

1 General description

The 74AUP1G17 provides the single Schmitt trigger buffer. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial Power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_{H} .

2 Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 Class 3A exceeds 5000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 Class C3 exceeds 1000 V
 - MM: JESD22-A115-A exceeds 200 V
- Low static power consumption; $I_{CC} = 0.9 \ \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- IOFF circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3 Ordering information

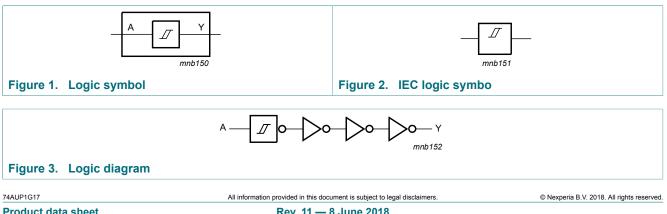
Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74AUP1G17GW	-40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1					
74AUP1G17GV	-40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753					

ne<mark>x</mark>peria

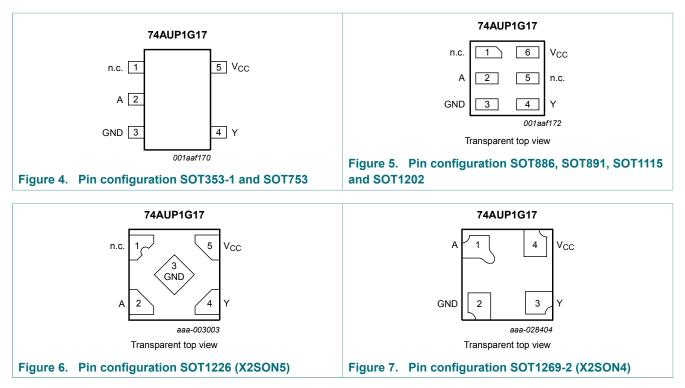
74AUP1G17

Low-power Schmitt trigger


Type number	Package								
	Temperature range	Name	Description	Version					
74AUP1G17GM	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm	SOT886					
74AUP1G17GF	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm	SOT891					
74AUP1G17GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm	SOT1115					
74AUP1G17GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm	SOT1202					
74AUP1G17GX	-40 °C to +125 °C	X2SON5	plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 x 0.8 x 0.35 mm	SOT1226					
74AUP1G17GX4	-40 °C to +125 °C	X2SON4	plastic thermal enhanced extremely thin small outline package; no leads; 4 terminals; body 0.6 x 0.6 x 0.32 mm	SOT1269-2					

Marking 4

Table 2. Marking	
Type number	Marking code ^[1]
74AUP1G17GW	Ld
74AUP1G17GV	J
74AUP1G17GM	Ld
74AUP1G17GF	Ld
74AUP1G17GN	Ld
74AUP1G17GS	Ld
74AUP1G17GX	La
74AUP1G17GX4	Ld


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Functional diagram 5

6 Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin des Symbol	Pin					
-,	TSSOP5, SC-74A and X2SON5	XSON6	X2SON4	Description		
n.c.	1	1, 5	-	not connected		
A	2	2	1	data input		
GND	3	3	2	ground (0 V)		
Y	4	4	3	data output		
V _{CC}	5	6	4	supply voltage		

Functional description 7

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input	Output
A	Y
L	L
Н	Н

Limiting values 8

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode and Power-down mode	[1]	-0.5	+4.6	V
lo	output current	V_{O} = 0 V to V_{CC}		-	±20	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		TSSOP5, SC-74A, XSON6 and X2SON5 package	[2]	-	250	mW
		X2SON4 package	[3]	-	150	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For TSSOP5 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K.

For XSON6 and X2SON5 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K. [3] For X2SON4 packages: above 57 °C the value of P_{tot} derates linearly with 1.7 mW/K.

Recommended operating conditions 9

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V_{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
74AUP1G17	1	All information provided in this document is subject to legal disclaimers.	·	© Nexperia B.V. 201	3. All rights reserve

10 Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C			,	1	
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		$I_{\rm O}$ = -2.3 mA; $V_{\rm CC}$ = 2.3 V	2.05	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		$I_{\rm O}$ = -2.7 mA; $V_{\rm CC}$ = 3.0 V	2.72	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage $V_I = V_{T+}$ or V_{T-}					
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V		-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V		-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		$I_{\rm O}$ = 2.3 mA; $V_{\rm CC}$ = 2.3 V	-	-	0.31	V
		$I_{\rm O}$ = 3.1 mA; $V_{\rm CC}$ = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OFF}	power-off leakage current	V_1 or V_0 = 0 V to 3.6 V; V_{CC} = 0 V	-	-	- 0.31 - 0.44 - 0.31 - 0.44	
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.2	μA
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	$\begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & $	
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	40	μA
CI	input capacitance	V_{I} = GND or V_{CC} ; V_{CC} = 0 V to 3.6 V	-	1.1	- - - - - 0.1 - 0.3 × V _{CC} - 0.31 - 0.31 - 0.31 - 0.31 - 0.44 - 0.44 - 0.44 - 1.1 - 0.5 - 40 1.1 -	
Co	output capacitance	$V_{O} = GND; V_{CC} = 0 V$	-	1.7	-	pF

