0] field, 14-21, 14-23
minutes event flag bit, 14-22
minutes interrupt enable bit, 14-21
MMR Port, 2-4
MMRs, 1-9

address range, A-3
width, A-3

modified (definition), 3-84
MSEL[5:0] field, 18-4, 18-28
multiple interrupt sources, 4-24
multiply row by 4 (BV_MULT4) bit, 7-45
multiply row by 4 (GU_MULT4) bit, 7-44
multiply row by 4 (RY_MULT4) bit, 7-43,

17-27, 17-111, 17-112, 17-113,
17-114, 17-116, 17-117, 17-118,
17-119, 17-120, 17-121, 17-122,
17-123, 17-125, 17-131, 17-132

MUXy (port x bit y) bits, 9-37

N
NDPH bit, 5-29

NDPL bit, 5-29
NDSIZE[3:0] field, 5-23, 5-82, 5-85

legal values, 5-40
next descriptor pointer registers

(DMAx_NEXT_DESC_PTR), 5-110
(MDMA_yy_NEXT_DESC_PTR),

5-110
nFlags variable, 17-132
NOPREBOOT, 15-60, 15-61, 15-64,

15-67, 17-110

O
offsets, DMA descriptor elements, 5-24
OI bit, 5-119
OIE bit, 5-119
onboard regulation, bypassing, 18-20
on-chip memory, 1-6
on-chip switching regulator controller,

18-16
open page, G-1
operating modes, 18-8

active, 1-32, 18-9
deep sleep, 1-33, 18-10
full on, 1-32, 18-8
hibernate state, 1-33, 18-10
sleep, 1-32, 18-9
transition, 18-11, 18-12

optimization, of DMA performance, 5-51
ordering

loads and stores, 3-77
weak and strong, 3-77

oscilloscope probes, 19-19
OTP_ALTERNATE_HWAIT, 17-116
OTP_EBIU_AMBCTL, 17-120
OTP_EBIU_AMG, 17-119
OTP_EBIU_DDRCTL, 17-123
OTP_EBIU_DDRCTL0, 17-123
OTP_EBIU_DDRCTL2, 17-125
OTP_EBIU_DDRCTL3, 17-125
OTP_EBIU_FCTL, 17-120

Index

I-20 ADSP-BF54x Blackfin Processor Hardware Reference

OTP_ENA_CLKOUT, 17-116
OTP_INVALID, 17-116
OTP_LOAD_PAGE17H, 17-116
OTP_LOAD_PAGE17L, 17-116
OTP memory

bfrom_OtpCommand (), 16-9
BFROM_OTP_READ, 16-17
bfrom_OtpRead(), 16-9
BFROM_OTP_WRITE, 16-19
bfrom_OtpWrite(), 16-9
BFROM_TOP_COMMAND, 16-15
error correction, 16-5
map, 16-3
overview, 16-1

OTP_SET_BMODES, 17-116
OTP_SET_CALIB, 17-116
OTP_SET_EBIU_ASYNC, 17-116
OTP_SET_EBIU_SYNC, 17-116
OTP_SET_FCTL, 17-119
OTP_SET_MODE, 17-119
OTP_SET_PLL, 17-116
OTP_SET_VR, 17-116
OTP_SPI_BAUD, 17-117
OTP_SPI_FASTREAD, 17-117
OTP_TARGET_PLL_CTL, 17-118
OTP_TARGET_PLL_DIV, 17-117
OTP_TARGET_VER_CTL, 17-118
OTP_TWI_CLKDIV, 17-117
OTP_TWI_PRESCALE, 17-117
OTP_TWI_TYPE, 17-116
OTP_USB_CALIB, 17-121
OUT_DIS bit, 10-47, 10-48, 10-57
outer loop address increment registers

(DMAx_Y_MODIFY), 5-108
(MDMA_yy_Y_MODIFY), 5-108

outer loop count registers
(DMAx_Y_COUNT), 5-103
(MDMA_yy_Y_COUNT), 5-103

OUT_FORM (output data format) bit,
7-38

output data format (OUT_FORM) bit,
7-38

output delay bit, 18-28
output pad disable, timer, 10-16
outputs, programmable pins, 19-18
overflow interrupt, DMA, 5-51
overlay A enable (OVR_A_EN) bit, 7-38
overlay A horizontal end (A_HEND) bits,

7-40
overlay A horizontal start (A_HSTART)

bits, 7-40
overlay A transparency (A_TRANSP) bits,

7-42
overlay A vertical end (A_VEND) bits,

7-41
overlay A vertical start (A_VSTART) bits,

7-41
overlay B enable (OVR_B_EN) bit, 7-38
overlay B horizontal end (B_HEND) bits,

7-40
overlay B horizontal start (B_HSTART)

bits, 7-40
overlay B transparency (B_TRANSP) bits,

7-42
overlay B vertical end (B_VEND) bits,

7-41
overlay B vertical start (B_VSTART) bits,

7-41
overlay data format (OVR_FORM) bit,

7-38
overlay FIFO status (OVR_STAT) bits,

7-38
overlay interrupt enable (OVR_INT_EN)

bit, 7-42
overlay interrupt status

(OVR_INT_STAT) bit, 7-42
OVR_A_EN (overlay A enable) bit, 7-38
OVR_B_EN (overlay B enable) bit, 7-38
OVR_FORM (overlay data format) bit,

7-38

ADSP-BF54x Blackfin Processor Hardware Reference I-21

Index

OVR_INT_EN (overlay interrupt enable)
bit, 7-42

OVR_INT_STAT (overlay interrupt
status) bit, 7-42

OVR_STAT (overlay FIFO status) bits,
7-38

P
PAB

clocking, 18-2
PAB, Peripheral Access Bus, 2-4, 2-5, 2-15
page 0x14, 17-115, 17-119
page 0x15H, 17-120
Page 0x16L, 17-122
page 0x16L, 17-124
PDWN bit, 18-28
Performance

DAB, DCB, and DEB, 2-23
DAB bus, 2-23
DCB bus, 2-23
DEB bus, 2-25

performance
DMA, 5-53
memory DMA, 5-54
memory DMA transfers, 2-24
optimization, DMA, 5-51

PERIOD_CNT bit, 10-14, 10-23, 10-29,
10-48, 10-56

period value[15:0] field, 11-7
period value[31:16] field, 11-7
Peripheral

DMA, 2-18
Group 1, 2-4

Peripheral Access Bus (PAB), 2-4, 2-5, 2-15
peripheral DMA, 5-10
peripheral DMA channels, 5-52
peripheral DMA start address registers,

5-91
peripheral DMA transfers, 5-2
peripheral error interrupts, 5-90

peripheral interrupt request lines, 4-2
peripheral interrupts, 4-6, 4-10, 4-10 to

4-22
peripheral map registers

(DMAx_PERIPHERAL_MAP), 5-79
(MDMA_yy_PERIPHERAL_MAP),

5-79
peripherals, 1-2

and buses, 1-3
configuring for an IVG priority, 4-27
default mapping to DMA, 5-10
and DMA controller, 5-40
DMA support, 1-3
interrupt events, 4-16
interrupt generated by, 4-22
interrupt IDs, 4-16
interrupts, clearing, 4-44
level-sensitivity of interrupts, 4-46
list of, 1-2
mapping to DMA, 4-14, 4-15
remapping DMA assignment, 5-11
switching from DMA to non-DMA,

5-91
used to wake from idle, 4-13

PHYWE bit, 18-30
pin assignment (PINTx_ASSIGN)

registers, 9-56
pin interrupt edge clear

(PINTx_EDGE_CLEAR) registers,
9-52

pin interrupt edge set
(PINTx_EDGE_SET) registers, 9-51

pin interrupt invert clear
(PINTx_INVERT_CLEAR)
registers, 9-55

pin interrupt invert set
(PINTx_INVERT_SET) registers,
9-54

pin interrupt latch (PINTx_LATCH)
registers, 9-50

Index

I-22 ADSP-BF54x Blackfin Processor Hardware Reference

pin interrupt mask clear
(PINTx_MASK_CLEAR) registers,
9-47

pin interrupt mask set
(PINTx_MASK_SET) registers, 9-46

pin interrupt pin state
(PINTx_PINSTATE) registers, 9-53

pin interrupt request (PINTx_REQUEST)
registers, 9-48

pin interrupt x (PIQx) bits, 9-46, 9-47,
9-48, 9-50, 9-51, 9-52, 9-53, 9-54,
9-55

pins, 19-1
unused, 19-18

PINTx_ASSIGN (pin assignment)
registers, 9-56

PINTx_EDGE_CLEAR (pin interrupt
edge clear) registers, 9-52

PINTx_EDGE_SET (pin interrupt edge
set) registers, 9-51

PINTx_INVERT_CLEAR (pin interrupt
invert clear) registers, 9-55

PINTx_INVERT_SET (pin interrupt
invert set) registers, 9-54

PINTx_LATCH (pin interrupt latch)
registers, 9-50

PINTx_MASK_CLEAR (pin interrupt
mask clear) registers, 9-47

PINTx_MASK_SET (pin interrupt mask
set) registers, 9-46

PINTx_PINSTATE (pin interrupt pin
state) registers, 9-53

PINTx_REQUEST (pin interrupt request)
registers, 9-48

pipeline
interlocked, 3-76

pipeline, lengths of, 5-63
pipelining

DMA requests, 5-48

PIQx (pin interrupt x) bits, 9-46, 9-47,
9-48, 9-50, 9-51, 9-52, 9-53, 9-54,
9-55

PIXC_AHEND (PIXC overlay A
horizontal end) register, 7-36, 7-40,
A-16

PIXC_AHSTART (PIXC overlay A
horizontal start) register, 7-36, 7-40,
A-16

PIXC_ATRANSP (PIXC overlay A
transparency) register, 7-36, 7-42,
A-16

PIXC_AVEND (PIXC overlay A vertical
end) register, 7-36, 7-41, A-16

PIXC_AVSTART (PIXC overlay A vertical
start) register, 7-36, 7-41, A-16

PIXC_BHEND (PIXC overlay B
horizontal end) register, 7-36, 7-40,
A-16

PIXC_BHSTART (PIXC overlay B
horizontal start) register, 7-36, 7-40,
A-16

PIXC_BTRANSP (PIXC overlay B
transparency) register, 7-36, 7-42,
A-16

PIXC_BVCON (PIXC B/V conversion
coefficients) register, 7-36, 7-45, A-16

PIXC B/V conversion coefficients
(PIXC_BVCON) register, 7-36, 7-45,
A-16

PIXC_BVEND (PIXC overlay B vertical
end) register, 7-36, 7-41, A-16

PIXC_BVSTART (PIXC overlay B vertical
start) register, 7-36, 7-41, A-16

PIXC_CCBIAS (PIXC color conversion
bias) register, 7-36, 7-46, A-17

PIXC color conversion bias
(PIXC_CCBIAS) register, 7-36, 7-46,
A-17

ADSP-BF54x Blackfin Processor Hardware Reference I-23

Index

PIXC control (PIXC_CTL) register, 7-35,
7-38, A-15

PIXC_CTL (PIXC control) register, 7-35,
7-38, A-15

PIXC_EN (pixel compositor enable) bit,
7-38

PIXC_GUCON (PIXC G/U conversion
coefficients) register, 7-36, 7-44, A-16

PIXC G/U conversion coefficients
(PIXC_GUCON) register, 7-36,
7-44, A-16

PIXC interrupt status
(PIXC_INTRSTAT) register, 7-36,
7-42, A-16

PIXC_INTRSTAT (PIXC interrupt
status) register, 7-36, 7-42, A-16

PIXC lines per frame (PIXC_LPF) register,
7-35, 7-39, A-15

PIXC_LPF (PIXC lines per frame) register,
7-35, 7-39, A-15

PIXC overlay A horizontal end
(PIXC_AHEND) register, 7-36,
7-40, A-16

PIXC overlay A horizontal start
(PIXC_AHSTART) register, 7-36,
7-40, A-16

PIXC overlay A transparency
(PIXC_ATRANSP) register, 7-36,
7-42, A-16

PIXC overlay A vertical end
(PIXC_AVEND) register, 7-36, 7-41,
A-16

PIXC overlay A vertical start
(PIXC_AVSTART) register, 7-36,
7-41, A-16

PIXC overlay B horizontal end
(PIXC_BHEND) register, 7-36, 7-40,
A-16

PIXC overlay B horizontal start
(PIXC_BHSTART) register, 7-36,
7-40, A-16

PIXC overlay B transparency
(PIXC_BTRANSP) register, 7-36,
7-42, A-16

PIXC overlay B vertical end
(PIXC_BVEND) register, 7-36, 7-41,
A-16

PIXC overlay B vertical start
(PIXC_BVSTART) register, 7-36,
7-41, A-16

PIXC pixels per line (PIXC_PPL) register,
7-35, 7-39, A-15

PIXC_PPL (PIXC pixels per line) register,
7-35, 7-39, A-15

PIXC_RYCON (PIXC R/Y conversion
coefficients) register, 7-36, 7-43,
17-27, 17-111, 17-112, 17-113,
17-114, 17-116, 17-117, 17-118,
17-119, 17-120, 17-121, 17-122,
17-123, 17-125, 17-131, 17-132,
A-16

