
High-Precision, Rail-to-Rail 1/O Operational Amplifier

The HTC8581(single) and HTC8582(dual) are high-precision, low-quiescent current amplifier which can offer high input impedance and rail-to-rail input and output. The amplifier uses auto-zeroing techniques to provide low offset voltage(25µV type) and near zero-drift over time and temperature.

Either single or dual supplies can be used in the range from 2.3V to 5.5V ($\pm 1.15V$ to $\pm 2.75V)$

The HTC8581 is available in SC70-5,SOT23-5, MSOP-8 and SOP-8.The HTC8582 is available in MSOP-8 and SOP-8. All versions ae specified for operation from -40 $^{\circ}$ C to +125 $^{\circ}$ C.

1

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Huatech (and design) is a registered trademark of Huatech Semiconductor Inc. Copyright Huatech Semiconductor Inc. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. FN1618-20.1.b

HTC8581, HTC8582

High-Precision, Rail-to-Rail I/O Operational Amplifier

Pin Description

Symbol	Description
-IN	Inverting Input of the Amplifier. The Voltage can go from (V_{S}) to (V_{S_+}) .
+IN	Non-Inverting Input of Amplifier. This pin has the same voltage range as -IN.
+V _s	Positive Power Supply. The Voltage is from 2.3V to 5.5V(\pm 1.15V to \pm 2.75V).
-Vs	Negative Power Supply. It is normally tied to ground.
OUT	Amplifier Output.
N/C	No Connection.

Ordering Information

Type Number	Package Name	Package Quantity	Marking Code
HTC8581XC5/R6	SC70-5	Tape and Reel,3000	C81XX
HTC8581XT5/R6	SOT23-5	Tape and Reel,3000	C81XX
HTC8581XS8/R8	SOP-8	Tape and Reel,4000	C8581X
HTC8581XV8/R6	MSOP-8	Tape and Reel,3000	C8581X
HTC8582XS8/R8	SOP-8	Tape and Reel,4000	C8582X
HTC8582XV8/R6	MSOP-8	Tape and Reel,3000	C8582X

Recommended Operating Conditions

- Operating voltage range: 2.3V to 5.5V(±1.15V to ±2.75V)
- Specified temperature range: -40°C to 125°C

High-Precision, Rail-to-Rail I/O, 45-V Operational Amplifier

Absolute Maximum Ratings

Attention: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

61			
Parameter	Symbol	Absolute Maximum Rating	Unit
Supply Voltage		\pm 3, +6(Single)	V
Input the sting	Voltage	$V_{s.}$ -0.5 to V_{s+} +0.5	V
Input terminal	Differential Voltage	±5 8-11V	V
Ň	$Operating^{(2)}, T_{A}$	-55 to 150	°C
Temperature	Storage , T_{stg}	-65 to 150	°C
	Junction , T_J	150	°C
Electrostatic Discharge	нвм	8	kV
Voltage	MM	1	kV
	N 111		

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Provided device does not exceed maximum junction temperature (T_J) at any time.

High-Precision, Rail-to-Rail I/O Operational Amplifier

Electrical Characteristics

 V_s =+5V, T_A =25 °C, V_{CM} = $V_s/2$, V_o = $V_s/2$, R_L =10k Ω connected to $V_s/2$,unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
INPUT CHA	RACTERISTICS						
V _{OS}	Input offset Voltage			25	90	μV	
V _{os} TC	Offset voltage drift	T _A =-40°C to + 125°C		0.03		μV/°C	
I _B	Input bias current	Vcm=Vs/2	0	±100		pА	
I _{os}	Input offset current		0	±100		pА	
V _{CM}	Common-mode Voltage range	T _A =-40°C to + 125°C	Vs-	T	Vs+	V	
	Common-mode	$V_{S} < V_{CM} < V_{S+}$	90	110		dB	
CMRR	rejection ratio	$T_A = -40^{\circ}C$ to + 125°C	85			dB	
٨	Onen leen veltege gein	$V_{s}+0.3V < V_{o} < V_{s}+0.3V$	105	135		dB	
A _{VOL}	Open-loop voltage gain	$T_A = -40^{\circ}C$ to + 125°C	100			dB	
OUTPUT	CHARACTERISTICS	Silk					
V	High output voltage	R∟=10kΩ	(Vs+) -12	(Vs+) -4		mV	
V _{OH}	swing	Ta=-40°C to + 125°C	(Vs+) -18			mV	
V	Low output voltage	RL=10kΩ		(Vs-) +4	(Vs-) +12	mV	
V _{OL}	swing	TA=-40°C to + 125°C			(Vs-) +18	mV	
	c Short-circuit current	Source current	55	65		mA	
I _{sc}		T _A =-40°C to + 125℃	50		C/p	mA	
		Sink current	48	55	/ <u>*</u>	mA	
		T _A =-40°C to + 125°C	45	5 KEX		mA	
POWER	SUPPLY			C XX			
	Power supply rejection	Vs=2.3V to 5.5V	90	110			
PSRR	ratio	Ta=-40°C to +125°C	80			dB	
		Õ	Alle -	350	480		
l _Q	Quiescent current	Ta=-40°C to + 125°C			600	μA	
NOISE		STAF					
e _n	Input voltage noise	f=0.1Hz to 10Hz F=1KHz		550 45		nVpp nV/√Hz	
DYNAMIC I	PERFORMANCE						
GBW	Gain bandwidth product			1.8		MHz	
SR	Slew rate	G = ± 1		0.7		V/µs	
t _{OR}	Overload recovery time	$V_{IN} \times G = V_S$		50		μs	
		CAUTION: These of CAUTION: THE CAUTION: These of CAUTION: The CAU	Huatech (and o	design) is a registere Copyright Huated	arge; follow proper IC H d trademark of Huatech ch Semiconductor Inc. are the property of thei	Semiconducto	

