

SGM4553 2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

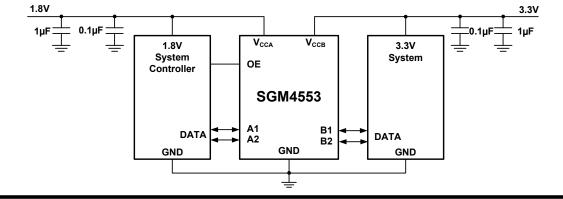
GENERAL DESCRIPTION

This two-bit non-inverting translator is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the V_{CCA} supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the V_{CCB} supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as V_{CCA} is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SGM4553 is available in the Green SOT-23-8 and XTDFN-1.4×1-8L packages. It operates over an ambient temperature range of -40°C to +85°C.


TYPICAL APPLICATION CIRCUIT

FEATURES

- No Direction-Control Signal Needed
- Data Rates 24Mbps (Push-Pull) 2Mbps (Open-Drain)
- 1.65V to 5.5V on A Ports and 2.3V to 5.5V on B Ports $(V_{CCA} \leq V_{CCB})$
- V_{cc} Isolation: If Either V_{cc} is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: Either V_{CCA} or V_{CCB} can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Available in Green SOT-23-8 and XTDFN-1.4×1-8L Packages

APPLICATIONS

I²C/SMBus UART GPIO

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM4552	SOT-23-8	SGM4553YN8G/TR	SLDXX	Tape and Reel, 3000
SGM4553 —	XTDFN-1.4×1-8L	SGM4553YXDO8G/TR	N2X	Tape and Reel, 5000

NOTE: X = Date Code, XX = Date Code.

MARKING INFORMATION

$\underline{\mathsf{SLD}} \ \underline{\mathsf{X}} \ \underline{\mathsf{X}}$

Date code - Month ("A" = Jan. "B" = Feb. ··· "L" = Dec.) Date code - Year ("A" = 2010, "B" = 2011 ···) Chip I.D.

For example: SLDDB (2013, February)

ABSOLUTE MAXIMUM RATINGS

V _{CCA} , Supply Voltage Range0.3V to 6V
V _{CCB} , Supply Voltage Range0.3V to 6V
V _I , A Ports, B Ports, OE Input Voltage Range ⁽²⁾ 0.3V to 6V
Vo, Voltage Range Applied to Any Output in the High-
Impedance or Power-Off State ⁽²⁾
A Ports0.3V to 6V
B Ports0.3V to 6V
V _o , Voltage Range Applied to Any Output in the High or Low
State ^{(2) (3)}
A Ports0.3V to V _{CCA} + 0.3V
B Ports0.3V to V _{CCB} + 0.3V
I _{IK} , Input Clamp Current (V _I < 0)50mA

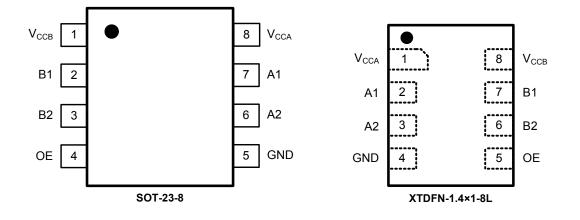
I _{OK} , Output Clamp Current (V _O < 0) I _O , Continuous Output Current	
Continuous Current through V_{CCA} , V_{CCB} , or GND.	
Continuous Current through V _{CCA} , V _{CCB} , of GND.	±100IIIA
Operating Temperature Range	-40°C to +85°C
Junction Temperature	150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10sec)	260°C
ESD Susceptibility	
НВМ	4000V
MM	300V

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute Maximum rating conditions for extended periods may affect device reliability. 2. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

3. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

	PIN		FUNCTION
SOT-23-8	XTDFN-1.4×1-8L	NAME	FUNCTION
1	8	V _{CCB}	B Ports Supply Voltage. $2.3V \le V_{CCB} \le 5.5V$.
2	7	B1	Input/Output B. Referenced to V _{CCB} .
3	6	B2	Input/Output B. Referenced to V _{CCB} .
4	5	OE	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to $V_{\text{CCA}}.$
5	4	GND	Ground.
6	3	A2	Input/Output A. Referenced to V _{CCA} .
7	2	A1	Input/Output A. Referenced to V _{CCA} .
8	1	V _{CCA}	A Ports Supply Voltage. 1.65V \leq V _{CCA} \leq 5.5V and V _{CCA} \leq V _{CCB} .

