Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product Information in this Catalog

Product information in this catalog is as of January 2021. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for generalpurpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *²

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
- (6) Military equipment
- Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

*Notes:

- There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

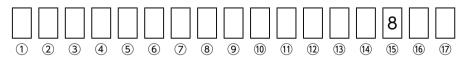
Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.

TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

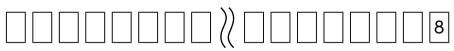
Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.


Industrial Application Guide

The products described as "For Telecommunications Infrastructure and Industrial Equipment" in this catalog are intended for use in the equipment shown in the below table as its typical example. Therefore, when using our products for these equipment, please check it carefully by referring to the part number or the individual product specification sheets and use the corresponding products. Should you have any questions on this matter, please contact us.

Category	Telecommunications Infrastructure and Industrial Equipment (Typical Example)
Telecommunications Infrastructure	 Base Station Optical Transceiver Router/Switch (Carrier-Grade) UPS (Uninterruptible Power Supply), etc.
Factory Automation	 PLC (Programmable Logic Controller) Servomotor/Servo Driver Industry Robot, etc.
Measurement	 Gas Meter Water Meter Flow Meter Pressure Gauge Meter Magnetometer Thermometer, etc.
Electric Power Apparatus	 Power Conditioner (Solar Power System) Smart Meter GFCI (Ground Fault Circuit Interrupter) Electric Vehicle Charging Station, etc.


Part Numbering System

Multilayer Ceramic Capacitors:

If the 15th code from the left is "8", it indicates "For Telecommunications Infrastructure and Industrial Equipment" or "For Medical Devices".

Inductors:

If the 1st code from the right is "8" regardless of the total digit number, it indicates "For Telecommunications Infrastructure and Industrial Equipment" or "For Medical Devices".

Because there are some exceptions, for details please refer to each page of this catalog where the part numbering system of each product is described.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Medical Application Guide

The products described as "For Medical Devices" in this catalog are intended for use in the medical devices classified as GHTF Classes A to C (Japan Classes I to III) except for all medical devices classified as GHTF Class D (Japan Class IV) and implantable medical devices (bone-anchored hearing aid, artificial retina system, and external unit which is connected to internal unit which is implanted in a body, etc.). Therefore, when using our products for these medical devices, please check it carefully by referring to the part number or the individual product specification sheets and use the corresponding products. Should you have any questions on this matter, please contact us.

Risk I	Level	Low					High
Act of Japan s)	Class I General Medical Devices (GHTF Class A) Medical devices with	Me (G	Class II Controlled dical Devices HTF Class B) devices with	Class III Specially-contr Medical Dev (GHTF Class	rolled ices 5 C)	Class IV Specially-controlled Medical Devices (GHTF Class D)	
	PMD Rule	extremely low risk to the human body in case of problems	relatively	low risk to the body in case of	Medical devices v relatively high risk human body in ca problems	to the	Medical devices highly invasive to patients and with life-threatening risk in case of problems
Japan	o the GHTF	[Ex.] In Vitro Diagnostic Devices Nebulizer Blood Gas Analyzer Plethysmographs Breathing Sensor AC-powered Operating Table Surgical Light Cholesterol Analysis Device Blood Type Analysis Device, etc.	Electron Gauge Electron Hearing Electroc MRI Ultrason Diagnost X-ray Dia Central	ardiograph ic Diagnostic System ic Imaging Equipment agnostic Equipment	[Ex.] • Dialysis Machine • Radiation Therapy E • Infusion Pump • Respirator • Glucose Monitoring • AED (Automated E Defibrillator) • Skin Laser Scanner • Electric Surgical Ur • Insulin Pump, etc.	g System xternal	[Ex.] Cardiac Pacemaker Video Flexible Angioscope Implantable Infusion Pump Cardiac Electrosurgical Unit Inspection Device with Cardiac Catheter Defibrillator, etc.
	fication	Class I General Controls		Class II General Controls Special Contro			Class III General Controls and Premarket Approval
U.S.A. Classifi		Class I General Controls Medical devices without the post of causing serious injury or har to the patient or user even if th is a defect or malfunction in su medical devices		Medical devices w of causing injury o patient or user if th malfunction in suc	r harm to the nere is a defect or	of causir or death	devices with the possibility g serious injury, disability to the patient or user if a r malfunction occurs in such devices

Coverage of
those Classes by
TAIYO YUDEN
Products

Product Series for Medical Devices

*Note: It is prohibited that our products are used in some medical devices such as implantable medical devices even if such medical devices are classified as GHTF Class C (Japan Class III).

N/A

MULTILAYER CERAMIC CAPACITORS

PART NUMBER

REFLOW

JMK	3 1	6 🛆	ΒJ	1 0 6	Μ	L	н	ТΔ
123	-	5	6	-				11 12

 $\Lambda = Blank space$

$\Delta -$	Diar	IK	spac

①Rated voltage	
Code	Rated voltage[VDC]
А	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

②Series name	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

③End termination							
Code End termination							
K Plated							
J	Soft Termination						
S	Cu Internal Electrodes(For High Frequency)						
F	High Reliability Application						
R	High Reliability Application						
	(Cu External Electrodes)						

$(\widehat{4})$ Dimension (L × W)

Туре	Dimensions (L×W)[mm]	EIA(inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
	0.8 × 1.6 💥	0306
212	2.0 × 1.25	0805
212	1.25×2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

Note : ※LW reverse type(□WK) only

(5)Di sion tolerance

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
А	212	$2.0 \pm 0.15 / -0.05$	1.25+0.15/-0.05	0.85±0.10
	212	2.0+0.15/-0.05	1.25+0.15/-0.05	1.25+0.15/-0.05
	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2 ± 0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	212	$2.0 \pm 0.20 / -0$	$1.25 \pm 0.20 / -0$	0.85±0.10
	212	2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0
	316	3.2 ± 0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85±0.15
K	216	2 2 + 0 20	16+020	1.15±0.20
К	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30
		Note: cf. STANDARD EXTERNAL DI	MENSIONS	∆= Blank space

6 Temperature characteristics code

High dielectric	type						
Code		icable Idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
BJ	EIA	X5R	$-55 \sim + 85$	25	±15%	±10%	К
БJ	EIA	лэк	$-55 \sim + 85$	20	土13%	±20%	М
C6	EIA	X6S	$-55 \sim +105$	25	±22%	±10%	К
00	EIA	703	-5579 +105	25	- 2290	±20%	М
В7	EIA	X7R	$-55 \sim +125$	25	1.150/	±10%	К
Б/	EIA	7/R	$-55 \sim +125$	20	±15%	±20%	М
C7	EIA	X7S	$-55 \sim +125$	25		±10%	К
07	EIA	×/5	$-55 \sim +125$	20	±22%	±20%	М
D7	F1 A	VJT		05		±10%	К
D7	EIA	X7T	$-55 \sim +125$	25	+22%/-33%	±20%	М

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Temperature compensating type

Code		cable idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code						
						±0.1pF	В						
JIS	JIS CG		20		±0.25pF	С							
00	CG -55~+125 0		55 a. 105		0±30ppm/°C	$\pm 0.5 pF$	D						
GG		0±30ppm/C	±1pF	F									
EIA	EIA	EIA COG	IA COG	EIA COG	EIA COG	EIA COG	EIA COG	COG		25		±2%	G
						±5%	J						

⑦Nominal capacitance

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 <i>µ</i> F
104	0.1 <i>µ</i> F
105	1.0 <i>µ</i> F
106	10 µ F
107	100 <i>µ</i> F

Note : R=Decimal point

8 Capacitance tolerance

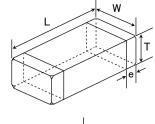
Code	Capacitance tolerance
А	±0.05pF
В	±0.1pF
С	±0.25pF
D	±0.5pF
G	±2%
J	$\pm 5\%$
K	±10%
М	±20%

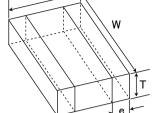
9Thickness

O THICKIC33	
Code	Thickness[mm]
Р	0.3
Т	0.3
V	0.5
С	0.7(107type or more)
А	0.8
D	0.85(212type or more)
F	1.15
G	1.25
L	1.6
Ν	1.9
М	2.5

①Special code

Code	Special code
-	Standard
Н	MLCC for Automotive
8	MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices


①Packaging


Of admagning	
Code	Packaging
F	ϕ 178mm Taping (2mm pitch)
R	ϕ 178mm Embossed Taping (4mm pitch)
Т	ϕ 178mm Taping (4mm pitch)
D	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)
P	325 type(Thickness code M)