Huatech (and design) is a registered trademark of Huatech Semiconductor Inc. Copyright Huatech Semiconductor Inc. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. FN1618-20.1.b

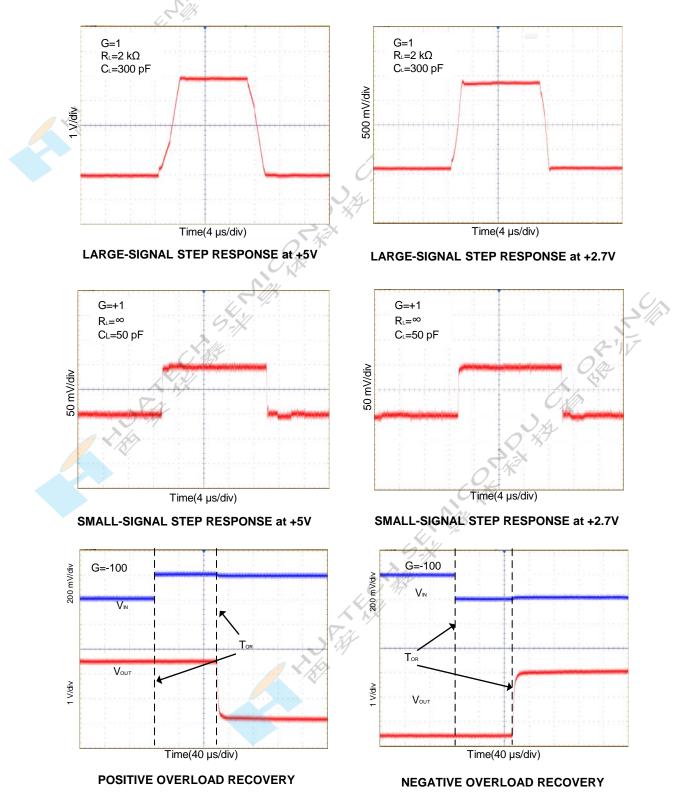
High-Precision, Rail-to-Rail I/Output Operational Amplifier

Electrical Characteristics

 V_s =+2.7V, T_A =25 °C, V_{CM} = V_s /2, V_0 = V_s /2, R_L =10k Ω , R_L =10k Ω connected to V_s /2,unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
INPUT CHA	RACTERISTICS					
V _{OS}	Input offset Voltage			25	90	μV
V _{OS} TC	Offset voltage drift	TA=-40°C to + 125°C		0.03		µV/°C
I _B	Input bias current	Vcm=Vs/2		±100		pА
I _{os}	Input offset current		R	±100		pА
V _{CM}	Common-mode Voltage range	T _A =-40°C to + 125°C	Vs-	1	Vs+	V
	Common modo	$V_{S} < V_{CM} < V_{S^+}$	90	110		dB
CMRR	Common-mode rejection ratio	T_A =-40°C to + 125°C	80	100		dB
A _{vol}	Open-loop voltage gain	V _{S-} +0.3V <v<sub>O< V_{S+} 0.3V</v<sub>	105	135		dB
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$	95			dB
OUTPUT	CHARACTERISTICS	Sik				
V _{OH}	High output voltage	R∟=10kΩ	$(V_{S+}) -12$	$(V\mbox{s+})$ -3		mV
• OH	swing	Ta=-40°C to + 125°C	(Vs+) -18			mV
V _{OL}	Low output voltage	RL=10kΩ		(Vs-) +3	(Vs-) +12	mV-1/
UL	swing	⁷⁷ Ta=-40°C to + 125°C			(Vs-) +18	mV
	N XX	Source current	17	24	C.A	mA
I _{sc}	Short-circuit current	T _A =-40℃ to + 125℃	14		O XA	mA
	Ň	Sink current	15	20		mA
		T _A =-40°C to + 125°C	12		Z. X	mA
POWERS	SUPPLY			SIK		
PSRR	Power supply rejection	Vs=2.3V to 5.5V	90 6	110		dB
FJKK	ratio	Ta=-40°C to +125°C	80	7		uв
	Quiescent current		K K	350	480	
l _Q		Ta=-40°C to + 125°C	600		600	μA
NOISE		s Stor				
e _n	Input voltage noise	f=0.1Hz to 10Hz f=1KHz		550 45		nVpp nV/√Hz
DYNAMIC F	PERFORMANCE					
GBW	Gain bandwidth product			1.8		MHz
SR	Slew rate	$G = \pm 1$		0.7		V/µs
t _{or}	Overload recovery time	$V_{IN} \times G = V_S$		50		μs

HUATECH SEMICONDUCTOR


5

High-Precision, Rail-to-Rail I/Output Operational Amplifier

Type Performance Characteristics

 V_s =+5V, T_A =25 °C, V_{CM} = $V_s/2$, V_O = $V_s/2$, R_L =10k Ω connected to $V_s/2$,unless otherwise noted.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Huatech (and design) is a registered trademark of Huatech Semiconductor Inc. Copyright Huatech Semiconductor Inc. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

High-Precision, Rail-to-Rail 1/O Operational Amplifier

Type Performance Characteristics

 $V_{S} = +5V, T_{A} = 25 \ ^{\circ}C, V_{CM} = V_{S}/2, V_{O} = V_{S}/2, R_{L} = 10 k\Omega, R_{L} = 10 k\Omega \text{ connected to } V_{S}/2, unless \text{ otherwise noted}.$

High-Precision, Rail-to-Rail I/O Operational Amplifier

Application Notes

Application Information

The HTC858X operational amplifier combines precision offset and drift with excellent overall performance, making it ideal for many precision applications. The precision offset drift of only 0.085 μ V/°C provides stability over the entire temperature range. In addition, the device pairs excellent CMRR, PSRR, and AOL dc performance with outstanding low-noise operation. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1- μ F capacitors are adequate.

Operating Characteristics

The HTC858X is specified for operation from 2.3 V to 5.5 V $(\pm 1.15 \text{ V to } \pm 2.75 \text{ V})$. Many specifications apply from -40 °C to +125 °C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in *Typical Characteristics*.

Capacitive Load and Stability

The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 2. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm out}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm L}$.

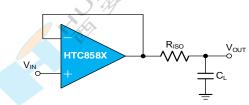


Figure 2. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 3. It provides DC accuracy as well as AC stability. The RF provides the DC accuracy by connecting the inverting signal with the output.

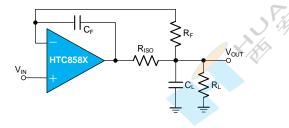


Figure3. Indirectly Driving Capacitive Load with DC Accuracy

Input Bias Current Clock Feedthrough

The HTC858X use switching on the inputs to correct for the intrinsic offset and drift of the amplifier. Charge injection from the integrated switches on the inputs can introduce very short transients in the input bias current of the amplifier. The extremely short duration of these pulses prevents the device from being amplified. However, the devices may be coupled to the output of the amplifier through the feedback network. The most effective method to prevent transients in the input bias current from producing additional noise at the amplifier output is to use a low-pass filter such as an RC network.

High-Precision, Rail-to-Rail 1/O Operational Amplifier

Application Notes

Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- A. Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- B To reduce parasitic coupling, run the input traces as far away from the supply lines and digital signal as possible.
- C. Low-ESR, 0.1-μF ceramic bypass capacitors must be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.
- D. Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

Low-side Current Monitor

Figure 4 shows the HTC858X configured in a lowside current-sensing application. The load current (ILOAD)

creates a voltage drop across the shunt resistor (RSHUNT). This voltage is amplified by the HTC858X.

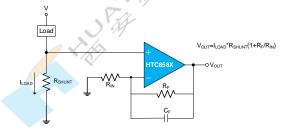


Figure 4. Low-Side Current Monitor

Bridge Amplifier

Figure 5 shows the basic configuration for a bridge amplifier.