PIXC R/Y conversion coefficients
(PIXC_RYCON) register, 7-36, 7-43,
17-27, 17-111, 17-112, 17-113,
17-114, 17-116, 17-117, 17-118,
17-119, 17-120, 17-121, 17-122,
17-123, 17-125, 17-131, 17-132,
A-16

PIXC_TC (PIXC transparent color)
register, 7-36, 7-47, A-17

PIXC transparent color (PIXC_TC)
register, 7-36, 7-47, A-17

pixel compositor enable (PIXC_EN) bit,
7-38

pixels per line value (PPL) bits, 7-39

Index

I-24 ADSP-BF54x Blackfin Processor Hardware Reference

PLL, 18-1 to ??
active mode, 18-9
applying power to the PLL, 18-13
block diagram, 18-3
BYPASS bit, 18-9
bypassing onboard regulation, 18-20
CCLK derivation, 18-3
changing clock ratio, 18-6
clock dividers, 18-4
clocking to SDRAM, 18-10
clock multiplier ratios, 18-3
configuration, 18-3
control bits, 18-11
design, 18-2
disabled, 18-13
divide frequency, 18-4
DMA access, 18-9
dynamic power management controller

(DPMC), 18-7
enabled, 18-13
enabled but bypassed, 18-9
maximum performance mode, 18-8
multiplier select (MSEL) field, 18-4
operating modes, operational

characteristics, 18-8
operating mode transitions, 18-14
PDWN bit, 18-11
PLL_LOCKED bit, 18-15
PLL_OFF bit, 18-13
PLL status (table), 18-8
power domains, 18-16
powering down core, 18-22
power savings by operating mode (table),

18-8
relocking after changes, 18-15
removing power to the PLL, 18-13
RTC interrupt, 18-10, 18-16
SCLK derivation, 18-2, 18-3
sleep mode, 18-9, 18-15
STOPCK bit, 18-11

voltage control, 18-7, 18-20
PLL control register (PLL_CTL), 18-26,

18-28
PLL_CTL (PLL control register), 18-4,

18-26, 18-28
PLL divide register (PLL_DIV), 18-27
PLL_DIV (PLL divide register), 18-5,

18-26, 18-27
PLL_LOCKCNT (PLL lock count

register), 18-27, 18-29
PLL lock count register

(PLL_LOCKCNT), 18-29
PLL_LOCKED bit, 18-29
PLL_OFF bit, 18-28
PLL_STAT (PLL status register), 18-26,

18-29
PLL status register (PLL_STAT), 18-29
PMAP[3:0] field, 5-10, 5-55, 5-79
polling DMA registers, 5-62
Port access priority, 2-13
Port access request, arbitration priority,

2-13
port data clear (PORTx_CLEAR) registers,

9-44
port data (PORTx) registers, 9-42
port data set (PORTx_SET) registers, 9-43
PORT_DIR bit, 13-32
port direction clear

(PORTx_DIR_CLEAR) registers,
9-40

port direction set (PORTx_DIR_SET)
registers, 9-39

port F
and general-purpose timers, 10-5
timer port setup, 10-58

port function enable (PORTx_FER)
registers, 9-36

port input enable (PORTx_INEN)
registers, 9-41

ports, 1-14

ADSP-BF54x Blackfin Processor Hardware Reference I-25

Index

port x bit y (Pxy) bits, 9-36, 9-39, 9-40,
9-41, 9-42, 9-43, 9-44

PORTx_CLEAR (port data clear) registers,
9-44

PORTx_DIR_CLEAR (port direction
clear) registers, 9-40

PORTx_DIR_SET (port direction set)
registers, 9-39

PORTx_FER (port function enable)
registers, 9-36

PORTx_INEN (port input enable)
registers, 9-41

port x multiplexer control (PORTx_MUX)
registers, 9-37

PORTx_MUX (port x multiplexer control)
registers, 9-37

port x mux y (MUXy) bits, 9-37
PORTx (port data) registers, 9-42
PORTx_SET (port data set) registers, 9-43
power dissipation, 18-16
power domains, 18-16
powering down core, 18-22
power management, 1-32, 18-1 to ??
power supply management, 18-16
PPI

GP output, 13-3, 13-5, 13-6, 13-9,
13-10, 13-20, 13-22

PPL (pixel per line value) bits, 7-39
P Port, 2-4

interface, 2-9
preboot, controlled by OTP programming,

17-4
preboot rountine, 17-10
precharge command, G-18
PREFETCH instruction, 3-6, 3-43
PREN bit, 14-23
prescaler, RTC, 14-2
prescaler enable register (RTC_PREN),

14-23

priorities
peripheral DMA operations, 5-57

prioritization
DMA, 5-55 to 5-61
interrupts, 4-11

Priority
L2 port access, 2-13
Sys L2 port access, 2-13

probes, oscilloscope, 19-19
processor block diagram, 1-4
Processor Bus Hierarchy, 2-3
Processor Core and L1 Memory Block

Diagram, 2-7
programmable outputs, 19-18
programming model

cache memory, 3-5
PS bit, 5-119
PULSE_HI bit, 10-17, 10-19, 10-48,

10-56
PULSE_HI toggle mode, 10-19
pulse width count and capture mode, See

WDTH_CAP mode
pulse width modulation mode, See

PWM_OUT mode
PWM_CLK clock, 10-24
PWM_OUT mode, 10-14 to 10-26, 10-52

control bit and register usage, 10-56
error prevention, 10-54
externally clocked, 10-23
PULSE_HI toggle mode, 10-19
stopping the timer, 10-24

Pxy (port x bit y) bits, 9-36, 9-39, 9-40,
9-41, 9-42, 9-43, 9-44

Q
query semaphore, 19-4
quick boot, 17-43

Index

I-26 ADSP-BF54x Blackfin Processor Hardware Reference

R
RBC bit, 5-47, 5-119
READY (DMA ready) bit, 8-27
real-time clock, See RTC
register-based DMA, 5-17
registers

See also registers by name
diagram conventions, -li
rotary counter, 13-24, A-31
system, A-3

regulator controller, switching, 18-16
REP bit, 5-8, 5-48, 5-119
replacement policy, 3-39

definition, 3-85
request data control command, DMA, 5-43
request data urgent control command,

DMA, 5-44
resampling mode (UDS_MOD) bit, 7-38
reset

effect on memory configuration, 3-30
RESET_DOUBLE, 15-34, 17-108
RESET_DOUBLE bit, 15-34, 17-108
RESET pin, 17-6
resets

core and system, 8-31, 17-154
core-only software, 17-5
hardware, 17-7
interrupts, 17-9
software, 17-6
system software, 17-4
watchdog timer, 17-6

RESET_SOFTWARE, 15-34, 17-108
RESET_SOFTWARE bit, 15-34, 17-108
reset vector, 17-1
reset vector addresses, 17-2
RESET_WDOG, 15-34, 17-108
RESET_WDOG bit, 12-5, 15-34, 15-38,

17-108
resource sharing, with semaphores, 19-3
restart control command, DMA, 5-42

restart or finish control command, receive,
5-45

restart or finish control command,
transmit, 5-45

restrictions
DMA control commands, 5-44
DMA work unit, 5-33

RETI register, 17-9
rotary counter registers, 13-24, A-31
round robin operation, MDMA, 5-58
routing of interrupts, 4-3, 4-4, 4-5
RTC, 1-29, 14-1 to 14-28

alarm clock features, 14-2
alarm feature, 14-27
clock rate, 14-5
clock requirements, 14-5
code examples, 14-24
counters, 14-2
digital watch features, 14-1
disabling prescaler, 14-6
enabling prescaler, 14-5, 14-24
interfaces, 14-3
interrupt structure, 14-16
prescaler, 14-2
programming model, 14-7
registers, table, 14-20
state transitions, 14-17
stopwatch, 14-2, 14-25
synchronization, 14-6
test mode, 14-6

RTC alarm register (RTC_ALARM),
14-23

RTC_ALARM (RTC alarm register),
14-20, 14-23

RTC_ICTL (RTC interrupt control
register), 14-20, 14-21

RTC interrupt control register
(RTC_ICTL), 14-21

RTC interrupt status register
(RTC_ISTAT), 14-22

ADSP-BF54x Blackfin Processor Hardware Reference I-27

Index

RTC_ISTAT (RTC interrupt status
register), 14-20, 14-22

RTC_PREN bit, 14-5
RTC_PREN (prescaler enable register),

14-5, 14-20, 14-23
RTC_STAT (RTC status register), 14-20,

14-21
RTC status register (RTC_STAT), 14-21
RTC stopwatch count register

(RTC_SWCNT), 14-22
RTC_SWCNT (RTC stopwatch count

register), 14-20, 14-22
RY_MULT4 (multiply row by 4) bit, 7-43,

17-27, 17-111, 17-112, 17-113,
17-114, 17-116, 17-117, 17-118,
17-119, 17-120, 17-121, 17-122,
17-123, 17-125, 17-131, 17-132

RY_TRANS (transparent color - R/Y) bits,
7-47

S
scale value[7:0] field, 11-8
scaling, of core timer, 11-7
SCLK, 18-5

derivation, 18-2
disabling, 18-22
status by operating mode (table), 18-8

scratchpad memory, and booting, 17-24
scratchpad SRAM, 3-7
SDRAM, 2-2

banks, 3-53
bank size, 6-2
memory banks, 6-4
memory space, 6-2
sizes supported, 3-53

seconds (1 Hz) event flag bit, 14-22
seconds (1Hz) interrupt enable bit, 14-21
seconds[5:0] field, 14-21, 14-23

semaphores, 19-3
example code, 19-4
query, 19-4

set associative (definition), 3-85
set (definition), 3-85
shared interrupts, 4-11
SIC_IAR0 (system interrupt assignment

register 0), 4-28, 8-25, 8-27, 8-29
SIC_IAR1 (system interrupt assignment

register 1), 4-28
SIC_IAR2 (system interrupt assignment

register 2), 4-29
SIC_IAR3 (system interrupt assignment

register 3), 4-29, 4-30, 4-31, 4-32,
4-33

SIC_IMASK (system interrupt mask
register), 4-11, 4-35, 4-36, 4-37, 4-38,
4-39, 4-40, 4-41, 4-42, 4-43

SIC_ISR (system interrupt status register),
4-12

SIC_IWR (system interrupt wakeup-enable
register), 4-13

signal integrity, 19-14
sine wave input, 1-31
single pulse generation, timer, 10-16
size of accesses, timer registers, 10-39
slaves

EBIU, 6-8
sleep mode, 1-32, 18-9
small descriptor mode, DMA, 5-22
small model mode, DMA, 5-85
software interrupts, 4-10
software management of DMA, 5-61
software reset, 17-6, 17-107
software reset register (SWRST), 15-34,

17-108
software watchdog timer, 1-30, 12-1
source channels, memory DMA, 5-13
SPI, 1-21

slave boot mode, 17-76

Index

I-28 ADSP-BF54x Blackfin Processor Hardware Reference

SPORT, 1-19
SRAM

interface, 19-7
L1 data, 3-31
L1 Data Memory, 3-7
L1 instruction access, 3-12
L1 Instruction Memory, 3-6
scratchpad, 3-7

