

RS-232 接口集成电路

- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates Up To 250 kbit/s
- Two Drivers and Two Receivers
- Low Supply Current . . . 300 μA Typical

- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Alternative High-Speed Pin-Compatible Device (1 Mbit/s) XD/XL3232
- Applications
 - Battery-Powered Systems, PDAs,
 Notebooks, Laptops, Palmtop PCs, and
 Hand-Held Equipment

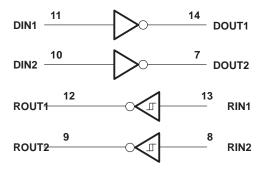
RS-232 接口集成电路

The XD/XL3232 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with \pm 15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets therequirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/ μ s driver output slew rate.

Function Tables

EACH DRIVER

INPUT DIN	OUTPUT DOUT
L	Н
Н	L


H = high level, L = low level

EACH RECEIVER

INPUT RIN	OUTPUT ROUT
L	Н
Н	L
Open	Н

H = high level, L = low level, Open = input disconnected or connected driver off

logic diagram (positive logic)

RS-232接口集成电路

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	–0.3 V to 6 V
Positive output supply voltage range, V+ (see Note 1)	–0.3 V to 7 V
Negative output supply voltage range, V- (see Note 1)	0.3 V to –7 V
Supply voltage difference, V+ – V– (see Note 1)	13 V
Input voltage range, V _I : Drivers	
Receivers	–25 V to 25 V
Output voltage range, VO: Drivers	
Receivers	$-0.3 \text{ V to V}_{CC} + 0.3 \text{ V}$
Package thermal impedance, θ _{.IA} (see Notes 2 and 3): 3232	
,	

NOTES: 1. All voltages are with respect to network GND.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4 and Figure 4)

				MIN	NOM	MAX	UNIT
			V _{CC} = 3.3 V	3	3.3	3.6	
	Supply voltage		V _{CC} = 5 V	4.5	5	5.5	V
.,	V _{IH} Driver high-level input voltage DIN		V _{CC} = 3.3 V	2			V
٧IH			V _{CC} = 5 V	2.4			V
V _{IL}	V _{IL} Driver low-level input voltage		DIN			0.8	V
.,	Driver input voltage		DIN	0		5.5	V
VI	Receiver input voltage			-25		25	V
_				0		70	°C
TA	Operating free-air temperature		XD/XL3232	-40		85	-0

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER	TEST CONDITIONS	MIN TYP‡	MAX	UNIT
ICC Supply current	No load, $V_{CC} = 3.3 \text{ V or } 5 \text{ V}$	0.3	1	mA

[‡] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage	DOUT at R _L = $3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.4		V
VOL	Low-level output voltage	DOUT at R _L = $3 \text{ k}\Omega$ to GND,	DIN = V _{CC}	-5	-5.4		V
lН	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
Ι _Ι L	Low-level input current	V _I at GND			±0.01	±1	μΑ
last	Chart since it autout account	V _{CC} = 3.6 V,	VO = 0 V		105	-00	0
los‡	Short-circuit output current	V _{CC} = 5.5 V,	VO = 0 V		±35	±60	mA
r _O	Output resistance	V_{CC} , V+, and V- = 0 V,	V _O = ±2 V	300	10M		Ω

 $^{^{\}dagger}$ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	Maximum data rate	C _L = 1000 pF, One DOUT switching,	$R_L = 3 k\Omega$, See Figure 1	150	250		kbit/s
tsk(p)	Pulse skew§	C _L = 150 pF to 2500 pF	R_L = 3 kΩ to 7 kΩ, See Figure 2		300		ns
SR(tr)	Slew rate, transition region	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 150 pF to 1000 pF	6		30	V/us
SK(II)	(see Figure 1)	V _{CC} = 3.3 V	C _L = 150 pF to 2500 pF	4		30	ν/μ5

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

^{\$} Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

[§] Pulse skew is defined as |tpLH - tpHL| of each channel of the same device.

