T-series

Triacs

Immunity and commutation driven for AC appliances

T-Series Triacs are designed for the ever increasing number of AC loads in domestic appliance control. These AC appliance switches meet both the immunity and high-commutation needs, providing a very cost-effective solution.
Both immunity (dV/dt) and commutation capability (dl/dt)c are specified at $150^{\circ} \mathrm{C}$ for 800 V series. Logic level gate current (as low as 10 mA) enables optimized power supplies and direct drive from the MCU through a single resistor. In addition, the trade-off of ITSM versus immunity and commutation capability is improved. This capability is unmatched in the market today.

KEY FEATURES

- $I_{\text {trws }}$ from 4 to 16 A
- $V_{\text {DRMM }} V_{\text {RRM }}$ up to 800 V
- $V_{\text {DSMM }} / V_{\text {RSM }}$ up to 900 V
- T_{j} up to $150^{\circ} \mathrm{C} @ V_{\text {DRM }} N_{\text {RRM }}$ 600 V on some devices*
- 4 ranges** of $\mathrm{I}_{\text {gT }}$
- 10 mA directly driven from a microcontroller
- 20 mA Snubberless ${ }^{\text {TM }}$
- 25 mA standard 4 quadrants
- 35 mA Snubberless ${ }^{\text {™ }}$
- UL recognized up to $2500 \mathrm{~V}_{\text {RMS }}$ (E81734)
- Ecopack 2 products:

Rohs and halogen free compliant

KEY BENEFITS

- No need for a snubber with Snubberless ${ }^{\top \mathrm{M}}$ versions, if the design respects datasheet limits
- Direct drive from a microcontroller (when $\mathrm{I}_{\mathrm{GT}}=10 \mathrm{~mA}$)
- Better thermal management (keeping your load under control at higher case temperatures)

TARGETED APPLICATIONS

- Low- and medium-power load control in industrial systems
- Light dimmer
- Kitchen tools, such as soya milk makers, blenders, coffee makers, water heaters
- Power tools

[^0]
IMMUNITY (DV/DT) AND COMMUTATION (DI/DT)C, COMPARISON EXAMPLES

Immunity (dV/dt) and commutation (dl/dt)c @ $\mathrm{Tj}=125^{\circ} \mathrm{C}$
T series Triacs have better noise immunity (dV/dt) up to 2 kV , which is up to 5 times above market standards.
Commutation capability, (dl/dt)c, is increased up to $16 \mathrm{~A} / \mathrm{ms}$, which is up to 2.3 times above market standards.
The table below compares a standard Triac (BTA08-600CWRG) with a T series Triac (T835T-8FP).

Part number	$\begin{aligned} & \text { Current } \mathrm{I}_{\text {T(RMs) }} \end{aligned}$	Immunity dV/dt (w/o snubber) (V/Ls)	Commutation (dI/dit)c (A/ms)
T835-8T BTB08-800CWRG	8		

Insulated packages are UL 1557 certified, under E81734 and UL94-V0 molding material for inflammability: TO-220AB Ins. as $2500 \mathrm{~V}_{\text {pus }}$, and T0220 Fullpack as $2000 \mathrm{~V}_{\text {Rus }}$.

T SERIES PRODUCT TABLE

T series - High commutation (dI/dt)c and immunity (dV/dt) Triacs

Generic part number	Package			I_{T} (RMS) RMS on-state current max. (A)	$\begin{aligned} & V_{\text {DBM, }}, V_{\text {RRM }} \\ & \text { Repetitive peak } \\ & \text { off-state } \\ & \text { voltage } \\ & \text { max. (V) } \end{aligned}$	$\mathrm{I}_{\text {TSM }}$ Non repetitive surge peak on-state current max. (A)	T_{i} Junction Temperature max. $\left({ }^{\circ} \mathrm{C}\right)$	$I_{\text {GT }}$ Iriggering gate current I, II, III (IV) max. (mA)	(dI/dt)c Rate of decrease of commutating on-state current		dV/dtRising Ratio Of OffVoltage	
	듳	$\begin{array}{\|c\|} \hline \frac{s}{=} \\ \frac{m}{c} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \frac{1}{2} \\ \stackrel{i n}{2} \\ \hline \end{array}$									
	O	$\begin{array}{\|l} \stackrel{\rightharpoonup}{\mathbf{N}} \\ \stackrel{y}{\circ} \end{array}$	$\stackrel{\mathbb{N}}{\mathbf{O}}$						@T, $125^{\circ} \mathrm{C}$ $\mathrm{min} .(\mathrm{A} / \mathrm{ms})$	$\begin{aligned} & \text { @T, } 150^{\circ} \mathrm{C} \\ & \mathrm{~min} .(\mathrm{A} / \mathrm{ms}) \end{aligned}$	$\begin{aligned} & \text { @T } 125^{\circ} \mathrm{C} \\ & \min .(\mathrm{V} / \mathrm{\mu s}) \end{aligned}$	$\begin{aligned} & \text { @Tj } 150^{\circ} \mathrm{C} \\ & \min .(\mathrm{V} / \mathrm{Ls}) \end{aligned}$
Logic Level												
T610T-8	T		FP	6	800	45	150	10, 10, 10	5.2	3.7	250	170
T810T-6		I		8	600	60	125	10, 10, 10	5.4		100	
T810T-8	T		FP	8	800	60	150	10, 10, 10	6	4.2	250	170
T1210T-6		I		12	600	90	125	10, 10, 10	7		100	
T1210T-8	T		FP	12	800	90	150	10, 10, 10	11.7	8.2	250	170
T1610T-8		I		16	800	120	150	10, 10, 10	9	5.4	100	50
	T		FP						21.6	15.1	250	170
Snubberless ${ }^{\text {TM }}$												
T435T-600			FP	4	600	30	125	35, 35, 35	5.3		750	
T635T-8	T		FP	6	800	45	150	35, 35, 35	6	3	2000	1000
T820T-6		I		8	600	60	125	20, 20, 20	3.4		750	
T835T-6		1		8	600	60	125	35, 35, 35	8		2000	
T835T-8	T		FP	8	800	60	150	35, 35, 35	8	4	2000	1000
T1220T-6		1		12	600	90	125	20, 20, 20	6		1000	
T1235T-8	T		FP	12	800	100	150	35, 35, 35	12	8.2	2000	1000
T1620T-8		I		16	800	120	150	20, 20, 20	6	4.5	1000	500
T1635T-8	T	1	FP	16	800	120	150	35, 35, 35	16	12	2000	1000
Standard												
T825T-6		I		8	600	60	125	25, 25, 25, 40	4.5		500	
T1225T-6		1		12	600	90	125	25, 25, 25, 40	7		100	
T1625T-8		1		16	800	120	150	25, 25, 25, 50	12	6	500	300

[^0]: * See details specification sheets on st.com
 ${ }^{* *}$ Some currents may not yet be covered by ready-made $\mathrm{I}_{\text {GT }}$ versions but are available on request.