SSEL[3:0] field, 18-5, 18-27
Stalls

DMA access to L1 or L2 memory, 2-14
stalls

pipeline, 3-76
start address registers

(DMAx_START_ADDR), 5-91
(MDMA_yy_START_ADDR), 5-91

state transitions, RTC, 14-17
status (CNT_STATUS) register, 13-24,

13-29, A-31
STI. See Enable Interrupts (STI)
STOPCK bit, 18-28
stop mode, DMA, 5-18, 5-84
stopping DMA transfers, 5-37
stopwatch count[15:0] field, 14-22
stopwatch function, RTC, 14-2
store operation, 3-75
store ordering, 3-77
streams, memory DMA, 5-14
strong ordering requirement, 3-83
subbanks

L1 instruction memory, 3-13
supervisor mode, 17-9
support, technical or customer, -xlviii
switching frequency values, 18-20
switching regulator controller, 18-16
SWRESET, 15-60, 15-61, 15-64, 15-67,

17-110
SWRST, software reset register, 17-107,

17-109

SWRST (software reset register), 15-34,
17-108

SYNC, 3-79
SYNC bit, 5-34, 5-36, 5-73, 5-82, 5-85
synchronization

interrupt-based methods, 5-62
of descriptor queue, 5-68
of DMA, 5-61 to 5-72

synchronized transition, DMA, 5-36
SYSCR (system reset configuration

register), 15-60, 15-61, 15-64, 15-67,
17-109, 17-110

System
DMA access request, 2-12
L2 bus, 2-5
overview, 2-8

system clock (SCLK), 18-2
managing, 19-2

system design, 19-1 to 19-20
high frequency considerations, 19-5
recommendations and suggestions,

19-15
recommended reading, 19-19

system interrupt assignment register 0
(SIC_IAR0), 4-28, 8-25, 8-27, 8-29

system interrupt assignment register 1
(SIC_IAR1), 4-28

system interrupt assignment register 2
(SIC_IAR2), 4-29

system interrupt assignment register 3
(SIC_IAR3), 4-29, 4-30, 4-31, 4-32,
4-33

system interrupt controller (SIC), 4-2, 4-6
registers, 4-26

system interrupt mask register
(SIC_IMASK), 4-11, 4-35, 4-36,
4-37, 4-38, 4-39, 4-40, 4-41, 4-42,
4-43

system interrupt processing, 4-22
system interrupts, 4-6

ADSP-BF54x Blackfin Processor Hardware Reference I-29

Index

system interrupt status register (SIC_ISR),
4-12

system interrupt wakeup-enable register
(SIC_IWR), 4-13

system peripheral clock, See SCLK
system peripherals, 1-2
SYSTEM_RESET, 15-34, 17-108
system reset, 17-1 to ??
SYSTEM_RESET[2:0] field, 15-34,

15-38, 17-108
system reset configuration register

(SYSCR), 15-60, 15-61, 15-64,
15-67, 17-109, 17-110

system software reset, 17-4

T
TACIx pins, 10-6, 10-35
TACLKx pins, 10-6
tag (definition), 3-85
target address, 17-31
TAUTORLD bit, 11-3, 11-5
TC_EN (transparent color enable) bit,

7-38
TCNTL (core timer control register), 11-3,

11-5
TCOUNT (core timer count register),

11-3, 11-6
technical support, -xlviii
termination, DMA, 5-37
test point access, 19-19
TESTSET instruction, 19-3
throughput

achieved by interlocked pipeline, 3-76
achieved by SRAM, 3-5
DMA, 5-52
from DMA system, 5-51

Throughput for L2 memory access, 2-14
TIMDISx bit, 10-41, 10-42, 10-43
TIMENx bit, 10-40, 10-41
TIMEOUT (host timeout) bit, 8-27

timer configuration registers
(TIMERx_CONFIG), 10-47, 10-48

timer counter[15:0] field, 10-51
timer counter[31:16] field, 10-51
timer counter registers

(TIMERx_COUNTER), 10-49,
10-51

TIMER_DISABLE bit, 10-56
timer disable register (TIMER_DISABLE),

10-41, 10-42, 10-43
TIMER_DISABLE (timer disable register),

10-41, 10-42, 10-43
TIMER_ENABLE bit, 10-56
timer enable register (TIMER_ENABLE),

10-40, 10-41
TIMER_ENABLE (timer enable register),

10-40, 10-41
timer period[15:0] field, 10-54
timer period[31:16] field, 10-54
timer period registers

(TIMERx_PERIOD), 10-52, 10-54
timers, 1-21, 10-1 to 10-67

core, -xlvi to ??, 11-1 to 11-9
EXT_CLK mode, 10-36 to 10-37
watchdog, 1-30, 12-1 to 12-11

timer status register (TIMER_STATUS),
10-43, 10-45, 10-46

TIMER_STATUS (timer status register),
10-43, 10-45, 10-46

timer width[15:0] field, 10-55
timer width[31:16] field, 10-55
timer width registers (TIMERx_WIDTH),

10-52, 10-55
TIMERx_CONFIG (timer configuration

registers), 10-47, 10-48
TIMERx_COUNTER (timer counter

registers), 10-7, 10-49, 10-51
TIMERx_PERIOD (timer period

registers), 10-52, 10-54

Index

I-30 ADSP-BF54x Blackfin Processor Hardware Reference

TIMERx_WIDTH (timer width registers),
10-52, 10-55

TIMILx bits, 10-7, 10-45
timing

memory DMA, 5-55
TIN_SEL bit, 10-35, 10-48, 10-57
TINT bit, 11-3, 11-5
TMODE[1:0] field, 10-14, 10-48, 10-56
TMPWR bit, 11-3, 11-5
TMRCLK input, 10-6
TMREN bit, 11-3, 11-5
TMR pin, 10-57
TMRx pins, 10-5, 10-19, 10-35
TOGGLE_HI bit, 10-48, 10-57
TOGGLE_HI mode, 10-19
tools, development, 1-36
TOVF_ERRx bits, 10-7, 10-11, 10-18,

10-45, 10-47, 10-58
TPERIOD (core timer period register),

11-7
traffic control, DMA, 5-55 to 5-61
Traffic control/optimization, DMA, 2-14
Transfer latency

DMA data, 2-14
transfer rate

memory DMA channels, 5-52
peripheral DMA channels, 5-52

transitions
continuous DMA, 5-33
DMA work unit, 5-33
operating mode, 18-11, 18-12
synchronized DMA, 5-33

transparent color - B/V (BV_TRANS) bits,
7-47

transparent color enable (TC_EN) bit,
7-38

transparent color - G/U (GU_TRANS)
bits, 7-47

transparent color - R/Y (RY_TRANS) bits,
7-47

triggering DMA transfers, 5-72
TRUNx bits, 10-24, 10-43, 10-45, 10-58
TSCALE (core timer scale register), 11-7,

11-8
TWI, 1-15

I2C compatibility, 1-15
master boot mode, 17-79
slave boot mode, 17-83

two-dimensional DMA, 5-19
two-wire interface, See TWI

U
UART

autobaud detection, 10-35
bit rate detection, 10-6

UCIE (up count interrupt enable) bit,
13-28

UCII (up count interrupt identifier) bit,
13-29

UDS_MOD (resampling mode) bit, 7-38
universal asynchronous

receiver/transmitter, See UART
unused pins, 19-18
urgent DMA transfers, 5-55
user mode, 17-9
UTE bit, 5-50, 5-119
UTHE[15:0] field, 5-124

V
Valid bit

clearing, 3-43
figure, 3-27
function, 3-17
in cache-line replacement, 3-19
in instruction cache invalidation, 3-23

valid (definition), 3-86
VCO, multiplication factors, 18-4
VDK, 1-38
victim (definition), 3-86

ADSP-BF54x Blackfin Processor Hardware Reference I-31

Index

VisualDSP++, 1-36, 17-22
debugger, 1-37

VLEV[3:0] field, 18-21, 18-30
voltage, 18-16

changing, 18-20
control, 18-7
dynamic control, 18-16

voltage controlled oscillator (VCO), 18-3
voltage level values, 18-21
voltage regulator, 1-34
voltage regulator control register

(VR_CTL), 18-18, 18-30
VR_CTL (voltage regulator control

register), 18-18, 18-27, 18-30

W
WAKE bit, 18-30
wakeup function, 4-14
watchdog control register (WDOG_CTL),

12-8, 12-9
watchdog count[15:0] field, 12-7
watchdog count[31:16] field, 12-7
watchdog count register (WDOG_CNT),

12-6, 12-7
watchdog status[15:0] field, 12-8
watchdog status[31:16] field, 12-8
watchdog status register (WDOG_STAT),

12-7, 12-8
watchdog timer, 1-30, 12-1 to 12-11

block diagram, 12-3
disabling, 12-5
and emulation mode, 12-2
features, 12-1
registers, 12-6
and reset, 12-5
reset, 17-6
starting, 12-4
zero value, 12-5

watermark level (WM_LVL) bits, 7-38

waveform generation, pulse width
modulation, 10-17

Way
1-Way associative (direct-mapped), 3-84
definition, 3-86
L1 instruction memory as 4-Way

set-associative, 3-6
priority in cache-line replacement, 3-20

WDEN[7:0] field, 12-8
WDEV[1:0] field, 12-4, 12-8
WDOG_CNT (watchdog count register),

12-4, 12-6, 12-7
WDOG_CTL (watchdog control register),

12-8, 12-9
WDOG_STAT (watchdog status register),

12-4, 12-7, 12-8
WDRESET, 15-60, 15-61, 15-64, 15-67,

17-110
WDSIZE[1:0] field, 5-82, 5-86
WDTH_CAP mode, 10-27, 10-52

control bit and register usage, 10-56
WM_LVL (watermark level) bits, 7-38
WNR bit, 5-82, 5-86, 8-6
work unit

completion, 5-31
DMA, 5-22
interrupt timing, 5-34
restrictions, 5-33
transitions, 5-33

write, 3-86
write back (definition), 3-86
write buffer depth, 3-42
write complete interrupt enable bit, 14-21
write pending status bit, 14-22
WURESET, 15-60, 15-61, 15-64, 15-67,

17-110

X
X_COUNT[15:0] field, 5-96
X_MODIFY[15:0] field, 5-101

ADSP-BF54x Blackfin Processor Hardware Reference I-32

Index

Y
Y_COUNT[15:0] field, 5-103
Y_MODIFY[15:0] field, 5-108

Z
ZMZC (CZM zeroes counter enable) bit,

13-27

ZMZC (CZM zeroes counter enable)
bit, 13-27

ADSP-BF54x Blackfin Processor Hardware Reference I-33

I-34 ADSP-BF54x Blackfin Processor Hardware Reference

	ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2)
	Contents
	Preface
	Contents of Two Volumes xliii
	Purpose of This Manual xliv
	Intended Audience xliv
	Manual Contents xlv
	What’s New in This Manual xlviii
	Technical or Customer Support xlviii
	Supported Processors xlix
	Conventions l
	Register Diagram Conventions li

	Introduction
	Peripherals 1-2
	Memory Architecture 1-5
	Internal Memory 1-6
	External Memory 1-7
	NAND Flash Controller (NFC) 1-8

	I/O Memory Space 1-9
	One-Time-Programmable (OTP) Memory 1-9

	DMA Support 1-10
	Host DMA Interface 1-12

	External Bus Interface Unit 1-13
	DDR SDRAM Controller 1-13
	Asynchronous Controller 1-14

	Ports 1-14
	General-Purpose I/O (GPIO) 1-14

	Two-Wire Interface 1-15
	Controller Area Network 1-16
	Enhanced Parallel Peripheral Interface (EPPI) 1-17
	SPORT Controllers 1-19
	Serial Peripheral Interface (SPI) Port 1-21
	Timers 1-21
	UART Ports 1-23
	USB On-The-Go, Dual-Role Device Controller 1-24
	ATA/ATAPI-6 Interface 1-24
	Keypad Interface 1-25
	Secure Digital (SD)/SDIO Controller 1-26
	Rotary Counter Interface 1-26
	Security 1-27
	Media Transceiver Mac Layer (MXVR) 1-28
	Real-Time Clock 1-29
	Watchdog Timer 1-30
	Clock Signals 1-31
	Dynamic Power Management 1-32
	Full On Mode (Maximum Performance) 1-32
	Active Mode (Moderate Dynamic Power Savings) 1-32
	Sleep Mode (High Dynamic Power Savings) 1-32
	Deep Sleep Mode (Maximum Dynamic Power Savings) 1-33
	Hibernate State (Maximum Power Savings) 1-33