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

ELECTRICAL CHARACTERISTICS

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{typical values are at } T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER		CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
RECOMMENDED OPERA	TING CONDITION	ONS ^{(1) (2)}						
Supply Voltage ⁽³⁾				Full	1.65		5.5	v
Supply vollage	V _{CCB}			Full	2.3		5.5	v
	A Port I/Os	V _{CCA} = 1.65V to 1.	95V, V _{CCB} = 2.3V to 5.5V	Full	V _{CCI} - 0.2		V _{CCI}	
High-Level Input Voltage	A POIL I/OS	V _{CCA} = 2.3V to 5.5	V, V _{CCB} = 2.3V to 5.5V	Full	V _{CCI} - 0.4		V _{CCI}	v
(V _{IH})	B Port I/Os			Full	V _{CCI} - 0.4		V _{CCI}	v
	OE Input			Full	V _{CCA} × 0.8		5.5	
	A Port I/Os			Full	0		0.15	
Low-Level Input Voltage (V _{IL})	B Port I/Os			Full	0		0.15	V
	OE Input			Full	0		V _{CCA} × 0.25	
		A Port I/Os Push-I	Pull Driving	Full			10	
Input Transition Rise or Fal	l Rate (Δt/ΔV)	B Port I/Os Push-I	Pull Driving	Full			10	ns/V
		Control Input		Full			10	
ELECTRICAL CHARACTE	RISTICS	•						
A Ports High Level Output	/oltage (V _{она})	I_{OH} = -20µA, $V_{IB} \ge V_{CCB}$ - 0.4V		Full	V _{CCA} × 0.7			V
A Ports Low Level Output \	/oltage (V _{OLA})	I_{OL} = 1mA, $V_{IB} \le 0.15V$		Full			0.4	
B Ports High Level Output	Voltage (V _{онв})	I_{OH} = -20µA, $V_{IA} \ge V_{CCA}$ - 0.4V		Full	V _{CCB} × 0.7			
B Ports Low Level Output \	/oltage (V _{OLB})	$I_{OL} = 1 \text{mA}, V_{IA} \le 0.15 \text{V}$		Full			0.4	
lage the share Ourset (1)	05			+25°C			±1	
Input Leakage Current (I ₁)	OE			Full			±1.5	μA
		$V_{CCA} = 0V, V_{CCB} = 0V$ to 5.5V		+25°C			±0.5	μA
Power Off Leakage	A Ports			Full			±1	
Current (I _{OFF})	D Danta			+25°C			±0.5	
	B Ports	$V_{CCA} = 0V \text{ to } 5.5V,$	$V_{\rm CCB} = 0V$	Full			±1	
3-State Output	A an D Danta	O = 0		+25°C			±0.6	
Leakage (I _{oz})	A or B Ports	OE = 0V		Full			±1	μA
			V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			5.5	
Quiescent Supply Current (I _{CCA})	$V_1 = V_0 = OPEN,$ $I_0 = 0$	$V_{CCA} = 5.5V, V_{CCB} = 0V$	Full			5.5	μA
			$V_{CCA} = 0V, V_{CCB} = 5.5V$	Full			-1	
			V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			15	
Quiescent Supply Current (I _{ССВ})	$V_1 = V_0 = OPEN,$ $I_0 = 0$	V_{CCA} = 5.5V, V_{CCB} = 0V	Full			-1	μA
			$V_{CCA} = 0V, V_{CCB} = 5.5V$	Full			6	
Quiescent Supply Current (I _{CCA} + I _{CCB})	$V_1 = V_0 = OPEN,$ $I_0 = 0$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			20	μA

