
CC6422

低噪声,高效率,24V 450mA 单相正弦波直流无刷马达驱动

特性

- ◆ 内置可调增益高灵敏度霍尔传感器
- ◆ 效率高,采用控制专利技术实现零电流换相(ZCS)和零磁场换相(ZBS)
- ◆ 噪声低,采用 SVPWM 技术实现对电机的正弦波控制,降低了电磁噪声
- ◆ PWM 调速带最小转速设定
- ◆ 驱动能力强, R_{DSON}为 1.2 欧姆, 最高可达 450mA
- ◆ 工作电压范围宽, 3.5V 至 28V
- ◆ RD 报警和 FG 计数功能可选
- ◆ 保护功能强,过热保护,锁转保护,H 桥限流保护
- ◆ 根据环境磁场强度自适应增益控制
- ◆ 智能软启动,降低电机启动电流,降低对电源的冲击
- ◆ 转速曲线可配置
- ♦ ESD (HBM) 6000V

功能框图

应用

- ◆ 单线圈直流无刷马达
- ▶ 单线圈直流无刷散热风扇

概述

CC6422 为 PWM 调速的单线圈直流无刷散热风扇提供了单芯片的解决方案。

该产品采用先进的高压 BiCMOS 工艺设计制造。内部集成了稳压模块,霍尔薄片,斩波失调消除模块,霍尔信号线性放大调制模块,功率全桥输出级,以及数字逻辑控制模块。

稳压输出模块可以使芯片工作在 3.5V 到 28V 电压范围。

PWM 端口内置 10kΩ 上拉电阻。由于 PWM 信号通常由开集或者开漏输出的方式提供,PWM 端口则无需再外置上拉电阻。此外,当 PWM 信号的信号线出现开路的情况时,该上拉电阻可以保证电机处于全速工作的状态,增加了工作的安全性。

启动状态期间, CC6422 检测环境的磁场强度,进行自适应增益调整。自适应调整完成后,进入正弦波工作状态。

CC6422 有智能软启动功能,软启动可以消除电机启动时的尖峰电流,提高系统可靠性。启动状态下,输出信号的占空比从 25%逐步增加,每 100ms 占空比增加 5%。

当 CC6422 完成启动,确定内部增益之后,则会从启动状态进入正弦波电流工作状态。该状态下,可以通过 PWM 端口输入不同占空比的 PWM 信号,对电机转速进行调整。PWM 调速精度 32 级。

最小速度设定功能需要使用两个外置的电阻来完成。该功能非常适合电脑 CPU,图像处理器等需要有一个最低冷却要求的应用场合。

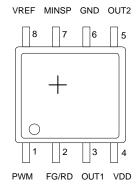
通过在 VREF 端口到地之间配置不同阻值的电阻, CC6422 可以提供 4 种不同斜率的转速曲线。

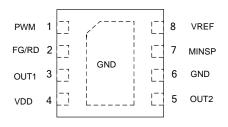
正弦波电流工作状态下,OUT端口的输出信号是一个PWM调制信号。由于线圈自身的特性,会滤除信号中的高频成分,恢复出正弦波电流。 正弦波电流工作方式会极大提高风机的运转效率,降低噪音。

FG/RD输出端口提供转速计算和锁转报警功能,该端口集成短路保护功能,可防止意外情况下因为短接而烧毁芯片。

CC6422内置锁转保护功能,避免风机在遇到机械阻塞的时候因为过热而烧毁线圈和芯片。

CC6422 工作温度范围为-40~125℃, 内置过热保护功能,当芯片温度高于 160℃时,输出将被关断。当温度降低到安全水平时,芯片自动恢复工作。


CC6422采用直脚SOIC8和DFN8 3*3两种封装方式,均符合RoHS相关规定。


采购信息

产品型号	包装方式	封装型号
CC6422SO-FG	卷盘, 2500 片/卷	SOIC8
CC6422SO-RD	卷盘, 2500 片/卷	SOIC8
CC6422DN-FG	卷盘,3000 片/卷	DFN8 3*3
CC6422DN-RD	卷盘,3000 片/卷	DFN8 3*3

脚位定义

名称	引脚编号		功能
	SOIC8	DFN8	
PWM	1	1	PWM 调速输入信号
FG/RD	2	2	转速计算/锁转报警
OUT1	3	3	全桥输出 1
VDD	4	4	电源
OUT2	5	5	全桥输出 2
GND	6	6	坦
MINSP	7	7	最低转速设定
VREF	8	8	基准电源输出
		底座	地

