

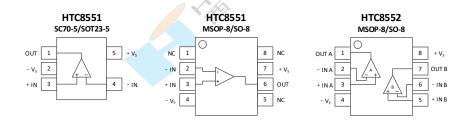
General Description

The HTC8551(single) and HTC8552(dual) are high-precision, low-quiescent current amplifier which can offer high input impedance and rail-to-rail input and output. The amplifier uses auto-zeroing techniques to provide low offset voltage(2 µV type) and near zero-drift over time and temperature.

Either single or dual supplies can be used in the range from 2.3V to 5.5V (\pm 1.15V to \pm 2.75V)

The HTC8551 is available in SC70-5,SOT23-5, MSOP-8 and SOP-8. The HTC8552 is available in MSOP-8 and SOP-8. All versions ae specified for operation from -40 $^{\circ}$ C to +125 $^{\circ}$ C.

Features


- Low Offset Voltage: 2 μV(Type)
- Zero-Drift: 0.03 μV/°C
- Low Noise: 30 nV/ \sqrt{Hz}
 - > 0.1-Hz to 10-Hz Noise: 0.55 μVpp
- Excellent DC Precision:
 - Open-Loop Gain: 135dB
 - PSRR: 110dB
 - CMRR: 110dB
- Gain Bandwidth: 2 MHz
- Quiescent Current: 220 µA(Type)
 Supply Range: ±1.15V to ±2.75V
- Supply Range. ± 1.15V to ±2.75
- Rail-to-Rail Input and Output

Application

- Strain Gauges
- Transducer Applications
- Temperature Measurement
- Electronic Scales
- Medical Instrumentation
- Resistance Temperature Detectors
- Handheld Test Equipment

Pin Configurations

Pin Description

Symbol	Description
-IN	Inverting Input of the Amplifier. The Voltage can go from (V_{S-}) to (V_{S+}).
+IN	Non-Inverting Input of Amplifier. This pin has the same voltage range as —IN.
+V _S	Positive Power Supply. The Voltage is from 2.3V to 5.5V(\pm 1.15V to \pm 2.75V).
-V _s	Negative Power Supply. It is normally tied to ground.
OUT	Amplifier Output.
N/C	No Connection.

Ordering Information

Type Number	Package Name	Package Quantity	Marking Code
HTC8551XC5/R6	SC70-5	Tape and Reel,3000	C51XX
HTC8551XT5/R6	SOT23-5	Tape and Reel,3000	C51XX
HTC8551XS8/R8	SOP-8	Tape and Reel,4000	C8551X
HTC8551XV8/R6	MSOP-8	Tape and Reel,3000	C8551X
HTC8552XS8/R8	SOP-8	Tape and Reel,4000	C8552X
HTC8552XV8/R6	MSOP-8	Tape and Reel,3000	C8552X

Recommended Operating Conditions

Operating voltage range: 2.3V to 5.5V(\pm 1.15V to \pm 2.75V)

■ Specified temperature range: -40°C to 125°C

Absolute Maximum Ratings

Attention: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter A	Symbol	Absolute Maximum Rating	Unit
Supply Voltage		± 3 , +6(Single)	V
Input terminal	Voltage	$V_{S.}$ -0.5 to V_{S+} +0.5	V
input terminal	Differential Voltage	±5 2-11/	V
· ·	Operating $^{(2)}$, T_A	-55 to 150	°C
Temperature	Storage , T _{stg}	-65 to 150	°C
	Junction , $T_{\rm J}$	150	°C
Electrostatic Discharge Voltage	НВМ	8	kV
	MM	1	kV

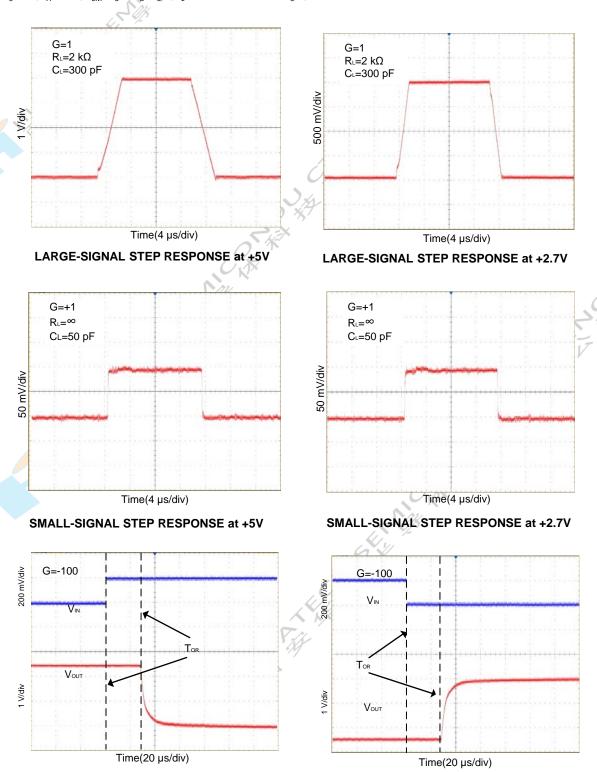
- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Provided device does not exceed maximum junction temperature (T_J) at any time.

