

#### 1 About this document

This Product brief is intended to provide overview/summary information for the purpose of evaluating a product for design suitability. It is intended for quick reference only and should not be relied upon to contain detailed and full information.

Some of the content in this product brief is extracted from the product's full data sheet. In case of any inconsistency or conflict, the full data sheet shall prevail.

For detailed and full information, see the relevant FS84\_FS85 full data sheet, available via the NXP DocStore at <a href="https://www.docstore.nxp.com">https://www.docstore.nxp.com</a>.

### 2 General description

The FS85/FS84 device family is developed in compliance with ASIL D process, FS84 is ASIL B capable and FS85 is ASIL D capable. All device options are pin to pin and software compatible.

The FS85/FS84 is an automotive functionally safe multi-output power supply integrated circuit, with focus on Radar, Vision, ADAS domain controller, Radio and Infotainment applications. It includes multiple switch mode and linear voltage regulators. It offers external frequency synchronization input and output, for optimized system EMC performance.

The FS85/FS84 includes enhanced safety features, with fail-safe output, becoming a full part of a safety-oriented system partitioning, covering both ASIL B and ASIL D safety integrity level. It is developed in compliance with ISO 26262 standard and is qualified in compliance with AEC-Q100 rev H (Grade1, MSL3).

Several device versions are available, offering choice in number of output rails, output voltage setting, operating frequency and power up sequencing, to address multiple applications.

#### 3 Features and benefits

- 60 V DC maximum input voltage for 12 V and 24 V applications
- VPRE synchronous buck controller with external MOSFETs. Configurable output voltage, switching frequency, and current capability up to 10 A peak.
- Low voltage integrated synchronous BUCK1 converter, dedicated to MCU core supply with SVS capability. Configurable output voltage and current capability up to 3.6 A peak.
- Based on device options (see <u>Table 1</u>): low voltage integrated synchronous BUCK2 converter. Configurable output voltage and current capability up to 3.6 A peak. Multiphase capability with BUCK1 to extend the current capability up to 7.2 A peak on a single rail. Static voltage scaling capability.



#### Fail-safe system basis chip with multiple SMPS and LDO

- Based on device options (see <u>Table 1</u>): low voltage integrated synchronous BUCK3 converter. Configurable output voltage and current capability up to 3.6 A peak.
- BOOST converter with integrated low-side switch. Configurable output voltage and max input current up to 1.5 A peak.
- EMC optimization techniques including SMPS frequency synchronization, spread spectrum, slew rate control, manual frequency tuning
- 2x linear voltage regulators for MCU IOs and ADC supply, external physical layer.
   Configurable output voltage and current capability up to 400 mA DC.
- OFF mode (power down) with very low quiescent current (10 μA typ)
- 2x input pins for wake-up detection and battery voltage sensing
- Device control via 32 bits SPI or I2C interface with CRC
- Power synchronization pin to operate 2x FS85 devices or FS85 plus an external PMIC
- Scalable portfolio from ASIL B to ASIL D with independent monitoring circuitry, dedicated interface for MCU monitoring, simple and challenger watchdog function, power good, reset and interrupt, built-in self-test, fail-safe output
- Configuration by OTP programming. Prototype enablement to support custom setting during project development in engineering mode.

# 4 Applications

- · Radar (corner radar, imaging radar, ...)
- Vision (mono camera, stereo camera, night vision, ...)
- · ADAS domain controller
- Infotainment
- V2x

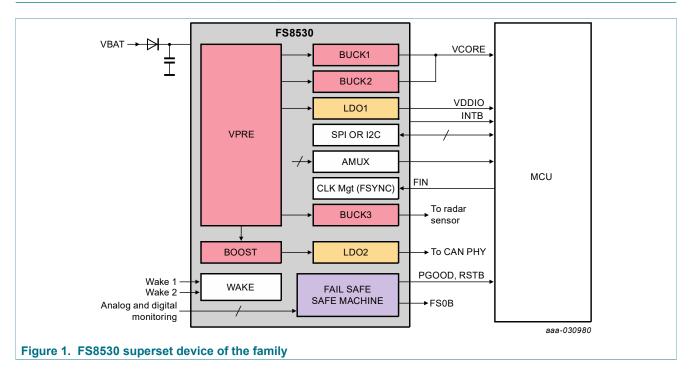
# 5 Ordering information

Table 1. Device options

| Device options | BUCK1 | BUCK2 | BUCK3 | ASIL |
|----------------|-------|-------|-------|------|
| FS8400         | Yes   | No    | No    | В    |
| FS8410         | Yes   | No    | Yes   | В    |
| FS8420         | Yes   | Yes   | No    | В    |
| FS8430         | Yes   | Yes   | Yes   | В    |
| FS8500         | Yes   | No    | No    | D    |
| FS8510         | Yes   | No    | Yes   | D    |
| FS8520         | Yes   | Yes   | No    | D    |
| FS8530         | Yes   | Yes   | Yes   | D    |

### Fail-safe system basis chip with multiple SMPS and LDO

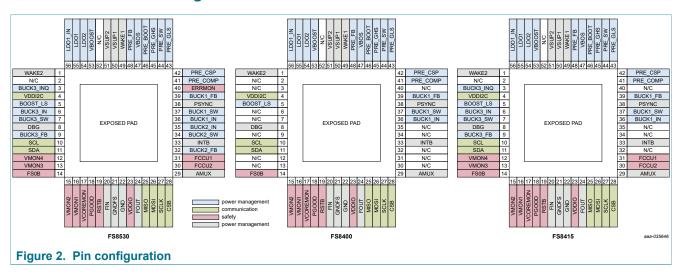
Table 2. Ordering information


| Part number [1]         | Application target                            | Package |                                                          |           |  |
|-------------------------|-----------------------------------------------|---------|----------------------------------------------------------|-----------|--|
|                         |                                               | Name    | Description                                              | Version   |  |
| PC33FS8530 <b>A0</b> ES | FS85 superset covering FS85 family of devices |         |                                                          |           |  |
| PC33FS8530 <b>A1</b> ES | Camera                                        |         |                                                          |           |  |
| PC33FS8510 <b>A2</b> ES | Domain controller                             |         |                                                          |           |  |
| PC33FS8510 <b>D3</b> ES | Battery monitoring system                     |         |                                                          |           |  |
| PC33FS8530 <b>A4</b> ES | Imaging radar with NXP S32R MCU               |         |                                                          |           |  |
| PC33FS8430 <b>G0</b> ES | FS84 superset covering FS84 family of devices | HPQFN56 | HPQFN56, plastic, thermally enhanced very thin quad flat | SOT684-23 |  |
| PC33FS8430 <b>G1</b> ES | Camera with NXP S32V MCU and PF8x PMIC        |         | package, no lead, wettable flanks                        |           |  |
| PC33FS8430 <b>G2</b> ES | Camera with NXP S32V MCU                      |         |                                                          |           |  |
| PC33FS8410 <b>G3</b> ES | Radar with NXP S32R274 MCU                    |         |                                                          |           |  |
| PC33FS8430 <b>G4</b> ES | Camera                                        | 1       |                                                          |           |  |
| PC33FS8030 <b>G5</b> ES | Camera                                        | 1       |                                                          |           |  |
| PC33FS8410 <b>G6</b> ES | Gateway with NXP MPC5748G MCU                 |         |                                                          |           |  |

<sup>[1]</sup> To order parts in tape and reel, add the R2 suffix to the part number.

A0 and G0 parts are non-programmed OTP configurations. Pre-programmed OTP configurations (other than BUCK regulators and ASIL level) are managed through part number extension: A1 to FZ for FS85 and G0 to LZ for FS84.

For a custom OTP configuration, contact local NXP sales representative.


# 6 Simplified application diagram



### Fail-safe system basis chip with multiple SMPS and LDO

# 7 Pinning information

## 7.1 Pinning



## 7.2 Pin description

Table 3. Pin description

| Symbol    | Pin | Туре        | Description                                                                      |
|-----------|-----|-------------|----------------------------------------------------------------------------------|
| WAKE2     | 1   | A_IN / D_IN | Wake-up input 2 An external serial resistor is required if WAKE2 is a global pin |
| N/C       | 2   | N/C         | Not connected pin                                                                |
| BUCK3_INQ | 3   | A_IN        | Low voltage Buck3 quiet input voltage                                            |
| VDDI2C    | 4   | A_IN        | Input voltage for I2C buffers                                                    |
| BOOST_LS  | 5   | A_IN        | Boost low-side drain of internal MOSFET                                          |
| BUCK3_IN  | 6   | A_IN        | Low voltage Buck3 input voltage                                                  |
| BUCK3_SW  | 7   | A_OUT       | Low voltage Buck3 switching node                                                 |
| DBG       | 8   | A_IN        | Debug mode entry                                                                 |
| BUCK3_FB  | 9   | A_IN        | Low voltage Buck3 voltage feedback                                               |
| SCL       | 10  | D_IN        | I2C bus<br>Clock input                                                           |
| SDA       | 11  | D_IN/OUT    | I2C bus<br>Bidirectional data line                                               |
| VMON4     | 12  | A_IN        | Voltage monitoring input 4                                                       |
| VMON3     | 13  | A_IN        | Voltage monitoring input 3                                                       |
| FS0B      | 14  | D_OUT       | Fail-safe output 0 Active low Open drain structure                               |
| VMON2     | 15  | A_IN        | Voltage monitoring input 2                                                       |
| VMON1     | 16  | A_IN        | Voltage monitoring input 1                                                       |
| VCOREMON  | 17  | A_IN        | VCORE monitoring input: Must be connected to Buck1 output voltage                |

## Fail-safe system basis chip with multiple SMPS and LDO

| Symbol   | Pin | Туре        | Description                                                                                |
|----------|-----|-------------|--------------------------------------------------------------------------------------------|
| PGOOD    | 18  | D_OUT       | Power good output                                                                          |
|          |     |             | Active low                                                                                 |
|          |     |             | Pull up to VDDIO mandatory                                                                 |
| RSTB     | 19  | D_OUT       | Reset output Active low                                                                    |
|          |     |             | The main function is to reset the MCU. Reset input voltage is monitored to detect external |
|          |     |             | reset and fault condition. Pull up to VDDIO mandatory                                      |
| FIN      | 20  | D_IN        | Frequency synchronization input                                                            |
| GNDFS    | 21  | GND         | Fail-safe ground                                                                           |
| GND      | 22  | GND         | Main ground                                                                                |
| VDDIO    | 23  |             | Input voltage for SPI, FOUT and AMUX buffers                                               |
| VDDIO    | 23  | A_IN        | Allow voltage compatibility with MCU I/Os                                                  |
| FOUT     | 24  | D_OUT       | Frequency synchronization output                                                           |
| MISO     | 25  | D_OUT       | SPI bus                                                                                    |
|          |     |             | Master input slave output                                                                  |
| MOSI     | 26  | D_IN        | SPI bus Master output slave Input                                                          |
| SCLK     | 27  | D. IN       | SPI bus                                                                                    |
| SOLK     | 21  | D_IN        | Clock input                                                                                |
| CSB      | 28  | D_IN        | Chip select (active low)                                                                   |
| AMUX     | 29  | A_OUT       | Multiplexed output to connect to MCU ADC                                                   |
|          |     |             | Selection of the analog parameter through SPI or I2C                                       |
| FCCU2    | 30  | D_IN        | MCU error monitoring input 2                                                               |
| FCCU1    | 31  | D_IN        | MCU error monitoring input 1                                                               |
| BUCK2_FB | 32  | A_IN        | Low voltage Buck2 voltage feedback                                                         |
| INTB     | 33  | D_OUT       | Interrupt output                                                                           |
| BUCK2_SW | 34  | A_OUT       | Low voltage Buck2 switching node                                                           |
| BUCK2_IN | 35  | A_IN        | Low voltage Buck2 input voltage                                                            |
| BUCK1_IN | 36  | A_IN        | Low voltage Buck1 input voltage                                                            |
| BUCK1_SW | 37  | A_OUT       | Low voltage Buck1 switching node                                                           |
| PSYNC    | 38  | D_IN/OUT    | Power synchronization input/output                                                         |
| BUCK1_FB | 39  | A_IN        | Low voltage Buck1 voltage feedback                                                         |
| ERRMON   | 40  | D_IN        | External IC error monitoring input                                                         |
| PRE_COMP | 41  | A_IN        | VPRE compensation network                                                                  |
| PRE_CSP  | 42  | A_IN        | VPRE positive current sense input                                                          |
| PRE_GLS  | 43  | A_OUT       | VPRE low-side gate driver for external MOSFET                                              |
| PRE_SW   | 44  | A_OUT       | VPRE switching node                                                                        |
| PRE_GHS  | 45  | A_OUT       | VPRE high-side gate driver for external MOSFET                                             |
| PRE_BOOT | 46  | A_IN/OUT    | VPRE bootstrap capacitor                                                                   |
| VBOS     | 47  | A_OUT       | Best of supply output voltage                                                              |
| PRE_FB   | 48  | A_IN        | VPRE voltage feedback and negative current sense input                                     |
| WAKE1    | 49  | A_IN / D_IN | Wake up input 1 An external serial resistor is required if WAKE1 is a global pin           |

### Fail-safe system basis chip with multiple SMPS and LDO

| Symbol  | Pin | Туре  | Description                                                                                                 |
|---------|-----|-------|-------------------------------------------------------------------------------------------------------------|
| VSUP1   | 50  | A_IN  | Power supply 1 of the device An external reverse battery protection diode in series is mandatory            |
| VSUP2   | 51  | A_IN  | Power supply 2 of the device An external reverse battery protection diode in series is mandatory            |
| N/C     | 52  | N/C   | Not connected pin                                                                                           |
| VBOOST  | 53  | A_IN  | VBOOST voltage feedback                                                                                     |
| LDO2    | 54  | A_OUT | Linear regulator 2 output voltage                                                                           |
| LDO1    | 55  | A_OUT | Linear regulator 1 output voltage                                                                           |
| LDO1_IN | 56  | A_IN  | Linear regulator 1 input voltage                                                                            |
| EP      | 57  | GND   | Expose pad (BUCK1, BUCK2 and BUCK3 low-side GNDs are connected to the expose pad)  Must be connected to GND |

# 8 Maximum ratings

#### Table 4. Maximum ratings

All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage to the device.

| Symbol                | Parameter                  | Conditions                                       | Min  | Max  | Unit |
|-----------------------|----------------------------|--------------------------------------------------|------|------|------|
| Voltage ratings       |                            |                                                  |      |      |      |
| VSUP1/2               | DC voltage                 | power supply VSUP1,2 pins                        | -0.3 | 60   | V    |
| WAKE1/2               | DC voltage                 | WAKE1,2 pins; external serial resistor mandatory | -1.0 | 60   | V    |
| PRE_SW                | DC voltage                 | PRE_SW pin                                       | -2.0 | 60   | V    |
| VMONx, FS0B           | DC voltage                 | VMON1,2,3,4, VCOREMON, FS0B pins                 | -0.3 | 60   | V    |
| PRE_GHS, PRE_<br>BOOT | DC voltage                 | PRE_GHS, PRE_BOOT pins                           | -0.3 | 65.5 | V    |
| DBG                   | DC voltage                 | DBG pin                                          | -0.3 | 10   | V    |
| BOOST_LS              | DC voltage                 | BOOST_LS pin                                     | -0.3 | 8.5  | V    |
| VBOOST, LDO1_IN       | DC voltage                 | VBOOST, LDO1_IN pins                             | -0.3 | 6.5  | V    |
| BUCKx_IN              | DC voltage                 | BUCK1_IN, BUCK2_IN, BUCK3_IN, BUCK3_INQ          | -1.0 | 5.5  | V    |
| BUCKx_IN              | Transient voltage < 3 μs   | BUCK1_IN, BUCK2_IN, BUCK3_IN, BUCK3_INQ          | -1.0 | 6.5  | V    |
| BUCKx_SW              | Transient voltage < 20 ns  | BUCK1_SW, BUCK2_SW, BUCK3_<br>SW                 | -3.0 | 6.5  | V    |
| All other pins        | DC voltage                 | at all other pins                                | -0.3 | 5.5  | V    |
| Current ratings       |                            |                                                  | 1    |      | ,    |
| I_WAKE                | Maximum current capability | WAKE1,2                                          | -5.0 | 5.0  | mA   |
| I_SUP                 | Maximum current capability | VSUP1,2                                          | -5.0 | _    | mA   |

### 9 Electrostatic discharge

#### 9.1 Human body model (JESD22/A114)

The device is protected up to  $\pm 2$  kV, according to the human body model at 100 pF and 1.5 k $\Omega$ . This protection is ensured at all pins.

#### 9.2 Charged device model

For all pins:

The device is protected up to ±500 V, according to JS-002 charged device model standard.

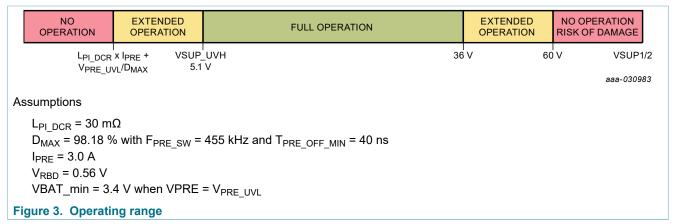
The device is protected up to ±500 V <sup>1</sup>, according to AEC Q100 - 011 charged device model standard.

For the corner pins:

The device is protected up to ±750 V, according to AEC Q100 - 011 charged device model standard.

### 9.3 Discharged contact test

The device is protected up to ±8 kV, according to the following discharged contact tests.


Discharged contact test (IEC61000-4-2) at 150 pF and 330  $\Omega$ 

Discharged contact test (ISO10605.2008) at 150 pF and 2 k $\Omega$ 

Discharged contact test (ISO10605.2008) at 330 pF and 2 kΩ

This protection is ensured at VSUP1, VSUP2, WAKE1, WAKE2, FS0B pins.

# 10 Operating range



- Below VSUP\_UVH threshold, the extended operation range depends on VPRE output voltage configuration and external components.
  - When VPRE is configured at 5.0 V, VPRE may not remain in its regulation range
  - VSUP minimum voltage depends on external components ( $L_{PI\_DCR}$ ) and application conditions ( $I_{PRE}$ ,  $F_{PRE\_SW}$ )

PB\_FS84\_FS85C

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2019. All rights reserved

<sup>1</sup> For VMON1, VMON3, and VMON4 pins, the applicable limit is  $\pm 450~\text{V}.$ 

### Fail-safe system basis chip with multiple SMPS and LDO

- When VPRE is switching at 455 kHz, the FS85/FS84 maximum continuous operating
  voltage is 36 V. It has been validated at 48 V for limited duration of 15 minutes at room
  temperature to satisfy the jump start requirement of 24 V applications. It can sustain 58
  V load dump without external protection.
- When VPRE is switching at 2.2 MHz, the FS85/FS84 maximum continuous operating
  voltage is 18 V. It will be validated at 26 V for limited duration of 2 minutes at room
  temperature to satisfy the jump start requirement of 12 V applications and 35 V load
  dump.

## 11 Thermal ratings

Table 5. Thermal ratings

| Symbol               | Parameter                                  | Conditions                                                      |     | Min | Max | Unit |
|----------------------|--------------------------------------------|-----------------------------------------------------------------|-----|-----|-----|------|
| $R_{\theta JA}$      | Thermal resistance junction to ambient     | 2s2p circuit board                                              | [1] | _   | 31  | °C/W |
| $R_{\theta JA}$      | Thermal resistance junction to ambient     | 2s6p circuit board                                              | [1] | _   | 23  | °C/W |
| $R_{\theta JB}$      | Thermal resistance junction to board       | 2s2p circuit board                                              | [1] | _   | 15  | °C/W |
| $R_{\theta JB}$      | Thermal resistance junction to board       | 2s6p circuit board                                              | [1] | _   | 10  | °C/W |
| $R_{\theta JC\_BOT}$ | Thermal resistance junction to case bottom | between the die and the solder pad on the bottom of the package | [1] | _   | 1   | °C/W |
| $R_{\theta JP\_TOP}$ | Thermal resistance junction to package top | between package top and the junction temperature                | [1] | _   | 3   | °C/W |
| T <sub>A</sub>       | Ambient temperature (Grade 1)              |                                                                 |     | -40 | 125 | °C   |
| TJ                   | Junction temperature (Grade 1)             |                                                                 |     | -40 | 150 | °C   |
| T <sub>STG</sub>     | Storage temperature                        |                                                                 |     | -55 | 150 | °C   |

<sup>[1]</sup> per JEDEC JESD51-2 and JESD51-8

### 12 Characteristics

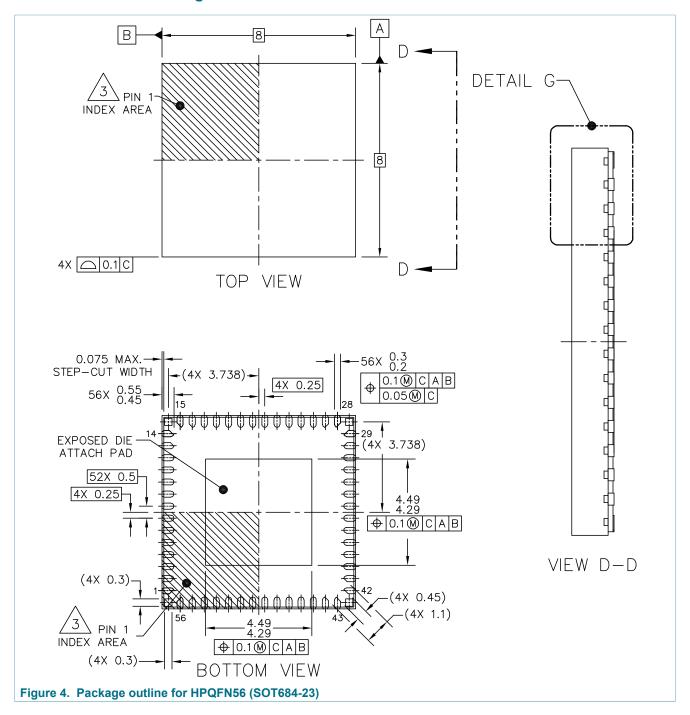
#### Table 6. Electrical characteristics

 $T_A$  = -40 °C to 125 °C, unless otherwise specified. VSUP = VSUP\_UVH to 36 V, unless otherwise specified. All voltages referenced to ground.

| Symbol                   | Parameter                                                                           | Min | Тур | Max | Unit |
|--------------------------|-------------------------------------------------------------------------------------|-----|-----|-----|------|
| Power supply             |                                                                                     |     |     |     | ,    |
| I <sub>SUP_NORMAL</sub>  | Current in Normal mode, all regulators ON (I <sub>OUT</sub> = 0)                    | _   | 15  | 25  | mA   |
| I <sub>SUP_STANDBY</sub> | Current in Standby mode, all regulators OFF except VBOS                             | _   | 5   | 10  | mA   |
| I <sub>SUP_OFF1</sub>    | Current in OFF mode (Power Down), T <sub>A</sub> < 85 °C                            | _   | 10  | 15  | μΑ   |
| I <sub>SUP_OFF2</sub>    | Current in OFF mode (Power Down), T <sub>A</sub> = 125 °C                           | _   | _   | 25  | μΑ   |
| V <sub>SUP_UV7</sub>     | VSUP undervoltage threshold (7.0 V)                                                 | 7.2 | 7.5 | 7.8 | V    |
| V <sub>SUP_UVH</sub>     | VSUP undervoltage threshold high (during power up and Vsup rising) OTP_VSUP_CFG = 0 | 4.7 | _   | 5.1 | V    |
|                          | VSUP undervoltage threshold high (during power up and Vsup rising) OTP_VSUP_CFG = 1 | 6.0 | _   | 6.4 | V    |
| V <sub>SUP_UVL</sub>     | VSUP undervoltage threshold low (during power up and Vsup falling) OTP_VSUP_CFG = 0 | 4.0 | _   | 4.4 | V    |
|                          | VSUP undervoltage threshold low (during power up and Vsup falling) OTP_VSUP_CFG = 1 | 5.3 | _   | 5.7 | V    |
| T <sub>SUP_UV</sub>      | $V_{SUP\_UV7},V_{SUP\_UVH}$ and $V_{SUP\_UVL}$ filtering time                       | 6.0 | 10  | 15  | μs   |

PB\_FS84\_FS85C

All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2019. All rights reserved.

### Fail-safe system basis chip with multiple SMPS and LDO

# 13 Package information

FS85/FS84 package is a QFN (sawn), thermally enhanced wettable flanks,  $8 \times 8 \times 0.85$  mm, 0.5 mm pitch, 56 pins.

### 13.1 Package outline



### Fail-safe system basis chip with multiple SMPS and LDO

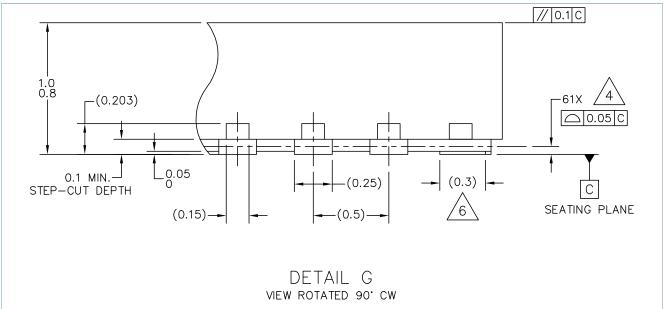


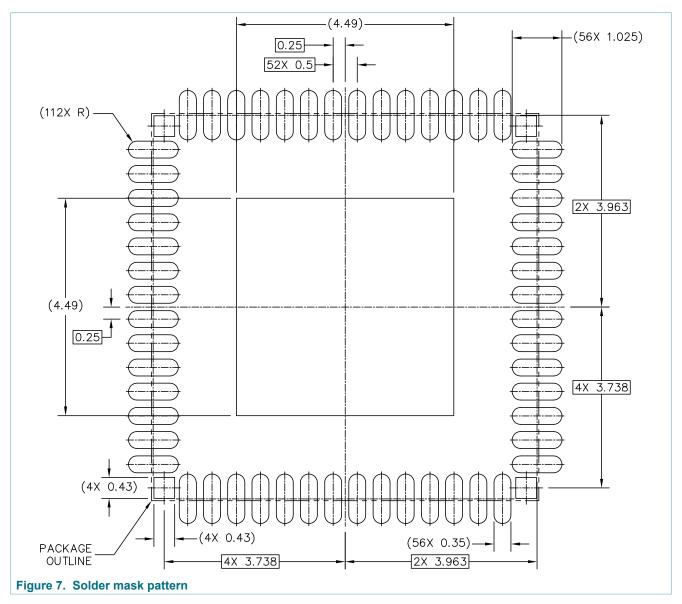

Figure 5. Package outline detail for HPQFN56 (SOT684-23)

NOTES:

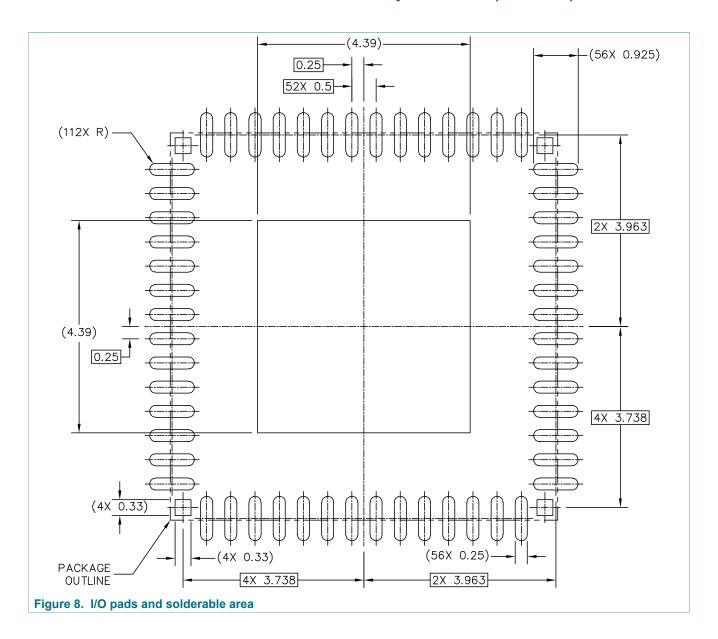
- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

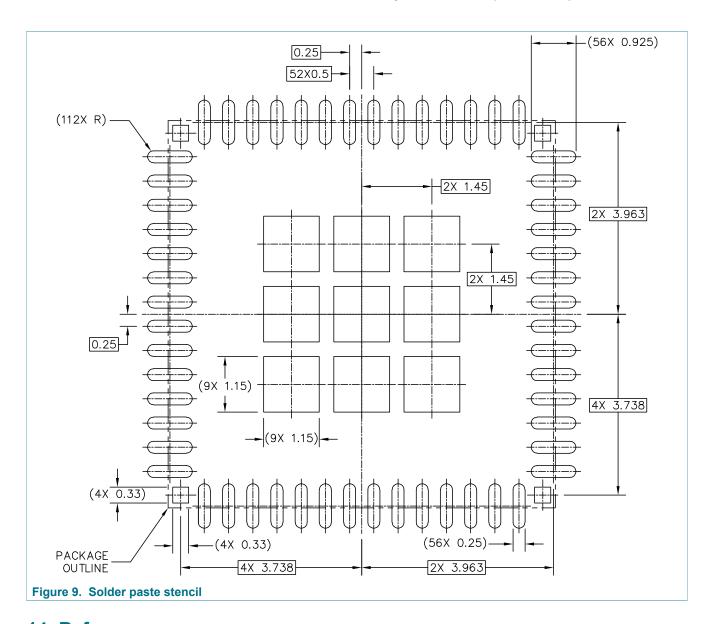
4. COPLANARITY APPLIES TO LEADS, DIE ATTACH FLAG AND CORNER NON-FUNCTIONAL PADS.