12 Internal code

Winternal code	
Code	Internal code
Δ	Standard

STANDARD EXTERNAL DIMENSIONS

※ LW reverse type

Type(EIA)		Dimer	nsion [mm] (inch)			
Type(EIA)	L	W	Т	*1	е	
□MK063(0201)	0.6±0.03 (0.024±0.001)	0.3±0.03 (0.012±0.001)	0.3±0.03 (0.012±0.001)	т	0.15±0.05 (0.006±0.002)	
□MK105(0402) □MF105(0402)	1.0 ± 0.05 (0.039 ± 0.002)	0.5 ± 0.05 (0.020 ± 0.002)	0.5 ± 0.05 (0.020 ± 0.002)	V	0.25 ± 0.10 (0.010 ± 0.004)	
□WK105(0204)※	0.52±0.05	1.0±0.05	0.3±0.05	Р	0.18±0.08	
	(0.020 ± 0.002)	(0.039 ± 0.002)	(0.012±0.002)	Ľ.	(0.007±0.003)	
□MK107(0603) □MF107(0603)	1.6 ± 0.10 (0.063 ± 0.004)	0.8 ± 0.10 (0.031 ± 0.004)	0.8 ± 0.10 (0.031 ± 0.004)	А	0.35±0.25 (0.014±0.010)	
□MJ107(0603)	1.6±0.10	0.8±0.10	0.8±0.10	A	0.35+0.3/-0.25	
	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)		(0.014+0.012/-0.010)	
□VS107(0603)	1.6 ± 0.10 (0.063 ± 0.004)	0.8 ± 0.10 (0.031 ± 0.004)	0.7±0.10 (0.028±0.004)	С	0.35±0.25 (0.014±0.010)	
□WK107(0306)※	0.8 ± 0.10 (0.031 ± 0.004)	1.6 ± 0.10 (0.063 ± 0.004)	0.5 ± 0.05 (0.020 ± 0.002)	v	0.25 ± 0.15 (0.010 ± 0.006)	
□MK212(0805)	2.0±0.10	1.25±0.10	0.85 ± 0.10 (0.033 ± 0.004)	D	0.5±0.25	
□MF212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.033 ± 0.004) 1.25 ± 0.10 (0.049 ± 0.004)	G	0.3 ± 0.25 (0.020 ± 0.010)	
			(0.049±0.004) 0.85±0.10	D		
□MJ212(0805)	2.0 ± 0.10	1.25 ± 0.10	(0.033 ± 0.004)	D	0.5+0.35/-0.25	
	(0.079±0.004)	(0.049±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020+0.014/-0.010)	
□VS212(0805)	2.0 ± 0.10 (0.079 ± 0.004)	1.25 ± 0.10 (0.049 ± 0.004)	0.85 ± 0.10 (0.033 ± 0.004)	D	0.5±0.25 (0.020±0.010)	
□WK212(0508)※	1.25 ± 0.15 (0.049 ± 0.006)	2.0 ± 0.15 (0.079 ± 0.006)	0.85 ± 0.10 (0.033 ± 0.004)	D	0.3 ± 0.2 (0.012 ± 0.008)	
	(0.049±0.006)	(0.079±0.006)			(0.012±0.008)	
□MK316(1206)	3.2±0.15	1.6±0.15	1.15±0.10 (0.045±0.004)	F	0.5+0.35/-0.25	
□MF316(1206)	(0.126 ± 0.006)	(0.063 ± 0.006)	1.6 ± 0.20 (0.063 \pm 0.008)	L	(0.020+0.014/-0.010)	
	0.0 1.0 15	101015	1.15±0.10	F		
□MJ316(1206)	3.2±0.15 (0.126±0.006)	1.6 ± 0.15 (0.063 ± 0.006)	(0.045±0.004) 1.6±0.20		0.6 + 0.4 / -0.3 (0.024 + 0.016 / -0.012)	
			(0.063±0.008)	L		
			1.15±0.10 (0.045±0.004)	F		
□MK325(1210) □MF325(1210)	3.2 ± 0.30 (0.126 ± 0.012)	2.5 ± 0.20 (0.098 ± 0.008)	1.9±0.20 (0.075±0.008)	Ν	0.6 ± 0.3 (0.024 ± 0.012)	
LIMF325(1210)	(,/	(1000 - 0000)	2.5±0.20	м	(0.02 - 200 - 2)	
			(0.098 ± 0.008) 1.9 ± 0.20			
□MJ325(1210)	3.2±0.30	2.5±0.20	(0.075±0.008)	N	0.6+0.4/-0.3	
	(0.126±0.012)	(0.098±0.008)	2.5±0.20 (0.098±0.008)	м	(0.024+0.016/-0.012)	
□MK432(1812)	4.5±0.40 (0.177±0.016)	3.2 ± 0.30 (0.126 ± 0.012)	2.5 ± 0.20 (0.098 ± 0.008)	м	0.9 ± 0.6 (0.035 \pm 0.024)	
Note : ※. LW reverse	, ,	, ,		·		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

For Telecommunications Infrastructure and Industrial Equipment / Medical Devices MULTIL AYER CERAMIC CAPACITORS

STANDARD QUANTITY

Turne	EIA (inch)	Dime	nsion	Standard qu	Standard quantity[pcs]		
Туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape		
063	0201	0.3	Т	15000	-		
105	0402	0.5	V	10000			
105	0204 💥	0.30	Р	10000	_		
		0.7	С	4000	_		
		0.8	А	4000	_		
	0603	0.8	А	3000	_		
107	0003	0.0	A	(Soft Termination)	_		
		0.8	А	_	3000		
		0.0	Α.		(Soft Termination		
	0306 💥	0.50	V	-	4000		
		0.85	D	4000	—		
	0805	1.25	G	-	3000		
212	0805	1.25	G	_	2000		
					(Soft Termination		
	0508 💥	0.85	D	4000	-		
316	1206	1.15	F	—	3000		
310	1200	1.6	L	-	2000		
		1.15	F		2000		
325	1210	1.9	Ν		2000		
		2.5	М	-	500(T), 1000(P)		
432	1812	2.5	М	_	500		

CERAMIC CAPACITORS

INDL

PART NUMBER

- All the Multilayer Ceramic Capacitors of the catalog lineup are RoHS compliant.
- Capacitance tolerance code is applied to [] of part number.
- · All the Multilayer Ceramic Capacitors in the catalog lineup are applicable for reflow-soldering.

Notes)

- The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.
- The products are for Telecommunications infrastructure and Industrial equipment and for Medical devices.
 Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.
- and please review and approve the product specifications before ordering.
- Please be sure to contact us for further information in advance when the products are used for automotive electronic equipment.
- *1: For standard case size, please kindly refer to @Dimension, @Dimension tolerance, @Thickness and STANDARD EXTERNAL DIMENSIONS.

Multilayer Ceramic Capacitors (High dielectric type)

063TYPE (Demension:0.6 × 0.3mm JIS:1005 EIA:0402)

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 0.3mm thickness(P)

Part number 1 Part number 2	Rated voltage	Temperature C		Capacitance	Capacitance	$ an\delta$	HTLT	Thickness ^{*1} [mm]	Note	
Farchumber i	Fart number 2	[V]	charact	teristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
TMK063 B7101[]P8FE				X7R	100 p	±10, ±20	3.5	200	0.3±0.03	
TMK063 B7151[]P8FE				X7R	150 p	±10, ±20	3.5	200	0.3 ± 0.03	
TMK063 B7221 P8FE				X7R	220 p	±10, ±20	3.5	200	0.3 ± 0.03	
TMK063 B7331[]P8FE				X7R	330 p	±10, ±20	3.5	200	0.3±0.03	
TMK063 B7471[]P8FE		25		X7R	470 p	±10, ±20	3.5	200	0.3±0.03	
TMK063 B7102[]P8FE				X7R	1000 p	±10, ±20	5	200	0.3 ± 0.03	
TMK063 B7152 P8FE				X7R	1500 p	±10, ±20	5	200	0.3±0.03	
TMK063 B7222 P8FE				X7R	2200 p	±10, ±20	5	200	0.3±0.03	
TMK063 B7332 P8FE				X7R	3300 p	±10, ±20	5	200	0.3±0.03	
EMK063 B7101 P8FE				X7R	100 p	±10, ±20	3.5	200	0.3±0.03	
EMK063 B7151 P8FE				X7R	150 p	±10, ±20	3.5	200	0.3±0.03	
EMK063 B7221 P8FE				X7R	220 p	±10, ±20	3.5	200	0.3±0.03	
EMK063 B7331[]P8FE				X7R	330 p	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7471[]P8FE		16		X7R	470 p	±10, ±20	3.5	200	0.3 ± 0.03	
EMK063 B7102[]P8FE				X7R	1000 p	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7152[]P8FE				X7R	1500 p	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7222 P8FE				X7R	2200 p	±10, ±20	5	200	0.3 ± 0.03	
EMK063 B7332 P8FE				X7R	3300 p	±10, ±20	5	200	0.3 ± 0.03	
LMK063 B7101 P8FE				X7R	100 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7151[]P8FE				X7R	150 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7221 P8FE				X7R	220 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7331[]P8FE				X7R	330 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7471[]P8FE				X7R	470 p	±10, ±20	3.5	200	0.3 ± 0.03	
LMK063 B7102 P8FE		10		X7R	1000 p	±10, ±20	5	200	0.3 ± 0.03	
LMK063 B7152 P8FE		10		X7R	1500 p	±10, ±20	5	200	0.3 ± 0.03	
LMK063 B7222 P8FE				X7R	2200 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7332[]P8FE				X7R	3300 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7472 P8FE]		X7R	4700 p	±10, ±20	5	200	0.3±0.03	
LMK063 B7682[]P8FE				X7R	6800 p	±10, ±20	5	200	0.3 ± 0.03	
LMK063 B7103[]P8FE				X7R	10000 p	±10, ±20	5	200	0.3 ± 0.03	

