RTAN Series

Tantalum Nitride Thin Film Chip Resistor

Features:

- TaN thin film resistor
- Self-passivating technology is impervious to moisture
- Sulfur resistant (per ASTM B809-95 humid vapor test) •
- Meets or exceeds 85°C / 85% R.H. at 10% rated power humidity test •
- AEC-Q200 qualified •
- 100% RoHS compliant and lead free without exemption
- Halogen free
- **REACH** compliant

Applications:

- Automotive electronics
- Medical equipment

Rev Date: 01/11/2021

This specification may be changed at any time without prior notice. Please confirm technical specifications before you order and/or use.

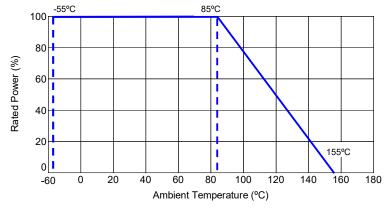
- Measuring instrumentation
- Communication devices

Electrical Specifications								
Type/Code	Power Rating (W)	Maximum Working	Maximum Overload	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance			
	@ 85°C	Voltage (V) ⁽¹⁾	Voltage (V)		0.05%, 0.1%, 0.25%, 0.5%, 1%			
RTAN0402	0.063	50	100	± 10	40.2 - 34.8K			
RTAN0603	0.15	75	150	± 15	40.2 - 130K			
RTAN0805	0.2	100	200	± 25	10 - 348K			
RTAN1206	0.4	200	400	± 50	10 - 1M			

(1) Lesser of $\sqrt{P^*R}$ or maximum working voltage.

Mechanical Specifications									
Protective coat									
Type/Code	L	W	А	В	t	Unit			
RTAN0402	0.039 ± 0.004	0.020 ± 0.002	0.010 ± 0.006	0.012 ± 0.004	0.012 ± 0.004	inches			
	1.00 ± 0.10	0.50 ± 0.05	0.25 ± 0.15	0.30 ± 0.10	0.30 ± 0.10	mm			
RTAN0603	0.061 ± 0.004	0.031 ± 0.004	0.012 ± 0.008	0.012 ± 0.006	0.018 ± 0.006	inches			
	1.55 ± 0.10	0.80 ± 0.10	0.30 ± 0.20	0.30 ± 0.15	0.45 ± 0.15	mm			
RTAN0805	0.079 ± 0.004	0.049 ± 0.004	0.014 ± 0.008	0.016 ± 0.008	0.020 ± 0.006	inches			
	2.00 ± 0.10	1.25 ± 0.10	0.35 ± 0.20	0.40 ± 0.20	0.50 ± 0.15	mm			
RTAN1206	0.122 ± 0.004	0.063 ± 0.004	0.016 ± 0.008	0.016 ± 0.008	0.024 ± 0.006	inches			
	3.10 ± 0.10	1.60 ± 0.10	0.40 ± 0.20	0.40 ± 0.20	0.60 ± 0.15	mm			

Stackpole Electronics, Inc.


Resistive Product Solutions

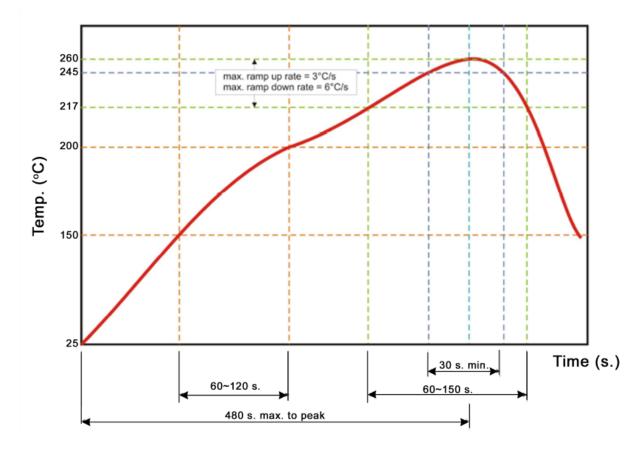
Stackpole Electronics, Inc.