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

ELECTRICAL CHARACTERISTICS

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Quiescent Supply Current (I _{CCZA})	$V_{I} = V_{CCI} \text{ or } 0V,$ $I_{O} = 0, \text{ OE} = 0V$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			5.5	μA
Quiescent Supply Current (I _{CCZB})	$V_{I} = V_{CCI} \text{ or } 0V,$ $I_{O} = 0, OE = 0V$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			5.5	μA
OE Input Capacitance (C ₁)	V_{CCA} = 3.3V, V_{CCB} =	= 3.3V	+25°C		4		pF
Input/Output Capacitance A Ports (C _{IO})			+25°C		5		pF
Input/Output Capacitance B Ports (C _{IO})	$v_{CCA} - 3.3v$, $v_{CCB} - $	$V_{CCA} = 3.3V, V_{CCB} = 3.3V$			5		рг

NOTES:

1. V_{CCI} is the V_{CC} associated with the input ports.

2. V_{CCO} is the V_{CC} associated with the output ports.

3. V_{CCA} must be less than or equal to $V_{\text{CCB}},$ and V_{CCA} must not exceed 5.5V.

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

TIMING REQUIREMENTS

			V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
			ТҮР	ТҮР	ТҮР	- UNITS
$(T_A = +25^{\circ}C, V_{CCA} = 1.3)$	8V, unless otherwise no	ted.)	•			
Data Rate	Push-Pull Driving		21	22	24	Mbpa
Dala Rale	Open-Drain Driving		2	2	2	- Mbps
Pulse Duration (t _w)	Push-Pull Driving	- Data Inputs	47	45	41	20
	Open-Drain Driving	Data Inputs	500	500	500	- ns
(T _A = +25°C, V _{CCA} = 2.	5V, unless otherwise no	ted.)				
Data Rate	Push-Pull Driving		20	22	24	Mbps
	Open-Drain Driving		2	2	2	
	Push-Pull Driving	Data Inputa	50	45	41	- ns
Pulse Duration (t_W)	Open-Drain Driving	- Data Inputs	500	500	500	
(T _A = +25°C, V _{CCA} = 3.5	3V, unless otherwise no	ted.)				
Data Rate	Push-Pull Driving			23	24	- Mbps
	Open-Drain Driving			2	2	
Pulse Duration (t_w)	Push-Pull Driving	Data Inputa		43	41	20
	Open-Drain Driving	- Data Inputs		500	500	- ns
(T _A = +25°C, V _{CCA} = 5\	/, unless otherwise note	d.)				
Data Bata	Push-Pull Driving				24	Mhaa
Data Rate	Open-Drain Driving				2	– Mbps
Bulas Duration (t)	Push-Pull Driving	Data Inputa			41	20
Pulse Duration (t_W)	Open-Drain Driving	- Data Inputs			500	- ns

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.8V, unless otherwise noted.)

DADAMETED	FROM	то	TEST	V _{ссв} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V		
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	ТҮР	UNITS	
			Push-Pull Driving	2.4	3.0	4.3		
t _{PHL}	A	В	Open-Drain Driving	26.0	26.3	26.7		
+		D	Push-Pull Driving	4.0	3.6	3.5	ns	
t _{PLH}			Open-Drain Driving	175	145	110		
t			Push-Pull Driving	2.0	1.9	2.1		
t _{PHL}	в		Open-Drain Driving	26.0	26.1	26.2		
+	В	A	Push-Pull Driving	1.7	1.5	1.4	ns	
t _{PLH}			Open-Drain Driving	133	69	51	-	
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		24	20	18		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	1200	1200	ns	
t .	A Dorto	Rise Time	Push-Pull Driving	6.6	5.8	5.4	20	
t _{rA}	APOILS	Rise Time	Open-Drain Driving	89	31	10	ns	
t _	P. Dorto	Rise Time	Push-Pull Driving	5.6	4.6	3.9		
t _{rB}	BPOILS	Rise Time	Open-Drain Driving	128	98	58	ns	
+	A Dorto	Fall Time	Push-Pull Driving	2.9	2.7	2.6	20	
t _{fA}	APOILS		Open-Drain Driving	1.9	1.7	1.6	ns	
+	P. Dorto	Fall Time	Push-Pull Driving	4.6	5.9	8.0	20	
t _{fB}	B Ports Fall Time		Open-Drain Driving	2.2	2.3	2.9	ns	
t _{sk(0)}	Channel-to-0	Channel Skew		0.5	0.5	0.5	ns	
Data Rate			Push-Pull Driving	21	22	24	Mbps	
			Open-Drain Driving	2	2	2	Mbps	

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 2.5V, unless otherwise noted.)