	Voltage Regulation 1-34
	Boot Modes 1-34
	Instruction Set Description 1-35
	Development Tools 1-36

	Chip Bus Hierarchy
	Overview 2-1
	Internal Interfaces 2-1
	Internal Clocks 2-5
	Core Bus Overview 2-6

	System Overview 2-8
	P Port Interface 2-9
	D Port Interface 2-10
	On-Chip L2 Interface 2-11

	Peripheral Access Bus (PAB) 2-15
	PAB Performance 2-15
	PAB Agents (Masters, Slaves) 2-16

	DMA-Related Buses 2-17
	Peripheral DMA 2-18
	DAB Bus Agents (Masters) 2-18
	DAB Arbitration 2-19
	DCB Arbitration 2-21
	DEB Arbitration 2-23
	DAB, DCB, and DEB Performance 2-23

	External Access Bus (EAB) 2-25
	EAB/DEB Arbitration 2-26
	EAB/DEB Performance 2-26

	Memory
	Memory Architecture 3-2
	Internal Memory 3-5
	Overview of L1 Instruction SRAM 3-6
	Overview of L1 Instruction ROM 3-6
	Overview of L1 Data SRAM 3-7

	Overview of Scratchpad Data SRAM 3-7
	Overview of On-Chip L2 3-8
	L1 Instruction Memory 3-8
	Instruction Memory Control Register (IMEM_CONTROL) 3-9
	L1 Instruction SRAM 3-12

	L1 Instruction Cache 3-15
	Cache Lines 3-15
	Cache Hits and Misses 3-18
	Cache-Line Fills 3-18
	Line-Fill Buffer 3-19
	Cache-Line Replacement 3-19

	Instruction Cache Management 3-21
	Instruction Cache Locking by Line 3-21
	Instruction Cache Locking by Way 3-22
	Instruction Cache Invalidation 3-23

	Instruction Test Registers 3-24
	ITEST_COMMAND Register 3-25
	ITEST_DATA1 Register 3-26
	ITEST_DATA0 Register 3-27

	L1 Data Memory 3-28
	Data Memory Control Register (DMEM_CONTROL) 3-28
	L1 Data SRAM 3-31
	L1 Data Cache 3-32
	Example of Mapping Cacheable Address Space into Data Banks 3-35
	Data Cache Access 3-39
	Cache Write Method 3-41
	Write Buffers 3-41
	Interrupt Priority Register (IPRIO), Write Buffer Depth 3-42
	Data Cache Control Instructions 3-43
	Data Cache Invalidation 3-44

	Data Test Registers 3-44
	Data Test Command Register (DTEST_COMMAND) 3-45
	Data Test Data 1 Register (DTEST_DATA1) 3-47
	Data Test Data 0 Register (DTEST_DATA0) 3-47

	On-Chip Level 2 (L2) Memory 3-49
	On-Chip L2 Bank Access 3-49
	Latency 3-50

	One Time Programmable Memory 3-53
	External Memory 3-53
	Memory Protection and Properties 3-54
	Memory Management Unit 3-54
	Memory Pages 3-55
	Memory Page Attributes 3-56

	Page Descriptor Table 3-57
	CPLB Management 3-58
	MMU Application 3-60
	Examples of Protected Memory Regions 3-62
	ICPLB Data Registers (ICPLB_DATAx) 3-63
	DCPLB Data Registers (DCPLB_DATAx) 3-65
	DCPLB Address Registers (DCPLB_ADDRx) 3-67
	ICPLB Address Registers (ICPLB_ADDRx) 3-69
	CPLB Status Registers 3-70
	DCPLB Status Register (DCPLB_STATUS) 3-71
	ICPLB Status Register (ICPLB_STATUS) 3-72

	CPLB Fault Address Registers 3-72
	DCPLB Fault Address Register (DCPLB_FAULT_ADDR) 3-73
	ICPLB Fault Address Register (ICPLB_FAULT_ADDR) 3-74

	Memory Transaction Model 3-74
	Load/Store Operation 3-75
	Interlocked Pipeline 3-76
	Ordering of Loads and Stores 3-77
	Synchronizing Instructions 3-78
	Speculative Load Execution 3-79
	Conditional Load Behavior 3-80

	Working With Memory 3-81
	Alignment 3-81
	Cache Coherency 3-81
	Atomic Operations 3-82
	Memory-Mapped Registers 3-83
	Core MMR Programming Code Example 3-83

	Terminology 3-84

	System Interrupts
	Overview 4-1
	Features 4-2

	Interfaces 4-2
	Description of Operation 4-6
	Events and Sequencing 4-6
	System Peripheral Interrupts 4-10

	Programming Model 4-22
	System Interrupt Initialization 4-22
	System Interrupt Processing Summary 4-22

	System Interrupt Controller Registers 4-26
	System Interrupt Assignment (SIC_IARx) Registers 4-27
	System Interrupt Mask (SIC_IMASKx) Registers 4-34
	System Interrupt Status (SIC_ISRx) Registers 4-38
	System Interrupt Wakeup (SIC_IWRx) Registers 4-40

	Programming Examples 4-44
	Clearing Interrupt Requests 4-44

	Direct Memory Access
	Overview and Features 5-2
	DMA Controller Overview 5-6
	External Interfaces 5-8
	Internal Interfaces 5-8
	Peripheral DMA 5-10
	Memory DMA 5-13
	Handshaked Memory DMA Mode 5-16

	Modes of Operation 5-17
	Register-Based DMA Operation 5-17
	Stop Mode 5-18
	Autobuffer Mode 5-19

	Two-Dimensional DMA Operation 5-19
	Examples of Two-Dimensional DMA 5-20

	Descriptor-Based DMA Operation 5-21
	Descriptor List Mode 5-22
	Descriptor Array Mode 5-23
	Variable Descriptor Size 5-23
	Mixing Flow Modes 5-25

	Functional Description 5-25
	DMA Operation Flow 5-25
	DMA Startup 5-25
	DMA Refresh 5-31
	Work Unit Transitions 5-33
	DMA Transmit and MDMA Source 5-34
	DMA Receive 5-36

	Stopping DMA Transfers 5-37

	DMA Errors (Aborts) 5-38
	DMA Control Commands 5-40
	Restrictions 5-44
	Transmit Restart or Finish 5-45
	Receive Restart or Finish 5-45

	Handshaked Memory DMA Operation 5-46
	Pipelining DMA Requests 5-48
	HMDMA Interrupts 5-50

	DMA Performance 5-51
	DMA Throughput 5-52
	Memory DMA Timing Details 5-55
	Static Channel Prioritization 5-55
	Temporary DMA Urgency 5-55
	Memory DMA Priority and Scheduling 5-57
	Traffic Control 5-59

	Programming Model 5-61
	Synchronization of Software and DMA 5-62
	Single-Buffer DMA Transfers 5-64
	Continuous Transfers Using Autobuffering 5-65
	Descriptor Structures 5-67
	Descriptor Queue Management 5-68
	Descriptor Queue Using Interrupts on Every Descriptor 5-69
	Descriptor Queue Using Minimal Interrupts 5-70

	Software-Triggered Descriptor Fetches 5-72

	DMA Registers 5-74
	DMA Channel Registers 5-74
	Peripheral Map (DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPHERAL_MAP) Registers 5-79
	DMA Configuration Registers 5-82
	Interrupt Status Registers 5-87
	Start Address Registers 5-91
	Current Address Registers 5-93
	Inner Loop Count Registers 5-96
	Current Inner Loop Count Registers 5-98
	Inner Loop Address Increment Registers 5-101
	Outer Loop Count Registers 5-103
	Current Outer Loop Count egisters 5-105
	Outer Loop Address Increment Registers 5-108
	Next Descriptor Pointer Registers 5-110
	Current Descriptor Pointer Registers 5-113

	Handshake MDMA (HMDMA) Registers 5-116
	Handshake MDMA Control Registers 5-117
	Handshake MDMA Initial Block Count Registers 5-120
	Handshake MDMA Current Block Count Registers 5-120
	Handshake MDMA Current Edge Count Registers 5-121
	Handshake MDMA Initial Edge Count Registers 5-123
	Handshake MDMA Edge Count Urgent Registers 5-124
	Handshake MDMA Edge Count Overflow Registers 5-125

	DMA Traffic Control Registers 5-125
	DMA Traffic Control Counter Period Registers 5-126
	DMA Traffic Control Counter Registers 5-127
	DMA Controller 1 Peripheral Multiplexer Register 5-129

	Programming Examples 5-129
	Register-Based 2D Memory DMA 5-130
	Initializing Descriptors in Memory 5-133
	Software-Triggered Descriptor Fetch Example 5-136
	Handshake Memory DMA Example 5-139

	External Bus Interface Unit
	General Overview 6-2
	Block Diagram 6-5
	On-Chip System Interfaces 6-8
	Error Detection 6-8
	System Arbitration 6-9
	Address Resolution 6-10
	Reorder Unit 6-10
	DDR Queue Manager 6-12

	DDR Arbitration 6-12
	DDR SDRAM Controller 6-16
	Features 6-16

	DDR SDRAM Memory Interface 6-17
	DDR SDRAM Programming Model 6-18
	DDR Registers 6-20
	Memory Control Register 0 (EBIU_DDRCTL0) 6-21
	Memory Control Register 1 (EBIU_DDRCTL1) 6-22
	Memory Control Register 2 (EBIU_DDRCTL2) 6-23
	Memory Control Register 3, Regular DDR Devices 6-24
	Memory Control Register 3, Mobile DDR Devices 6-25
	Queue Configuration Register (EBIU_DDRQUE) 6-26
	Error Address Register (EBIU_ERRADD) 6-27
	Error Master Register (EBIU_ERRMST) 6-28
	Reset Control Register (EBIU_RSTCTL) 6-29

	Mode of Operation - DDR 6-29
	Data Flow for 16-bit DDR SDRAMs 6-30

	Definition of Standard DDR Terms 6-31
	DDR SDRAM System Organization 6-37
	DDR SDRAM Configurations Supported 6-39
	DDR Timing Parameter Definitions 6-41
	DDR Metrics Control Registers 6-42
	DDR Metrics Counter Enable Register 6-42
	DDR Metrics Counter Clear Register 6-45
	DDR READ Access Count Registers 6-48
	DDR WRITE Access Count Registers 6-49
	DDR Page ACTIVATE Count Register 6-49
	DDR TURN AROUND Count Register 6-50
	DDR AUTO-REFRESH Count Register 6-50
	DDR Grant Count (EBIU_DDRGCx) Registers 6-50

	Asynchronous Memory Interface 6-53
	Asynchronous Memory Address Decode 6-53
	Asynchronous Memory Arbitration 6-54
	ASYNC Interface Control Registers 6-56
	Asynchronous Memory Global Control Register 6-57
	Asynchronous Memory Bank Control Registers 6-58
	Avoiding Bus Contention 6-62
	ARDY Input Control 6-62

	Memory Bank Select Control Register (EBIU_MBSCTL) 6-63
	Flash Memory Bank Control Registers 6-64
	Booting From Page Mode or Synchronous Flash 6-64
	Access Mode Selection 6-64
	Memory Mode Control (EBIU_MODE) Register 6-66
	Asynchronous Flash Mode 6-66
	Flash Memory Bank Control (EBIU_FCTL) Register 6-67
	Asynchronous Page Mode 6-67
	Synchronous Burst Mode 6-67

	EBIU Arbitration Status Register (EBIU_ARBSTAT) 6-69

	Programmable Timing Characteristics 6-70
	Asynchronous Accesses by Core Instructions 6-71
	Asynchronous Reads 6-71
	Asynchronous Writes 6-73
	Asynchronous Writes Followed by Reads 6-76

	Adding Additional Wait States 6-79
	Asynchronous Flash Mode Writes and Reads 6-81
	Asynchronous Page Mode Reads 6-82
	Synchronous Burst Mode Read 6-83

