Quad 2-input NAND Schmitt trigger

Rev. 1 — 12 July 2012

Product data sheet

1. General description

The HEF4093B-Q100 is a quad two-input NAND gate. Each input has a Schmitt trigger circuit. The gate switches at different points for positive-going and negative-going signals. The difference between the positive voltage (V_{T+}) and the negative voltage (V_{T-}) is defined as hysteresis voltage (V_H).

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD} , V_{SS} , or another input.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

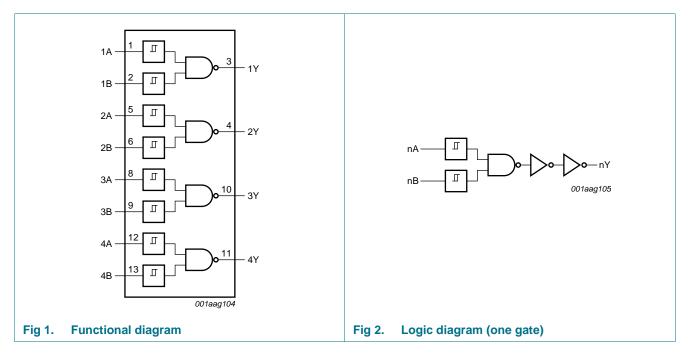
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Schmitt trigger input discrimination
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- ESD protection:
 - MIL-STD-833, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pf, R = 0 Ω)
- Complies with JEDEC standard JESD 13-B

3. Applications

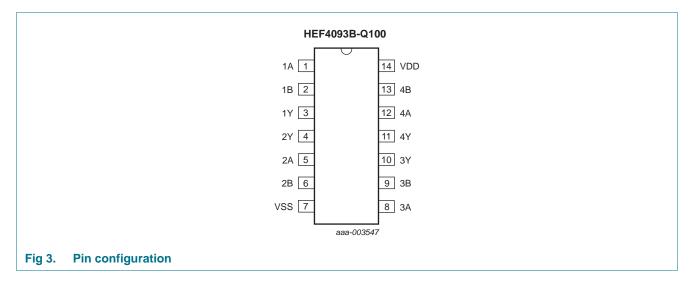
- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

4. Ordering information

Table 1. Ordering information


All types operate from -40 °C to +125 °C

Type number	Package		
	Name	Description	Version
HEF4093BT-Q100	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1


Quad 2-input NAND Schmitt trigger

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
1A to 4A	1, 5, 8, 12	input
1B to 4B	2, 6, 9, 13	input
1Y to 4Y	3, 4, 10, 11	output
V _{DD}	14	supply voltage
V _{SS}	7	ground (0 V)

7. Functional description

Table 3.Function table^[1]

Input		Output
nA	nB	nY
L	L	н
L	Н	Н
Н	L	Н
Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 V$ (ground).

					,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+18	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I}$ > $V_{\rm DD}$ + 0.5 V	-	±10	mA
VI	input voltage		-0.5	V_{DD} + 0.5	V
I _{OK}	output clamping current	V_{O} < –0.5 V or V_{O} > V_{DD} + 0.5 V	-	±10	mA
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$			
		SO14	<u>[1]</u> _	500	mW
Р	power dissipation	per output	-	100	mW

[1] For SO14 package: above T_{amb} = 70 °C, P_{tot} derates linearly with 8 mW/K.

9. Recommended operating conditions

Table 5.	Recommended operating co	nditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		3	15	V
VI	input voltage		0	V _{DD}	V
T _{amb}	ambient temperature	in free air	-40	+125	°C

10. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_{I} = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V _{DD}	T _{amb} =	–40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = +	⊦125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V _{OH}	HIGH-level	I _O < 1 μA	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V _{OL}	LOW-level	$ I_0 < 1 \ \mu A$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level	$V_0 = 2.5 V$	5 V	-1.7	-	-1.4	-	-1.1	-	-1.1	-	mA
	output current	$V_{O} = 4.6 V$	5 V	-0.64	-	-0.5	-	-0.36	-	-0.36	-	mA
		$V_{O} = 9.5 V$	10 V	-1.6	-	-1.3	-	-0.9	-	-0.9	-	mA
		V _O = 13.5 V	15 V	-4.2	-	-3.4	-	-2.4	-	-2.4	-	mA
I _{OL}	LOW-level	$V_{O} = 0.4 V$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	$V_{O} = 0.5 V$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
l _l	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μA
I _{DD}	supply current	all valid input	5 V	-	0.25	-	0.25	-	7.5	-	7.5	μΑ
		combinations;	10 V	-	0.5	-	0.5	-	15.0	-	15.0	μA
		I _O = 0 A	15 V	-	1.0	-	1.0	-	30.0	-	30.0	μA
CI	input capacitance			-	-	-	7.5	-	-	-	-	pF

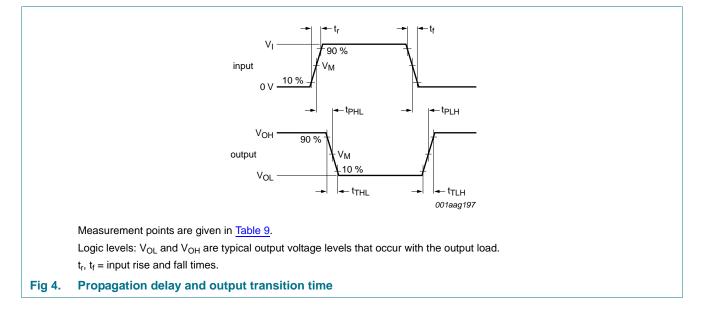
11. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = 25 \text{ °C}$; $C_L = 50 \text{ pF}$; $t_r = t_f \le 20 \text{ ns}$; wave forms see <u>Figure 4</u>; test circuit see <u>Figure 5</u>; unless otherwise specified.

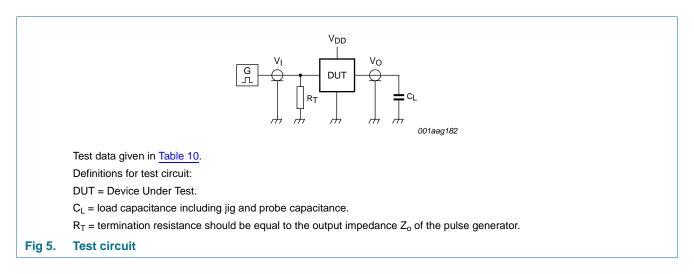
							•	
Symbol	Parameter	Conditions	V _{DD}	Extrapolation formula ^[1]	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	nA or nB to nY	5 V	63 ns + (0.55 ns/pF)C _L	-	90	185	ns
	propagation delay		10 V	29 ns + (0.23 ns/pF)C _L	-	40	80	ns
			15 V	22 ns + (0.16 ns/pF)C _L	-	30	60	ns
t _{PLH}	LOW to HIGH	nA or nB to nY	5 V	58 ns + (0.55 ns/pF)C _L	-	85	170	ns
	propagation delay		10 V	29 ns + (0.23 ns/pF)C _L	-	40	80	ns
			15 V	22 ns + (0.16 ns/pF)C _L	-	30	60	ns
t _{THL}	HIGH to LOW output	•	5 V	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
	transition time		10 V	9 ns + (0.42 ns/pF)C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF)C _L	-	20	40	ns
t _{TLH}	LOW to HIGH output	nA or nB to	5 V	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
transition time	transition time	HIGH	10 V	9 ns + (0.42 ns/pF)C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF)C _L	-	20	40	ns

[1] Typical value of the propagation delay and output transition time can be calculated with the extrapolation formula (C_L in pF).


Table 8. Dynamic power dissipation

 $V_{SS} = 0 V; t_r = t_f \le 20 ns; T_{amb} = 25 \ ^{\circ}C.$

Symbol	Parameter	V_{DD}	Typical formula	where:
PD	dynamic power	5 V	$\textbf{P}_{D} = \textbf{1300} \times \textbf{f}_{i} + \Sigma(\textbf{f}_{o} \times \textbf{C}_{L}) \times \textbf{V}_{DD}{}^{2} \; (\mu \textbf{W})$	$f_i = input frequency in MHz;$
dissipation		10 V	$P_D = 6400 \times f_i + \Sigma (f_o \times C_L) \times V_DD{}^2 \; (\muW)$	$f_o = output frequency in MHz;$
		15 V	$P_D = 18700 \times f_i + \Sigma(f_o \times C_L) \times V_DD^2 \; (\muW)$	$\begin{split} C_L &= \text{output load capacitance in pF}; \\ \Sigma(f_o \times C_L) &= \text{sum of the outputs}; \\ V_{DD} &= \text{supply voltage in V}. \end{split}$


Quad 2-input NAND Schmitt trigger

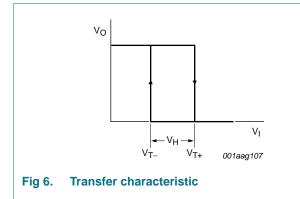
12. Waveforms

Table 9. Measurement points

Supply voltage	Input	Output
V _{DD}	V _M	V _M
5 V to 15 V	0.5V _{DD}	0.5V _{DD}

Table 10. Test data

Supply voltage	Input	Load	
V _{DD}	VI	t _r , t _f	CL
5 V to 15 V	V_{SS} or V_{DD}	\leq 20 ns	50 pF


HEF4093B_Q100 Product data sheet

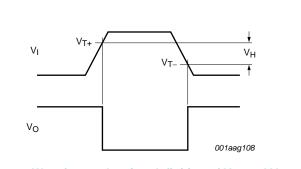
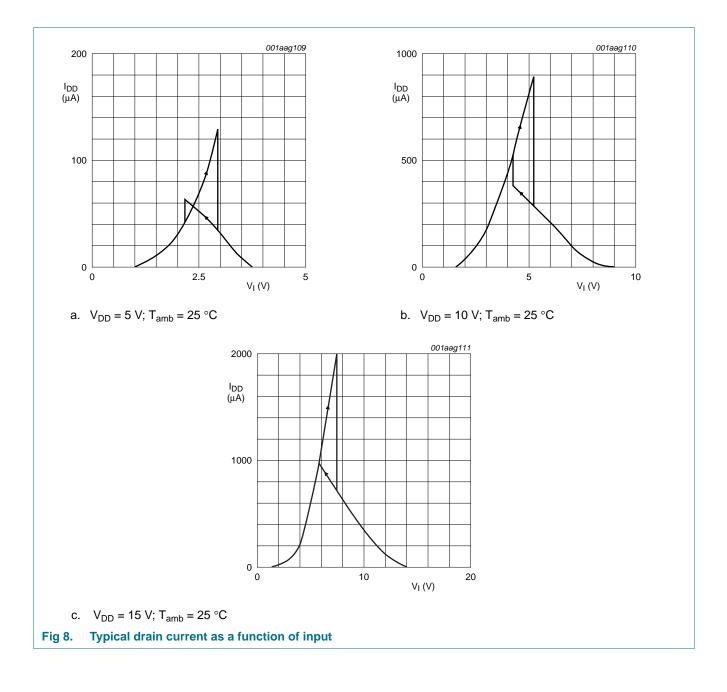

13. Transfer characteristics

Table 11. Transfer characteristics

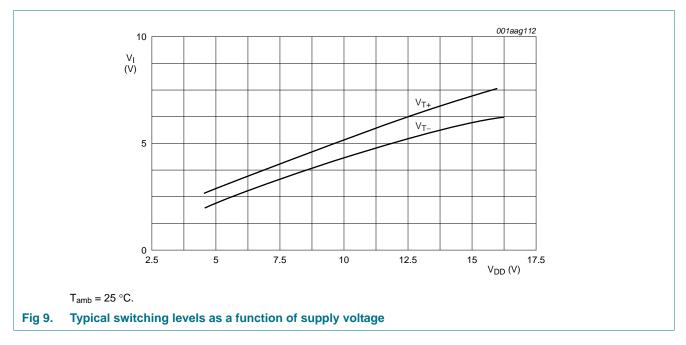
 $V_{SS} = 0$ V; $T_{amb} = 25$ °C; see Figure 6 and Figure 7.