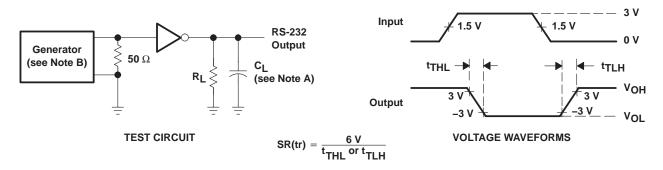
RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} -0.6V	V _{CC} -0.1 V		V
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
.,	Desixing principal investable and contact	V _{CC} = 3.3 V		1.5	2.4	
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 5 V		1.8	2.4	V
.,	No. of a second of second later	V _{CC} = 3.3 V	0.6	1.2		.,
V _{IT} _	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.5		V
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.3	·	V
rį	Input resistance	$V_{I} = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

 $[\]overline{\dagger}$ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.


switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 3)

	PARAMETER	TEST CONDITIONS	MIN TYP [†] MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	0 450-5	300	ns
tPHL	Propagation delay time, high- to low-level output	C _L = 150 pF	300	ns
tsk(p)	Pulse skew [‡]		300	ns

 $^{^{\}dagger}$ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

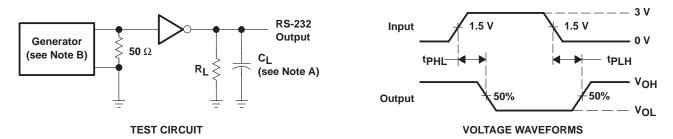
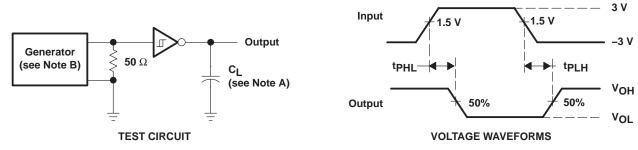

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns. $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

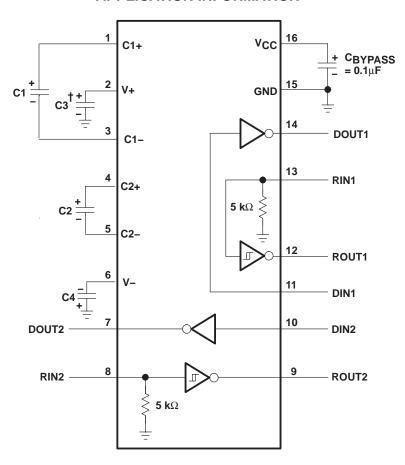
[‡] Pulse skew is defined as |tpLH - tpHL| of each channel of the same device.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_\Gamma \le 10$ ns.

Figure 2. Driver Pulse Skew


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_O = 50~\Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

APPLICATION INFORMATION

†C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

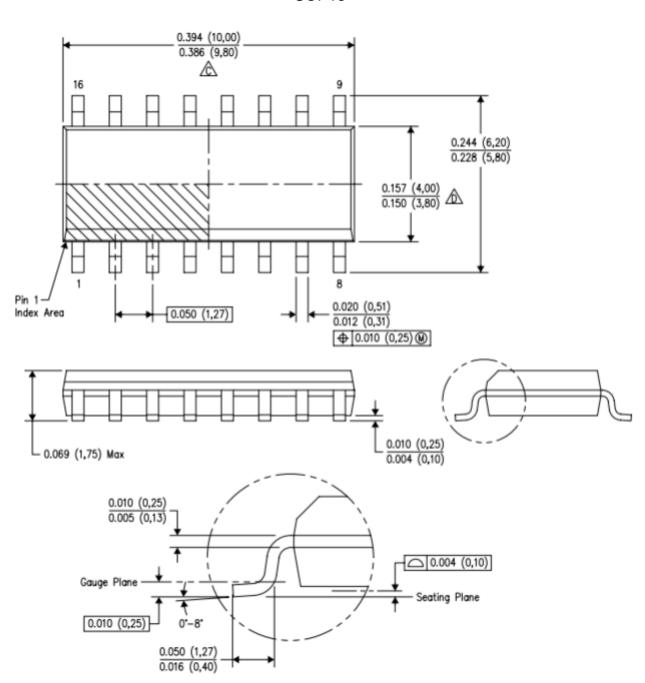
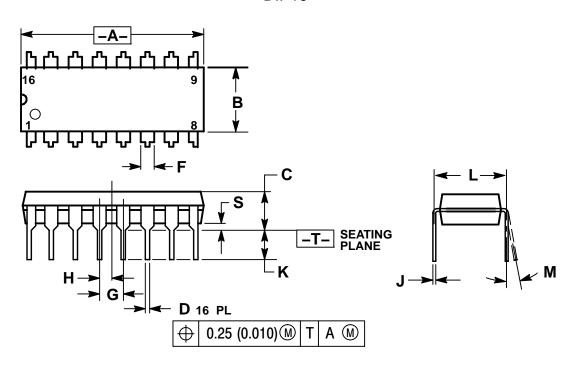

VCC	C1	C2, C3, C4
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 4. Typical Operating Circuit and Capacitor Values



SOP16

DIP₁₆

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54	BSC	
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10°	0°	10°	
S	0.020	0.040	0.51	1.01	