TEXAS INSTRUMENTS

Monitoring

Feedback Protection

Protection

Efficiency

Feedback

ti.com/currentsense

Introduction

What are Current Sense Amplifiers?

Current sense amplifiers, also called current shunt monitors, are specialized differential amplifiers with a precisely matched resistive gain network with the following characteristics:

- Designed to monitor the current flow by measuring the voltage drop across a sense element, typically a shunt resistor
- Tend to be easier to use, more precise and less prone to noise
- Support currents from 10s of μA to 100s of A
- Natively support common-mode voltages from -16 to +80 V and with additional circuitry up to 100s of volts

System benefits addressed by using current sense amplifiers:

- Real-time overcurrent protection
- Current and power monitoring for system optimization
- Current measurement for closed-loop feedback

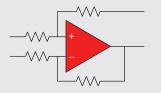
Key Parameters

Common Mode Range:

This specification defines the DC voltage range at the input of an amplifier with respect to ground. Current sense amplifiers are typically designed to support common-mode voltages well beyond the chip supply voltage. For example, the INA240 is capable of supporting a common-mode voltages between -4 V to +80 V while running on a supply as low as 2.7 V.

Offset Voltage:

This is a differential DC error at the input of the amplifier. Historically, to reduce the impact of amplifiers with high offsets, larger value shunt resistors were used to increase the measured voltage drop. Today, TI is able to offer current sense amplifiers with offsets as low as 10µV, enabling higher precision measurements at low currents and allowing the use of smaller value shunt resistors for improved system efficiency.

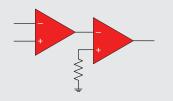

Gain:

Current sense amplifiers come with various gain options that have robust performance over temperature and process variations by integrating a precisely matched resistive gain network. The gain options for fixed gain amplifiers vary from 0.125 V/V to 1000 V/V with gain errors as low as 0.01%.

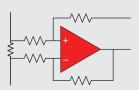
Temperature Stability:

Current sense amplifiers integrate the amplifier along with all the gain-setting resistors which enables small and unified temperature drift. This allows for robust current measurements across the whole specified temperature range. The achieved temperature stability is one of the key advantages current sense amplifiers have over discrete implementations.

Analog Output


Integrates the full analog signal processing and provides a voltage or current output.

Digital Output


Integrates the full signal conditioning path and utilizes a standard 2-wire digital interface.

Comparator Output

Provides a simple ALERT signal when the load current exceeds a threshold.

Integrated Shunt

Offers a low-drift, precision integrated sense element.

Key Design Considerations

High-Side Measurements

Current sensing techniques connect the current sense element between the supply bus and the load.

System Advantages:

- · Able to detect load short to ground
- Current is monitored directly from the source
- High immunity to ground disturbance

System Challenges:

• High bus voltage limits the availability of high input common-mode voltage devices

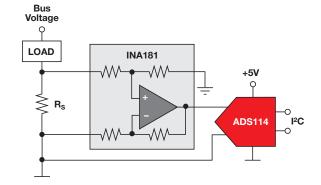
Advantages Over Discrete Current Sense Circuit:

- Integrated gain resistors provide excellent matching to enable a higher performing and more stable platform
- Reduction in board space requirements
- High dynamic changes in the common-mode voltage are difficult to achieve with standard op amps
- Unique input architecture allows for the common-mode voltage to greatly exceed the device supply voltage

Low-Side Measurements

Current sensing techniques connect the current sense element between the load and ground.

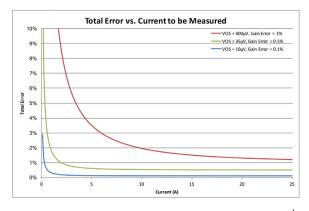
System Advantages:


- · Simple to implement and low-cost solution
- Wide range of available options

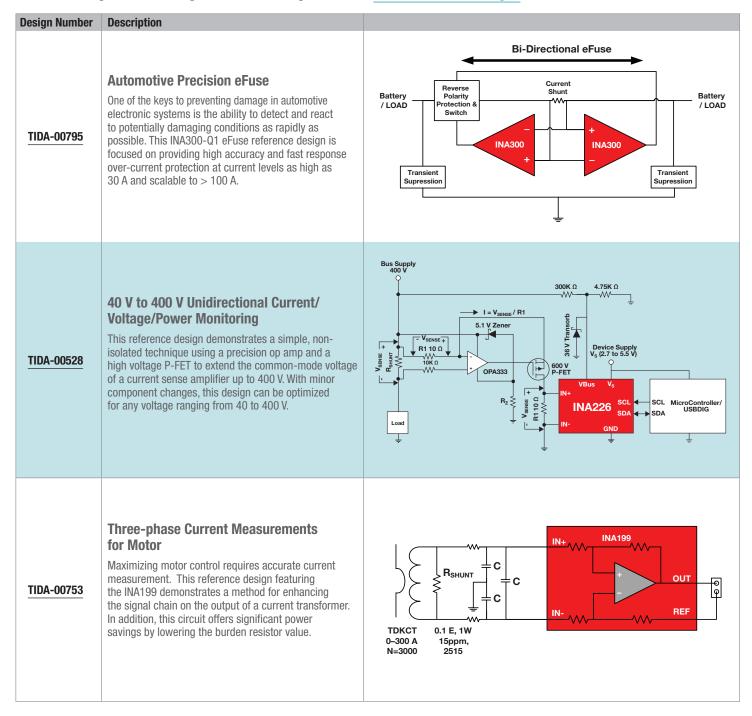
System Challenges:

- · Difficult to detect load short to ground
- System ground disturbance by the shunt resistor

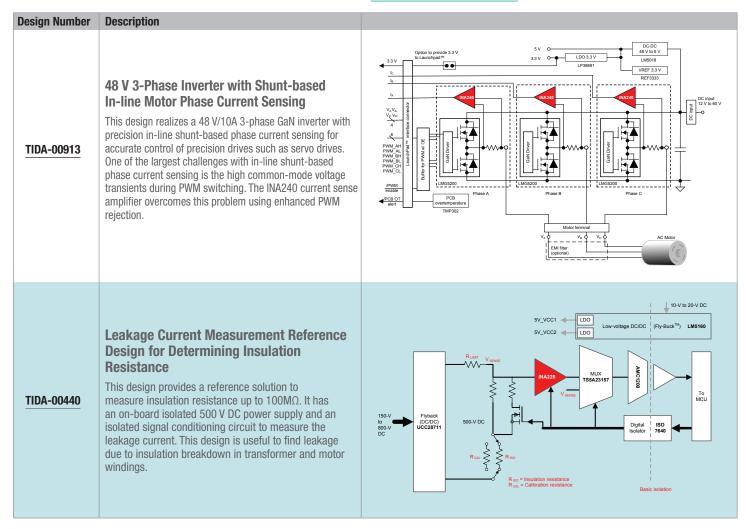
Advantages Over Discrete Current Sense Circuit:

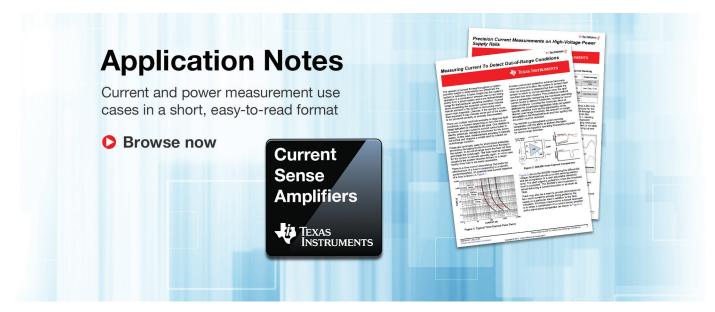

- Integrated gain resistors provide excellent matching to enable a higher performing and more stable platform
- Reduction in board space requirements
- True differential measurement across the shunt resistor
- Lower V_{OFFSET} saves system power by enabling the use of smaller value shunt resistors to achieve the same error level

Total Error


Texas Instruments

- For light loads with small current values that result in small differential voltage signals at the input, the total error will be dominated by the amplifier's offset voltage. Low input offsets are critical to achieving accurate measurements at the low end of the dynamic range.
- For heavy loads with large current values that result in large differential voltage signals at the input, the total error will be dominated by the amplifier's gain error.


