

SLUSAS8A - DECEMBER 2011 - REVISED OCTOBER 2016

TPS53313

TPS53313 6-A Step-Down Regulator With Integrated Switcher

1 Features

- 4.5-V to 16-V Conversion Voltage Range
- Adjustable Output Voltage Ranging from 0.6 V to 0.7 x V_{IN}
- Continuous 6-A Output Current
- Supports All MLCC Output Capacitors
- Selectable SKIP Mode or Forced CCM
- Selectable Soft-Start Time (1 ms, 3 ms, or 6 ms)
- Selectable 4-5 A, 6-A or 9-A Peak Current Limit
- Optimized Efficiency at Light and Heavy Loads
- Voltage Mode Control
- Programmable Switching Frequency from 250 kHz to 1.5 MHz
- Synchronizes to External Clock
- R_{DS(on)} Sensing for Zero Crossing Detection and Overcurrent Protection
- Soft-Stop Output Discharge During Disable
- Overcurrent, Overvoltage, and Undervoltage Protection With Hiccup
- Overtemperature Protection
- · Open-Drain, Power Good Indication
- Internal Bootstrap Switch
- 4 mm x 4 mm, 24-Pin VQFN Package

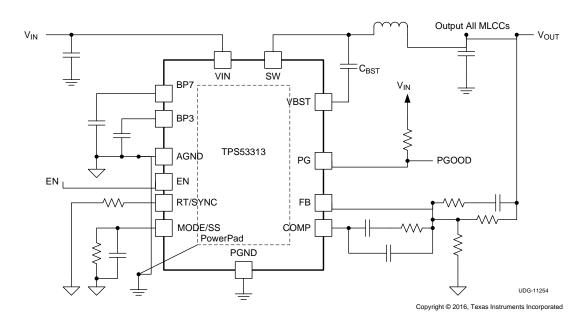
2 Applications

- POL Applications for 5-V
- 12-V Step-Down Rails

3 Description

TPS53313 provides a 5-V or 12-V synchronous buck converter that integrates two N-Channel MOSFETs. Due to low $R_{DS(on)}$ and TI proprietary SmoothPWMTM skip mode of operation, it optimizes the efficiency at light-load condition without compromising the output voltage ripple.

The TPS53313 features programmable (from 250 kHz to 1.5 MHz) switching frequency with selectable skip mode or forced CCM mode operation. The device provides prebiased startup, soft-stop, integrated bootstrap switch, power good function, and EN/input UVLO protection. It supports input voltages from 4.5 V to 16 V and no extra bias voltage is needed. The output voltage is adjustable from 0.6 V up to $0.7 \times V_{\text{IN}}$.


The TPS53313 is available in a 4 mm × 4 mm, 24-pin VQFN package (Green RoHs compliant and Pb free) and operates from –40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS53313	VQFN (24)	4.00 mm × 4.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

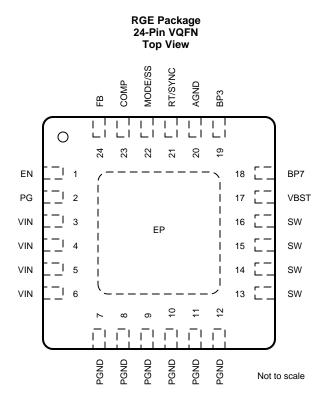
Typical Application Circuit

Table of Contents

1	Features 1		7.4 Device Functional Modes	13
2	Applications 1	8	Application and Implementation	14
3	Description 1		8.1 Application Information	14
4	Revision History2		8.2 Typical Application	14
5	Pin Configuration and Functions	9	Power Supply Recommendations	20
6	Specifications5	10	Layout	20
•	6.1 Absolute Maximum Ratings 5		10.1 Layout Guidelines	20
	6.2 ESD Ratings5		10.2 Layout Example	20
	6.3 Recommended Operating Conditions	11	Device and Documentation Support	2°
	6.4 Thermal Information6		11.1 Receiving Notification of Documentation Upda	ites 2
	6.5 Electrical Characteristics		11.2 Community Resources	2
	6.6 Typical Characteristics		11.3 Trademarks	2
7	Detailed Description 10		11.4 Electrostatic Discharge Caution	2
-	7.1 Overview		11.5 Glossary	2 [,]
	7.2 Functional Block Diagram	12	Mechanical, Packaging, and Orderable Information	2
	7.3 Feature Description			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (December 2011) to Revision A

Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

5 Pin Configuration and Functions

Pin Functions

	PIN	TYPE ⁽¹⁾	DESCRIPTION
NO.	NAME	TYPE	DESCRIPTION
1	EN	I	Enable pin
2	PG	0	Power good output flag. Open drain output. Pull up to an external rail through a resistor.
3	VIN	Р	Gate driver supply and power conversion voltage
4	VIN	Р	Gate driver supply and power conversion voltage
5	VIN	Р	Gate driver supply and power conversion voltage
6	VIN	Р	Gate driver supply and power conversion voltage
7	PGND	Р	Device power ground terminal
8	PGND	Р	Device power ground terminal
9	PGND	Р	Device power ground terminal
10	PGND	Р	Device power ground terminal
11	PGND	Р	Device power ground terminal
12	PGND	Р	Device power ground terminal
13	SW	0	Output inductor connection to integrated power devices
14	SW	0	Output inductor connection to integrated power devices
15	SW	0	Output inductor connection to integrated power devices
16	SW	0	Output inductor connection to integrated power devices
17	VBST	Р	Supply input for high-side MOSFET (bootstrap terminal). Connect capacitor from this pin to SW terminal.
18	BP7	Р	Bias for internal circuitry and driver
19	BP3	Р	Input bias supply for analog functions
20	AGND	G	Device analog ground terminal
21	RT/SYNC	I/O	Synchronized to external clock. Program the switching frequency by connecting with a resistor to GND.