DADAMETED	FROM	то	TEST	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V		
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	ТҮР	UNITS	
			Push-Pull Driving	2.7	3.3	4.8		
t _{PHL}	•	В	Open-Drain Driving	26.2	26.4	26.7		
	A	В	Push-Pull Driving	2.6	2.4	2.3	ns	
t _{PLH}			Open-Drain Driving	169	144	110		
			Push-Pull Driving	2.4	2.3	2.4		
t _{PHL}	в		Open-Drain Driving	26.3	26.4	26.5		
	В	A	Push-Pull Driving	2.0	1.9	1.8	ns	
t _{PLH}			Open-Drain Driving	165	118	55		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		23	19	16		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	1200	1200	ns	
	A Dorto	Rise Time	Push-Pull Driving	3.2	2.8	2.6	20	
t _{rA}	A Pons	Rise Time	Open-Drain Driving	120	70	10	ns	
	D Dorto	Rise Time	Push-Pull Driving	4.5	3.4	2.6		
t _{rB}	BPOILS	Rise Time	Open-Drain Driving	122	96	62	ns	
+	A Dorto	Fall Time	Push-Pull Driving	4.9	5.0	4.8	20	
t _{fA}	A POILS		Open-Drain Driving	2.0	1.9	1.7	ns	
	D. Dorto	Call Time	Push-Pull Driving	4.8	6.1	8.3		
t _{fB}	B Ports Fall Time		Open-Drain Driving	1.9	2.1	2.7	ns	
t _{sk(0)}	Channel-to-	Channel Skew		0.5	0.5	0.5	ns	
Data Rate			Push-Pull Driving	20	22	24	Mhoo	
			Open-Drain Driving	2	2	2	Mbps	

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 3.3V, unless otherwise noted.)

PARAMETER	FROM	то	TEST	V _{CCB} = 3.3V	V _{CCB} = 5V		
(INPU)	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	UNITS	
4			Push-Pull Driving	3.5	4.9		
t _{PHL}	•	в	Open-Drain Driving	26.3	26.7		
+	A		Push-Pull Driving	2.2	2.0	ns	
t _{PLH}			Open-Drain Driving	133	104		
+			Push-Pull Driving	3.0	3.2		
t _{PHL}	В		Open-Drain Driving	26.6	26.8		
+	В	A –	Push-Pull Driving	1.8	1.7	ns	
t _{PLH}			Open-Drain Driving	132	83		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		18	15		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	1200	ns	
4 .	A Dorto	Rise Time	Push-Pull Driving	2.2	2.0		
t _{rA}	APOILS		Open-Drain Driving	87	36	ns	
4	D Dorto	Rise Time –	Push-Pull Driving	2.9	2.3		
t _{rB}	BPOILS	Rise Time	Open-Drain Driving	87	56	– ns	
+	A Dorto	Fall Time	Push-Pull Driving	6.2	5.8	ns	
t _{fA}	APOILS		Open-Drain Driving	2.3	2.0	115	
+	P. Dorto	Foll Time	Push-Pull Driving	6.5	8.2	ns	
t _{fB}	B Ports Fall Time		Open-Drain Driving	2.0	2.5	115	
t _{sk(0)}	Channel-to-	Channel Skew		0.5	0.5	ns	
Data Rate			Push-Pull Driving	23	24	Mbra	
Dala Rale		F	Open-Drain Driving	2	2	- Mbps	

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 5V, unless otherwise noted.)