	Bus Request and Grant 6-84

	Pixel Compositor
	Overview 7-2
	Features 7-2

	Interface Overview 7-3
	Description of Operation 7-5
	General Description 7-5
	Data Buffer Formats 7-7
	Operation in YUV 4:2:2 Format 7-7
	Operation in RGB888 Format 7-8

	DMA Channels 7-9

	Functional Description 7-10
	Data Overlay 7-10
	Transparency Control 7-16
	Transparent Color 7-18
	Color Space Conversion 7-19
	Case 1 - Image and Overlay in the Same Format 7-20
	Case 2 - Image and Overlay in Different Formats 7-21
	Case 3 - Color Space Conversion Only 7-22

	Color Space Conversion Matrix Equations 7-23
	Color Space Converter Output Thresholds 7-25
	YUV Conversion Modes 7-25
	Upsampling 7-25
	Downsampling 7-26

	PIXC Actions 7-27
	Recommendations 7-28

	Special Usage Cases 7-28
	Example 1 - Currently Defined Mode 7-29
	Example 1 - Special Usage of This Mode 7-29
	Example 2 - Currently Defined Mode 7-30
	Example 2 - Special Usage of This Mode 7-31
	Example 3 - Currently Defined Mode 7-32
	Example 3 - Special Usage of This Mode 7-32
	Example 4 - Currently Defined Mode 7-33
	Example 4 - Special Usage of This Mode 7-33

	Programming Model 7-35
	PIXC Registers 7-35
	PIXC Control (PIXC_CTL) Register 7-38
	PIXC Pixels Per Line (PIXC_PPL) Register 7-39
	PIXC Lines Per Frame (PIXC_LPF) Register 7-39
	PIXC Horizontal Start (PIXC_xHSTART) Registers 7-40
	PIXC Horizontal End (PIXC_xHEND) Registers 7-40
	PIXC Vertical Start (PIXC_xVSTART) Registers 7-41
	PIXC Vertical End (PIXC_xVEND) Registers 7-41
	PIXC Transparency Value (PIXC_xTRANSP) Registers 7-42
	PIXC Interrupt Status (PIXC_INTRSTAT) Register 7-42
	PIXC R/Y Conversion Coefficient (PIXC_RYCON) Register 7-43
	PIXC G/U Conversion Coefficient (PIXC_GUCON) Register 7-44
	PIXC B/V Conversion Coefficient (PIXC_BVCON) Register 7-45
	PIXC Color Conversion Bias (PIXC_CCBIAS) Register 7-46
	PIXC Transparency Color Value (PIXC_TC) Register 7-47

	Programming Examples 7-47

	Host DMA Port
	Overview 8-1
	Features 8-2

	Interface Overview 8-3
	Description of Operation 8-4
	Architecture 8-4
	Functional Description 8-5
	HOSTDP Configuration 8-5
	HOSTDP Transactions 8-8
	Host Read Status 8-8
	Host Read Data and Host Write Data Operations 8-9

	HOSTDP Modes of Operation 8-10
	Acknowledge Mode 8-10
	Interrupt Mode 8-14

	DMA STOP Mode and AUTOBUFFER Mode 8-16
	Bus Widths and Endian Order 8-17
	Access Control 8-18
	Improving HOSTDP DMA Bus Bandwidth 8-19
	Control Commands Between External Host and HOSTDP 8-20

	Programming Model 8-22
	BF54x Slave 8-22
	Host Processor 8-23

	Host DMA Port Registers 8-24
	Host DMA Port Control (HOST_CONTROL) Register 8-25
	Host DMA Port Status (HOST_STATUS) Register 8-27
	HOSTDP Timeout (HOST_TIMEOUT) Register 8-29

	Programming Examples 8-31

	General-Purpose Ports
	Overview 9-1
	Features 9-2

	Module Overview 9-3
	External Interfaces 9-4
	Internal Interfaces 9-4

	Pin Multiplexing Scheme 9-4
	Port A 9-9
	Port B 9-10
	Port C 9-11
	Port D 9-12
	Port E 9-13
	Port F 9-14
	Port G 9-15
	Port H 9-16
	Port I 9-17
	Port J 9-18
	Port Multiplexing Control 9-19

	GPIO Functionality 9-21
	Input Mode 9-21
	Output Mode 9-21
	Open-Drain Mode 9-22

	Pin Interrupts 9-23
	Programming Model 9-26
	Port Registers 9-30
	Port Multiplexing Registers 9-35
	Port x Function Enable (PORTx_FER) Registers 9-36
	Port Multiplexer Control (PORTx_MUX) Registers 9-36

	GPIO Registers 9-38
	Port x GPIO Direction Set Register Pairs 9-39
	Port x GPIO Input Enable (PORTx_INEN) Registers 9-40
	Port x GPIO Data Register Groups 9-41

	Pin Interrupt Registers 9-44
	Pin Interrupt Mask Register Pairs 9-46
	Interrupt Request and Latch Registers 9-48
	Interrupt Edge Register Pairs 9-51
	Pin Interrupt Pin State (PINTx_PINSTATE) Register 9-53
	Pin Interrupt Invert Set Register Pairs 9-54
	Pin Interrupt Assignment (PINTx_ASSIGN) Registers 9-56

	Programming Examples 9-60

	General-Purpose Timers
	Overview and Features 10-1
	Features 10-2

	Interface Overview 10-3
	External Interface 10-5
	Internal Interface 10-6

	Description of Operation 10-7
	Interrupt Processing 10-8
	Illegal States 10-11

	Modes of Operation 10-14
	Pulse Width Modulation (PWM_OUT) Mode 10-14
	Output Pad Disable 10-16
	Single Pulse Generation 10-16
	Pulse-Width Modulation Waveform Generation 10-17
	PULSE_HI Toggle Mode 10-19
	Externally-Clocked PWM_OUT 10-23
	Stopping the Timer in PWM_OUT Mode 10-24

	Pulse-Width Count and Capture (WDTH_CAP) Mode 10-27
	Autobaud Mode 10-35
	Capturing Timings from the GP Counter Module 10-36

	External Event (EXT_CLK) Mode 10-36

	Programming Model 10-37
	Timer Registers 10-39
	Timer Enable (TIMER_ENABLEx) Registers 10-40
	Timer Disable (TIMER_DISABLEx) Registers 10-41
	Timer Status (TIMER_STATUSx) Registers 10-43
	Timer Configuration (TIMERx_CONFIG) Registers 10-47
	Timer Counter (TIMERx_COUNTER) Registers 10-49
	TIMERx_PERIOD and TIMERx_WIDTH Registers 10-52
	Summary 10-56

	Programming Examples 10-58

	Core Timer
	Overview and Features 11-1
	Timer Overview 11-2
	External Interfaces 11-2
	Internal Interfaces 11-2

	Description of Operation 11-3
	Interrupt Processing 11-3

	Core Timer Registers 11-4
	Core Timer Control (TCNTL) Register 11-5
	Core Timer Count (TCOUNT) Register 11-6
	Core Timer Period (TPERIOD) Register 11-7
	Core Timer Scale (TSCALE) Register 11-7

	Programming Examples 11-8

	Watchdog Timer
	Overview and Features 12-1
	Interface Overview 12-3
	External Interface 12-3
	Internal Interface 12-3

	Description of Operation 12-4
	Watchdog Timer Registers 12-6
	Watchdog Count (WDOG_CNT) Register 12-6
	Watchdog Status (WDOG_STAT) Register 12-7
	Watchdog Control (WDOG_CTL) Register 12-8

	Programming Examples 12-10

	Rotary Counter
	Overview 13-1
	Features 13-2

	Interface Overview 13-3
	Description of Operation 13-4
	Quadrature Encoder Mode 13-4
	Binary Encoder Mode 13-5
	Rotary Counter Mode 13-6
	Direction Counter Mode 13-7
	Timed Direction Mode 13-7

	Functional Description 13-8
	Input Noise Filtering (Debouncing) 13-8
	Zero Marker (Pushbutton) Operation 13-11
	Boundary Comparison Modes 13-14
	Rotary Encoder Events: Control and Signaling 13-16
	Illegal Gray/Binary Code Events (Two-Step Detection) 13-16
	Up/Down Count Events 13-17
	Zero Count Events 13-17
	Overflow Events 13-17
	Boundary Match Events 13-18
	Zero Marker Events 13-18

	Capturing Timing (Using General-Purpose Timer) 13-18
	Capturing Time Interval, Successive Counter Events 13-19
	Capturing Counter Interval and Read Timing 13-21

	Counter Commands 13-23

	Programming Mode 13-24
	Rotary Counter Registers 13-24
	13-26
	Boundary Register Mode 13-26

	Interrupt Mask (CNT_IMASK) Register 13-28
	Status (CNT_STATUS) Register 13-29
	Command (CNT_COMMAND) Register 13-29
	Debounce Prescale (CNT_DEBOUNCE) Register 13-31
	Counter (CNT_COUNTER) Register 13-32
	Boundary (CNT_MIN and CNT_MAX) Registers 13-32

	Programming Examples 13-34

	Real-Time Clock
	Overview 14-1
	Interface Overview 14-3
	Description of Operation 14-5
	RTC Clock Requirements 14-5
	Prescaler Enable 14-5

	RTC Programming Model 14-7
	Register Writes 14-8
	Write Latency 14-9
	Register Reads 14-10
	Deep Sleep 14-10
	Event Flags 14-11
	Setting Time of Day 14-13
	Using the Stopwatch 14-14
	Interrupts 14-15
	State Transitions Summary 14-17

	RTC Registers 14-20
	RTC Status (RTC_STAT) Register 14-21
	RTC Interrupt Control (RTC_ICTL) Register 14-21
	RTC Interrupt Status (RTC_ISTAT) Register 14-22
	RTC Stopwatch Count (RTC_SWCNT) Register 14-22
	RTC Alarm (RTC_ALARM) Register 14-23
	RTC Prescaler Enable (RTC_PREN) Register 14-23

	Programming Examples 14-24
	Enable RTC Prescaler 14-24
	RTC Stopwatch For Exiting Deep Sleep Mode 14-25
	RTC Alarm to Come Out of Hibernate State 14-27

	Security
	Overview 15-2
	15-5
	Description of Operation 15-6
	Secure State Machine 15-7
	Open Mode 15-8
	Secure Entry Mode 15-9
	Secure Mode 15-10
	SecureMode Control 15-10

	Functional Description 15-13
	Digital Signature Authentication 15-13
	Digital Signature Authentication Performance 15-16

	Protection Features 15-17
	Operating in Secure Mode 15-21
	Entering Secure Mode 15-21
	Exiting Secure Mode 15-21

	Reset Handling in Secure Mode 15-21
	Hardware Reset 15-21
	Clearing Private Data 15-22

	Public Key Requirements 15-24
	Storing public cipher key in public OTP 15-26

	Cryptographic Ciphers 15-26
	Keys 15-27

	Programming Model 15-27
	Secure Entry Service Routine (SESR) API 15-27
	Starting Authentication 15-28
	Memory Configuration 15-29
	Message Placement 15-30
	Digital Signature 15-30
	Message Size Constraints 15-30
	Memory Usage 15-31
	Memory Protection 15-31

	Secure Function, Secure Entry Service Routine Arguments 15-32
	Secure Function Arguments 15-32
	Secure Entry Service Routine Arguments 15-33
	usFlags 15-33
	uslRQMask 15-35
	ulMessageSize 15-35
	ulSFEntryPoint 15-35
	ulMessagePtr 15-36
	Secure Message Execution 15-36
	Return Codes 15-36
	Advanced Encryption Standard (AES) API 15-39
	ADI_AES_DATA Data Type 15-39
	ADI_AES_KEYEXPANSION Data Type 15-41
	ADI_AES_CIPHER Data Type 15-41
	bfrom_AesInit() ROM Routine 15-43
	bfrom_AesKeyexp() ROM Routine 15-44
	bfrom_AesInvKeyexp() ROM Routine 15-45
	bfrom_AesCipher() ROM Routine 15-45
	bfrom_AesInvCipher() ROM Routine 15-46

	SECURE HASH ALGORITHM (SHA-1) API 15-47
	ADI_SHA1 Data Type 15-47
	bfrom_Sha1Init ROM Routine 15-48
	bfrom_Sha1Hash ROM Routine 15-48

