

目录

目	录	1
1	总体描述	3
2	主要功能和优势	3
	2.1 功能	3
	2.2 优势	3
3	管脚定义	3
	3.1 管脚配置	3
	3.2 管脚定义	4
4	电气性能	4
	4.1 推荐工作条件	4
	4.2 直流电气特性	4
5	封装信息	5
6	应用设计指南	6
	6.1 未使用通道处理	6
	6.2 邻键距离	6
	6.3 通讯输出选择	6
	6.3.1 通讯输出选择 OUTS	6
	6.3.2 灵敏度设置和键值读取格式	6
7	注意事项	9
	7.1 典型应用电路	9
	7.2 电路 Check List	9
	7.3 电源要求	9
	7.4 PCB 布局	9
	7.5 PCB 布线	10
	7.6 PCB 参考图	10

10V CS 8 通道触控按键专用 IC

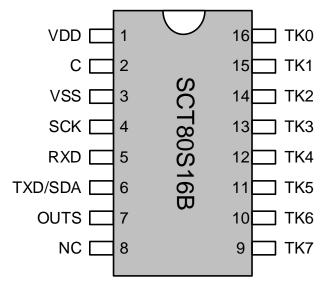
	7.7 触控面板材料选择	. 10
8	规格更改记录	.11

1 总体描述

SCT80S16B 是一颗有 8 个触控通道,带 UART/IIC 通讯接口的触控专用 IC,用户可通过 UART/IIC 通讯来设置灵敏度。此 IC 具有工业级规格,拥有 4KV EFT 和 6KV 接触 ESD 能力,可顺利通过 3V 动态和 10V 静态 CS 测试,是用户高性能触控按键方案的首选。非常适合应用于大小家电、安防、工控等应用场合。

2 主要功能和优势

2.1 功能


- 工作电压: 3.3V ~ 5.5V
- 工作温度: -40~85℃
- 触控按键通道:8通道,最多支持两个按键同时被按下
- 触控按键输出通讯协议: UART/IIC 输出
- 灵敏度调节: UART/IIC 通讯调节
- 上电 2s 内可通过 UART/IIC 通讯来设置触控通道灵敏度等级
- 覆盖物厚度: 0~10mm
- 有效触摸反应时间: 小于 100ms
- 允许按键长按时间为 10S
- 封装: SOP16

2.2 优势

- 发明专利,业界独创;
- 完美触控按键操作体验;
- 用户根据需要设置灵敏度;
- 超强抗干扰能力,4KV EFT、6KV ESD、10V CS。

3 管脚定义

3.1 管脚配置

SCT80S16B 管脚配置图

Page 3 of 11 V1.1 http://www.socmcu.com

3.2 管脚定义

管脚编号	管脚名称	管脚类型	功能说明			
1	VDD	Power	电源			
2	С	Cadj	接 103 电容到地			
3	vss	Power	接地			
4	SCK	I	IIC 通信时钟线;建议串接几十欧的电阻			
5	RXD	I	UART 接收数据线;建议串接几十欧的电阻			
6	TXD/SDA	I/O	UART 发送/IIC 通信数据线;建议串接几十欧的电阻			
7	OUTS	I	通讯输出方式选择; 接地: IIC; 悬空或接 VDD: UART。			
8	NC	0	悬空			
9	TK7	I	触控按键 7,不用时接地			
10	TK6	I	触控按键 6,不用时接地			
11	TK5	I	触控按键 5,不用时接地			
12	TK4	I	触控按键 4,不用时接地			
13	TK3	I	触控按键 3,不用时接地			
14	TK2	I	触控按键 2, 不用时接地			
15	TK1	I	触控按键 1,不用时接地			
16	TK0	I	触控按键 0, 不用时接地			

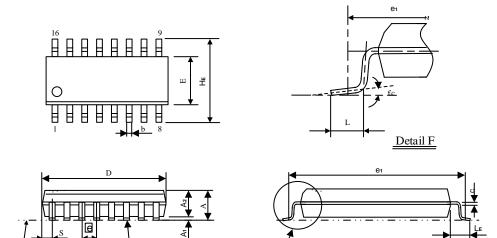
4 电气性能

4.1 推荐工作条件

符号	参数	最小值	最大值	UNIT
V_{DD}	工作电压	3.3	5.5	V
TA	工作环境温度	-40	85	°C
T _{STG}	储存温度	-55	125	°C