DADAMETED	FROM TO		TEST	V _{CCB} = 5V		
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР		
			Push-Pull Driving	5.4		
t _{PHL}	•	В	Open-Drain Driving	26.7		
+	A	Б	Push-Pull Driving	1.9	ns	
t _{PLH}			Open-Drain Driving	120		
+			Push-Pull Driving	5.6		
t _{PHL}	в		Open-Drain Driving	27.3		
	В	A	Push-Pull Driving	1.7	ns	
t _{PLH}			Open-Drain Driving	126	1	
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		16		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	ns	
4	A Dorto [Rise Time	Push-Pull Driving	1.8	– ns	
t _{rA}	A Poits r	lise mine	Open-Drain Driving	79		
	D Dorto [Rise Time	Push-Pull Driving	2.2	ns	
t _{rB}	B Ports F	kise nime	Open-Drain Driving	73		
+	A Dorto	-all Time	Push-Pull Driving	8.7	20	
t _{fA}	A Ports		Open-Drain Driving	2.7	ns	
+	P. Dorto		Push-Pull Driving	8.6	20	
t _{fB}	B Ports Fall Time		Open-Drain Driving	2.4	– ns	
t _{sk(0)}	Channel-to-C	hannel Skew		0.5	ns	
Data Rate			Push-Pull Driving	24	Mbps	
Dala Rale			Open-Drain Driving	2	annha	

APPLICATION INFORMATION

Applications

The SGM4553 can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I²C or 1-wire, where the data is bidirectional and no control signal is available. The SGM4553 can also be used in applications where a push-pull driver is connected to the data I/Os.

Architecture

The SGM4553 architecture (see Figure 1) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

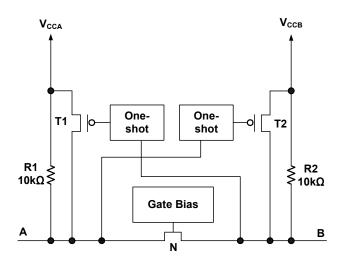


Figure 1. Architecture of an SGM4553 Cell

The SGM4553 employs two key circuits to enable this voltage translation:

- An N-channel pass-gate transistor topology that ties the A port to the B port.
- Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B ports.

Input Driver Requirements

The fall time (t_{fA}, t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the SGM4553. Similarly, the t_{PHL} and data rates also depend on the output impedance of the external driver. The values for t_{fA}, t_{fB}, t_{PHL}, and data rates in the datasheet assume that the output impedance of the external driver is less than 50 Ω .

Power Up

During operation, ensure that $V_{CCA} \leq V_{CCB}$ at all times. The sequencing of each power supply will not damage the device during the power up operation, so either power supply can be ramped up first.

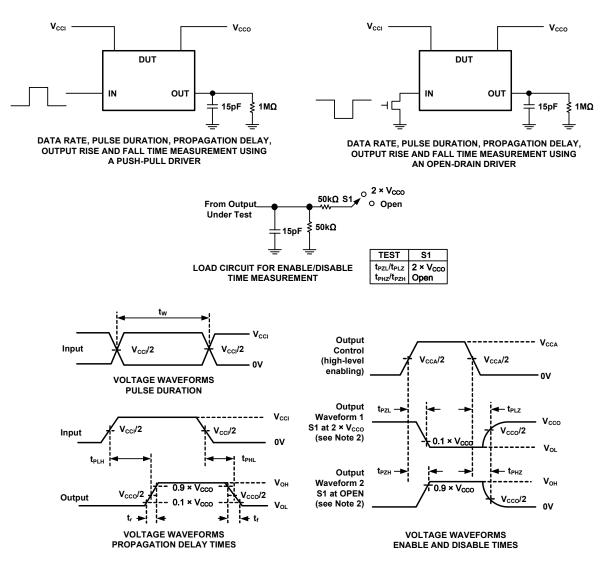
Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic I_{CC}, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the SGM4553 output sees, so it is recommended that this lumped-load capacitance be considered to avoid retriggering, bus contention, output 0.S. signal oscillations, or other adverse system-level affects.

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

APPLICATION INFORMATION

Enable and Disable


The SGM4553 has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. OE has an internal pull-down current source, as long as V_{CCA} is powered. The disable time (t_{DIS}) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-Up or Pull-Down Resistors on I/O Lines

Each A port I/O has an internal 10k Ω pull-up resistor to V_{CCA} , and each B port I/O has an internal 10k Ω pull-up resistor to V_{CCB} . If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal 10k Ω resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the SGM4553 are disabled when the OE pin is low.