Tantalum Nitride Thin Film Chip Resistor

Resistive Product Solutions

Power Derating Curve:

	Performance Characteristics								
Test	Test Method	Test Specification	Test Condition						
Electrical	IEC-60115-1 4.8	Within the specified tolerance	DC resistance values measurement Temperature Coefficient of Resistance (TCR) Natural resistance change per change in degree centigrade R ₂ - R ₁						
Characteristics			$\frac{R_2 - R_1}{R_1 (t_2 - t_1)} \times 10^6 (\text{ppm/°C}) t_1: 20^\circ\text{C} + 5^\circ\text{C} / -1^\circ\text{C}$ R1: Resistance at reference temperature (20°C +5°C / -1°C) R2: Resistance at test temperature (-55°C or +125°C)						
Short Time Overload	IEC-60115-1 4.13	Δ R/R max. ± (0.1% + 0.02Ω)	Permanent resistance change after a 5 second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.						
Resistance to Soldering Heat	AEC-Q200-15	No visible damage Δ R/R max. ± (0.1% + 0.02 Ω)	Un-mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at 260°C ± 5°C						
Solderability	ity IEC-60068-2-58 Good tinning (>95% covere No visible damage		Un-mounted chips completely immersed for 2 ± 0.5 seconds in SAC solder bat at 235°C ± 5°C						
Thermal Shock	MIL-STD-202 Method 107	No visible damage ΔR/R max. ± (0.1%+0.02Ω)	Test -55°C to 125°C / dwell time 15 minutes/max. transfer time 20 seconds 1000 cycles						
Biased Humidity	AEC-Q200-7	Δ R/R max. ± (0.1% + 0.02Ω)	1000 +48 / -0 hours, loaded with 10% rated power in humidity chamber controller at +85°C / 85% R.H.						
Load Life	IEC-60115-1 4.25	Δ R/R max. ± (0.1% + 0.02Ω)	1000 +48 / -0 hours, loaded with RCWV or Vmax in chamber controller 85°C ± 2°C, 1.5 hours ON and 0.5 hours OFF						
High Temperature Load Life	AEC-Q200-8 MIL-STD-202-108	Δ R/R max. ± (0.1% + 0.02Ω)	1000 hours at 125°C \pm 2°C, loaded with rated power continuously						
High Temperature Exposure	AEC-Q200-3	Δ R/R max. ± (0.1% + 0.02Ω)	1000 hours at 125°C, unpowered						
Moisture Resistance	AEC-Q200-6 Moisture MIL-STD-202 A B/B max + (0.1% + 0.020)		65°C ± 2°C, 80% ~ 100% R.H., 10 cycles, 24 hours/cycle						
Mechanical Shock MIL-STD-202 Method 213 Δ R/R max. ± (0.1%		Δ R/R max. ± (0.1% + 0.02Ω)	1/2 Sine Pulse / 150g Peak / Velocity 15.4 foot/second						
Vibration	MIL-STD-202 Method 204	Δ R/R max. ± (0.1% + 0.02Ω)	5g for 20 minutes, 12 cycles each of 3 orientations						
Terminal Strength	AEC-Q200-6	No breaking	1 kg for 60 seconds						
Bending Strength	AEC-Q200-21	Δ R/R max. ± (0.1% + 0.02Ω)	Bending 2 mm for 60 seconds						

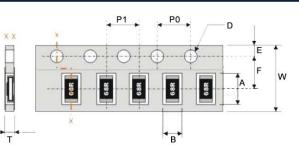

Storage conditions: Temperature 5°C to 40°C. Humidity: 20% to 70% R.H.

Operating temperature range is -55°C to 155°C

Soldering Condition:

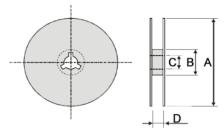
The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount surface mount resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface mount resistors are tested for solderability at 235°C during 2 seconds within lead-free solder bath. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering profile and condition that provide reliable joints without any damage are given on the picture on the right.



RTAN Series

Tantalum Nitride Thin Film Chip Resistor


Stackpole Electronics, Inc. Resistive Product Solutions

Type/Code	А	В	W	F	E	Unit
RTAN0402	0.047 ± 0.004	0.028 ± 0.004	0.315 ± 0.012	0.138 ± 0.008	0.069 ± 0.004	inches
	1.20 ± 0.10	0.70 ± 0.10	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10	mm
RTAN0603	0.075 ± 0.008	0.043 ± 0.008	0.315 ± 0.012	0.138 ± 0.008	0.069 ± 0.004	inches
KTAN0005	1.90 ± 0.20	1.10 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10	mm
RTAN0805	0.094 ± 0.008	0.065 ± 0.008	0.315 ± 0.012	0.138 ± 0.008	0.069 ± 0.004	inches
KTAN0805	2.40 ± 0.20	1.65 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10	mm
RTAN1206	0.142 ± 0.008	0.079 ± 0.008	0.315 ± 0.012	0.138 ± 0.002	0.069 ± 0.004	inches
KTAN1200	3.60 ± 0.20	2.00 ± 0.20	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	mm
Type/Code	P1	PO	D	Т	Unit	
RTAN0402	0.079 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.016 ± 0.002	inches	
KTAN0402	2.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	0.40 ± 0.05	mm	
RTAN0603	0.157 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.026 ± 0.002	inches	
KTAN0005	4.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	0.65 ± 0.05	mm	
RTAN0805	0.157 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.039 max.	inches	
CUQUIN LA	4.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	1.00 max.	mm	
RTAN1206	0.157 ± 0.004	0.157 ± 0.004	0.059 ± 0.004	0.039 max.	inches	
RTAN1206	4.00 ± 0.10	4.00 ± 0.10	1.50 ± 0.10	1.00 max.	mm	