74AUP1G17

Low-power Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
T _{amb} = -4	40 °C to +85 °C					_	
T _{amb} = -40 V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}					
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V	
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.7 \times V_{CC}$	-	-	V	
		$\label{eq:loss} \begin{array}{ c c c c c } I_{O} = -20 \; \mu A; V_{CC} = 0.8 \; V \; to \; 3.6 \; V & V_{CC} - 0.1 & - \\ I_{O} = -1.1 \; mA; V_{CC} = 1.1 \; V & 0.7 \; \times \; V_{CC} & - \\ I_{O} = -1.7 \; mA; V_{CC} = 1.4 \; V & 1.03 & - \\ I_{O} = -1.9 \; mA; V_{CC} = 1.65 \; V & 1.30 & - \\ I_{O} = -2.3 \; mA; V_{CC} = 2.3 \; V & 1.97 & - \\ I_{O} = -3.1 \; mA; V_{CC} = 2.3 \; V & 1.85 & - \\ I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.67 & - \\ I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.55 & - \\ \hline \\ I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.55 & - \\ \hline \\ I_{O} = 20 \; \mu A; \; V_{CC} = 0.8 \; V \; to \; 3.6 \; V & - & - \\ I_{O} = 1.1 \; mA; \; V_{CC} = 1.1 \; V & - & - \\ I_{O} = 1.1 \; mA; \; V_{CC} = 1.4 \; V & - & - \\ \hline \\ I_{O} = 1.7 \; mA; \; V_{CC} = 1.4 \; V & - & - \\ \hline \\ I_{O} = 1.9 \; mA; \; V_{CC} = 1.65 \; V & - & - \\ \hline \\ I_{O} = 2.3 \; mA; \; V_{CC} = 2.3 \; V & - & - \\ \hline \\ I_{O} = 2.3 \; mA; \; V_{CC} = 2.3 \; V & - & - \\ \hline \\ I_{O} = 2.7 \; mA; \; V_{CC} = 3.0 \; V & - & - \\ \hline \\ I_{O} = 2.7 \; mA; \; V_{CC} = 3.0 \; V & - & - \\ \hline \\ I_{O} = 4.0 \; mA; \; V_{CC} = 3.0 \; V & - & - \\ \hline \\ I_{O} = 4.0 \; mA; \; V_{CC} = 3.0 \; V & - & - \\ \hline \\ I_{O} = 4.0 \; mA; \; V_{CC} = 0 \; V \; to \; 3.6 \; V & - & - \\ \hline \end{array}$	-	-	V		
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V	
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.97	-	-	V	
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V	
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V	
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.55	-	-	V	
V _{OL}	LOW-level output voltage $V_{I} = V_{T+}$ or V_{T-}						
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V		-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V		-	0.3 × V _{CC}	V	
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V	
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V	
		$I_{\rm O}$ = 2.3 mA; $V_{\rm CC}$ = 2.3 V	-	-	0.33	V	
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V	
		$I_{\rm O}$ = 2.7 mA; $V_{\rm CC}$ = 3.0 V	-	 - 0.1 - 0.3 × V _{CC} - 0.37 - 0.35 - 0.33 - 0.45 - 0.33	V		
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.45	V	
lı	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA	
I _{OFF}	power-off leakage current	V_1 or V_0 = 0 V to 3.6 V; V_{CC} = 0 V	-	- 0.3 × V _{CC} - - 0.37 - - 0.35 - - 0.33 - - 0.45 - - 0.33 - - 0.45 - 0.45 - - 0.45 - - 0.45 - - 0.45 - - - 0.45 - - 0.45 - - 1.45 - - 1.45 - - 1.45		μA	
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.6	μA	
I _{CC}	supply current	$V_1 = GND \text{ or } V_{CC}; I_0 = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.9	μA	
∆l _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 V$; $I_{O} = 0 A$; $V_{CC} = 3.3 V$	-	-	50	μA	

74AUP1G17

Low-power Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	10 °C to +125 °C	·		1	1	
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		$I_{\rm O}$ = -20 $\mu\text{A};V_{\rm CC}$ = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.6 \times V_{CC}$	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		$I_{\rm O}$ = -2.3 mA; $V_{\rm CC}$ = 2.3 V	1.77	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.40	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		$I_{\rm O}$ = 2.3 mA; $V_{\rm CC}$ = 2.3 V	-	-	0.36	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.50	V
lı	input leakage current	$V_{\rm I}$ = GND to 3.6 V; $V_{\rm CC}$ = 0 V to 3.6 V	-	-	±0.75	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	0.39 - 0.36 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 1. 0.50 - 0.50 - 1. 0.75 - 1. 0. 0.75 - 1. 0. 0.75 - 1. 0. 0.75 - 1. 0. 0.75 - 1. 0. 0.75 - 1. 0.75 - 1. 0. 0.75 - 1.		μA	
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	1.4	μA
Δl _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	_	75	μA