极限参数

参数	符号	数值	单位
电源电压	V_{DD}	42	V
反向电压	V_{DDREV}	-0.3	V
尖峰电流	I _{OUTP}	1000	mA
输出持续电流	Гоитс	450	mA
FG/RD 输出电流	I _{FG}	30	mA
PWM 端口输入电压	V_{PWM}	42	V
反向 PWM 端口输入电压	V_{PWM}	-0.3	V
MINSP 端口输入电压	V _{MINSP}	3.6	V
反向 MINSP 端口输入电压	V_{MINSP}	-0.3	V
工作温度范围	T _A	-40~125	°C
热阻	R _{thja} (SOIC8)	150	°C/W
3% PH	R _{thja} (DFN8 3*3)	60	· C/VV
结温	T _J	150	°C
存储温度	Ts	-55~150	°C
磁通量	В	Unlimited	mT
ESD 等级(HBM)	ESD(HBM)	6000	V

注意:应用时不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响器件的可靠性。

推荐工作环境

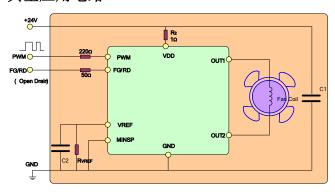
参数	符号	最小值	最大值	单位
工作电压	V_{DD}	3.5	28	V
环境温度	T _A	-40	125	°C
工作电流	I _{OUTC}	-	450	mA

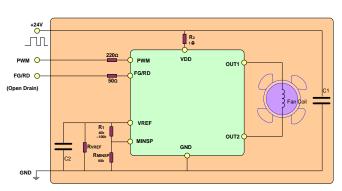
电气参数(若无特别指明, VDD =4.5V to 24V @ 25°C)

参数	符号	环境	最小值	典型值	最大值	单位
工作电压	V _{DD}	-	3.5	-	28	V
静态电流	I _{DD}	-	-	6	8	mA
PWM 输入低电平	V _{IL}		-	-	0.4	V
PWM 输入高电平	V _{IH}		2.1	-	5.5	V
PWM 输入频率范围	F _{IN}		0.1	-	100	kHz
PWM 内部上拉电阻	R _{IN}		-	10	-	kΩ
全桥导通阻抗	R _{DSON}	T=25°C, 24V	-	1.2	-	Ω
全桥导通阻抗	R _{DSON}	T=25°C, 4.5V	-	2	-	Ω
软启动占空比	DCout_ss		25	-	50	%
软启动持续时间	T _{SOFT}	占空比从 25%增长到 50%的时间	-	0.5	-	S
FG/RD 输出饱和压降	V _{OL}	B>B _{OP} , I _{OUT} =5mA	-	0.2	0.5	V
FG/RD 输出限流值	I _{CL}	B>B _{OP}	-	50	-	mA
FG/RD 输出漏电流	I _{OFF}	V _{DD} =24V,B <b<sub>RP</b<sub>	-	0.1	2	uA
基准输出电压	V_{REF}		2.45	2.5	2.55	V
基准输出电流	I _{REF}		-	-	5	mA
锁转保护开启时间	T _{ON}		-	1	-	s
锁转保护关闭时间	T _{OFF}		-	4	-	s
过温保护值◐	T _{SD}	VIN=24V	-	160	-	°C
过温保护迟滞	ΔT _{SD}		-	30	-	°C

注意: ① 设计值,非测试值。

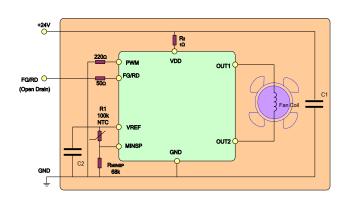
磁参数

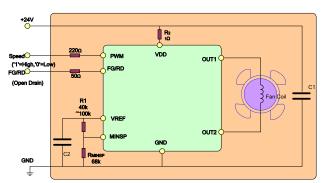

į	参数	符号	最小值	典型值	最大值	单位
	工作点	B _{OP}	-	20	-	Gauss
启动状态	释放点	B _{RP}	-	-20	-	Gauss
	迟滞	B _{HYS}	-	40	-	Gauss
工业处土法	工作点	B _{OP}	-	5	-	Gauss
正弦波电流工作状态	释放点	B _{RP}	-	-5	-	Gauss
工作伙念	迟滞	B _{HYS}	-	10	-	Gauss