CAPACITORS

INDL

105TYPE (Demension:1.0 × 0.5mm JIS:1005 EIA:0402)

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage [V]	Temper		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*1} [mm]	Note
UMK105 BJ471[]V8F				X5R	470 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ102 V8F				X5R	1000 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ152 V8F				X5R	1500 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 BJ222 V8F				X5R	2200 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ332 V8F				X5R	3300 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 BJ472 V8F		50		X5R	4700 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 BJ682 V8F				X5R	6800 p	±10, ±20	2.5	150	0.5 ± 0.05	
UMK105 BJ103[]V8F				X5R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	
UMK105 BJ223 V8F				X5R	0.022 µ	±10, ±20	5	200	0.5 ± 0.05	
UMK105 BJ473 V8F				X5R	0.047 μ	±10, ±20	5	200	0.5 ± 0.05	
UMK105 BJ104[]V8F				X5R	0.1 μ	±10, ±20	10	150	0.5 ± 0.05	
TMK105 BJ472 V8F				X5R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	
TMK105 BJ682 V8F				X5R	6800 p	±10, ±20	2.5	200	0.5 ± 0.05	
TMK105 BJ103 V8F				X5R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	
TMK105 BJ153 V8F		25		X5R	0.015 µ	±10, ±20	3.5	200	0.5 ± 0.05	
TMK105 BJ223 V8F		05		X5R	0.022 µ	±10, ±20	3.5	200	0.5 ± 0.05	
TMK105 BJ333 V8F		25		X5R	0.033 µ	±10, ±20	3.5	150	0.5 ± 0.05	
TMK105 BJ473 V8F				X5R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	
TMK105 BJ104[]V8F				X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	
TMK105 BJ224 V8F				X5R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	
TMK105ABJ474 V8F				X5R	0.47 μ	±10, ±20	10	150	0.5±0.10	
EMK105 BJ104[]V8F				X5R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	
EMK105 BJ224[]V8F		16		X5R	0.22 μ	±10, ±20	10	150	0.5 ± 0.05	
EMK105ABJ474[]V8F		10		X5R	0.47 μ	±10, ±20	10	150	0.5±0.10	
EMK105 BJ105[]V8F				X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	
LMK105 BJ224 V8F				X5R	0.22 μ	±10, ±20	5	150	0.5 ± 0.05	
LMK105ABJ474[]V8F		10		X5R	0.47 μ	±10, ±20	10	150	0.5±0.10	
LMK105 BJ105[]V8F		10		X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	
LMK105ABJ225[]V8F				X5R	2.2 μ	±10, ±20	10	150	0.5±0.10	
JMK105 BJ474[]V8F				X5R	0.47 μ	±10, ±20	10	150	0.5 ± 0.05	
JMK105 BJ105[]V8F		6.3		X5R	1 μ	±10, ±20	10	150	0.5 ± 0.05	
JMK105 BJ225 V8F		0.0		X5R	2.2 μ	±10, ±20	10	150	0.5 ± 0.05	
JMK105BBJ475MV8F				X5R	4.7 μ	±20	10	150	0.5+0.15/-0.05	
AMK105 BJ225[]V8F		4		X5R	2.2 μ	±10, ±20	10	150	0.5 ± 0.05	
AMK105BBJ475MV8F		+		X5R	4.7 μ	±20	10	150	0.5+0.15/-0.05	

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$, D7 : $X7T(-55 \sim +125^{\circ}C)$] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage	Temperatur		Capacitance	tan δ	HTLT	Thickness ^{*1} [mm]	Note
T art number 1		[V]	characteristi	s [F]	tolerance [%]	[%]	Rated voltage x %		
UMK105 B7221[]V8F			X7	R 220 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 B7331 V8F			X7	R 330 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 B7471 V8F			X7	R 470 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 B7681 V8F			X7	R 680 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 B7102 V8F			X7	R 1000 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 B7152[]V8F			X7	R 1500 p	±10, ±20	2.5	200	0.5 ± 0.05	
UMK105 B7222[]V8F			X7	R 2200 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 B7332[]V8F		50	X7	R 3300 p	±10, ±20	2.5	200	0.5±0.05	
UMK105 B7472[]V8F		50	X7	R 4700 p	±10, ±20	2.5	150	0.5 ± 0.05	
UMK105 B7682[]V8F			X7	R 6800 p	±10, ±20	2.5	150	0.5±0.05	
UMK105 B7103[]V8F			X7	R 0.01 μ	±10, ±20	3.5	150	0.5 ± 0.05	
UMK105 B7153 V8FE		1	X7	R 0.015 μ	±10, ±20	3.5	200	0.5 ± 0.05	
UMK105 B7223 V8F		1	X7	R 0.022 μ	±10, ±20	10	200	0.5 ± 0.05	
UMK105 B7333[]V8FE			X7	R 0.033 μ	±10, ±20	3.5	150	0.5 ± 0.05	
UMK105 B7473 V8F		1 1	X7	R 0.047 μ	±10, ±20	10	200	0.5 ± 0.05	
JMK105 B7104 V8F			X7	R 0.1 μ	±10, ±20	10	150	0.5 ± 0.05	
ГMK105 B7472∐V8F		-	X7	R 4700 p	±10, ±20	2.5	200	0.5 ± 0.05	
FMK105 B7682∐V8F			X7	R 6800 p	±10, ±20	2.5	200	0.5 ± 0.05	
TMK105 B7103[]V8F			X7	R 0.01 μ	±10, ±20	3.5	200	0.5 ± 0.05	
FMK105 B7153[]V8F		05	X7	R 0.015 μ	±10, ±20	3.5	150	0.5 ± 0.05	
TMK105 B7223 V8F		25	X7	R 0.022 μ	±10, ±20	3.5	150	0.5 ± 0.05	
FMK105 B7333 V8F			X7	R 0.033 μ	±10, ±20	3.5	150	0.5 ± 0.05	
TMK105 B7473[]V8F			X7	R 0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	
FMK105 B7104 V8F			X7	R 0.1 μ	±10, ±20	10	150	0.5 ± 0.05	
EMK105 B7103 V8F			X7	R 0.01 μ	±10, ±20	3.5	200	0.5 ± 0.05	
EMK105 B7153 V8F			X7	R 0.015 μ	±10, ±20	3.5	150	0.5 ± 0.05	
EMK105 B7223 V8F			X7	R 0.022 μ	±10, ±20	3.5	150	0.5 ± 0.05	
EMK105 B7333 V8F		16	X7	R 0.033 μ	±10, ±20	3.5	150	0.5 ± 0.05	
EMK105 B7473 V8F			X7	R 0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	
EMK105 B7104[]V8F		1	X7		±10, ±20	5	150	0.5 ± 0.05	
EMK105 B7224[]V8F		1	X7		±10, ±20	10	150	0.5±0.05	
_MK105 B7473[]V8F			X7		±10, ±20	3.5	150	0.5±0.05	
_MK105 B7104[]V8F		10	X7		±10, ±20	5	150	0.5±0.05	
_MK105 B7224[]V8F		1	X7		±10, ±20	10	150	0.5 ± 0.05	
JMK105 B7104[]V8F			X7		±10, ±20	5	150	0.5±0.05	
JMK105 B7224[]V8F		1	X7		±10, ±20	10	150	0.5±0.05	
JMK105 B7474[]V8F		6.3	X7		±10, ±20	10	150	0.5±0.05	
JMK105CD7105[[V8F		1	X7		±10, ±20	10	150	0.5+0.2/-0	
AMK105 B7474∏V8F		4	X7		±10, ±20	10	150	0.5±0.05	

PART NUMBER

107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 0.8mm thickness(A)