(1) B = Bidirectional, G = Ground, I = Input, O = Output, P = Supply

Pin Functions (continued)

	PIN	TYPF ⁽¹⁾	DESCRIPTION
NO.	NAME	I TPE\/	DESCRIPTION
22	MODE/SS	I	Mode configuration pin. Connect with a resistor to GND sets different modes and soft-start time, parallel a capacitor (or no capacitor) with the resistor changes the current limit threshold. Shorting MODE/SS pin to supply inhibits the device; shorting MODE/SS pin to AGND is equivalent to $10\text{-k}\Omega$ resistor setting is not recommended (see Table 1 and Table 2 for resistor and capacitor settings).
23	COMP	0	Error amplifier compensation terminal. Type III compensation method is generally recommended for stability.
24	FB	I	Voltage feedback pin. Use for OVP, UVP, and power good determination

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)(3)

			MIN	MAX	UNIT
	VIN	VIN		20	
	VBST		-0.3	27	
	VBST to SW		-0.3	7	
Input voltage	trans V _{VIN}	DC	-2	20	.,
input voitage		transient < 20 ns	-3	20	V
		V _{VIN} ≥ 17	-0.3	17	
		V _{VIN} < 17	-0.3	V _{VIN} + 0.1	
			-0.3	3.6	
	COMP, RT/SYNC, BP3	COMP, RT/SYNC, BP3		3.6	V
Output voltage	BP7	BP7		7	
	PGD	PGD		17	
Ground pin (GND)			-0.3	0.3	V
Output current				6	Α
Operating temperature, T	J		-40	150	°C
Storage temperature, T _{stg}			-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
.,		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)) ±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)(2)

				MIN	MAX	UNIT
Input voltage		VIN (main supply)	VIN (main supply)		16	
	VBST		-0.1	22		
		VBST to SW		-0.1	6.5	
	Input voltage	SW (bidirectional)	dc	-1	18	V
	EN FB, MODE/SS		transient < 20 ns	-2	18	
		EN		-0.1	V _{VIN} + 0.1	
			-0.1	3.5		
		COMP, RT/SYNC, BP3		-0.1	3.5	
	Output voltage	BP7		-0.1	6.5	V
		PGD		-0.1	14	
	Ground pin (GND)			-0.1	0.1	V
T _A	Ambient temperature			-40	85	°C
T_{J}	Junction temperature			-40	125	°C

⁽¹⁾ Voltage values are with respect to the corresponding LL terminal.

⁽²⁾ All voltage values are with respect to the network ground terminal unless otherwise noted.

⁽³⁾ Voltage values are with respect to the corresponding LL terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ All voltage values are with respect to the network ground terminal unless otherwise noted.

6.4 Thermal Information

		TPS53313	
	THERMAL METRIC ⁽¹⁾	RGE (VQFN)	UNIT
		24 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	44.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	35	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	19	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	18.8	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	8.9	°C/W

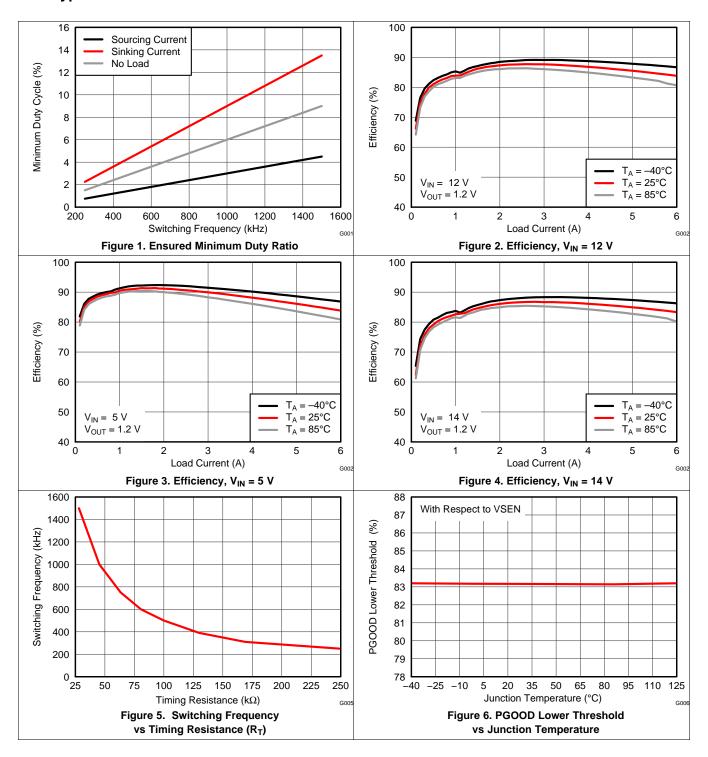
⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range, V_{VIN} = 12 V, PGND = GND (unless otherwise noted)