Electrical Characteristics

 V_s =+5V, T_A =25 °C, V_{CM} = V_s /2, V_o = V_s /2, R_L =10 $k\Omega$ connected to V_s /2,unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
INPUT CHA	NRACTERISTICS					
V _{OS}	Input offset Voltage			2	15	μV
V _{os} TC	Offset voltage drift	T _A =-40°C to + 125°C		0.03		μV/°C
l _B	Input bias current	Vcm=Vs/2	0	±100		рА
l _{os}	Input offset current		00	±100		рА
V_{CM}	Common-mode Voltage range	Ta=-40°C to + 125°C	Vs-	/	Vs+	V
	Common-mode	$V_{S-} < V_{CM} < V_{S+}$	90	110		dB
CMRR	rejection ratio	T_A =-40°C to + 125°C	85			dB
٨	Open-loop voltage gain	$V_{S-} + 0.3V < V_{O} < V_{S+} - 0.3V$	105	135		dB
A _{VOL}	Open-100p voltage gain	T_A =-40°C to + 125°C	100			dB
OUTPUT	CHARACTERISTICS	5/1%				
V	High output voltage	Rι=10kΩ	(Vs+) -12	(Vs+) -4		mV
V _{OH}	swing	T _A =-40°C to + 125°C	(Vs+) -18			mV
M.	Low output voltage	RL=10kΩ		(Vs-) +4	(Vs-) +12	mV
V _{OL}	swing	T _A =-40°C to + 125°C			(Vs-) +18	mV
Vit.	Source current	55	65		mA	
I _{sc}	Short-circuit current	T _A =-40°C to + 125°C	50			mA
	, i	Sink current	48	55	Ox	mA
		T _A =-40°C to + 125°C	45		OXA	mA
POWER	SUPPLY					
PSRR	Power supply rejection	Vs=2.3V to 5.5V	90	110	N. C.	- dB
JKIK	ratio	T _A =-40°C to +125°C	80	-50K		uБ
	Out-count comment		6	220	290	
l _Q	Quiescent current	T _A =-40°C to + 125°C	XX		380	μA
NOISE			14/4/			
e _n	Input voltage noise	f=0.1Hz to 10Hz F=1KHz	TS.	550 30		nVpp nV/√Hz
DYNAMIC I	PERFORMANCE	4.24	M			
GBW	Gain bandwidth product	* 87		2		MHz
SR	Slew rate	G = ±1		0.8		V/µs
t _{OR}	Overload recovery time	$V_{IN} \times G = V_S$		50		μs
~						

