
Applications Note: AN SY7208

High Efficiency 1MHz, 2A Step Up Regulator Preliminary Specification

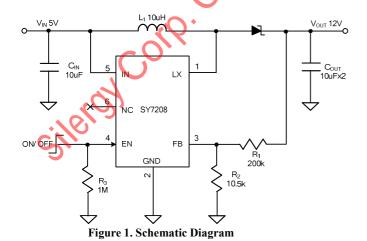
General Description

The SY7208 is a high efficiency, with an integrated N-MOSFET current-mode and fixed frequency boost converter. The SY7208 integrated a very low Rds-on of NMOSFTET and feedback voltage to reduce power loss and achieve high efficiency. 1MHz operate frequency and internal compensation network minimizes as few external component counts and small L and C value. SOT23-6 package provides the best solution for PCB space saving and total BOM cost.

Ordering Information

Temperature Range: -40°C to 85°C

Ordering Number	Package type	Note
SY7208ABC	SOT23-6	2A


Features

- Wide input range: 3-25V bias input, 25Vout max
- 1MHz switching frequency
- Low $R_{DS(ON)}$: 150m Ω
- Up to 90% efficiency
- Under-Voltage lockout Protection
- Over-Temperature Protection
- Internal Soft Start
- 1uA Shutdown current
- RoHS Compliant and Halogen Free
- Accurate Reference: 0.6V_{REF}
- Compact package: SOT23-6

Applications

- White LED Display Backlighting
- Cell Phone and Smart Phone
- PDA, PMP, MP3
- Digital Camera

Typical Applications

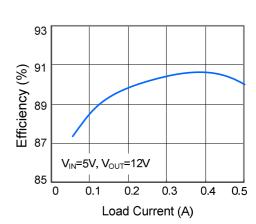
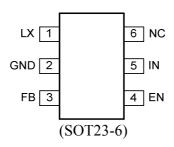
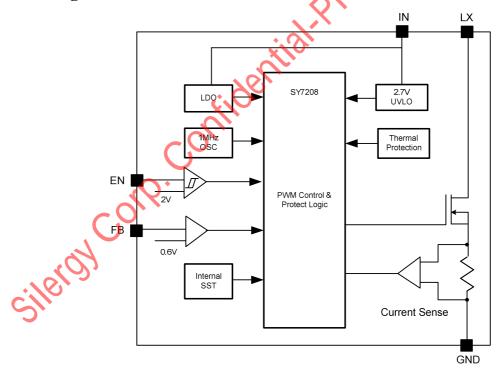



Figure 2. Efficiency vs Load Current


Pinout (top view)

Top Mark: CAxyz (Device code: CA, x=year code, y=week code, z= lot number code)

Pin Name	SOT23-6	Pin Description		
IN	5	Power Input pin.		
GND	2	Ground pin		
LX	1	Inductor node. Connect an inductor between IN pin and LX pin.		
FB	3	Feedback pin. Connect a resistor R1 between $V_{\rm OUT}$ and FB, and a resistor R2 between FB and GND to program the output voltage: $V_{\rm OUT}$ =0.6V*(R1/R2+1).		
EN	4	Enable control. High to turn on the part. Don't leave it floated.		
NC	6	No connection.		

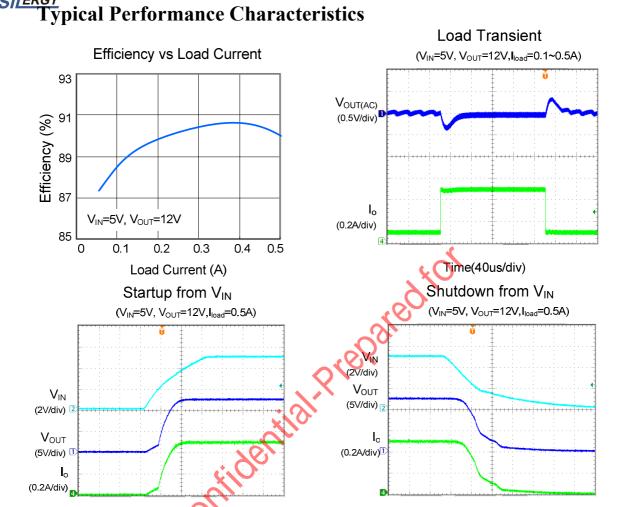
Block Diagram

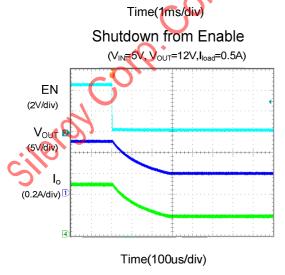
26V
26V
6V
0.6W
0.0 v v
170°C/W
130°C/W
125°C
260°C
2kV
200V
IN+3V to GND-4