	ARC4 API 15-49
	ADI_ARC4_KEY Data Type 15-49
	ADI_ARC4_DATA Data Type 15-49
	bfrom_Arc4Init ROM Routine 15-50
	bfrom_Arc4Cipher ROM Routine 15-50

	Security Registers 15-51
	Secured System Switches 15-52
	SECURE_SYSSWT (0xFFC04320) 15-52

	SECURE_SYSSWT (0xFFC04320) 15-53
	SECURE_CONTROL (0xFFC04324) 15-62
	SECURE_STATUS (0xFFC04328) 15-65

	One-Time Programmable Memory
	OTP Memory Overview 16-1
	OTP Memory Map 16-2
	Error Correction 16-5
	Error Correction Policy 16-6

	OTP Access 16-9
	OTP Timing Parameters 16-11
	OTP_TIMING Register 16-14

	Callable ROM Functions for OTP ACCESS 16-14
	Initializing OTP 16-14
	bfrom_OtpCommand 16-15

	Programming and Reading OTP 16-17
	bfrom_OtpRead 16-17
	bfrom_OtpWrite 16-19
	Error Codes 16-23

	Write-protecting OTP Memory 16-25
	Accessing Private OTP Memory 16-27

	OTP Programming Examples 16-28

	System Reset and Booting
	Overview 17-1
	Reset and Power-up 17-4
	Hardware Reset 17-5
	Software Resets 17-6
	Reset Vector 17-7
	Servicing Reset Interrupts 17-9

	Preboot 17-10
	Factory Page Settings (FPS) 17-11
	Preboot Page Settings (PBS) 17-12
	Alternative PBS Pages 17-13
	Programming PBS Pages 17-14
	Recovering From Misprogrammed PBS Pages 17-14
	Customizing Power Management 17-15
	Customizing Booting Options 17-18
	Customizing the Asynchronous Port 17-19
	Customizing the Synchronous Port 17-21

	Basic Booting Process 17-22
	Block Headers 17-25
	Block Code 17-27
	Target Address 17-31
	Byte Count 17-32
	Argument 17-33

	Boot Host Wait (HWAIT) Feedback Strobe 17-33
	Using HWAIT as RESETOUT Indicator 17-35

	Boot Termination 17-35
	Single Block Boot Streams 17-36
	Direct Code Execution 17-37

	Advanced Boot Techniques 17-39
	Initialization Code 17-39
	Quick Boot 17-43
	Indirect Booting 17-45
	Callback Routines 17-46
	Error Handler 17-48
	CRC Checksum Calculation 17-49
	Load Functions 17-49
	Calling the Boot Kernel at Run Time 17-50
	Debugging the Boot Process 17-51

	Boot Management 17-54
	Booting a Different Application 17-54
	Multi-DXE Boot Streams 17-55
	Determining Boot Stream Start Addresses 17-61
	Initialization Hook Routine 17-61

	Specific Boot Modes 17-62
	No Boot Mode 17-63
	Flash Boot Modes 17-64
	SDRAM Boot Mode 17-69
	FIFO Boot Mode 17-69
	SPI Master Boot Mode 17-70
	SPI Device Detection Routine 17-72

	SPI Slave Boot Mode 17-76
	TWI Master Boot Mode 17-79
	TWI Slave Boot Mode 17-83
	UART Slave Mode Boot 17-84
	OTP Boot Mode 17-89
	Host DMA Boot Modes 17-90
	NAND Flash Boot Mode 17-93
	Supported Devices 17-94
	Auto Detection 17-98
	Boot Stream Processing 17-99
	Software Configurable NAND Boot Modes 17-101
	Sequential Block Mode 17-101
	Block Skip Mode 17-102
	Multiple Image Mode 17-103

	NAND Flash Page Structure 17-105

	Reset and Booting Registers 17-107
	Software Reset (SWRST) Register 17-107
	System Reset Configuration (SYSCR) Register 17-109
	Boot Code Revision Control (BK_REVISION) 17-111
	Boot Code Date Code (BK_DATECODE) 17-112
	Zero Word (BK_ZEROS) 17-113
	Ones Word (BK_ONES) 17-114

	OTP Memory Pages for Booting 17-115
	Lower PBS00 Half Page 17-115
	Upper PBS00 Half Page 17-119
	Upper PBS01 Half Page 17-120
	Lower PBS02 Half Page 17-122
	Upper PBS02 Half Page 17-124
	Reserved Half Pages 17-126

	Data Structures 17-126
	ADI_BOOT_HEADER 17-126
	ADI_BOOT_BUFFER 17-127
	ADI_BOOT_DATA 17-127
	dFlags Word 17-131

	ADI_BOOT_NAND 17-133
	ADI_BOOT_NAND_DEVICE 17-134
	ADI_BOOT_NAND_BUFFER 17-136
	ADI_BOOT_NAND_ACCESS 17-138
	ADI_BOOT_NAND_ADDRESS 17-139
	ADI_BOOT_NAND_ECC 17-141

	Callable ROM Functions for Booting 17-144
	BFROM_FINALINIT 17-144
	BFROM_PDMA 17-144
	BFROM_MDMA 17-144
	BFROM_MEMBOOT 17-145
	BFROM_TWIBOOT 17-146
	BFROM_SPIBOOT 17-147
	BFROM_OTPBOOT 17-149
	BFROM_NANDBOOT 17-150
	BFROM_BOOTKERNEL 17-151
	BFROM_CRC32 17-151
	BFROM_CRC32POLY 17-152
	BFROM_CRC32CALLBACK 17-152
	BFROM_CRC32INITCODE 17-153

	Programming Examples 17-154
	System Reset 17-154
	Exiting Reset to User Mode 17-155
	Exiting Reset to Supervisor Mode 17-155
	Initcode (SDRAM Controller Setup) 17-157
	Initcode (Power Management Control) 17-158
	Initcode (NAND Boot Mode Configuration) 17-160
	Quickboot With Restore From SDRAM 17-162
	XOR Checksum 17-163
	Direct Code Execution 17-164
	Managing PBS Pages in OTP Memory 17-166

	Dynamic Power Management
	Phase-Locked Loop and Clock Control 18-1
	PLL Overview 18-2
	PLL Clock Multiplier Ratios 18-3
	Core Clock/System Clock Ratio Control 18-5

	Dynamic Power Management Controller 18-7
	Operating Modes 18-8
	Dynamic Power Management Controller States 18-8
	Full On Mode 18-8
	Active Mode 18-9
	Sleep Mode 18-9
	Deep Sleep Mode 18-10
	Hibernate State 18-10

	Operating Mode Transitions 18-11
	Programming Operating Mode Transitions 18-14

	Dynamic Supply Voltage Control 18-16
	Power Supply Management 18-16
	Controlling the Voltage Regulator 18-18
	Changing Voltage 18-20
	Powering Down the Core (Hibernate State) 18-22
	Recovery From Hibernate State 18-25

	PLL and VR Registers 18-26
	PLL Divide (PLL_DIV) Register 18-27
	PLL Control (PLL_CTL) Register 18-28
	PLL Status (PLL_STAT) Register 18-29
	PLL Lock Count (PLL_LOCKCNT) Register 18-29
	Voltage Regulator Control (VR_CTL) Register 18-30

	System Control ROM Function 18-31
	Programming Model 18-33
	Access System Control ROM Function in C/C++ 18-33
	Access System Control ROM Function in Assembly 18-34

	Programming Examples 18-37
	Full On Mode to Active Mode and Back 18-38
	Transition to Sleep Mode or Deep Sleep Mode 18-40
	Setting Wakeups and Entering Hibernate State 18-42
	Perform a System Reset or Soft-Reset 18-44
	Change VCO, Core Clock, and System Clock Frequency 18-45
	Changing Voltage Levels 18-47

	System Design
	Pin Descriptions 19-1
	Managing Clocks 19-2
	Managing Core and System Clocks 19-2

	Configuring and Servicing Interrupts 19-2
	Semaphores 19-3
	Example Code for Query Semaphore 19-4

	Data Delays, Latencies, and Throughput 19-4
	Bus Priorities 19-5
	System-Level Hardware Design 19-5
	External Memory Design Issues 19-5
	DDR Memory 19-5
	Memory Bus Pin Muxing and Flow Control 19-6
	Example Asynchronous Memory Interfaces 19-7
	Avoiding Bus Contention 19-9
	BURST FLASH 19-10
	NAND FLASH 19-10

	USB Controller 19-12
	ATAPI Bus 19-13
	Voltage Regulator 19-13
	Signal Integrity 19-14
	Decoupling Capacitors and Ground Planes 19-15
	5 Volt Tolerance 19-17
	Resetting the Processor 19-18
	Recommendations for Unused Pins 19-18
	Programmable Outputs and Pin Multiplexing 19-18
	Test Point Access 19-19
	Oscilloscope Probes 19-19

	Recommended Reading 19-19

	Glossary
	System MMR Assignments
	Dynamic Power Management Registers A-3
	System Reset and Interrupt Control Registers A-4
	Watchdog Timer Registers A-6
	Real-Time Clock Registers A-6
	UART0 Controller Registers A-7
	UART1 Controller Registers A-7
	UART2 Controller Registers A-7
	UART3 Controller Registers A-8
	SPI0 Controller Registers A-8
	SPI1 Controller Registers A-8
	TWI Controller Registers A-8
	SPORT0 Controller Registers A-8
	SPORT1 Controller Registers A-9
	SPORT2 Controller Registers A-9
	SPORT3 Controller Registers A-9
	MXVR Registers A-9
	Keypad Registers A-9
	SDH Registers A-10
	ATAPI Registers A-10
	USB_OTG Registers A-10
	External Bus Interface Unit Registers A-10
	DMA/Memory DMA Control Registers A-12
	EPPI0 Registers A-14
	EPPI1 Registers A-14
	Host DMA Registers A-15
	PIXC Registers A-15
	Ports Registers A-17
	Timer Registers A-26
	CAN Registers A-28
	Handshake MDMA Control Registers A-29
	NAND Flash Controller Registers A-30
	Core Timer Registers A-31
	Rotary Counter Registers A-31
	Security Registers A-32
	Processor-Specific Memory Registers A-33

	Index

	Preface
	Contents of Two Volumes
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Conventions
	Register Diagram Conventions

	1 Introduction
	Peripherals
	Memory Architecture
	Internal Memory
	External Memory
	NAND Flash Controller (NFC)

	I/O Memory Space
	One-Time-Programmable (OTP) Memory

	DMA Support
	Host DMA Interface

	External Bus Interface Unit
	DDR SDRAM Controller
	Asynchronous Controller

	Ports
	General-Purpose I/O (GPIO)

	Two-Wire Interface
	Controller Area Network
	Enhanced Parallel Peripheral Interface (EPPI)
	SPORT Controllers
	Serial Peripheral Interface (SPI) Port
	Timers
	UART Ports
	USB On-The-Go, Dual-Role Device Controller
	ATA/ATAPI-6 Interface
	Keypad Interface
	Secure Digital (SD)/SDIO Controller
	Rotary Counter Interface
	Security
	Media Transceiver Mac Layer (MXVR)
	Real-Time Clock
	Watchdog Timer
	Clock Signals
	Dynamic Power Management
	Full On Mode (Maximum Performance)
	Active Mode (Moderate Dynamic Power Savings)
	Sleep Mode (High Dynamic Power Savings)
	Deep Sleep Mode (Maximum Dynamic Power Savings)
	Hibernate State (Maximum Power Savings)

	Voltage Regulation
	Boot Modes
	Instruction Set Description
	Development Tools

	2 Chip Bus Hierarchy
	Overview
	Internal Interfaces
	Internal Clocks
	Core Bus Overview

	System Overview
	P Port Interface
	D Port Interface
	On-Chip L2 Interface

	Peripheral Access Bus (PAB)
	PAB Performance
	PAB Agents (Masters, Slaves)

	DMA-Related Buses
	Peripheral DMA
	DAB Bus Agents (Masters)
	DAB Arbitration
	DCB Arbitration
	DEB Arbitration
	DAB, DCB, and DEB Performance

	External Access Bus (EAB)
	EAB/DEB Arbitration
	EAB/DEB Performance

	3 Memory
	Memory Architecture
	Internal Memory
	Overview of L1 Instruction SRAM
	Overview of L1 Instruction ROM
	Overview of L1 Data SRAM

