

DATA SHEET SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS 01005

NPO/X5R/X7R 4 V TO 16 V 0.5 pF to 220 nF RoHS compliant & Halogen Free

YAGEO Phícomp

Surface-Mount Ceramic Multilayer Capacitors

01005

Product specification $\frac{2}{11}$

<u>SCOPE</u>

This specification describes 01005 NP0/X5R series chip capacitors with lead-free terminations.

APPLICATIONS

Mobile

Module

<u>FEATURES</u>

- Supplied in tape on reel
- Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

(1) (2) (3) (4) (5) (6) (7)

(1) SIZE - INCH BASED (METRIC)

0100(0402)

(2) TOLERANCE

$B = \pm 0.1 \text{pF}$
$C = \pm 0.25 pF$
$D = \pm 0.5 pF$
J = ±5%
$K = \pm 10\%$
$M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

(4) TC MATERIAL

- NPO X5R
- X7R

(5) RATED VOLTAGE

- $4 = 4 \lor$ $5 = 6.3 \lor$
- $6 = 10 \vee$ $7 = 16 \vee$

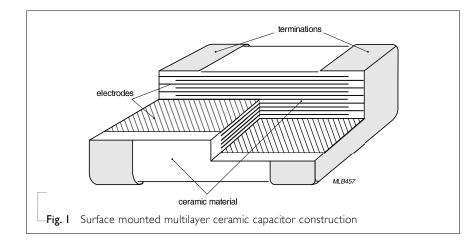
(6) PROCESS

- N = NPO
- B = Class 2 MLCC

(7) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

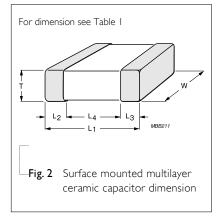

Example: $|2| = |2 \times 10| = |20 \text{ pF}$

YAGEO	Phícomp			Product specification	3
	Surface-Mount Ceramic Multilayer Capacitors	01005	NP0/X5RX7R	6.3V to 16V	11

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.



DIMENSION

 Table I
 For outlines see fig. 2

ТҮРЕ	L _I (mm)	W (mm)	T (mm)	L ₂ / L ₃ min.	(mm) max.	L ₄ (mm) min.
01005	0.4 ±0.02	0.2 ±0.02	0.2 ±0.02	0.07	0,14	0.13

OUTLINES

Surface-Mount Ceramic Multilayer Capacitors

NP0/X5RX7R

01005

CAPACITANCE RANGE & THICKNESS

Table 2 0	1005 Sizes		-					
CAP.	NP0	CAP.	X5R			CAP.	X7R	
	10V / 16 V		4V	6.3V	10V		6.3V / 10V	16V
0.5 pF	0.2±0.02	100 pF	0.2±0.02	0.2±0.02	0.2±0.02	100 pF	0.2±0.02	0.2±0.02
0.6 pF	0.2±0.02	150 pF	0.2±0.02	0.2±0.02	0.2±0.02	150 pF	0.2±0.02	0.2±0.02
0.7 pF	0.2±0.02	220 pF	0.2±0.02	0.2±0.02	0.2±0.02	220 pF	0.2±0.02	0.2±0.02
0.75 pF	0.2±0.02	330 pF	0.2±0.02	0.2±0.02	0.2±0.02	330 pF	0.2±0.02	0.2±0.02
0.8 pF	0.2±0.02	470 pF	0.2±0.02	0.2±0.02	0.2±0.02	470 pF	0.2±0.02	0.2±0.02
0.9 pF	0.2±0.02	680 pF	0.2±0.02	0.2±0.02	0.2±0.02	680 pF	0.2±0.02	0.2±0.02
1.0 pF	0.2±0.02	1 000 pF	0.2±0.02	0.2±0.02	0.2±0.02	1 000 pF	0.2±0.02	0.2±0.02
1.2 pF	0.2±0.02	2.2 nF	0.2±0.02	0.2±0.02	0.2±0.02	2.2 nF		
1.5 pF	0.2±0.02	4.7 nF	0.2±0.02	0.2±0.02	0.2±0.02	4.7 nF		
1.8 pF	0.2±0.02	10 nF	0.2±0.02	0.2±0.02	0.2±0.02	10 nF		
2.2 pF	0.2±0.02	22nF	0.2±0.02	0.2±0.02		22nF		
2.7 pF	0.2±0.02	47 nF	0.2±0.02	0.2±0.02		47 nF		
3.3 pF	0.2±0.02	100 nF	0.2±0.02	0.2±0.02		100 nF		
3.9 pF	0.2±0.02	220 nF	0.2±0.02	0.2±0.02		220 nF		
4.7 pF	0.2±0.02	Tape width		8 mm		Tape width	8 mr	n
5.6 pF	0.2±0.02							
6.8 pF	0.2±0.02							
8.2 pF	0.2±0.02							
10 pF	0.2±0.02							
12 pF	0.2±0.02							
15 pF	0.2±0.02							
18 pF	0.2±0.02							
22 pF	0.2±0.02							
27 pF	0.2±0.02							
33 pF	0.2±0.02							
39 pF	0.2±0.02							
47 pF	0.2±0.02							
56 pF	0.2±0.02							