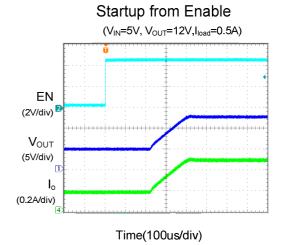
Electrical Characteristics

 $(V_{IN} = 5V, V_{OUT} = 12V, I_{OUT} = 100 \text{mA}, T_A = 25^{\circ}\text{C} \text{ unless otherwise specified})$

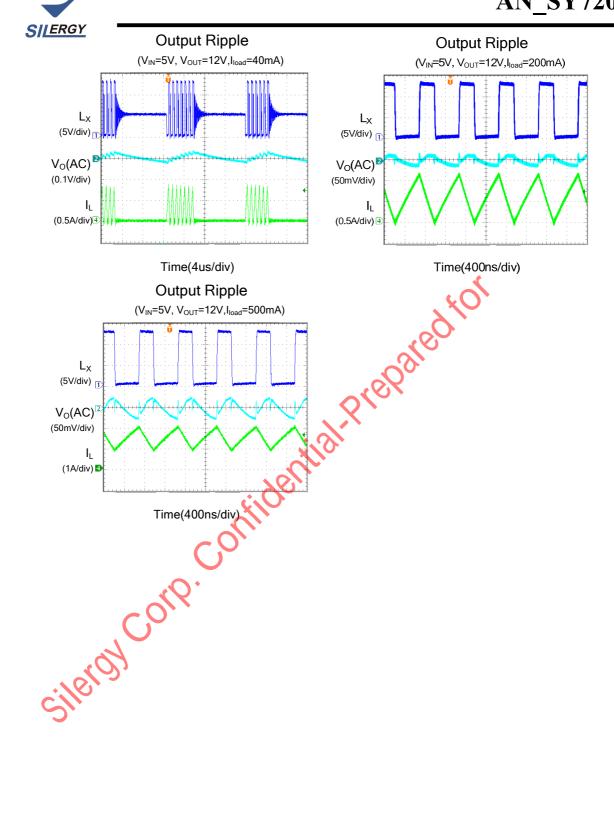
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	$V_{\rm IN}$		3		25	V
Quiescent Current	I_Q	$V_{FB} = 0.66V$		100		μΑ
Shutdown Current	I_{SHDN}	EN=0			15	μΑ
Low Side Main FET RON	Rds(on)			150		mΩ
Main FET Current	I_{LIM1}		2		2.6	Α
Limit						
Switching Frequency	Fsw		0.8	1	1.2	MHz
Feedback Reference	V_{REF}		0.588	0.6	0.612	V
Voltage						
IN UVLO Rising	$V_{IN,UVLO}$				2.7	V
Threshold						
UVLO Hysteresis	$U_{VLO,HYS}$		KO.	0.1		V
Thermal Shutdown	T_{SD}			150		°C
Temperature			O			
EN Rising Threshold	V_{ENH}	10	2			V
EN Falling Threshold	$V_{\rm ENL}$	- N			0.4	V
EN Pin Input Current	I_{EN}		0		100	nA
Max Duty Cycle		~(0)		90		%


Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.


Note 2: θ JA is measured in the natural convection at TA = 25°C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.


Note 3: The device is not guaranteed to function outside its operating conditions.

Note 4: IC can start up in 2.7V.



Time(2ms/div)

Applications Information

Because of the high integration in the SY7208 IC, the application circuit based on this regulator IC is rather simple. Only input capacitor $C_{\rm IN}$, output capacitor $C_{\rm OUT}$, inductor L and feedback resistors (R_1 and R_2) need to be selected for the targeted applications specifications.