11 Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9

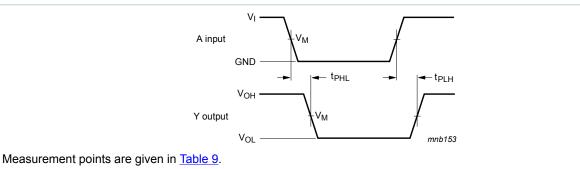
Symbol	Parameter	Conditions		25 °C		-40	0 °C to +12	25 °C	Unit
				Typ ^[1]	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F	1	I	-				1	-
t _{pd}	propagation delay	A to Y; see Figure 8	[2]						
		V _{CC} = 0.8 V	-	19.0	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.6	5.7	10.6	2.5	10.9	11.1	ns
		V _{CC} = 1.4 V to 1.6 V	2.4	4.2	6.5	2.3	7.1	7.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	3.6	5.5	1.9	6.1	6.3	ns
		V_{CC} = 2.3 V to 2.7 V	1.9	3.0	4.2	1.8	4.6	4.8	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	2.7	3.6	1.5	3.8	4.0	ns
C _L = 10 p	oF	1	l						
t _{pd}	propagation delay	A to Y; see Figure 8	[2]						
		V _{CC} = 0.8 V	-	22.5	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	6.6	12.4	2.7	12.9	13.0	ns
		V _{CC} = 1.4 V to 1.6 V	2.6	4.8	7.8	2.4	8.3	8.7	ns
		V _{CC} = 1.65 V to 1.95 V	2.5	4.2	6.3	2.4	6.8	7.1	ns
		V_{CC} = 2.3 V to 2.7 V	2.3	3.5	4.8	2.1	5.3	5.6	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	3.3	4.4	2.0	4.6	4.8	ns
C _L = 15 p	oF	1	!						
t _{pd}	propagation delay	A to Y; see <u>Figure 8</u>	[2]						
		V _{CC} = 0.8 V	-	26.0	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.2	7.4	14.1	3.1	14.7	14.9	ns
		V _{CC} = 1.4 V to 1.6 V	3.1	5.4	8.7	2.8	9.5	9.9	ns
		V _{CC} = 1.65 V to 1.95 V	2.7	4.7	7.1	2.7	7.8	8.2	ns
		V _{CC} = 2.3 V to 2.7 V	2.6	4.0	5.6	2.5	6.0	6.3	ns
		V _{CC} = 3.0 V to 3.6 V	2.5	3.7	4.9	2.2	5.2	5.5	ns

74AUP1G17

Low-power Schmitt trigger

Symbol	Parameter	Conditions		25 °C		-4() °C to +12	25 °C	Unit
			Min	Typ ^[1]	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 30 p	р F	· · ·		1				1	
t _{pd}	propagation delay	A to Y; see <u>Figure 8</u> ^[2]							
		V _{CC} = 0.8 V	-	36.3	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.9	9.7	19.0	3.7	19.8	20.1	ns
		V _{CC} = 1.4 V to 1.6 V	3.5	7.0	11.2	3.6	12.4	13.0	ns
		V _{CC} = 1.65 V to 1.95 V	3.5	6.0	9.2	3.4	10.1	10.7	ns
		V _{CC} = 2.3 V to 2.7 V	3.4	5.1	7.0	3.2	7.5	7.9	ns
		V _{CC} = 3.0 V to 3.6 V	3.3	4.8	6.2	3.1	7.1	7.5	ns
C _L = 5 pF	F, 10 pF, 15 pF and 3	30 pF		1					
C _{PD}	power dissipation	f = 1 MHz; V_1 = GND to V_{CC} ^[3]							
	capacitance	V _{CC} = 0.8 V	-	2.5	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V	-	2.7	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	2.8	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	3.0	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V	-	3.5	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	4.0	-	-	-	-	pF

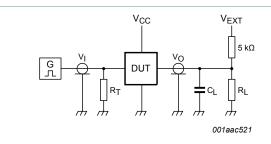
All typical values are measured at nominal V_{CC}.
 t_{pd} is the same as t_{PLH} and t_{PHL}
 C_{PD} is used to determine the dynamic power dissipation (P_D in μW). P_D = C_{PD} x V_{CC}² x f₁ x N + Σ(C_L x V_{CC}² x f₀) where: f₁ = input frequency in MHz;


 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.


11.1 Waveform and test circuit

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 8. The data input (A) to output (Y) propagation delays

Supply voltage	Output	Input				
V _{cc}	V _M	V _M	VI	t _r = t _f		
0.8 V to 3.6 V	0.5 x V _{CC}	0.5 x V _{CC}	V _{CC}	≤ 3.0 ns		

Test data is given in <u>Table 10</u>.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Figure 9. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Load		V _{EXT}			
V _{cc}	CL	R _L ^[1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	2 x V _{CC}	

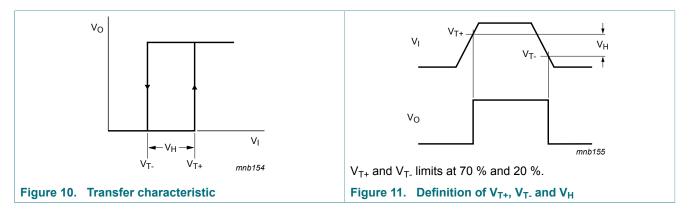
[1] For measuring enable and disable times, R_L = 5 k Ω , for measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

