

CRYSTAL SPECIFICATION

	CS16M024000RD1	_
	49SMD-24-20-20	-
		_
	2018.12.28	_
(PLEASE R	ETURN A COPY WITH APPOVAL	
Hubei TKD	ETURN A COPY WITH APPOVAL Electronic Technology Co.,LT 晶电子科技股份有限公司	D
Hubei TKD	Electronic Technology Co.,LT 晶电子科技股份有限公司	DESIGNER
Hubei TKD 湖北泰	Electronic Technology Co.,LT 晶电子科技股份有限公司	

REV.	Description of Revision History	Date	Designer	Checked By
Ą	New revision	2018-12-28	Sutingting	DaiWei

CRYSTAL SPECIFICATION

- 1. Description:
- 2. Nominal Frequency: 24.00000MHz
- 3. Oscillation Mode: Fundamental
- 4. Cutting Mode:
- 5. Measurement Instrument: S&A 250B(Measured FL)

Quartz Crystal

AT cut

6. Electrical Characteristics:

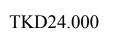
[1]Operation Conditions:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Operating Temperature Range	Topt	-40		85	°C	
Storage Temperature Range	Tstg	-55		105	°C	
Load Capacitance	CL		20		pF	
Drive Level	DL	0.1		100	uW	

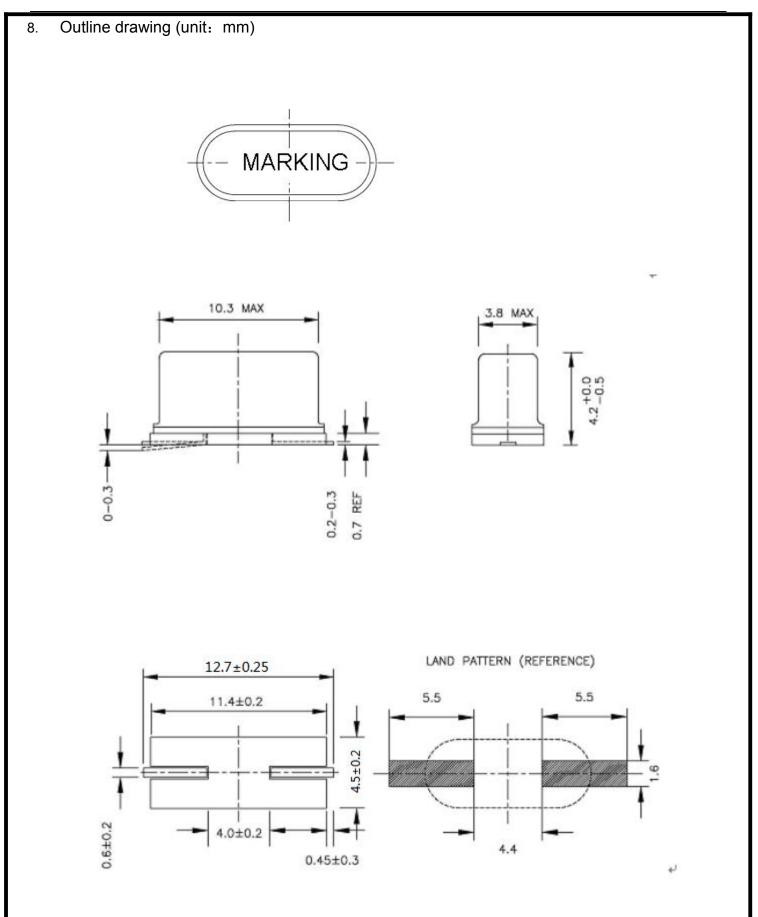
[2]Frequency Stability:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Tolerance	dF/Fo	-20		20	ppm	Refer to Center Frequency@25±3°C
Stability Over Temperature	dF/F25	-30		30	ppm	Refer to Operating Temperature @-40~+85℃
Aging	dF/F25	-3		3	ppm	Per Year

dF/Fo:Frequency Deviation Refer to Center Frequency dF/F25:Frequency Deviation Refer to 25 $^\circ\!\!C$ Frequency

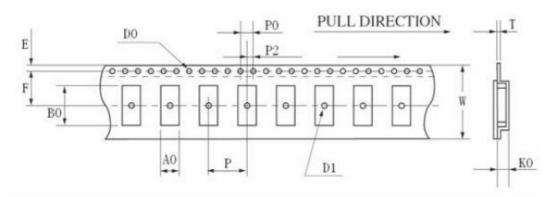

[3]Electrical Performance:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Equivalent Series Resistance	ESR			30	Ω	@Series
Shunt Capacitance	C0			7	pF	
Insulation Resistance	IR	500			MΩ	@DC 100 Volt