4.2 直流电气特性

(V_{DD} = 5V, T_A = +25℃, 除非另有说明)


	A. abab		1			
符号	参数	最小值	典型值	最大值	单位	测试条件
lop	工作电流	-	8.0	-	mA	5V
V _{IH}	输入高电压	0.7V _{DD}	-	V _{DD} +0.5	V	
V _{IL}	输入低电压	-0.5	-	$0.3V_{DD}$	V	
I _{OL}	灌电流	-	43	-	mA	V _{Pin} =0.8V
Іон	输出高的电流	-	5.5	-	mA	V _{Pin} =4.7V

Page 4 of 11 V1.1

5 封装信息

SOP 16L(150mil) 外形尺寸 单位:毫米

See Detail F

符号	mm(毫米)					
	最小	正常	最大			
Α	-	-	1.75			
A1	0.05	-	0.225			
A2	1.30	1.40	1.50			
b	0.39	-	0.48			
С	0.21	-	0.26			
D	9.70	9.90	10.10			
Е	3.70	3.90	4.10			
HE	5.80	6.00	6.20			
е		1.27(BSC)				
L	0.50	-	0.80			
LE	1.05(BSC)					
θ	0°	-	8°			

6 应用设计指南

6.1 未使用通道处理

如果用户只使用其中部分通道,则其余通道要接地。

6.2 邻键距离

高灵敏度下,为减小通道之间的相互影响,请确保邻键的间距要大于弹簧直径。

6.3 通讯输出选择

6.3.1 通讯输出选择 OUTS

1、0: IIC:

2、1: UART。

6.3.2 灵敏度设置和键值读取格式

- 1、IIC 方式:
 - ① SCT80S16B 为 Slave Mode:
 - ② 通讯速度 10Kbps 以内;
 - ③ 读、写均从高位开始(Bit7~Bit0);
 - ④ 主控通过通讯设置触控灵敏度等级。

在 IC 上电后 2s 内用户可通过 IIC 通讯来设置每个触控通道的灵敏度等级,用户只需要通过通讯设置一次灵敏度,以后重新上电不需要重新设置,IC 会保持原来设置好的灵敏度等级,如果用户想修改灵敏度可以在 IC 上电 2s 内重新进行设置。

如下是通过 IIC 通讯来设置触控灵敏度等级的命令格式:

主机—>触控 IC: 固定为 11 个 Byte,与用户选择的 TK 通道数无关

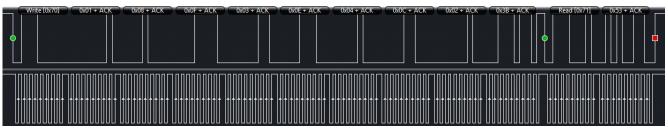
命令字	r令字 Byte0 Byte1		Byte2	 Byte8	Byte9	Byte10
含义	IICWrite	Sensitivity0	Sensitivity1	 Sensitivity7	Checksum	IICRead

IICWrite: 主机向从机发送写数据命令,固定为 0x70;

Sensitivity0: TK0 通道的灵敏度等级设定,取值范围 01-0F 共 15 个等级;数值越大灵敏度越低;

Sensitivity1: TK1 通道的灵敏度等级设定,取值范围 01-0F 共 15 个等级; Sensitivity7: TK7 通道的灵敏度等级设定,取值范围 01-0F 共 15 个等级;

Checksum: 灵敏度等级设置检验和(Byte1-Byte8 的校验和), 触控 IC 在收到灵敏度等级设置信息后会对数据进行校验并返回 1 个 Byte 的校验信息;

