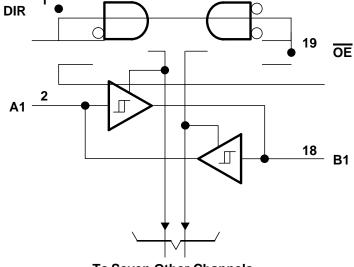


1 Features

- 3-State Outputs Drive Bus Lines Directly
- PNP Inputs Reduce DC Loading on Bus Lines
- Hysteresis at Bus Inputs Improves Noise Margins
- Typical Propagation Delay Times Port to Port, 8 ns


2 Applications

- Building Automation
- Electronic Point of Sale
- Factory Automation and Control
- Test and Measurement

3 Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

The 74HC245 devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the directioncontrol (DIR) input. The output-enable (\overline{OE}) input can disable the device so that the buses are effectively isolated.

4 Logic Diagram (Positive Logic)

To Seven Other Channels

5 Device Comparison Table

ТҮРЕ	I _{OL} (SINK CURRENT)	I _{ОН} (SOURCE CURRENT)
74HC245	24 mA	–15 mA

6 Pin Configuration and Functions

SOP/DIP						
	-	$\mathbf{\nabla}$		L		
DIR	Ц1	-	20	Vcc		
A1	2		19] OE		
A2	3		18] B1		
A3	4		17] B2		
A4	5		16] B3		
A5	6		15] B4		
A6	7		14] B5		
A7	8		13] B6		
A8	9		12] B7		
GND	10		11] B8		

Pin Functions

PIN		- I/O	DESCRIPTION		
NO.	NAME	1/0	DESCRIPTION		
1	DIR	I	Controls signal direction; Low = Bx to Ax, High = Ax to Bx		
2	A1	I/O	Channel 1, A side		
3	A2	I/O	Channel 2, A side		
4	A3	I/O	Channel 3, A side		
5	A4	I/O	Channel 4, A side		
6	A5	I/O	Channel 5, A side		
7	A6	I/O	Channel 6, A side		
8	A7	I/O	Channel 7, A side		
9	A8	I/O	Channel 8, A side		
10	GND	_	Ground		
11	B8	O/I	Channel 8, B side		
12	B7	O/I	Channel 7, B side		
13	B6	O/I	Channel 6, B side		
14	B5	O/I	Channel 5, B side		
15	B4	O/I	Channel 4, B side		
16	B3	O/I	Channel 3, B side		
17	B2	O/I	Channel 2, B side		
18	B1	O/I	Channel 1, B side		
19	ŌĒ	I	Active low output enable; Low = all channels active, High = all channels disabled (high impedance)		
20	V _{CC}		Power supply		

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage		7	V
VI	Input voltage ⁽¹⁾		7	V
TJ	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) All voltage values are with respect to GND.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±1500	V

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾		MIN	TYP ⁽¹⁾	MAX	UNIT		
V_{IH}	High-level input voltage					2			V
V _{IL}	Low-level input voltage			74HC245				0.8	V
V _{IK}	Input clamp voltage		V _{CC} = MIN,	I _I = -18 mA				-1.5	V
	Hysteresis (V _{T+} – V _T _)	A or B	$V_{CC} = MIN$			0.2	0.4		V
			$V_{CC} = MIN,$	$I_{OH} = -3 \text{ mA}$		2.4	3.4		
V _{OH}	High-level output voltage	9	$V_{IL} = V_{IL(max)}$ $V_{IH} = 2 V$,	$I_{OH} = MAX$		2			V
			V _{CC} = MIN,	I _{OL} = 12 mA				0.4	
V _{OL}	Low-level output voltage		$V_{IH} = 2 V,$ $V_{IL} = V_{IL(max)}$	I _{OL} = 24 mA	74HC245			0.5	V
I _{OZH}	Off-state output current, high-level voltage applie	d	<u>V_{CC}</u> = MAX, OE at 2 V	V _O = 2.7 V				20	μΑ
I _{OZL}	Off-state output current, low-level voltage applied	l	<u>V_{CC}</u> = MAX, OE at 2 V	V _O = 0.4 V				-200	μΑ
	Input current at	A or B		V _I = 5.5 V				0.1	
I _I	maximum input voltage	DIR or OE	V _{CC} = MAX	$V_I = 7 V$				0.1	mA
I _{IH}	High-level input current		V _{CC} = MAX,	V _{IH} = 2.7 V				20	μA
I _{IL}	Low-level input current		$V_{CC} = MAX,$	$V_{IL} = 0.4 V$				-0.2	mA
I _{OS}	Short-circuit output current ⁽²⁾		$V_{CC} = MAX$			-40		-225	mA
		ly current Total, outputs high Total, outputs low					48	70	
I _{CC}	Supply current		V _{CC} = MAX	Outputs open			62	90	mA
		Outputs at high Z					64	95	