12 Transfer characteristics

Table 11. Transfer characteristics

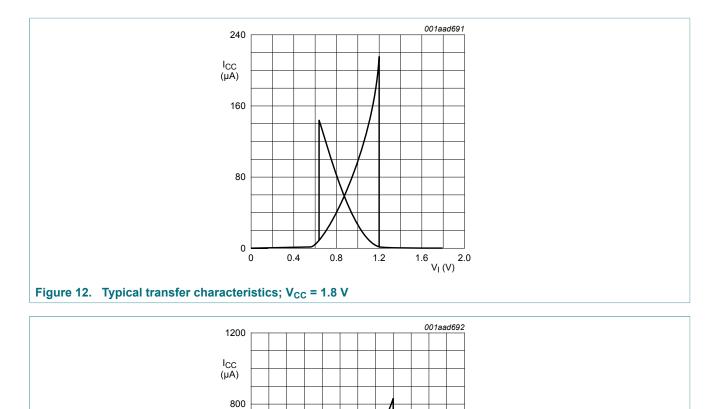
Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 2	5 °C					
V _{T+}	positive-going threshold	see Figure 10 and Figure 11				
	voltage	V _{CC} = 0.8 V	0.30	-	0.60	V
		V _{CC} = 1.1 V	0.53	-	0.90	V
		V _{CC} = 1.4 V	0.74	-	1.11	V
		V _{CC} = 1.65 V	0.91	-	1.29	V
		V _{CC} = 2.3 V	1.37	-	1.77	V
		V _{CC} = 3.0 V	1.88	-	2.29	V
/ _{T-} ne	negative-going threshold voltage	see Figure 10 and Figure 11				
		V _{CC} = 0.8 V	0.10	-	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	V
V _H	hysteresis voltage	see Figure 10, Figure 11, Figure 12 and Figure 13				
		V _{CC} = 0.8 V	0.07	-	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	V


Low-power Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	10 °C to +85 °C					
V _{T+}	positive-going threshold	see Figure 10 and Figure 11				
	voltage	V _{CC} = 0.8 V	0.30	-	0.60	V
		V _{CC} = 1.1 V	$V_{CC} = 1.1 \ V$ 0.53 - $V_{CC} = 1.4 \ V$ 0.74 - $V_{CC} = 1.65 \ V$ 0.91 - $V_{CC} = 2.3 \ V$ 1.37 - $V_{CC} = 3.0 \ V$ 1.88 -Figure 10 and Figure 11 $V_{CC} = 0.8 \ V$ 0.10 $V_{CC} = 1.1 \ V$ 0.26 - $V_{CC} = 1.4 \ V$ 0.39 - $V_{CC} = 1.65 \ V$ 0.47 -	0.90	V	
		V _{CC} = 1.4 V	0.74	-	1.11	V
		V _{CC} = 1.65 V	0.91	-	1.29	V
		V _{CC} = 2.3 V	1.37	-	1.77	V
		V _{CC} = 3.0 V	1.88	-	2.29	V
V _{T-}	negative-going threshold voltage	see Figure 10 and Figure 11				
		V _{CC} = 0.8 V	0.10	-	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	V
V _H	hysteresis voltage	see Figure 10, Figure 11, Figure 12 and Figure 13				
		V _{CC} = 0.8 V	0.07	-	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	V

Low-power Schmitt trigger


Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -4	0 °C to +125 °C					
V _{T+}	positive-going threshold	see Figure 10 and Figure 11				
	voltage	V _{CC} = 0.8 V	0.30	-	0.62	V
		see Figure 10 and Figure 11 0.30 - $V_{CC} = 0.8 V$ 0.30 - $V_{CC} = 1.1 V$ 0.53 - $V_{CC} = 1.4 V$ 0.74 - $V_{CC} = 1.65 V$ 0.91 - $V_{CC} = 2.3 V$ 1.37 - $V_{CC} = 3.0 V$ 1.88 - see Figure 10 and Figure 11 - - $V_{CC} = 0.8 V$ 0.10 - $V_{CC} = 1.1 V$ 0.26 - $V_{CC} = 1.4 V$ 0.39 - $V_{CC} = 1.4 V$ 0.39 - $V_{CC} = 3.0 V$ 0.69 - $V_{CC} = 1.4 V$ 0.39 - $V_{CC} = 1.4 V$ 0.39 - $V_{CC} = 1.65 V$ 0.47 - $V_{CC} = 3.0 V$ 0.69 - $V_{CC} = 3.0 V$ 0.88 - see Figure 10, Figure 11, Figure 12 and Figure 13 - - $V_{CC} = 0.8 V$ 0.07 - $V_{CC} = 1.1 V$ 0.08 - -	0.92	V		
		V _{CC} = 1.4 V	0.74	-	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.31	V
		V _{CC} = 2.3 V	1.37	-	1.80	V
		V _{CC} = 3.0 V	1.88	-	2.32	V
V _{T-}	negative-going threshold voltage	see Figure 10 and Figure 11				
		V _{CC} = 0.8 V	0.10	-	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	V
V _H	hysteresis voltage					
		V _{CC} = 0.8 V	0.07	-	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	V

