

Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-7 Series

Outline

This is a Negative Temperature Coefficient Resistor Whose resistance changes with ambient temperature changes.Thermistor comprises 2 or 4 kinds of metal oxides of iron,nickel,cobalt, manganese and copper, being shaped and sintered at high temperature(1200 \degree C to 1500 \degree C).

Features

- Small in size, high-powered, and very capable of bringing down the surge current;
- Quick in reaction;
- High in B value and low in residual current;Long service life and high reliability;High coefficient of safety and wide range of application.

Applications

Conversion power supply, switch power, UPS power, Kinds of electric heater, electronic energy-saving lamps, electronic ballast etc all kinds of power circuit protection of electronic equipments, filament protection of CRT, bulb and other lighting lamps.

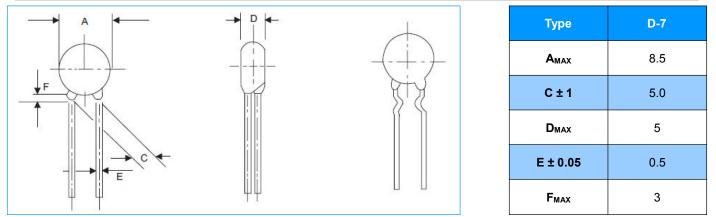
Part Number Code

SCN	10	D - 7	
(1)	(2)	(3)	

- (1) SCN: Socay Negative Temperature Cofficient Resistor.
- (2) 10: Resistance Value:10Ω.
- (3) D-7: Diameter of Chip: Φ7.

SOCAY Electronics Corp., Ltd.

@ SOCAY Electronics Corp., Ltd. 2016 Specifications are subject to change without notice. Please refer to www.socay.com for current information.


Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-7 Series

Electrical Characteristics

Part Number	R25℃ ±20%	Max Steady Current	Approx R Of Max Current	Power Dissipation Coefficient	Time Constant
	(Ω)	(A)	(Ω)	(m₩/℃)	(s)
SCN5D-7	5	2	0.241	10	30
SCN8D-7	8	1.5	0.436	9	28
SCN10D-7	10	1	0.572	9	27
SCN16D-7	16	0.7	0.897	9	27
SCN22D-7	22	0.6	1.083	8	27

Dimensions (Unit: mm)

Note: "E" value may be 0.6 for resistors for which the chip's diameter is \leq 13 and the working current is \leq 2A.

Critical Technical Parameters of NTC Thermistor

Rt---Resistance Value at Zero-power

It's a resistance which is got at a fixed temperature on a basis of a testing power which causes resistance to Vary in a range which can be ignored in relation to the total testing eror.

♦ R₂₅---Resistance Value at Rated Zero-power

The design resistance of the thermistor usually refers to the resistance value got at Zero-power at 25 $^{\circ}$ C , which is usually indicated on the thermistor.

B Value

B value stands for the thermal exponent at a negative temperature coefficient. It's defined as a ratio of the balance between the natural logarithms of resistance values at zero-power to the balance between the reciprocals of the two temperatures. The formula is as below:

$$B = \ln \frac{R_{T1}}{R_{12}} / \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \neq \frac{T_1 T_2}{T_2 - T_1} \ln \frac{R_{T1}}{R_{T2}}$$

SOCAY Electronics Corp., Ltd.

Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-7 Series

Critical Technical Parameters of NTC Thermistor (Continue)

In this formula: R_{T1} is the resistance at Zero-power when the temperature is T_1, R_{T2} is the resistance at Zero-power when the temperature is T_2 Unless otherwise specified,B value is got by calculating the Zero-power resistances at 25°C (298.15K) and 50 °C (323.15K). It's not a firm constant within the range of working temperature.

Resistance-to-Temperature Coefficient at Zero-power.It refers to the ratio of changes of a thermistor. Resistance value at Zero-powerwhen The temperature, to the resistance value at Zero-power The formula is as below:

$$\alpha_{\tau} = \frac{1}{R_{\tau}} \frac{DR_{\tau}}{DT} = -\frac{B}{T_{2}}$$

In this formula, " α " stands for the resistance-temperature coefficient at Zero-power when the temperature is T:

 R_T stands for the resistance value at Zero-power when the temperature is T.

T stands for the temperature(in K).

B stands for B value.

• Max steady state current.

The maximum allowable continuous current passing through thermistor at $25^\circ\!\mathbb{C}$.

Dissipation Coefficient δ

It's the ratio of the changes with a thermistor dissipation power, in a pre-set ambient temperature, to the changes with the temperature. The formula is as below: $\delta = \triangle P / \triangle T \delta$ changes in response when the ambient temperature changes, within the ranges of the working temperature.

Thermal Time Constant

At Zero-power and when amutatio occurs with the temperature,the time "t", which is-spent for finishing 63.2% of the gap between the beginning temperature and the ending temperature in the thermistor. is directly proportional to "C",the heat capacity of the thermistor, and is inversely proportional to δ , the dissip ation constant. That is " τ =C/ δ ".

SOCAY Electronics Corp., Ltd.