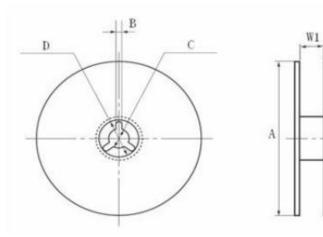

7. Marking:Laser

TKD:Company Logo

24.000:Nominal Frequency

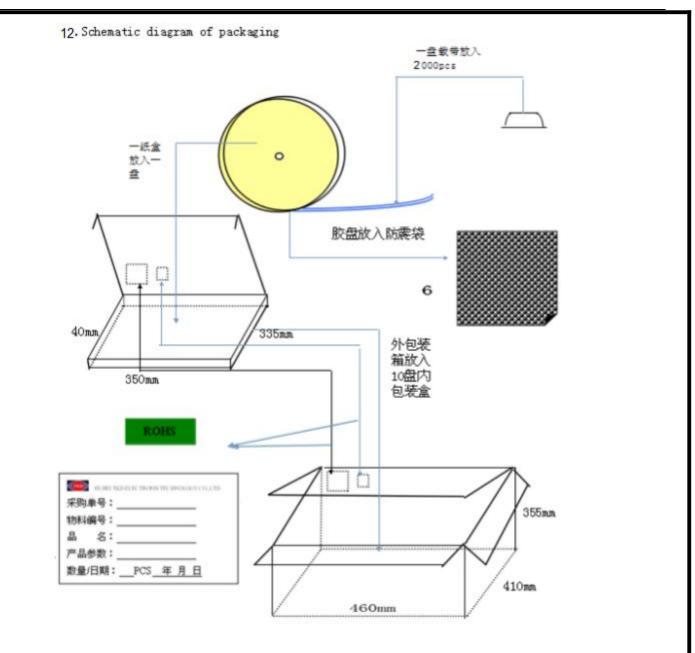

9. Reliability	Specification			
Test Item	Condition of test	Performance		
		Requirements		
Tensile Strength	The unit's lead wire should withstand a tensile force applied to the			
Termination	termination in the direction of its draw-out axis of up to 1000g			
	maintained as is for 10±2s	the unit		
Solder ability	The lead is immersed in a 235±5°C solder bath within 2±0.5	A new uniform coating of		
	seconds.	solder shall cover min		
		mun 95% of the surface		
		being immersed.		
Vibration	Endurance condition by a frequency sweep shall be made. The	(1).Frequency		
	entire frequency range from 10HZ to 50HZ and return to	Change:±5ppm		
	10HZ, shall be transverseb in 1min. Amplitude(total	(2).Resistance:±15%		
	excursion):1.5mm this motion shall be applied for a period of 2h			
	each of 3 mutually perpendicular axes(a total of 6h)			
Drop	Form 70cm height 3 times on 3cm hard wooden floor	(1).Frequency		
		Change:±5ppm		
		(2).Resistance:±15%		
Shock	Peak acceleration:981m/s ² duration of the pulse :6ms three	(1).Frequency		
	successive shocks shall be applied in both direction of 3 mutually	• • • • •		
	perpendicular axes(a total of 18 shocks)	(2).Resistance:±15%		
Damp heat	The unit shall be stored at a temperature of 40±2°C with relative			
	humidity of 90%to95% for 48h, then it shall be subjected to	• • • • •		
	standard atmospheric conditions for 1 \sim 2h after which	(2).Resistance:±15%		
Drubest	measurement shall be made.			
Dry heat	The unit shall be stored at a temperature of $100^{\circ}C\pm 5^{\circ}C$ for 24h,			
	then it shall be subjected to standard atmospheric conditions for	0		
Cold	$1 \sim 2h$ after which measurement shall be made. The unit shall be stored at a temperature of $40^{\circ}C \pm 5^{\circ}C$ for 48h, then	(2).Resistance:±15%		
Cold	it shall be subjected to standard atmospheric conditions for $1 \sim 2h$			
	after which measurement shall be made.	Change:±5ppm (2).Resistance:±15%		
Aging	The unit shall be stored at a temperature of $85^{\circ}C\pm5^{\circ}C$ for 7d then it	Refer to verdict		
Aging	shall be subjected to standard atmospheric conditions for $1 \sim 2h$	specification		
	after which measurement shall be made.	specification		
Temperature	The unit shall be subjected to 5 successive change of temperature	Refer to verdict		
cycling	cycles, each as show in table below, then it shall be subjected to	specification		
Gyönnig	standard atmospheric conditions for 1 \sim 2h after which			
	measurement shall be made			
	Temperature Duration			
	$1 -40^{\circ}C \pm 3^{\circ}C \qquad 30 \text{min}$			
	2 Standard atmospheric Within 30s			
	conditions			
	3 100℃±3℃ 30min			
	4 Standard atmospheric Within 30s			
	conditions			