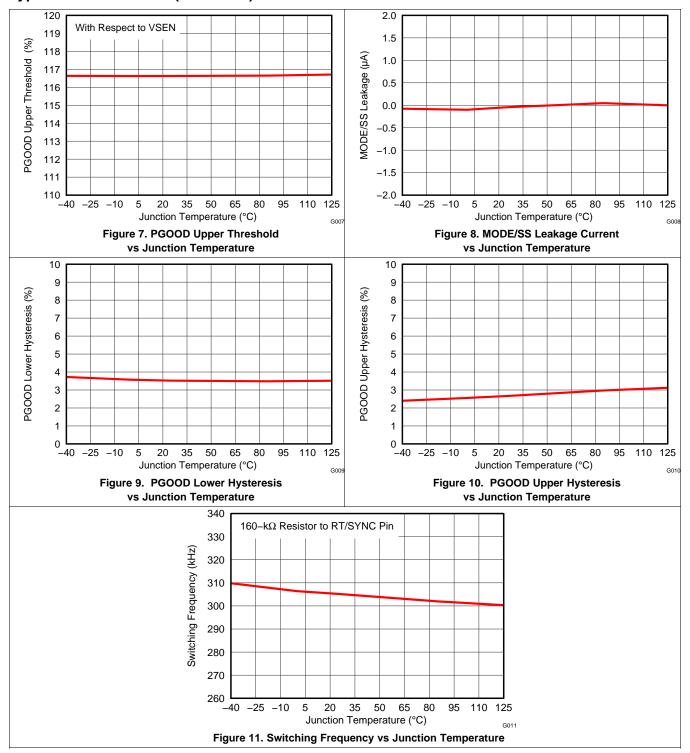
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT SUP	PLY					
V _{VIN}	VIN supply voltage	Nominal input voltage range	4.5		16	V
V _{POR}	VIN POR threshold	Ramp up, EN = HIGH	4	4.23	4.4	V
V _{POR(hys)}	VIN POR hysteresis			200		mV
I _{STBY}	Standby current	EN = LOW, V _{IN} = 12 V		58		μA
R _{BOOT}	Bootstrap on-resistance			10		Ω
REFERENC	E	·			'	
V_{VREF}	Internal precision reference voltage			0.6		V
TOL _{VREF}	VREF tolerance		-1%		1%	
ERROR AM	PLIFIER				,	
UGBW ⁽¹⁾	Unity gain bandwidth		14			MHz
A _{OL} ⁽¹⁾	Open loop gain		80			dB
I _{FBINT}	FB input leakage current	Sourced from FB pin		50		nA
EA(max)	Output sinking and sourcing current			5		mA
SR ⁽¹⁾	Slew rate			5		V/µs
ENABLE						
R _{ENPD} ⁽¹⁾	Enable pulldown resistor			800		kΩ
V _{ENH}	EN logic high	V _{VIN} = 4.5 V	1.8			V
V _{ENHYS}	EN hysteresis	V _{VIN} = 4.5 V			0.6	V
		V _{EN} = 0 V			1	
I _{EN}	EN pin current	V _{EN} = 3.3 V		3.3	5	μΑ
		V _{EN} = 14 V		17.8	27.5	
SOFT-STAR	T.					
t _{SS_1}	Delay after EN asserts	EN = High		0.65		ms
		$0 \text{ V} \le \text{V}_{SS} \le 0.6 \text{ V}$, 39-kΩ or no resistor to MODE/SS pin		1		
t _{SS_2}	Soft start ramp_up time	0 V \leq V _{SS} \leq 0.6 V, 20-k Ω or 160-k Ω resistor to MODE/SS pin		3		ms
		0 V \leq V _{SS} \leq 0.6 V, 10-kΩ or 82-kΩ resistor to MODE/SS pin		6		
PGDENDLY	PGD startup delay time	$V_{SS} = 0.6 \text{ V to PGD (SSOK) going high,}$ $t_{SS} = 1 \text{ ms}$		0.2		ms

⁽¹⁾ Ensured by design. Not production tested.


Electrical Characteristics (continued)

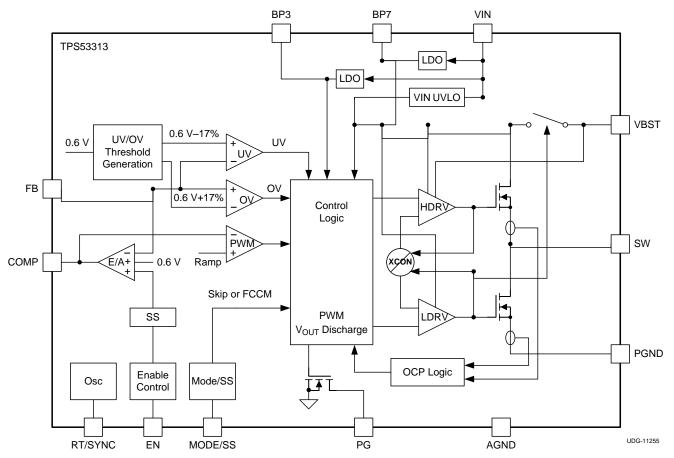
over operating free-air temperature range, V_{VIN} = 12 V, PGND = GND (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
RAMP						
	Down and the	4.5 V ≤ V _{VIN} ≤ 14.4 V		V _{VIN} /9		V
	Ramp amplitude	14.4 V ≤ V _{VIN} ≤ 16 V		1.6		
PWM						
t _{MIN(off)}	Minimum OFF time	f _{SW} = 1 MHz		150		ns
t _{MIN(on)}	Minimum ON time	No load			90	ns
D _{MAX}	Maximum duty cycle	f _{SW} = 1 MHz		80%		
SWITCHING F	REQUENCY				•	
f _{SW}	Switching frequency tolerance	$f_{SW} = 1 \text{ MHz}, R_T = 45.3 \text{ k}\Omega$	-10%		10%	
SOFT DISCHA	ARGE					
R _{SFTDIS}	Soft-discharge transistor resistance	EN = Low, V _{IN} = 4.5 V, V _{OUT} = 0.6 V		120		Ω
OVERCURRE	NT AND ZERO CROSSING					
		When I _{OUT} exceeds this threshold for 4 consecutive cycles, 2.2-nF capacitor to MODE/SS pin		4.5		А
I _{OCPL}	Overcurrent limit on high-side FET (peak)	When I _{OUT} exceeds this threshold for 4 consecutive cycles, no capacitor to MODE/SS pin		6		Α
		When I _{OUT} exceeds this threshold for 4 consecutive cycles, 10-nF capacitor to MODE/SS pin		9		
		Immediately shut down when sensed current reach this value, 2.2-nF capacitor to MODE/SS pin		4.5		Α
I _{OCPH}	One time overcurrent shut-off on the low-side FET (peak)	Immediately shut down when sensed current reach this value, no capacitor to MODE/SS pin		6		Α
		Immediately shut down when sensed current reach this value, 10-nF capacitor to MODE/SS pin		9		
V _{ZXOFF}	Zero crossing comparator internal offset	SW – PGND, SKIP mode		-3		mV
POWER GOO	D					
V_{PGDL}	Power good low threshold	Measured at the FB pin w/r/t VREF	80%	83%	86%	
V_{PGDH}	Power good high threshold	Measured at the FB pin w/r/t VREF	114%	117%	120%	
V _{PG(hys)}	Power good hysteresis			2		
V _{IN(min_pg)}	Minimum Vin voltage for valid PG at startup.	Measured at V_{IN} with 1-mA (or 2-mA) sink current on PG pin at startup			1	V
V _{PG(pd)}	Power good pull-down voltage	Pull down voltage with 4-mA sink current		0.2	0.4	V
I _{PG(leak)}	Power good leakage current	Hi-Z leakage current, apply 3.3-V in off state		12	16.2	μΑ
, ,	RVOLTAGE AND UNDERVOLTAG	E PROTECTION				
T _{OVPDLY}	Overvoltage protection delay time	Time from FB out of +17% of VREF to OVP fault		2		μs
T _{UVPDLY}	Undervoltage protection delay time	Time from FB out of -17% of VREF to UVP fault		10		μs
THERMAL SH	IUTDOWN					
THSD ⁽¹⁾	Thermal shutdown	Shutdown controller, attempt soft-stop	130	140	150	°C
THSD _{HYST} (1)	Thermal shutdown hysteresis	Controller restarts after temperature drops		40		°C