(1) All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

7.6 Switching Characteristics

 $V_{CC} = 5 \text{ V}, \text{ } \text{T}_{A} = 25^{\circ}\text{C} \text{ (see Figure 2)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output			8	12	~~
t _{PHL}	Propagation delay time, high- to low-level output	C_{L} = 45 pF, R _L = 667 Ω		8	12	ns
t _{PZL}	Output enable time to low level			27	40	~~
t _{PZH}	Output enable time to high level	$C_{L} = 45 \text{ pF}, R_{L} = 667 \Omega$		25	40	ns
t _{PLZ}	Output disable time from low level			15	25	
t _{PHZ}	Output disable time from high level	$C_{L} = 5 \text{ pF}, R_{L} = 667 \Omega$		15	28	ns

7.7 Typical Characteristics

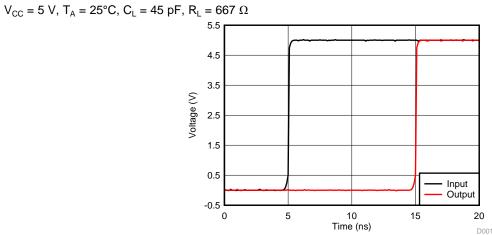
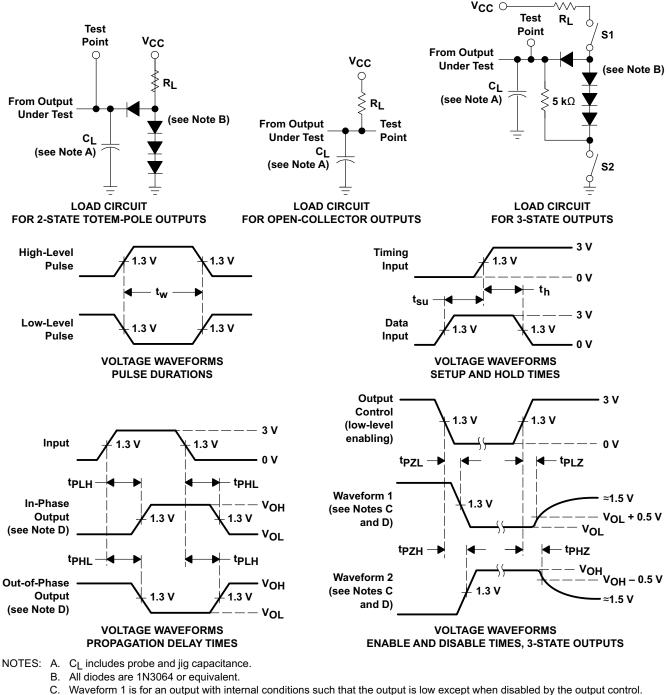
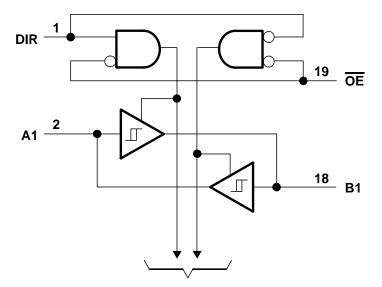



Figure 1. Simulated Propagation Delay From Input to Output

8 Parameter Measurement Information

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
- E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_r \leq 1.5 ns, t_f \leq 2.6 ns.
- G. The outputs are measured one at a time with one input transition per measurement.


Figure 2. Load Circuits and Voltage Waveforms

9 Detailed Description

9.1 Overview

The 74HC245 uses Schottky transistor logic to perform the standard '245 transceiver function. This standard logic function has a common pinout, direction select pin, and active-low output enable. When the outputs are disabled, the A and B sides of the device are effectively isolated.

9.2 Functional Block Diagram

To Seven Other Channels

Figure 3. Logic Diagram (Positive Logic)

9.3 Feature Description

9.3.1 3-State outputs

The 3-state outputs can drive bus lines directly. All outputs can be put into high impedance mode through the \overline{OE} pin.

9.3.2 PNP Inputs

This device has PNP inputs which reduce dc loading on bus lines.

