The XD14538 is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing • Pin-for-pin Compatible with XD14538 components, C_X and R_X . Output Pulse Width $T = R_X \cdot C_X$ (secs) $$R_X = \Omega$$ C_X = Farads #### **Features** - Unlimited Rise and Fall Time Allowed on the A Trigger Input - Pulse Width Range = 10 μs to 10 s - Latched Trigger Inputs - Separate Latched Reset Inputs - 3.0 Vdc to 18 Vdc Operational Limits - Triggerable from Positive (A Input) or Negative–Going Edge (B–Input) - Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range - Use the XD14538 for Pulse Widths Less Than 10 us with Supplies Up to 6 V - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### MAXIMUM RATINGS (Voltages Referenced to VSS) | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | > | | I _{in} , I _{out} | Input or Output Current (DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Operating Temperature Range | -55 to +125 | ô | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | T _L | Lead Temperature
(8–Second Soldering) | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. ## **PIN ASSIGNMENT** ## **ONE-SHOT SELECTION GUIDE** *LIMITED OPERATING VOLTAGE (2 - 6 V) ## **BLOCK DIAGRAM** R_X AND C_X ARE EXTERNAL COMPONENTS. $V_{DD} = PIN \ 16$ $V_{SS} = PIN \ 8, \ PIN \ 1, \ PIN \ 15$ # $\textbf{ELECTRICAL CHARACTERISTICS} \ (Voltages \ \mathsf{Referenced} \ to \ V_{SS})$ | Characteristic | | Symbol | V | - 55°C | | 25°C | | | 125°C | | | |---|-----------|-----------------|------------------------|-----------------------------------|--|--|---|--|--|----------------------|------| | | | | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | $V_{in} = 0 \text{ or } V_{DD}$ | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage
(V _O = 4.5 or 0.5 Vdc)
(V _O = 9.0 or 1.0 Vdc)
(V _O = 13.5 or 1.5 Vdc) | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | (V _O = 0.5 or 4.5 Vdc)
(V _O = 1.0 or 9.0 Vdc)
(V _O = 1.5 or 13.5 Vdc) | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | _
_
_ | Vdc | | Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$ | Source | I _{OH} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | -
-
- | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | -
-
- | - 1.7
- 0.36
- 0.9
- 2.4 | -
-
-
- | mAdc | | $ \begin{aligned} &(V_OL = 0.4 \; Vdc) \\ &(V_OL = 0.5 \; Vdc) \\ &(V_OL = 1.5 \; Vdc) \end{aligned} $ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | -
-
- | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current, Pin 2 or 14 | | I _{in} | 15 | _ | ±0.05 | - | ±0.00001 | ±0.05 | - | ±0.5 | μAdc | | Input Current, Other Inputs | i | I _{in} | 15 | _ | ±0.1 | - | ±0.00001 | ±0.1 | - | ±1.0 | μAdc | | Input Capacitance, Pin 2 or | r 14 | C _{in} | - | _ | - | - | 25 | - | - | - | pF | | Input Capacitance, Other II
(V _{in} = 0) | nputs | C _{in} | - | - | - | - | 5.0 | 7.5 | - | - | pF | | Quiescent Current
(Per Package)
$Q = Low, \overline{Q} = High$ | | I _{DD} | 5.0
10
15 | -
-
- | 5.0
10
20 | -
-
- | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μAdc | | Quiescent Current, Active (Both) (Per Package) $Q = High, \overline{Q} = Low$ | State | I _{DD} | 5.0
10
15 | -
-
- | 2.0
2.0
2.0 | -
-
- | 0.04
0.08
0.13 | 0.20
0.45
0.70 | -
-
- | 2.0
2.0
2.0 | mAdc | | Total Supply Current at an load capacitance (C _L) and external timing network (R ₂ (Note 3) | at | I _T | 5.0
10 | | $I_T = (8.0 \text{ s})$
$I_T = (1.25 \text{ where:})$ | x 10 ^{–2}) R
x 10 ^{–1}) I
I _T in μA (c