Deutermeter 1	Deutermeter 0	Rated voltage	Temper	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*1} [mm]	Note
Part number 1	Part number 2	[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMK107 BJ224[]A8T				X5R	0.22 μ	±10, ±20	10	150	0.8±0.10	
UMK107 BJ474[]A8T		50		X5R	0.47 μ	±10, ±20	10	150	0.8±0.10	
UMK107ABJ105[]A8T				X5R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	
GMK107 BJ224[]A8T				X5R	0.22 μ	±10, ±20	10	150	0.8±0.10	
GMK107ABJ474[]A8T		35		X5R	0.47 μ	±10, ±20	10	150	0.8+0.15/-0.05	
GMK107 BJ105[]A8T				X5R	1 μ	±10, ±20	10	150	0.8±0.10	
TMK107 BJ224[]A8T				X5R	0.22 μ	±10, ±20	5	150	0.8±0.10	
TMK107 BJ474[]A8T		25		X5R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	
TMK107 BJ105[]A8T		25		X5R	1 μ	±10, ±20	10	150	0.8±0.10	
TMK107BBJ225[]A8T				X5R	2.2 μ	±10, ±20	10	150	0.8+0.20/-0	
EMK107 BJ105[]A8T				X5R	1 μ	±10, ±20	5	150	0.8±0.10	
EMK107ABJ225[]A8T		16		X5R	2.2 μ	±10, ±20	10	150	0.8+0.15/-0.05	
EMK107BBJ475[A8T				X5R	4.7 μ	±10, ±20	10	150	0.8+0.20/-0	
LMK107 BJ225[]A8T				X5R	2.2 μ	±10, ±20	10	150	0.8±0.10	
LMK107 BJ475[A8T		10		X5R	4.7 μ	±10, ±20	10	150	0.8±0.10	
LMK107BBJ106MA8T				X5R	10 <i>µ</i>	±20	10	150	0.8+0.20/-0	
JMK107 BJ475[A8T		6.3		X5R	4.7 μ	±10, ±20	10	150	0.8±0.10	
JMK107ABJ106[A8T		0.3		X5R	10 <i>µ</i>	±10, ±20	10	150	0.8+0.15/-0.05	
AMK107ABJ106[A8T		4		X5R	10 <i>µ</i>	±10, ±20	10	150	0.8+0.15/-0.05	
AMK107BBJ226MA8T		4		X5R	22 μ	±20	10	150	0.8+0.20/-0	

[Temperature Characteristic B7 : X7R(-55~+125°C), C7 : X7S(-55~+125°C), D7 : X7T(-55~+125°C)] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Temper	ature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*1} [mm]	Note
Part number 1	Fart number 2	[V]	characte	ristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
JMK107AC7154[A8TE		50		X7S	0.15 μ	±10, ±20	3.5	150	0.8+0.15/-0.05	
JMK107 C7224 A8TE		50		X7S	0.22 μ	±10, ±20	3.5	150	0.8±0.10	
GMK107 B7224[A8T				X7R	0.22 μ	±10, ±20	10	150	0.8±0.10	
GMK107 B7474[A8T		35		X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	
GMK107AB7105[]A8T				X7R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	
TMK107 B7224[]A8T				X7R	0.22 μ	±10, ±20	10	150	0.8±0.10	
TMK107 B7474[]A8T		25		X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	
TMK107AB7105[]A8T				X7R	1 μ	±10, ±20	10	150	0.8+0.15/-0.05	
EMK107 B7224 A8T				X7R	0.22 μ	±10, ±20	5	150	0.8±0.10	
EMK107 B7474 A8T		16		X7R	0.47 μ	±10, ±20	10	150	0.8±0.10	
EMK107 B7105[A8T				X7R	1 μ	±10, ±20	10	150	0.8±0.10	
LMK107 B7474[A8T				X7R	0.47 μ	±10, ±20	3.5	150	0.8±0.10	
LMK107 B7105[]A8T		10		X7R	1 μ	±10, ±20	10	150	0.8±0.10	
_MK107BD7225[]A8T]		X7T	2.2 μ	±10, ±20	10	200	0.8+0.20/-0	
JMK107 B7105[A8T		6.3		X7R	1 μ	±10, ±20	10	150	0.8±0.10	
JMK107 B7225[A8TR		0.5		X7R	2.2 μ	±10, ±20	10	150	0.8±0.10	

CERAMIC CAPACITORS

INDL

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic BJ : $X5R(-55 \sim +85^{\circ}C)$] 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Temper	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*1} [mm]	Note
Part number 1	Part number 2	[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
UMK212 BJ474[]G8T		50		X5R	0.47 μ	±10, ±20	3.5	150	1.25 ± 0.10	
UMK212 BJ105[]G8T		50		X5R	1 μ	±10, ±20	5	150	1.25±0.10	
GMK212 BJ105[]G8T		35		X5R	1 μ	±10, ±20	5	150	1.25 ± 0.10	
GMK212BBJ225[]G8T				X5R	2.2 μ	±10, ±20	10	150	1.25+0.20/-0	
TMK212 BJ225[]G8T				X5R	2.2 μ	±10, ±20	5	150	1.25 ± 0.10	
TMK212BBJ475[G8T		25		X5R	4.7 μ	±10, ±20	10	150	1.25+0.20/-0	
TMK212BBJ106[]G8T				X5R	10 µ	±10, ±20	10	150	1.25+0.20/-0	
EMK212 BJ225[]G8T				X5R	2.2 μ	±10, ±20	5	150	1.25 ± 0.10	
EMK212ABJ475[]G8T		16		X5R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	
EMK212BBJ106[]G8T				X5R	10 µ	±10, ±20	10	150	1.25+0.20/-0	
LMK212ABJ475[]G8T		10		X5R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	
LMK212ABJ106[]G8T		10		X5R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.15/-0.05	
JMK212ABJ106[]G8T		6.3		X5R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.15/-0.05	
JMK212BBJ226MG8T		0.3		X5R	22 μ	±20	10	150	1.25+0.20/-0	
AMK212BBJ476MG8T		4		X5R	47 μ	±20	10	150	1.25+0.20/-0	

Part number 1	Part number 2	Rated voltage [V]	 erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*1} [mm]	Note	
EMK212ABJ225[]D8T		16	X5R	2.2 μ	±10, ±20	5	150	0.85±0.10		_
EMK212BBJ475[]D8T		10	X5R	4.7 μ	±10, ±20	10	150	0.85±0.10		

[Temperature Characteristic B7 : X7R(-	$-55 \sim +125^{\circ}$ C)] 1.25mm thickness(G)
--	--

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	*1	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness ^{*1} [mm]	Note
UMK212 B7473[]G8T				X7R	0.047 μ	±10, ±20	3.5	200	1.25±0.10	
UMK212 B7683[]G8T				X7R	0.068 µ	±10, ±20	3.5	200	1.25 ± 0.10	
UMK212 B7104[]G8T				X7R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	
UMK212BB7154[]G8TE				X7R	0.15 μ	±10, ±20	3.5	200	1.25+0.20/-0	
UMK212 B7224[]G8T		50		X7R	0.22 μ	±10, ±20	3.5	150	1.25 ± 0.10	
UMK212BC7334[]G8TE				X7S	0.33 µ	±10, ±20	3.5	150	1.25+0.20/-0	
UMK212 C7474[]G8TE				X7S	0.47 μ	±10, ±20	3.5	150	1.25 ± 0.10	
UMK212CC7684[]G8TE				X7S	0.68 µ	±10, ±20	3.5	150	1.25+0.25/-0	
UMK212 B7105[]G8T				X7R	1 μ	±10, ±20	10	150	1.25 ± 0.10	
GMK212 B7105[]G8T		35		X7R	1 μ	±10, ±20	10	150	1.25±0.10	
TMK212 B7474[]G8T				X7R	0.47 μ	±10, ±20	3.5	150	1.25±0.10	
TMK212 B7105[]G8TR		25		X7R	1 μ	±10, ±20	10	150	1.25 ± 0.10	
TMK212 B7225[]G8T				X7R	2.2 μ	±10, ±20	10	150	1.25±0.10	
EMK212 B7105[]G8TR				X7R	1 μ	±10, ±20	10	150	1.25±0.10	
EMK212 B7225[]G8T		16		X7R	2.2 μ	±10, ±20	10	150	1.25±0.10	
EMK212AB7475[]G8T] [X7R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	
LMK212 B7225[]G8T		10		X7R	2.2 μ	±10, ±20	10	150	1.25±0.10	
LMK212 B7475[]G8T		10		X7R	4.7 μ	±10, ±20	10	150	1.25 ± 0.10	
JMK212 B7475[]G8T		6.3		X7R	4.7 μ	±10, ±20	10	150	1.25±0.10	
JMK212AB7106[]G8T		0.3		X7R	10 <i>µ</i>	±10, ±20	10	150	1.25+0.15/-0.05	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). CERAMIC CAPACITORS