Sealing The crystal filter unit shall be immersed in a industry alcohol for 5±0.5 minutes then 25±3°C 1~2 Hr before testing Insulation Resistance>500MΩ Resistance to soldering heat 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Test Item	Condition of test	Performance Requirements
Resistance to soldering heat Refer to verdict specification Refer to verdict speci	Sealing		Insulation
		PEAK 10S MAX	Refer to verdict



10. Packing Desrciption

T1


N

	HC-49SMD	804.5	7050	6035	5032	4025	3225
w	24.00 ± 0.30	16.00 ± 0.05	16.00 ± 0.05	12.00 ± 0.05	12.00 ± 0.05	12.00 ± 0.05	12.00 ± 0.05
Е	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10	1.75 ± 0.10
F	11.5 ± 0.10	7.5±0.10	7.5±0.10	5.5±0.10	5.5±0.10	5.5 ± 0.10	5.5±0.10
Т	0.40 ± 0.05	0.35 ± 0.05	0.35 ± 0.05	0.35 ± 0.05	0.35 ± 0.05	0.35 ± 0.05	0.30 ± 0.05
P	8.00 ± 0.10	0.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10	8.00 ± 0.10
PO	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	4.00 ± 0.10
P2	2.00 ± 0.10	2.00 ± 0.10	2.00 ± 0.10	2.00 ± 0.10	2.00 ± 0.10	2.00 ± 0.10	2.00 ± 0.10
DO	ф1.50+0.10	ф1.50+0.10	ф1.50+0.10	ф1.50+0.10	ф1.50+0.10	Φ1.50+0.10	ф1.50+0.10
Dl	\$ 1.50MIN	ф1,501MIIN	ф1.50MIN	\$ 1.50MIN	@1.50MIN	@1.50MIN	ф1.50MIN
A0	4.60 ± 0.10	4.85 ± 0.10	5.40 ± 0.10	3.90 ± 0.10	3.60 ± 0.10	2.80 ± 0.10	2.85 ± 0.10
K0	4.40 ± 0.10	1.90 ± 0.10	1.80 ± 0.10	1.50 ± 0.10	1.10 ± 0.10	0.90 ± 0.10	0.85 ± 0.10
BO	14.20 ± 0.15	8.60 ± 0.15	7.40 ± 0.10	6.40 ± 0.10	5.40 ± 0.10	4.30 ± 0.10	3.55 ± 0.10
A	\$330 ± 1.0	Φ178±2.0	ф178±2.0	\$ 178 ± 2.0	¢ 178 ± 2.0	¢178±2.0	ф178±2.0
в	2.30 ± 0.20	2.00 ± 0.50	2.00 ± 0.50	2.00 ± 0.50	2.00 ± 0.50	2.00 ± 0.50	2.00 ± 0.50
С	Φ13.5±0.20	\$ 13.2 ± 0.20	\$ 13.2 ± 0.20	ф13.2±0.20	Φ13.2 ± 0.20	φ13.2±0.20	φ13.2±0.20
D	Φ21.5±0.20	Φ20.0±0.50	Ф 20.0 ± 0.50	ф 20.0 ± 0.50	Φ20.0 ± 0.50	\$20.0 ± 0.50	ф 20.0 ± 0.50
N	Φ100.0±0.5	φ60.5±1.0	Φ60.5±1.0	Φ60.5±1.0	Φ60.5±1.0	Φ60.5±1.0	ф60.5±1.0
W1	24.5 ± 0.20	16.5 ± 0.20	16.5 ± 0.20	12.5 ± 0.20	12.5 ± 0.20	12.5 ± 0.20	12.5 ± 0.20
T1	2.30 ± 0.20	1.80 ± 0.20	1.80 ± 0.20	1.80 ± 0.20	1.80 ± 0.20	1.80 ± 0.20	1.80 ± 0.20