9.3.3 Hysteresis on Bus Inputs

The bus inputs have built-in hysteresis that improves noise margins.

9.4 Device Functional Modes

The 74HC245 performs the standard '245 logic function. Data can be transmitted from A to B or from <u>B</u> to A depending on the DIR pin value, or the A and B sides can be isolated from one another by setting the \overline{OE} pin HIGH.

Table 1. Function Table

INP	UTS	OPERATION		
OE	DIR	OPERATION		
L	L	B data to A bus		
L	Н	A data to B bus		
Н	Х	Isolation		

EQUIVALENT OF EACH INPUT

TYPICAL OF ALL OUTPUTS

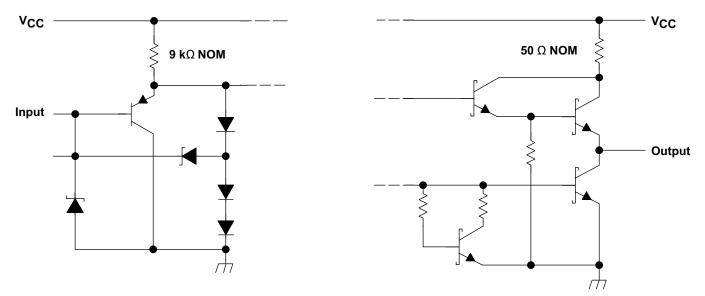
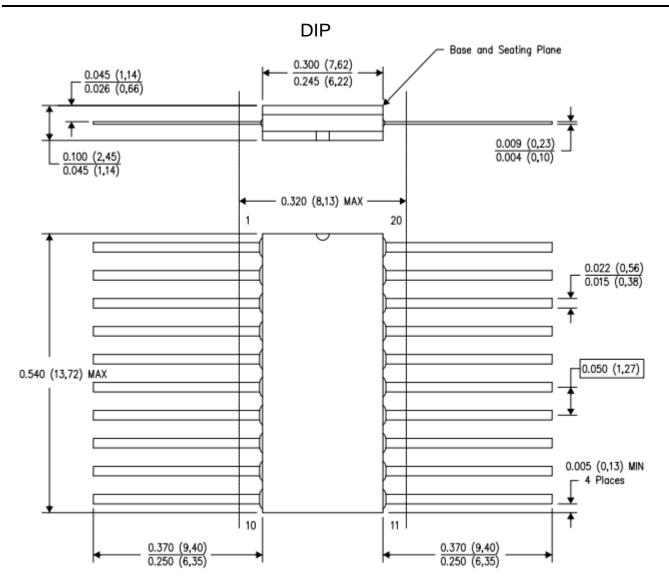
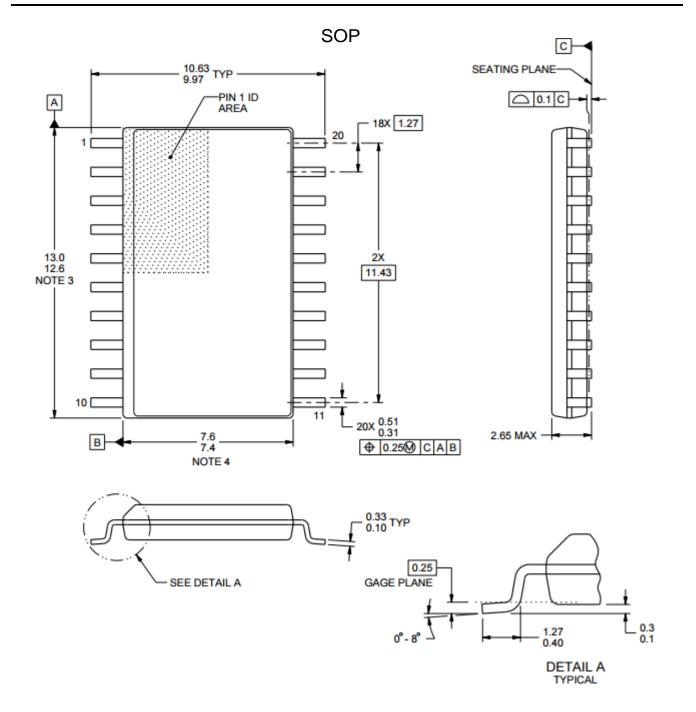




Figure 4. Schematics of Inputs and Outputs

以上信息仅供参考. 如需帮助联系客服人员。谢谢 XINLUDA

以上信息仅供参考. 如需帮助联系客服人员。谢谢 XINLUDA