INDL

For Telecommunications Infrastructure and Industrial Equipment / Medical Devices MULTILAYER CERAMIC CAPACITORS(HIGH DIELECTRIC TYPE)

PART NUMBER

316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

【Temperature Characteristic BJ : X5R(-55~+85°C)】 1.6mm thickness(L)

	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*1} [mm]	
Part number 1	Part number 2	[V]	characte	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMK316 BJ225[]L8T		50		X5R	2.2 μ	±10, ±20	10	150	1.6 ± 0.20	
UMK316ABJ475[]L8T		50		X5R	4.7 μ	±10, ±20	10	150	1.6±0.20	
GMK316 BJ225 L8T				X5R	2.2 μ	±10, ±20	10	150	1.6±0.20	
GMK316 BJ475[]L8T		35		X5R	4.7 μ	±10, ±20	10	150	1.6±0.20	
GMK316BBJ106 L8T				X5R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.30	
TMK316 BJ475[]L8T		25		X5R	4.7 μ	±10, ±20	5	150	1.6±0.20	
TMK316 BJ106[]L8T		20		X5R	10 <i>µ</i>	±10, ±20	5	150	1.6±0.20	
EMK316 BJ475[L8T				X5R	4.7 μ	±10, ±20	5	150	1.6±0.20	
EMK316 BJ106[]L8T		16		X5R	10 <i>µ</i>	±10, ±20	5	150	1.6±0.20	
EMK316BBJ226ML8T				X5R	22 μ	±20	10	150	1.6±0.30	
LMK316ABJ226[L8T		10		X5R	22 μ	±10, ±20	10	150	1.6±0.20	
JMK316ABJ476ML8T		6.3		X5R	47 μ	±20	10	150	1.6±0.20	
JMK316BBJ107ML8T		0.3		X5R	100 <i>µ</i>	±20	10	150	1.6±0.30	
AMK316ABJ107ML8T		4		X5R	100 <i>µ</i>	±20	10	150	1.6±0.20	

【Temperature Characteristic B7 : X7R(−55~+125°C), C7 : X7S(−55~+125°C)】 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance		tan δ	HTLT	Thickness ^{*1} [mm]	Note
Part number 1	Part number 2	[V]	characteristics		[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	NOLE
UMK316 B7105[]L8T				X7R	1 μ	±10, ±20	3.5	200	1.6±0.20	
UMK316BC7155[L8TE		50		X7S	1.5 μ	±10, ±20	3.5	150	1.6±0.30	
UMK316 B7225[]L8T		50		X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	
UMK316AC7475[L8TE				X7S	4.7 μ	±10, ±20	2.5	150	1.6±0.20	
GMK316 B7225[L8T		35		X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	
GMK316AB7475 L8T		30		X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	
TMK316AB7475[L8T		25		X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	
TMK316AB7106[L8T		25		X7R	10 µ	±10, ±20	10	150	1.6±0.20	
EMK316AB7475[L8T		16		X7R	4.7 μ	±10, ±20	10	150	1.6±0.20	
EMK316AB7106[L8T		10		X7R	10 <i>µ</i>	±10, ±20	10	150	1.6±0.20	
LMK316AB7106[L8T		10		X7R	10 µ	±10, ±20	10	150	1.6±0.20	
JMK316AB7226[L8T		6.3		X7R	22 μ	±10, ±20	10	150	1.6±0.20	
AMK316AB7226 L8T		4		X7R	22 μ	±10, ±20	10	150	1.6±0.20	
AMK316AC7476ML8T		4		X7S	47 μ	±20	10	150	1.6±0.20	

● 325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic BJ : $X5R(-55 \sim + 85^{\circ}C)$] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT	Thickness ^{*1} [mm]	Note
		LVJ	Charact	ensues	0.1		[/0]	Rated voltage x %		
UMK325 BJ106[]M8P		50		X5R	10 µ	±10, ±20	5	150	2.5 ± 0.20	
EMK325ABJ476[]M8P		16		X5R	47 μ	±10, ±20	10	150	2.5 ± 0.30	
LMK325 BJ476[]M8P		10		X5R	47 μ	±10, ±20	10	150	2.5 ± 0.20	
LMK325ABJ107MM8P		10		X5R	100 <i>µ</i>	±20	10	150	2.5 ± 0.30	
AMK325ABJ227MM8P		4		X5R	220 µ	±20	10	150	2.5 ± 0.30	

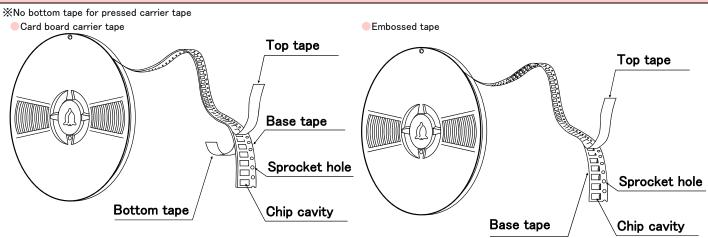
[Temperature Characteristic C6 : $X6S(-55 \sim +105^{\circ}C)$] 2.5mm thickness(M)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness ^{*1} [mm]	Note
JMK325AC6107MM8P		6.3		X6S	100 µ	±20	10	150	2.5 ± 0.30	

[Temperature Characteristic B7 : $X7R(-55 \sim + 125^{\circ}C)$] 2.5mm thickness(M)

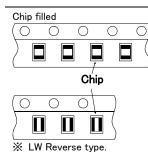
Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*1} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMK325 B7475[]M8P		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.20	
UMK325AB7106[]M8P		50		X7R	10 µ	±10, ±20	10	150	2.5 ± 0.30	
GMK325AB7106[]M8P		35		X7R	10 µ	±10, ±20	10	150	2.5 ± 0.30	
TMK325AB7106[]M8PR		25		X7R	10 µ	±10, ±20	10	150	2.5 ± 0.30	
TMK325 B7226[]M8P		25		X7R	22 μ	±10, ±20	10	150	2.5 ± 0.20	
EMK325 B7226[]M8P		16		X7R	22 μ	±10, ±20	10	150	2.5 ± 0.20	
LMK325 B7226[]M8P		10		X7R	22 μ	±10, ±20	10	150	2.5±0.20	
JMK325 B7476[]M8PR		6.3		X7R	47 μ	±10, ±20	10	150	2.5±0.20	

Multilayer Ceramic Capacitors

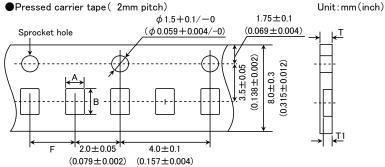

PACKAGING

①Minimum Quantity

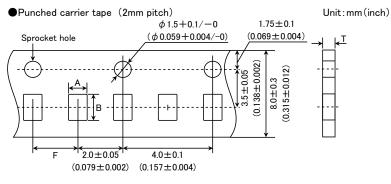
_ ()	Thick	ness	Standard o	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.105	к		50000
□VS021(008004)	0.125	n	_	50000
MK042(01005)	0.2	C, D		40000
□VS042(01005)	0.2	С		40000
□MK063(0201)	0.3	P,T	15000	_
□WK105(0204) 💥	0.3	Р	10000	_
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	С	20000	-
□MF105(0402)	0.3	Р	15000	-
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	-
MK107(0603)	0.45	К	4000	-
□WK107(0306) ※	0.5	V	-	4000
□MF107(0603)	0.8	А	4000	-
□VS107(0603)	0.7	С	4000	-
□MJ107(0603)	0.8	А	3000	3000
□MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	-	2000
	0.85	D	4000	-
□MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	-	2000
	1.15	F	-	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F		
□MK325(1210)	1.9	Ν	7 -	2000
□MF325(1210)	2.0max.	Y	1	
	2.5	М	_	1000
	1.9	Ν	—	2000
□MJ325(1210)	2.5	М	—	500(T), 1000(P)
□MK432(1812)	2.5	М	_	500


Note : 💥 LW Reverse type.

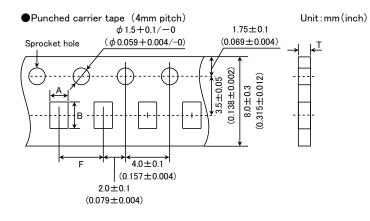
(2) Taping material


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

TAIYO YUDEN



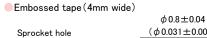
3 Representative taping dimensions

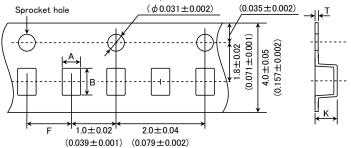


Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thickness		
Type(EIA)	А	В	F	Т	T1	
□MK063(0201)	0.37	0.67		0.45max.	0.42max.	
□WK105(0204) ※			2.0 ± 0.05	0.451118X.	0.42max.	
□MK105(0402) (*1 C)	0.65	1.15	2.0 ± 0.05	0.4max.	0.3max.	
□MK105(0402) (*1 P)				0.45max.	0.42max.	
Note *1 Thickness, C:0.2mm ,P:0.3mm. X LW Reverse type.						