TEXAS INSTRUMENTS

6.6 Typical Characteristics

Typical Characteristics (continued)


7 Detailed Description

7.1 Overview

The TPS53313 is a high-efficiency switching regulator with two integrated N-channel MOSFETs and is capable of delivering up to 6 A of load current. The TPS53316 provides output voltage from 0.6 V up to 0.7 \times V_{IN} from 4.5-V to 16-V wide input voltage range. The output voltage accuracy is better than $\pm 1\%$ over load, line, and temperature.

This device can operate in either forced continuous conduction mode (FCCM) or skip mode with selectable softstart time to fit various application needs. Skip mode operation provides reduced power loss and increases the efficiency at light load. The unique, patented PWM modulator enables smooth light load to heavy load transition while maintaining fast load transient.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Soft-Start Operation

The soft-start operation reduces the inrush current during the start-up time. A slow rising reference is generated by the soft-start circuitry and sent to the input of the error amplifier. When the soft-start ramp voltage is less than 600 mV, the error amplifier uses this ramp voltage as the reference. When the ramp voltage reaches 600 mV, a fixed 600-mV reference voltage is used for the error amplifier. The soft-start time has selectable values of 1 ms, 3 ms, and 6 ms.

Feature Description (continued)

7.3.2 Power Good

The TPS53313 monitors the output voltage through the FB pin. If the FB voltage is within 117% and 83% of the reference voltage, the power good signal remains high. If the FB voltage is outside of this range, the PG pin pin is pulled low by the internal open drain output.

During start up, the power good signal has a 200-µs delay after the FB voltage falls into the power good range limit when the soft-start time is set to 1 ms. There is also 10-µs delay during shut down.

7.3.3 UVLO Function

The TPS53313 provides UVLO protection for input voltage, VIN. If the input voltage is lower than UVLO threshold voltage minus the hysteresis, the device shut off. When the voltage rises above the threshold voltage, the device restarts. The typical UVLO rising threshold is 4.23 V. Hysteresis of 200 mV for input voltage is provided to prevent glitch.

7.3.4 Overcurrent (OC) Protection

The TPS53313 provides peak current protection and continuously monitors the current flowing through high-side and low-side MOSFETs. If the current through the high-side FET exceeds the current limit threshold, the high-side FET turns off and the low-side FET turns on. An overcurrent (OC) counter starts to increment every switching cycle to count the occurrence of the overcurrent events. The converter shuts down immediately when the OC counter reaches 4. The OC counter resets if the detected current is less than 6 A (with 6-A OC setting) after an OC event.

Another set of overcurrent circuitry monitors the current through low-side FET. If the current through the low-side FET exceeds 6 A (with 6-A OC setting), the overcurrent protection is engaged and turns off both high-side and low-side FETs immediately.

Therefore, the device is fully protected against overcurrent during both on-time and off-time. Also, the OC threshold is selectable and can be set to 4.5 A, 6 A, or 9 A by connecting different capacitor in parallel with MODE/SS pin. After OC events, the device stops switching and enters hiccup mode. A re-start is attempted after a hiccup waiting time. If the fault condition is not cleared, hiccup mode operation may continue indefinitely

7.3.5 Overvoltage and Undervoltage Protection

The TPS53313 monitors the voltage divided feedback voltage to detect the overvoltage and undervoltage conditions. When the feedback voltage is greater than 117% of the reference, overvoltage protection is triggered, the high-side MOSFET turns off and the low-side MOSFET turns on. Then the output voltage drops and the FB voltage reaches the undervoltage threshold. At that point the low-side MOSFET turns off and the device goes into tri-state logic.

When the feedback voltage is lower than 83% of the reference voltage, the undervoltage protection counter starts. If the feedback voltage remains lower than the undervoltage threshold voltage after 10 μ s, the device turns off both the high-side and low-side MOSFETs and then goes into tri-state logic.

After the undervoltage events, the device stops switching and enters hiccup mode. A restart is attempted after a hiccup waiting time. If the fault condition is not cleared, hiccup mode operation may continue indefinitely.

7.3.6 Overtemperature Protection

The TPS53313 continuously monitors the die temperature. If the die temperature exceeds the threshold value (140°C typical), the device shuts off. When the device is cooled to 40°C below the overtemperature threshold, it restarts and returns to normal operation.

7.3.7 Output Discharge

When the EN pin is low, the TPS53313 discharges the output capacitors through an internal MOSFET switch between SW and GND while the high-side and low-side MOSFETs are maintained in the OFF state. The typical discharge switch on resistance is 120 Ω . This function is disabled when V_{VIN} is less than 1 V.

Feature Description (continued)

7.3.8 Switching Frequency Setting and Synchronization

The clock frequency is programmed by the value of the resistor connected from the RT/SYNC pin to GND. The switching frequency is programmable between 250 kHz and 1.5 MHz.

Also, TPS53313 is able to synchronize to external clock. The synchronization is fulfilled by connecting the RT/SYNC pin to external clock source. If no external pulse is received from RT/SYNC pin, the device continues to operate the internal clock.