12.1 Waveforms transfer characteristics

74AUP1G17

Low-power Schmitt trigger

400

0 ∟ 0

1.0

2.0

3.0

V_I (V)

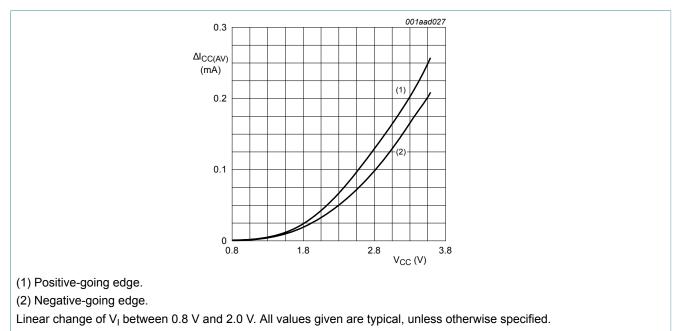
13 Application information

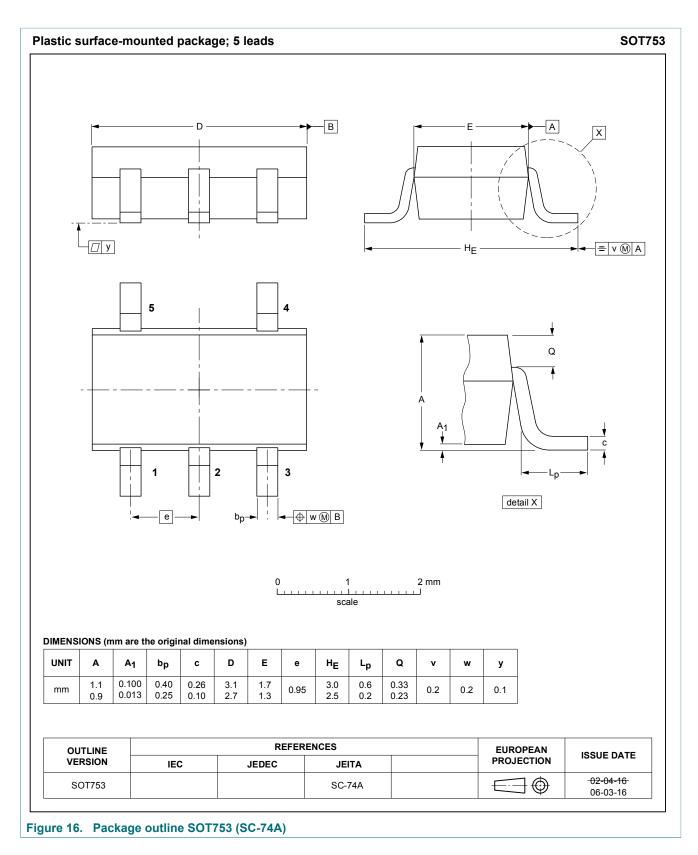
The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{ad} = f_i x (t_r x I_{CC(AV)} + t_f x I_{CC(AV)}) x V_{CC}$ where:

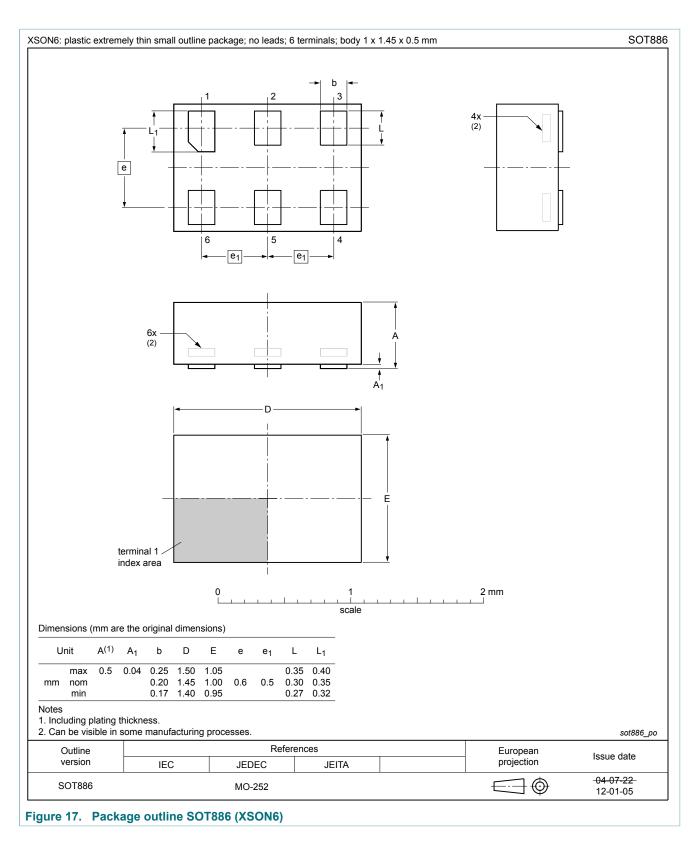
- P_{ad} = additional power dissipation (μW);
- f_i = input frequency (MHz);
- t_r = input rise time (ns); 10 % to 90 %;
- t_f = input fall time (ns); 90 % to 10 %;
- I_{CC(AV)} = average additional supply current (μA).