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	A	В	F	Т
□MK105 (0402) □MF105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

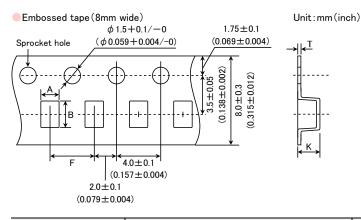




Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(LIA)	А	В	F	Т	
□MK107(0603)					
□WK107(0306) 💥	1.0	1.8		1.1max.	
□MF107(0603)			40104		
MK212(0805)	1.05	0.4	4.0±0.1	1.1max.	
□WK212(0508) 💥	1.65	2.4			
DMK316(1206)	2.0	3.6			
Note:Taping size might	be different depending on	the size of the product.	※ LW Reverse type.	Unit : mm	

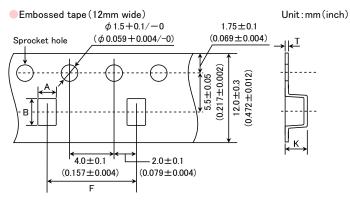
 0.9 ± 0.05

Note: Taping size might be different depending on the size of the product. % LW Reverse type.



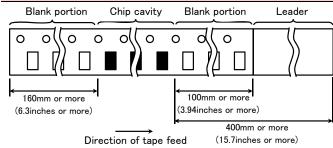
Type(EIA)	Chip Cavity		Insertion Pitch	Tape Tł	nickness
Type(EIA)	А	В	F	К	Т
□MK021(008004)	0.135	0.27			
□VS021(008004)	0.135	0.27	1.0 ± 0.02	0.5max.	0.25max.
□MK042(01005)	0.23	0.40	1.0±0.02		
□VS042(01005)	0.23	0.43			

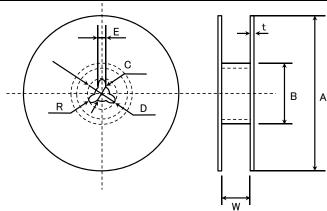
Unit:mm(inch)


Unit:mm

Type(EIA)	Chip Cavity		Insertion Pitch	Tape Tł	nickness
Type(EIA)	А	В	F	К	Т
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25 ± 0.1
□MK212(0805)	1.65	2.4			
DMF212(0805)	1.05	2.4			
□MK316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.
□MF316(1206)	2.0	5.0		3.4max.	0.0max.
□MK325(1210)	2.8	3.6			
□MF325(1210)	2.0	5.0			

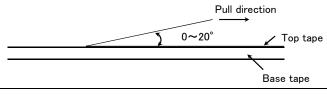
Note: 💥 LW Reverse type.


Unit:mm


Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(EIA)	A	В	F	К	Т
□MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit : mm

④Trailer and Leader


⑤Reel size

А	В	С	D	E	R
ϕ 178±2.0	<i>ф</i> 50min.	ϕ 13.0±0.2	<i>ф</i> 21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0			
8mm wide tape	2.5max.	10±1.5	-		
12mm wide tape	2.5max.	14±1.5	Unit : mm		

6 Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

RELIABILITY DATA

1.Operating Temperature Range								
	Temperature	Temperature Standard						
	Compensating(Class1)	High Frequency Type	- 55 to -	$-55 \text{ to } + 125^{\circ}\text{C}$				
				Specification	Temperature Range			
	Specified				-25 to +85°C			
Specified			BJ	X5R	−55 to +85°C			
Value				X7R	-55 to +125°C			
	High Permittivity (Class2)		C6	X6S	-55 to +105°C			
				X7S	-55 to +125°C			
				X7T	-55 to +125°C			
			LD(※)	X5R	−55 to +85°C			
				LD Low distortion	high value multilayer ceramic capac	citor		

2. Storage Co	nditions							
	Temperature	Standard	55 to	−55 to +125°C				
	Compensating(Class1) High Frequency Type							
	cified			Specification	Temperature Range			
			BJ	В	-25 to +85°C			
Specified			BJ	X5R	-55 to +85°C			
Value				X7R	-55 to +125°C			
	High Permittivity(Class2)		C6	X6S	$-55 \text{ to } +105^{\circ}\text{C}$			
			C7	X7S	-55 to +125°C			
			D7	X7T	-55 to +125°C			
			LD(🔆)	X5R	−55 to +85°C			
			Note: 💥	LD Low distortion	high value multilayer ceramic capacit	or		

3. Rated Voltage					
Specified Compensating(Class1)	Standard	50VDC, 25VDC			
	Compensating(Class1)	High Frequency Type	50VDC, 25VDC		
High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC		

4. Withstanding	4. Withstanding Voltage(Between terminals)							
	Temperature	Standard						
Specified Value	Compensating(Class1)	High F	requency Type	No breakdown or damage				
value	High Permittivity (Class2)							
- .	C		Cla	Class 1 Class 2		1		
Test Methods and	Applied voltage Rated		Rated	Rated volta × 3 Rated voltage × 2.5]		
Remarks	Duration			1 to 5 sec.]		
Remarks	Charge/discharge currer	nt		50mA max.				

5. Insulation Re	5. Insulation Resistance						
	Temperature	Standard	10000 MΩ min.				
Specified	Compensating(Class1)	High Frequency Type	10000 M 32 min.				
Value	High Permittivity (Class2)	Note 1	C≦0.047 μ F : 10000 MΩ min. C>0.047 μ F : 500MΩ • μ F				
Test	Applied voltage	: Rated voltage					
Methods and	Duration	:60±5 sec.					
Remarks	Charge/discharge current	: 50mA max.					

6. Capacitance	Capacitance (Tolerance)						
	Temperature Compensating(Class1)	Standard	C U SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%		
Specified Value	Compensating (Class I)	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%		
	High Permittivity(Class2)		BJ, B7, C6, C7, D7, LD($\%$): \pm 10% or \pm 20% Note: $\%$ LD Low distortion high value multilayer ceramic capacitor				
			Clas	is 1	Cla	ass 2	
- .		Standard	andard High Frequency Type		C≦10µF	C>10 µ F	
Test Methods and	Preconditioning		None		Thermal treatment (a	t 150°C for 1hr) Note 2	
Methods and Remarks	Measuring frequency		1MHz±10%		1kHz±10%	120±10Hz	
	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms	
	Bias application				None		

7. Q or Dissipation Factor								
Specified Value	remperature		Standard $C < 30pF : Q \ge 400 + 20C$ $C \ge 30pF : Q \ge 1000$ (C:Nominal capacitance)					
	Compensating(Class1)	High F	requency Type	Refer	to detailed specification	I		
	High Permittivity(Class2) Note 1			BJ, B	7, C6, C7, D7:2.5% max.			
				Cla	ss 1	Class 2		
			Standard		High Frequency Type	C≦10µF	C>10 µ F	
	Preconditioning			None		Thermal treatment (at	150°C for 1hr) Note 2	
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz	
Methods and	Measuring voltage Note 1		0.5 to 5Vrms 1±0.2Vrms 0.5±0.1Vrms					
Remarks	Bias application					None		
	High Frequency Type							
	Measuring equipment	: HP	4291A					
	Measuring jig	: HP	16192A					

8. Temperature	Characteristic (Without v	oltage application)							
			Tem	perature Charac	teristic [ppm/°	C]	Toler	rance [ppm/°C]	
		Standard	C□ :	0	CG,CH, CJ,	СК		G:±30 H:±60	
	Temperature Compensating(Class1)		U□ :		UJ, UK			J : ±120 K : ±250	
			SL :	+350 to -100	0				
		High Frequency Type	Tem C□:		teristic [ppm/° CH	C]	Toler	rance [ppm/°C] H:±60	
Specified Value		1		Specification	Capacitance change	tempe	erence erature	Temperature Range	
			BJ	B X5R	±10% ±15%		0°C 5°C	-25 to +85℃ -55 to +85℃	
		B7	XJR X7R	±15%		5°C	$-55 \text{ to } +125^{\circ}\text{C}$		
	High Permittivity (Class2	C6	X6S	±22%		5°C	−55 to +105°C		
		C7	X7S	±22%	25	5°C	−55 to +125°C		
		D7	X7S	+22/-33%		5°C	−55 to +125°C		
		LD(※)	X5R	±15%		5°C	−55 to +85°C	I	
	Class 1 : Capacitance at 3	20° C and 85° C shall be r			rtion high value	-			lated from
	the following equation.		neusureu			mperata			
	$\frac{(C_{85}-C_{20})}{C_{20}\times\Delta T} \times 10^{6} (\text{ppm/}^{\circ}\text{C}) \qquad \Delta T = 65$								
	$\frac{1}{C_{20} \times \Delta T} \times 10^{\circ} (\text{ppm/°C}) \qquad \Delta T = 65$								
	Class 2 : Capacitance at	each sten shall he measi	ured in the	ermal equilibrium	and the temper	rature ch	haracteri	stic shall be calculate	d from the
Test	following equation.				, and and compo				
Methods and	Step	В		X5R、X7R、X6S、	X7S、X7T]			
Remarks	1	Minimum op	perating ter						
	2	20°C		25°C					
	3	Maximum op	erating te	emperature					
	$\frac{(C-C_2)}{C_2} \times 100$								
	C : Capacitance in Step C2 : Capacitance in Step	•							
	02 . Capacitance in Step	2							