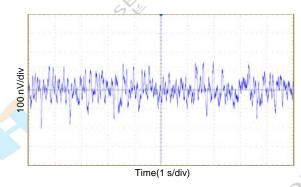
Electrical Characteristics


 V_s =+2.7 V_t _a=25 ° C_t , V_{CM} = V_s /2, V_0 = V_s /2, R_t =10 $k\Omega$, R_t =10 $k\Omega$ connected to V_s /2, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
INPUT CHA	RACTERISTICS					
V _{os}	Input offset Voltage			4	20	μV
V _{OS} TC	Offset voltage drift	Ta=-40°C to + 125°C		0.03		μV/°C
в	Input bias current	Vcm=Vs/2		±100		рА
os	Input offset current		P	±100		рА
V_{CM}	Common-mode Voltage range	T _A =-40°C to + 125°C	Vs-	1	Vs+	V
	Common-mode	$V_{S-} < V_{CM} < V_{S+}$	90	110		dB
CMRR	rejection ratio	T_A =-40°C to + 125°C	80	100		dB
\mathcal{A}_{VOL}	Open-loop voltage gain	$V_{S-}+0.3V < V_{O} < V_{S+}-0.3V$	105	135		dB
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$	95			dB
OUTPUT	CHARACTERISTICS					
V_{OH}	High output voltage	R∟≐10kΩ	(Vs+) -12	(Vs+) -3		mV
OII	swing	Ta=-40°C to + 125°C	(Vs+) -18			mV
Low output voltage		Rι=10kΩ		(Vs-) +3	(Vs-) +12	mV_
OL .	swing	T _A =-40°C to + 125°C			(Vs-) +18	mV_
	Short-circuit current	Source current	17	24	CX.	mA
sc		T _A =-40°C to + 125°C	14		O XA	mA
		Sink current	15	20		mA
		T _A =-40°C to + 125°C	12	CD	×	mA
POWERS	SUPPLY			50%		
PSRR	Power supply rejection	Vs=2.3V to 5.5V	90	110		dB
	ratio	T _A =-40°C to +125°C	80			
Q	Quiescent current		44	200	290	μA
Q	Quiescent current	Ta=-40°C to + 125°C			380	μπ
NOISE			37			
ə _n	Input voltage noise	f=0.1Hz to <mark>10</mark> Hz f=1KHz		550 30		nVpp nV/√Hz
DYNAMIC F	PERFORMANCE					
3BW	Gain bandwidth product			2		MHz
SR	Slew rate	G = ± 1		0.8		V/µs
OR	Overload recovery time	$V_{IN} \times G = V_S$		50		μs

Type Performance Characteristics

 V_s =+5 V_s T_A =25 $^{\circ}C_sV_{CM}$ = V_s /2, V_O = V_s /2, R_L =10 $k\Omega$ connected to V_s /2,unless otherwise noted.


POSITIVE OVERLOAD RECOVERY

NEGATIVE OVERLOAD RECOVERY

Type Performance Characteristics

 $V_S=+5V$, $T_A=25$ °C, $V_{CM}=V_S/2$, $V_O=V_S/2$, $R_L=10k\Omega$, $R_L=10k\Omega$ connected to $V_S/2$, unless otherwise noted.

0.1Hz to 10Hz noise

CHARLES TO THE CHARLES THE CHA

CIX CANA

High-Precision, Rail-to-Rail I/O Operational Amplifier

Application Notes

Application Information

The HTC855X operational amplifier combines precision offset and drift with excellent overall performance, making it ideal for many precision applications. The precision offset drift of only 0.085 $\mu\text{V/}^{\circ}\text{C}$ provides stability over the entire temperature range. In addition, the device pairs excellent CMRR, PSRR, and AOL dc performance with outstanding low-noise operation. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1- μF capacitors are adequate.

Operating Characteristics

The HTC855X is specified for operation from 2.3 V to 5.5 V (± 1.15 V to ± 2.75 V). Many specifications apply from -40 °C to +125 °C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in *Typical Characteristics*.

Capacitive Load and Stability

The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 2. The isolation resistor $R_{\rm ISO}$ and the load capacitor C_L form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm out}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm L}$.

Figure 2. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 3. It provides DC accuracy as well as AC stability. The RF provides the DC accuracy by connecting the inverting signal with the output.

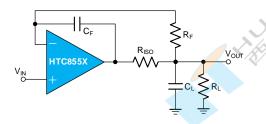


Figure 3. Indirectly Driving Capacitive Load with DC Accuracy

Input Bias Current Clock Feedthrough

The HTC855X use switching on the inputs to correct for the intrinsic offset and drift of the amplifier. Charge injection from the integrated switches on the inputs can introduce very short transients in the input bias current of the amplifier. The extremely short duration of these pulses prevents the device from being amplified. However, the devices may be coupled to the output of the amplifier through the feedback network. The most effective method to prevent transients in the input bias current from producing additional noise at the amplifier output is to use a low-pass filter such as an RC network

Application Notes

Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- A. Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- B. To reduce parasitic coupling, run the input traces as far away from the supply lines and digital signal as possible.
- C. Low-ESR, 0.1-µF ceramic bypass capacitors must be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.
- D. Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

Low-side Current Monitor

Figure 4 shows the HTC855X configured in a low-side current-sensing application. The load current (ILOAD) creates a voltage drop across the shunt resistor (RSHUNT). This voltage is amplified by the HTC855X.