Reference Designs


Current sensing reference designs. See more designs online at ti.com/referencedesigns.

Reference Designs

Current sensing reference designs. See more designs online at ti.com/referencedesigns.

Analog Output Current Sense Amplifiers

Featured Products

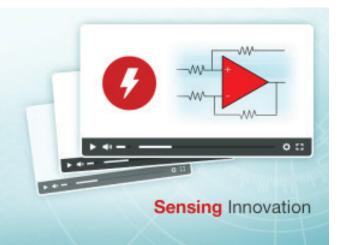
For more information see: ti.com/currentsense.

Part Number	AEC-Q100 Available	Bi-Directional	Low-Side	Description	Common Mode Voltage Range	Input Offset ±µ V Max	Input Offset Drift ±µ V/°C Typ	Gain Error % Typ	Package(s)
INA190 Family	•	~	~	1.8 V, High-precision Current Sense Amplifier with Power Down	-0.1 to 40	10	0.1	0.1	10 UQFN, 6 WCSP, 6 SC70
INA210 Family	~	~	~	High performance, Zero-Drift Current Sense Amplifier	-0.3 to 26	35	0.1	0.02	10 UQFN, 6 SC70
INA240 Family	~	~	~	High AC CMRR High Common Mode Current Sense Amplifier for Motor & Solenoid Control	-4 to 80	25	0.05	0.05	8 TSSOP, 8 SOIC
INA216 Family				Ultra-small, 5 V Current Sense Amplifier	1.8 to 5.5	100	0.06	0.01	10 UQFN, 4 WSCP
INA199 Family	~	~	~	Value line, Zero-Drift Current Sense Amplifier	-0.3 to 26	150	0.1	0.03	10 UQFN, 6 SC70
INAx180 Family	V		V	350kHz Bandwidth, Unidirectional Current Sense Amplifier for Cost-sensitive Applications (Single, Dual, & Quad Options)	-0.2 to 26	150	0.2	0.1	5 SOT-23, 8 VSSOP, 14 TSSOP
INAx181 Family	•	~	~	350kHz Bandwidth, Bidirectional Current Sense Amplifier for Cost-sensitive Applications (Single, Dual, & Quad Options)	-0.2 to 26	150	0.2	0.1	6 SOT-23, 10 VSSOP, 20 TSSOP
INA186 Family	~	~	~	40 V Bidirectional, Precision Current Sense Amplifier	-0.1 to 40	50	0.05	0.02	6 SC70
INA293 Family	~		~	110 V High Voltage, High Bandwidth, Unidirectional Current Sense Amplifier	-4 to 110	100	0.2	0.02	5 SOT-23
INA290 Family	~			120 V High Voltage, High Bandwidth, High-side Current Sense Amplifier	2.7 to 120	100	0.2	0.02	5 SC70
INA185 Family		~	~	350kHz Bandwidth, High-Precision, Bidirectional Current Sense Amplifier in SOT-563 Package	-0.2 to 26	55	0.2	0.05	6 SOT-563
<u>INA225</u>	~	~	1	Programmable-Gain, Zero-Drift, High Accuracy	0 to 36	150	0.2	0.05	8 MSOP
LMP8481 Family	~	~		High Common Mode, High-Speed Current Sense Amplifier	4.5 to 76	265	6	0.6	8 VSSOP
LMP8640 Family	~		~	High-Speed Current Sense Amplifier	-2 to 42	900	2.6	0.25	6 SOT-23
INA250 Family	~	~	~	High Accuracy, Zero-Drift Current Sense Amplifier with 0.1%, 15 PPM/°C 2m Ω Integrated Shunt	0 to 36	50mA	25μA/°C	0.3	16 TSSOP
INA253 Family	~	~	~	High AC CMRR High Common Mode Current Sense Amplifier Solenoid Control with 0.1%, 15 PPM/°C $2m\Omega$ Integrated Shunt	-4 to 80	12.5mA	25μA/°C	0.25	20 TSSOP
INA301 Family	~		~	Overcurrent Protection High-Speed, Precision Current Sense Amplifier with Integrated Comparator	0 to 36	35	0.1	0.03	8 VSSOP
INA302 Family	~	~	~	Overcurrent Protection High-Speed, Precision Current Sense Amplifier with Integrated Dual Comparators	0 to 36	30	0.02	0.02	14 TSSOP
INA303 Family	~	~	~	Overcurrent Protection High-Speed, Precision Current Sense Amplifier with Integrated Window Comparator	0 to 36	30	0.02	0.02	14 TSSOP
INA381 Family	~		~	Cost-efficient Current Sense Amplifier with Integrated Standalone Comparator	-0.2 to 26	150	0.1	0.1	8 UQFN