9. Deflection				
	Temperature	Standard	Appearance Capacitance change	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.
Specified Value	Compensating(Class1)	High Frequency Type	Appearance Cpaitance change	: No abnormality : Within±0.5 pF
	High Permittivity(Class	Capacitance change : Wi		: No abnormality : Within \pm 12.5%(BJ, B7, C6, C7, D7, LD(\otimes)) ortion high value multilayer ceramic capacitor
Test Methods and Remarks	Board Thickness Warp Duration	Multilayer Ceram 42, 063, ^{%1} 105 Type Glass epoxy−re 0.8mm 1mm (Soft Termin 10 se 05 Type thickness, C: 0.2	The other types sin substrate 1.6mm ation type:3mm) ec.	Board $H^{2}20$ $H^{2}20$ $H^{2}20$ Wap 45 ± 2 (Unit: mm) Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength						
0.15.1	Temperature	Standard	-				
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.				
, and o	High Permittivity (Class2))	-				
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	← A→ S	R0.5 Pressing jig Chip 0.6A A				

11. Adhesive St	11. Adhesive Strength of Terminal Electrodes						
0 15 1	Temperature	Standard					
Specified Value	Compensating(Class1) High Frequency Typ	e No terminal separati	No terminal separation or its indication.			
	High Permittivity (Cla	ass2)					
Test		Multilayer Cerar	nic Capacitors				
Test Methods and		042, 063 Type 105					
Remarks	Applied force	2N	5N				
Remarks	Duration	30±5	sec.				

12. Solderability	12. Solderability							
	Temperature	Standard						
Specified Value	Compensating(Class1)	High Frequency Type	At least 95%	of terminal electrode is covered	by new solder.			
Value	High Permittivity (Class2))						
Tast	Eutectic		Eutectic solder Lead-					
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu				
Remarks	Solder temperature	230±5°	С	245±3°C				
Remarks	Duration		4±1 sec.]			

13. Resistance	to Soldering					
Specified Value	Temperature	Standard	Q Insulatio	nce ance change on resistance nding voltage	: No abnormality : Within ±2.5% or ± : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating(Class1) High Frequency Type	Q Insulatio	ince ancecange on resistance nding voltage	: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality
	High Permittivity(Class2) Note 1		Dissipat Insulatic Withstar	ice change ion factor on resistance nding voltage	: No abormality : Within ±7.5%(BJ, E : Initial value : Initial value (between terminals) tion high value multilay	-
	-	040, 000 T	Clas			
	Preconditioning	042, 063 Type	No		105 Туре	4
	Preheating	150°C, 1 to 2 min.		80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5 min.		
	Solder temp.		270±	=5°C		
	Duration		3±0.5	ō sec.		
Test Methods and	Recovery	6 to 24 hr	s (Standa	rd condition)	Noe 5	
Remarks					Class 2	
1 contain co		042、063 Type	105, 107, 212 Type			316, 325 Type
	Preconditioning		Thermal treatment (at 150°C for 1 hr) N			
		150°C, 1 to 2 min.	80 to 100°C, 2 to 5 min.			80 to 100°C, 5 to 10 min.
	Preheating	130 C, 1 to 2 min.	150 to 200°C, 2 to 5 min.			150 to 200°C, 5 to 10 min.
	Solder temp.				270±5°C	
	Duration				±0.5 sec.	
	Recovery		2	4±2 hrs(Sta	ndard condition)Note	5
14. Temperatu	re Cycle (Thermal Shock	()				
Specified	Temperature	Standard	Q Insulatio	ance ance change on resistance nding voltage	: No abnormality : Within ±2.5% or ± : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating(Class1) High Frequency Type	Q	ince ance change	: No abnormality : Within ±0.25pF : Initial value	

opeenied		ingrified action is here	a			
Value			Insulation resistance : In	itial value		
			Withstanding voltage (be	etween terminals): No	abnormality	
			Appearance : No	o abnormality		
			Capacitance change : Wi	ithin \pm 7.5% (BJ, B7, 0	C6, C7, D7, LD(🔆))	
	High Baumittivity (Class?) Note 1	Dissipation factor : Ini	itial value		
	High Permittivity (Class2	2) Note 1	Insulation resistance : Ini	itial value		
			Withstanding voltage (be	etween terminals): No	abnormality	
			Note: ※LD Low distortion h	nigh value multilayer ce	ramic capacitor	
		(Class 1		Class 2	
	Preconditioning		None	Thermal treatment (at 150°C for 1 hr)		
	Preconditioning		none	Note 2		
Test		Step	Temperature	e(°C)	Time(min.)	
Methods and		1	Minimum operating	temperature	30 ± 3	
Remarks	1 cycle	2	Normal tempe	erature	2 to 3	
Remarks		3	Maximum operating	temperature	30 ± 3	
		4	Normal temperature		2 to 3	
	Number of cycles		5 t	imes		
	Recovery	6 to 24 hrs(Star	ndard condition)Note 5	24±2 hrs (St	tandard condition)	Note 5

15. Humidity(Steady State)					
	Temperature Compensating(Class))	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 5\%$ or $\pm 0.5pF$, whichever is larger. : C<10pF : Q \geq 200+10C 10 \leq C<30pF : Q \geq 275+2.5C C \geq 30pF:Q \geq 350(C:Nominal capacitance) : 1000 M Ω min.		
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within $\pm 0.5 pF$, : 1000 M Ω min.		
	High Permittivity(Cl	ass2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: XLD Low distort	: No abnormality : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) : 5.0% max.(BJ, B7, C6, C7, D7, LD($\%$)) : 50 M Ω μ F or 1000 M Ω whichever is smaller. tion high value multilayer ceramic capacitor		
		Cla	ass 1	Class 2		
		Standard	High Frequency Type	De All items		
Test	Preconditioning	Ν	lone	Thermal treatment(at 150°C for 1 hr) Note 2		
Methods and	Temperature	40±2°C	60±2°C	40±2°C		
Remarks	Humidity	90 to	95%RH	90 to 95%RH		
	Duration	500+2	4/-0 hrs	500+24/-0 hrs		
	Recovery	6 to 24 hrs(Stand	ard condition)Note 5	24 ± 2 hrs (Standard condition) Note 5		

16. Humidity Lo	oading				
	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 7.5\%$ or $\pm 0.75pF$, whichever is larger. : C < 30pF: Q \ge 100 + 10C/3 C \ge 30pF: Q \ge 200 (C: Nominal capacitance) : 500 M Ω min.	
Specified Value	Compensating (Glass I)	High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : C≦2pF:Within ±0.4 pF C>2pF:Within ±0.75 pF (C:Nominal capacitance) : 500 MΩ min.	
	High Permittivity(Class2) Note 1	Appearance: No abnormalityCapacitance change: Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$))Dissipation factor: 5.0\% max. (BJ, B7, C6, C7, D7, LD($\%$))Insulation resistance: 25 M $\Omega \mu$ F or 500 M Ω , whichever is smaller.Note: $\%$ LD Low distortion high value multilayer ceramic capacitor		
		C	lass 1	Class 2	
		Standard	High Frequency Ty	e All items	
	Preconditioning		None	Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3	
Test	Temperature	$40\pm2^{\circ}C$	60±2°C	40±2°C	
Methods and	Humidity	90 t	o 95%RH	90 to 95%RH	
Remarks	Duration	500+	24/—0 hrs	500+24/-0 hrs	
	Applied voltage	Rate	d voltage	Rated voltage	
	Charge/discharge current	50r	mA max.	50mA max.	
	Recovery	6 to 24 hrs(Stan	dard condition)Note 5	24±2 hrs(Standard condition) Note 5	

Specified Value	Temperature Compensating(Class1)	Appearance Capacitance cha Q Insulation resista		$C < 10pF: Q \ge 200 + 10C$ $10 \le C < 30pF: Q \ge 275 + 2.5C$ $C \ge 30pF: Q \ge 350(C:Nominal capacitance)$		
		High Frequency Type	Appearance Capacitance change Insulation resistance	_		
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: %LD Low dis	: 5.0% max.(BJ, B7, C6, C7, D7, LD(※))		☆)) r is smaller.
		Clas	s 1	Class 2		
		Standard H	High Frequency Type	BJ, LD(涨)	C6	B7, C7, D7
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		
Test	Temperature	Maximum operating temperature		Maximum operating temperature		
Methods and	Duration	1000+48/-0 hrs		1000+48/-0 hrs		
Remarks	Applied voltage	Rated voltage × 2		Rated voltage × 2 Note 4		
	Charge/discharge current	50mA max.		50mA max.		
	Recovery	6 to 24hr(Standard	condition) Note 5	24±2 hrs(Standard condition)Note 5		
	Recovery	0 to 24m (Standard	· · ·	Į		ayer ceramic capacitor

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.

Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

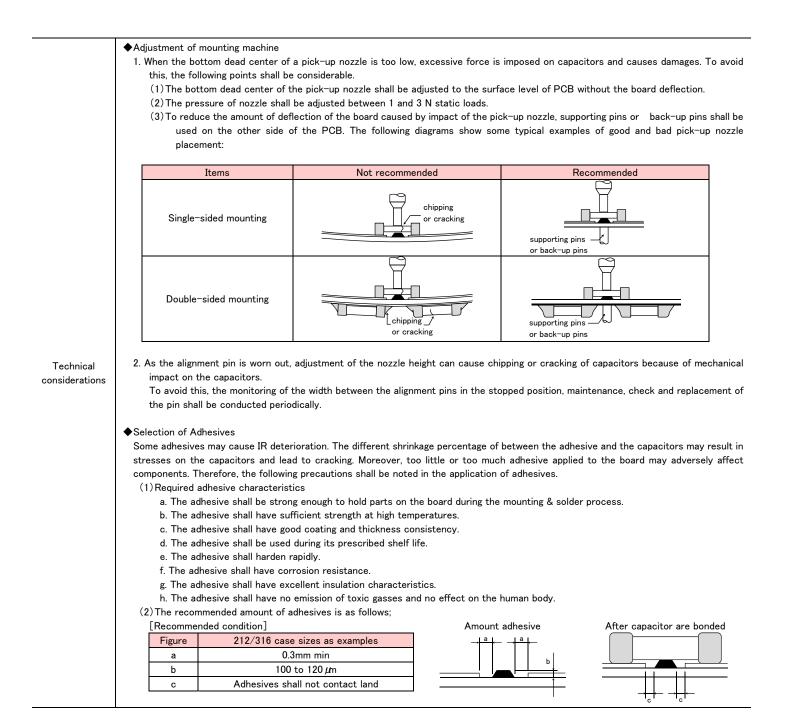
Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.

Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

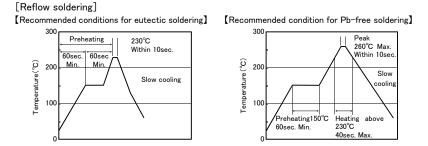
PRECAUTIONS

1. Circuit Design	
	♦Verification of operating environment, electrical rating and performance
	1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
	Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.
Precautions	♦ Operating Voltage (Verification of Rated voltage)
	1. The operating voltage for capacitors must always be their rated voltage or less.
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
	For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
	2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

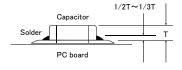

2. PCB Design									
-	♦Pattern config	gurations (Desig	n of Land-patt	terns)					
	1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance.								
	Therefore,	the following ite	ms must be ca	arefully conside	ered in the desig	gn of land patter	ms:		
	(1)Excess	sive solder applie	ed can cause	mechanical st	resses which le	ead to chip bre	aking or crack	ing. Therefore,	please consider
	appr	opriate land-patt	terns for prope	er amount of so	older.				
Precautions	(2)When r	more than one co	omponent are	jointly soldered	d onto the same	e land, each con	nponent's solde	ring point shall	be separated by
	sold	er-resist.							
	Pattern config	gurations (Capac	itor layout on	PCBs)					
	After capacito	ors are mounted	on boards, th	ey can be subj	ected to mecha	anical stresses	in subsequent ı	manufacturing p	orocesses (PCB
	cutting, board	inspection, mour	nting of additio	onal parts, asser	mbly into the ch	nassis, wave solo	dering of the bo	ards, etc.). For	this reason, land
	pattern config	urations and pos	itions of capao	citors shall be o	carefully conside	ered to minimize	e stresses.		
	Pattern config	gurations (Desig	n of Land-patt	terns)					
	The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts.								
	(1)Recomme	ended land dimen	isions for typic	cal chip capacit	ors				
		r Ceramic Capac	itors : Recom	mended land di	mensions		Land pat	terns for PCBs	
	(unit: mm)							Land pattern	0.11
	Wave-so			010	0.05		Chip cap	pacitor	Solder-resist
	Туре	107	212	316	325	<u> </u>			
	Size L	1.6	2.0	3.2	3.2	c [/)
	W	0.8	1.25	1.6	2.5	(┥┝╾┺╩	่╂┅╂╾┥ ┝──′	2
	A	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5			$\rightarrow \longleftarrow$	
	B	0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7		ВА	АВ	
	C	0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5				
							Chip ca	pacitor	
								W	
								<u></u>	
							Ĺ		
Technical	Reflow-s	oldering							
considerations	Туре	042	063	105	107	212	316	325	432
	Size L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
	W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
	A	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
	В	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
	С	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5
	Note:Reco	ommended land s	size might be c	different accord	ling to the allow	ance of the size	e of the product	t.	
		Recommended la	nd dimonsions	for roflow-ook	doring		LWD	C	
	(unit: mm)				Jering				
	Туре	105	107	212)				
		0.52	0.8	1.25					
	Size W	1.0	1.6	2.0				w	
	A	0.18 to 0.22	0.25 to 0						
	В	0.2 to 0.25	0.3 to 0.						
	C	0.9 to 1.1	1.5 to 1.				·	 	
		0.0 10 1.1	1.0 10 1.				1 -	I	

1–3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.

3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.



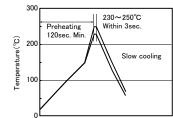
	♦ Selection of Flux
	Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;
	(1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
	(2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
Precautions	(3)When water-soluble flux is used, special care shall be taken to properly clean the boards.
	◆ Soldering
	Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.
	Sn-Zn solder paste can adversely affect MLCC reliability.
	Please contact us prior to usage of Sn-Zn solder.
	♦ Selection of Flux
	1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
Technical considerations	1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
	1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high
	humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning
	methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

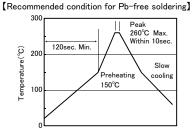

◆ Soldering

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock.
- Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- · Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

Caution

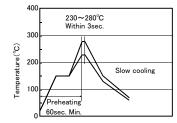
The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of a capacitor.

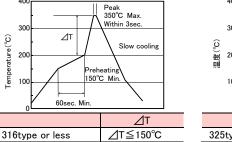


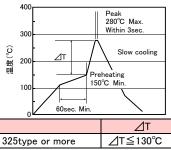

②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.

③Allowable number of reflow soldering : 2 times max.

[Recommended conditions for eutectic soldering]




Caution


OWave soldering must not be applied to capacitors designated as for reflow soldering only. OAllowable number of wave soldering : 1 times max.

[Recommended conditions for eutectic soldering] [Recommended condition for Pb-free soldering]

Caution

Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
 The soldering iron shall not directly touch capacitors.
 Allowable number of hand soldering : 1 times max.

5. Cleaning	
Precautions	 Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/2 or less Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less

6. Resin coating a	and mold
	1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance.
Precautions	2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended.

7. Handling	
	 Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	 Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

	♦Storage
	 To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to contro temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions
	Ambient temperature : Below 30°C
D	Humidity : Below 70% RH
Precautions	 The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour.
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Taiyo Yuden:

 JMK105BJ225KVHF
 UMK325B7105KNHT
 UMK325B7225KMHP
 UMK325B7335KMHP
 UMK325B7335MMHP

 UMK107B7333KAHT
 UMK212AB7474KD-T
 UMK105B7681KVHF
 UMK105BJ471KVHF
 UMK063CG221JTHF

 UMK105B7221KVHF
 UMK105B7331KVHF
 TMK021CG270JK-W
 TMK105B7153KVHF
 TMK105B7333KVHF

 JMK107B7105KAHT
 JMK107BJ105KAHT
 JMK107BJ105KAHT
 MK107BJ105KAHT
 TMK107BJ105KAHT