7.4 Device Functional Modes

7.4.1 Operation Mode

The TPS53313 has 6 operation modes determined by the MODE/SS pin connection as listed in Table 1. The current limit thresholds and associated capacitance selections are shown in Table 2.

t_{SS} SOFT-START **MODE/SS PIN OPERATION MODE** TIME (ms) CONNECTION 10 $k\Omega$ to GND **FCCM** 6 20 $k\Omega$ to GND **FCCM** 3 **FCCM** 39 $k\Omega$ to GND 1 82 $k\Omega$ to GND Skip mode 6 Skip mode 160 $k\Omega$ to GND 3 Floating 1 Skip mode

Table 1. Operation Mode Selection

Table 2. Capacitor Selection

MODE/SS PIN SETTING (nF)	CURRENT LIMIT THRESHOLD (A)
No capacitor	6
2.2	4.5
10	9

In forced continuous conduction mode (FCCM), the high-side FET is ON during the on-time and low-side FET is ON during the off-time. The switching is synchronized to the internal clock thus the switching frequency is fixed.

In this mode, the switching frequency remains constant over the entire load range which is suitable for applications that need tight control of switching frequency.

In skip mode, the high-side FET is on during the on-time and low-side FET is on during the off-time until the inductor current reaches zero. An internal zero-crossing comparator detects the zero crossing of inductor current from positive to negative. When the inductor current reaches zero, the comparator sends a signal to the logic control and turns off the low-side FET. The on-pulse in skip mode is designed to be 25% higher than CCM to provide hysteresis to avoid chattering between CCM and skip mode.

Also, the overcurrent protection threshold can be set to 4.5 A, 6 A or 9 A by changing the capacitor that is in parallel with MODE/SS pin. Specifically, a 6-A current limit threshold is set without an external capacitor, the 4.5 A current limit threshold is set with a 2.2-nF capacitor, and the 9-A current limit threshold is set when a 10-nF capacitor is in parallel with MODE/SS pin.

7.4.2 Light Load Operation

In skip mode, when the load current is less than half of inductor ripple current, the inductor current reaches zero by the end of OFF-Time. The light load control scheme then turns off the low-side MOSFET when inductor current reaches zero. Since there is no negative inductor current, the energy delivered to the load per switching cycle is increased compared to the normal PWM mode operation. The controller then reduces the switching frequency to maintain the output voltage regulation. The switching loss is reduced and thus efficiency is improved.

In skip mode, when the load current decreases, the switching frequency also decreases continuously in discontinuous conduction mode (DCM). When the load current is 0 A, the minimum switching frequency is reached. It is also required that the difference between V_{VBST} and V_{SW} to be higher than 3.3 V to ensure the supply for high-side gate driver.

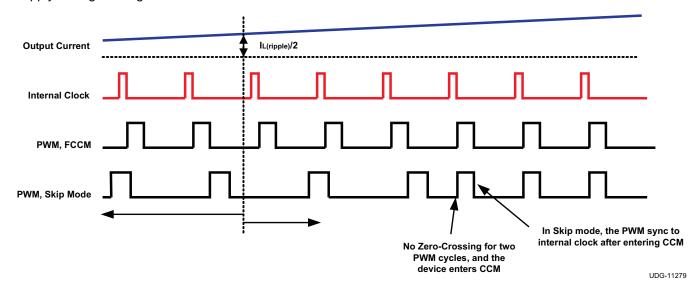


Figure 12. TPS53313 Operation Modes in Light and Heavy Load Conditions

7.4.3 Forced Continuous Conduction Mode

When choosing FCCM, the TPS53313 is operating in continuous conduction mode in both light and heavy load condition. In this mode, the switching frequency remains constant over the entire load range which is suitable for applications need tight control of switching frequency at a cost of lower efficiency at light load.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS53313 device is a high-efficiency synchronous-buck converter. The device suits low output voltage point-of-load applications with 6-A or lower output current in computing and similar digital consumer applications.

8.2 Typical Application

This design example describes a voltage-mode, 6-A synchronous buck converter with integrated MOSFETs. The device provides a fixed 1.2-V output at up to 6-A from a 12-V input bus.

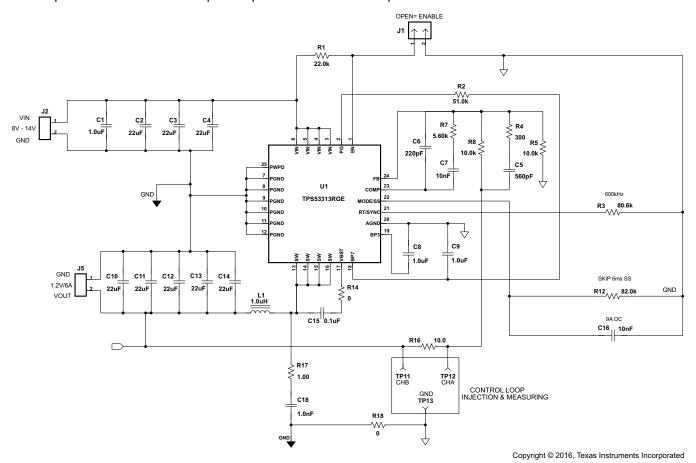


Figure 13. Typical Application Schematic

Product Folder Links: *TPS53313*

Copyright © 2011-2016, Texas Instruments Incorporated

Typical Application (continued)

8.2.1 Design Requirements

This design example illustrates the design process and component selection for a single-output synchronous buck converter using the TPS53313. The design example schematic of a is shown in Figure 13. The specification of the converter is listed in Table 3.

Table 3. Design Example Converter Specifications

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage		10.8	12	13.2	V
V _{OUT}	Output voltage			1.2		V
V _{RIPPLE}	Output ripple	I _{OUT} = 6 A		1% of V _{OUT}		V
I _{OUT}	Output current				6	Α
f _{SW}	Switching frequency			600		kHz

8.2.2 Detailed Design Procedure

8.2.2.1 Output Inductor Selection

The inductance value should be determined to give the ripple current of approximately 20% to 40% of maximum output current. The inductor ripple current is determined by Equation 1.

$$I_{L(ripple)} = \frac{1}{L \times f_{SW}} \times \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN}}$$
(1)

The inductor also requires a low DCR to achieve good efficiency, as well as enough room above peak inductor current before saturation.