	Overview of Scratchpad Data SRAM
	Overview of On-Chip L2
	L1 Instruction Memory
	Instruction Memory Control Register (IMEM_CONTROL)
	L1 Instruction SRAM

	L1 Instruction Cache
	Cache Lines

	Instruction Cache Management
	Instruction Cache Locking by Line
	Instruction Cache Locking by Way
	Instruction Cache Invalidation

	Instruction Test Registers
	ITEST_COMMAND Register
	ITEST_DATA1 Register
	ITEST_DATA0 Register

	L1 Data Memory
	Data Memory Control Register (DMEM_CONTROL)
	L1 Data SRAM
	L1 Data Cache
	Example of Mapping Cacheable Address Space into Data Banks
	Data Cache Access
	Cache Write Method
	Write Buffers
	Interrupt Priority Register (IPRIO) and Write Buffer Depth
	Data Cache Control Instructions
	Data Cache Invalidation

	Data Test Registers
	Data Test Command Register (DTEST_COMMAND)
	Data Test Data 1 Register (DTEST_DATA1)
	Data Test Data 0 Register (DTEST_DATA0)

	On-Chip Level 2 (L2) Memory
	On-Chip L2 Bank Access
	Latency

	One Time Programmable Memory
	External Memory
	Memory Protection and Properties
	Memory Management Unit
	Memory Pages
	Memory Page Attributes

	Page Descriptor Table
	CPLB Management
	MMU Application
	Examples of Protected Memory Regions
	ICPLB Data Registers (ICPLB_DATAx)
	DCPLB Data Registers (DCPLB_DATAx)
	DCPLB Address Registers (DCPLB_ADDRx)
	ICPLB Address Registers (ICPLB_ADDRx)
	CPLB Status Registers
	DCPLB Status Register (DCPLB_STATUS)
	ICPLB Status Register (ICPLB_STATUS)

	CPLB Fault Address Registers
	DCPLB Fault Address Register (DCPLB_FAULT_ADDR)
	ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Ordering of Loads and Stores
	Synchronizing Instructions
	Speculative Load Execution
	Conditional Load Behavior

	Working With Memory
	Alignment
	Cache Coherency
	Atomic Operations
	Memory-Mapped Registers
	Core MMR Programming Code Example

	Terminology

	4 System Interrupts
	Overview
	Features

	Interfaces
	Description of Operation
	Events and Sequencing
	System Peripheral Interrupts

	Programming Model
	System Interrupt Initialization
	System Interrupt Processing Summary

	System Interrupt Controller Registers
	System Interrupt Assignment (SIC_IARx) Registers
	System Interrupt Mask (SIC_IMASKx) Registers
	System Interrupt Status (SIC_ISRx) Registers
	System Interrupt Wakeup (SIC_IWRx) Registers

	Programming Examples
	Clearing Interrupt Requests

	5 Direct Memory Access
	Overview and Features
	DMA Controller Overview
	External Interfaces
	Internal Interfaces
	Peripheral DMA
	Memory DMA
	Handshaked Memory DMA Mode

	Modes of Operation
	Register-Based DMA Operation
	Stop Mode
	Autobuffer Mode

	Two-Dimensional DMA Operation
	Examples of Two-Dimensional DMA

	Descriptor-Based DMA Operation
	Descriptor List Mode
	Descriptor Array Mode
	Variable Descriptor Size
	Mixing Flow Modes

	Functional Description
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	Work Unit Transitions
	Stopping DMA Transfers

	DMA Errors (Aborts)
	DMA Control Commands
	Restrictions

	Handshaked Memory DMA Operation
	Pipelining DMA Requests
	HMDMA Interrupts

	DMA Performance
	DMA Throughput
	Memory DMA Timing Details
	Static Channel Prioritization
	Temporary DMA Urgency
	Memory DMA Priority and Scheduling
	Traffic Control

	Programming Model
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Autobuffering
	Descriptor Structures
	Descriptor Queue Management
	Software-Triggered Descriptor Fetches

	DMA Registers
	DMA Channel Registers
	Peripheral Map (DMAx_PERIPHERAL_MAP and MDMA_yy_PERIPHERAL_MAP) Registers
	DMA Configuration (DMAx_CONFIG and MDMA_yy_CONFIG) Registers
	Interrupt Status (DMAx_IRQ_STATUS and MDMA_yy_IRQ_STATUS) Registers
	Start Address (DMAx_START_ADDR and MDMA_yy_START_ADDR) Registers
	Current Address (DMAx_CURR_ADDR and MDMA_yy_CURR_ADDR) Registers
	Inner Loop Count (DMAx_X_COUNT and MDMA_yy_X_COUNT) Registers
	Current Inner Loop Count (DMAx_CURR_X_COUNT and MDMA_yy_CURR_X_COUNT) Registers
	Inner Loop Address Increment (DMAx_X_MODIFY and MDMA_yy_X_MODIFY) Registers
	Outer Loop Count (DMAx_Y_COUNT and MDMA_yy_Y_COUNT) Registers
	Current Outer Loop Count (DMAx_CURR_Y_COUNT and MDMA_yy_CURR_Y_COUNT) Registers
	Outer Loop Address Increment (DMAx_Y_MODIFY and MDMA_yy_Y_MODIFY) Registers
	Next Descriptor Pointer (DMAx_NEXT_DESC_PTR and MDMA_yy_NEXT_DESC_PTR) Registers
	Current Descriptor Pointer (DMAx_CURR_DESC_PTR and MDMA_yy_CURR_DESC_PTR) Registers

	Handshake MDMA (HMDMA) Registers
	Handshake MDMA Control (HMDMAx_CONTROL) Registers
	Handshake MDMA Initial Block Count (HMDMAx_BCINIT) Registers
	Handshake MDMA Current Block Count (HMDMAx_BCOUNT) Registers
	Handshake MDMA Current Edge Count (HMDMAx_ECOUNT) Registers
	Handshake MDMA Initial Edge Count (HMDMAx_ECINIT) Registers
	Handshake MDMA Edge Count Urgent (HMDMAx_ECURGENT) Registers
	Handshake MDMA Edge Count Overflow Interrupt (HMDMAx_ECOVERFLOW) Registers

	DMA Traffic Control Registers
	DMA Traffic Control Counter Period (DMACx_TCPER) Registers
	DMA Traffic Control Counter (DMACx_TCCNT) Registers
	DMA Controller 1 Peripheral Multiplexer (DMAC1_PERIMUX) Register

	Programming Examples
	Register-Based 2D Memory DMA
	Initializing Descriptors in Memory
	Software-Triggered Descriptor Fetch Example
	Handshake Memory DMA Example

	6 External Bus Interface Unit
	General Overview
	Block Diagram
	On-Chip System Interfaces
	Error Detection
	System Arbitration
	Address Resolution
	Reorder Unit
	DDR Queue Manager

	DDR Arbitration
	DDR SDRAM Controller
	Features

	DDR SDRAM Memory Interface
	DDR SDRAM Programming Model
	DDR Registers
	Memory Control Register 0 (EBIU_DDRCTL0)
	Memory Control Register 1 (EBIU_DDRCTL1)
	Memory Control Register 2 (EBIU_DDRCTL2)
	Memory Control Register 3 (EBIU_DDRCT3), Regular DDR Devices
	Memory Control Register 3 (EBIU_DDRCTL3) Mobile DDR Devices
	Queue Configuration Register (EBIU_DDRQUE)
	Error Address Register (EBIU_ERRADD)
	Error Master Register (EBIU_ERRMST)
	Reset Control Register (EBIU_RSTCTL)

	Mode of Operation - DDR
	Data Flow for 16-bit DDR SDRAMs

	Definition of Standard DDR Terms
	DDR SDRAM System Organization
	DDR SDRAM Configurations Supported
	DDR Timing Parameter Definitions
	DDR Metrics Control Registers
	DDR Metrics Counter Enable (EBIU_DDRMCEN) Register
	DDR Metrics Counter Clear (EBIU_DDRMCCL) Register
	DDR READ Access Count (EBIU_DDRBRCx) Registers
	DDR WRITE Access Count (EBIU_DDRBWCx) Registers
	DDR Page ACTIVATE Count (EBIU_DDRACCT) Register
	DDR TURN AROUND Count (EBIU_DDRTACT) Register
	DDR AUTO-REFRESH Count (EBIU_DDRARCT) Register
	DDR Grant Count (EBIU_DDRGCx) Registers

	Asynchronous Memory Interface
	Asynchronous Memory Address Decode
	Asynchronous Memory Arbitration
	ASYNC Interface Control Registers
	Asynchronous Memory Global Control Register (EBIU_AMGCTL)
	Asynchronous Memory Bank Control Registers (EBIU_AMBCTL0, EBIU_AMBCTL1)
	Memory Bank Select Control Register (EBIU_MBSCTL)
	Flash Memory Bank Control Registers (EBIU_FCTL, EBIU_MODE)
	EBIU Arbitration Status Register (EBIU_ARBSTAT)

	Programmable Timing Characteristics
	Asynchronous Accesses by Core Instructions
	Adding Additional Wait States
	Asynchronous Flash Mode Writes and Reads
	Asynchronous Page Mode Reads
	Synchronous Burst Mode Read

	Bus Request and Grant

	7 Pixel Compositor
	Overview
	Features

	Interface Overview
	Description of Operation
	General Description
	Data Buffer Formats
	Operation in YUV 4:2:2 Format
	Operation in RGB888 Format

	DMA Channels

	Functional Description
	Data Overlay
	Transparency Control
	Transparent Color
	Color Space Conversion
	Color Space Conversion Matrix Equations
	Color Space Converter Output Thresholds
	YUV Conversion Modes
	PIXC Actions
	Special Usage Cases

	Programming Model
	PIXC Registers
	PIXC Control (PIXC_CTL) Register
	PIXC Pixels Per Line (PIXC_PPL) Register
	PIXC Lines Per Frame (PIXC_LPF) Register
	PIXC Horizontal Start (PIXC_xHSTART) Registers
	PIXC Horizontal End (PIXC_xHEND) Registers
	PIXC Vertical Start (PIXC_xVSTART) Registers
	PIXC Vertical End (PIXC_xVEND) Registers
	PIXC Transparency Value (PIXC_xTRANSP) Registers
	PIXC Interrupt Status (PIXC_INTRSTAT) Register
	PIXC R/Y Conversion Coefficient (PIXC_RYCON) Register
	PIXC G/U Conversion Coefficient (PIXC_GUCON) Register
	PIXC B/V Conversion Coefficient (PIXC_BVCON) Register
	PIXC Color Conversion Bias (PIXC_CCBIAS) Register
	PIXC Transparency Color Value (PIXC_TC) Register

	Programming Examples

	8 Host DMA Port
	Overview
	Features

	Interface Overview
	Description of Operation
	Architecture
	Functional Description
	HOSTDP Configuration
	HOSTDP Transactions
	HOSTDP Modes of Operation
	DMA STOP Mode and AUTOBUFFER Mode
	Bus Widths and Endian Order
	Access Control
	Improving HOSTDP DMA Bus Bandwidth
	Control Commands Between the External Host and HOSTDP

	Programming Model
	BF54x Slave
	Host Processor

	Host DMA Port Registers
	Host DMA Port Control (HOST_CONTROL) Register
	Host DMA Port Status (HOST_STATUS) Register
	HOSTDP Timeout (HOST_TIMEOUT) Register

	Programming Examples

	9 General-Purpose Ports
	Overview
	Features

	Module Overview
	External Interfaces
	Internal Interfaces

	Pin Multiplexing Scheme
	Port A
	Port B
	Port C
	Port D
	Port E
	Port F
	Port G
	Port H
	Port I
	Port J
	Port Multiplexing Control

	GPIO Functionality
	Input Mode
	Output Mode
	Open-Drain Mode

	Pin Interrupts
	Programming Model
	Port Registers
	Port Multiplexing Registers
	Port x Function Enable (PORTx_FER) Registers
	Port Multiplexer Control (PORTx_MUX) Registers

	GPIO Registers
	Port x GPIO Direction Set (PORTx_DIR_SET/CLEAR) Register Pairs
	Port x GPIO Input Enable (PORTx_INEN) Registers
	Port x GPIO Data (PORTx/PORTx_SET/PORTx_CLEAR) Register Groups

