

HD Starlight Sensor

FEATURES

- Best-in-class low-light performance
- True single exposure wide dynamic range operation (25000:1) to avoid motion artifacts
- Type 1/1.2-inch CMOS sensor
- Support both Rolling Shutter mode and Global Shutter mode
- High resolution imaging array: 1920(H) x 1080(V)
- Up to 100 fps @1080P in Rolling Shutter mode and 50 fps in Global Shutter mode
- Low noise: 1.2 e- RMS @ 30 fps in Rolling Shutter mode, 6.5 e- RMS @ 30 fps in Global Shutter mode
- 6.5µm by 6.5µm 5T active pixels
- Peak quantum efficiency > 50% at 600nm
- Protection against black-sun artifacts
- Low power consumption (<0.4 W @ 30 fps)

APPLICATIONS

Video surveillance that demands low light performance as well as motion artifacts free high dynamic range imaging

DESCRIPTION

Vimicro's VC0201 is a high resolution, low-noise CMOS image sensor intended for video surveillance requiring high frame rate operation as well as high dynamic range capability at very low light levels. The device features an array of 5T pixels on a 6.5 µm pitch with an active imaging area of 1920(H) x 1080(V) pixels with support for both Rolling Shutter and Global Shutter readout modes. The sensor supports user-programmable row and column start/stop control in region of interest (ROI) readout mode. The sensor supports full frame readout up to 100 fps in Rolling Shutter mode and 50 fps in Global Shutter mode.

Parameter	Typical value
Active array size	2048 (H) x 1144 (V)
Pixel size	6.5 µm x 6.5 µm
Dimensions of active area	13311.6 microns (H) x 7435.6 microns (V)
Dimensions of die	15675 microns (H) x 14829.8 microns (V)
Distance from die center to center of active area	3187.68 microns
Shutter type	Rolling Shutter, Global Shutter (snapshot). ROI readout capabilities for both shutter types.
Maximum frame rate	100 fps (Rolling Shutter) (@ 283MHz clock rate) 50 fps (Global Shutter)
Number of readout ports	1
Maximum line rate	114kHz (8.7 μs/line)
Maximum pixel rate	234 MHz (3.5ns/pixel, and 2048 pixels/line, + ADC dead time)
ADC resolution	2 x 11-bit
Column level amplifier gain	1x or 2x (low gain output) 10x or 30x (high gain output)
Power consumption	0.8W dual channel @100fps, 0.3W in Low-Gain only @50fps
I/O interface	1.8V LVCMOS and 1.8V HSTL

General

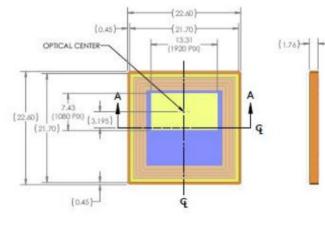
Electrical-optical Specifications

Parameter	Specification	Notes
Intra-frame dynamic range	30000:1.2 => 25000:1	
PRNU	< 3% RMS	at 75% of max output
Dark current	< 35 e-/pixel/sec	at 20°C
Dark current non-uniformity	< 65 e-/pixel/sec RMS	at 20°C
Fixed pattern noise (FPN)	< 2% RMS uncorrected	of the max output
Conversion gain (DN/e-)	High gain output - 1.7 at 30x - 0.55 at 10x Low gain output - 0.12 at 2x - 0.055 at 1x	w/1.4V ADC input range (ADC input range is user programmable from 0.8V to 2V) (30x: 1.3DN/e- w/1.85V ADC default input range)
Full well capacity (FWC)	> 30,000 e-	
Lag	< 0.1%	of maximum output
Non-linearity	< 1%	
Fill factor with microlens	> 0.9	
Microlens F-number	1.5	
Peak QE	> 0.50	at 600nm
MTF	> 0.4	at 600nm
Temporal read noise	< 1.2 e- RMS @ 50 fps Rolling Shutter readout, @T=30°C	Median value of read noise distribution from high gain output (30x gain)
Spectral sensitivity range	400 – 700nm	See QE plots for spectral sensitivity in the Near IR out to 1100 nm