Average I_{CC} differs with positive or negative input transitions, as shown in Figure 14.

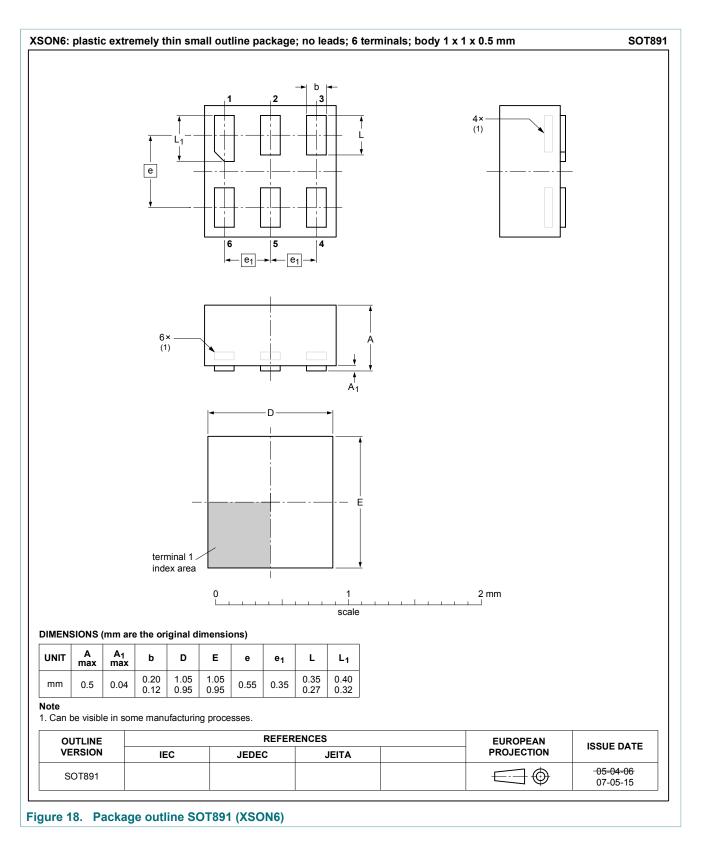


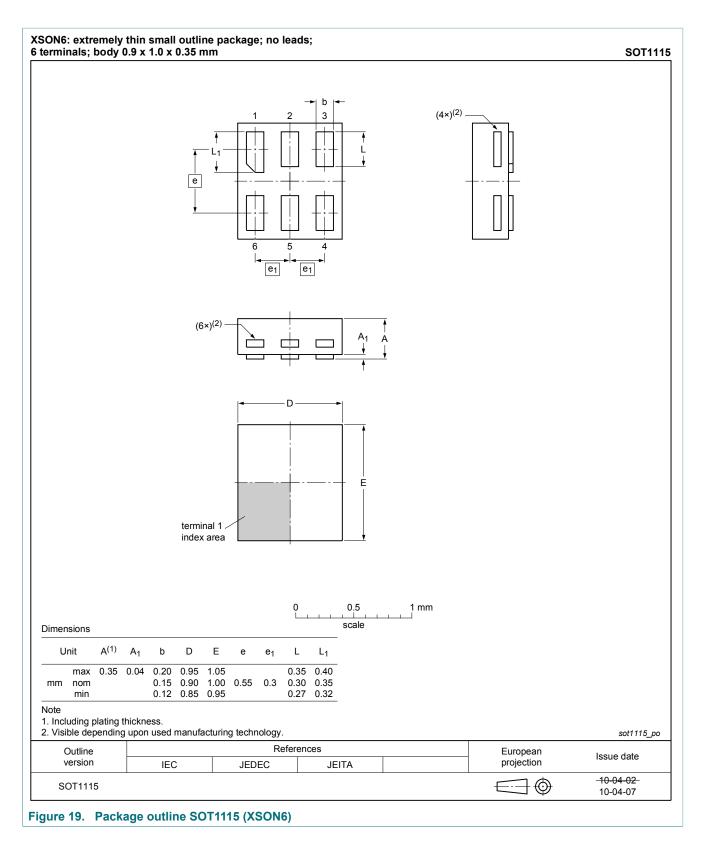

Figure 14. Average I_{CC} as a function of V_{CC}

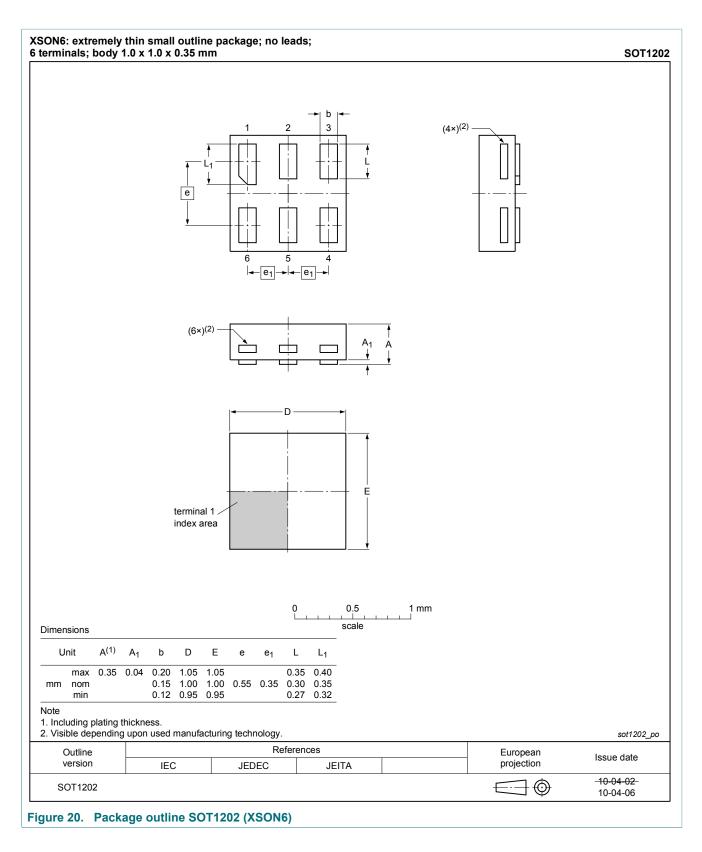
74AUP1G17 Low-power Schmitt trigger

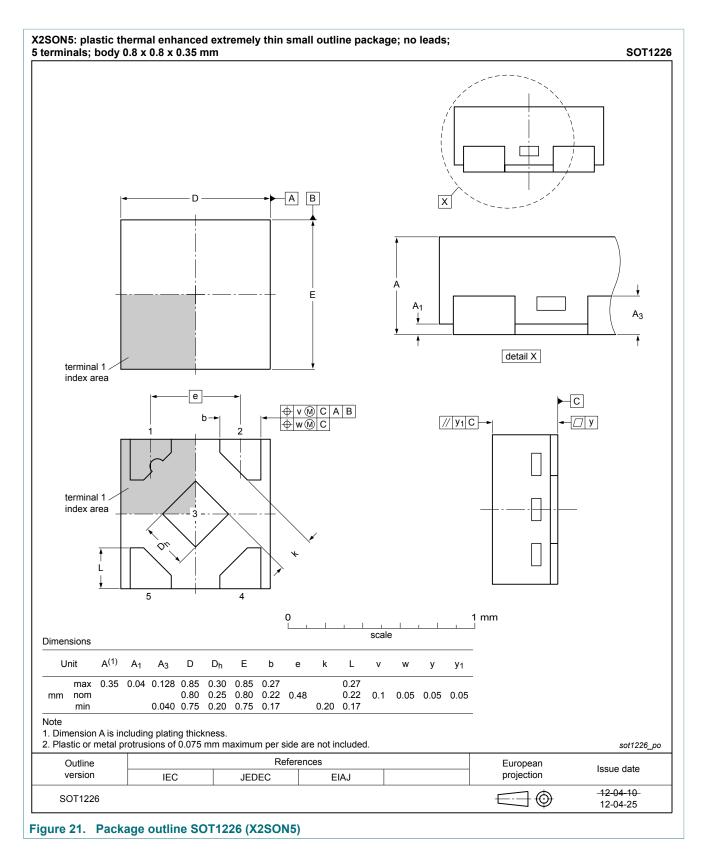

14 Package outline

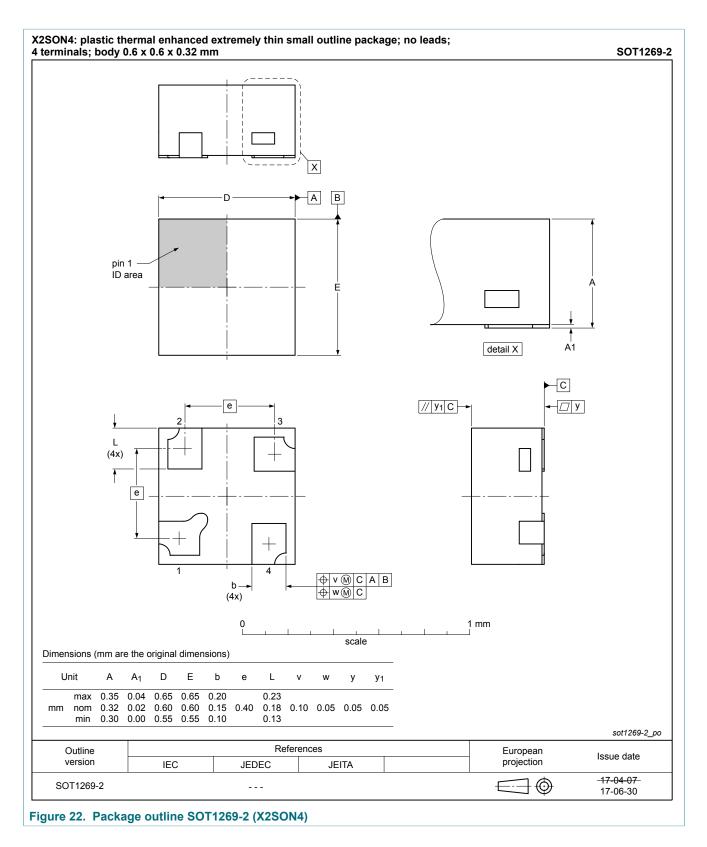
	: plas	tic th	in shr	ink sr	nall o	utline	pack	age; 5	lead	s; boo	dy wid	lth 1.2	5 mm	1			SC	DT353
		Ĩ							с	¥ *				X) (M) A			
		-		- Z		4 3 •_ ⊕w	۲				A ₁	detail		(A ₃) ↓ ↓ ↓	A A A A A A A			
	IONS (n	ım are	the orig	jinal din	0 L	s)	1.5 sca			3 mm 								
IMENS				A ₃	ь _р	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	HE	L	Lp	v	w	у	Z ⁽¹⁾	θ
UNIT	A max.	A ₁	A2			0.25	2.25	1.35	0.65	1.3	2.25 2.0	0.425	0.46	0.3	0.1	0.1	0.60 0.15	7°
	A max. 1.1	A ₁ 0.1 0	1.0	0.15	0.30 0.15	0.23	1.85	1.15						1			0.10	
UNIT mm Note	max. 1.1	0.1 0	1.0 0.8		0.15	0.08	1.85	1.15	luded						1		0.13	0°
UNIT mm Note	max. 1.1	0.1 0	1.0		0.15	0.08	1.85 side are					<u> </u>		EURO	PEAN			0°
UNIT mm Note . Plastic	max. 1.1	0.1 0	1.0 0.8 usions of		0.15	0.08	1.85 side are	e not inc				II		EUROI			SSUE DA	0°


Low-power Schmitt trigger


Low-power Schmitt trigger


Low-power Schmitt trigger