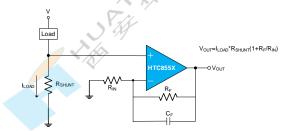


Figure 4. Low-Side Current Monitor

Bridge Amplifier

Figure 5 shows the basic configuration for a bridge amplifier.

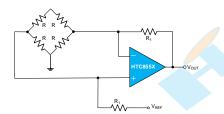


Figure 5. Bridge Amplifier

Programmable Power Supply

Figure 6 shows the HTC855X configured as a precision programmable power supply using DAC and power amplifier. The HTC855X in the front-end provides precision and low drift across a wide range of inputs and conditions.

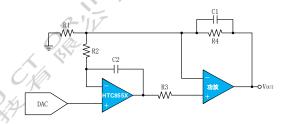
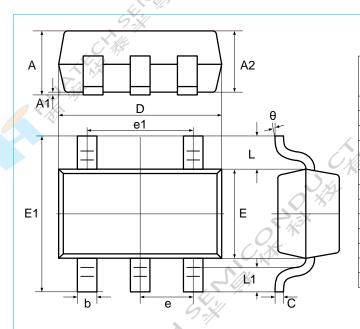
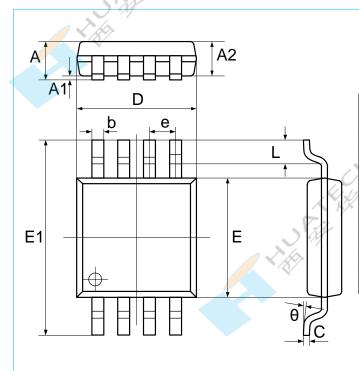



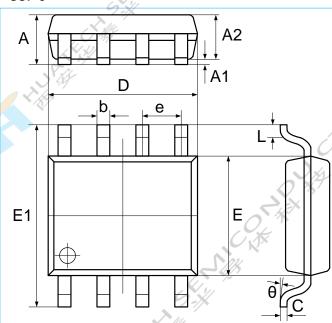
Figure 6. Programmable Power Supply


Package Outlines

SC70-5/SOT23-5

	Dimensions		Dimensions	
Symbol	In Millimeters		In Inches	
	Min	Max	Min	Max
A 111	1.040	1.350	0.042	0.055
A1	0.040	0.150	0.002	0.006
A2	1.000	1.200	0.041	0.049
b	0.380	0.480	0.015	0.020
С	0.110	0.210	0.004	0.009
D	2.720	3.120	0.111	0.127
E	1.400	1.800	0.057	0.073
E1	2.600	3.000	0.106	0.122
е	0.950 typ.		0.037 typ.	
e1	1.900 typ. 0.078 ty		3 typ.	
L	0.700 ref.		0.02	3 ref.
L1	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

MSOP-8



Symbol	Dimensions In Millimeters		Dimensions In Inches	
47.	Min	Max	Min	Max
Α.//	0.800	1.100	0.033	0.045
A1	0.050	0.150	0.002	0.006
A2	0.750	0.950	0.031	0.039
" b	0.290	0.380	0.012	0.016
С	0.150	0.200	0.006	0.008
D	2.900	3.100	0.118	0.127
Е	2.900	3.100	0.118	0.127
E1	4.700	5.100	0.192	0.208
е	0.650 typ.		0.026	S typ.
L	0.400	0.700	0.016	0.029
θ	0°	8°	0°	8°

Package Outlines

SOP-8

1//24						
Complete	Dimensions In Millimeters		Dimensions In Inches			
Symbol	in willimeters		in inches			
Q-11V	Min	Max	Min	Max		
OA	1.370	1.670	0.056	0.068		
A1	0.070	0.170	0.003	0.007		
A2	1.300	1.500	0.053	0.061		
b	0.306	0.506	0.013	0.021		
С	0.203 typ.		0.008 typ.			
D	4.700	5.100	0.192	0.208		
E	3.820	4.020	0.156	0.164		
E1	5.800	6.200	0.237	0.253		
е	1.270 typ.		0.050	typ.		
L	0.450	0.750	0.018	0.306		
θ	0° 8° 0° 8		8°			

Important Notice

Huatech Semiconductor Inc and its subsidiaries (Huatech) reserve the right to make corrections, enhancement, amelioration or other changes for them. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. This condition is also applied to the process of sales contract.

Huatech promises that functions of its products match the scope of application described in the product datasheet. Huatech promises that functions of its products match the scope of application described in the product datasheet, and performs strict tests for all parameters to guarantee the quality of products.