Recommended Operating Condition

Parameter	Definition	Min	Nom	Мах	Units
AVDD	Analog circuits power supply (avg 90 mA, Peak at 170mA on 5% duty cycle)	3.135	3.3	3.465	V
AVDD_PIX	Pixel source follower power supply (10 mA avg)	3.135	3.3	3.465	V
AVDD_RST 1	Pixel reset power supply1 (1mA)	2.50	3.00 (RS) or 2.77 (GS)	3.3	V
AVDD_RST 2	Pixel reset power supply2 (1mA)	2.50	3.0	3.3	V
DVDD	Digital circuits power supply (160mA)	1.71	1.8	1.89	V
DVDD_IO	I/O circuits power supply (65 mA) (with no terminations on outputs)	1.71	1.8	1.89	V
VTX1_POS	TX1 Transfer gate positive power supply (80 mA/ 1µsec pulse in GS, <1mA in RS).	3.135	3.3	3.465	V
VTX2_POS	TX2 Transfer gate positive power supply (80 mA/ 1µsec pulse in GS, <1mA in RS)	3.135	3.3	3.465	V
VTX1_NEG	TX1 Transfer gate negative power supply (80 mA/ 1µsec pulse in	-1.5	-0.4	+0.3	V

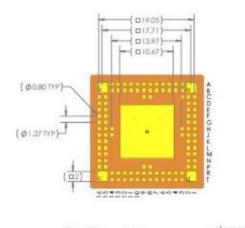
	GS, < 1mA in RS)				
VTX2_NEG	TX2 Transfer gate negative power supply (80 mA/ 1µsec pulse in GS, < 1mA in RS)	-1.5	-0.4 or +0.8	+0.85	V
Toperation	Sensor junction temperature	-40	30	+55	С°

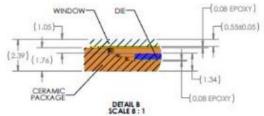

(.127)

0 (.127)

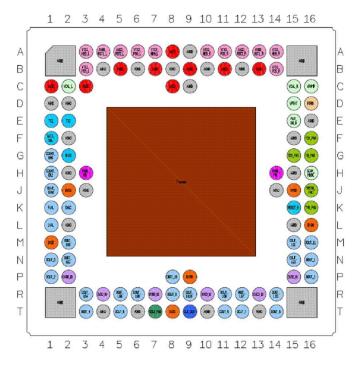
Package

All the dimensions in the below drawing are in mm.


Package



B


1777

SECTION A-A SCALE 3:1

Pad Diagram

Pad List

The VC0201 Standard package image sensor has 105 pads in a LGA (Land Grid Array) package. The list shown below provides a complete description of the pad names, their functions and electrical requirements. Note the suffix L is appended to pads on left side of the sensor, and the suffix R is appended to pads on right side of the sensor.

Pad number	Pad name	Pad type	Signa I type	Power voltage/current	Pad description
A3	VTX1_NEG_L	Power		0~-1.5v/80mA max, Ripple < 100µV RMS	TX1 negative supply
A4	AVDD_RST1_L	Power		2.7-3.0v/1 mA, Ripple < 10 μV RMS	AVDD_RST1 reset supply
A5	AVDD_RST2_L	Power		3.0v/1 mA, Ripple < 10 µV RMS	AVDD_RST2 reset supply
A6	VTX2_POS_L	Power		3.3v/80mA max, Ripple < 1 mV RMS	TX2 positive supply
A7	VTX2_NEG_L	Power		+0.8v to -1.5v/80mA max, Ripple < 1 mV RMS	TX2 negative supply
A8	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
A9	AGND	Ground			AGND common ground 0V
A10	VTX2_NEG_R	Power		+0.8v to -1.5v/80mA max, Ripple < 1 mV RMS	TX2 negative supply
A11	VTX2_POS_R	Power		3.3v/80mA max, Ripple < 1 mV RMS	TX2 positive supply
A12	AVDD_RST2_R	Power		3.0v/1 mA, Ripple < 10 µV RMS	AVDD_RST2 reset supply
A13	AVDD_RST1_R	Power		2.7-3.0v/1 mA, Ripple < 10 μV RMS	AVDD_RST1 reset supply
A14	VTX1_NEG_R	Power		0∼-1.5v/80mA max, Ripple < 100µV RMS	TX1 negative supply
B3	VTX1_POS_L	Power		3.3v/80mA max, Ripple < 1 mV RMS	TX1 positive supply
B4	AGND	Ground			AGND common ground 0V
B5	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
B6	AGND	Ground			AGND common ground 0V
B7	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
B8	AGND	Ground			AGND common ground 0V