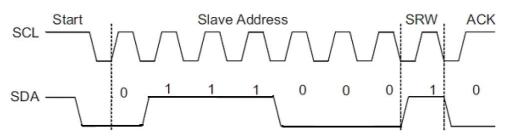

IICRead: 主机向从机发送读数据命令,固定为0x71。

触控 IC->主机: 1 个 Byte

数据	Byte0
含义	Status

Status: 触控 IC 在收到主机的灵敏度设置信息和读数据命令后,会向主机发送 1 个 Byte 的校验信息,回复 0x53 说明灵敏度设置成功,用户可停止对灵敏度的设置;如果触控 IC 回复 0x49,或者回复其它数据此时说明 IC 收到了错误的灵敏度设置信息,用户需要重新发送灵敏度设置信息,直到触控 IC 回复 0x53 为止。

如下图是灵敏度设置波形,其中 0x70 是主机向从机写数据命令,0x01 是 TK0 的灵敏度等级,0x08 是 TK1 的灵敏度等级,0x0F 是 TK2 的灵敏度等级,0x03 是 TK3 的灵敏度等级,0x0E 是 TK4 的灵敏度等级,0x04 是 TK5 的灵敏度等级,0x0C 是 TK6 的灵敏度等级,0x02 是 TK7 的灵敏度等级,0x3B 是灵敏度等级的校验和,0x71 是主机向从机读数据命令,0x53 是触控 IC 回复的校验信息,回复 0x53 说明触控 IC 已经收到了正确的设置信息,此时用户可停止对灵敏度的设置。



Page 6 of 11 V1.1 http://www.socmcu.com

注意:校验成功后触控 IC 会根据当前命令进行设置,如果触控 IC 在上电 2s 内都无法收到正确的设置信息, IC 会保持以前的灵敏度设定值,如果用户从来没有设置过灵敏度,IC 默认选择第8等级灵敏度。如果在IC 上电 2s 后用户再发送灵敏度设置信息,此时 IC 将不会回复任何信息。灵敏度等级设置信息的长度与用户使用的 TK 通 道个数无关,固定为 8 个 Byte, 当用户使用的 TK 通道数小于 8 个时,用户也应该依次将 TK0-TK7 的灵敏度等 级写入,不使用的通道用户可以设置任意值,建议设置为 0x0F。


- 主控读取键值通讯格式:
 - 主控给出 Start 信号;
 - 主控产生 7 位地址位和一个读写选择位(0x71),通过判断 SCT80S16B 的回应 ACK 信号是否 正常,来确定从机是否接收到了有效的地址请求;

主控从 SCT80S16B 读取 2 个 Byte 的按键信息:

数据位	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
含义	TK7	TK6	TK5	TK4	TK3	TK2	TK1	TK0	
	触控按键状态码 1: 有键; 0: 无键								
数据位	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0							
含义	校验码: 反码校验								

注意: 主控每读取 1 个 Byte 的数据后必须回应 ACK 信号, 然后再读取下一个 Byte 的数据, 在读取完 2 个 Byte 的数据后主控应给出 ACK 信号和 STOP 信号。如下图所示即为一次按键信息传输的波形。主控发送 0x71 读 取从机数据,从机回复2个Byte数据。

建议主控芯片采用以 30-50ms 左右为周期读取键值,读到的键值校验正确之后,确认为某个按键被按下或松 开。

2、 UART 方式:

- ① 波特率: 9600bps, 10 位全双工异步通信, 1 位起始位, 8 位数据位和 1 位停止位;
- (2) 触控通道灵敏度等级设置:

在 IC 上电后 2s 内用户可通过 UART 通讯来设置每个触控通道的灵敏度等级,用户只需要通过通讯设置一次 灵敏度,以后重新上电不需要重新设置,IC 会保持原来设置好的灵敏度等级,如果用户想修改灵敏度可以在 IC 上 电 2s 内重新进行设置。

如下是通过 UART 通讯来设置触控灵敏度等级的命令格式:

主机—>触控 IC: 固定 10 个 Byte,与用户选择的 TK 通道数无关

命令字	Byte0	Byte1	Byte2	 Byte8	Byte9
含义	Command	Sensitivity0	Sensitivity1	 Sensitivity7	Checksum

Command: 灵敏度设定命令,固定为 0x43;

SensitivityO: TKO 通道的灵敏度等级设定,取值范围 01-0F 共 15 个等级;数值越大灵敏度越低;

Sensitivity1: TK1 通道的灵敏度等级设定,取值范围 01-0F 共 15 个等级; Sensitivity7: TK7 通道的灵敏度等级设定,取值范围 01-0F 共 15 个等级;

Checksum: 灵敏度等级设置检验和(Byte1-Byte8 的校验和),触控 IC 在收到灵敏度等级设置信息后会对

Page 7 of 11 http://www.socmcu.com


数据进行校验并返回 1 个 Byte 的校验信息。

触控 IC—>主机: 1 个 Byte

数据	Byte0
含义	Status

Status:校验成功后触控 IC 回复 0x53,此时说明灵敏度设置成功,用户可停止对灵敏度的设置;校验失败触控 IC 回复 0x49,此时用户需要重新发送灵敏度设置信息,直到触控 IC 回复 0x53 为止。

如下图是灵敏度设置波形,其中 0x43 是灵敏度设定命令,0x01 是 TK0 的灵敏度等级,0x08 是 TK1 的灵敏度等级,0x0F 是 TK2 的灵敏度等级,0x03 是 TK3 的灵敏度等级,0x0E 是 TK4 的灵敏度等级,0x04 是 TK5 的灵敏度等级,0x0C 是 TK6 的灵敏度等级,0x02 是 TK7 的灵敏度等级,0x3B 是灵敏度等级的校验和,0x53 是触控 IC 回复的校验信息,回复 0x53 说明触控 IC 已经收到了正确的设置信息,此时用户可停止对灵敏度的设置。

注意:校验成功后触控 IC 会根据当前命令进行设置,如果触控 IC 在上电 2s 内都无法收到正确的设置信息,IC 会保持以前的灵敏度设定值,如果用户从来没有设置过灵敏度,IC 默认选择第 8 等级灵敏度。如果在 IC 上电 2s 后用户再发送灵敏度设置信息,此时 IC 将不会回复任何信息。灵敏度等级设置信息的长度与用户使用的 TK 通道个数无关,固定为 8 个 Byte,当用户使用的 TK 通道小于 8 个时,用户也应该依次将 TKO-TK7 的灵敏度等级写入,不使用的通道用户可以设置任意值,建议设置为 0x0F。

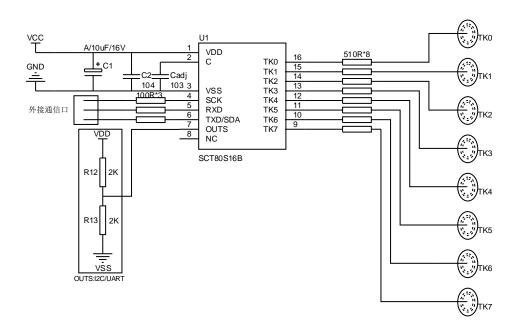
③ 触控键值读取过程:

第一步,主控读键值命令1个Byte:

数据位	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
含义	0	0	0	1	0	0	0	1
	读键值命令:0x11							

第二步, SCT80S16B 回复键值 2 个 Byte:

数据位	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
含义	TK7	TK6	TK5	TK4	TK3	TK2	TK1	TK0
	触控按键状态码: 1: 有键; 0: 无键							
数据位	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
含义	校验码: 反码校验							


建议主控芯片采用以 30-50ms 左右为周期读取键值,读到的键值校验正确之后,确认为某个按键被按下或松开。

Page 8 of 11 V1.1

7注意事项

7.1 典型应用电路

7.2 电路 CHECK LIST

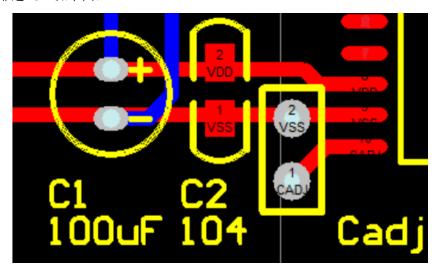
序号	类别	建议/备注				
1	VDD 引脚上的去耦电容 C2	将 10 μF 和 0.1 μF 电容并连				
2	参考电容 Cadj	连接 103 电容到 VSS、X7R 或 NPO 电容				
3	通讯接口选择 OUTS	R12/R13 二选一: 1、如选中 R12,则 R13 断开,反之亦然; R13 选中时,可用 0Ω 代替图中的 2K 电阻,即直接接地; 2、OUTS 为 L,通讯接口为 IIC 通讯; 3、OUTS 为 H,通讯接口为 UART 通讯;				
4	CS 测试	150KHz~80MHz 3V 动态,10V 静态				
5	未使用的触控通道引 脚	接地				

7.3 电源要求

电源需要采用三端稳压 IC、RC 滤波、LC 滤波等电路来防止交流纹波干扰,以保证系统的稳定性能。

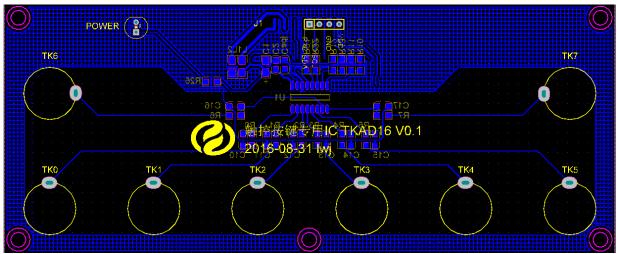
7.4 PCB 布局

1. 芯片及匹配电阻位置


在 PCB 板空间允许的情况下,应尽量将触控芯片放置在触控板的中间,使 IC 的每个感应通道的引脚到触控按键的距离差异最小,匹配电阻(建议选择 510 欧)应尽量靠近触控芯片放置。

- 2. 电源电路及参考电容 Cadj
- ① 电源线应先经过电容滤波(电解电容+104 瓷片电容)之后再接入 IC 的 VDD 脚,也可将电解电容改为钽电容,容值不小于 10uF, 104 瓷片电容在布局时应紧靠 IC 的 VDD 以及 VSS 引脚;

Page 9 of 11 V1.1


② 参考电容 Cadj 布局时应紧靠 IC 的 C 引脚及 VSS 引脚,注意 Cadj 的地接到 104 电容的后面,即参考电 容 Cadi 更靠近 IC。如下图:

7.5 PCB 布线

- 触控走线尽量短和细(建议 7~15mil),同一条走线尽量不要使用过孔和跳线,若有使用,建议不超过两
- 多 KEY 走线时,走线长度尽量做到差异最小(IC 放置在多 KEY 的中心位置); 2、
- 3、 触控走线彼此间的间距尽量大,尽可能的保证在两倍线宽以上;
- 4、 触控走线尽量避开其它元器件、大电流和高频信号线(IIC、SPI、RF 等高频信号线),在没办法避免的 情况下,让两者垂直走线,不能走平行线,或者在两者之间加地线隔离;
- 5、 感应按键的投影面强烈建议不放置元器件或走其他的信号线; 若是铜箔式感应按键应敷阻焊油、不露铜。

7.6 PCB 参考图

7.7 触控面板材料选择

- 1、 触控面板的材料必须是绝缘的或者是非导电性的,避免使用金属及含碳等导电材料;
- 2、 同一触控灵敏度等级下,触控面板的厚度越大,触控的灵敏度越低,信噪比也越低; 使用亚克力材料时, 建议材料厚度在 3~6mm;
- 3、 触控面板材料的介电常数过小,触控按键感应的灵敏度会变差,此时可减小灵敏度等级,以增大触控灵敏 度; 反之, 若介电常数过大, 触控按键易发生误动作, 此时可增大灵敏度等级, 以减小触控灵敏度。

Page 10 of 11 V/1 1

10V CS 8 通道触控按键专用 IC

8 规格更改记录

版本	记录	日期	
V1.1	修改页眉和 CS 说明	2018年7月	
V1.0	初版	2018年3月	

Page 11 of 11 V1.1