Feedback resistor dividers R1 and R2:

Choose R_1 and R_2 to program the proper output voltage. To minimize the power consumption under light loads, it is desirable to choose large resistance values for both R_1 and R_2 . A value of between 10k and 1M is recommended for both resistors. If R_1 =200k is chosen, then R_2 can be calculated to be:

$$R_2 = (R_1 \times 0.6 V)/(V_{\text{OUT}} - 0.6 V)$$

$$0.6 V_{\text{FB}}$$

$$GND$$

$$R_2$$

$$R_1$$

Input capacitor CIN:

The ripple current through input capacitor is calculated as:

$$I_{\text{CIN_RMS}} = \frac{V_{\text{IN}} \cdot (V_{\text{OUT}} - V_{\text{IN}})}{2\sqrt{3} \cdot L \cdot F_{\text{SW}} \cdot V_{\text{OUT}}}$$

To minimize the potential noise problem, place a typical X5R or better grade ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by C_{IN}, and IN/GND pins.In this case a 10uF low ESR ceramic is recommended.

Output capacitor Cour.

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For the best performance, it is recommended to use X5R or better grade ceramic capacitor with 25V rating and more than two pcs 10uF capacitor.

Boost inductor L:

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum average input current. The inductance is calculated as:

$$L = \left(\frac{V_{\text{IN}}}{V_{\text{OUT}}}\right)^2 \frac{(V_{\text{OUT}} - V_{\text{IN}})}{F_{\text{SW}} \times I_{\text{OUT}, \text{MAX}} \times 40\%}$$

where F_{SW} is the switching frequency and $I_{\text{OUT},\text{MAX}}$ is the maximum load current.

The SY7208 regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SATMIN} > \left(\frac{V_{OUT}}{V_{IN}}\right) \times I_{OUT_MAX} + \frac{V_{IN}(V_{OUT} - V_{IN})}{2 \times F_{SW} \times L \times V_{OUT}}$$

The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<50mohm to achieve a good overall efficiency.

Enable Operation

Pulling the EN pin low (<0.4V) will shut down the device. During the shut down mode, the SY7208 shut down current drops to lower than 1uA, Driving the EN pin high (>2.0V) will turn on the IC again.

Soft-start(En Control)

The SY7208 has a built-in soft-start to control the rise rate of the output voltage and limit the input current surge during IC start-up. 200us turn on delay time before the initial soft-start, the typical soft-start time is 1ms.

Diode Selection

Schottky diode is a good choice for high efficiency operation because of its low forward voltage drop and fast reverse recovery. The current rating of the diode must meet following:

$$I_D(RMS) \approx \sqrt{\left(I_{OUT} \times I_{PEAK}\right)}$$

The schottky diode reverse breakdown voltage should be larger than the output voltage.

Layout Design:

The layout design of SY7208 regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: C_{IN} , L, R_1 and R_2 .

1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.

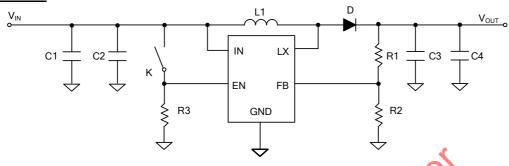
- 2) C_{IN} must be close to Pins IN and GND. The loop area formed by C_{IN} and GND must be minimized.
- 3) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.

4)

The components R_1 and R_2 , and the trace connecting to the FB pin must NOT be adjacent to the LX net on the PCB layout to avoid the noise problem. 5) If the system chip interfacing with the EN pin has a high impedance state at shutdown mode and the IN pin is connected directly to a power source such as a Li-Ion battery, it is desirable to add a pull down 1Mohm resistor between the EN and GND pins to prevent the

noise from falsely turning on the regulator at shutdown

silerdy Corp.


Silerdy Corp.

Design Specifications

Input Voltage (V)	Input Current (A)	Output Voltage (V)	Test conditions	
3~12	2	12	K close	

Schematic

Quick Start Guide (Refer to Figure 3)

- 1. Connect the output load to V_{OUT} and GND output connectors. Preset the load current to between 0A and 0.5A
- 2. Preset the input supply to a voltage between 3V and 12V. Turn the supply off. Connect the input supply to V_{IN} and GND input connectors.
- 3. Short jumper K.
- 4. Turn on the input supply and measure the output voltage.

5

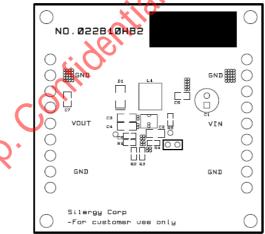


Figure 3. Top Silkscreen

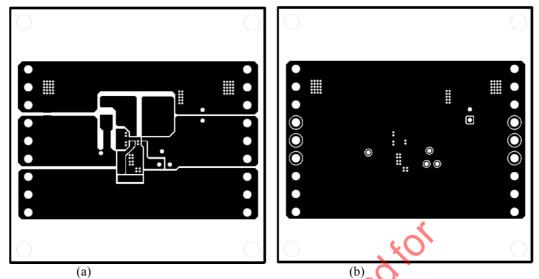


Figure 4. PCB Layout Plots: (a) top layer, (b) bottom layer

BOM List

Reference	Description	Part Number	Manufacturer
Designator			
U_1	2A, 1MHz Step up	0.	
	(SOT23-6)		
L_1	10uH/2.5A	VLC6045-100M	TDK
D	3A/40V, Schottky		
C1	47uF/50V		
	(electronic capacitor)		
C_{2}, C_{3}, C_{4}	10uF/25V,1206, X7R	GRM31CR71E106KA12L	MuRata
R_1	200 k Ω , 1%, 0603		
R_2	10.5kΩ, 1%, 0603		
R_3	1M Ω, 1%, 0603		

Output Voltage Ripple Test

A proper output ripple measurement should be done according to Figure 5 setup. Output voltage ripple should be measured across the output ceramic cap near the IC.

- 1. Remove the ground clip and head of the probe. Wind thin wires around the ground ring of the probe. Solder the end of the ground ring wire to the negative node of the C_4 . Touch the probe tip to the positive node of the C_4 . Refer to Figure 5.
- 2. Minimize the loop formed by C₄ terminals, probe tip and ground ring.
- 3. Change the probing direction to decouple the electromagnetic noise generated from the nearby inductor (Refer to Figure 5).

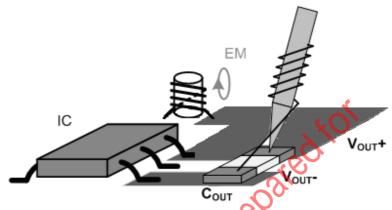
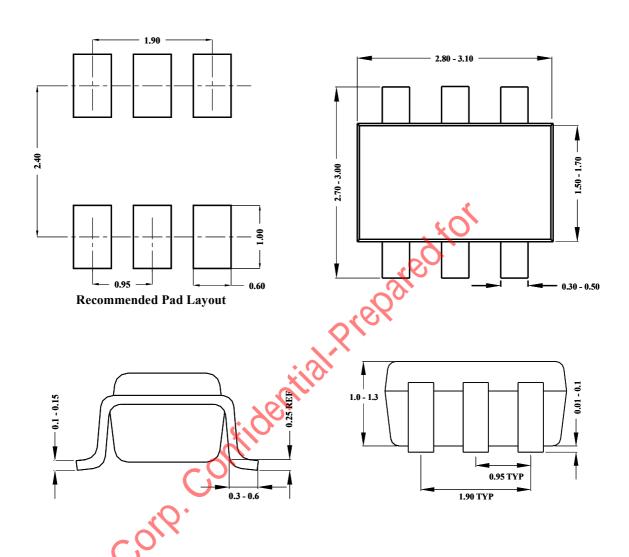
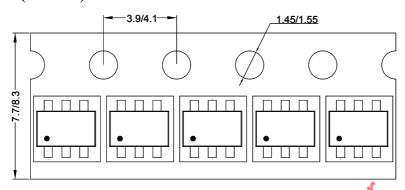
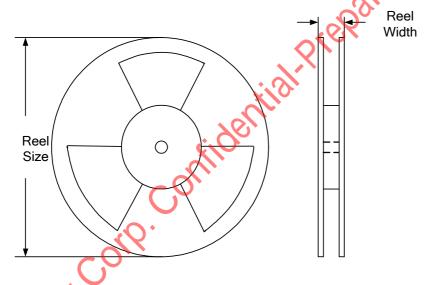



Figure.5 Recommended way to measure the output voltage ripple

SOT23-6 Package outline & PCB layout design


Notes: All dimensions are in millimeters.

All dimensions don't include mold flash & metal burr.


Taping & Reel Specification

1. SOT23-6 (SOT26)

Feeding direction —

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Reel width(mm)	Trailer length(mm)	Leader length (mm)	Qty per reel
SOT23-6	8	4	7''	8.4	280	160	3000

3. Others: NA