Reel Specifications

Type/Code	А	В	С	D	Unit
All Sizes	7.008 ± 0.079	2.362 ± 0.039	0.512 ± 0.008	0.354 ± 0.020	inches
	178.00 ± 2.00	60.00 ± 1.00	13.00 ± 0.20	9.00 ± 0.50	mm

RTAN Series

Stackpole Electronics, Inc. Resistive Product Solutions

Tantalum Nitride Thin Film Chip Resistor

Part Marking Specifications No Marking Nhe nominal resistance is marked on the surface of the overcoating with the use of 4 digit markings. 0402 are not marked

For shared E24/E96 values, 1% tolerance product may be marked with three digit marking instead of the standard four digit marking for all other E96 values. All E24 values available in 1% tolerance are also marked with three digit marking.

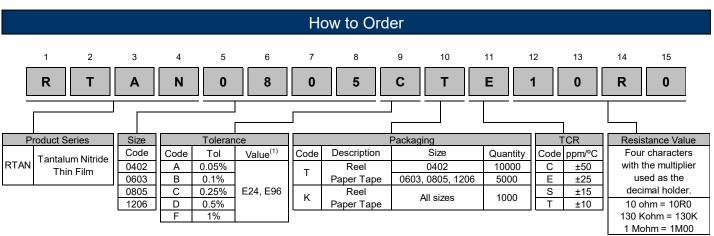
		Mai	rk Instru	ctions for	r 0603 1	% Chip F	Resistors	s (per ElA)		
A two-digit	number is a	assigned to e	each standa	rd R-Value (l	E96) as sho	wn in the cha	art below. T	his is followe	ed by one al	pha characte	er which is
		used as	a multiplier.	Each letter	from "Y" to '	F" represen	ts a specific	multiplier as	follows:		
Y = 0.1								C = 1	,000		
		X =	= 1					D = 1	0,000		
		A =	10					E = 10	0,000		
		B =	100					F = 1,0	00,000		
EXAMPLE:											
	Chip N	/larking			Expla	nation			Va	lue	
	0	1B		"01"	= 10 ohm a	nd "B" = 100)		10 x 100	= 1 Kohm	
	25	5C		"25"	= 17.8 ohm	and "C" = 1	,000	1	7.8 x 1,000	= 17.8 Kohr	n
	93	3D		"93"	= 90.9 ohm	and "D" = 1	0,000	9	0.9 x 10,000) = 909 Kohr	n
					E	96					
1%	#	1%	#	1%	#	1%	#	1%	#	1%	#
10.0	01	14.7	17	21.5	33	31.6	49	46.4	65	68.1	81
10.2	02	15.0	18	22.1	34	32.4	50	47.5	66	69.8	82
10.5	03	15.4	19	22.6	35	33.2	51	48.7	67	71.5	83
10.7	04	15.8	20	23.2	36	34.0	52	49.9	68	73.2	84
11.0	05	16.2	21	23.7	37	34.8	53	51.1	69	75.0	85
11.3	06	16.5	22	24.3	38	35.7	54	52.3	70	76.8	86
11.5	07	16.9	23	24.9	39	36.5	55	53.6	71	78.7	87
11.8	08	17.4	24	25.5	40	37.4	56	54.9	72	80.6	88
12.1	09	17.8	25	26.1	41	38.3	57	56.2	73	82.5	89
12.4	10	18.2	26	26.7	42	39.2	58	57.6	74	84.5	90
12.7	11	18.7	27	27.4	43	40.2	59	59.0	75	86.6	91
13.0	12	19.1	28	28.0	44	41.2	60	60.4	76	88.7	92
13.3	13	19.6	29	28.7	45	42.2	61	61.9	77	90.9	93
13.7	14	20.0	30	29.4	46	43.2	62	63.4	78	93.1	94
14.0	15	20.5	31	30.1	47	44.2	63	64.9	79	95.3	95
14.3	16	21.0	32	30.9	48	45.3	64	66.5	80	97.6	96

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status									
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)				
RTAN	Tantalum Nitride Thin Film Chip Resistor	SMD	YES	100% Matte Sn	Always	Always				

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

(1) E192 values may be available.