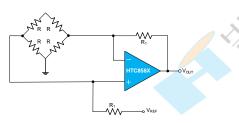
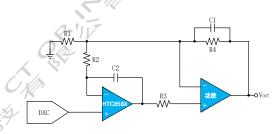


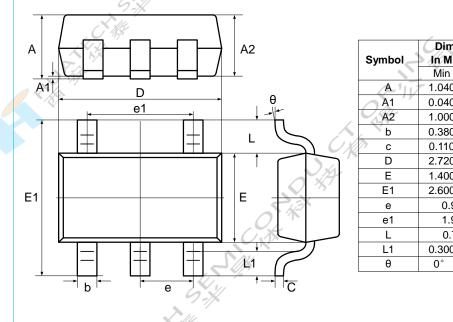
Figure 5. Bridge Amplifier

9

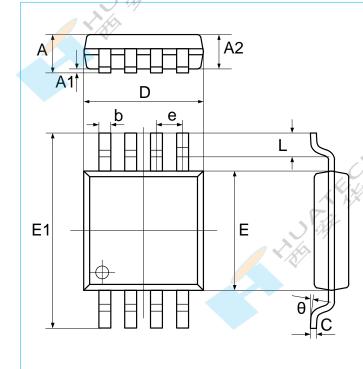
Programmable Power Supply

Figure 6 shows the HTC858X configured as a precision programmable power supply using DAC and power amplifier. The HTC858X in the front-end provides precision and low drift across a wide range of inputs and conditions.




Figure 6. Programmable Power Supply

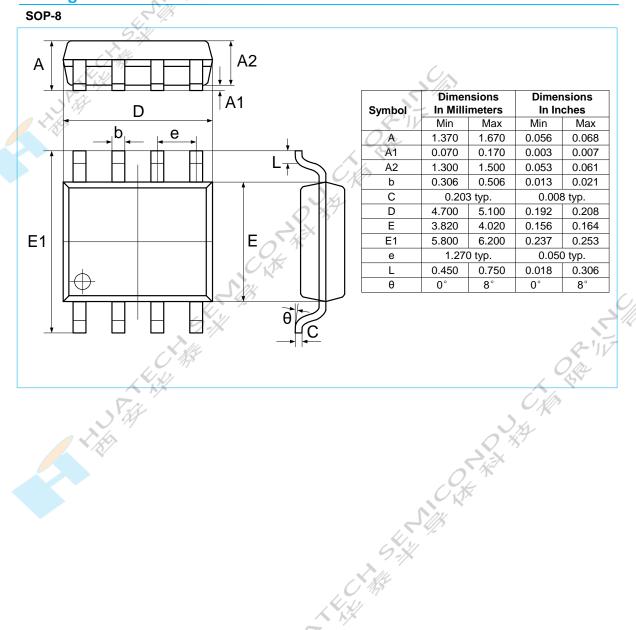
High-Precision, Rail-to-Rail I/O Operational Amplifier


Package Outlines

SC70-5/SOT23-5

	Dimensions Dimens		nsions	
Symbol	In Milli	In Millimeters In Inches		
	Min	Max	Min	Max
A 11	1.040	1.350	0.042	0.055
A1	0.040	0.150	0.002	0.006
A2	1.000	1.200	0.041	0.049
b	0.380	0.480	0.015	0.020
🔊 с	0.110	0.210	0.004	0.009
D	2.720	3.120	0.111	0.127
E	1.400	1.800	0.057	0.073
E1	2.600	3.000	0.106	0.122
е	0.950) typ.	0.03	7 typ.
e1	1.900) typ.	0.078	8 typ.
L	0.70	0 ref.	0.02	8 ref.
L1	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°
			6	8-'IV
			Ú for	
			×4	
(Dimer	sions	Dimer	sions

MSOP-8


Symbol	Dimer In Milli		Dimensions In Inches				
	Min	Max	Min	Max			
A	0.800	1.100	0.033	0.045			
A1	0.050	0.150	0.002	0.006			
A2	0.750	0.950	0.031	0.039			
b	0.290	0.380	0.012	0.016			
С	0.150	0.200	0.006	0.008			
D	2.900	3.100	0.118	0.127			
Е	2.900	3.100	0.118	0.127			
E1	4.700	5.100	0.192	0.208			
е	0.650 typ.		0.026 typ.				
L	0.400	0.700	0.016	0.029			
θ	0° 8°		0°	8°			

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Huatech (and design) is a registered trademark of Huatech Semiconductor Inc. Copyright Huatech Semiconductor Inc. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. FN1618-20.1.b

High-Precision, Low-Noise, Rail-to-Rail Output, 45-V, Zero-Drift Operational Amplifier

Package Outlines

Important Notice

Huatech Semiconductor Inc and its subsidiaries (Huatech) reserve the right to make corrections, enhancement, amelioration or other changes for them. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. This condition is also applied to the process of sales contract.

Huatech promises that functions of its products match the scope of application described in the product datasheet, Huatech promises that functions of its products match the scope of application described in the product datasheet, and performs strict tests for all parameters to guarantee the quality of products.

11