5. MIN. METAL GAP SHOULD BE 0.25 MM.

6. ANCHORING PADS.


Figure 6. Package outline notes for HPQFN56 (SOT684-23)

Fail-safe system basis chip with multiple SMPS and LDO


# 13.2 Landing pad information



### Fail-safe system basis chip with multiple SMPS and LDO



### Fail-safe system basis chip with multiple SMPS and LDO



### 14 References

- [1] FS8400 Safety System Basis Chip for S32 Microcontrollers, fit for ASIL B http://www.nxp.com/FS8400
- [2] FS8500 Safety System Basis Chip for S32 Microcontroller, fit for ASIL D http://www.nxp.com/FS8500
- [3] **FS85\_PDTCALC** VPRE compensation network calculation and power dissipation tool (Excel file) https://www.nxp.com/downloads/en/calculators/FS85-PDTCALC.xlsx
- [4] **FS85\_FMEDA** FMEDA analysis <sup>[1]</sup>
- [5] FS85\_VPRE\_Simplis\_Model Simplis model for stability and transient simulations [1]
- [6] KITFS85FRDMEVM detailed information on this board, including documentation, downloads, and software and tools
  <a href="http://www.nxp.com/KITFS85FRDMEVM">http://www.nxp.com/KITFS85FRDMEVM</a>

PB\_FS84\_FS85C

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2019. All rights reserved.

### Fail-safe system basis chip with multiple SMPS and LDO

- [7] **KITFS85SKTEVM** detailed information on this board, including documentation, downloads, and software and tools http://www.nxp.com/KITFS85SKTEVM
- [8] **KITFS85AEEVM** detailed information on this board, including documentation, downloads, and software and tools <a href="http://www.nxp.com/KITFS85AEEVM">http://www.nxp.com/KITFS85AEEVM</a>
- [9] AN12333 FS84, FS85 product guidelines application note https://www.nxp.com/webapp/sps/download/mod\_download.jsp?colCode=AN12333
- [10] **FS85\_FS84\_OTP\_Config.xlsm** OTP configuration file https://www.nxp.com/webapp/Download?colCode=FS85-FS84-OTP
- [11] **FS85\_FS84SMUG** Safety manual [1]
- [12] **ES\_FS84\_FS85** Errata sheet https://www.nxp.com/webapp/Download?colCode=ES-FS84-FS85
- [1] Contact NXP sales representative.

#### Fail-safe system basis chip with multiple SMPS and LDO

# 15 Legal information

#### 15.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

#### 15.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a

default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own trick.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 15.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

## Fail-safe system basis chip with multiple SMPS and LDO

## **Tables**

| Tab. 1.<br>Tab. 2.<br>Tab. 3. | Device options                                           | Tab. 5. | Maximum ratings Thermal ratings Electrical characteristics | 8  |
|-------------------------------|----------------------------------------------------------|---------|------------------------------------------------------------|----|
| Figur                         | res                                                      |         |                                                            |    |
| Fig. 1.<br>Fig. 2.            | FS8530 superset device of the family3 Pin configuration4 | Fig. 6. | Package outline notes for HPQFNs                           |    |
| Fig. 3.                       | Operating range7                                         | Fig. 7. | Solder mask pattern                                        | 11 |
| Fig. 4.                       | Package outline for HPQFN56 (SOT684-23) 9                | Fig. 8. | I/O pads and solderable area                               | 12 |
| Fig. 5.                       | Package outline detail for HPQFN56 (SOT684-23)10         | Fig. 9. | Solder paste stencil                                       | 13 |

### Fail-safe system basis chip with multiple SMPS and LDO

### **Contents**

| 1    | About this document            | 1  |
|------|--------------------------------|----|
| 2    | General description            | 1  |
| 3    | Features and benefits          | 1  |
| 4    | Applications                   | 2  |
| 5    | Ordering information           | 2  |
| 6    | Simplified application diagram |    |
| 7    | Pinning information            |    |
| 7.1  | Pinning                        |    |
| 7.2  | Pin description                |    |
| 8    | Maximum ratings                |    |
| 9    | Electrostatic discharge        |    |
| 9.1  | Human body model (JESD22/A114) |    |
| 9.2  | Charged device model           |    |
| 9.3  | Discharged contact test        |    |
| 10   | Operating range                |    |
| 11   | Thermal ratings                |    |
| 12   | Characteristics                |    |
| 13   | Package information            |    |
| 13.1 | Package outline                |    |
| 13.2 | Landing pad information        |    |
| 14   | References                     |    |
| 15   | Legal information              | 15 |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.