68 pF

82 pF

100 pF

Tape width

0.2±0.02

0.2±0.02

0.2±0.02

8 mm

YAGEO	Phicomp			Product specification	5
	Surface-Mount Ceramic Multilayer Capacitors	01005	NP0/X5RX7R	6.3V to 16V	11

THICKNESS CLASSES AND PACKING QUANTITY

Table 3							
SIZE			Ø180 MN	1 / 7 INCH	Ø330 MM	/ 13 INCH	OUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper/PE	Blister	Paper/	Blister	PER BULK CASE
01005	0.2 ±0.02 mm	8 mm	20,000				

ELECTRICAL CHARACTERISTICS

NP0/X5R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 4	ł	
DESCRIPT	ION	VALUE
Capacitanc	e range	0.5 pF to 220 nF
Capacitanc	e tolerance	
	C< 10 pF	±0.1pF, ±0.25pF, ±0.5pF
NP0	C ≥ 10 pF	±5%, ±10%
X5R / X7	/R	±10%, ±20%
Dissipation	factor (D.F.)	
NP0	C < 30 pF	≤ / (400 + 20C)
	$C \ge 30 \text{ pF}$	≤ 0. %
X5R / X7	/R	≤ 10 %
Insulation resistance after 1 minute at U _r (DC)		$\label{eq:Rins} \begin{split} R_{\text{ins}} &\geq 10 \; \text{G}\Omega \; \text{or} \; R_{\text{ins}} \times \text{C} \geq 500\Omega \cdot \text{F} \; \text{whichever is less} \\ &\qquad \qquad $
	capacitance change as a function of temperature ure characteristic/coefficient):	
NP0		±30 ppm/°C
X5R / X7	'R	±15%
Operating	temperature range:	
NP0		−55 °C to +125 °C
X5R		−55 °C to +85 °C
X7R		–55 ℃ to +125 ℃

YAGEO	Phicomp			Product specification 6	5
	Surface-Mount Ceramic Multilayer Capacitors	01005	NP0/X5RX7R	6.3V to 16V	1

SOLDERING RECO	MMENDATION
Table 5	
SOLDERING	SIZE
METHOD	01005
Reflow	Reflow only
Reflow/Wave	

TESTS AND REQUIREMENTS

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance		4.5.1	Class I: $f = I \text{ MHz}$ for $C \le I \text{ nF}$, measuring at voltage I V _{rms} at 20 °C f = I KHz for $C > I nF$, measuring at voltage I V _{rms} at 20 °C	Within specified tolerance
			Class 2:	
			C≤InF	
			f = 1 KHz, measuring at voltage 1 Vrms at 20 $^\circ\text{C}$	
			C > I nF	
			f = 1 KHz, rated voltage \leq 6.3 V, measuring at voltage 0.5 Vrms at	
			20 °C	
		452	f = 1 KHz, rated voltage > 10 V, measuring at voltage 1 Vrms at 20 °C Class 1:	
Dissipation Factor (D.F.)		4.5.2	f = 1 MHz for C \leq 1 nF, measuring at voltage 1 V _{ms} at 20 °C f = 1 KHz for C > 1 nF, measuring at voltage 1 V _{ms} at 20 °C	In accordance with specification
			Class 2:	
			C≤InF	
			f = 1 KHz, measuring at voltage 1 Vrms at 20 $^\circ\text{C}$	
			C > I nF	
			$f = I KHz$, rated voltage $\leq 6.3 V$,	
			measuring at voltage 0.5 Vrms at 20 °C	
			f = 1 KHz, rated voltage > 10 V,	
			measuring at voltage I Vrms at 20 °C	
Insulation Resistance		4.5.3	At Ur (DC) for I minute	In accordance with specification

Surface-Mount Ceramic Multilayer Capacitors

01005

<u>7</u> 11

Product specification

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS		
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table.	ΔC/C ClassI (NP0):		
			The capacitance change should be measured after 5 min at each specified temperature stage.	±30ppm		
			Step Temperature(°C)	Class 2: (X7R/X5R): ±15%		
			a 25±2	Σ13/0		
			b Lower temperature±3°C	In case of applying voltage, the capacitance		
			c 25±2	change should be measured after 1 more min with applying		
			d Upper Temperature±2°C	voltage in equilibration of each temp. stage.		
			e 25±2	CC0100MRX5R4(5)BB104(224):		
			(1) Class I	0.2V±0.1Vrms		
			Temperature Coefficient shall be calculated from the formula as below			
			Temp, Coefficient = $\frac{C2 - CI}{CI \times \Delta T} \times 10^6 \text{ [ppm/°C]}$			
			CI: Capacitance at step c			
			C2: Capacitance at 125°C			
			ΔT: 100°C(=125°C-25°C)			
		Measuring Voltage: 0.5 to 5 Vrms				
			(2) Class II			
			Capacitance Change shall be calculated from the formula as below			
			$\Delta C = \frac{C2 - CI}{CI} \times 100\%$			
			C1: Capacitance at step c C2: Capacitance at step b or d			
Adhesion	IEC 60384- 21/22	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size 01005 : IN		
Bending Strength		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage		
			Conditions: bending 1 mm at a rate of 1 mm/s, radius jig 5 mm	Δ C/C Class I (NP0): within ±1% or 0.5 pF, whichever is greater		
				Class2 (X5R/X7R): ±10%		