	Pin Interrupt Registers
	Pin Interrupt Mask (PINTx_MASK_SET/PINTx_MASK_CLEAR) Register Pairs
	Interrupt Request and Latch (PINTx_REQUEST/PINTx_LATCH) Registers
	Interrupt Edge (PINTx_EDGE_SET/PINTx_EDGE_CLEAR) Register Pairs
	Pin Interrupt Pin State (PINTx_PINSTATE) Register
	Pin Interrupt Invert Set (PINTx_INVERT_SET/PINTx_INVERT_CLEAR) Register Pairs
	Pin Interrupt Assignment (PINTx_ASSIGN) Registers

	Programming Examples

	10 General-Purpose Timers
	Overview and Features
	Features

	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Interrupt Processing
	Illegal States

	Modes of Operation
	Pulse Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse-Width Modulation Waveform Generation
	PULSE_HI Toggle Mode
	Externally-Clocked PWM_OUT
	Stopping the Timer in PWM_OUT Mode

	Pulse-Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode
	Capturing Timings from the GP Counter Module

	External Event (EXT_CLK) Mode

	Programming Model
	Timer Registers
	Timer Enable (TIMER_ENABLEx) Registers
	Timer Disable (TIMER_DISABLEx) Registers
	Timer Status (TIMER_STATUSx) Registers
	Timer Configuration (TIMERx_CONFIG) Registers
	Timer Counter (TIMERx_COUNTER) Registers
	TIMERx_PERIOD and TIMERx_WIDTH Registers
	Summary

	Programming Examples

	11 Core Timer
	Overview and Features
	Timer Overview
	External Interfaces
	Internal Interfaces

	Description of Operation
	Interrupt Processing

	Core Timer Registers
	Core Timer Control (TCNTL) Register
	Core Timer Count (TCOUNT) Register
	Core Timer Period (TPERIOD) Register
	Core Timer Scale (TSCALE) Register

	Programming Examples

	12 Watchdog Timer
	Overview and Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Watchdog Timer Registers
	Watchdog Count (WDOG_CNT) Register
	Watchdog Status (WDOG_STAT) Register
	Watchdog Control (WDOG_CTL) Register

	Programming Examples

	13 Rotary Counter
	Overview
	Features

	Interface Overview
	Description of Operation
	Quadrature Encoder Mode
	Binary Encoder Mode
	Rotary Counter Mode
	Direction Counter Mode
	Timed Direction Mode

	Functional Description
	Input Noise Filtering (Debouncing)
	Zero Marker (Pushbutton) Operation
	Boundary Comparison Modes
	Rotary Encoder Events: Control and Signaling
	Illegal Gray/Binary Code Events (Two-Step Detection)
	Up/Down Count Events
	Zero Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	Capturing Timing Information (Using the General-Purpose Timer)
	Capturing Time Interval Between Successive Counter Events
	Capturing Counter Interval and CNT_COUNTER Read Timing

	Counter Commands

	Programming Mode
	Rotary Counter Registers
	Configuration (CNT_CONFIG) Register
	Boundary Register Mode

	Interrupt Mask (CNT_IMASK) Register
	Status (CNT_STATUS) Register
	Command (CNT_COMMAND) Register
	Debounce Prescale (CNT_DEBOUNCE) Register
	Counter (CNT_COUNTER) Register
	Boundary (CNT_MIN and CNT_MAX) Registers

	Programming Examples

	14 Real-Time Clock
	Overview
	Interface Overview
	Description of Operation
	RTC Clock Requirements
	Prescaler Enable

	RTC Programming Model
	Register Writes
	Write Latency
	Register Reads
	Deep Sleep
	Event Flags
	Setting Time of Day
	Using the Stopwatch
	Interrupts
	State Transitions Summary

	RTC Registers
	RTC Status (RTC_STAT) Register
	RTC Interrupt Control (RTC_ICTL) Register
	RTC Interrupt Status (RTC_ISTAT) Register
	RTC Stopwatch Count (RTC_SWCNT) Register
	RTC Alarm (RTC_ALARM) Register
	RTC Prescaler Enable (RTC_PREN) Register

	Programming Examples
	Enable RTC Prescaler
	RTC Stopwatch For Exiting Deep Sleep Mode
	RTC Alarm to Come Out of Hibernate State

	15 Security
	Overview
	Features
	Description of Operation
	Secure State Machine
	Open Mode
	Secure Entry Mode
	Secure Mode
	SecureMode Control

	Functional Description
	Digital Signature Authentication
	Digital Signature Authentication Performance Measurement

	Protection Features
	Operating in Secure Mode
	Entering Secure Mode
	Exiting Secure Mode

	Reset Handling in Secure Mode
	Hardware Reset
	Clearing Private Data

	Public Key Requirements
	Storing public cipher key in public OTP

	Cryptographic Ciphers
	Keys

	Programming Model
	Secure Entry Service Routine (SESR) API
	Starting Authentication
	Memory Configuration
	Message Placement
	Digital Signature
	Message Size Constraints
	Memory Usage
	Memory Protection

	Secure Function and Secure Entry Service Routine Arguments
	Secure Function Arguments
	Secure Entry Service Routine Arguments
	usFlags
	uslRQMask
	ulMessageSize
	ulSFEntryPoint
	ulMessagePtr
	Secure Message Execution
	Return Codes
	Advanced Encryption Standard (AES) API
	SECURE HASH ALGORITHM (SHA-1) API
	ARC4 API

	Security Registers
	Secured System Switches
	SECURE_SYSSWT (0xFFC04320)

	SECURE_SYSSWT (0xFFC04320)
	SECURE_CONTROL (0xFFC04324)
	SECURE_STATUS (0xFFC04328)

	16 One-Time Programmable Memory
	OTP Memory Overview
	OTP Memory Map
	Error Correction
	Error Correction Policy

	OTP Access
	OTP Timing Parameters
	OTP_TIMING Register

	Callable ROM Functions for OTP ACCESS
	Initializing OTP
	bfrom_OtpCommand

	Programming and Reading OTP
	bfrom_OtpRead
	bfrom_OtpWrite
	Error Codes

	Write-protecting OTP Memory
	Accessing Private OTP Memory

	OTP Programming Examples

	17 System Reset and Booting
	Overview
	Reset and Power-up
	Hardware Reset
	Software Resets
	Reset Vector
	Servicing Reset Interrupts

	Preboot
	Factory Page Settings (FPS)
	Preboot Page Settings (PBS)
	Alternative PBS Pages
	Programming PBS Pages
	Recovering From Misprogrammed PBS Pages
	Customizing Power Management
	Customizing Booting Options
	Customizing the Asynchronous Port
	Customizing the Synchronous Port

	Basic Booting Process
	Block Headers
	Block Code
	Target Address
	Byte Count
	Argument

	Boot Host Wait (HWAIT) Feedback Strobe
	Using HWAIT as RESETOUT Indicator

	Boot Termination
	Single Block Boot Streams
	Direct Code Execution

	Advanced Boot Techniques
	Initialization Code
	Quick Boot
	Indirect Booting
	Callback Routines
	Error Handler
	CRC Checksum Calculation
	Load Functions
	Calling the Boot Kernel at Run Time
	Debugging the Boot Process

	Boot Management
	Booting a Different Application
	Multi-DXE Boot Streams
	Determining Boot Stream Start Addresses
	Initialization Hook Routine

	Specific Boot Modes
	No Boot Mode
	Flash Boot Modes
	SDRAM Boot Mode
	FIFO Boot Mode
	SPI Master Boot Mode
	SPI Device Detection Routine

	SPI Slave Boot Mode
	TWI Master Boot Mode
	TWI Slave Boot Mode
	UART Slave Mode Boot
	OTP Boot Mode
	Host DMA Boot Modes
	NAND Flash Boot Mode
	Supported Devices
	Auto Detection
	Boot Stream Processing
	Software Configurable NAND Boot Modes
	NAND Flash Page Structure

	Reset and Booting Registers
	Software Reset (SWRST) Register
	System Reset Configuration (SYSCR) Register
	Boot Code Revision Control (BK_REVISION)
	Boot Code Date Code (BK_DATECODE)
	Zero Word (BK_ZEROS)
	Ones Word (BK_ONES)

	OTP Memory Pages for Booting
	Lower PBS00 Half Page
	Upper PBS00 Half Page
	Upper PBS01 Half Page
	Lower PBS02 Half Page
	Upper PBS02 Half Page
	Reserved Half Pages

	Data Structures
	ADI_BOOT_HEADER
	ADI_BOOT_BUFFER
	ADI_BOOT_DATA
	dFlags Word

	ADI_BOOT_NAND
	ADI_BOOT_NAND_DEVICE
	ADI_BOOT_NAND_BUFFER
	ADI_BOOT_NAND_ACCESS
	ADI_BOOT_NAND_ADDRESS
	ADI_BOOT_NAND_ECC

	Callable ROM Functions for Booting
	BFROM_FINALINIT
	BFROM_PDMA
	BFROM_MDMA
	BFROM_MEMBOOT
	BFROM_TWIBOOT
	BFROM_SPIBOOT
	BFROM_OTPBOOT
	BFROM_NANDBOOT
	BFROM_BOOTKERNEL
	BFROM_CRC32
	BFROM_CRC32POLY
	BFROM_CRC32CALLBACK
	BFROM_CRC32INITCODE

	Programming Examples
	System Reset
	Exiting Reset to User Mode
	Exiting Reset to Supervisor Mode
	Initcode (SDRAM Controller Setup)
	Initcode (Power Management Control)
	Initcode (NAND Boot Mode Configuration)
	Quickboot With Restore From SDRAM
	XOR Checksum
	Direct Code Execution
	Managing PBS Pages in OTP Memory

	18 Dynamic Power Management
	Phase-Locked Loop and Clock Control
	PLL Overview
	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions

	Dynamic Supply Voltage Control
	Power Supply Management
	Controlling the Voltage Regulator
	Changing Voltage
	Powering Down the Core (Hibernate State)
	Recovery From Hibernate State

	PLL and VR Registers
	PLL Divide (PLL_DIV) Register
	PLL Control (PLL_CTL) Register
	PLL Status (PLL_STAT) Register
	PLL Lock Count (PLL_LOCKCNT) Register
	Voltage Regulator Control (VR_CTL) Register

	System Control ROM Function
	Programming Model
	Access System Control ROM Function in C/C++
	Access System Control ROM Function in Assembly

	Programming Examples
	Full On Mode to Active Mode and Back
	Transition to Sleep Mode or Deep Sleep Mode
	Setting Wakeups and Entering Hibernate State
	Perform a System Reset or Soft-Reset
	Change VCO Frequency, Core Clock Frequency and System Clock Frequency
	Changing Voltage Levels

	19 System Design
	Pin Descriptions
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies, and Throughput
	Bus Priorities
	System-Level Hardware Design
	External Memory Design Issues
	DDR Memory
	Memory Bus Pin Muxing and Flow Control
	Example Asynchronous Memory Interfaces
	Avoiding Bus Contention
	BURST FLASH
	NAND FLASH

	USB Controller
	ATAPI Bus
	Voltage Regulator
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	5 Volt Tolerance
	Resetting the Processor
	Recommendations for Unused Pins
	Programmable Outputs and Pin Multiplexing
	Test Point Access
	Oscilloscope Probes

	Recommended Reading

	G Glossary
	A System MMR Assignments
	Dynamic Power Management Registers
	System Reset and Interrupt Control Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	UART0 Controller Registers
	UART1 Controller Registers
	UART2 Controller Registers
	UART3 Controller Registers
	SPI0 Controller Registers
	SPI1 Controller Registers
	TWI Controller Registers
	SPORT0 Controller Registers
	SPORT1 Controller Registers
	SPORT2 Controller Registers
	SPORT3 Controller Registers
	MXVR Registers
	Keypad Registers
	SDH Registers
	ATAPI Registers
	USB_OTG Registers
	External Bus Interface Unit Registers
	DMA/Memory DMA Control Registers
	EPPI0 Registers
	EPPI1 Registers
	Host DMA Registers
	PIXC Registers
	Ports Registers
	Timer Registers
	CAN Registers
	Handshake MDMA Control Registers
	NAND Flash Controller Registers
	Core Timer Registers
	Rotary Counter Registers
	Security Registers
	Processor-Specific Memory Registers

	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