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
В9	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
B10	AGND	Ground			AGND common ground 0V
B11	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
B12	AGND	Ground			AGND common ground 0V
B13	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
B14	VTX1_POS_R	Power		3.3v/80mA max, Ripple < 1 mV RMS	TX1 positive supply
C1	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
C2	VCAL_L	Input	Analog		Optional column calibration reference voltage. Normally not used and so this pad is left as no connection or tied to ground. When it is used, the user inputs a fixed voltage (2.5V-1.0V, 1mA), when Register 2 bit 18 = 0 (not the default). With this Register setting, VCAL is connected to the column amplifier inputs (instead of the pixel floating diffusion voltages being connected to the column amplifier inputs).
C3	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each line time, Ripple < 1mV RMS	AVDD analog supply
C8	AVDD	Power		3.3v/90mA average, 170mA peak on 5% duty cycle for each	AVDD analog supply

VC0201

	line time, Ripple <	
	1mV RMS	

Pad	Pad name	Pad	Signal	Power	Pad description
number		type	type	voltage/current	AGND common
C9	AGND	Ground			ground OV
C15	VCAL_R	Input	Analog		Optional column calibration reference voltage. Normally not used and so this pad is left as no connection or tied to ground. When it is used, the user inputs a fixed voltage (2.5V-1.0V, 1mA), when Register 2 bit 18 = 0 (not the default). With this Register setting, VCAL is connected to the column amplifier inputs (instead of the pixel floating diffusion voltages being connected to the column amplifier inputs).
C16	VRAMP	Input	Analog		Optional external VRAMP voltage that can be used in place of the internally provided VRAMP. Normally this pad is not used and can be left as a no connection or tied to ground. If it is used, the user inputs the ADC ramp voltage (from 1.0V to 2.5V, 20mA) using timing signals from COUNT_EN[1:0].
D1	AGND	Ground			AGND common ground 0V
D2	AGND	Ground			AGND common ground 0V

D15	VPTAT	Output	Analog	Temperature sensor Output. This pad will output a voltage of slightly over 2 Volts at room temperature that will change linearly with temperature with a slope of 5 to 7 mV per degree Celsius. The exact calibration of offset and slope for VPTAT must be performed by the user with a reference temperature sensor (e.g. a thermocouple).
D16	RTRIM	Output	Analog	External current reference resistor pad. This pad must have a $12.2 k\Omega$ resistor attached to this pad at one end and tied to ground at the other end. Providing this pad with a path to ground through a 12.2 $k\Omega$ resistor is necessary for the functioning of the column amplifiers.
E1	TX1	Input	1.8v Ivcmos	Global TX1 Charge transfer control, rise/fall time < 500ns, Skew < 100ns, Ripple < 100µV RMS

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
E2	TX2	Input	1.8v Ivcmos		Global TX2 Charge dump control, rise/fall time < 500ns, Skew < 100ns, Ripple < 1mV RMS
E15	PWR_DN_B	Input	1.8v Ivcmos		Power Down Input (active low). Setting this pad to logic 0 has the same effect as setting Register 2 bit 25 to 1. It enables the low power control register, Register 12.
E16	AGND	Ground			AGND common ground 0V