输出电平 vs. 磁场极性

参数	测试环境	OUT1	OUT2	FG
北极	B <b<sub>RP</b<sub>	高	底	盲
南极	B>B _{OP}	低	亩	低

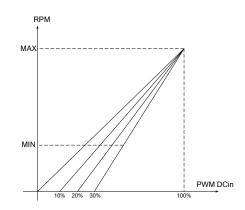

典型应用电路



4线 PWM 散热风扇(未设置最低转速)

4线 PWM 散热风扇(带最低转速设定)

温控散热风扇


两速散热风扇

注意: $R2=1\Omega$,可以提高风扇系统的 EMI 特性。VDD 端口和 VREF 端口必须接电容到地。

转速曲线选择

CC6422转速曲线可以灵活配置。转速曲线如下图所示。

CC6422可以通过外置电阻R1和RMINSP对最低转速进行配置,R1与RMINSP的电阻之和必须要大于100KΩ。R1与RMINSP端口进行电压配置,MINSP端口电压越低,对应的最低转速越低。最低转速配置精度为32级。

CC6422可以通过外置电阻RVREF对转速曲线斜率进行配置,共有4种斜率可供选择。

若选择 0%占空比起速的转速曲线,则 Rvref 配置的电阻值范围是 ∞ 至 $\frac{2.5}{\frac{0.5}{2300}-0.00002-\frac{2.5}{R1+Rminsp}}$ Ω

若选择 10%占空比起速的转速曲线,则 Rvref 配置的电阻值范围是 $\frac{2.5}{\frac{0.5}{2300}-0.00002-\frac{2.5}{R1+Rminsp}}$ Ω 至 $\frac{2.5}{\frac{1}{2300}-0.00002-\frac{2.5}{R1+Rminsp}}$ Ω

若选择 20%占空比起速的转速曲线,则 Rvref 配置的电阻值范围是 $\frac{2.5}{\frac{1}{2300}-0.00002-\frac{2.5}{R1+Rminsp}}$ Ω 至 $\frac{2.5}{\frac{2}{2300}-0.00002-\frac{2.5}{R1+Rminsp}}$ Ω

若选择 30%占空比起速的转速曲线,则 Rvref 配置的电阻值范围是 $\frac{2.5}{\frac{2}{2300} - 0.00002 - \frac{2.5}{R1 + Rminsp}}$ $\Omega \subseteq 0$

若 R1 和 RMINSP 的电阻之和为 100K Ω ,则相应的 Rvref 电阻值配置范围如下表所示:

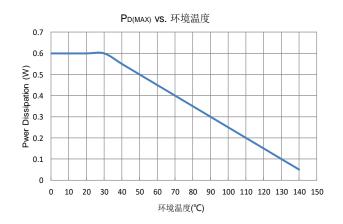
RVREF (KΩ)	转速曲线起速时的PWM占空比
悬空~14.7 ΚΩ	0%
14.7 ΚΩ~6.46 ΚΩ	10%
6.46 ΚΩ~3.04 ΚΩ	20%
3.04 ΚΩ~0	30%

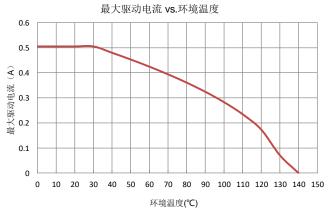
最大驱动电流

CC6422 封装体的最大散热功率由以下公式决定:

 $P_{D(MAX)}=(T_j-T_a)/R_{thja}$

当 CC6422 工作时, IC 的功耗为:

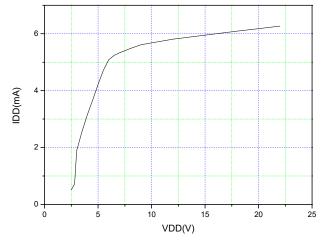

P=Icontinue^{2*}Roson+VDD*IDD

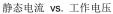


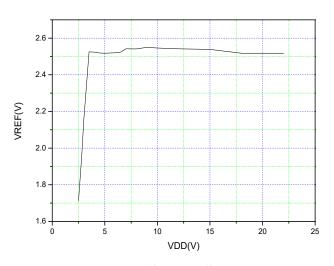
所以持续输出电流计算公式如下:

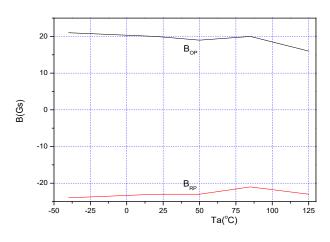
$I_{MAX}=((P_{D(MAX)}-V_{DD}*I_{DD})/R_{DSON})^{1/2}$

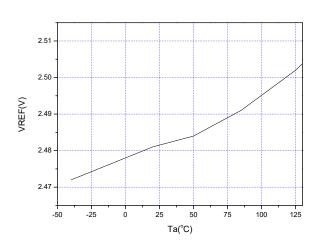
CC6422 最大持续输出电流曲线如下:

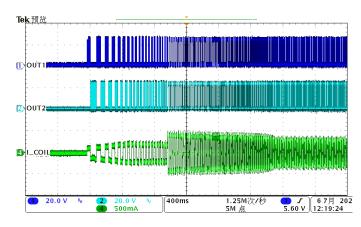


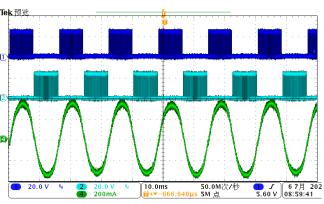

 $P_{D(MAX)}$ vs. Temp.


 $I_{\text{CONT}(\text{MAX})}$ vs. Temp.


曲线 & 波形

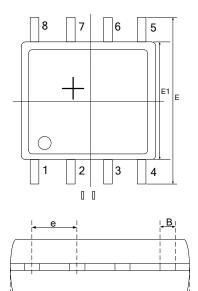



基准输出 vs. 工作电压


 $B_{\text{OP}}\!/B_{\text{RP}}$ vs. Ta

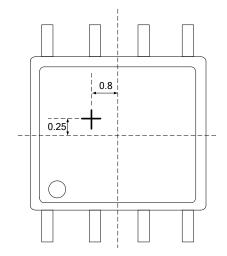
基准输出 vs. 温度

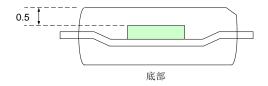
某机型启动时输出电压、线圈电流波形

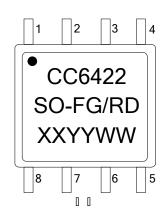


某机型工作时输出电压、线圈电流波形

封装信息


1) SOIC8 封装




D


侧面

霍尔感应点位置

符号		毫米	
初亏	最小值	典型值	最大值
A2	1.4	-	1.6
В	0.35	0.4	0.49
С	0.20	0.25	0.30
D	4.8	4.93	5.0
E1	3.80	3.94	4.00
е	1.27BSC		
Е	5.84	6.00	6.20
h	0.25	0.33	0.41

注意:

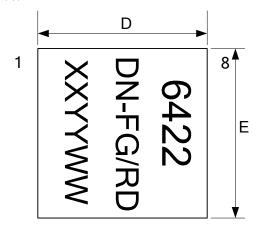
1. 所有尺寸单位均是毫米。

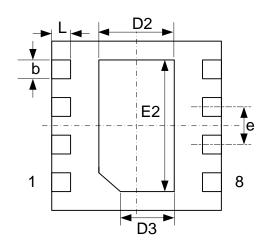
打标:

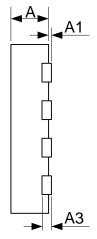
第一行: CC6422 - 产品名称

第二行: SO-FG/RD - 分类

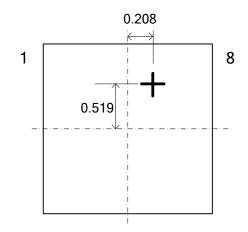
第三行: XXYYWW


XX - 内部代码


YY - 年度后两位数字


WW - 星期数

2) DFN8 3*3 封装



** ⁻		毫米	
符号	最小值	典型值	最大值
Α	0.70	0.75	0.80
A1	-	-	0.05
А3		0.203 RE	:F
b	0.23	0.28	0.33
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
D2	1.40	1.50	1.60
D3	-	1.15	-
E2	2.20	2.30	2.40
е	0.65 TYP		
L	0.25	0.30	0.35

霍尔感应点位置

注意:

1. 所有尺寸单位均是毫米。

打标:

第一行: 6422 – 产品名称 第二行: DN-FG/RD – 分类

第三行: XXYYWW

XX- 内部代码

YY - 年度后两位数字

WW - 星期数