8.2.2.2 Output Capacitor Selection

The output capacitor selection is determined by output ripple and transient requirement. When operating in CCM, the output ripple has three components:

$$V_{RIPPLE} = V_{RIPPLE(C)} + V_{RIPPLE(ESR)} + V_{RIPPLE(ESL)}$$
(2)

$$V_{RIPPLE(C)} = \frac{I_{L(ripple)}}{8 \times C_{OUT} \times f_{SW}}$$
(3)

$$V_{RIPPLE(ESR)} = I_{L(ripple)} \times ESR$$
 (4)

$$V_{RIPPLE(ESL)} = \frac{V_{IN} \times ESL}{L}$$
(5)

When ceramic output capacitor is chosen, the ESL component is usually negligible. In the case when multiple output capacitors are used, the total ESR and ESL should be the equivalent of the all output capacitors in parallel.

When operating in DCM, the output ripple is dominated by the component determined by capacitance. It also varies with load current and can be expressed as shown in Equation 6.

$$V_{RIPPLE(DCM)} = \frac{\left(\alpha \times I_{L(ripple)} - I_{OUT}\right)^{2}}{2 \times f_{SW} \times C_{OUT} \times I_{L(ripple)}}$$

Copyright © 2011-2016, Texas Instruments Incorporated

where

 α is the DCM on-time coefficient and can be expressed as shown in Equation 7. (6)

$$\alpha = \frac{t_{ON(DCM)}}{t_{ON(CCM)}} \tag{7}$$

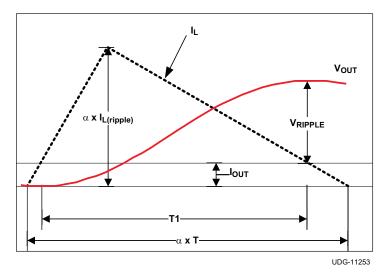


Figure 14. DCM Output Voltage Ripple

8.2.2.3 Input Capacitor Selection

The selection of input capacitor should be determined by the ripple current requirement. The ripple current generated by the converter needs to be absorbed by the input capacitors as well as the input source. The RMS ripple current from the converter can be expressed as shown in Equation 8.

$$I_{IN(ripple)} = I_{OUT} \times \sqrt{D \times (1-D)}$$

where

$$D = \frac{V_{OUT}}{V_{IN}} \tag{9}$$

To minimize the ripple current drawn from the input source, sufficient input decoupling capacitors should be placed close to the device. The ceramic capacitor is recommended due to its low ESR and low ESL. The input voltage ripple can be calculated as below when the total input capacitance is determined by Equation 10.

$$V_{\text{IN(ripple)}} = \frac{I_{\text{OUT}} \times D}{f_{\text{SW}} \times C_{\text{IN}}}$$
(10)

8.2.2.4 Output Voltage Setting Resistors Selection

The output voltage is programmed by the voltage-divider resistor, R1 and R2 shown in Equation 11. R1 is connected between VFB pin and the output, and R2 is connected between the VFB pin and GND. Recommended value for R1 is from 1k to 5k. Determine R2 using Equation 11.

$$R2 = \frac{0.6}{V_{OUT} - 0.6} \times R1$$
 (11)

8.2.2.5 Compensation Design

The TPS53313 employs voltage mode control. To effectively compensate the power stage and ensure fast transient response, Type III compensation is typically used.

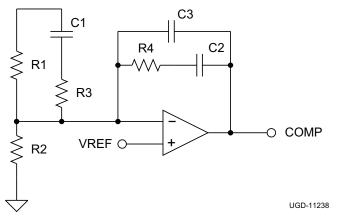
$$G_{CO} = 4 \times \frac{1 + s \times C_{OUT} \times ESR}{1 + s \times \left(\frac{L}{DCR + R_{LOAD}} + C_{OUT} \times (ESR + DCR)\right) + s^2 \times L \times C_{OUT}}$$
(12)

The output LC filter introduces a double pole which can be calculated as shown in Equation 13.

$$f_{DP} = \frac{1}{2 \times \pi \times \sqrt{L \times C_{OUT}}}$$
(13)

The ESR zero of can be calculated as shown in Equation 14.

$$f_{ESR} = \frac{1}{2 \times \pi \times ESR \times C_{OUT}}$$
(14)


Figure 15 and Figure 16 shows the configuration of Type III compensation and typical pole and zero locations. Equation 15 through Equation 17 describe the compensator transfer function and poles and zeros of the Type III network.

$$G_{EA} = \frac{\left(1 + s \times C1 \times (R1 + R3)\right)\left(1 + s \times R4 \times C2\right)}{\left(s \times R1 \times (C2 + C3)\right) \times \left(1 + s \times C1 \times R3\right) \times \left(1 + s \times R4 \frac{C2 \times C3}{C2 + C3}\right)}$$

$$\tag{15}$$

$$f_{Z1} = \frac{1}{2 \times \pi \times R4 \times C2} \tag{16}$$

$$f_{Z2} = \frac{1}{2 \times \pi \times (R1 + R3) \times C1} \cong \frac{1}{2 \times \pi \times R1 \times C1}$$
(17)