F1DATA_SELInput1.8v ivemosDATA_SEL = 0 selects wavetable A for sensor readout and wavetable B for read/write access. DATA_SEL = 1 selects wavetable A for read/write access. Typically, for Rolling Shutter operation, wavetable A is always used for sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmosreadout and wavetable B for read/write access. DATA_SEL = 1 selects wavetable B for sensor readout and wavetable A for read/write access. Typically, for Rolling Shutter operation, wavetable A is always used for sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable B (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmos
F1DATA_SELInput1.8v Ncmosaccess.DATA_SEL = 1 selects wavetable B for sensor readout and wavetable A for read/write access. Typically, for Rolling Shutter operation, wavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v NcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmos= 1 selects wavetable B for sensor readout and wavetable A for read/write access. Typically, for Rolling Shutter operation, wavetable A is always used for sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmosB for sensor readout and wavetable A for read/write access. Typically, for Rolling Shutter operation, wavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmosand wavetable A for read/write access. Typically, for Rolling Shutter operation, wavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmosread/write access. Typically, for Rolling Shutter operation, wavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmosTypically, for Rolling Shutter operation, wavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmosShutter operation, wavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInput1.8v lvcmoswavetable A is always used fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F1DATA_SELInputIvemosused fro sensor readout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvemosSPI clock (clk) This clock must be 25 MHz or less.
Feadout, so DATA_SEL = 0 (fixed). For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
For Global Shutter operation, DATA_SEL = 0 selects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F16TCK_PADInput1.8v lycmosSPI clock (clk) This clock must be 25 MHz or less.Spi clock (clk) This clock must be 25 MHz or less.
F16TCK_PADInput1.8v lvcmos1.8v lvcmosSelects wavetable A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.
A (the GS Reset frame) and DATA_SEL = 1 selects wavetable B (the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F2AGNDGroundAGND common ground 0VF15AGNDGroundSPI clock (clk) This clock must be 25 MHz or less.
F16TCK_PADInput1.8v lvcmos1.8v lvcmosSPI clock (clk) This clock must be 25 MHz or less.
F16TCK_PADGroundInput1.8v lvcmosSel the GS Data frame) so DATA_SEL is constantly switching between 0 and 1.F15AGNDGroundAGND common ground 0VF16TCK_PADInput1.8v SPI clock (clk) This clock must be 25 MHz or less.
F2 AGND Ground Ground AGND common ground 0V F15 AGND Ground AGND common ground 0V F16 TCK_PAD Input 1.8v lvcmos Input 1.8v lvcmos SPI clock (clk) This clock must be 25 MHz or less.
F2 AGND Ground Constantly switching between 0 and 1. F2 AGND Ground AGND common ground 0V F15 AGND Ground AGND common ground 0V F16 TCK_PAD Input 1.8v lvcmos SPI clock (clk) This clock must be 25 MHz or less.
F2 AGND Ground AGND common ground 0V F15 AGND Ground AGND common ground 0V F16 TCK_PAD Input 1.8v lvcmos F16 TCK_PAD Input 1.8v lvcmos
F2 AGND Ground AGND common ground 0V F15 AGND Ground AGND common ground 0V F16 TCK_PAD Input 1.8v lvcmos SPI clock (clk) This clock must be 25 MHz or less.
F15 AGND Ground AGND common ground 0V F16 TCK_PAD Input 1.8v lvcmos SPI clock (clk) This clock must be 25 MHz or less.
F15 AGND Ground ground 0V F16 TCK_PAD Input 1.8v lvcmos SPI clock (clk) This clock must be 25 MHz or less.
F16 TCK_PAD Input 1.8v Ivcmos SPI clock (clk) This clock must be 25 MHz or less.
F16 TCK_PAD Input 1.8v Ivcmos clock must be 25 MHz or less.
' IVCMOS or less.
external VRAMP
synchronization
G1 COUNT_EN0 Output 1.8v hstl Output ignored unless the
external VRAMP (pad
C16) is being used
(which it typically is
not).
External start/pause
G2 READ Input 1.8v row counter and readout activities
control Input from pad
SPI serial data Output
G15 TDO_PAD Output 1.8V fisti (so)
G16 TDI_PAD Input 1.8v SPI serial data Input
Ivernos (si) External count and
external count and external VRAMP
synchronization
Output, bit 1. Normally
H1 COUNT_EN1 Output 1.8v hstl ignored unless the
external VRAMP (pad
C16) is being used
(which it typically is not).
H2 AGND Ground AGND common