Symbol	Parameter	Conditions	V _{DD}	Min	Тур	Max	Unit
V_{T+}	positive-going threshold voltage		5 V	1.9	2.9	3.5	V
		10 V	3.6	5.2	7	V	
		15 V	4.7	7.3	11	V	
V _{T-} negative-going threshold voltag	negative-going threshold voltage		5 V	1.5	2.2	3.1	V
			10 V	3	4.2	6.4	V
			15 V	4	6.0	10.3	V
V _H hysteresis voltage	hysteresis voltage		5 V	0.4	0.7	-	V
			10 V	0.6	1.0	-	V
			15 V	0.7	1.3	-	V



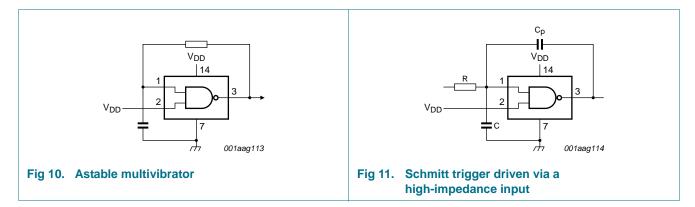
Nexperia

HEF4093B-Q100


Quad 2-input NAND Schmitt trigger

Nexperia

HEF4093B-Q100

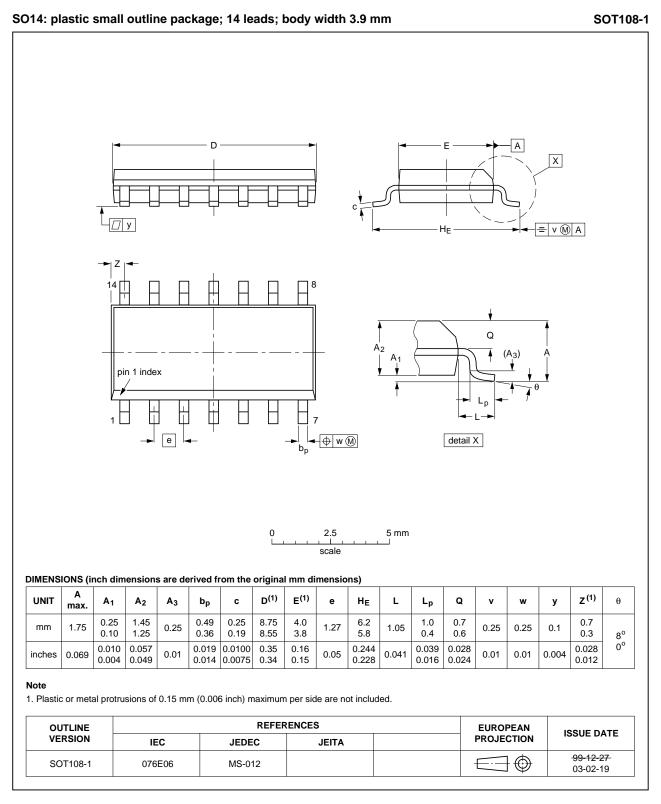

Quad 2-input NAND Schmitt trigger

14. Application information

Some examples of applications for the HEF4093B-Q100 are:

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

If a Schmitt trigger is driven via a high-impedance (R > 1 k Ω), then it is necessary to incorporate a capacitor C with a value of $\frac{C}{C_P} > \frac{V_{DD} - V_{SS}}{V_H}$; otherwise oscillation can occur on the edges of a pulse.


 $C_{\rm p}$ is the external parasitic capacitance between inputs and output; the value depends on the circuit board layout.

Remark: The two inputs may be connected together, but this will result in a larger through-current at the moment of switching.

HEF4093B Q100

Quad 2-input NAND Schmitt trigger

15. Package outline

Fig 12. Package outline SOT108-1 (SO14)

All information provided in this document is subject to legal disclaimers.

HEF4093B Q100

16. Abbreviations

Table 12.	Abbreviations
Acronym	Description
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
MIL	Military

17. Revision history

Table 13. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
HEF4093B_Q100 v.1	20120712	Product specification	-	-	

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been gualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

Quad 2-input NAND Schmitt trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Quad 2-input NAND Schmitt trigger

20. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 1
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning 2
6.2	Pin description 3
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 4
10	Static characteristics 4
11	Dynamic characteristics 5
12	Waveforms 6
13	Transfer characteristics7
14	Application information 9
15	Package outline 10
16	Abbreviations 11
17	Revision history 11
18	Legal information 12
18.1	Data sheet status 12
18.2	Definitions 12
18.3	Disclaimers
18.4	Trademarks 13
19	Contact information 13
20	Contents 14

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia: HEF4093BT-Q100,118