Surface-Mount Ceramic Multilayer Capacitors

01005

NP0/X5RX7R 6.3V to 16V

Product specification $\frac{8}{11}$

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering	4.9		Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ± 1 hours at room	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
Heat			temperature Preheating: 120 °C to 150 °C for 1 minute and 170 °C to 200 °C for 1 minute. Solder bath temperature: 260 ±5 °C	Δ C/C Class I (NP0): within ±0.5% or 0.5 pF, whichever is greater
			Dipping time: 10 \pm 0.5 seconds	Class2 (X5R/X7R): ±10%
			Recovery time: 24 ±2 hours -	D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			Test conditions for leadfree containing solder alloy	
			Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm	
Rapid Change of	IEC 60384- 21/22	4.11	Preconditioning; 50 +0/–10 °C for hour, then keep for _	No visual damage
Temperature			24 \pm l hours at room temperature	ΔC/C
			5 cycles with following detail: 30 minutes at lower category temperature	Class I (NP0): within $\pm 2.5\%$ or 0.25 pF, whichever is greater
			30 minutes at upper category temperature	Class2 (X5R/X7R): ±15%
			Recovery time 24 ±2 hours -	D.F. meet initial specified value R _{ins} meet initial specified value

Surface-Mount Ceramic Multilayer Capacitors

01005

Product specification $\frac{9}{11}$

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
TEST Damp Heat	TEST MET with Ur load	4.13	 PROCEDURE 1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer initial spec C, D, IR 3. Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H; 1.0 Ur applied. 4. Recovery: Class 1: 6 to 24 hours Class 2: 24 ±2 hours 5. Final measure: C, D, IR 	REQUIREMENTS No visual damage after recovery Class I (NP0): $\Delta C/C$ within $\pm 7.5\%$ or 0.75 pF, whichever is greater D.F. $\leq 2 \times$ specified value I.R. $\geq 2,500 \text{ M}\Omega \text{ or } R_{ins} \times Cr \geq 25\Omega \cdot F$ whichever is less Class2 (X5R/X7R): $C \leq InF$ $\Delta C/C$	
			P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be precondition according to <i>"IEC 60384 4.1"</i> and then the requirement shall be met.	$\pm 15\%$ D.F. ≤ 10% I.R. ≥ 500 MΩ 10nF ≥ C > 1nF ΔC/C $\pm 20\%$ D.F. ≤ 10% I.R. ≥ 500 MΩ	
				$C > 10nF$ $\Delta C/C$ $\pm 25\%$ D.F. $\leq 20\%$ I.R. $R_{ins} \times Cr \ge 5\Omega \cdot F$	

Surface-Mount Ceramic Multilayer Capacitors

01005 NF

NP0/X5RX7R 6.3V to 16V

Product specification $\frac{10}{11}$

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Endurance	IEC 60384- 21/22	4.14	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer initial spec C, D, IR Endurance test: Temperature: NP0: 125 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 × U_r for general product Temperature: X5R: 85°C, X7R: 125°C Specified stress voltage applied for 1,000 hours: Applied 1.5 × Ur for general product Recovery time: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be precondition according to "IEC 60384 4.1" and then the requirement shall be met. 	No visual damage Class I (NP0): $\Delta C/C$ within ±3% or 0.3 pF, whichever is greater D.F. $\leq 2 \times$ specified value I.R. $\geq 4,000 M\Omega$ or R _{ins} × Cr $\geq 40\Omega \cdot$ F whichever is less Class2 (X5R/X7R): $C \leq 1 nF$ $\Delta C/C$ ±15% D.F. $\leq 10\%$ I.R. $\geq 1 G\Omega$ IOnF $\geq C > 1 nF$ $\Delta C/C$ ±15% D.F. $\leq 10\%$ I.R. $\geq 1 G\Omega$ C > 10nF $\Delta C/C$ ±25% D.F. $\leq 20\%$ I.R. $\leq 20\%$ I.S. $\leq 20\%$
Voltage Proof	IEC 60384-1	4.5.4	Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur	No breakdown or flashover
			Charge/Discharge current is less than 50 mA	

YAGEO	Product specification 1					
	Surface-Mount Ceramic Multilayer Capacitors	01005	NP0/X5RX7R	6.3V to 16V	11	

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Jan. 17, 2017		- Test condition updated
Version 8	Jan. 12, 2016		- Capacitance range & thickness update
Version 7	Oct. 31, 2015		- Capacitance range & thickness update
Version 6	Jun. 29, 2015		- Test procedures and requirements
Version 5	Jun. 06, 2013		- Test procedures and requirements
Version 4	Mar. 27, 2013		- Change Tolerance
Version 3	Jan. 15, 2013		- Change Range
Version 2	Oct. 23, 2012		- Change Range
Version I	July 03, 2012		- Change Range
Version 0	Apr 16, 2012	-	- New