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
H3	AVDD_PIX	Power		3.3v/10mA avg, Ripple < 100 μV RMS	Pixel source follower supply
H14	AVDD_PIX	Power		3.3v/10mA avg, Ripple < 100 µV RMS	Pixel source follower supply
H15	AGND	Ground			AGND common ground 0V
H16	SCAN_MODE	Input	1.8v Ivcmos		Input switch to put the sensor into "Scan Mode" when logic 1 is input. SCAN_MODE is an internal BAE test so the customer should always tie this pad to ground.
J1	CHARGE_TRA NS	Output	1.8v hstl		Marker pulse indicating when data sampling of the floating node voltage is occurring for the selected row. This signal comes directly from the wavetable without any modification. In Global Shutter, the user must supply TX1, TX2, and DATA_SEL inputs on external pads, and the timing of these signals should (usually) be correlated with CHARGE_TRANS.
J2	DVDD	Power		1.8v/160 mA max, Ripple < 25 mV RMS	DVDD digital core supply
J3	AGND	Ground			AGND common ground 0V
J14	AGND	Ground			AGND common ground 0V
J15	DVDD	Power		1.8v/160 mA max, Ripple < 25 mV RMS	DVDD digital core supply
J16	TRSTB_PAD	Input	1.8v Ivcmos		Optional SPI Reset This pad is optional but it is still functional in that a logic 0 on this pad will put the SPI controller in a reset state that prevents the other SPI pads from working. Therefore, in SPI mode, this pad should be tied to logic 1.

K1	FVAL	Output	1.8v hstl	Frame valid Output, also called F_VALID. Will be high when data from the physical array (i.e. active imager rows and dark rows, but not pre-scan rows) is being output on the DOUT/DOUT_LG pads.
К2	SYNC	Output	1.8v hstl	Marker pulse for line or frame. This signal comes from the wavetable and will pulse once at the beginning of each line (if Register 11 bit 14 = 0, the default) or once at the beginning of

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
					each frame (if Register 11 bit 14 = 1).
K15	RESET_B	Input	1.8v Ivcmos		Active low reset to the chip. RESET_B = 0 will reset all state machines and reload default values to the registers. The effect of a RESETB = 0 on the chip is equivalent to power cycling the chip.
K16	TMS_PAD	Input	1.8v Ivcmos		SPI active low chip enable (ceb)
L1	LVAL	Output	1.8v hstl		Line valid Output, also called L_VALID. Will be high once each line during the period each line time when data is appearing on the DOUT/DOUT_LG pads.
L2	AGND	Ground			AGND common ground 0V
L15	AGND	Ground			AGND common ground 0V
L16	DVDD	Power		1.8v/160 mA max, Ripple < 25 mV RMS	DVDD digital core supply
M1	DVDD	Power		1.8v/160 mA max, Ripple < 25 mV RMS	DVDD digital core supply
M2	DOUT_LG0	Output	1.8v hstl		If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 0. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If

VC0201

				Register 2 bit 20 = 1, this pad is forced to 0.
M15	DOUT_LG1	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 1. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0.
M16	DOUT_11	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is always 0 because the DOUT[10:0] pads will only output data from the High gain channel. If Register 2 bit 20 = 1, data multiplexing for the DOUT pads is enabled, and this Output will be logic 0 when DOUT[10:0] is High gain data and this Output will be logic 1 when DOUT[10:0] is Low gain data.
N1	DOUT_0	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 0. The DOUT[10:0] pad data is in Gray code and must be converted to binary

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
					off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 0. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on

				DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
N2	DOUT_LG2	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 2. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0.
N15	DOUT_LG3	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 3. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0.
N16	DOUT_1	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 1. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 1. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.

P1	DOUT_2	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 2. The DOUT[10:0] pad data is in Gray code
----	--------	--------	-----------	--

Pad number	Pad name	Pad	Signal	Power	Pad description
		type	type	voltage/current	and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 2. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
P2	DVDD_IO	Power		1.8v/65 mA max, Ripple < 1 mV RMS	DVDD digital core supply
P8	DOUT_10	Output	1.8v hstl		If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 10. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 10. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad.

					Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
P9	DVDD	Power		1.8v/160 mA max, Ripple < 25 mV RMS	DVDD digital core supply
P15	DVDD_IO	Power		1.8v/65 mA max, Ripple < 1 mV RMS	DVDD digital core supply
P16	DOUT_3	Output	1.8v hstl		If Register 2 bit $20 = 0$ (the default), this pad is High gain ADC Output bit 3. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit $20 = 1$, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
					gain of ADC Output bit 3. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
R3	DOUT_LG4	Output	1.8v hstl		If Register 2 bit $20 = 0$ (the default), this pad is Low gain ADC Output bit 4. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit $20 = 1$, this pad is forced to 0.
R4	DVDD_IO	Power		1.8v/65 mA max,	DVDD digital core

VC0201

				Ripple < 1 mV RMS	supply
R5	DOUT_LG6	Output	1.8v hstl		If Register 2 bit $20 = 0$ (the default), this pad is Low gain ADC Output bit 6. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit $20 = 1$, this pad is forced to 0.
R6	DOUT_LG8	Output	1.8v hstl		If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 8. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0.
R7	DVDD_IO	Power		1.8v/65 mA max, Ripple < 1 mV RMS	DVDD digital core supply
R8	DOUT_8	Output	1.8v hstl		If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 8. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 8. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0],

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
					including this pad. In any case, DOUT[10:0] is in Gray code and
					must be converted to binary off-chip.

R9	DOUT_LG10	Output	1.8v hstl		If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 10. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0.
R10	DVDD_IO	Power		1.8v/65 mA max, Ripple < 1 mV RMS	DVDD digital core supply
R11	DOUT_LG9	Output	1.8v hstl		If Register 2 bit $20 = 0$ (the default), this pad is Low gain ADC Output bit 9. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit $20 = 1$, this pad is forced to 0.
R12 R13	DOUT_LG7 DVDD IO	Output	1.8v hstl	1.8v/65 mA max,	If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 7. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0. DVDD digital core
R14	DOUT_LG5	Output	1.8v hstl	Ripple < 1 mV RMS	supply If Register 2 bit 20 = 0 (the default), this pad is Low gain ADC Output bit 5. The DOUT_LG[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, this pad is forced to 0.
Т3	DOUT_4	Output	1.8v hstl		If Register 2 bit $20 = 0$ (the default), this pad is High gain ADC Output bit 4. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit $20 = 1$, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of

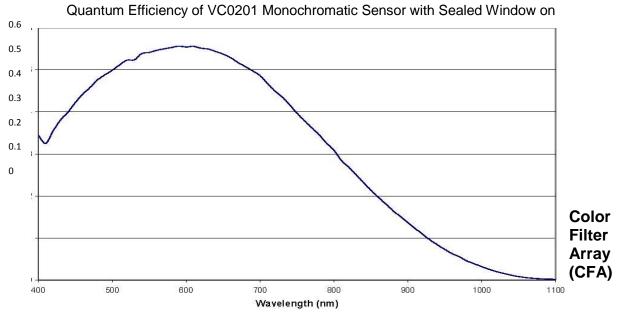
	ADC Output bit 4. If the binary value of the
	High gain channel is
	less than or equal to
	the threshold, High
	gain data will appear
	on DOUT[10:0],
	including this pad.
	Otherwise, Low gain
	data will appear on
	DOUT[10:0],

Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
					including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
T4	AGND	Ground			AGND common ground 0V
T5	DOUT_6	Output	1.8v hstl		If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 6. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 6. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
Т6	AGND	Ground			AGND common ground 0V
Τ7	SCLK_PAD	Input	1.8v hstl		System clock. Input frequency should be between 30 MHz and 283 MHz.
Т8	DVDD	Power		1.8v/160 mA max, Ripple < 25 mV RMS	DVDD digital core supply

Т9	CLK_OUT	Output	1.8v hstl	Clock to synchronize the data Output. This output clock is from the user-supplied input clock SCLK. CLK_OUT may have some phase shift relative to SCLK but it will be of the same frequency. The phase of the data on the DOUT and DOUT_LG pads is aligned to the phase of CLK_OUT.
T10	AGND	Ground		AGND common ground 0V
T11	DOUT_9	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 9. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 9. If the binary value of the High gain channel is less