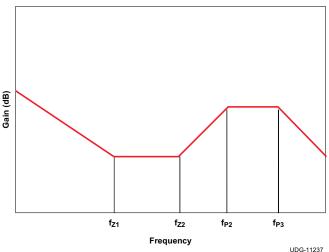


Figure 15. Type III Compensation **Network Schematic**

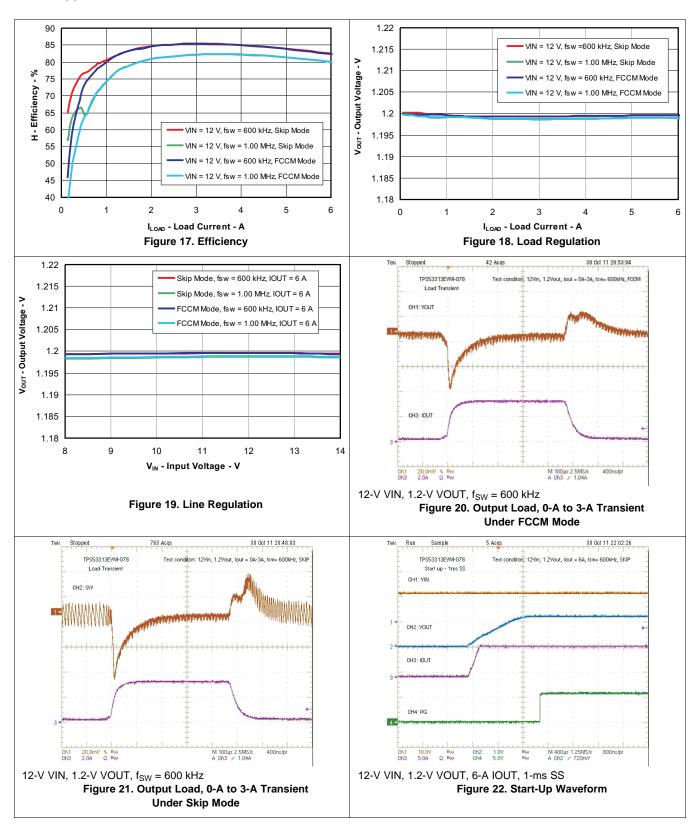
Figure 16. Type III Compensation **Network Waveform**

$$f_{P1} = 0 \tag{18}$$

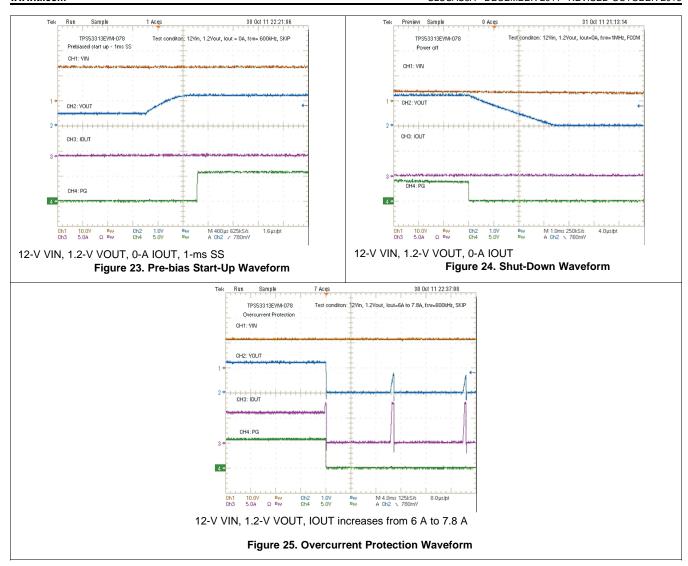
$$f_{P2} = \frac{1}{2 \times \pi \times R3 \times C1} \tag{19}$$

$$f_{P3} = \frac{1}{2 \times \pi \times R4 \times \left(\frac{C2 \times C3}{C2 + C3}\right)} \cong \frac{1}{2 \times \pi \times R4 \times C3}$$
(20)

The two zeros can be placed near the double pole frequency to cancel the response from the double pole. One pole can be used to cancel ESR zero, and the other non-zero pole can be placed at half switching frequency to attenuate the high frequency noise and switching ripple. Suitable values can be selected to achieve a compromise between high phase margin and fast response. A phase margin higher than 45° is required for stable operation.


For DCM operation, a capacitor with a value between 100 pF and 220 pF is recommended for C3 when the output capacitance is between 22 µF and 220 µF.

Product Folder Links: TPS53313


Copyright © 2011-2016, Texas Instruments Incorporated

8.2.3 Application Curves

9 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range from 4.5 V to 16 V. This input supply must be well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is PCB layout and grounding scheme (see recommendations in *Layout*).

10 Layout

10.1 Layout Guidelines

Good layout is essential for stable power supply operation. Follow these guidelines for an efficient PCB layout:

- Separate the power ground and analog ground planes. Connect them together at one location.
- Use 6 vias to connect the thermal pad to power ground.
- Place VIN, BP7 and BP3 decoupling capacitors as close to the device as possible.
- Use wide traces for VIN, PGND and SW. These nodes carry high-current and also serve as heat sinks.
- Place feedback and compensation components as close to the device as possible.
- Keep analog signals (FB, COMP) away from noisy signals (SW, VBST).

10.2 Layout Example

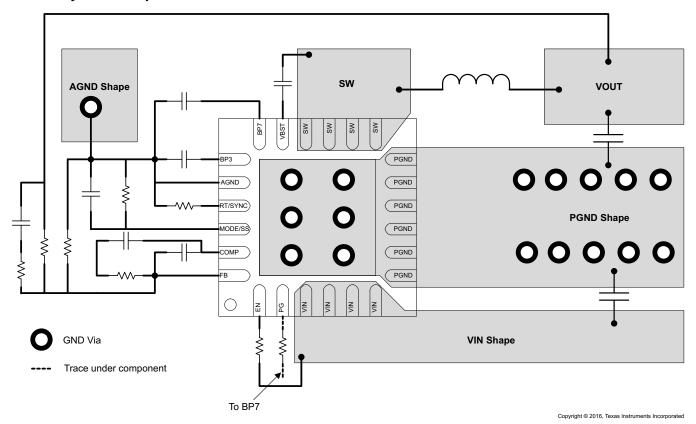


Figure 26. TPS53313 Layout Example

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

SmoothPWM, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

14-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS53313RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 53313	Samples
TPS53313RGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 53313	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

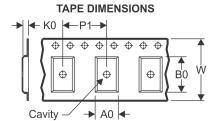
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

14-Mar-2016


In no event shall TI's liabilit	ty arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