Low-power Schmitt trigger


Low-power Schmitt trigger

Low-power Schmitt trigger

Low-power Schmitt trigger

15 Abbreviations

Table 12. Abbreviations					
Acronym	Description				
CDM	Charged Device Model				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
НВМ	Human Body Model				
ММ	Machine Model				

16 Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G17 v.11	20180608	Product data sheet	-	74AUP1G17 v.10
Modifications:	 Added type num 	nber 74AUP1G17GX4 (SOT12	269-2)	,
74AUP1G17 v.10	20170519	Product data sheet	-	74AUP1G17 v.9
Modifications:	Nexperia.	is data sheet has been redesi		
74AUP1G17 v.9	20161104	Product data sheet	-	74AUP1G17 v.8
Modifications:	 Added type num 	nber 74AUP1G17GV (SOT75	3)	
74AUP1G17 v.8	20150115	Product data sheet	-	74AUP1G17 v.7
Modifications:	Marking code Ta	able 2: typo corrected in type	number 74AUP1G17GX.	/
74AUP1G17 v.7	20120716	Product data sheet	-	74AUP1G17 v.6
Modifications:	 Package outline 	drawing of SOT1226 (Figure	21) modified.	
74AUP1G17 v.6	20120412	Product data sheet	-	74AUP1G17 v.5
Modifications:		ber 74AUP1G17GX (SOT122 drawing of SOT886 (Figure 1	,	
74AUP1G17 v.5	20111124	Product data sheet	-	74AUP1G17 v.4
Modifications:	 Legal pages upo 	dated.	I	/
74AUP1G17 v.4	20100715	Product data sheet	-	74AUP1G17 v.3
74AUP1G17 v.3	20090710	Product data sheet	-	74AUP1G17 v.2
74AUP1G17 v.2	20060727	Product data sheet	-	74AUP1G17 v.1
74AUP1G17 v.1	20050726	Product data sheet	-	-

17 Legal information

17.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

The term 'short data sheet' is explained in section "Definitions".

[2] [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Low-power Schmitt trigger

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer

design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74AUP1G17

Contents

1	General description	1
2	Features and benefits	1
3	Ordering information	1
4	Marking	2
5	Functional diagram	2
6	Pinning information	
6.1	Pinning	
6.2	Pin description	3
7	Functional description	4
8	Limiting values	4
9	Recommended operating conditions	4
10	Static characteristics	5
11	Dynamic characteristics	8
11.1	Waveform and test circuit	10
12	Transfer characteristics	11
12.1	Waveforms transfer characteristics	13
13	Application information	15
14	Package outline	16
15	Abbreviations	
16	Revision history	24
17	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Nexperia B.V. 2018.

All rights reserved.

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

 74AUP1G17GF,132
 74AUP1G17GM,115
 74AUP1G17GM,132
 74AUP1G17GW,125
 74AUP1G17GN,132

 74AUP1G17GS,132
 74AUP1G17GX,125
 74AUP1G17GX4Z
 74AUP1G17GVH