C _X in μF, | $_{\text{C}}^{\text{C}}$ $_{\text{C}}^{\text{C}}$ $_{\text{C}}^{\text{F}}$ + 4C $_{\text{X}}^{\text{F}}$ + 9C $_{\text{X}}^{\text{F}}$ + 12Cone monosta C $_{\text{L}}$ in pF, R $_{\text{X}}$ the input free | + 2 x 10 $^{-5}$
χ f + 3 x 10
ble switch
in k ohms | ⁵ C _L f
0 ^{–5} C _L f
ning only), | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. # SWITCHING CHARACTERISTICS (Note 4) ($C_L = 50 \ pF, \ T_A = 25^{\circ}C$) | | | V | All Types | | | | |--|---|------------------------|----------------------|-------------------------|-------------------------|------| | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 5) | Max | Unit | | Output Rise Time $t_{TLH} = (1.35 \text{ ns/pF}) \text{ C}_{L} + 33 \text{ ns} \\ t_{TLH} = (0.60 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns} \\ t_{TLH} = (0.40 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns}$ | t _{ТLН} | 5.0
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | Output Fall Time $t_{THL} = (1.35 \text{ ns/pF}) \text{ C}_L + 33 \text{ ns}$ $t_{THL} = (0.60 \text{ ns/pF}) \text{ C}_L + 20 \text{ ns}$ $t_{THL} = (0.40 \text{ ns/pF}) \text{ C}_L + 20 \text{ ns}$ | t _{THL} | 5.0
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | Propagation Delay Time A or B to Q or \overline{Q} t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 255 ns t _{PLH} , t _{PHL} = (0.36 ns/pF) C _L + 132 ns t _{PLH} , t _{PHL} = (0.26 ns/pF) C _L + 87 ns | t _{PLH} ,
t _{PHL} | 5.0
10
15 | -
-
- | 300
150
100 | 600
300
220 | ns | | Reset to Q or \overline{Q}
t_{PLH} , t_{PHL} = (0.90 ns/pF) C_L + 205 ns
t_{PLH} , t_{PHL} = (0.36 ns/pF) C_L + 107 ns
t_{PLH} , t_{PHL} = (0.26 ns/pF) C_L + 82 ns | | 5.0
10
15 | -
-
- | 250
125
95 | 500
250
190 | ns | | Input Rise and Fall Times Reset | t _r , t _f | 5
10
15 | | | 15
5
4 | μs | | B Input | | 5
10
15 | -
-
- | 300
1.2
0.4 | 1.0
0.1
0.05 | ms | | A Input | | 5
10
15 | | No Limit | | - | | Input Pulse Width A, B, or Reset | t _{WH} ,
t _{WL} | 5.0
10
15 | 170
90
80 | 85
45
40 | -
-
- | ns | | Retrigger Time | t _{rr} | 5.0
10
15 | 0
0
0 | -
-
- | -
-
- | ns | | Output Pulse Width — Q or \overline{Q}
Refer to Figures 8 and 9
C_X = 0.002 μ F, R_X = 100 $k\Omega$ | Т | 5.0
10
15 | 198
200
202 | 210
212
214 | 230
232
234 | μs | | C_X = 0.1 μ F, R_X = 100 $k\Omega$ | | 5.0
10
15 | 9.3
9.4
9.5 | 9.86
10
10.14 | 10.5
10.6
10.7 | ms | | C_X = 10 μ F, R_X = 100 $k\Omega$ | | 5.0
10
15 | 0.91
0.92
0.93 | 0.965
0.98
0.99 | 1.03
1.04
1.06 | s | | Pulse Width Match between circuits in the same package. $C_X = 0.1 \ \mu F, R_X = 100 \ k\Omega$ | 100
[(T ₁ - T ₂)/T ₁] | 5.0
10
15 | -
-
- | ± 1.0
± 1.0
± 1.0 | ± 5.0
± 5.0
± 5.0 | % | ## **OPERATING CONDITIONS** | External Timing Resistance | R _X | İ | 5.0 | _ | (Note 6) | kΩ | |-----------------------------|----------------|---|-----|---|----------------------|----| | External Timing Capacitance | C _X | İ | 0 | - | No Limit
(Note 7) | μF | ^{6.} The maximum usable resistance R_X is a function of the leakage of the capacitor C_X, leakage of the XD14538 , and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for R_X > 1 MΩ. 7. If C_X > 15 μF, use discharge protection diode per Fig. 11. ^{4.} The formulas given are for the typical characteristics only at 25°C. 5. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Figure 1. Logic Diagram (1/2 of Devlce Shown) Figure 2. Power Dissipation Test Circuit and Waveforms Figure 3. Switching Test Circuit Figure 4. Switching Test Waveforms Figure 5. Typical Normalized Distribution of Units for Output Pulse Width Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage V_{DD} Figure 7. Typical Total Supply Current versus Output Duty Cycle #### **FUNCTION TABLE** | | Inputs | Outputs | | | | | |---------|--------------|--------------|--------------------------------|-------------|--|--| | Reset | Α | В | Q | Q | | | | H