PACKAGE MATERIALS INFORMATION

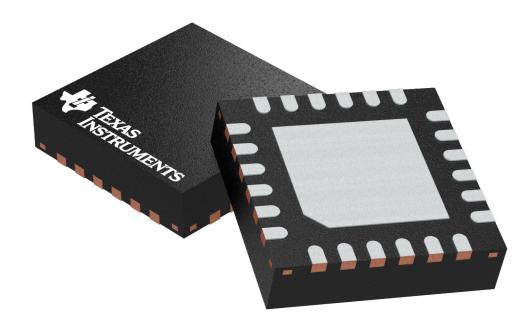
www.ti.com 14-Mar-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

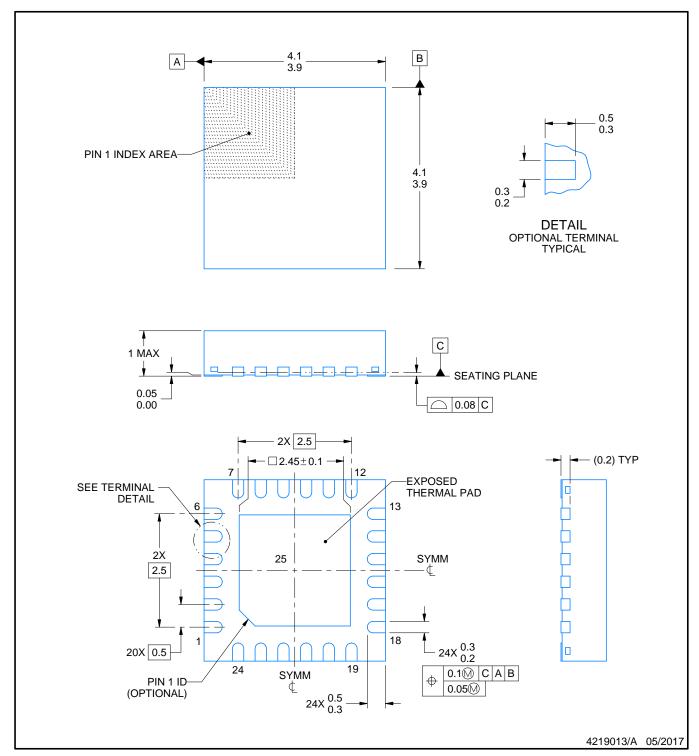
*All dimensions are nominal


7 til dilliololololo alo Hollilla												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS53313RGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
TPS53313RGET	VQFN	RGE	24	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 14-Mar-2016

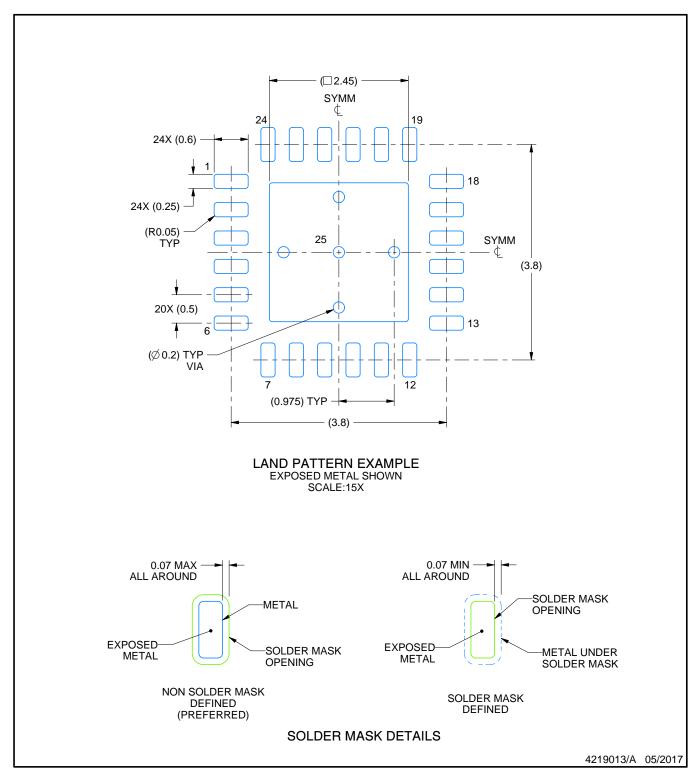
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS53313RGER	VQFN	RGE	24	3000	367.0	367.0	35.0	
TPS53313RGET	VQFN	RGE	24	250	210.0	185.0	35.0	



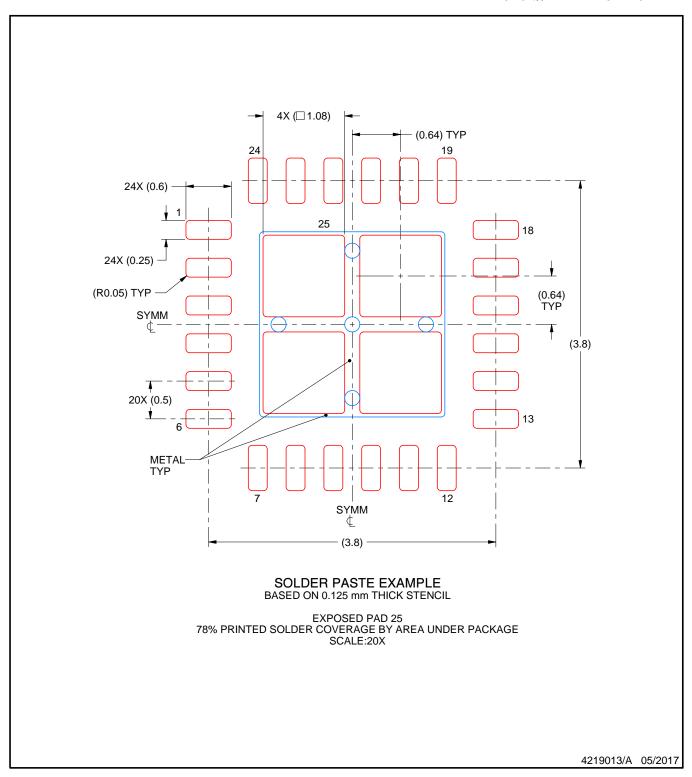
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4204104/H



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.