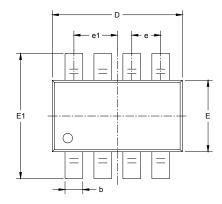
PARAMETER MEASUREMENT INFORMATION

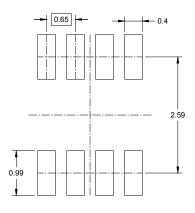
NOTES:

1. C_L includes probe and jig capacitance.

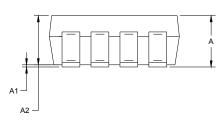
2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

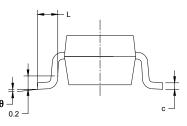
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z₀ = 50 Ω , dv/dt \geq 1V/ns.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as $t_{\mathsf{DIS}}.$
- 6. t_{PZL} and t_{PZH} are the same as t_{EN} .
- 7. t_{PLH} and t_{PHL} are the same as $t_{\mathsf{PD}}.$
- 8. V_{CCI} is the V_{CC} associated with the input ports.
- 9. V_{CCO} is the V_{CC} associated with the output ports.
- 10. All parameters and waveforms are not applicable to all devices.


Figure 2. Load Circuit and Voltage Waveforms

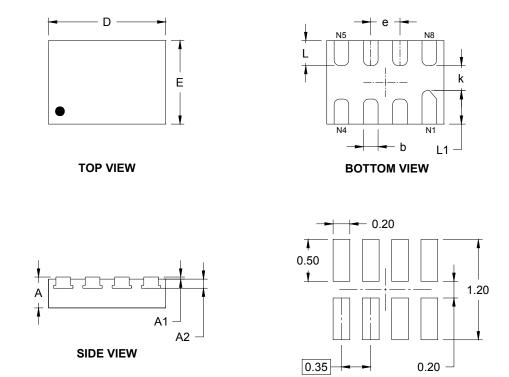


SG Micro Corp www.sg-micro.com


PACKAGE OUTLINE DIMENSIONS


SOT-23-8

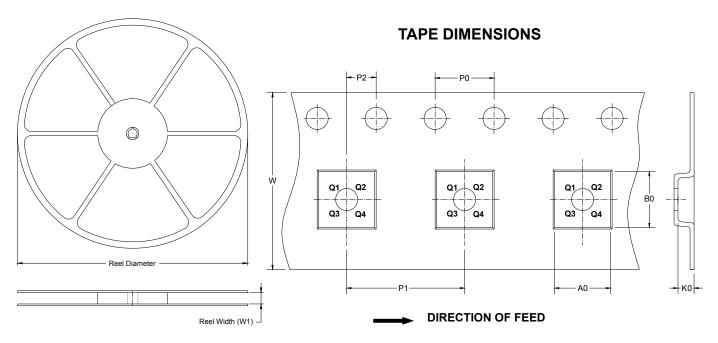
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches		
-	MIN	МАХ	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.650	BSC	0.026	BSC	
e1	0.975 BSC		0.038	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS

XTDFN-1.4×1-8L

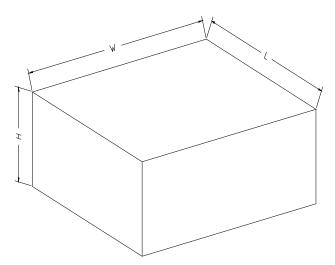


Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.340	0.400	0.013	0.016	
A1	0.000	0.050	0.000	0.002	
A2	0.110	REF	0.004 REF		
D	1.350	1.450	0.053	0.057	
E	0.950	1.050	0.037	0.041	
k	0.200 MIN		0.008 MIN		
b	0.150	0.200	0.006	0.008	
е	0.350 TYP		0.014 TYP		
L	0.250	0.350	0.010	0.014	
L1	0.350	0.450	0.014	0.018	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.


KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-8	7″	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
XTDFN-1.4×1-8L	7"	9.5	1.15	1.6	0.5	4.0	4.0	2.0	8.0	Q1

2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18