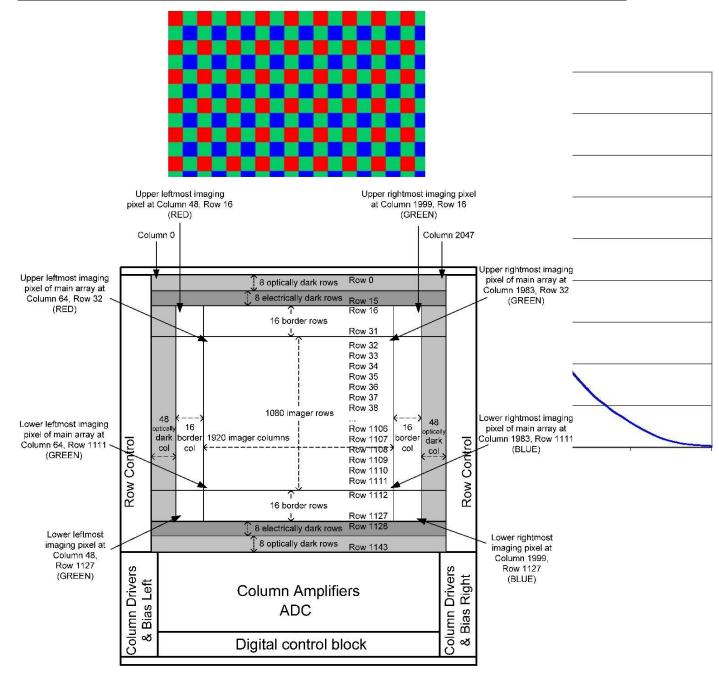
Pad number	Pad name	Pad type	Signal type	Power voltage/current	Pad description
					than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.

T12	DOUT_7	Output	1.8v hstl	If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 7. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 7. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case, DOUT[10:0] is in Gray code and must be converted to binary off-chip.
T13	AGND	Ground		AGND common
T14	DOUT_5	Output	1.8v hstl	ground 0V If Register 2 bit 20 = 0 (the default), this pad is High gain ADC Output bit 5. The DOUT[10:0] pad data is in Gray code and must be converted to binary off-chip. If Register 2 bit 20 = 1, data multiplexing is enabled and this pad uses the contents of Register 5 as a threshold to select the Low or High gain of ADC Output bit 5. If the binary value of the High gain channel is less than or equal to the threshold, High gain data will appear on DOUT[10:0], including this pad. Otherwise, Low gain data will appear on DOUT[10:0], including this pad. In any case,



		DOUT[10:0] is in Gray code and must be converted to binary off-chip.

Monochromatic Quantum Efficiency


This datasheet assumes the VC0201 sensor is monochromatic (i.e. it has no color filter), and a QE curve for the monochromatic sensor is shown as below

Option

The Bayer pattern RGB Color Filter Array (CFA) covers the 1952 (H) x 1112 (V) imaging pixels and extends 2 pixels deep into the dark pixels region on all 4 sides. Even numbered rows are Red/Green, with even columns Red and odd columns Green. Odd numbered rows are Green/Blue, with even columns Green and odd columns Blue

The QE curves for the RGB filters are shown as below

Quantum Efficiency of VC0201 RGB Color Sensor with Sealed Window on 0.45 0.40 0.35 0.30

0.25						
0.20						
0.15						
0.10						
0.05						
0.00 400	500	600	700	800	900	1000
		V	Vavelength(r	nm)		

Cosmetic Specification

Defect classification	Criteria	Maximum Count	Comments
Hot Pixels in Dark Frame	± 6 sigma from the mean	2000	Low gain only
Cold/Warm Pixels in Light Frame – Minor Defects	> 15% from the mean	2000	Low gain only
Cold/Warm Pixels in Light Frame – Major Defects	> 50% from the mean	25 Low gain only	
Small Cluster in Light Frame – Qty Allowed	± 6 sigma from the mean 2 < Size <= 20pix	50	Low gain only
Large Cluster in Light Frame– Qty Allowed	± 6 sigma from the mean Size > 20pix	0	Low gain only
ColumnQty Allowed ± 10% gain variation from the mean		0	Low gain only, Light frame – dark frame
RowQty Allowed ± 10% gain variat from the mean		0	Low gain only, Light frame – dark frame

Test conditions

Blemish tests are performed in Rolling Shutter mode; light frame captured at 50% of saturation. Dark frame captured at 91 ms integration time.

Defect measurements are performed on the full active pixel array