H | \ ∟ | τ | 누 | 디디 | | | | H
H | | | Not Triggered
Not Triggered | | | | | H
H | L, H, ℃
L | H
L, H, 🗸 | Not Triggered
Not Triggered | | | | | L
~/ | X
X | X
X | L
Not Tri | H
ggered | | | Figure 8. Typical Error of Pulse Width Equation versus Temperature Figure 9. Typical Error of Pulse Width Equation versus Temperature ## THEORY OF OPERATION Figure 10. Timing Operation #### TRIGGER OPERATION The block diagram of the XD14538 is shown in Figure 1, with circuit operation following. As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_X completely charged to V_{DD} . When the trigger input A goes from V_{SS} to V_{DD} (while inputs B and \overline{Reset} are held to V_{DD}) a valid trigger is recognized, which turns on comparator C1 and N-channel transistor N1 ①. At the same time the output latch is set. With transistor N1 on, the capacitor C_X rapidly discharges toward V_{SS} until V_{ref1} is reached. At this point the output of comparator C1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor C_X begins to charge through the timing resistor, R_X , toward V_{DD} . When the voltage across C_X equals $V_{ref 2}$, comparator C2 changes state, causing the output latch to reset (Q goes low) while at the same time disabling comparator C2 2. This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger. In the quiescent state, C_X is fully charged to V_{DD} causing the current through resistor R_X to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the XD14538 is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_X , R_X , or the duty cycle of the input waveform. #### **RETRIGGER OPERATION** #### **RESET OPERATION** The XD14538 may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on $\overline{\text{Reset}}$ sets the reset latch and causes the capacitor to be fast charged to V_{DD} by turning on transistor P1 $\footnote{\circ}$. When the voltage on the capacitor reaches $V_{ref~2}$, the reset latch will clear, and will then be ready to accept another pulse. It the $\overline{\text{Reset}}$ input is held low, any trigger inputs that occur will be inhibited and the Q and $\overline{\text{Q}}$ outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the $\overline{\text{Reset}}$ input, the output pulse T can be made significantly shorter than the minimum pulse width specification. #### **POWER-DOWN CONSIDERATIONS** Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the XD14538 is powered down, the capacitor voltage may discharge from V_{DD} through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the V_{DD} supply must not be faster than (V_{DD}) . (C)/(10 mA). For example, if V_{DD} = 10 V and C_X = 10 μF , the V_{DD} supply should discharge no faster than (10 V) x (10 μF)/(10 mA) = 10 ms. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate. When a more rapid decrease of V_{DD} to zero volts occurs, the XD14538 can sustain damage. To avoid this possibility use an external clamping diode, D_X , connected as shown in Fig. 11. Figure 11. Use of a Diode to Limit Power Down Current Surge ## **TYPICAL APPLICATIONS** Figure 12. Retriggerable Monostables Circuitry RESET = V_{DD} FALLING-EDGE **TRIGGER** Figure 13. Non-Retriggerable Monostables Circuitry Figure 14. Connection of Unused Sections 以上信息仅供参考. 如需帮助联系客服人员。谢谢 XINLUDA