Preview devices as of Q2 2019

Digital Output Power MonitorsFeatured Products

Texas Instruments


Part Number	AEC-Q100 Available	Bi-Directional	Low-Side	Measurement Parameter Values	Description	Common Mode Voltage Range	Input Offset ±µ V Max	Input Offset Drift ±µ V/°C Typ	Gain Error % Typ	Package(s)
<u>INA226</u>	~	~	~	I, V, P	Ultra-High Accuracy, Current, Voltage, & Power	0 to 36	10	0.02	0.02	10 VSSOP
<u>INA260</u>		~	~	I, V, P	Ultra-High Accuracy, Current, Voltage, & Power Monitor with 0.1%, 15 PPM/°C 2m Ω Integrated Shunt	0 to 36	5mA	1μA/°C	0.02	16 TSS0P
<u>INA233</u>		~	~	I, V, P, E	High Accuracy, Current, Voltage, Power, & Energy Monitor with 1.8 V I ² C/PMBus	0 to 36	10	0.02	0.02	10 VSSOP
<u>INA229</u>	~	~	~	I, V, P, E	85 V Current/Voltage/Power/Energy/Charge Monitoring Device with SPI Interface with Internal Temperature Sensor	0 to 85	10	0.01	0.02	10 VSSOP 16 VQFN
INA3221	V	~	~	I, V	Triple-channel, Current & Voltage Monitor with Alert	0 to 26	80	0.1	0.1	16 VQFN

Preview devices as of Q2 2019

Measuring current or power in your design?

Browse a series of short training videos to get started.

ti.com/currentsensetraining

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page support.ti.com

TI E2E™ Community Home Page

e2e.ti.com

Product Information Centers

 Americas
 Phone
 +1(512) 434-1560

 Mexico
 Phone
 0800-670-7544

Internet/Email ti.com/lsds/ti/csc/support_Americas.page

Europe, Middle East, and Africa

Phone

European Free Call 00800-ASK-TEXAS

(00800 275 83927)

International +49 (0) 8161 80 2121 Russian Support +7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the

international number above

Internet www.ti.com/asktexas
Direct Email asktexas@ti.com

Japan

Fax International +81-3-3344-5317

Domestic 0120-81-0036

 $Internet/Email \\ International \\ ti.com/lsds/ti.csc/support_Japan.page$

Domestic www.tij.co.jp/pic

The platform bar, E2E, Sitara and Code Composer Studio are trademarks and SIMPLE SWITCHER is a registered mark of Texas Instruments.

All other trademarks are the property of their respective owners.

Asia

Phone <u>Toll-Free Number</u>

Note: Toll-free numbers may not support

mobile and IP phones.

Australia 1-800-999-084 China 800-820-8682 Hong Kong 800-96-5941 India 000-800-100-8888 Indonesia 001-803-8861-1006 080-551-2804 Korea 1-800-80-3973 Malaysia New Zealand 0800-446-934 Philippines 1-800-765-7404 Singapore 800-886-1028 0800-006800 Taiwan Thailand 001-800-886-0010

International +86-21-23073444 Fax +86-21-23073686

Email tiasia@ti.com or ti-china@ti.com Internet support.ti.com/sc/pic/asia.htm Technical forums www.devisupport.com

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

B021014

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated